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Abstract   

Our bilayered self-assembled skin substitutes (SASS) are skin substitutes showing a 

structure and functionality very similar to native human skin. These constructs are used, 

in life threatening burn wounds, as permanent autologous grafts for the treatment of such 

affected patients even though their production is exacting. We thus intended to shorten 

their current production time to improve their clinical applicability. A self-assembled 

decellularized dermal matrix was used. It allowed the production of an autologous skin 

substitute from patient’s cells. The characterization of SASS reconstructed using a 

decellularized dermal matrix (SASS-DM) was performed by histology, 

immunofluorescence, transmission electron microscopy and uniaxial tensile analysis. 

Using the SASS-DM, it was possible to reduce the standard production time from about 

eight to four weeks and a half. The structure, cell differentiation and mechanical 

properties of the new skin substitutes were shown to be similar to the SASS. The 

decellularization process had no influence on the final microstructure and mechanical 

properties of the dermal matrix. This model, by enabling the production of a skin 

substitute in a shorter time frame without compromising its intrinsic tissue properties, 

represents a promising addition to the currently available burn and wound treatments. 
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Introduction  

In recent years, the treatment of severely burned patients has been improved by the use 

of living skin substitutes produced by tissue engineering.
1
 Skin substitutes have the 

ability to deliver cytokines, chemokines, growth factors and competent cells at wound 

site, thus improving the wound closure.
2,3

 Definitive treatment of extensive burns 

requires that autologous skin be used since other allogenic grafts are rejected after several 

days/weeks. In a context of the production of engineered living skin substitutes, the use 

of the patient’s own cells oversteps immune incompatibility problems but requires that 

the production of such skin constructs be initiated only after isolating patient’s cells. 

Our group previously presented a bilayered self-assembled skin substitute (SASS) 

made of a dermal substitute underlying a fully differentiated epidermis, which generated 

an engineered tissue similar in structure and function to native human skin
4-6

 for clinical 

use in wound healing
7
 and burn treatment.

8,9
 SASS is currently used in a clinical trial for 

the permanent coverage of full-thickness wounds (ClinicalTrials.gov NCT02350205). 

The self-assembly strategy used to produce a reconstructed dermal substitute entails that 

adult or neo-natal fibroblasts, cultured under adequate conditions, produce and organize 

their own extracellular matrix without exogenous scaffold.
10-13

 With our current standard 

protocol, the production of the dermal substitute of the SASS requires 3-4 weeks and is 

the most time consuming step.
12,14

 Our aim was to modify the SASS production process 

to obtain a significant reduction in the dermal production time from the point where the 

patient’s cells have been harvested and expanded in culture, allowing quicker grafting of 

the skin substitute on the patient. The chosen approach was to use of a self-assembled 

pre-produced acellular dermal matrix for autologous cell seeding.  
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Some available dermal matrices use xenogenic material (bovine collagen, chondoitin-

6-sulfate, polyglactin, polyglycolide (PGA), etc) that can eventually stimulate untoward 

immunologic response in some patients.
15,16

 The extracellular matrix (ECM) of the 

acellular dermal matrix presented herein is produced from the cells themselves, thus 

generating substitutes with an ECM composition quite similar to native tissue.
4-6

 Cells are 

then removed, leaving the self-assembled ECM available for later autologous cell 

repopulation and in situ basement membrane formation. One must note that a single 

population of newborn cells, vetted for adventitious infectious agents, was used for the 

matrix bank production. This minimises the risks of infectious disease transmission from 

grafts composed from multiple donors, as seen with acellular human cadaver skin. Many 

different protocols for dermis decellularization have been proposed to generate such 

matrices using various chemical, enzymatic and physical agents.
17

 Aggressive 

decellularization processes can be more effective for removing cell residues, but are also 

generally more disruptive for the ECM elements.
17,18

 In order to preserve the extracellular 

matrix integrity as much as possible following the decellularization process, a minimally 

disruptive decellularization technique without any chemical or enzymes was used to 

produce the acellular dermal matrices. Moreover, the long-term preservation of acellular 

dermal matrices allows the generation of readily available scaffolds which can be used at 

a later appropriate time. 

This study describes a method that reduced the production time for autologous 

bilayered SASS up to at least 3 weeks by using a decellularized self-assembled dermal 

matrix. Our results demonstrated a significant reduction in production time from patient 

biopsy to clinical availability as well as the generation of a skin substitute that presented 
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similar characteristics and functionality when compared to the standard bilayered SASS 

as shown by histological, immunofluorescence, mechanical testing and transmission 

electron microscopy (TEM) analyses. 

Materials and Methods 

Cell culture 

Neonatal fibroblasts and keratinocytes were extracted from a single donor (4-days-old) 

foreskin biopsy by the two-step thermolysin and trypsin isolation procedure, as 

previously described.
12,19

 Briefly, the epidermis and dermis were gently separated after a 

thermolysin incubation step using fine forceps (0.5 mg/mL, Sigma, St-Louis, MO, USA). 

Fibroblasts were isolated from the dermis using collagenase H (Roche Diagnostics, 

Laval, Qc, Canada) while keratinocytes were extracted from the epidermis using a 

trypsin/EDTA solution (0.05% trypsin (Intergen Company, Purchase, NY,USA), 0.01% 

EDTA/disodium salt (J.T Baker, Phillipsburg, NT, USA). Cells were then collected by 

centrifugation and inoculated into culture flasks. 

Keratinocytes were grown on a feeder layer of irradiated human fibroblasts in 

Dulbecco-Vogt modified eagle’s medium (DMEM; Invitrogen, Burlington, ON, Canada) 

supplemented with HAM’s F12 in a 3:1 ratio (DMEM HAM; Invitrogen, Burlington, 

ON, Canada) containing 5 % newborn calf serum (FetalClone II, Hyclone, Logan, UT, 

USA), 0.4 μg/ml hydrocortisone (Calbiochem, La Jolla, CA, USA), 5 μg/ml insulin 

(Sigma), 10
-6

M isoproterenol (Sandoz Canada, Boucherville, QC, Canada), 10 ng/ml 

epidermal growth factor (Austral, San Ramon, CA, USA), penicillin (Sigma) and 

gentamicin (Schering, Pointe-Claire, QC, Canada). Fibroblasts were grown in DMEM 
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supplemented with 10 % fetal calf serum (FCS) (Hyclone, Scarborough, ON, Canada) 

and antibiotics (penicillin 100 UI/ml, gentamicin 25 μg/ml). Both cell types were 

maintained at 37°C in a humidified incubator containing 8% CO2 and culture media were 

changed three times per week during the culture period. 

Production of self-assembled skin substitutes (SASS)  

Standard SASS were obtained using the self-assembly reconstruction method, as 

previously described.
7,12

 Briefly, fibroblasts were first expanded for 7 days in DMEM 

10% FCS. After expansion (7 days), fibroblasts were seeded in flasks (Falcon) at 4 X 10
3
 

cells/cm
2
 and cultured for 25 days in DMEM 10% FCS 50 µg/ml ascorbic acid. 

Fibroblasts secreted their own extracellular matrix (ECM) and produced cohesive sheets. 

These sheets were then stacked to form a dermal substitute composed of fibroblasts and 

their ECM. These dermal substitutes were cultured one week to allow for sheets fusion. 

Keratinocytes were then seeded on the dermal substitutes at 1 X 10
5
/cm

2
 in order to form 

the epidermal layer. Keratinocyte proliferation onto the dermal substitute was allowed by 

culturing immersed in medium for one week. Final keratinocytes differentiation took 

place after the skin substitute was raised at the air-liquid interface
20

 for an additional 10 

days. Thus the total production duration was 8 weeks (56 days). This duration is 

calculated from a starting point that occurs 9-10 days after cells have been harvested from 

a patient’s biopsy and subjected to an initial culture (see Figure 1A).  

Production of a decellularized self-assembled dermal template (DM) 

Neonatal fibroblasts were seeded at 4 X 10
3
 cells/cm

2
 in a 75 cm

2
 flask (Falcon, BD, 

Franklin Lakes, NJ, USA) and cultured for 19 days in DMEM supplemented with 10% 
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FCS and containing 50 μg/ml ascorbic acid to produce tissue sheets.
12

 Three dermal 

sheets were superimposed to form a tissue-engineered dermal template comprised of 

fibroblasts and their self-secreted extracellular matrix, and cultured for a week to allow 

an appropriate cohesion between the sheets.
7
 Following this culture period, the dermal 

templates were decellularized using two cycles of osmotic shock, followed by a rinsing 

and a dehydration process.
21

 The dermal templates were first immersed in hypo-osmolar 

sterile apyrogen water (Milli-Q, EMD Millipore, Bellerica, MA, USA) for five hours at 

4°C. The dermal templates were then gently rinsed once using sterile apyrogen water. 

Following supernatant aspiration, they were left overnight, dishes open, in an actively 

operating laminar flow cabinet. The next day, they were submitted to a second cycle of 

the previously described process to result in the decellularized DM. Finally, the DM were 

frozen at -20°C and stored until further usage. 

Decellularized dermal matrix rehydration. Frozen DM were thawed overnight at 4°C 

in cold DMEM containing penicillin 100 UI/ml and gentamicin 25 μg/ml and 0.5 µg/ml 

amphotericin B. The next day, they were immersed in DMEM containing 10% FCS with 

penicillin 100 UI/ml and gentamicin 25 μg/ml and kept in an incubator for one day. 

Rehydrated DM were then used for further SASS-DM reconstruction. 

Production of bilayered self-assembled skin substitutes using decellularized dermal 

matrices (SASS-DM) 

Fibroblasts were expanded in culture for a week in DMEM 10% FCS and then seeded 

at a 4.2 x 10
4
 cells/cm

2
 density on thawed matrices. The recellularized matrices were 

cultured in DMEM containing 10% FCS 50µg/ml ascorbic acid for a week to allow 
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repopulation by the seeded cells, resulting in a tissue-engineered dermal substitute. 

Following that culture step, keratinocytes were seeded as described above for SASS 

production. The total production duration of SASS-DM was thus four and a half weeks 

(31 days). This duration is calculated from a starting point that occurs 9-10-days after 

cells have been harvested from a patient’s biopsy and subjected to an initial culture, prior 

to the selected start point where they are seeded for a 7-day expansion time (see Figure 

1B). 

Histological and immunofluorescence analysis 

SASS and SASS-DM biopsies were embedded in Tissue-Tek Optimal Cutting 

Temperature Compound (OCT; Bayers, Etobicoke, ON, Canada) and frozen for further 

immunofluorescence analyzes or fixed in Histochoice (Amresco, Solon, OH, USA), 

embedded in paraffin, sectioned and stained with Masson’s trichrome
22

 for histological 

analysis. Other samples were fixed in 2.5% glutaraldehyde (Canemco, Lakefield, Qc, 

Canada) in 0.1M sodium cacodylate (Mecalab, Montreal, Qc, Canada) buffer overnight at 

4°C, washed in 0.1M sodium cacodylate buffer and embedded in Polybed 812  

(Polysciences, Warrington, PA, USA) according to standard procedures for transmission 

electronic microscopy (TEM) analysis.
14

 

Indirect immunofluorescence assays were performed on 5-μm-thick cryosections of 

the skin substitutes fixed in acetone as previously described.
23

 Cell nuclei were stained 

with Hoechst 33258 (Sigma Chemical, St-Louis, MO, USA). Primary antibodies were 

replaced by PBS-BSA 1% for negative controls. The primary and secondary antibodies 

used for immunofluorescence analysis are presented in Table 1. Slides were observed 
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under a Zeiss microscope equipped with Zeiss Axiocam HRm Rev 3 and Axiocam ICc1 

digital cameras for immunofluorescence and histological imaging, respectively. Images 

were processed with the AxioVision 4.8.2 software (Carl Zeiss Canada Ltd. Toronto, ON, 

Canada). 

Mechanical properties analysis 

Uniaxial tensile tests were performed on tissue specimens prepared using a dog bone 

shaped die-cut and using a Trytron
TM

 250 MicroForce Testing System (MTS Systems 

Corporation, Eden Prairie, MN, USA) as previously described.
24

 The skin specimens 

were placed between a static and a dynamic anchorage. The movement of the dynamic 

anchorage at a constant displacement rate of 0.2 mm per second pulled on the tissue until 

rupture, while a load cell recorded the load applied on the sample. The ultimate tensile 

strength (UTS) and failure strain were defined respectively by the peak stress (MPa) and 

maximum deformation (%) withstood by the samples prior to failure. The tensile 

modulus was defined as the slope of the linear portion of the stress–strain curve in the 

25–80% range of the UTS of the sample,
24

 thus producing information about tissue 

stiffness. The applied stresses and strains were calculated by dividing the recorded load 

level by the initial cross-sectional area of the sample using the width of the die-cut and 

the thickness of the sample based on histology. A minimum of 4 specimens were tested 

per condition and stress–strain curves were plotted and analyzed using a Matlab© script 

(The Mathworks, Natick, MA, USA).
24

  

Results 
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The aim of the work described herein was to reduce the fabrication time required for 

the production of autologous SASS from patient biopsy to clinical availability. In the 

current study, the dermal culture phase was circumvented by the use of a self-assembled 

decellularized and dehydrated dermal matrix (DM) produced using non autologous cells 

and allowing the initiation of patient cell culture further along in the reconstruction 

process (Figure 1). Thus, this strategy allowed the standard eight weeks SASS 

reconstruction protocol to be shortened to about four weeks and a half (Figure 1A, B). 

The obtained SASS-DM were resistant, could be handled easily and presented a 

macroscopically uniform stratum corneum as SASS (Figure 2A). Histological analysis of 

the SASS-DM after 10 days of culture at the air-liquid interface (Figure 2B) revealed a 

fully differentiated epidermis similar to the standard SASS used for comparison purposes 

(Figure 2C). Both engineered tissues presented normal human skin histological aspects 

and features (Figure 2D) such as a stratified epithelium and a dermal component with 

dense collagen fibers stained blue with Masson’s trichrome. 

Immunofluorescence assays showed in SASS-DM the expression of epidermal 

differentiation-specific protein markers such as keratin 10 (K10), filaggrin, involucrin, 

and transglutaminases. As expected, K10 expression began at the first suprabasal cell 

layer (Figure 3A) while involucrin, a transglutaminase protein substrate incorporated in 

the differentiating keratinocytes cornified envelope, transglutaminase-1 and filaggrin 

were seen in upper cell layer of the SASS-DM (Figure 3B, C and D, respectively).
14

 The 

proliferation marker Ki67 was expressed in basal cells of the epithelium as expected
14

 

(Figure 4C). Some basal cells were also found to express keratin 19 (K19), a marker of 

epidermal stem cells,
23,25

 suggesting the maintenance of a pool of basal regenerative cells 
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within the engineered tissue (Figure 4D). The expression of those markers suggests 

adequate epidermal differentiation as well as stem cell preservation into the skin 

substitute.  

The presence of type IV collagen and laminin, both essential components of the 

basement membrane structure, was evaluated since the basement membrane is very 

important for the cohesion at the dermo-epidermal junction. As expected, type IV 

collagen and laminin were expressed at the interface between the dermal template and the 

epithelium within the SASS-DM (Figure 4). The presence of hemidesmosomes and a 

basement membrane in the SASS-DM was further confirmed by TEM (Figure 5).  

Immunofluorescence assays performed on the DM after decellularization showed 

expression of key native dermal constituents such as type I and type III collagens, 

decorin
26

 and tenascin-C
27

 (Figure 6). The intensity of these markers was preserved once 

final SASS-DM reconstruction was achieved (Figure 6). TEM analysis showed dense 

bundles of collagen, without disruption of the extracellular matrix microstructure 

following decellularization (Figure 5). Fibroblasts were shown to be surrounded by a 

dense matrix found in both superficial and deeper portions of the SASS-DM dermal layer 

(Figure 5). 

Mechanical testing was conducted on the tissues to compare the resistance of SASS 

with SASS-DM (Figure 7). A characteristic viscoelastic stress-strain curve was obtained 

for every sample submitted to tensile testing, displaying a toe-region followed by a linear 

segment and a rupturing point (not shown), defining the ultimate tensile strength (UTS) 

and failure strain of the tissue. Results showed no significant differences between the 
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tested samples. Thus, the use of a decellularized DM in tissue-engineered skin 

reconstruction was not shown to interfere with its mechanical characteristics. 
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Discussion 

In this study, we described the production of a bilayered skin substitute using a 

decellularized dermal matrix that allowed us to reduce the production time up to three 

and half weeks. In the standard protocol, the culture of fibroblast until the formation of a 

manipulable tissue sheet can take 21 to 28 days depending on the fibroblast capacity to 

secrete ECM, which is donor dependent. The new fabrication protocol presents 

significant clinical interest since it considerably reduces the culture period with patient 

cells required for autologous tissue production and results in skin substitutes with 

resistant dermal matrix from any patient, regardless of their fibroblasts' ability to 

synthesize ECM. The use of this previously prepared decellularized dermal matrix for 

skin tissue engineering allowed the bypassing of the longest phase of the SASS culture, 

the production of an adequate dermal component (Figure 1). Furthermore, this approach 

allowed the production of banks of standardized self-assembled dermal templates that can 

be frozen and used as clinical need arises. 

A production timeframe of four weeks and a half is comparable to some currently 

available autologous skin substitutes. Tissue-Tech Autograft System™ is a skin 

substitute in which autologous fibroblasts and keratinocytes are seeded in a 

microperforated hyaluronic acid template and grafted onto patients in two steps. The 

dermal equivalent is first grafted after a week of cell culture, then the epidermal 

substitute is apposed on top of the dermal equivalent after another week of cell culture. 

Thus, skin substitute is available in a minimum of 2 weeks and it requires 2 operations 

for the patient. Permaderm© is another bilayered autologous skin substitute in which 

fibroblasts are seeded into a dermal template composed of a polymer of bovine collagen 
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and glycoaminoglycans. Autologous keratinocytes are seeded on top of the dermal 

equivalent, in order to produce a differentiated epidermis, after a period of dermal 

template maturation. The production timeline of this substitute is 4 weeks. Polyactive™ 

is a substitute composed of autologous fibroblasts seeded into a synthetic biodegradable 

dermal matrix made of polyethylene glycol terephtalate and polybutylene terephtalate 

(PEGT/PBT). After a maturation period of 3 weeks, autologous keratinocytes are seeded 

on top of the dermal equivalent and cultured for an additional two weeks. This product is 

clinically available within 5 weeks. MyDerm™ is a skin substitute using fibrin produced 

from the patient’s plasma as a template for bilayered autologous skin reconstruction. This 

skin substitute is available in 4 weeks. Thus, the other comparable models are clinically 

available between two to five weeks. Moreover, SASS-DM is grafted in a single 

operation procedure while some other skin substitutes require two interventions for the 

patient. 

SASS-DM showed similar features when compared to SASS in term of structure, cell 

differentiation and mechanical strength. The SASS-DM presented an extracellular matrix 

microstructure similar to native human skin, which was preserved after the 

decellularization process. Thus, SASS-DM could be a critical adjunct to current burn 

treatment options, generating tissues suitable for permanent coverage in a shorter time 

period compared with SASS.  

SASS-DM presented a mechanical strength similar to SASS, with a well preserved 

extracellular matrix microstructure following the decellularization and dehydration 

processes. Decellularization using hypotonic solutions causes cell lysis by osmotic shock, 

with minimal change in matrix molecules content, architecture and cell growth 
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potential.
28,29

 On the other hand, hypotonic water has been shown to decrease matrix 

growth factors content, due to a rinsing effect.
28

 However, considering the conservation 

of cell growth potential and the context that dermal matrix are expected to be repopulated 

with fibroblasts, one can presume that lost growth factors will be promptly replaced by 

newly cell secreted ones. Therefore, preservation of growth factors in the DM used in this 

study would not have the same importance compared to other matrix models where 

efficiency depends on such a phenomenon.
30,31

 The elimination of the possible risk that 

exogenous cytotoxic chemicals, enzymes or detergents could be retained within the 

matrix also represents an important benefit of osmotic decellularization.
17,18

 Matrix 

freezing contributes to tissue decellularization with intracellular ice formation causing 

cell lysis.
32

 Interestingly, it has been demonstrated that cells frozen in tissues contain 

more intracellular ice than cells frozen in suspension due to cell-cell and cell-matrix 

interactions.
33

 Indeed, tissue deformation following freezing, associated with an increased 

porosity and microstructure damage, is dependent upon matrix density linked to these 

interactions.
34

 Decellularization and dehydration prior to freezing might minimize matrix 

deformation, explaining in part the microstructure preservation observed in the DM 

produced in this study. One must note that no decellularization process completely 

eliminates all cell content residues,
35,36

 while the preservation of an intact extracellular 

matrix structure helps to conserve tissue function
37

 as well as minimize immunological 

reactions triggered by denatured matrix components.
38

 

The DM substitute proposed herein is reconstructed from newborn allogeneic cells 

that will be destroyed by a decellularization process before DM is used for the production 

of autologous SASS. Newborn allogeneic cells have previously been used safely and 
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successfully in skin substitutes grafted as temporary coverage in the treatment of severely 

burned patients.
39

 Neonatal allogeneic fibroblasts alone seeded in a bioabsorbable 

polyglactin mesh or on bovine collagen coated mesh, or neonatal allogeneic fibroblasts 

together with keratinocytes seeded in a bovine collagen scaffold
40,41

 resulted in no 

adverse reaction,
42-44

 while final rejection of the grafts can be observed when living cells 

were grafted.
45

  

In a clinical setting, these allografts are applied on burns to cover, prepare and 

stabilize extensive wounds before the definitive skin autograft. These temporary 

allografts are gradually rejected by the immune system, the initiation of rejection 

occuring at a mean of two weeks after grafting.
45

 Once rejected, these grafts need to be 

removed and replaced until the final treatment is available. Thus, the reduction of the 

production time from eight to four weeks can be of critical benefit from a clinical 

standpoint since only one cycle of allograft or xenograft application may be necessary, 

instead of multiple courses, before the application of a product that offers a final 

treatment. This is expected to reduce the clinical morbidity of patients. 

Conclusion 

We described a novel production technique to accelerate the fabrication of bilayered 

self-assembled skin substitutes. The use of a pre-produced decellularized self-assembled 

dermal matrix allowed us to circumvent the time consuming dermal reconstruction phase 

of the standard tissue-engineered skin reconstruction protocol. This strategy allowed a 

reduction of three weeks and a half from the eight weeks standard production time 

required to produce the SASS. This should represent a significant clinical gain for burn 
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patient treatment. The SASS-DM showed structural features, cell differentiation behavior 

and mechanical properties similar to a standard bilayered SSAS. Thus, this model could 

be an important adjunct to current burn treatment options. In vivo grafting of these faster 

produced SASS is ongoing.  
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Figure legends 

Figure 1. Representation of the in vitro production timeline of standard self-assembled 

skin substitute (SASS) and self-assembled skin substitute reconstructed from a dermal 

template (SASS-DM), from the patient biopsy to clinical availability. A) Production of 

the SASS required a total of about eight weeks of culture, the dermal sheets production 

being the longest reconstruction phase (21-28 days). B) Production of SASS-DM allowed 

a reduction by three weeks and a half compared to the production time for the SASS, a 

time consuming phase of dermal sheets production with patient cells being replaced by a 

pre-production of DM with allogeneic cells. The production delay of the SASS-DM with 

patient cells is then shortened to four weeks and a half instead of the eight weeks required 

for the standard method. 

Figure 2. Macroscopic aspect of the self-assembled skin substitute reconstructed from a 

dermal template (SASS-DM) after 10 days of culture at the air-liquid interface (A). 

Histological sections of SASS-DM (B), standard self-assembled skin substitute (SASS) 

(C) and normal human skin from a 60-year-old woman (D) stained by Masson’s 

trichrome. The epidermis displays a stratified epithelium and the reconstructed dermis 

constituted of fibroblasts embedded into rich extracellular matrix colored in blue. 

Figure 3. Immunofluorescence labeling of keratin 10 (K10) (A,E), involucrin (B,F), 

transglutaminase (C,G) and filaggrin (D,H) in SASS-DM cultured 10 days at the air-

liquid interface. Nuclei were stained with Hoechst dye (blue). Negative controls consisted 

to omit the first antibody (E,F,G and H). White arrows indicate basal layer of the 

epithelium. Bars = 100 μm. 
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Figure 4. Immunofluorescence labeling of collagen IV (A,E), laminin (B,F), Ki-67 (C,G) 

and keratin 19 (K19) (D,H) in (SASS-DM) cultured 10 days at the air-liquid interface. 

Nuclei were stained with Hoechst dye (blue). Negative controls show low background 

signal at the stratum corneum but no notable expression of these markers around the basal 

layer of the epithelium and/or dermal substitute (E-H). Horizontal white arrows indicate 

basal layer of the epithelium. Vertical white arrows in D indicate basal layer cells of the 

epithelium positive for K19. Bars = 100 μm. 

Figure 5. Transmission electron microscopy analysis of the self-assembled skin 

substitutes reconstructed from a dermal matrix (SASS-DM). Presence of a continuous 

basement membrane (arrows) (A) as well as hemidesmosome formation (black arrows) at 

the dermal-epidermal junction. White arrows point a collagen fiber (B). Cuboid 

keratinocytes overlying the dermal portion composed of dense extracellular matrix 

material and elongated fibroblasts (arrows) were observed (C). Dense extracellular matrix 

and fibroblasts (arrows) were also observed in deeper portion of the reconstructed dermis 

(D). Bars = 100 µm (A), 0.2 µm (B), 10 µm (C, D). 

Figure 6. Immunofluorescence labeling of collagen I (A-E-I-M), collagen III (B-F-J-N) 

tenascin-C (C-G-K-O) and decorin (D-H-L-P) in decellularized dermal template (A-H) 

and in SASS-DM (I-P) cultured 10 days at the air-liquid interface. Nuclei were stained 

with Hoechst dye (blue). Negative controls showed low background signal around the 

stratum corneum and little or no signal in the reconstructed dermis (E- H and M-P). Note 

that collagen I, collagen III, tenascin-C and decorin (A-D) were expressed in 

decellularized dermal template and that no living cell was present, as revealed by the 
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absence of hoechst-stained nucleus. White arrows indicate basal layer of epidermis.  Bars 

= 100 μm. 
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Figure 7. Mechanical properties of SASS-DM and SASS after 8 and 21 days of air-liquid 

interface maturation. Results showed no significant difference for the tensile testing 

parameters, as UTS (black), linear modulus (dark grey) and failure strain (light grey) 

were all within the same range regardless of the tissue or culture condition. These results 

demonstrated the capacity of the new fabrication method (SASS-DM) to generate tissues 

presenting a similar mechanical behavior when compared with SASS. 

 

Beaudoin Cloutier et al. 

Figure legends 
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Figure 1. Representation of the in vitro production timeline of standard self-assembled 

skin substitute (SASS) and self-assembled skin substitute reconstructed from a dermal 

template (SASS-DM), from the patient biopsy to clinical availability. A) Production of 

the SASS required a total of about eight weeks of culture, the dermal sheets production 

being the longest reconstruction phase (21-28 days). B) Production of SASS-DM allowed 

a reduction by three weeks and a half compared to the production time for the SASS, a 

time consuming phase of dermal sheets production with patient cells being replaced by a 

pre-production of DM with allogeneic cells. The production delay of the SASS-DM with 

patient cells is then shortened to four weeks and a half instead of the eight weeks required 

for the standard method. 

 Page 29 of 36 

T
is

su
e 

E
ng

in
ee

ri
ng

 P
ar

t C
: M

et
ho

ds
Pr

od
uc

tio
n 

of
 a

 B
ila

ye
re

d 
Se

lf
-A

ss
em

bl
ed

 S
ki

n 
Su

bs
tit

ut
e 

U
si

ng
 a

 T
is

su
e-

E
ng

in
ee

re
d 

A
ce

llu
la

r 
D

er
m

al
 M

at
ri

x 
(d

oi
: 1

0.
10

89
/te

n.
T

E
C

.2
01

5.
02

58
)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



30 

30 

 

 

Figure 2. Macroscopic aspect of the self-assembled skin substitute reconstructed from a 

dermal template (SASS-DM) after 10 days of culture at the air-liquid interface (A). 

Histological sections of SASS-DM (B), standard self-assembled skin substitute (SASS) 

(C) and normal human skin from a 60-year-old woman (D) stained by Masson’s 

trichrome. The epidermis displays a stratified epithelium and the reconstructed dermis 

constituted of fibroblasts embedded into rich extracellular matrix colored in blue. 
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Figure 3. Immunofluorescence labeling of keratin 10 (K10) (A,E), involucrin (B,F), 

transglutaminase (C,G) and filaggrin (D,H) in SASS-DM cultured 10 days at the air-

liquid interface. Nuclei were stained with Hoechst dye (blue). Negative controls consisted 

to omit the first antibody (E,F,G and H). White arrows indicate basal layer of the 

epithelium. Bars = 100 μm. 
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Figure 4. Immunofluorescence labeling of collagen IV (A,E), laminin (B,F), Ki-67 (C,G) 

and keratin 19 (K19) (D,H) in (SASS-DM) cultured 10 days at the air-liquid interface. 

Nuclei were stained with Hoechst dye (blue). Negative controls show low background 

signal at the stratum corneum but no notable expression of these markers around the basal 

layer of the epithelium and/or dermal substitute (E-H). Horizontal white arrows indicate 

basal layer of the epithelium. Vertical white arrows in D indicate basal layer cells of the 

epithelium positive for K19. Bars = 100 μm. 
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Figure 5. Transmission electron microscopy analysis of the self-assembled skin 

substitutes reconstructed from a dermal matrix (SASS-DM). Presence of a continuous 

basement membrane (arrows) (A) as well as hemidesmosome formation (black arrows) at 

the dermal-epidermal junction. White arrows point a collagen fiber (B). Cuboid 

keratinocytes overlying the dermal portion composed of dense extracellular matrix 

material and elongated fibroblasts (arrows) were observed (C). Dense extracellular matrix 

and fibroblasts (arrows) were also observed in deeper portion of the reconstructed dermis 

(D). Bars = 100 µm (A), 0.2 µm (B), 10 µm (C, D). 
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Figure 6. Immunofluorescence labeling of collagen I (A-E-I-M), collagen III (B-F-J-N) 

tenascin-C (C-G-K-O) and decorin (D-H-L-P) in decellularized dermal template (A-H) 

and in SASS-DM (I-P) cultured 10 days at the air-liquid interface. Nuclei were stained 

with Hoechst dye (blue). Negative controls showed low background signal around the 

stratum corneum and little or no signal in the reconstructed dermis (E- H and M-P). Note 

that collagen I, collagen III, tenascin-C and decorin (A-D) were expressed in 

decellularized dermal template and that no living cell was present, as revealed by the 

absence of hoechst-stained nucleus. White arrows indicate basal layer of epidermis.  Bars 

= 100 μm. 
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Figure 7. Mechanical properties of SASS-DM and SASS after 8 and 21 days of air-liquid 

interface maturation. Results showed no significant difference for the tensile testing 

parameters, as UTS (black), linear modulus (dark grey) and failure strain (light grey) 

were all within the same range regardless of the tissue or culture condition. These results 

demonstrated the capacity of the new fabrication method (SASS-DM) to generate tissues 

presenting a similar mechanical behavior when compared with SASS. 

Table 1 Antibodies 

Antibody Name  Antigen Host Isotype Supplier Working dilution 

Primary Antibody       

Anti-collagen Type 

IV pAb  

Collagen IV Rabbit IgG Abcam 1:100 

Anti-collagen 

Type I pAb  

Collagen I Rabbit IgG Cedarlane 1 :100 

Anti-collagen 

Type III pAb  

Collagen III Rabbit IgG Cedarlane 1 :200 

Anti-decorin pAb   Decorin Goat IgG R&D Systems 1:10 

Anti-laminin mAb  Laminin Rat IgG Abcam 1:200 

Anti-cytokeratin 10 

mAb (RKSE60)  

Keratin 10 Mouse IgG Cedarlane 1:100 

Anti-cytokeratin 19 

mAb 

Keratin 19 Mouse IgG American 

Research products 

1:500 

Anti-recombinant 

Human Ki-67 mAb  

Ki-67 Mouse IgG Pharmingen 1:400 

Anti-filaggrin mAb  Filaggrin Mouse IgG Abcam 1:800 

Anti-involucrin mAb  Involucrin Mouse IgG Sigma 1:400 

Anti-tenascin-C mAb  Tenascin-C Mouse IgG Abcam 1 :500 

Anti-transglutaminase 

mAb  

Transglutaminase 1 Mouse IgG Biomedical 

Technologies Inc 

1 :400 

Secondary Antibody       

Alexa 594 conjugated 

anti-rabbit IgG (H+L)  

Rabbit IgG (H+L) Chicken IgG Invitrogen 1:800 
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Alexa 594 conjugated 

anti-mouse IgG (H+L)  

Mouse IgG (H+L) Donkey IgG Invitrogen 1:1000 

Alexa 594 conjugated 

anti-rat IgG (H+L)  

Rat IgG (H+L) Goat IgG Invitrogen 1:400 

Alexa 594 conjugated 

anti-goat IgG (H+L)  

Goat IgG (H+L) Chicken IgG Invitrogen 1:600 

mAb: monoclonal antibody, pAb: polyclonal antibody 
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