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Abstract 

Automated Storage and Retrieval Systems (AS/RS) are used in high velocity distribution 

centers to provide accurate and fast order processing. While almost every industrial system is 

comprised of many aisles, most of the academic research on the operational aspects of AS/RS 

is devoted to single-aisle systems, probably due to the broadly accepted hypothesis proposing 

that an m aisles system can be modeled as m 1-aisle independent systems. In this article we 

present two multi-aisles sequencing approaches and evaluate their performance when all the 

aisles are managed independently first, and then in a global manner. Computational 

experiments conducted on a multi-aisle AS/RS simulation model clearly demonstrate that a 

multi-aisle system cannot be accurately represented by multiple single-aisle systems. The 

numerical results demonstrate that, when dealing with random storage, globally sequencing 

multi-aisle AS/RS leads to makespan reductions ranging from 14% up to 29% for 2 and 3-

aisle systems, respectively. 
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1. Introduction 

Distribution centers (DC) play a central role in modern supply chains as they make the 

connection between supply and demand. Recent trends lead to smaller, but more frequent 

deliveries, and the “within 24 hours” service is becoming a standard in many industries. 

As a result, Automated Storage and Retrieval Systems (AS/RS) are now widely used in 

modern DC as they provide fast, accurate and efficient handling of materials on a 24/7-

basis. In its most basic form, an AS/RS consists of storage racks where products are stored 

and retrieved automatically. In this article, we are interested in one of the most popular 

AS/RS type: the unit-load single-depth multiple-aisle AS/RS. Unit-load AS/RS are systems 

where a single unit-load, typically a full pallet, is moved by an automated crane between 

the input/output point of the system (I/O) and the storage or retrieval locations. In single-

depth systems, each location can only hold one pallet. Each aisle has storage racks on both 

sides and multi-aisle AS/RS are equipped with a number of cranes (or storage and retrieval 

machines). In some contexts, cranes can move from one aisle to another by means of 

different technologies such as  automatic aisle-transferring or curve going, for example 

(Lerher et al. 2006). However, in the case considered here, each crane is confined to a 

particular aisle. In other words, the cranes are “captive” within their respective aisle and, 

needless to say, the number of cranes is equal to the number of aisles. Almost every 

industrial AS/RS is comprised of several aisles. However, as it will be seen later, scientific 

research focused mostly on single-aisle systems or viewed multi-aisle AS/RS (MA–

AR/RS) as several independent single-aisle AR/RS.  

This article contributes to the literature in the following manner. First, we develop 

sequencing heuristics for managing MA–AS/RS efficiently. Then, we clearly demonstrate 

the benefits of a global approach which manages the MA–AR/RS as a single system instead 

of operating multiple single-aisle AS/RS. We show that under different number of aisles 

and different location policies, the proposed global multi-aisle method reduces both the 

crane travel time and the makespan required to complete a set of orders, when compared 

to those where aisles are managed independently. Finally, we demonstrate that a storage 

assignment using an across-aisle strategy is clearly preferable to a within-aisle strategy 

when managing a MA–AS/RS. The rest of this paper is structured as follows: Section 2 

reviews the relevant literature on multi-aisle systems and Section 3 presents storage and 
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sequencing basics for single-aisle AS/RS. Section 4 develops two new look-ahead 

algorithms for globally sequencing multi-aisle systems. Section 5 depicts the simulation 

model used to execute our numerical experiments, whose results are presented in Section 

6. Finally, Section 7 concludes the paper. 

2. Literature review 

AS/RS research focuses in either on strategic-tactical or operational issues. Among the 

former, research questions are concerned mostly by the system’s configuration and the 

selection of the appropriate storage assignment policy. Research devoted to operational 

decisions deals with request sequencing and/or batching and dwell-point positioning. 

However, these researches are almost exclusively conducted on single-aisle systems. We 

refer the interested reader to Roodbergen and Vis (2009) for a comprehensive survey on 

AS/RS. In this section, we aim to review and position the few papers dealing explicitly 

with multi-aisle systems. As most of the works devoted to MA–AR/RS are of an analytical 

nature, we will first review works proposing analytical models, followed by those including 

simulation models. Finally, we will review some other specific and interesting multi-aisle 

contexts. 

In one of the pioneering works on analytical models, Ashayeri et al. (1985) proposed a 

design optimization model minimizing investment and operating costs over the lifetime of 

an AS/RS system. Hwang and Ko (1988) developed a travel time model to find both the 

minimum number of non-captive cranes and the number of aisles to be served by each 

crane in order to minimize the system’s total travel time. Malmborg (2001, 2002 and 2003) 

developed several analytical models to evaluate the impact of the number of aisles on 

various performance measures. Lee et al. (2005) studied a multi-aisle captive cranes AS/RS 

having racks with modular cells and used a mathematical model to minimize the total 

unused space in the system. Koh et al. (2005) studied a multi-aisle end-of-aisle order 

picking system served by a single order picker. Lerher et al. (2006) presented analytical 

models for travel time computation in multi-aisle automated warehouses. Although this 

work considered a single non-captive crane serving several aisles, it assumed that both the 

storage and the retrieval operations associated with a given cycle were performed in the 
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same aisle. Later on, Lerher et al. (2010a) extended this work to a more complex situation 

where the storage and the retrieval operations can be performed in different aisles. 

When a very detailed representation of reality is pursued, simulation becomes a very 

appealing tool. Houshyar and Chung (1991) developed a simulation model to evaluate the 

behavior of a multi-aisle captive-crane AS/RS system under various assumptions. Lee et 

al. (1996) simulated a complex narrow multi-aisle AS/RS with aisle-captive cranes where 

a set of rail-guided vehicles brought pallets to the order picking station. Lerher (2006) 

proposed a simulation model to evaluate the benefits of different storage strategies in a 

multi-aisle AS/RS with non-captive cranes. Recently, Gagliardi et al. (2014b) proposed a 

generic object-oriented multi-aisle AS/RS with aisle-captive cranes simulation framework 

which accounts for a number of features observed in industrial settings. 

Multiple aisles systems have also been studied in different related contexts. Lerher et al. 

(2010b) proposed travel time models for the double-deep AS/RS. Lerher et al. (2011) 

simulated mini-load multi-shuttle AS/RS and Ekren & Heragu (2011) proposed a 

simulation model to analyze a complex storage and retrieval system served by an 

autonomous vehicle. Carlo and Vis (2012) studied a special storage system with multiples 

lifts and shuttles. In the particular context studied, activities’ sequencing became very 

challenging due to the presence of two non-passing lifts which shared a single mast per 

aisle. In recent years, energy efficiency has also become a subject of interest for researchers 

(see for example Lerher et al., 2014). 

Despite of the large amount of research devoted to AS/RS and related storage systems, it 

appears that multi-aisle unit-load captive-crane AS/RS (the specific configuration studied 

here) were almost exclusively approached from a system’s design perspective, leaving the 

operational issues such as multi aisle product location or activities sequencing, aside. This 

can be explained by the fact that many articles suggested tackling multi-aisle AS/RS as a 

set of independent one-aisle systems (see Hausman et al. 1976). For example, both Kulturel 

et al. (1999) and Van den Berg (2002) postulated that a single m-cranes system can be 

represented by m one-crane systems (Kulturel et al. 1999, p. 741). To mitigate this 

drawback, this article analyzes sequencing decisions within a multi-aisle system and 

demonstrates that a greater performance can be achieved when the system is managed as a 
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whole instead of as a set of independent systems. Our results show that an appropriate 

sequencing of the system’s aisles is worth performing and that, by doing so, important 

savings can be achieved. Before proposing multi-aisle systems’ sequencing strategies, let 

us review the basics of sequencing and storage assignment decisions in a single-aisle case 

and how they differ in a multi-aisle context. 

3. Storage and sequencing basics for AS/RS 

AS/RS performance is closely related to two kinds of decisions: storage assignment and 

requests sequencing. When dealing with a multi-aisle AS/RS, storage assignment and 

requests sequencing decisions become more complex.  

3.1 Storage assignment decisions  

Storage assignment refers to how products, or families of products, are assigned to storage 

locations in order to optimize the performance of the system. In random storage, each 

product can be assigned to any location within the system. On the other hand, dedicated 

storage implies that each product has its own set of dedicated locations. In dedicated 

storage, products are generally assigned to locations following the full-turnover-based 

(FTB) policy, which consists in assigning the best storage locations to products with the 

highest demand frequency. In a class-based storage policy (CB), AS/RS locations are 

divided into classes according to their distance to the I/O point. High velocity products are 

assigned to the class nearest to the I/O point, often called class A. Products are then 

allocated to classes according to their relative velocity and, within a class, products are 

randomly assigned to locations. In a multi-aisle configuration, a system output point related 

to the conveyor deserving all the aisles needs to be considered. In this case, distances may 

be calculated from either the aisle I/O point or to the system output point, thus leading to 

potentially different configurations if a class-based storage is used.   

To the best of our knowledge, storage assignment has never been explicitly studied in 

multi-aisle AS/RS. Researches often assume that results obtained for single-aisle are also 

valid for multi-aisle AS/RS. However, multi-aisle systems introduce additional 

possibilities with respect to space allocation. We may distinguish between across-aisle and 

within-aisle storage location assignments, as is the case with standard warehouses (see for 

example Petersen and Schmenner, 1999). In MA–AS/RS, and considering aisle ordering, 
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an across-aisle storage is obtained by assigning the product with the highest demand to the 

best available location in the first aisle, the second highest demand product to the best 

location in the second aisle and so on, and then coming back to the first aisle after assigning 

a product to the last one. This implies that the global workload between the aisles is 

balanced due to the forced presence of high velocity products in all the aisles. 

Considering an order or preference in the system’s aisles, a within-aisle storage is obtained 

by assigning the product with the highest demand to the best location available in the first 

aisle, the second highest demand product to the second best location of the same aisle and 

so on, in order to assign every location in the first aisle before using the next preferred 

aisle. This implies that the highest workload will be concentrated in the first preferred aisle. 

These differences are illustrated in Figure 1. 

 

Figure 1. Within-aisle and across-aisle storage in a multi-aisle AS/RS 

3.2 Single-aisle classical sequencing approaches 

Due to the conveyor system’s physical constraints, it is generally assumed that storage 

requests (pallets arriving from the production system) are served following the first-come 

first-serve rule (Roodbergen and Vis, 2009) and are represented by the ordered set S. 

However, it is also assumed that the set R of retrievals doesn’t follow a precise order. For 

given sets S and R, the single-aisle AS/RS sequencing problem consists in minimizing the 

distance traveled by the crane to store all SKU of S and retrieving all SKU of R. This can 

be done by using a combination of single-cycles (the crane leaves the I/O point and 
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performs only one operation, either storage or retrieval) or of dual-cycles (the crane leaves 

the I/O point, performs a storage operation followed by a retrieval and then returns to the 

I/O). The sequencing can also be static or dynamic. In static sequencing, all the SKU in S 

and R are planned and executed before considering new incoming requests. In the static 

case, Lee and Schaefer (1996) studied the special case of a one-class system, in which each 

retrieval request was associated with a specific location and where storage requests could 

be stored in any open (unused) position. In another study by Lee and Schaefer (1997), the 

storage requests were considered according to a first-come, first-served rule, and assigned 

to predetermined storage locations. Retrievals could be sequenced, but their specific 

locations were known. In this case, the problem corresponds to an assignment problem.  

When we allow either S or R to change over time, the sequencing is called dynamic. Han 

et al. (1987) suggested two strategies for dynamic sequencing. In block sequencing, storage 

requests and retrieval requests sets are separated into blocks, or subsets. Then, a single 

block of storage requests and a single block of retrieval requests are sequenced. Once the 

requests in these blocks have been scheduled, another pair of blocks is selected. In dynamic 

sequencing, the sets are updated each time a new request is added. 

Before reviewing the three basic sequencing heuristics proposed in the literature to solve 

requests sequencing problems, let us introduce the following notation which divides the 

crane’s travelling into three legs. Let Ts be the travelling time between the input/output 

point (I/O point) and the storage location s, Tsr, the interleaving travelling time between the 

storage location s and the location of the retrieval r, and Tr, the return time from the retrieval 

location r to the I/O point. If we define Dsr = Tsr, and sequence the retrievals in order to 

minimize Dsr, we obtain the nearest neighbor (NN) heuristic (Han et al., 1987), which 

minimizes the interleaving travel time. If we define Dsr = Ts + Tsr, we obtain the shortest-

leg (SL) heuristic, which minimizes the total travel time from the I/O to the storage location 

and from the storage location to the retrieval location (Han et al., 1987). Finally, if we set 

Dsr = Ts + Tsr + Tr, we obtain the minimum total travel time (TT) (Lee and Schaefer, 1996). 

Gagliardi et al. (2014a) generalized the algorithmic design of Lee and Schaefer (1996). 

They also proposed a mathematical model and demonstrated that it consistently 

outperforms classical heuristics for various configurations of single-aisle AS/RS. Again, 
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to the best of our knowledge, no sequencing approach has been developed for the multi-

aisle AS/RS. 

4. A look-ahead algorithm for sequencing MA–AS/RS 

In this section we describe a look-ahead algorithm for sequencing storage and retrieval 

requests in an AS/RS with L aisles and where each product is available in one single 

location. The basic assumptions used in the studied multiple-aisle unit-load AS/RS with 

captive cranes are the following: 

 The system contains a number of parallel aisles with storage racks on both sides. There 
are double storage racks between two consecutive aisles and single storage racks along 
the warehouse walls, as depicted in Figure 1. 

 The system is a unit-load AS/RS. In other words, each pallet holds only one part 
number or item type.  

 Cranes have independent drives on both axes, allowing them to travel horizontally and 

vertically simultaneously. 

 There is one captive crane per aisle and it operates either on single command or dual 

command cycles. 

 All storage locations can hold any item. 

 The turnover rate of each item is known in advance and does not change over time. 

 Distance (i.e., travel time) from rack location i to rack location i’ is symmetrical and 

does not change over time. 

 Crane acceleration and deceleration are assumed instantaneous and are neglected. See 

Section 6 for additional discussion on this assumption. 

 Pickup and deposit times are assumed constant. 

This new look-ahead algorithm dynamically considers the locations released when 

extraction requests are executed as well as the availability of the products stored in the 

system during the sequencing. To this end, the new algorithm performs the scheduling over 

the foreseen or anticipated state of the AS/RS. 

As each product is available in one single location, the set R of retrievals can be divided 

into L subsets Rl, one for each aisle. We also define, for each location in aisle l, its status 

(open or occupied) and its profile. The location profile indicates the kind of product it can 
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hold: if a random storage policy is elected, a location can receive any product (profile = 

all); under 2-class storage, each location may either be A or B. If full-turnover is used, each 

location is assigned a specific product p (profile = p). Finally, for a single-depth, two-sided 

system, the state of aisle l, l, is a matrix storing the status and profile of every location. 

The system is managed by L Aisle managers and by a Global scheduler. The Global 

scheduler receives all the retrieval and storage requests, pairs them up in order to optimize 

the global system and assign pairs to aisles. For each aisle, the Aisle manager performs the 

storage and retrieval tasks assigned to its aisle by the Global scheduler. For a given aisle l, 

tasks assigned by the Global Scheduler are put in an ordered set Ml, which contains a list 

of information pairs  describing the forthcoming operations. Four pairs are possible: {s,r}, 

{, r}, {s, } and {,}. For aisle l, the pair {s,r} corresponds to a dual-cycle starting 

at the I/O point of aisle l, storing product s, retrieving product r and coming back to the I/O 

point of aisle l. The pair {, r} corresponds to a single-cycle in aisle l retrieving product r 

only; {s, } corresponds to a single-cycle storing product s only; finally {,} means 

that the crane is idle as there is no more operation to be executed in aisle l. Finally, we also 

record l indicating the time at which the last task on aisle l is to be completed.  

The sequencing decision consists in establishing for each incoming storage request, (1) to 

which aisle it should be assigned and (2) how it will be sequenced with the available 

retrievals. This task is performed by the look-ahead algorithm described below. 

Look-ahead scheduling algorithm 

Step 0 Initialization: At the beginning of the process, all the data structures describing the 

MA–AS/RS are built: the set of storages S, the sets of retrievals for each aisle Rl, the 

state of each aisle l and its pending tasks Ml. This step is performed only once at the 

beginning of the process. 

Step 1 Sequencing: Let s be the first SKU in S. This step considers each aisle l and each 

retrieval candidate ݎ ∈ ܴ௟,	and calculates the dual-cycle leading to the lowest total 

travel time. This step can be formalized as follows: 
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 1: BestTime: = Inf 

 2: BestChoice: = {} 

 3: For each aisle l: = 1 to L do 

 4: Considering the foreseen state l of aisle l 

 5: For each retrieval r  Rl Do 

 6:  For each empty (storage) location  in aisle l where s can be stored 

 7:   Time: = T + Tr + Tr 

 8:   If Time < BestTime 

 9:    Then BestTime: = Time, BestChoice: = {l, r, } 

Note that if a particular Rl is empty, the travel time is simply computed as a single-

cycle and is 2T. 

Step 2 Implementing: It has been decided that storage s will be assigned to location  in 

aisle l, and paired up with retrieval r (or with no retrieval if a single-cycle is selected). 

This task is put at the end of the list of operations Ml to be performed by the crane in 

aisle l. Then, the foreseen state l and time l are updated as if the task had been 

executed: status of location  changes from open to occupied and the status of the 

location where r was retrieved is changed to empty. Sets S and Rl are updated and the 

system returns to Step 1. 

The algorithm described above will be called Travel Time Look-ahead Scheduling 

Algorithm (TT–LSA) as it searches over all aisles and over all retrieval for the best single 

or dual-cycle to minimize the cranes’ travel time. As we will see in the computational 

section, it may be appealing to perform the scheduling in order to balance the work between 

the aisles. In this case, we may want to assign the next operation according to l. The Early 

Finish Look-ahead Scheduling Algorithm (EF–LSA) can be obtained by modifying line 7 

of Step 1 as follows: 

 7: Time: = l + T + Tr + Tr 

Scheduling independent aisles 

When a multiple-aisle AS/RS is managed as multiple single-aisle AS/RS, it means that 

there is no interaction between the aisles. Thus, when a product is retrieved, the next unit 
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of the same product arriving to the AS/RS is stored back in the same aisle. The proposed 

look-ahead algorithms can easily be adapted to reproduce the behavior of independent 

aisles by removing the loop on each aisle (line 3 in step 1) and returning each SKU to its 

initial aisle. In the following, the tested independent sequencing algorithm, Ind–Seq, is 

obtained by removing the global view of the TT–LSA.  

5. Simulation model 

In order to evaluate the performance of the proposed sequencing approaches for MA–

AR/SR, we used a discrete-event simulation engine based on the model proposed by 

Gagliardi et al. (2014b). Discrete-event simulation (DES) focuses on the asynchronous 

creation and execution of instantaneous events coordinated by a discrete-event engine or 

clock. The simulation engine used in this paper is inspired by the one proposed by Pidd 

(2004), which consists of a three-phase algorithm that allows the clock to be advanced 

asynchronously from one event to the next. We refer the interested reader to Gagliardi et 

al. (2014b) for a thorough description of the DES implementation. 

The MA–AR/SR model is basically comprised of a demand generator (Global retrieval 

requests list), decisional components (the Global Scheduler and Aisle managers), and 

physical components (cranes and storage locations). Figure 2 summarizes the logic of the 

MA–AS/RS simulation model. As it can be observed, a Global retrieval requests list (the 

retrievals’ demand) is built by sampling from a probability distribution selected by the user. 

This list contains every retrieval request required for a particular run and feeds the Global 

Scheduler according to the required length of the planning horizon. The Global Scheduler 

mimics the behavior of the AS/RS controller and this is where the sequencing approaches 

(i.e. TT–LSA and EF–LSA) are programmed. Depending on the length of the planning 

horizon, the Global scheduler may have 0, 1 or multiple requests queued in front of each 

aisle when a decision is required. Once a best cycle is determined, it is sent to a specific 

aisle and queued for execution by the Aisle manager. Retrievals are generated using an 

approach similar to Gagliardi et al. (2012) and Hausman et al. (1976). 

Finally, physical components represent the actual storage racks and cranes. Storage 

locations in an aisle are modeled by their unique coordinates in the rack and an array 

containing different attributes (length, width, depth, etc…). Also, for each aisle, the 
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travelling times between each pair of storage locations are computed and recorded in a 

distance matrix. By doing so, any model can be used to model travelling times in the 

system. Cranes are modeled as servers, whose function is to process the storage and 

retrieval requests received from the Aisle manager. Each crane has one inbound storage 

queue and one outbound retrieval queue. The storage queue lists the products to be stored 

in a given aisle, while the retrieval queue lists the information concerning the loads to 

retrieve. Thus, when a double cycle is performed, the server is busy during a lap equal to 

the time required to travel from the I/O point to the storage location, plus the travel time 

from the storage location to the retrieval location, plus the time to travel between the 

retrieval locations to the I/O point. 

 

Figure 2. Request management logic of the MA-AS/RS simulation model 
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6. Computational results 

Extensive numerical experiments were conducted to outline the major findings of this 

article. Based on these experiments, we will first show that important improvements can 

be obtained by globally managing a multiple-aisle AS/RS rather than as a set of 

independent single-aisle systems and, secondly, that an across-aisle strategy is clearly 

preferable to a within-aisle strategy when managing a MA–AS/RS.  

Table 1 presents the system’s configurations that were tested, which includes 1, 2 or 3 

aisles each containing 600 locations. Each location is assumed to be 1 meter, both in height 

and in length. Since the locations to product ratio (LTPR) is equal to one, these designs 

include 600, 1200 or 1800 SKUs that are stored using an across-aisle policy or a within-

aisle policy. Following each policy, we are also interested in the performance of different 

class divisions. In a 2-class policy, it is assumed that the first 20% of the fast-moving items 

are assigned to the 20% of locations closest to the I/O following their respective storage 

assignment policy. The retrieval requests list is generated by sampling a “s” shape 

probability distribution where s was set to 0.5, meaning that 20% of the SKUs generate 

45% of the total demand.  See Gagliardi et al. (2012) and Hausman et al. (1976) for more 

information on demand generation for AS/RS systems. As previously stated, the crane’s 

speed is assumed to be constant, which does not correspond to the reality. However, as 

mentioned in Section 5, acceleration and deceleration can easily be incorporated into the 

travel time calculations. Also, as there is one crane per aisle, there is no need to consider 

curve-going or automatic aisle-transferring systems (Lerher et al. 2006). 

Table 1. MA-AS/RS configurations under study 

Factor Levels

Number of aisles 1, 2, 3
Rack length (in number of locations) 25
Rack height (in number of locations) 12
Locations to product ratio (LTPR) 1
Number of storage classes  1, 2 (20/80)
Sequencing policies Independent, TT-LSA, EF-LSA
Storage assignment policies Across, Within aisle storage
Crane horizontal travel velocity 1 meter per second
Crane vertical travel velocity 0.4 meters per second
Handling time (storage or retrieval) 10 seconds
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The following simulation parameters were employed throughout the experimentation. Each 

configuration was replicated 10 times. A replication consisted in the execution of 10,000 

dual-cycles preceded by a certain amount of retrieval requests executed in single-cycle 

mode. The amount of single-cycles per run acts as a warm-up period in order to dissociate 

the system from its initialization condition, implying that the system is full at time t = 0. 

The length of the warm-up period is set according to the system’s design and consists of 

0.20L where L is the total number of locations within the system. At the end of the warm-

up period, storage requests begin to arrive at the global scheduler, and the dual-cycles start. 

The next two sections report and analyze the numerical results when using within and 

across aisle policies respectively. For each policy, we tested two class-based storage 

assignment configurations (1 and 2 classes). We also ran experiments using the full-

turnover based policy. These results will not be presented since, as expected, all the 

methods (Ind–Seq, TT–LSA and ET–LSA) produced the same results. Indeed, since each 

SKU has its own dedicated location the sequencing decision clearly becomes irrelevant. 

Nevertheless, these results contributed in verifying our simulation model. 

Tables 2 and 3 report, for each configuration, the average makespan (lines Mk) and the 

average total travelling time (lines TT) of the cranes (or the single crane in the 1-aisle 

configuration), given in minutes over 10 instances. These results were produced when the 

system was managed as a set of independent aisles (column Ind–Seq) or globally managed 

by the Travel Time Look-ahead Scheduling Algorithm (column TT–LSA) and the Early 

Finish Look-ahead Scheduling Algorithm (column EF–LSA). Line Q gives the system 

productivity as the average number of pallets handled per hour. Lines Mk and TT give the 

improvement, in percentage, achieved by TT–LSA and EF–LSA methods over the 

independent sequencing in terms of makespan (Mk) and total travel time (TT) respectively. 

Finally, for each configuration and management method, Tables 2 and 3 also report the 

crane’s utilization (ρ1 to ρ3) and its average (̅ߩ). The crane’s utilization, in percentage, is 

computed as the crane’s total travel time plus the crane’s total handling time divided by 

the makespan.  
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Results for the within aisle storage policy 

The upper part of Table 2 reports results for the 1–aisle case for the within aisle storage 

policy. As expected, the results for the 1 and 2-class configurations, Ind–Seq and TT–LSA 

were the same and, with respect to EF–LSA, the differences were not significant. Since the 

crane’s utilization is of 100% and there’s no idle time, Mk equals the TT value plus the 

crane handling time. This computation is not as straightforward as in the multi-aisle case. 

In fact, Mk depends on how requests are assigned to aisles, which can eventually create 

idle times, but also different handling times between aisles. 

Table 2. Performance comparison between independent and global scheduling  
(within aisle storage strategy) 

  1-class 2-class 
# of 

aisles  Ind–Seq TT–LSA EF–LSA Ind–Seq TT–LSA EF–LSA

1 

Mk 13 153 13 153 13 149 12 480 12 480 12 486

Mk  0% 0% 0% -0.0%

Q 91.3 91.3 91.3 96.2 96.2 96.1

TT 6,486 6,486 6,482 5,814 5,814 5,819

TT  0% 0% 0% -0.0%

100% 100% ߩ̅ 100% 100% 100% 100%

2 

Mk 9 712 7 503 6 968 9 368 9 037 9 031

Mk  23% 28% 3.5% 3.6%

Q 123.6 159.9 172.2 128.1 132.8 132.9

TT 7,944 6,386 6,440 6,628 6,802 6,722

TT  20% 19% -2.6% -1.4%

ρ1 100% 85% 90% 100% 100% 100%

ρ2 51% 93% 100% 43% 50% 49%

88.7% 75.6% ߩ̅ 95.0% 71.4% 74.5% 74.0%

3 

Mk 6 745 5 106 4 763 8 246 7 920 7 915

Mk  24% 29% 3.9% 4.0%

Q 177.9 235.0 251.9 145.5 151.5 151.6

TT 8,071 6,276 6,338 7,058 7,198 7,210

TT  22% 21% -1.9% -2.1%

ρ1 100% 96% 98% 100% 100% 100%

ρ2 52% 100% 100% 37% 39% 39%

ρ3 68% 57% 78% 30% 36% 37%

84.5% 73.4% ߩ̅ 92.0% 55.9% 58.5% 59.0%
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The results produced for the two and three aisles configurations will now be commented, 

starting by the 1-class system (random storage). Global scheduling using TT–LSA reduces 

the makespan with respect to the results produced by Ind–Seq by 23% and 24% for the 

configurations having two and three aisles, respectively. EF–LSA obtained even better 

results, reducing the makespan by 28% and 29% for the cases with two and three aisles, 

respectively. These results are extremely important because not only do they show that a 

multi-aisle system cannot be approximated by many single-aisle systems, as is generally 

accepted in the AS/RS literature, but they also quantify the error incurred when accepting 

such a hypothesis. Still for the 1-class system, we can observe in Table 2 that both TT–

LSA and EF–LSA produced similar reductions with respect to Ind–Seq in terms of the 

cranes’ total travel time (between 19% and 22%). These improvements impact the cranes’ 

average utilization, which increased from 75.6% and 73.4%, for Ind–Seq, up to 95.0% and 

92.0% for EF–LSA for two and three aisles respectively. All in one, the system 

productivity, given by Q, increases with the number of aisles as expected, but the choice 

of the sequencing algorithm is also of paramount importance.  

For the 2-class storage policy, global scheduling produced reductions in the makespan of 

3.5% up to 4.0% with respect to independent sequencing. However, in the 2-class case, 

these makespan reductions were achieved at a cost. Indeed, the crane’s total travel times 

produced by both TT–LSA and EF–LSA increased slightly with respect to the ones 

produced by Ind–Seq. Furthermore, if we compare makespan values produced by both the 

one and two class strategies, one may observe that for two and three aisles, it generally 

increases. This behaviour is unexpected because the classic literature in single-aisle AS/RS 

demonstrated that the makespan reduces when the number of classes increases. This 

behavior, only observed in multi-aisle configurations under within space allocation policy, 

is simply explained by the location of many high velocity SKUs in the same aisle. This 

leads to an important unbalance in the crane’s utilization between aisles. For example, in 

the 3-aisles case, average crane utilizations for the one-class strategy are 73.4, 84.5 and 

92.0 for Ind–Seq, TT–LSA, and EF–LSA respectively while these corresponding average 

values are 55.9, 58.5 and 59.0% for the 2-class case. These results confirm that most of the 

requests are sent to the crane where the highest demand products are located, creating an 

important queue, while the others cranes are clearly underused.  
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Results for the across aisle storage policy 

Table 3 presents numerical results when products are allocated to locations according to an 

across aisle strategy. Note that the results for the single-aisle case are not reported in Table 

3 because they are the same as those in Table 2 (within and across policies only makes 

sense when more than one aisle are considered). Again, for one aisle both Ind–Seq and TT–

LSA gave the same results, with EF–LSA being almost equal.  

Table 3. Performance comparison between independent and global scheduling  
(across aisle storage strategy) 

# of   1-class 2-class 

aisles  Ind–Seq TT–LSA EF–LSA Ind–Seq TT–LSA EF–LSA

2 

Mk 8 005 6 874 6 605 6 694 6 262 6 328

Mk  14% 17% 6.4% 5.4%

TT 8,051 6,418 6,448 6,301 5,849 5,880

Q 149.9 174.6 181.7 179.3 191.6 189.6

TT  20% 20% 7.1% 6.6%

ρ1 100% 100% 100% 95% 100% 100%

ρ2 85% 93% 98% 100% 100% 100%

96.6% 92.5% ߩ̅ 99.2% 97.5% 100% 100%

3 

Mk 5 387 4 410 4 405 4 573 4 296 4 318

Mk  18% 18% 6.0% 5.5%

Q 222.8 272.1 272.4 262.4 279.3 277.9

TT 8,258 6,407 6,415 6,393 5,864 5,893
TT  22% 22% 8.2% 7.8%
ρ1 94% 100% 100% 96% 100% 100%

ρ2 86% 100% 97% 93% 95% 97%

ρ3 99% 97% 100% 99% 96% 93%

98.8% 93.1% ߩ̅ 98.8% 96,1% 97.3% 96.8%

Unlike the within aisle case, in an across configuration, global scheduling methods 

dominate Ind–Seq for all the tested configurations as well as for the makespan, 

productivity, and the total travel time. When a 1-class across aisle storage strategy is used, 

managing aisles in a global manner with TT–LSA leads to makespan reductions of 14% 

and 18%, for two and three aisles respectively. These improvements are of about 17% and 

18% for EF–LSA. Again, in the 1-class case and when managing the system globally with 

TT–LSA or EF–LSA, important reductions ranging from 20% to 22% of the total travel 

times are obtained. 
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As in the within strategy, results produced for the 2-class cases are less impressive but still 

quite appealing. Makespan reductions achieved by TT–LSA and EF–LSA ranged between 

5.4% and 6.4%. However, with the across -aisle storage, both TT–LSA and EF–LSA 

succeeded in reducing the total travel time for the 2-class system (between 6.6% and 8.2%), 

which was not the case for the within strategy.  

As per the crane’s average utilization, the across strategy significantly improved the results 

produced by the within strategy for all tested configurations. This better overall cranes 

utilization’s percentage is due to a better request balancing among the aisles as shown by 

the individual percentages of crane’s utilization.  

Comparison between within and across policies  

Finally, it is worth explicitly comparing the system’s performance under a within and an 

across policy. To this end we have built Table 4, which displays in columns under header 

Mk the values previously reported by Tables 2 (within) and 3 (across) for each 

configuration and sequencing approach. Column Δ% reports, in percentage, the makespan’s 

reduction produced by a given method using an across policy when compared to the 

makespan produced by the same method using a within policy. Table 4 confirms that, 

despite the number of aisles and the number of classes considered, across storage leads to 

a much lower makespan than within, provided that the same sequencing algorithm is used.  
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Table 4. Impact of within and across storage policies on makespan 
 

# of  
Aisles 

# of 
classes 

Sequencing
approach 

Mk  
Within 

Mk  
Across 

Δ% 

 
2 
 

1 
Ind–Seq 9 712 8 005 17.5% 
TT–LSA 7 503 6 874 8.4% 
EF–LSA 6 968 6 605 5.2% 

2 
Ind–Seq 9 368 6 694 28.5% 
TT–LSA 9 037 6 262 30.7% 
EF–LSA 9 031 6 328 29.9% 

3 

1 
Ind–Seq 6 745 5 387 20.1% 
TT–LSA 5 106 4 410 13.6% 
EF–LSA 4 763 4 405 7.5% 

2 
Ind–Seq 8 246 4 573 44.5% 
TT–LSA 7 920 4 296 45.8% 
EF–LSA 7 915 4 318 45.4% 

 
 

7. Conclusions 

In this paper we demonstrated that globally sequencing an m-aisle system instead of 

independently sequencing m single-aisle systems leads to important reductions in the 

makespan required to complete a set of orders. In fact, we observed that globally 

sequencing leads to reductions ranging from 14% up to 29% when 1-class storage is used, 

and from 3.5% up to 6.4% in the 2-class case. We also compared within-aisle to across-

aisle storage strategies, for system configurations including two and three aisles and using 

class-based storage location policies with one and two zones. Our experiments showed 

that, for the same configuration and sequencing algorithm, across-aisle storage 

outperforms within-aisle storage, achieving makespan reductions ranging from 5.2% up to 

45.8%. To the best of our knowledge, this is the first time that such results are presented 

and, due to the significant potential improvements revealed by our numerical simulations, 

we believe this justifies further researches devoted to multi-aisle AS/RS. We believe that 

the impact of the system’s configuration (rack length and height, number of aisles and of 

cranes) on its performance as well as its impacts on the sequencing methods needs to be 

studied. The storage assignment of a multi-aisle AS/RS also presents interesting 

challenges, especially when one considers cranes’ breakdowns and maintenance activities.  
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