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Abstract

In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differen-
tial equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order
to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the
augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii
polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is
analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of
sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a
number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem
(PCRTBP).
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1 Introduction

Questions concerning the existence of periodic motions are at the heart of the qualitative theory of nonlinear differential
equations. When a system is neither a perturbation nor undergoing a Hopf bifurcation, these questions have a global
flavor and may be difficult to resolve via classical pen and paper arguments. Numerical simulations provide insight, and in
particular may suggest the existence of periodic orbits. In recent years considerable effort has gone into the development of
mathematically rigorous a-posteriori methods which close the gap between numerical experiment and mathematical proof.

The present work develops a computer-assisted argument for studying periodic solutions of differential equations with
non-polynomial nonlinearities given by elementary functions. Our method consists of formulating a certain fixed point prob-
lem on a Banach space of Fourier coefficients, and enables us to obtain quantitative information about analytic properties
of the solution. More precisely we study analytic differential equations and obtain analytic parameterizations of periodic
orbits in terms of Fourier series, bounds on the decay rate of the coefficients in the tail, lower bounds on the size of the
domain of analyticity, and bounds on derivatives of the solution.

In order to implement our computer-assisted argument we borrow an idea from the theory of automatic differentiation.
The point is that we must efficiently compose an unknown Fourier series with a non-polynomial vector field. We use
“automatic differentiation for Fourier series” to transform the given problem into a polynomial problem in a larger number
of variables. The transformed problem is amenable to existing methods of computer-assisted analysis, and we employ the
techniques discussed in [1] to complete the argument.

In Section 2.6 we illustrate the utility of the proposed method and give a number of validated periodic orbits for a classical
problem of celestial mechanics (namely the planar circular restricted three body problem—PCRTBP). For this problem we
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apply the automatic differentiation argument in order to obtain the augmented system of polynomial equations, derive the
error estimates necessary to apply the method of radii polynomials, and implement the a-posteriori validation. We wish
to stress that the orbits, and others similar, to those studied in Section 2.6 have been shown to exist by earlier authors
using other methods (see also Section 1.3 below). The novelty of the present work is a new approach to computer-assisted
proofs exploiting automatic differentiation for Fourier analysis of non-polynomial problems. We choose to work with the
PCRTBP because it is a widely studied non-polynomial problem which appears in many serious applications, including a
number of computer assisted studies. Before concluding the present introductory discussion, we state Theorem 1, which
provides some insight into the nature of our results.

Theorem 1. Let x(t),y(t) be the trigonometric polynomials

23 23
x(t) = ag + 2 Z ay, cos(kwt) and  y(t) = -2 Z by, sin(kwt),
k=1 k=1

with ay, by the numbers given in Table 1, and w = 1.0102. Let v(t) = [z(t),y(t)] and T* = 2n/w. Then there is a real
analytic function v*: [0,T%] — R? denoted component-wise by v* = [yi,~3] such that

1. v* is a T*-periodic solution of the Planar Circular Restricted Three-Body Problem (PCRTBP) given in (2.1) with
mass parameter = 0.0123. (The PCRTBP is discussed in Section 2).

2. v* is a symmetric solution in the sense that vi(t) is given by a cosine series and vi(t) is given by a sine series.

3. v* is CY close to v. More precisely, for r = 1.1 x 10719,

sup |1 (t) —=(t)| <r  and sup |y (t) —y(t)| <,
te[0,T*] te[0,T*]

4. The function v* can be extended to a T-periodic analytic function on a complex strip having width at least

In(1.14) /w ~ 0.1297.

5. The decay rates of the Fourier coefficients af, of vi and by, of v5 satisfy the bounds

7.81 x 10710

| OpEl <
|a‘k|a| k:| = 1.14k ’

for k > 24.

The orbit itself is illustrated in Figure /.

The remainder of the paper is organized as follows: The remaining sections of the introduction (Sections 1.1, 1.2 and
1.3) are devoted to some brief discussion of the literature pertaining to respectively the method of radii polynomials, the
technique known as automatic differentiation, and distinctions between the geometric/phase space versus the functional
analytic approach to computer-assisted proof in nonlinear analysis. These sections motivate the work to follow. In Sections
1.4 and 1.5, we review the basic notions of Automatic Differentiation for Taylor series and describe the situation for Fourier
series. In Section 2, we begin discussing the Planar Circular Restricted Three-Body Problem, the main example of the
paper. We review the equations of motions and in Section 2.1, we illustrate the Automatic Differentiation scheme for the
problem. Then, in Sections 2.2 and 2.3 we develop the appropriate Banach Spaces and the associated F'(x) = 0 problem.
In Section 2.4 and 2.5, we develop the Newton-like operator and the radii polynomials for the problem. Finally in Section
2.6 we present the results of a number of computer-assisted proofs.



k ag by

0 —9.768220550865100 x 10~ T -

1 —1.206409736493824 x 10~ T —2.339364883946253 x 10~ T
2 —1.347990876182309 x 10~ 2 6.397869958624213 x 103
3 2.352585563377883 x 105 —1.790561590462826 x 10— 2
4 —5.122863209781185 x 10~ % 4.373987650320329 x 10— %
5 1.219044853784686 x 10~ % —1.093231659117833 x 102
6 —3.055685576355795 x 10~ ° 2.814155571301070 x 105
7 7.934843979226718 x 10~ ° —7.428978433135244 x 10~°
8 —2.114596180594020 x 10~ © 2.001931208169388 x 10— ©
9 5.748968790488728 x 10~ 7 —5.486299609956681 x 107
10 | —1.588047255749821 x 10~ 7 1.524601425602110 x 10—
11 4.444105347947109 x 10~8 —4.286470381069696 x 108
12 | —1.257223241334567 x 10~ 1.217145490467260 x 10~
13 3.589443646509739 x 109 —3.485577927995539 x 109
14 | —1.032912424206540 x 10~ 1.005555404303114 x 109
15 | 2.992744553664615 x 10— 10 —2.919684209251029 x 10~ 10
16 | —8.723250537889003 x 10~ 1T 8.525779373911926 x 10~ 11
17 | 2.556153430692412 x 10— 11 —2.502217287937952 x 10— 11
18 | —7.525630237426317 x 10~ 12 7.376943496986842 x 10~ 12
19 | 2.225016823097366 x 10~ 12 —2.183690063445679 x 10— 2
20 | —6.603543558111446 x 10~ 13 | 6.487830301502292 x 10— 13
21 1.966611110890260 x 10~ 13 —1.933996961613629 x 10— 13
22 | —5.875220903859556 x 10~ 1% 5.782732245351016 x 10— 1%
23 | 1.760271955315164 x 10— —1.733885618947898 x 10—

Table 1: The Fourier coefficients of (x(t), y(t)) of the inner most green periodic orbits on the left in Figure 4. The frequency
of the orbit is w = 1.0102. There are 24 Fourier coefficients per component. We could prove the existence of the orbit with
v =1.14 and r» = 7.81 x 107!%. We also proved the existence with v = 1.09 and r = 1.1 x 10719,

1.1 Computer-Assisted Proofs and the Radii Polynomial Approach

The radii polynomial approach refers to a tool kit for a posteriori computer-assisted verification of the existence of a zero
of a nonlinear operator equation
(1.1)

defined on an infinite-dimensional Banach space. The solution x may represent an invariant set of a dynamical system like a
steady state, a periodic orbit, a connecting orbit, a stable manifold, etc. It could also be a minimizer of an action functional,
an eigenpair of an eigenvalue problem or a solution to a boundary value problem. The radii polynomial approach consists
of taking a finite-dimensional projection of (1.1), computing an approximate solution Z (e.g. using Newton’s method),
constructing an approximate inverse A of DF(Z), and then proving the existence of a fixed point for the Newton-like
operator

F(z)=0

T(x) <z — AF(z) (1.2)

by applying the Contraction Mapping Theorem (CMT) on closed balls about Z. The hypotheses of the CMT are rigorously
verified by deriving a system of polynomial equations (the radii polynomials) whose coefficients carry the relevant informa-
tion about the nonlinear mapping (1.2), the topology of the solution space, the given numerical approximate solution Z,
and the choice of approximate inverse A for the derivative of the mapping F. The question “Is T a contraction on some
neighborhood of 7”7 is reduced to a question about the sign of some polynomials. By studying the maximum interval
on which these polynomials are negative we obtain bounds on the size of both the smallest and largest neighborhoods on
which T is a contraction. These give rise respectively to the best computer-assisted error and isolation bounds which can
be obtained relative to the choices defining 7. We note that while error bounds are of most interest, the isolation bounds
are also useful in some validated continuation arguments [2, 3|.

Before proceeding any further, we hasten to mention the existence of several other computer-assisted methods based on
the fixed points theorems, predating the radii polynomial approach, designed to solve functional equations. For instance,



rigorous computational methods based on the Newton-Kantorovich theorem [4] have been commun place for a while (e.g.
see [5] and the references therein), and the approach due to Yamamoto [6] and the infinite-dimensional Krawczyk operator
[7] are also closely related approaches.

The radii polynomial approach has been applied to a host of problems in differential equations/dynamical systems
theory including the study of initial value problems [8], equilibrium solutions of partial differential equations [2, 9, 10],
periodic solutions of ordinary, delay and partial differential equations [1, 11, 12, 13], stable/unstable invariant manifolds for
differential equations [14], solutions of boundary value problems [15], eigenvalue/eigenfunction problems [16], connecting
orbit problems for differential equations [17, 18], and standing wave patterns [19].

One possible criticism of this collection of methods is that it appears, at first glance, limited to problems with polynomial
nonlinearities. Indeed, up to now, this approach has been applied only to problems with quadratic and cubic nonlinearities.
The present work puts to rest this criticism and illustrates the wider applicability of these methods.

1.2 Non-Polynomial Nonlinearities: Automatic Differentiation, Spectral Methods, and
Computer-Assisted Proof

The need to efficiently compute the composition of a polynomial with an elementary function comes up in many numerical
analysis applications, and research into algorithms for efficient manipulation of polynomials remains an active area. A
classical discussion of semi-numerical algorithms for computing polynomial expansions of e’ sin(P), P*, etc, with P
polynomial appears in the book of Knuth [20]. These techniques are nowadays collectively referred to as “automatic
differentiation.” We note that automatic differentiation as a tool in effective numerical integration schemes appears in the
literature as early as [21].

The key to the automatic differentiation of f(P) when P is a polynomial and f is an “elementary functions of mathemat-
ical physics” (trigonometric functions, Bessel functions, elliptic functions, etc) is that these f themselves arise as solutions
of some systems of linear differential equations. Power matching schemes applied to these differential equations reduce
the cost of computing f(P) to the cost of multiplying polynomials. A survey of the AD literature is beyond the scope of
the present work and in addition to the works just cited we refer the interested reader to [22, 23, 24] for more complete
exposition.

AD tools are used extensively for computer-assisted proofs in nonlinear analysis, especially for problems involving
Taylor series expansions. Chapters 4 and 5 of the book by Tucker [25] contain many examples and additional references
to the literature. The reader may also find helpful the discussion in [23]. A number of software packages and libraries for
computer-assisted proof in dynamical systems theory employ AD tools for Taylor series. See for example [26, 27, 28] for
discussion of the COSY software package, [29, 30, 31] for discussion of the CAPD libraries, and [32] for the INTLAB library
for MATLAB.

Similar semi-numerical algorithms exist which evaluate compositions in bases other than Taylor. For example, the case
of Fourier series is discussed in [33] (see the fourth remark in Section 3.3 of that reference). Here, the truncated Fourier series
is treated as a trigonometric polynomial in complex conjugate variables, and recursive formulas for polynomial compositions
in the style of Knuth apply directly. As mentioned in [33], the truncation error introduced by stopping at a finite order
can be rigorously bound via a posteriori analysis and the method can be applied for computer-assisted proofs employing
Fourier methods. These ideas are used in [33] in order to study invariant KAM circles in the standard map.

The paper just mentioned appears in the book [34], which is based on the proceedings of an IMA conference held at
the University of Cincinnati in April of 1986. Chapter 13 of the same book contains a discussion of software tools for
analysis in function spaces. Such software packages need to be able to compute compositions with elementary functions as
discussed above. Development of such software continues through the present and again a thorough survey of this literature
is beyond the scope of the present work. More complete discussions of modern software libraries for computer-assisted
proofs in Banach spaces can be found for example in [5, 35].

In the present study we apply the ideas of AD in a different way. Before we begin any numerical work, we introduce new
coordinates by appending the differential equations for the composition term to the given system of differential equations.
This results in an expanded system of polynomial differential equations to which we apply directly the methods of [1]. Our
approach is then similar to that of [23], but adapted for computer-assisted proofs involving Fourier series.



Techniques based on interpolation (rather than automatic differentiation) are also useful for evaluating compositions of
Fourier series with transcendental functions, and such methods have been implemented in computer-assisted proofs. In par-
ticular we direct the reader to the work of [36, 37]. These authors expand their transcendental nonlinearities as Chebeyshev
polynomials, evaluate the polynomial compositions using discrete Fourier convolutions, and manage the truncation errors
via classical interpolation error estimates. The present work is closely related to the work of [37], as there the authors also
study periodic orbits of a celestial mechanics problem via Fourier series methods. Our AD treatment of nonlinearities is
however different.

We remark that our automatic differentiation strategy for computing compositions will fail if the vector field were given
by general rather than elementary functions (i.e. if we knew only the Fourier or Taylor coefficients of the vector field).
This is because our method exploits the fact that the elementary functions are solutions of known differential equations.
In more general settings one would have to employ an interpolation scheme as in [36, 37]. General compositions are typical
in renormalization theory, see for example the work of [38, 39, 40, 41, 42].

1.3 Computer-Assisted Proof in Function Space and in Phase Space

The literature on computer-assisted proof as a tool in nonlinear analysis is substantial and growing rapidly. A thorough
review would take us far afield, and instead we direct the reader to several expository articles [43, 5, 44, 45] and refer also
to the book by Tucker [25] for more scholarly discussion. In what follows we offer only a few clarifying remarks.

Techniques for a-posteriori validation of periodic motions can (roughly speaking) be put into one of two broad clas-
sifications: topological and functional analytic. A critical component of many topological methods is rigorous numerical
integration. Rigorous integrators played a key role in the computer-assisted proof of chaotic motions for the Lorenz equa-
tions [46, 47, 48], and also in the computer-assisted solution of Smale’s 14-th problem [49, 50]. The interested reader will
want to consult the works of [29, 51, 26] for general rigorous numerical integrators for ordinary differential equations and
see also [52, 53, 54] for algorithms which integrate parabolic partial differential equations. See also the discussion of the
literature in the references just mentioned.

Other topological methods of computer-assisted proof apply degree/index arguments directly to the vector field (in-
tegration free methods). Tools based on the Wazewski retract principle [55], the Conley Index Theory [56], the local
stable/unstable manifold arguments of MeGehee [57], and more recent generalizations to normally hyperbolic invariant
manifolds [58] facilitate integration free computer-assisted analysis of equilibria, periodic orbits, local stable/unstable man-
ifolds, connecting orbits, and symbolic dynamics of ordinary and partial differential equations. We refer the reader to the
works of [59, 60, 61, 62, 63] and the references discussed therein.

Methods for studying periodic orbits of differential equations using functional analysis are already outlined in Section
1.1. Functional analytic methods of computer-assisted proof go back to work of Cesari on Galerkin projections for periodic
solutions [64, 65], and are exemplified also in Lanford’s proof of the Feigenbaum conjectures [38].

At present we stress that topological methods apply fixed point/index arguments in phase space and result in a represen-
tation of the periodic orbit as a point or set in phase space with validated error bounds, and functional analytic techniques
apply fixed point/index arguments in function space and result in a representation of the periodic orbit as a point or set
in Banach space with validated error bounds. Both the topological and the functional analytic approaches answer the
same question: namely “does there exist a periodic orbit near the results of this numerical simulation?” It is only the
representation of the validated object which differs. Yet depending on what one does next with the computer-assisted
results, the form of the representation could be an important consideration. We briefly indicate several situations where
the quantitative information provided by a function space argument could be of interest. The list is suggestive rather than
exhaustive.

e Poles in the complex plane: suppose that v: [0,7] — R"™ is a T-periodic solution of the differential equation

7' =f(v),

with f an analytic function, and let {ax}rez with each a; € R™ be the Fourier coefficients of «. If the coefficients
ay decay with some geometric rate v > 1 (i.e. of |az| < Cv*) then 7 is real analytic and can be extended to a real
analytic function on the complex strip of radius T logv/2m. The radius of this strip then provides a lower bound on



the location of any poles of v in the complex plane. The poles of a periodic orbit determine for example the “stiffness”
of the differential equation near . Of course analyzing the poles of an analytic function has myriad other classical
applications.

Bootstrap bounds on derivatives: explicit knowledge of the Fourier series of an analytic function allows us to study
also the derivatives via Cauchy bounds. The ability to compute derivatives is useful for obtaining observables such
as the energy or for studying the functions maxima and minima.

Stability/Floquet analysis: The stability of a periodic orbit can be determined by studying periodic solutions of the
eigenvalue problem

%g(t) +A4(t) — Dy ()]E(t) = 0,

and it is noteworthy that this equation can again be studied using the techniques discussed in the present work, see
for example [66, 16]

Note that in order to study this problem using Fourier analysis it is necessary to know ~ exactly (in the sense of
computer-assisted analysis “exactly” might mean that ~ is given by a known trigonometric polynomial plus an explicit
error bound in some Banach space). Stability of periodic orbits can also be studied using rigorous integrators and
cone conditions applied in a Poincare section. However the functional analytic approach yields a parameterization
of the stable/unstable bundle, and one obtains analytic properties of the parameterized bundle in addition to the
parameterized periodic orbit.

Computer-assisted proof for periodic orbits in problem with no globally defined flow: the functional analytic approach
to computer-assisted proof if based on solving equations rather than propagating initial conditions. Hence this
approach sometimes applies in situations where there is no locally defined flow. For example computer-assisted proofs
based on functional analytic techniques have been used to study periodic orbits for delay equations and ill-posed
PDEs [13, 67, 68]. The automatic differentiation scheme proposed here could be modified to apply to some of these
problems.

Validated Fourier-Taylor computation of stable/unstable manifolds for periodic orbits: Suppose that £: [0,T] — R™
and A € R solve the eigenvalue problem above. Then briefly, a covering map (or parameterization) P: [0,T] x
[—R, R] — R™ of the stable/unstable manifold for ~ satisfies the equation

0 0
EP(t, o)+ )\aa—gP(t, o) = fIP(t,0)],

subject to the constraints

P(t,0) = ~(t), and %P(t, o) = &(t).
Solving this equation leads to an analytic Fourier-Taylor expansion of the stable/unstable manifold. These develop-
ments are discussed further in [69, 70, 71]. The results of the present work could be taken as the inputs for rigorous
computations of stable/unstable manifolds of periodic orbits based on the Parameterization Method in non-polynomial
systems. This will make the topic of a future study. We remark also that validated/Fourier-Taylor expansions of
stable unstable manifolds of periodic orbits could be used to obtain or improve computer-assisted proofs involving
applications of scattering maps [72] and Melnikov integrals [73].

A number of authors have developed computer assisted methods of proof based on KAM theory. See for example
[33, 74, 75], and the references therein. In particular these authors compute validated expansions of quasi periodic
orbits/invariant tori and their stable/unstable manifolds. More complete discussion of this literature is found in the
book of Haro, Candella, Figueras, Luque, and Mondelo [76], and also the book of Celletti [77]. KAM arguments
for invariant circles, tori, and their whiskers often exploit computer-assisted Fourier analysis, and the automatic
differentiation scheme proposed in the present work could be useful in this setting as well.



To summarize: the functional analytic approach relies on the regularity of the object under study and is especially useful
when, in addition to existence and localization results, we are interested also in either some quantitative analytic properties
of the solution or in using the solution of one problem as input to another functional analytic argument. Especially if (as in
the Parameterization Method) we desire a parametric representation of a dynamical object. On the other hand, topological
methods are able to resolve objects with no manifold structure (strange attractors/invariant sets with Cantor-like topology)
which have no smooth parametric representation. See especially [50, 46, 78, 79, 80]. For many problems in nonlinear analysis
both topological and functional analytic methods of computer assisted proof are available, and practitioners will decide
what tools to apply based a any number of considerations.

Remark 1. Periodic motions and computer-assisted proof in Celestial Mechanics: The N-body problem occu-
pies a central place in mathematical physics going back to the time of Newton. Yet the problem is highly nonlinear and
many interesting applications are non-perturbative. It is partly for these reasons that applications in celestial mechanics,
and in particular applications involving the circular restricted three body problem, have received considerable attention
from the computer-assisted proof community over the last decades. We refer the reader to the book of Celletti [77] for more
scholarly discussion of the literature, especially with regards to quasi-periodic motions and KAM theory.

A number of authors have used computer-assisted nonlinear analysis to study periodic orbits for N-body problems. In
addition to the work of [37] (already mentioned above) we mention the papers of [81, 30, 82], where families of Lyapunov
orbits for the PCRTBP are studied with computer assistance. In addition to the existence of the periodic orbits the authors
also prove the existence of topological horseshoes and symbolic dynamics between orbits. This work is extended in [83], and
the author obtains the existence of transverse intersections between the stable and unstable manifolds of some Lyapunov
orbits. The paper [84] develops a computer assisted proof of the existence and localization of a center manifold in the
PCRTBP. The work of [85] studied the existence and stability of continuous branches of orbits for the CRTBP. Instabilities
in the CRTBP have been studied with computer assistance in [86].

There are also computer-assisted results for periodic orbits in more general celestial mechanics problems. In [87] the
authors study transition tori in an elliptic perturbation of the CRTBP. The series of papers [88, 89, 90] provide computer-
assisted proofs of a number of choreography orbits in the full N-body problem. This discussion is by no means complete,
and the interested reader can consult also the reference in the papers just mentioned.

1.4 Example of Automatic Differentiation for Taylor Series

We recall the basic notion of automatic differentiation for Taylor series. Consider the formal power series

f(z)= Z an(z—20)", and g(z) = Z bn(z — 20)".
n=0 n=0

We denote the n-th power series coefficient by (f), = a,. With o € C, the standard arithmetic operations extend to power
series “term by term” as

(f+9)n=an+by (1.3)
(af)n = aan, (1.4)
(fl)n =(n+1)an1
(f-9n = Z an—rkbr, (1.6)
k=0
and we have that
f=g¢ ifandonlyif a,=5, foralln>0. (1.7)

We now wish to extend these basic notions to include the elementary functions. For example, let e* denote the
exponential function and consider the problem of computing (ef),. A natural idea would be to expand e* using its Taylor



series, so that the composition with f is computed by repeated application of Equation (1.6) in order to obtain the coefficient
of f*.

This turns out to be an inefficient way of obtaining the composition, and if we exploit further properties of the exponential
function, we arrive to a more effective scheme. Note that (ef)y = ef(30) = ¢ Introducing the new power series variable

SO Eg(z) =Y bulz—20)",

n=0

observe that p
5 9() = I [ (2) = g(2) 1 (2), (1.8)

that is

D (4 Dbyga(z —20)" = (Z bk (k + 1)ak+1> (z —20)"™

n=0 n=0 \k=0
Matching like powers of (z — zp) yields

eo if n=0

f _ 1 n ‘
(6 )n E};kak(ef)n_k if n>1.

Note that we obtain the coefficients of e/ at the cost (in arithmetic operations) of multiplying two power series. The
example of (f¢),, is worked out in detail in [20] using similar arguments. One can work out the power series coeflicients of
the composition with any elementary function. For more examples see [23], especially the discussion of Proposition 2.1 in
that work.

1.5 An Automatic Differentiation Scheme for Fourier Series

Now suppose that f(z),g(z) are given by the Fourier series
f(z) = Z ane’™, and g(z) = Z bpem®.
nez neZ

Then, formally speaking, we have the term-by-term relations

(f+9)n=an+by (1.9)
(af)n = aan (1.10)
(f)n = inay, (1.11)
(f@n = an rby (1.12)
keZ
and that
f=9g ifandonlyif a,=25, forallnecZ. (1.13)

In analogy with the case of power series suppose that we desire

g(z) £ ef® = Z b, e

nez

Returning to Equation (1.8) and in this case applying Equations (1.11), (1.12) and (1.13) we see that the desired Fourier
coefficients are related by the equations
inby, =Y ikbn_gar, n €7z, (1.14)
kEZ



subject to the initial condition

9(0) =/,
that is
D by = eXnentn, (1.15)
nez

We treat Equations (1.14), (1.15) as a system of infinitely many coupled nonlinear equations in infinitely many unknowns
b,,. Truncating the system to finite order IV, we can apply a Newton scheme in order to numerically approximate the desired
Fourier coefficients b,, for —IN < n < N. This discussion extends to other elementary functions by appending appropriate
differential equations. Other spectral methods (for example Chebyshev series) can be treated by the same method.

2 Planar Circular Restricted Three-Body Problem

A classical problem in celestial mechanics is the Planar Circular Restricted Three-Body Problem (PCRTBP). We provide a
brief description of the problem and refer the reader to the book by Meyer and Hall [91] for a more complete treatment and
discussion of the literature. In this problem, one considers two bodies of mass m; > mo > 0 moving in a circular Keplerian
orbit. These are called the primary and secondary bodies respectively. Let u = m/(my + ms) denote the mass ratio
and choose coordinates so that the circular orbit lies in the X, Y plane with center of mass at the origin. Since orbits are
circular, the line determined by the masses passes through the center of mass (that is the origin) and rotates at a constant
frequency. One can define a rotating coordinate system with the x axis determined by the line between the two masses.
The coordinates are rescaled so that distances between the massive bodies and the origin are p and 1 — u respectively.
Hence the bodies are positioned at —p and 1 — p along the fixed rotating line . This situation is illustrated in Figures 1
and 2.

secondary body

primary body

Figure 1: A massive primary body and a smaller secondary body in circular motion. The X,Y coordinates (black axes)
illustrate the standard Galilean center of mass coordinate frame. The z,y coordinates (red axes) illustrate a co-rotating
frame. In the rotating frame, the primary and secondary bodies lie always on the x-axis.

The massive bodies are now referred to collectively as “the primaries”. A third and massless particle (sometimes called a
“test particle”) is placed in the plane of motion of the primaries. The massless particle moves in the resulting gravitational
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Figure 2: In the co-rotating (non-inertial) frame, we introduce a third and massless particle. The magnitude of the distance
from the massless particle to the primary body is 1 and the magnitude of the distance from the massless particle to the
secondary particle is ro. The massless particle is influenced by the gravitational fields of the primary and secondary bodies,
however the massless body does not affect the orbits of the massive bodies. In the rotating reference frame, there are three
collinear equilibrium points on the x-axis which are denoted L1, Lo, L3.

field without disturbing the Keplerian motion of the primaries, that is without creating any gravitational field of its own.
Writing Newton’s laws for the motion of the massless particle (transformed to the non-inertial co-rotating reference frame)
gives the system of two second order ordinary differential equations

ov
2 = 2y/ + 87
x (2.1)
y// — 9 + al
Ay’
where 1 .
Ve, y) S (2 + ) + —M+ K
(r9) = 5+ ) ri(z,y)  ra(z,y)
and ot
r(zy) = V(@ +p)?+y°
ro(z,y) = /(= 1+ p)2 + 42
Letting z1 < z, 22 = 2/, 23 = y and 24 = 1/, the system (2.1) becomes
=1 v
/
= 2 _—
T2 T AT o (2.2)
.%'3 — .’1:4
) = —2x9 + %—‘y/.

The system has at most five equilibrium solutions, three of which lie on the z-axis. The three equilibrium points on the
z-axis are called the collinear equilibria and are denoted Li, Lo, L3. The collinear equilibria have saddle-center stability.
The center manifold of each collinear equilibrium point is foliated by a family of hyperbolic periodic orbits referred to as
the Lyapunov orbits. The existence of a one parameter family of Lyapunov orbits in a small neighborhood of each of the
colinear equilibrium is classical and can be proved by a center manifold argument, see for example [92]. The Lyapunov
orbits are parametrized by energy/frequency, are the main point of study in the remainder of the present work. Our main
results concern the existence of Lyapunov orbits far from the perturbative regime.
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2.1 Equivalent Polynomial Vector Field Formulation and the Automatic Differentiation of
Fourier Series for the CRTBP

Next, we want to transform (2.2) into a polynomial system. In order to do so, we first take the partial derivatives of V' (z,y),
that is

[EA (1—u)(w+u)3 _ p(r—1+u) .
oz (e 4p)24y?)2  ((a—14p)2+y2)2
v o _ . (1-py .- ny -
Oy (4?4922 (o= 1+p)2+y?)?2

def

We then let x5 = By differentiating these with respect to t, we get

1 d def 1
- 21 .2 and Te = - 21 2"
vV (@1+u)2+z3 V(1 —=1+p)%+a3

pon . () +yy
z5(t) = — (@)t yQ)g = —x:((x1 + p)xes + x324)

and ( ) w ,
r—1+p)z +yy
Tyt (e ),

Plugging x5 and x4 into (2.2) and adding our expressions for f and z§ into the mix, we get our final quintic polynomial
vector field

) =xo
vh=2wq+x1 — (1 — p) (21 + p)ad — pxd(xy — 1+ p)
xh =1y
= =223 + 23 — (1 — p)2323 — pasrg (23)
vy = =3 (w1 + p)rs + T324)
xp = —23((x1 — 1+ p)xa + 2374),
where the extra conditions
1
x5(0) = (2.4)
V (@1(0) + p)? 4 23(0)?
1
z6(0) = (2.5)

V@) — 1+ w2+ 25(0)2

need to be imposed.
Let us now introduce the operator (1.1) whose solutions correspond to periodic solutions of (2.1). Once this operator is
introduced, we use the theory of Section 3 of [1] to compute rigorously its solutions.

2.2 The Operator Equation F(a) =0

Given a fixed period 27/w, where w is the frequency, we look for periodic orbits of (2.1) satisfying «’(0) = y(0) = 0.
Exploiting the well known symmetry of Equation (2.2) allowse us to take x1, x4, x5, z¢ as cosine series and o, z3 are sine
series, that is

(o)
zi(t) = Z(aj)keik“’t = (a;)o + QZ(aj)k cos(kwt), for j=1,4,5,6
keZ k=1
with (a;)—x = (aj), € R for j = 1,4,5,6, and

o0

zj(t) = Zi(aj)keik“’t =-2 Z(aj)k sin(kwt), for j =2,3,

keZ k=1

with (a;)_g = —(a;)r € Z for j = 2,3. While the cosine and sine series only have positive indices, it is important to also
consider negative indices, so that we can calculate discrete convolutions the usual way. For instance,

11



x1 ()2 (t)zd(t) = Z(al(iag)ag)keikm =-2 Z(alagag)k sin(kwt),
k=1

kEZ
where
(a1a20a3); = > (a1)k, (a2)ks (a5 )is (a5 )y (a5) ks,
k1+kotks+ky+hs=Fk
k€L
and where (ajazad)_j = —(ajazad)y follows from the fact that (a;)_x = (a1)k, (a2)_r = —(a2)x and (as)_x = (as)k.

Now that we have a Fourier representation of our solutions, all we need to do is find the coefficients. To do this, we first
substitute our series into (2.3). Since the equations must be verified for all values of ¢, we have that our vector function
solves (2.3) if and only if the coefficients correspond on both sides of the equation. So, by putting everything on the same
side of the equation, we must solve (Fj), =0 for j =1,...,6, where for k > 1,

(F1)x = kw(al) — (a2)k
(Fo)i = kw(as), + 2(aa)k + (a1) — (1 - ) (arad)r — (n— p?)(a3)x
et — parad)y + (n — p*)(ad)x
(F3)k = kw(as)k + (aa)k (2.6)
(Fa)r = kw(aa)y, + 2(a2)x — (a3)r + (1 — p)(azad)x + plazad)y
(F5)k 5 - kw(as)r + (a1a2a3) + (asasag) + p(a2ad)
(Fo)r = kw(ag)r + (a1a2a3)), + (azasad)s + (p — 1)(aza3)y.-
Since xo, 3 € R are expressed as sine series, their constant Fourier coefficients, given respectively by (as)g and (a3)o,

are zero. However, to simplify the setup, we consider (as)o and (as3)o as variables and impose them to be zero within the
operator. Therefore, for k = 0, we set

(F1)o jzei (a2)o
(F2)o = 2(as)o + (a1) — (1 — p)(arad)o — (1 — p*)(ad)o
L~ arad)o + (1 — i) (ad)o
(F3)o = (a4)o (2.7)
(Fu)o = (as)o
(F5)o =m
(F6)o = 12,
where 1; and 72 depends on the value of x1(0) + . More explicitly,
» 25(0)(z1(0) +p) — 1, if 21(0)+p>1
m = 25(0)(z1(0) + ) — 1,  if 21(0) + p € (0,1) (2.8)
—25(0)(z1(0) +p) =1, if 21(0)+p <0
w00 F ) <1 i (0) 4> 1
ne =< —x6(0)(x1(0)+p—1)—1, if 21(0)+p € (0,1) (2.9)
—26(0)(21(0) +p—1) =1, if 1(0)+ p <0,
where z;(0) = (a;)o + 2> 4>,(a;)x for j = 1,5,6. In all cases, 71 = 0 ensures that (2.4) holds while 7, = 0 ensures that
(2.5) holds. Note also that (Fy)o = 0 forces x3(0) to vanish.

f def

For j =1,...,6,let a; = ((aj)r)p>o and Fj = ((F})k)yso- Moreover, set
a = (a1,a9,as,a4,as,a6) and F = (Fy, Fy, F3, Fy, Fy, Fp).

From the above discussions, computing periodic solutions of the planar circular restricted 3-body problem is equivalent to
finding solutions of
F(a) =0, (2.10)

where the coefficients of F(a) are given by (2.7) and (2.6).
Let us now introduce the Banach space X on which we look for solutions of (2.10).
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2.3 The Banach Space X

Since (2.3) is a real analytic vector field, any periodic solution is real analytic. Therefore, the Fourier coefficients of the
components of any periodic solution decay to zero exponentially fast. This fundamental fact justifies the choice of Banach
space on which we solve (2.10). Given an exponential decay rate v > 1, let

£11/ d:ef Cc = (Ck‘)kZO ’ Ck € R and ||C||y d:E!f Z |Ck‘Vk < 00
k>0

A consequence of the definition of the above space is that a sequence ¢ € £} must have that its coefficients decay (at infinity)
to zero faster than the geometric decay rate v—*. Define the Banach space

X ([},)6 = {a = (a1, a2, as, a4, as, ag) ‘ aj € 811,, ji=1,.. .,6} (2.11)

endowed with the norm
lallx = max {lla;l.}.
j=1 6

yeeey

To derive the bounds necessary to prove existence of solutions of (2.10) within the Banach space X defined by (2.11), we
will use the following fundamental result.

Lemma 2. Let v > 1 and ay, a3 € £}, Consider any bi-infinite sequences a1 = ((a1)k)yez G2 = ((G2)k)pey, with indices so
that (a;)k = (a;)k and [(a;)—x| = |(a;)k| for j =1,2 and for all k > 0. Then ((a1 * G2)k)y>o € 0L and

(@1 % @2)k) >0 Iy < 4llarlv[laz]y- (2.12)

Proof.

(@1 % @2)i) o llv = D 1@ * ag)el* =D | D7 (@), (@2)k, | v"

k>0 k>0 |ki+ko=k
ki,k2€Z
k
< § E (11 k1|| as kz‘y <4§ § al k1|V (a2)k2|y 2
k>0 ki+ko=k k>0 ki+ko=k
k1,k2€Z k1,k2>0

<4 > e [ || D a2k v | = 4]ar]lyllazl.. O

k120 k>0

Remark 2. The bound (2.12) holds for discrete convolutions involving any combination of cosine sequences (that is se-
quences extended over negative indices using the rule b_y = by ) and sine sequences (extended over negative indices using

the rule b_, = —by).

Instead of solving (2.10) directly, we introduce a fixed point equation of the form T'(a) = a — AF(a) (where A is an
injective linear operator to be defined) whose fixed points are in one-to-one correspondence with the zeroes of F'.
2.4 Definition of the Approximate Inverse Operator A

Assume that using a finite-dimensional projection F(™) : Ré™ — R6™ of (2.10), we applied Newton’s method to find
a numerical solution @ = (ay,...,as) € R%™ such that F("™)(a) ~ 0. From now on, we abuse slightly the notation by
identifying the point @; = ((Gj)—m+1,-- -, (@j)m—1) € R™ with the point a; € £}, by padding by zeros, that is

a; = ( ,0,--- ,O,(@j),m+17...,(aj)m,ho,'-' ,O,"') Eéll,
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Denote DF'(a) = {D,, F) (a)}?,j:p where each component of DF(a) is a linear operator such that D,, F;(a) : £}, — £,
are linear operators with v/ < v. An intermediate first step is to consider A" an approximation of DF(a). The motivation
for doing this is twofold. First, the derivative DF'(a) has many off diagonal terms that are small compared to the diagonal
terms, and hence there are eventually diagonal dominant operators that approximate it well. Second, considering Af
will simplify the computing bounds for DT'(a + b)c which we will decompose as DT (a + b)c = (I — ADF(a+b))c =
(I — AAT)c — A(DF(a+b) — AT)c. Indeed, each term of the sum will be bounded separately.

6
Hence, we first approximate DF(a) with the operator AT = {AT } which acts on b = (b;)$_; component-wise as
i,j=1

WELEZ

(ATh); = Z?Zl A;ai b; for j =1,...,6, where A;,ai b; € £1, is defined component-wise by
(m) ) <
(A;'a.bi) _ (DaiF] (@)b} )k 0<k<m
o 5i,jwkz(bi)k, k Z m.
Let A(™) be a finite-dimensional approximate inverse of DF(m)(Fz) which is obtained numerically. Define the decomposition

6
Alm) — {A(,m)} € R xRS where A;TZ) € R™ xR™. We define the approximate inverse A of the infinite-dimensional

2,4 i

i,j=1
operator DF(a) by A = {Ami}?j:l, that is
Al,al Al as Al as Al,a4 Al as Al ag
A2 ai A2 as A2,a3 A2,a4 A2 as A2 ag
A= AS,al AS,a2 A3,a3 AS,a4 AS,aa A3,a6

The linear operator A acts on b = (b;)%_; € X = (£})% component-wise as (Ab); = Zle Ajabi €0 for j=1,....6
with A ,,b; € £} defined component-wise by

(Afmbl™)  0<k<m

(Aja;bi)y, = 5; (2.13)
o bz ) k> .
wk (bi)s =m
Having defined A piece by piece, we can now define the Newton-like operator by
T(a) =a— AF(a). (2.14)

We show existence of fixed points of T" with the radii polynomial approach.

2.5 The Radii Polynomial Approach for Periodic Orbits
In this section, we essentially follow the approach introduced in Section 3 of [1]. This is why we omit many technical details.
Given a = (a1,...,as) € X, with a; = (--+,0,-++,0,(@;)—m+1s- - - (@Gj)m-1,0,--+,0,--+) € £}, define the bounds
Y =(Y1,...,Ys) €RS
Z(r) = (Z1(r),..., Zs(r)) € RS
such that

, sup |[(DTj(a+b)c)||, < Z;(r), for j=1,...,6. (2.15)
v b,ceB(r)

The following result is proved in [1].
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Proposition 3. Consider Y, Z(r) € R satisfying (2.15). If there exists a radius v > 0 such that .n%axﬁ{Zj(r) +Y;} <,
i=1...,

then T : Ba(r) — Bg(r) is a contraction mapping. Moreover, there exists a unique a € Bg(r) such that F(a) = 0.

Definition 1. Given bounds Y and Z(r) satisfying (2.15), define p1(r),...,ps(r) by
pi(r) = Zi(r) —r +Y;. (2.16)

If for each j = 1,...,6, the bound Z;(r) is a polynomial in r, then p;(r) is a polynomial in r. In this case, the polynomials
p1(r),...,pe are called the radii polynomials.

The definition of the radii polynomials is based on the assumption that each component of the bound Z(r) can be
obtained as a polynomial in 7. We refer to Remark 1 in [1] for a justification of this assumption.

The next result, whose proof can be found in [1] provides an efficient mean of obtaining sets on which the Newton-like
operator (2.14) is a contraction mapping.

Proposition 4. For a given exponential decay rate v > 1, construct the radii polynomials p; = pj(r) for j =1,...,6 of
Definition 1. Define
6
7= ﬂ{r >0 | pj(r,v) <0} (2.17)
j=1

If T # 0, then T is an open interval, and for any r € Z, the ball Bz(r) contains a unique solution T such that F (%) = 0.
Note that T is the same solution for all r € T.

We now derive the bounds Y; and Z;(r) for the definition of the radii polynomials which are defined in (2.15). Denote
by @ the solution we found using Newton’s method.

Recall that the bounds Y; satisfy ||[T'(a) — al;||, < Yj, where T is our Newton-like operator. Recalling the action of
each component of A given in (2.13), a direct computation yields the following computable bounds.

m—1| 6
y; & STIATE (@) oF (2.18)
k=0 [i=1
m—1| 6 4m—4
Y, & A E (@) | vF L m@lt 2.19
23 YA E M @l v+ > Fa(@)el (2.19)
k=0 |:=1 k=m
m—1| 6
Y =3 IS AL B @) v (2.20)
k=0 [i=1
m—1| 6 4Am—4
e m m — ]' —
Yo =30 DA E @l of Y I E @)l (2.21)
k=0 |i=1 k=m
m—1| 6 5m—>5 1
def m m)/— -
Y23 AL EM @ f Y o F @)l (2.22)
k=0 |i=1 k=m
m—1| 6 5m—>5
e m m 1 —
Yo £ 3 DA E™ @k vf 4+ Y IFs@ll” (2.23)
k=0 |i=1 k=m

To compute the bounds Z;(r), ..., Zs(r), we have to bound each component of DT'(a + b)c, for b, c € B(r). Recall that
DT(a+b)c= (I — AAT)c — A(DF(a+b) — AN)c

where AT is the approximation of DF(a), as defined in Section 2.4. Let B = I — AA'. As the operator A defined in

Section 2.4, B has the form B = {Bj;ai}?jzl' Note that given ¢ € X, ((Bc);)r = 0 for all k£ > m (e.g. see [1] for more
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details). By denoting b = br and ¢ = ér with b,¢ € By(1), we can deduce that for j =1, ...,6, we have

where

Note that Kp;; is in fact the norm |Bj,,
(Bj.a; )k = 0 for all k > m or n > m. Next, we need to bound |[[-A(DF(a+b) — Af)c];|,, for j =1,...,

and

From the definitions of (F1)o, (F3)o and (Fy)o in (2.7) (which are linear), we get that ([DF(a + b)c]; —

6 6
(Bl = [(B&);lr < (Z 1B) a0, BM>> r=2"r (Z KB,j,z) r
i=1 i=1

Kpji = max E | V",
Bat = g cpm—1 m i)k

[DF(a+ b)c]; = kw(c1)r + (c2)k

[DF(a+b)c]y = kw(ea)r + 2(ca)k + (c1)x — (1 = p)ler(@s + bs)® + 3es(ar + b1)(@s + bs) i

— (,LL — /1,2)[365((_15 + b5)2}k — ,U,[Cl (66 + b6)3 + 306(6_1,1 + bl)(ﬁﬁ + bﬁ)z]k
+ (1 — p?)[3c (@ + bg)?]x
[DF(a+b)cly = kw(cs) + (ca)r

[DF((_I + b)C]4 = k’w(C4)k =+ 2(62)k — (Cg)k =+ (1 — [1,)[03(&5 =+ b5)3 =+ 365((_13 =+ bg)((_lg, =+ b5)2]k

+ ples(ag + bg)® + 3cg(as + bs)(as + be)?Jx

[DF(a+ b)c]s = kw(cs)k + [c1(a@a + ba) (@5 + bs)* + c2(@r + b1)(as + bs)*
+ 3cs (@ + b1)(@z + bo) (@5 + bs)® + c3(@a + ba)(as + bs)?
+ c4(@s 4 b3)(@s + bs)® + 3¢s(as + b3) (@ + ba)(@s + bs)?)x
+ plea(@s + bs)® + 3es(ag + be)(as + bs)?Jx

[DF (@ + b)cls = kw(ce)x + [e1(a@a + b2)(as + bs)* + ca(@r + b1)(as + be)*
+ 3c6(@1 + b1)(az + ba)(as + be)? + c3(as + ba)(as + be)*
+ ca(@s + bs)(ag + bs)* + 3co(as + bs)(as + ba)(as + be)*]k
+ (1t — 1)[c2(a@s + bs)* + 3co(az + b2)(as + be)?Jx

(ATe)y = kw(cr)r + {c2toem
(ATe)y = kw(ea)r + {2(ca) + (1) — (1 = p)(er@d) — 3(1 — p)(csa1a3)
= 3(u — p?)(c5a3) — plerag) — 3u(csarag) + 3(i — 1) (c6ag) Yo<m
(ATe)s = kw(cs)r + {catuem
(ATe)s = kw(ca)k +{2(c2) — (c3) + (1 — p)(csa@3) + 3(1 — p)(csasaz)
+ p(esty) + 3p(cesty) beem
(ATe)s = kw(es)r + {(c182a3) + (c2a1a3) + 3(c5a1a2a2) + (c34a2) + (catzas)
+ 3(cs@3a4a3) + p(caa3) + 3p(c582a3) b ram
(ATe)s = kw(ce)r + {(c1a2a3) + (cotrag) + 3(coranaz) + (ca3daas) + (catzag)

+ 3(cetiztiatiy) + (1 — 1)(codg) + 3(1 — 1)(c6a2ag) team
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B(e, o) for operators of this (finite) form, that is for operators satisfying

6. For k> 1,

(Afe);), = 0 for



k=0 and for j =1,3,4. Also,

m—1 m—1
(IDF(a+b)cls — (ATe)s), = |+ |2 ) (@) (2 > (@) + u) £(2) @ <2 Z(al)k> r

+ |+ (55)0+22(55)k (51)04—22(51%@ + (55)0-1-22(65)}4 (51)04—22(@%

k>1 k>1 k>1 k>1

where the signs + depend on the cases defining 7; and 77 in (2.8) and (2.9), respectively. Now, for a € ¢} such that
llall, <1, we have that

ag+2) ar| <2 lax <2 |arlt =2llall, < 2.

k>1 k>0 k>0
Hence,
9 m—1 m—1
‘([DF(@+b)c]5—(ATc)5)O‘ Sy—m (2 (1) + p| + |2 (al)k>r+8r2
k=0 k=0
9 m—1 m—1
\ﬂDFw+bwm<A%%%|éym<2 @)+ — 1)+ |2 @ok)r+8ﬂ.
k=0 k=0

Given an element a € £}, denote by ar the finite-dimensional vector ar = (ag, a1, ...,am_1)7 € R™.
We now use the triangle inequality and Lemma 2 to bound ||[-A(DF(a + b) — AY)c|;||,. By substituting b and ¢ with
br and ¢r, and grouping the corresponding powers of r together, we obtain that

) (2.24)

2> (a1)k

2
+Vmwmmxon<
k=0

+3lu = U Ay 0o |l[a1|[asPwl plly + 31* — plll|Ajaelllaswl el + #lllAjelllas*w]pl + 3ull|Ajaslllallas)*w]e .
+ 316 = plll|Ajas lllasPwl pll + [ = U1Aj 0l llasPw] el + 3lu = 1I[1Aj 0 lllas||as *w] plly + pll|AjaslllasPwle |l
+3ull|4j.alllasllas|*w]rl + 11 Aj.as 1]l *w]pl + 1145051182115 *w]F [ + 114,051 [18s] 135 Pw]F ]l

+ 14,05 ll1aallas *w]r | + 31| Ajas a1 az]as*w]plly + 3ll|Aj.es lllasllasllas*wl pll, + pll|Ajasllas wle |l

+ 3pll| Ajas a2l as *w] p [l + 114,06 [1@1]1as *w] plly + [[4.acll12l1asPw] plls + 14,06l [1slae*wl el

+ 1 4j.asll1aallas|*w]F 1 + 311 Aj.as a1 a2l *w]pllu + 3ll|Aj.aq l[lasllasllas*wl pll, + [ — L1140 (136 w] [l

+ 3lu = |14y a6 |l|a2 a6 *w] pll. + oy,

m—1

2 (@1)k
k=0

m—1

1) der 2 _
4>¥me&mxun<2 (@) +

2 ((_ll)k +p—1
k=0

6
= = 1| A0 llas Pl
>+mw+m 1405l 135wl |

where (A4;.4,). , € L is the first column of the operator for i = 5,6, where w = (0, 0,...,0, %’ ﬁ, ﬁ, .. ) , and where
5o s
def 02, _ _ _ _ _ _ _ _
aj = (| = Ullas|Z(lasllv + 3l ) + 31u? — pl(las|? + lasl?) + ulasl? (lasll, + 3llall))
04,5 _ _ _ _ _ _
+ (I - 1llas|Z (lasllv + 3lasl.) + ulas|? (lasll, + 3llas]l.))

05,5 /11~ _ _ _ _ _ T T _
+ 2 (laslblaly + lazlly + llaslly + laalle + 1) + 3las|Zlallazlle + aslvllall, + plias.))

96,5 (11~ _ _ _ _ _ T T _
+ 2 (laslp(lally + lazlly + llaslly + laalls + | = 1) + 3lias 5 (lally @zl + lasllaall, + e = 1flazll.) -
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28 (1l (sl +1 (A ) (2:29)
4l A e = 112435 13 + 240 s ) + 6l — wlllasll
+ 24p((a6l12 + Nl oll,) + 61a® ~ o]l
4l Al = 11245113 + 24l @sll) + 245l + sl sl )
414 641511 + 2405113 (4l + Al + 4zl + 4laall + )
o+ 24as | (ellazll, + 4l Nl + 4l Ja], )
+ 4| A a5 l64]1as15 + 24/lasll? (4llall, + 4llazll, + 4ll@sll, + 4ll@alls + [ — 1))
+ 24y (s = Ullaally + 4l lulazlls + 4lasllaall, )]

Z £ 16]| A, 1911 — Il + 9pellaslly + 3l — Llllawlly + pllas |l + 3|62 — ul]
+16][A; 0, 1191 — 1lllasll. + 9psllas|l. + 3llas]l,) (2.26)
+16]| Ajas [I[72lls |2 + Ol (4lla [l + 4llazlly + 4llasll, + 4llasll, + w)
+ 3pllazl, + 12]a v lazll, + 12(@s, @]
+16][ 45 a6 1[7201@6 )12 + Ol |l (4@ |, + 4azll, + 4lasll, + 4laall, + |u — 1))
+ 3| = 1|[|@zll, + 12||a@1 ||, lazll, + 12(|as |l [|aqll. ],

4 ae
Z\V S 64[8) — 1| Aja || + 64181 — 1[[| A0, (2.27)
+ 64| A0, I24]1@s5 |, + 4l [l + 4llazll, + 4laslly + 4llaall, + 44]
+ 64| Ay o, |24 )16 |, + 4l [l + 4l|@zll, + 4laslls + 4llaall, + 4l — 1],

5 e
78 2 9560(| Aj | + [ A - (2.28)
Combining (2.18), (2.19), (2.20), (2.21), (2.22), (2.23), (2.24), (2.25), (2.26), (2.27) and (2.28), we define, for each
j=1,...,6, the quintic radii polynomial p;(r) by

pi(r) & 2P 1 Zz0 0t 2303 4 702 ¢ (ZJ(-I) - 1) r+Y;. (2.29)

2.6 Results

We finally present some applications of the radii polynomial approach. Using computer programs in MATLAB together
with the interval arithmetic toolbox INTLAB, we compute the radii polynomials p;i(r),...,pe(r) given by (2.29), and we
apply Proposition 4 to prove existence of periodic solutions of the planar circular restricted 3-body problem (2.1). All codes
are available at [93]. We proved the existence of periodic orbits in the case where the two large bodies have the same mass,
that is the mass ratio is p = % These orbits are shown in Figure 3. Moreover, we proved the existence of periodic orbits
in the earth-moon system, that is with the mass ratio u = 0.0123. These orbits are shown in Figure 4.
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