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Québec, QC, G1V0A6, Canada.

(Communicated by the associate editor name)

Abstract. We present a method designed for computing solutions of infinite
dimensional nonlinear operators f(x) = 0 with a tridiagonal dominant linear

part. We recast the operator equation into an equivalent Newton-like equation

x = T (x) = x − Af(x), where A is an approximate inverse of the derivative
Df(x̄) at an approximate solution x̄. We present rigorous computer-assisted

calculations showing that T is a contraction near x̄, thus yielding the existence

of a solution. Since Df(x̄) does not have an asymptotically diagonal dominant
structure, the computation of A is not straightforward. This paper provides

ideas for computing A, and proposes a new rigorous method for proving ex-

istence of solutions of nonlinear operators with tridiagonal dominant linear
part.

1. Introduction. Tridiagonal operators naturally arise in the theory of orthogonal
polynomials, ordinary differential equations (ODEs), continued fractions, numerical
analysis of partial differential equations (PDEs), integrable systems, quantum me-
chanics and solid state physics. Some differential operators can be represented by
infinite tridiagonal matrices acting in sequence spaces, as it is the case for instance
for differentiation in frequency space of the Hermite functions. Other examples come
from the study of ODEs like the Mathieu equation, the spheroidal wave equation,
the Whittaker-Hill equation and the Lamé equation.

While many well-developed methods and efficient algorithms already exist in
the literature for solving linear tridiagonal matrix equations and computing their
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inverses, our own method has a different flavour. We aim at developing a compu-
tational method in order to prove, in a mathematically rigorous and constructive
sense, existence of solutions to infinite dimensional nonlinear equations of the form

f(x) = L(x) +N(x) = 0, (1)

where L is a tridiagonal linear operator and N is a nonlinear operator. The domain
of the operator f is the space of algebraically decaying sequences

Ωs
def
=

{
x = (xk)k≥0 : ‖x‖s def

= sup
k≥0
{|xk|ωsk} <∞

}
, (2)

where

ωsk
def
=

{
1, k = 0,
ks, k ≥ 1.

The assumptions on the linear and nonlinear parts of (1) are that L : Ωs → Ωs−sL

and N : Ωs → Ωs−sN , for some sL > sN . Intuitively, this means that the linear
part dominates the nonlinear part. Since Ωs1 ⊂ Ωs2 for s1 > s2, one can see that f
maps Ωs into Ωs−sL .

General nonlinear operator equations of the form f(x) = 0 defined on the Banach
space Ωs arise in the study of bounded solutions of finite and infinite dimensional
dynamical systems. For instance, x = (xk)k≥0 may be the infinite sequence of
Fourier coefficients of a periodic solution of an ODE, a periodic solution of a delay
differential equation (DDE) or an equilibrium solution of a PDE with Dirichlet,
periodic or Neumann boundary conditions. The unknown x may also be the infinite
sequence of Chebyshev coefficients of a solution of a boundary value problem (BVP),
the Hermite coefficients of a solution of an ODE defined on an unbounded domain,
or the Taylor coefficients of the solution of a Cauchy problem. In the case when
the differential equation is smooth, the decay rate of the coefficients of x will be
algebraic or even exponential [2]. In the present paper, we chose to solve (1) in
the weighed `∞ Banach space Ωs which corresponds to Ck solutions. In order to
exploit the analyticity of the solutions, we could follow the idea of [10] and solve (1)
in weighed `1 Banach spaces. This choice of space is not considered in the present
paper.

Recently, several attempts to solve f(x) = 0 in Ωs have been successful. They
belong to a field now called rigorous numerics. This field aims at constructing
algorithms that provide approximate solutions to a given problem, together with
precise bounds implying the existence of an exact solution in the mathematically
rigorous sense. Equilibria of PDEs [7, 9, 17], periodic solutions of DDEs [11], fixed
points of infinite dimensional maps [6] and periodic solutions of ODEs [1, 4] have
been computed using such methods.

One popular idea in rigorous numerics is to recast the problem f(x) = 0 as a
problem of fixed point of a Newton-like equation of the form T (x) = x − Af(x),
where A is an approximate inverse of Df(x̄), and x̄ is a numerical approximation
obtained by computing a finite dimensional projection of f . In [4, 6, 7, 9, 11, 17],
the nonlinear equations under study have asymptotically diagonal or block-diagonal
dominant linear part, which helps a lot in the computation of approximate inverses.
In contrast, the present work considers problems with tridiagonal dominant linear
part. To the best of our knowledge, this is the first attempt to compute rigorously
solutions of such problems. While our proposed approach is designed for a specific
class of operators (see assumptions (4) and (5)), we believe that it can be seen as
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a first step toward rigorously solving more complicated nonlinear operators with
tridiagonal dominant linear part.

The paper is organized as follows. In Section 2, we present a method enabling to
compute (with the help of the computer) pseudo-inverses of tridiagonal operators
of a certain class. In Section 3, we recast the problem f(x) = 0 as a fixed point
problem T (x) = x−Af(x), where A is a pseudo-inverse, and we present the rigorous
computational method to prove existence of fixed points of T . In Section 4, we
present an application and finally, in Section 5, we conclude by presenting some
interesting future directions.

2. Computing pseudo-inverses of tridiagonal operators. This Section is de-
voted to the construction of a pseudo-inverse of a linear operator with tridiagonal
tail (see (6)). We begin this Section by specifying the assumptions that we make
on the growth of the tridiagonal terms. Then we use an LU-decomposition to for-
mally obtain a formula for the pseudo-inverse. Finally, we check that the (formally
defined) pseudo-inverse has good mapping properties (see Proposition 1).

Given three sequences (λk)k≥0, (µk)k≥0, (βk)k≥0 and x ∈ Ωs, we define the
tridiagonal linear operator (acting on x) L(x) = (Lk(x))k≥0 of (1) by

Lk(x) = λkxk−1 + µkxk + βkxk+1, k ≥ 1, (3)

and L0(x) = µ0x0 + β0x1. Assume that there exist real numbers sL > 0, 0 < C1 ≤
C2 and an integer k0 such that

∀ k ≥ 0,

∣∣∣∣ λkωsLk
∣∣∣∣ , ∣∣∣∣ µkωsLk

∣∣∣∣ , ∣∣∣∣ βkωsLk
∣∣∣∣ ≤ C2 and ∀ k ≥ k0, C1 ≤

∣∣∣∣ µkωsLk
∣∣∣∣ . (4)

Assume further the existence of δ ∈
(

0,
1

2

)
and k0 ≥ 0 such that

∀ k ≥ k0,

∣∣∣∣λkµk
∣∣∣∣ , ∣∣∣∣βkµk

∣∣∣∣ ≤ δ. (5)

Then, under assumptions (4) and (5), L defined by (3) is a tridiagonal operator
which maps Ωs into Ωs−sL . Indeed, if x ∈ Ωs, then

‖L(x)‖s−sL = sup
k≥0
{|Lk(x)|ωs−sLk }

≤ C2

(
sup
k≥1
{|xk−1|ωsk}+ sup

k≥0
{|xk|ωsk}+ sup

k≥0
{|xk+1|ωsk}

)
<∞.

From now on, assume for the sake of simplicity that sN = 0, that is the nonlinear
part N of (1) maps Ωs into Ωs. Since Ωs is an algebra under discrete convolutions
when s > 1 (e.g. see [3, 7]), then any N which is a combination of such convolutions
maps Ωs into Ωs. Assume that using a finite dimensional projection f (m) : Rm →
Rm of (1), we computed a numerical approximation x̄ such that f (m)(x̄) ≈ 0. We
identify x̄ ∈ Rm and x̄ = (x̄, 0, 0, 0, 0, . . . ) ∈ Ωs. We then try to construct a ball

Bx̄(r) = x̄+B0(r) = x̄+ {x ∈ Ωs : ‖x‖s ≤ r} = {x ∈ Ωs : ‖x− x̄‖s ≤ r}
centered at x̄ and containing a unique solution of (1), by showing that a specific
Newton-like operator T (x) = x − Af(x) is a contraction on Bx̄(r). This requires
the construction of an approximate inverse A of Df(x̄) = L(x̄) +DN(x̄). In order
to do so, the structures of L(x̄) and DN(x̄) need to be understood. From (3)
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and (4), L(x̄) is a tridiagonal operator with entries growing to infinity at the rate
ksL . Moreover, since DN(x̄) maps Ωs into Ωs, it is a bounded linear operator. As
mentioned above, the expectation is that the coefficients of x̄ decay fast to zero.
This implies that a reasonable approximation A† of Df(x̄) is given by

A†
def
=


D 0

βm−1

λm µm βm
0 λm+1 µm+1 βm+1

 , (6)

with D
def
= Df (m)(x̄) for m large enough. We wish to find the inverse of A† in terms

of D, (βk)k≥m−1, (µk)k≥m and (λk)k≥m. We assume therefore that

A†x = y, (7)

where x and y are the infinite vectors

x =


x0

x1

.

.

 , y =


y0

y1

.

.

 .

The infinite part of (7) writes
µm βm 0 0 ...
λm+1 µm+1 βm+1 0 ...

0 λm+2 µm+2 βm+2 ...
. . . . ...




xm
xm+1

.

.

 =


ym − λm xm−1

ym+1

.

.

 . (8)

We introduce the notations of the book of P.G. Ciarlet (see Theorem 4.3-2 on
page 142 in [5]):

a2 = λm+1, a3 = λm+2, ..., b1 = µm, b2 = µm+1, ..., c1 = βm, c2 = βm+1, ...,

and (δn)n∈N defined by the induction formula

δ0 = 1, δ1 = b1, and δn = bn δn−1 − an cn−1 δn−2, for n ≥ 2.

Note that only the δn are really useful.
Let us define the tridiagonal operator T by

T
def
=


b1 c1 0 0 ...
a2 b2 c2 0 ...
0 a3 b3 c3 ...
. . . . ...

 . (9)

For any infinite vector x = (x0, . . . , xk, . . .)
T , we introduce the notation

xF
def
= (x0, . . . , xm−1)T and xI

def
= (xm, . . . , xm+k, . . .)

T .

Using the notation e1 = (1, 0, 0, 0, 0, · · · )T , the system (8) becomes

TxI = yI − λm xm−1e1.
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From Theorem 4.3-2 in [5], we compute an LU -decomposition of the tridiagonal
operator defined in (9) as T = LIUI , where

LI
def
=


1 0 0 ...

a2
δ0
δ1

1 0 ...

0 a3
δ1
δ2

1 ...

. . . ...

 and UI
def
=


δ1
δ0

c1 0 ...

0 δ2
δ1

c2 ...

0 0 δ3
δ2

...

. . . ...

 . (10)

Hence, the system (8) becomes LIzI = yI − λm xm−1e1 combined with UIxI = zI ,
that is 

1 0 0 ...

a2
δ0
δ1

1 0 ...

0 a3
δ1
δ2

1 ...

. . . ...




zm
zm+1

.

.

 =


ym − λm xm−1

ym+1

.

.

 , (11)

combined with 
δ1
δ0

c1 0 ...

0 δ2
δ1

c2 ...

0 0 δ3
δ2

...

. . . ...




xm
xm+1

.

 =


zm
zm+1

.

 . (12)

Both infinite systems (11) and (12) can be explicitly solved.
System (11) leads to

zm = ym − λmxm−1,

and for any k ≥ 1

zm+k = ym+k+

k∑
l=1

(−1)l ak−l+2 .. ak+1
δk−l
δk

ym+k−l+(−1)k+1 a2 .. ak+1
δ0
δk
λmxm−1,

which we rewrite with infinite matrix/vectors notations as

zI = LI
−1[yI − λm xm−1e1] = LI

−1yI − λmxm−1 vI , (13)

where

zI =



zm
zm+1

zm+2

...


, yI =



ym
ym+1

ym+2

...


, vI

def
= LI

−1e1 =



1

−a2
δ0
δ1

a3 a2
δ0
δ2

−a4 a3 a2
δ0
δ3

...


.

The second system (12) leads to the infinite sum (for any k ≥ 0)

xm+k =
δk
δk+1

zm+k +

∞∑
l=1

(−1)l
δk

δk+l+1
ck+1 .. ck+l zm+k+l,

which we also rewrite with infinite matrix/vector notations as

xI = UI
−1zI . (14)

Coupling (13) and (14), we end up with

xI = UI
−1zI = UI

−1[LI
−1yI − λmxm−1 vI ] = UI

−1LI
−1yI − λmxm−1wI , (15)
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where wI
def
= U−1

I vI . Denoting
(
UI
−1LI

−1
)
r0

the first row of the infinite matrix

UI
−1LI

−1 and (wI)0 the first element of wI , we can rewrite the first line of (15) as

xm =
(
UI
−1LI

−1
)
r0
yI − λmxm−1 (wI)0 . (16)

We now investigate the finite part of the linear system (7), which is given by

D


x0

x1

.

.
xm−2

xm−1

+


0
0
.
.
0

βm−1 xm

 =


y0

y1

.

.
ym−2

ym−1

 ,

or, according to (16),

D


x0

x1

.

.
xm−2

xm−1

+ βm−1



0
0
.
.
0(

UI
−1LI

−1
)
r0
yI − λmxm−1 (wI)0

 =


y0

y1

.

.
ym−2

ym−1

 .

Letting

K
def
= D − βm−1λm


0 0 ... 0 0
0 0 ... 0 0
...

...
. . .

...
...

0 0 ... 0 0
0 0 ... 0 (wI)0

 ,

we consider its inverse K−1. We denote the last column of K−1 by (K−1)cm−1
,

its last row by (K−1)rm−1 , and its last (“south-east”) element by (K−1)m−1,m−1.
Then we obtain

xF = K−1yF − βm−1

{(
UI
−1LI

−1
)
r0
yI

}
(K−1)cm−1

= K−1yF − βm−1

({
(K−1)cm−1

}
⊗
{(

U−1
I LI

−1
)
r0

})
yI , (17)

using the tensor product notation. The last line of this identity reads

xm−1 = (K−1)rm−1
yF − βm−1

{(
UI
−1LI

−1
)
r0
yI

}
(K−1)m−1,m−1. (18)

Coming back to (15) and using (18), we see that
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xI = UI
−1LI

−1yI − λmxm−1wI

= UI
−1LI

−1yI

−λm
[
(K−1)rm−1

yF − βm−1

{(
UI
−1LI

−1
)
r0
yI

}
(K−1)m−1,m−1

]
wI

= UI
−1LI

−1yI − λm wI
{

(K−1)rm−1
yF

}
+βm−1λm (K−1)m−1,m−1 wI

{(
UI
−1LI

−1
)
r0
yI

}
= −λm

({
wI

}
⊗
{

(K−1)rm−1

})
yF (19)

+

(
UI
−1LI

−1 + βm−1λm (K−1)m−1,m−1

{
wI

}
⊗
{(

UI
−1LI

−1
)
r0

})
yI .

Putting together (17) and (19), we end up with (A†)−1 =

 K−1 −βm−1

({
(K−1)cm−1

}
⊗
{(

U−1
I LI

−1
)
r0

})
−λm

{
wI

}
⊗
{

(K−1)rm−1

}
UI
−1LI

−1 + Λ̃

 ,

where

Λ̃
def
= βm−1λm (K−1)m−1,m−1

{
wI

}
⊗
{(

UI
−1LI

−1
)
r0

}
.

In order to get an approximate (pseudo) inverse of A†, we would like to get a
numerical approximation of K−1. However the definition of K involves (wI)0, which

cannot be explicitly computed. By definition, wI = U−1
I L−1

I e1, so using again the
computations made in this Section, we get

(wI)0 =
(
U−1
I vI

)
0

=
δ0
δ1
vm +

∞∑
l=1

(−1)l
δ0
δl+1

c1 . . . cl vm+l

=
δ0
δ1

+

∞∑
l=1

δ2
0

δlδl+1
c1 . . . cl a2 . . . al+1.

Given a computational parameter L, we define

w̃
def
=
δ0
δ1

+

L−1∑
l=1

δ2
0

δlδl+1
c1 . . . cl a2 . . . al+1, (20)

and

K̃
def
= D − βm−1λm


0 0 ... 0 0
0 0 ... 0 0
...

...
. . .

...
...

0 0 ... 0 0
0 0 ... 0 w̃

 .
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We now can consider Am a numerically computed inverse of K̃ and then define
the approximate (pseudo) inverse of A† as A

def
=

 Am −βm−1

({
(Am)cm−1

}
⊗
{(

U−1
I LI

−1
)
r0

})
−λm

{
wI

}
⊗
{

(Am)rm−1

}
UI
−1LI

−1 + Λ

 ,

(21)
where

Λ
def
= βm−1λm (Am)m−1,m−1

{
wI

}
⊗
{(

UI
−1LI

−1
)
r0

}
.

Lemma 2.1. Assume that m ≥ k0 and δ < 1
2 . Then U−1

I maps Ωs into Ωs+sL .

Proof. Let zI ∈ Ωs and xI = U−1
I zI . Using (14) and the formula above, we get

|xm+k| ≤
|δk|
|δk+1|

|zm+k|+
∞∑
l=1

|δk|
|δk+l+1|

|ck+1| .. |ck+l| |zm+k+l|

≤ |δk|
|δk+1|

|zm+k|+
∞∑
l=1

δl
|δk|
|δk+l+1|

|bk+1| .. |bk+l| |zm+k+l| . (22)

Now remember that for all k ≥ 2, δk = bk δk−1 − ak ck−1δk−2, so

|δk|
|δk−1| |bk|

≥ 1− |ak| |ck−1| |δk−2|
|bk| |δk−1|

≥ 1− δ2 |bk−1| |δk−2|
|δk−1|

.

We introduce uk
def
=

|δk|
|δk−1| |bk|

which then satisfies


u1 = 1,

uk ≥ 1− δ2

uk−1
, ∀ k ≥ 2.

The study of the inductive sequence defined as above, but with ≥ replaced by =,

yields that for any k, γ ≤ uk ≤ 1, where γ
def
= 1

2 +
√

1
4 − δ2 is the largest root of

x = 1− δ2

x (see Figure 1).
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Figure 1. The iterations of un+1 = 1− δ2/un with u1 = 1.

We can then rewrite (22) in order to get

|xm+k| ≤
|δk|
|δk+1|

|zm+k|+
∞∑
l=1

δl
|δk| .. |δk+l|

|δk+1| .. |δk+l+1|
|bk+1| .. |bk+l| |zm+k+l|

≤ |δk|
|δk+1|

|zm+k|+
∞∑
l=1

δl
1

uk+1
..

1

uk+l

|δk+l|
|δk+l+1|

|zm+k+l|

≤
∞∑
l=0

(
δ

γ

)l |δk+l|
|δk+l+1|

|zm+k+l|

≤
∞∑
l=0

(
δ

γ

)l
1

γ |bk+l+1|
|zm+k+l| (23)

≤ ‖zI‖s
C1γ

∞∑
l=0

(
δ

γ

)l
1

(k + l + 1)
sL (m+ k + l)

s .

Finally, since δ <
1

2
< γ,

|xm+k| (m+ k)
s+sL ≤ ‖zI‖s

C1γ

1

1− δ
γ

(m+ k)
s+sL

(k + 1)
sL (m+ k)

s

and xI ∈ Ωs+sL .

Lemma 2.2. Assume that m ≥ k0 and δ < 1
2 , Then L−1

I maps Ωs into Ωs.



10 MAXIME BREDEN, LAURENT DESVILLETTES AND JEAN-PHILIPPE LESSARD

Proof. Let yI ∈ Ωs and zI = L−1
I yI . Using (13) and the formula above

(
without

the last term since we do not consider here L−1
I (yI − λm xm−1e1)

)
, we get

|zm+k| ≤ |ym+k|+
k∑
l=1

|δk−l|
|δk|

|ak−l+2| .. |ak+1| |ym+k−l|

≤ |ym+k|+
k∑
l=1

δl
|δk−l|
|δk|

|bk−l+2| .. |bk+1| |ym+k−l|

≤ |ym+k|+
k∑
l=1

δl
|δk−l| .. |δk−1|
|δk−l+1| .. |δk|

|bk−l+1| |bk−l+2| .. |bk+1|
|bk−l+1|

|ym+k−l|

≤ |ym+k|+
k∑
l=1

δl
1

uk−l+1
..

1

uk

|bk+1|
|bk−l+1|

|ym+k−l| ,

where we use the sequence uk introduced in the previous proof. We get

|zm+k| ≤
k∑
l=0

(
δ

γ

)l |bk+1|
|bk−l+1|

|ym+k−l| , (24)

and

|zm+k| (m+ k)
s ≤ C2 ‖y‖s

C1

k∑
l=0

(
δ

γ

)l(
k + 1

k + 1− l

)sL ( m+ k

m+ k − l

)s

≤ C2 ‖y‖s
C1

k∑
l=0

(
δ

γ

)l(
m+ k

k + 1− l

)s+sL
.

For any k ≥ m, we then have

|zm+k| (m+ k)
s ≤ 2s+sLC2 ‖y‖s

C1

 [ k
2 ]∑
l=0

(
δ

γ

)l(
k

k + 1− l

)s+sL

+

k∑
l=[ k

2 ]+1

(
δ

γ

)l(
k

k + 1− l

)s+sL
≤ 2s+sLC2 ‖y‖s

C1

2s+sL
[ k
2 ]∑
l=0

(
δ

γ

)l
+

(
δ

γ

) k
2

k∑
l=[ k

2 ]+1

ks+sL


≤ 2s+sLC2 ‖y‖s

C1

(
2s+sL

1− δ
γ

+

(
δ

γ

) k
2 ks+sL+1

2

)
,

which is bounded uniformly in k since the last term goes to 0 when k goes to ∞,
and the proof is complete.

Proposition 1. Assume that m ≥ k0 and δ < 1
2 . Then A maps Ωs into Ωs+sL .
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Proof. Consider y = (yF , yI)
T ∈ Ωs. Let x = (xF , xI)

T = Ay. Then, by definition
of the operator A in (21),

xF = AmyF − βm−1

({
(Am)cm−1

}
⊗
{(

U−1
I LI

−1
)
r0

})
yI

= AmyF − βm−1

{(
UI
−1LI

−1
)
r0
yI

}
(Am)cm−1

.

By the previous lemmas, UI
−1LI

−1yI ∈ Ωs+sL, and in particular
(
UI
−1LI

−1
)
r0
yI =(

UI
−1LI

−1yI
)

0
is well defined and so is xF .

Using (21) again,

xI = −λm
({

wI

}
⊗
{

(Am)rm−1

})
yF + UI

−1LI
−1yI + ΛyI .

Remember that wI = U−1
I LI

−1e1, so that wI ∈ Ωs for any s. According to the
previous lemmas and the definition of Λ (see (21)), we see that xI ∈ Ωs+sL .

3. Computations of fixed points of the operator T . Our main motivation for
computing approximate inverses is to prove existence, in a mathematically rigorous
sense, of a fixed point of the Newton-like operator T in a set centered at a numerical
approximation x̄. The Newton-like operator has the form

T (x) = x−Af(x), (25)

where A is the approximate inverse (21) of Df(x̄) computed using the theory of
Section 2. Since f maps Ωs into Ωs−sL and A maps Ωs into Ωs+sL (thanks to
Proposition 1), we see that T maps the Banach space Ωs into itself. Our goal is to
obtain explicit bounds allowing us to show that a given T is a contraction on the
ball Bx̄(r), which yields the existence of a fixed point of T (and thus of a zero of
f). The fixed point theorem that we use (see Theorem 3.1) requires bounds on T
and its derivative. We get formulas for these bounds in Sections 3.2 and 3.3, and
then explain in Section 3.4 how to use the so-called radii polynomials in order to
find a radius r > 0 such that T (Bx̄(r)) ⊂ Bx̄(r), and such that T is a contraction
on Bx̄(r).

Before proceeding further, we endow Ωs with the operation of discrete convolu-
tion. More precisely, given x = (xk)k≥0, y = (yk)k≥0 ∈ Ωs, we extend x, y symmet-
rically by x̃ = (xk)k∈Z, ỹ = (yk)k∈Z where x̃−k = xk, ỹ−k = yk, for k ≥ 1. The
discrete convolution of x and y is then denoted by x∗y, and defined by the (infinite)
sum

(x ∗ y)k =
∑

k1+k2=k

k1,k2∈Z

x̃k1 ỹk2 .

It is known that for s > 1, (Ωs, ∗) is an algebra (e.g. see [3]), that is, if x, y ∈ Ωs,
then x ∗ y ∈ Ωs. This will be useful when we shall look for a bound such as (27)
below. We start with a classical theorem, whose proof is standard (e.g. see the
proof of Lemma 3.3 in [7]) and is a direct consequence of the contraction mapping
theorem.

Theorem 3.1. For a given s > 1, consider T : Ωs → Ωs with T = (Tk)k≥0, Tk ∈
R. Assume that there exists a point x̄ ∈ Ωs and vectors Y = {Yk}k≥0 and Z =
{Zk(r)}k≥0, with Yk, Zk(r) ∈ R, satisfying (for all k ≥ 0)

|(T (x̄)− x̄)k| ≤ Yk, (26)
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and

sup
b1,b2∈B0(r)

∣∣∣[DT (x̄+ b1)b2
]
k

∣∣∣ ≤ Zk(r). (27)

If there exists r > 0 such that ‖Y +Z(r)‖s < r, then the operator T is a contraction
in Bx̄(r) and there exists a unique x̂ ∈ Bx̄(r) such that T (x̂) = x̂.

We shall see how to get the bounds Y (Section 3.2) and the bounds Z(r) (Sec-
tion 3.3), and we shall provide an efficient way of finding a radius r > 0 such
that ‖Y + Z(r)‖s < r (Section 3.4). The first step however consists in looking for
bounds on A. More precisely, we need some estimates in order to control the action
of U−1

I L−1
I . This is the goal of the following Subsection.

3.1. Some preliminary computations. We introduce the notations

θ
def
=

δ

γ
and η

def
=

1

γ(1− θ2)
. (28)

Lemma 3.2. Let yI = (ym, ym+1, . . .)
T

be an infinite vector and xI = U−1
I L−1

I yI .
Assume that m ≥ k0 and δ < 1

2 . Then, for all k ≥ 0,

|xm+k| ≤ η

 k∑
j=0

θk−j
|ym+j |
|µm+j |

+

∞∑
j=k+1

θj−k
|ym+j |
|µm+j |

 .

Proof. We again introduce zI = L−1
I yI . Combining (23) from Lemma 2.1 and (24)

from Lemma 2.2, we get

|xm+k| ≤
1

γ

∞∑
l=0

k+l∑
j=0

θk+2l−j |ym+j |
|bj+1|

=
1

γ

 k∑
j=0

|ym+j |
|bj+1|

∞∑
l=0

θk+2l−j +

∞∑
j=k+1

|ym+j |
|bj+1|

∞∑
l=j−k

θk+2l−j


=

1

γ

 k∑
j=0

|ym+j |
|bj+1|

θk−j

1− θ2
+

∞∑
j=k+1

|ym+j |
|bj+1|

θj−k

1− θ2


= η

 k∑
j=0

θk−j
|ym+j |
|µm+j |

+

∞∑
j=k+1

θj−k
|ym+j |
|µm+j |

 .

In particular, we immediately obtain the two following corollaries (always under
the assumptions of Lemma 3.2) which will be useful in the sequel.

Corollary 1. Recall (28). Then, for wI = (wm, wm+1, . . .)
T def

= U−1
I L−1

I e1, we
have

|wm+k| ≤ ηθk
1

|µm|
, for all k ≥ 0. (29)

Corollary 2. If y is such that ym+k = 0 for any k ≥ n, then

∀ k ≤ n− 2, |xm+k| ≤ η
(

k∑
l=0

θk−l
|ym+l|
|µm+l|

+

n−1∑
l=k+1

θl−k
|ym+l|
|µm+l|

)
(30)
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and

∀ k ≥ n− 1, |xm+k| ≤ ηθk
n−1∑
l=0

|ym+l|
θl |µm+l|

. (31)

More generally, we will also need in the next two Subsections a uniform bound
on |xm+k| (m+ k)s+sL for k large enough. We assume here that m ≥ 2 (which will
always be the case in practice), and define for any integer M

χ
def
= θ

M
2
M

2

(
m+M

m

)s+sL
+ θ
√
MM

2
2s+sL +

1

1− θ

(
m+M

m+M −
√
M − 1

)s+sL
.

Proposition 2. Suppose that M satisfies

M ≥ max

−m ln
√
θ − s− sL − 1−

√
(m ln

√
θ + s+ sL + 1)2 − 4m ln

√
θ

2 ln
√
θ

,
4

(ln θ)2
,m

 .

(32)

Then for all k < M ,

|xm+k| (m+ k)
s+sL ≤ η‖yI‖s

C1

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

θ

1− θ

)
, (33)

and for all k ≥M

|xm+k| (m+ k)
s+sL ≤ η‖yI‖s

C1

(
χ+

θ

1− θ

)
. (34)

Proof. Thanks to Lemma 3.2,

|xm+k| (m+ k)
s+sL ≤ η‖yI‖s

C1

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

∞∑
l=k+1

θl−k
(
m+ k

m+ l

)s+sL)

≤ η‖yI‖s
C1

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

θ

1− θ

)
.

Then for k ≥M , we split the remaining sum

k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
=

[ k
2 ]−1∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

k−[
√
k]−1∑

l=[ k
2 ]

θk−l
(
m+ k

m+ l

)s+sL

+

k∑
l=k−[

√
k]

θk−l
(
m+ k

m+ l

)s+sL

≤ θ k
2
k

2

(
m+ k

m

)s+sL
+ θ
√
k k

2
2s+sL

+
1

1− θ

(
m+ k

m+ k −
√
k − 1

)s+sL
≤ θM

2
M

2

(
m+M

m

)s+sL
+ θ
√
MM

2
2s+sL

+
1

1− θ

(
m+M

m+M −
√
M − 1

)s+sL
= χ.
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The justification of the last inequality is contained in the following three lemmas.

Lemma 3.3. If M satisfies (32), then for all k ≥M

θ
k
2
k

2

(
m+ k

m

)s+sL
≤ θM

2
M

2

(
m+M

m

)s+sL
.

Proof. For x > 0, let ϕ1(x)
def
= θ

x
2 x(m+ x)s+sL , whose derivative is

ϕ′1(x) =
√
θ
x
((

ln
√
θ
)
x(m+ x)s+sL + (m+ x)

s+sL + (s+ sL)x (m+ x)
s+sL−1

)
= (m+ x)

s+sL−1
√
θ
x
((

ln
√
θ
)

(m+ x)x+ (m+ x) + (s+ sL)x
)

= (m+ x)
s+sL−1

√
θ
x
((

ln
√
θ
)
x2 +

(
m ln

√
θ + s+ sL + 1

)
x+m

)
.

For 0 < θ < 1, the discriminant of ln
√
θx2 +

(
m ln

√
θ + s+ sL + 1

)
x + m given

by

∆
def
=
(
m ln

√
θ + s+ sL + 1

)2

− 4m ln
√
θ,

is positive. Since M satisfies (32), ϕ′1(x) ≤ 0 for any x ≥M and so ϕ1(k) ≤ ϕ1(M)
for all k ≥M .

Lemma 3.4. If M satisfies (32), then for all k ≥M ,

θ
√
k k

2
2s+sL ≤ θ

√
MM

2
2s+sL .

Proof. Let ϕ2(x)
def
= θ

√
xx. Then

ϕ′2(x) = θ
√
x

(
ln θ

2
√
x
x+ 1

)
=
θ
√
x

2

(√
x ln θ + 2

)
.

Hence, for x ≥ 4

(ln θ)2
, ϕ′2(x) ≤ 0 and so ϕ2(k) ≤ ϕ2(M) for all k ≥M .

Lemma 3.5. If M satisfies (32), then for all k ≥M ,

1

1− θ

(
m+ k

m+ k −
√
k − 1

)s+sL
≤ 1

1− θ

(
m+M

m+M −
√
M − 1

)s+sL
.

Proof. Let ϕ3(x)
def
=

m+ x

m+ x−√x− 1
. Then

ϕ′3(x) =
m+ x−√x− 1− (m+ x)

(
1− 1

2
√
x

)
(m+ x−√x− 1)

2 = − x+ 2
√
x−m

2
√
x (m+ x−√x− 1)

2 .

Hence, for x ≥ m, ϕ′3(x) ≤ 0 and ϕ3(k) ≤ ϕ3(M) for all k ≥M .

Finally, we will need to bound the error made by using w̃ instead of (wI)0 for
the definition (21) of A.

Lemma 3.6. Assume that L ≥ k0 and δ < 1
2 . Then

|(wI)0 − w̃| ≤
θ2L

|µm| (1− θ2)
. (35)
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Proof. Using (5) together with the sequence (ul) introduced in the proof of Lemma 2.1,
we get

|(wI)0 − w̃| ≤
∞∑
l=L

|δ0|2
|δl| |δl+1|

|c1| . . . |cl| |a2| . . . |al+1|

≤ |δ0||δ1|
∞∑
l=L

δ2l

(
1

u1
· · · 1

ul

)(
1

u2
· · · 1

ul+1

)

≤ 1

|µm|
∞∑
l=L

θ2l

=
θ2L

|µm| (1− θ2)
.

3.2. Computation of the Y bounds. From now on, we shall assume for the
sake of clarity that the nonlinearity N of f in (1) is a polynomial of degree two.
The generalization to a polynomial nonlinearity of higher degree could be obtained
thanks to the use of the estimates developed in [7] in order to bound terms like(

x1 ∗ . . . ∗ xp
)
n

where x1, . . . , xp ∈ B0(r). Moreover, as long as one is interested in problems with
nonlinearities built from elementary functions of mathematical physics (powers,
exponential, trigonometric functions, rational, Bessel, elliptic integrals, etc.), our
method is applicable. Indeed, since these nonlinearities are themselves solutions of
low order linear or polynomial ODEs, they can be appended to the original problem
of interest in order to obtain polynomial nonlinearities, albeit in a higher number
of variables. This standard trick is explained in more details in [12], and is used in
[15] to prove existence of periodic solutions in the planar circular restricted three
body problem.

With this in mind, we are ready to compute the bound Y appearing in Theo-
rem 3.1. In everything that follows, |·|, when applied to vectors or matrices (even
infinite dimensional), must be understood component-wise.

The main estimate of this subsection, that is the bound on Y , is presented in the
following Proposition:

Proposition 3. Consider an integer M such that

M ≥ max

( −s
ln θ
−m,m− 2

)
, (36)

and define Y = (Yk)k≥0 component-wise by

YF
def
= |Am (f(x̄))F |+ |βm−1| η

(
m−2∑
l=0

θl
|f(x̄)|m+l

|µm+l|

)∣∣∣(Am)cm−1

∣∣∣ , (37)

Ym+k
def
=

(∣∣∣(Am)rm−1
f(x̄)F

∣∣∣+
∣∣∣βm−1 (Am)m−1,m−1

∣∣∣ η(m−2∑
l=0

θl
|f(x̄)|m+l

|µm+l|

))
ηθk
|λm|
|µm|

+ η

k∑
l=0

θk−l
|f(x̄)|m+l

|µm+l|
+ η

m−2∑
l=k+1

θl−k
|f(x̄)|m+l

|µm+l|
, ∀ 0 ≤ k ≤ m− 3, (38)
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Ym+k
def
=

(∣∣∣(Am)rm−1
f(x̄)F

∣∣∣+
∣∣∣βm−1 (Am)m−1,m−1

∣∣∣ η(m−2∑
l=0

θl
|f(x̄)|m+l

|µm+l|

))
ηθk
|λm|
|µm|

+ ηθk
m−2∑
l=0

|f(x̄)|m+l

θl |µm+l|
, ∀m− 2 ≤ k ≤M, (39)

and

Ym+k
def
= Ym+M

ωsm+M

ωsm+k

, ∀ k > M. (40)

Then

|T (x̄)− x̄| ≤ Y.

Proof. By definition of T ,

|T (x̄)− x̄| = |Af(x̄)| .
Note that since we suppose that f is at most quadratic, and since x̄ is constructed
in such a way that x̄k = 0 for all k ≥ m, we get the identity (f(x̄))m+k = 0 for all
k ≥ m− 1. Thanks to (21),

|(Af(x̄))F | ≤ |Am (f(x̄))F |+ |βm−1|
∣∣(U−1

I L−1
I (f(x̄))I

)
0

∣∣ ∣∣∣(Am)cm−1

∣∣∣ ,
so that using (30) with n = m− 1 and k = 0, we get

|(Af(x̄))F | ≤ |Am (f(x̄))F |+ |βm−1| η
(
m−2∑
l=0

θl
|f(x̄)|m+l

|µm+l|

)∣∣∣(Am)cm−1

∣∣∣ ,
which provides the bound (37).

Using (21) again,

|(Af(x̄))I | ≤ |λm|
(∣∣∣(Am)rm−1

f(x̄)F

∣∣∣+
∣∣∣βm−1 (Am)m−1,m−1

(
U−1
I L−1

I f(x̄)I
)

0

∣∣∣) |wI |
+
∣∣U−1
I L−1

I f(x̄)I
∣∣ ,

so using (29), (30) and (31) (again with n = m− 1), we get

∣∣(Af(x̄))m+k

∣∣ ≤ (∣∣∣(Am)rm−1
f(x̄)F

∣∣∣+
∣∣∣βm−1 (Am)m−1,m−1

∣∣∣ η(m−2∑
l=0

θl
|f(x̄)|m+l

|µm+l|

))
ηθk
|λm|
|µm|

+ η

k∑
l=0

θk−l |f(x̄)|m+l

|µm+l|
+ η

m−2∑
l=k+1

θl−k |f(x̄)|m+l

|µm+l|
, ∀ 0 ≤ k ≤ m− 3,

which provides the bound (38), and

∣∣(Af(x̄))m+k

∣∣ ≤ (∣∣∣(Am)rm−1
f(x̄)F

∣∣∣+
∣∣∣βm−1 (Am)m−1,m−1

∣∣∣ η(m−2∑
l=0

θl
|f(x̄)|m+l

|µm+l|

))
ηθk
|λm|
|µm|

+ ηθk
m−2∑
l=0

|f(x̄)|m+l

θl |µm+l|
, ∀k ≥ m− 2,

which provides the bound (39). Finally, by (36), θk(m+ k)s ≤ θM (m+M)s for all
k > M , and we obtain the bound (40).

We present in Section 3.4 the rationale behind the definition of Ym+k for k > M .
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3.3. Computation of the Z bounds. In order to compute the Z bounds from
Theorem 3.1, we need to estimate the quantity

DT (x̄+ y) z = (I −ADf (x̄+ y)) z =
(
I −AA†

)
z −A

(
Df (x̄+ y)−A†

)
z

for all y, z ∈ B0(r). We are going to bound each term separately in the next two
Sub-subsections. We introduce the notation

W s
F

def
=

(
1

ωs0
, . . . ,

1

ωsm−1

)T
. (41)

3.3.1. Estimates for (I−AA†)z. In this Sub-subsection, we present the bound on
(I −AA†)z, which constitutes the first part of a bound for Z.

Proposition 4. Let M be an integer satisfying (36). We define Z1 = (Z1
k)k≥0

component-wise by

Z1
F

def
=

(∣∣∣I −AmK̃∣∣∣W s
F +

|βm−1| |λm| θ2L

|µm|ωsm−1(1− θ2)
|Am|cm−1

)
r, (42)

Z1
m+k

def
=

(∣∣∣I −AmK̃∣∣∣
rm−1

W s
F +

|βm−1| |λm| θ2L

|µm|ωsm−1(1− θ2)
|Am|m−1,m−1

)
ηθk
|λm|
|µm|

r,

(43)

∀ 0 ≤ k ≤M,

and

Z1
m+k

def
= Z1

m+M

ωsm+M

ωsm+k

, ∀ k > M. (44)

Then for all z ∈ B0(r), ∣∣(I −AA†) z∣∣ ≤ Z1.

Proof. Thanks to (6) and (21),

(
AA†z

)
F

= Am

DzF +

 0
...

βm−1zm




− βm−1

(
U−1
I L−1

I (TzI + λmzm−1e1)
)

0
(Am)cm−1

= AmDzF + βm−1zm (Am)cm−1
− βm−1 (zm + λmzm−1 (wI)0) (Am)cm−1

= AmK̃zF + βm−1λm (w̃ − (wI)0) zm−1 (Am)cm−1
,

and so((
I −AA†

)
z
)
F

=
(
I −AmK̃

)
zF + βm−1λm (w̃ − (wI)0) zm−1 (Am)cm−1

.

For z ∈ B0(r) we have, using (35),∣∣(I −AA†) z∣∣
F
≤
(∣∣∣I −AmK̃∣∣∣W s

F +
|βm−1| |λm| θ2L

|µm|ωsm−1(1− θ2)
|Am|cm−1

)
r,

which provides the bound (42).
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Using again (6) and (21), we get

(
AA†z

)
I

= −λm (Am)rm−1

DzF +

 0
...

βm−1zm


wI +

(
U−1

I L−1
I + Λ

)
(TzI + λmzm−1e1)

= zI + λmwI

(
− (Am)rm−1

DzF − βm−1 (Am)m−1,m−1 zm + zm−1

+βm−1 (Am)m−1,m−1 (zI + λmzm−1wI)0

)
= zI + λm

(
− (Am)rm−1

DzF + zm−1 + βm−1λm (Am)m−1,m−1 zm−1 (wI)0

)
wI

= zI + λm

(
zm−1 − (Am)rm−1

K̃zF + βm−1λm (Am)m−1,m−1 zm−1

(
w̃ − (wI)0

))
wI

= zI + λm

((
I −AmK̃

)
rm−1

zF + βm−1λm (Am)m−1,m−1 zm−1

(
w̃ − (wI)0

))
wI ,

and so((
I −AA†

)
z
)
I

= −λm

(
(I −AmK)rm−1

zF + βm−1λm (Am)m−1,m−1 zm−1

(
w̃ − (wI)0

))
wI .

For z ∈ B0(r) we have, using (29) and (35),

∣∣∣(I −AA†) z∣∣∣
m+k

≤
(∣∣∣I −AmK̃

∣∣∣
rm−1

W s
F

+
|βm−1| |λm| θ2L

|µm|ωs
m−1(1− θ2)

|Am|m−1,m−1

)
ηθk
|λm|
|µm|

r, ∀ k ≥ 0,

which gives (43), as well as (44) thanks to (36).

3.3.2. Estimates for A
(
Df (x̄ + y) − A†) z. This Sub-subsection is devoted to

the exposition of a bound for A
(
Df (x̄+ y)−A†

)
z, which constitutes the second

(and last) part of a bound for Z. This bound is detailed in Proposition 9.

Recall the assumption that the nonlinear partN is polynomial of degree 2. Hence,
Df (x̄+ y) can be written as a finite Taylor expansion

Df (x̄+ y) = Df (x̄) +D2f (x̄) (y),

and (
Df (x̄+ y)−A†

)
z =

(
Df (x̄)−A†

)
z +D2f (x̄) (y, z). (45)

We are going to bound the two terms of (45) separately. Let us denote by σ the
coefficient of degree 2 of f , that is D2f (x̄) (y, z) = 2σ(y ∗ z). We bound this
convolution product thanks to the following result:

Lemma 3.7. Let s ≥ 2 be an algebraic decay rate and n ≥ 6, let L ≥ 1 be
computational parameters. For x, y ∈ Ωs and for any k ≥ 0,

|(x ∗ y)k| ≤ αsk(n)
‖x‖s‖y‖s

ωsk
,
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where

αsk(n)
def
=



1 + 2

L∑
l=1

1

ls
+

2

(s− 1)Ls−1
, k = 0,

2 + 2

L∑
l=1

1

ls
+

2

(s− 1)Ls−1
+

k−1∑
l=1

ks

ls(k − l)s , 1 ≤ k < n,

2 + 2

L∑
l=1

1

ls
+

2

(s− 1)Ls−1
+ 2

(
n

n− 1

)s
+

(
4 ln(n− 2)

n
+
π2 − 6

3

)(
2

n
+

1

2

)s
, k ≥ n.

Proof. See [8] for a proof of this bound and [3] for a similar bound for 1 < s < 2.

Remark 1. It is important to notice here that αsk(n) = αsn(n) for all k ≥ n. From
now on, we assume that m is taken larger or equal to 6, which will allow us to use
Lemma 3.7 with n = m. Note that this condition is not stringent, since in practice
more than 6 modes are usually needed in order to get a good numerical solution x̄.

We begin by bounding the first term of (45).

Proposition 5. Define C1 = C1(x̄) =
(
C1
k(x̄)

)
k≥0

component-wise by

C1
0 (x̄)

def
= 0, C1

k(x̄)
def
= 2 |σ|

m−1∑
l=m−k

|x̄l|
ωsk+l

, ∀ 1 ≤ k ≤ m− 1,

and

C1
m+k(x̄)

def
=

2 |σ|αsm(m) ‖x̄‖s
ωsm+k

, ∀ k ≥ 0.

Then for all z ∈ B0(r) ∣∣(Df(x̄)−A†
)
z
∣∣ ≤ C1(x̄)r.

Proof. According to the definition of A† in (6), we see that

((
Df(x̄)−A†

)
z
)
F

= (Df(x̄)z)F −Df (m)(x̄)zF −


0
0
.
.
0

βm−1 zm


= 2σ ((x̄ ∗ z)F − (x̄ ∗ zF )F ) ,

where in the convolution product, zF must be understood as the infinite vector
(zF , 0, . . . , 0, . . .)

T . Therefore,
((
Df(x̄)−A†

)
z
)

0
= 0, and for all z ∈ B0(r),

∣∣(Df(x̄)−A†
)
z
∣∣
k
≤ 2 |σ| r

m−1∑
l=m−k

|x̄l|
ωsk+l

, ∀ 1 ≤ k ≤ m− 1.

Then, remembering that Df(x̄) = L+DN(x̄) and (6), we see that((
Df(x̄)−A†

)
z
)
I

= (DN(x̄)z)I = 2σ (x̄ ∗ z)I ,
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so that using Lemma 3.7, for all z ∈ B0(r), we end up with the bound∣∣(Df(x̄)−A†
)
z
∣∣
m+k

≤ 2 |σ|αsm+k(m) ‖x̄‖s
ωsm+k

r, ∀ k ≥ 0.

We now bound the second term of (45).

Proposition 6. Recall (41) and define C2 =
(
C2
k

)
k≥0

component-wise by

C2
k

def
=

2 |σ|αsk(m)

ωsk
, ∀ k ≥ 0.

Then for all y, z ∈ B0(r) ∣∣D2f (x̄) (y, z)
∣∣ ≤ C2r2.

Proof. Remembering thatD2f (x̄) (y, z) = 2σ(y∗z), this is a consequence of Lemma 3.7.

Finally, ∣∣A (Df (x̄+ y)−A†
)
z
∣∣ ≤ |A| (C1(x̄)r + C2r2

)
,

and we are left to bound |A|C1(x̄) and |A|C2.

Proposition 7. Let M be an integer satisfying (32) and (36). We define D1 =(
D1
k

)
k≥0

component-wise by

D1
F (x̄)

def
= |Am|C1

F (x̄) +
2 |βm−1| η |σ|αsm(m)‖x̄‖s

C1(1− θ)ωs+sLm

|Am|cm−1
, (46)

D1
m+k(x̄)

def
=

(
|Am|rm−1

C1
F (x̄) +

2 |βm−1| |Am|m−1,m−1 η |σ|αsm(m)‖x̄‖s
C1(1− θ)ωs+sLm

)
η
|λm|
|µm|

θk

+
2η |σ|αsm(m)‖x̄‖s

C1ω
s+sL
m+k

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

θ

1− θ

)
, ∀ 0 ≤ k < M,

(47)

D1
m+M (x̄)

def
=

(
|Am|rm−1

C1
F (x̄) +

2 |βm−1| |Am|m−1,m−1 η |σ|αsm(m)‖x̄‖s
C1(1− θ)ωs+sLm

)
η
|λm|
|µm|

θM

+
2η |σ|αsm(m)‖x̄‖s

C1ω
s+sL
m+M

(
χ+

θ

1− θ

)
, (48)

and

D1
m+k(x̄)

def
= D1

m+M (x̄)
ωsm+M

ωsm+k

, ∀ k > M. (49)

Then

|A|C1(x̄) ≤ D1(x̄).

Proof. Thanks to (21),(
|A|C1(x̄)

)
F
≤ |Am|C1

F (x̄) + |βm−1|
∣∣U−1
I L−1

I C1
I (x̄)

∣∣
0
|Am|cm−1

,

and using (33)∣∣U−1
I L−1

I C1
I (x̄)

∣∣
0
≤ η‖C1

I (x̄)‖s
C1(1− θ)ωs+sLm

≤ 2η |σ|αsm(m)‖x̄‖s
C1(1− θ)ωs+sLm

,
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so that (46) holds. Still thanks to (21),(
|A|C1(x̄)

)
I
≤ |λm| |Am|rm−1

C1
F (x̄) |wI |+

∣∣U−1
I L−1

I C1
I (x̄)

∣∣
+ |λm| |βm−1| |Am|m−1,m−1

∣∣U−1
I L−1

I C1
I (x̄)

∣∣
0
|wI |

≤ |λm|

(
|Am|rm−1

C1
F (x̄) +

2 |βm−1| |Am|m−1,m−1 η |σ|α
s
m(m)‖x̄‖s

C1(1− θ)ωs+sL
m

)
|wI |

+
∣∣U−1

I L−1
I C1

I (x̄)
∣∣ .

Using (29) and (33), we get

(
|A|C1(x̄)

)
m+k

≤

(
|Am|rm−1

C1
F (x̄) +

2 |βm−1| |Am|m−1,m−1 η |σ|α
s
m(m)‖x̄‖s

C1(1− θ)ωs+sL
m

)
η
|λm|
|µm|

θk

+
2η |σ|αs

m(m)‖x̄‖s
C1ω

s+sL
m+k

(
k∑

l=0

θk−l

(
m+ k

m+ l

)s+sL

+
θ

1− θ

)
, ∀ 0 ≤ k < M,

so that (47) holds, and using (29) and (34), we get

(
|A|C1(x̄)

)
m+M

≤

(
|Am|rm−1

C1
F (x̄) +

2 |βm−1| |Am|m−1,m−1 η |σ|α
s
m(m)‖x̄‖s

C1(1− θ)ωs+sL
m

)
η
|λm|
|µm|

θM

+
2η |σ|αs

m(m)‖x̄‖s
C1ω

s+sL
m+M

(
χ+

θ

1− θ

)
,

so that (48) holds. As before, (49) follows from (36).

We get similar results for the second order term.

Proposition 8. Let M be an integer satisfying (32) and (36). Define D2 =(
D2
k

)
k≥0

component-wise by

D2
F

def
= |Am|C2

F +
2 |βm−1| η |σ|αsm(m)

C1(1− θ)ωs+sLm

|Am|cm−1
,

D2
m+k

def
=

(
|Am|rm−1

C2
F +

2 |βm−1| |Am|m−1,m−1 η |σ|αsm(m)

C1(1− θ)ωs+sLm

)
η
|λm|
|µm|

θk

+
2η |σ|αsm(m)

C1ω
s+sL
m+k

(
k∑
l=0

θk−l
(
m+ k

m+ l

)s+sL
+

θ

1− θ

)
, ∀ 0 ≤ k < M,

D2
m+M

def
=

(
|Am|rm−1

C2
F +

2 |βm−1| |Am|m−1,m−1 η |σ|αsm(m)

C1(1− θ)ωs+sLm

)
η
|λm|
|µm|

θM

+
2η |σ|αsm(m)

C1ω
s+sL
m+M

(
χ+

θ

1− θ

)
,

and

D2
m+k

def
= D2

m+M

ωsm+M

ωsm+k

, ∀ k > M.

Then

|A|C2 ≤ D2.

Finally we can sum up all the computations of this Sub-subsection and state the
following result:
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Proposition 9. Let M be an integer satisfying (32) and (36). We define D1 (resp.
D2) as in Proposition 7 (resp. Proposition 8) and let

Z2(r)
def
= D1(x̄)r +D2r2.

Then for all y, z ∈ B0(r)

A
(
Df (x̄+ y)−A†

)
z ≤ Z2(r).

Putting this together with Proposition 4, we end up with the following result:

Proposition 10. Let M be an integer satisfying (32) and (36). Let

Z(r)
def
= Z1(r) + Z2(r).

Then for all y, z ∈ B0(r),
|DT (x̄+ y) z| ≤ Z(r).

3.4. The radii polynomials and interval arithmetics. All the work done up
to now in Sections 2 and 3 can be summarized in the following statement:

Theorem 3.8. Let s > 1, and sL > 0. Assume that f is a map from Ωs to Ωs−sL

of the form f = L+N , where L is a tridiagonal operator satisfying (3), (4) and (5),
and where the non linear part N is quadratic. Assume that for some m ≥ 6 we have
computed an approximate zero of f , of the form x̄ = (x̄0, . . . , x̄m−1, 0, . . . , 0, . . .),
and D an approximate inverse of Df (m)(x̄). Consider

T :

{
Ωs → Ωs,

x 7→ x−Af(x),

where A is defined as in (21). Take M satisfying (32) and (36) and L ≥ 0 a
computational parameter. Then the bound Y defined in Proposition 3 satisfies (26)
and for all r > 0, the bound Z(r) defined in Proposition 10 satisfies (27).

Now that we have found bounds Y and Z(r) that satisfy (26) and (27), we must
find a radius r > 0 such that ‖Y + Z(r)‖s < r in order to apply Theorem 3.1. By
definition of the norm ‖·‖s, it amounts to find an r > 0 such that, for every k ≥ 0,
the radii polynomial Pk(r) satisfies

Pk(r)
def
= Yk + Zk(r)− r

ωsk
< 0.

Note that since we constructed Y and Z in such a way that for every k ≥M ,

Ym+k = Ym+M

ωsm+M

ωsm+k

and Zm+k = Zm+M

ωsm+M

ωsm+k

,

it is enough to find an r > 0 such that for all 0 ≤ k ≤ m+M , Pk(r) < 0. In order
to do so, we numerically compute, for each 0 ≤ k ≤ m+M ,

Ik
def
= {r > 0 | Pk(r) < 0},

and

I
def
=

m+M⋂
k=0

Ik.

If I is empty, then the proof fails, and we should try again with some larger param-
eters m and M . If I is non empty, we pick an r ∈ I and check rigorously, using the
interval arithmetics package INTLAB [16], that for all 0 ≤ k ≤ m+M , Pk(r) < 0,
which according to Theorem 3.1, proves that T defined in (25) is a contraction on
Bs(x̄, r), thus yielding the existence of a unique solution of f(x) = 0 in Bs(x̄, r).
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4. An example of application. We present in this Section an example of equa-
tion, for which it is possible to apply the method developed in this paper. We first
explain the link between the equation that we study (cf. (50) below) and the tridi-
agonal operator defined in Section 2. Then, we explain what are in this example
the values of the various constants and parameters of our method.

Equations of the following form:

− (2 + cos ξ)u′′(ξ) + u(ξ) = −σu(ξ)2 + g(ξ), (50)

u′(0) = u′(π) = 0,

where g is a 2π-periodic even smooth function, fall into the framework developed
in Section 2. Consider indeed the cosine Fourier expansions of u and g:

u(ξ) =
∑
k∈Z

xk cos(kξ), g(ξ) =
∑
k∈Z

gk cos(kξ).

Then, (50) can be rewritten as f(x) = 0, where

f0(x)
def
= x0 + x1 + σ (x ∗ x)0 − g0,

and for all k ≥ 1,

fk(x)
def
=

1

2
(k − 1)2xk−1 + (1 + 2k2)xk +

1

2
(k + 1)2xk+1 + σ (x ∗ x)k − gk. (51)

We see that the linear part of (51) is, as in (3), given by

Lk(x) = λkxk−1 + µkxk + βkxk+1,

with
µ0

def
= 1, β0

def
= 1,

and for all k ≥ 1,

λk
def
=

1

2
(k − 1)2, µk

def
= (1 + 2k2) and βk

def
=

1

2
(k + 1)2.

Let us fix some m ≥ 2. With

C1 = 2, C2 = 3 and δ =
1

4

(m+ 1)2

m2 + 1
2

,

we get

∀ k ≥ 1,

∣∣∣∣λkk2

∣∣∣∣ , ∣∣∣µkk2

∣∣∣ , ∣∣∣∣βkk2

∣∣∣∣ ≤ C2,

together with

∀ k ≥ m, C1 ≤
∣∣∣µk
k2

∣∣∣ and

∣∣∣∣λkµk
∣∣∣∣ , ∣∣∣∣βkµk

∣∣∣∣ ≤ δ.
We now focus on the example when

g(ξ)
def
=

1

2
+ 3 cos(ξ) +

1

2
cos(2ξ),

so that u(ξ) = cos(ξ) is a trivial solution for σ = 0. We are going to use rigorous
computations in order to prove the existence of solutions for σ 6= 0, and to compute
these solutions.

Starting from σ = 0, we first use standard pseudo-arclength continuation tech-
niques to numerically get some nontrivial approximate solutions for σ 6= 0. We
computed 1250 different solutions (675 for σ > 0 and 675 for σ < 0). See Fig-
ure 2 for a diagram summing up those computations, where each point represents
a solution of (50).
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Figure 2. Branch of solutions of (50).

Then we use the rigorous computation method described in this paper to prove,
for each numerical solution, the existence of a true solution in a small neighbour-
hood of the numerical approximation. We keep m = 20 Fourier coefficients for the
numerical computation, and use M = 20 and the decay rate s = 2 for the proof.
The bounds of Lemma 3.7 as well as the error on ω̃ (35) are computed with L = 100.
For each numerical solution, the proof is successful. The set I defined in Section 3.4
on which all radii polynomials should be negative always contains [4×10−11, 10−4],
and we rigorously prove using interval arithmetics that they are indeed all negative
for r = 10−10. Hence the assumptions of Theorem 3.1 hold and as a consequence,
within a ball of radius r = 10−10 in Ωs centered on the numerical approximation,
there exists a unique solution to (50). Therefore the existence of the solutions rep-
resented in Figure 2 is rigorously proven, within a margin of error that is too small
to be depicted. The codes used to perform the proofs can be found in [18].

Notice that existence of solutions of (50) could certainly have been obtained in
different and more classical ways, for example using perturbative methods when σ
is close to 0, or using a variational approach (that is, considering (50) as the Euler-
Lagrange equation related to the critical points of a functional), or even using
topological tools such as the Leray-Schauder theory. The advantage of our method
is that it gives us more quantitative information than those approaches: indeed it
enables to provide more than one solution for some values of σ, and, maybe more
importantly, it gives a very precise localization of this (or these) solution(s) in terms
of Fourier coefficients (something that looks very hard to obtain with qualitative
PDEs methods).

5. Conclusion and Perspectives. A first interesting future direction of research
would consist in adapting our approach to the rigorous computation connecting
orbits of ODEs (using spectral methods). For instance, we would like to investi-
gate the possibility of combining Hermite spectral methods with our approach to
compute homoclinic orbits (e.g. see [13, 14]). Since the differential operator in
frequency space of the Hermite functions is tridiagonal, adapting our method to
this class of operator could lead to a new rigorous numerical method for connecting
orbits.
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It would also be interesting to adapt our method to the case of solutions belonging
to the sequence space

`1ν = {x = (xk)k≥0 : ‖x‖ν def
=
∑
k≥0

|xk|νk <∞}

for some ν ≥ 1. With this choice of Banach space, we could use the fact that `1ν is
naturally a Banach algebra under discrete convolutions. This could greatly simplify
the nonlinear analysis.

Note that assumption (5) requires the tridiagonal operator to have symmetric
ratios between the diagonal terms and the upper and lower diagonal terms. This is a
restriction that could hopefully be relaxed. Since many interesting problems involve
tridiagonal operators with non symmetric ratios (as in the case of differentiation in
frequency space of the Hermite functions), we believe that this is a promising route
to follow.

Finally, generalizing our approach to problems with block-tridiagonal structures
could also be a valuable project.
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