
Flow Turbulence Combust manuscript No.

(will be inserted by the editor)

Coherent structures in a non-equilibrium

large-velocity-defect turbulent boundary layer

Yvan Maciel · Mark P. Simens · Ayse G.

Gungor

Received: date / Accepted: date

Abstract The characteristics of the coherent structures in a strongly decelerated
large-velocity-defect boundary layer are analysed by direct numerical simulation.
The simulated boundary layer starts as a zero-pressure-gradient boundary layer,
decelerates under a strong adverse pressure gradient, and separates near the end
of the domain, in the form of a very thin separation bubble. The Reynolds number
at separation is Reθ = 3912 and the shape factor H = 3.43. The three-dimensional
spatial correlations of (u, u) and (u, v) are investigated and compared to those of
a zero-pressure-gradient boundary layer and another strongly decelerated bound-
ary layer. These velocity pairs lose coherence in the streamwise and spanwise
directions as the velocity defect increases. In the outer region, the shape of the
correlations suggest that large-scale u structures are less streamwise elongated and
more inclined with respect to the wall in large-defect boundary layers. The three-
dimensional properties of sweeps and ejections are characterized for the first time
in both the zero-pressure-gradient and adverse-pressure-gradient boundary layers,
following the method of Lozano-Durán et al. (J. Fluid Mech., vol. 694, 2012). Al-
though longer sweeps and ejections are found in the zero-pressure-gradient bound-
ary layer, with ejections reaching streamwise lengths of 5 boundary layer thick-
nesses, the sweeps and ejections tend to be bigger in the adverse-pressure-gradient
boundary layer. Moreover, small near-wall sweeps and ejections are much less nu-
merous in the large-defect boundary layer. Large sweeps and ejections that reach
the wall region (wall-attached) are also less numerous, less streamwise elongated
and they occupy less space than in the zero-pressure-gradient boundary layer.
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1 Introduction

A turbulent boundary layer (TBL) subjected to a strong or prolonged adverse
pressure gradient (APG) develops a large mean velocity defect. The mean shear
rates in the outer region are no longer small in comparison to their near-wall coun-
terparts while near the wall, the importance of viscous forces and of the wall shear
stress diminishes. As a result, in contrast to canonical wall-bounded turbulent
flows, turbulence activity and production is small near the wall and important in
the outer region of the flow [27,18,3]. Marquillie et al. [15] have proposed that
the outer peaks of Reynolds stresses and production could be related to a streak
bursting process, whereas Elsberry et al. [3] suggest that it is due to the inflec-
tional instability of the mean velocity profile as in mixing layers. By analysing
three different large-velocity-defect TBLs and by assuming the local mean shear
to be the source of turbulent energy, Gungor et al. [4,5] have concluded that these
boundary layers are globally less efficient in extracting turbulent energy from the
mean flow than the zero-pressure gradient (ZPG) TBL. The Reynolds stresses
and the production of turbulent kinetic energy were found to be weaker in the
lower half of the large-velocity-defect boundary layers than in the ZPG TBL. Fur-
thermore, the outer-region turbulent statistics of TBLs close to detachment were
found to resemble those of single-stream mixing layers. These various observations
suggest that the physical mechanisms and coherent structures responsible for the
production and transport of turbulence might indeed be different in APG TBLs.

Coherent motions have been identified and analyzed in the different regions
of canonical wall-bounded turbulent flows extensively. Recent reviews with dif-
ferent viewpoints can be found in Refs. [17],[10] and [9]. In the near-wall region,
a self-sustaining regeneration process involving streaky u structures and quasi-
streamwise vortices is generally accepted, albeit conceptual scenarios vary. The
consensus is less clear regarding the coherent structures and dynamical processes
found in the logarithmic and wake outer regions of these flows. By interpreting spa-
tial correlations of the streamwise velocity fluctuations, Townsend [28] inferred one
of the first physical pictures of the large-scale motions in turbulent wall-bounded
flows, namely the hypothesis of an hierarchy of self-similar attached (extending
to the wall) energy-containing motions. This hypothesis is at the base of the two
dominant and opposing paradigms about the coherent structures found in the log-
arithmic and wake outer regions. One of these paradigms [17] considers groups
of streamwise organized hairpin vortices, termed hairpin packets [1], as being the
building block. These packets of vortices are assumed to originate close to the
wall and to grow self-similarly and interact in the spanwise direction. They in-
duce large regions of streamwise momentum deficit. In the second paradigm [9],
the streamwise velocity is organized in streaks as in the buffer layer, although
much larger ones, but individual vortices lose their role regarding the generation
of Reynolds shear stresses due to the smallness of their scale and their more disor-
ganized (or isotropic) character. This role is interpreted as being taken over instead
by larger structures: vortex clusters and large-scale ejections and sweeps, whose
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spatial organization is compatible with the inferred presence of streamwise large-
scale rollers that are not directly observable. A temporally intermittent bursting
process would be involved in the production of turbulence. In a variation on the
same theme, some researchers consider the main mechanism to be the amplifica-
tion of the long streaky motions by a lift-up effect due, possibly, to packets of
vortices (see Hwang [8] for a review of these ideas).

The present study focuses on the u and uv structures because of their recog-
nized role in the dynamic process of turbulence regeneration. Quadrant analysis
in the plane of streamwise and wall-normal velocity fluctuations (u, v) has been
used extensively in the past to investigate the bursting process close to the wall of
canonical wall flows [22] since coherent and intense Q2 (ejection) and Q4 (sweep)
events carry most of the Reynolds shear stress and as such they play a crucial
role in terms of momentum flux and production of turbulent energy. Quadrant
analysis was also used later to study the outer ejection and sweep structures [29].
Lozano-Durán et al. [13] have recently extended the quadrant analysis to three-
dimensional structures in a direct numerical simulation (DNS) study of turbulent
channel flows. They called Qs the quadrant-splitted three-dimensional uv struc-
tures. They found that wall-detached Qs (in the sense of not reaching the wall at
their base) are generally background fluctuations while wall-attached Qs are big-
ger and carry most of the Reynolds shear stress in channel flows. More recently,
Lozano-Durán and Jiménez [14] studied the time evolution of these Qs. They
found that wall-attached Q2s and Q4s are essentially mirror images of each other
and they suggested that they are both manifestations of a single quasi-streamwise
roller lying between them. They also showed that their dynamics is controlled by
the local mean shear and that most of them are not born close to the wall.

Unfortunately, information on the coherent structures found in APG TBLs is
rare. By analyzing the DNS data of a turbulent separation bubble [18], Chong et
al. [2] suggested that in the APG zone prior to detachment more of the eddies
which contribute to the Reynolds shear stress are eddies which are not connected
to the wall. In the case of a large-defect equilibrium APG TBL, Krogstad and
Sk̊are [11] found that the lower part of the boundary layer is strongly dominated
by Q4 motions, while in a ZPG TBL second and fourth quadrant events are equally
important. The streamwise correlation length of u was also found to be consider-
ably shorter in the APG case throughout the boundary layer, a result also obtained
later in non-equilibrium large-velocity-defect TBLs by Rahgozar and Maciel [21]
and Gungor et al. [4]. Lee and Sung [12] investigated the APG effect on turbulent
structures with DNSs of two equilibrium mild-APG turbulent boundary layers to-
gether with a ZPG case. The near-wall streaks became weaker and more irregular
as the velocity defect increased. In the APG TBLs, in comparison to the ZPG
TBL, the low-speed streaks were found to be shorter throughout the outer region,
and more present in the middle of the boundary layer. Harun et al. [6] showed
that the large-scale u-structures are more energized by the pressure gradient in
the outer region than the small-scale ones in an experimental study of a TBL with
a moderate adverse pressure gradient. In a turbulent boundary layer subjected to
a strong adverse pressure gradient that eventually separates, Shafiei Mayam [23]
found packets of spanwise vortices that have characteristics globally comparable to
those found in ZPG TBLs, but these packets were more compact in the streamwise
direction and more inclined with respect to the wall. By analyzing the same flow,
Rahgozar and Maciel [20] observed that the predominance of large-scale streaky
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u-structures in the outer region is less than in the ZPG case. This predominance
even disappears near separation. In a subsequent study, Rahgozar and Maciel [21]
found that large-scale u-structures are less elongated than those of ZPG TBLs,
especially in the lower part of the boundary layer.

In the present work, we investigate how a strong adverse pressure gradient
affects the u and uv structures in the case of a non-equilibrium large-velocity-
defect TBL. The goal is to advance our knowledge and understanding of APG
boundary layer flows. To achieve this goal, we analyze the three-dimensional spatial
correlations of (u, u) and (u, v) and the geometric and kinematic characteristics
of Q structures, and compare them with those found in a ZPG TBL and another
non-equilibrium large-velocity-defect TBL. The present study also provides for the
first time information on the three-dimensional properties of Q structures found
in ZPG TBLs.

2 Numerical Methodology

The two direct numerical simulations used in this paper have been performed
with the same code. The ZPG TBL was simulated by Sillero et al. [24] while the
APG TBL simulation is a new one carried out by the present authors. The DNS
numerical scheme is described in detail in [26] and [24]. Both flows are simulated
in a parallelepiped domain over a smooth no-slip wall, with spanwise periodicity
and streamwise non-periodic inflow and outflow. The Navier-Stokes equations are
integrated using a fractional step method on a staggered grid, with third-order
Runge-Kutta time-integration, fourth order compact spatial discretization for the
convective and viscous terms, and second order discretization for the pressure in
the directions perpendicular to the span, which is spectral.

The DNS database of the ZPG TBL covers the Reynolds number range Reθ =
2780 − 6680. As described in Ref. [24], the one-point statistics of the ZPG TBL
are in very good agreement with experimental and numerical data. The spatial
resolution in viscous-friction units at the middle of the computational box is
∆x+ = 6.5 and ∆z+ = 3.8. At that location, the wall-normal resolution varies
from ∆y+ = 0.32 at the wall to 10.2 at y = δ. For both TBLs, δ is the boundary
layer thickness defined as the wall-normal position where U = 0.99Ue(x); U is
the streamwise component of mean velocity and Ue is the external (freestream)
velocity at the edge of the boundary layer which, in the case of the APG flow, is
the wall-normal maximum of U .

The DNS computational setup for the present APG TBL simulation is sketched
in figure 1. It consists of two simulations running concurrently [24]. The first aux-
iliary simulation is that of a ZPG TBL and it is intended to provide a realistic tur-
bulent inflow for the APG layer. As in Ref. [24], the inflow of the auxiliary DNS is
obtained by rescaling the velocity fluctuations of a downstream plane, while fixing
the inflow mean velocity to the DNS profile of Ref. [26] at Reθ = 617. The recycling
plane is located at x ≈ 398θ0,aux ≈ 45δ0,aux, where θ0,aux and δ0,aux are respec-
tively the momentum and boundary layer thicknesses at the beginning of the aux-
iliary ZPG DNS. A plane located at x ≈ 268θ0,aux ≈ 30δ0,aux of the first domain is
transferred at each time step into the inlet of the second main domain. The veloc-
ities at the outflow of the two computational boxes are estimated by a convective
boundary condition, where the convection speed is the local velocity. The outflow
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Fig. 1 Schematic in the xy plane of the numerical simulation setup showing the boundary
layer thickness

streamwise velocities are corrected to compensate the minimal mass flux variations
due to the time-dependent inflows [26]. Table 1 summarizes the simulation param-
eters for both layers. For the APG DNS, the box dimensions with respect to the
boundary layer thickness at the outlet are (Lx, Ly, Lz)/δexit = (11.0, 3.4, 2.6). The
resolutions in terms of the Kolmogorov length η are (∆xg, ∆yg, ∆zg) < 4η except
near the inlet very close to the wall where ∆xg < 8η. After an initial transient
phase, statistics and flow fields were sampled over 53,600 time steps corresponding
to a total time of 5250θ0/U0 or 10 flow-through times with respect to U0, where
θ0 and U0 are respectively the momentum thickness and freestream velocity at the
inlet of the main DNS. A total of 134 instantaneous fields were kept, with a time
interval between fields of 39.2θ0/U0.

3 Flow Description

For the DNS of the APG TBL, the desired pressure gradient is controlled by
imposing a streamwise dependent wall-normal velocity distribution at the upper
boundary of the computational domain. The wall-normal velocity distribution was
chosen to lead to a steady, almost linear increase of the shape factor H in a large
portion of the domain. It was obtained numerically with inverse boundary layer
computations. The streamwise and spanwise velocities along the top boundary
satisfy free-slip conditions. The imposed wall-normal velocity at the top boundary
V (x)/U0 and the resulting streamwise velocity at the same boundary U(x)/U0 are
illustrated in black in Figs. 2(a) and (b) respectively. The streamwise evolutions of
Ue and of the wall-friction velocity uτ = (τw/ρ)

1/2 are also depicted in Fig. 2(b).

Table 1 Parameters of the APG TBL simulation. Lx, Ly , and Lz are the box dimensions
along the three axes. Nx, Ny , and Nz are the collocation grid sizes. The momentum thickness
θ is measured at the middle of each box.

Case Reθ (Lx, Ly , Lz)/θ Nx, Ny , Nz

Auxiliary DNS (ZPG TBL) 617-1274 320× 49× 126 1201× 191× 768
Main DNS (APG TBL) 1003-4638 118× 37× 28 1921× 380× 768
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Fig. 2 Mean flow parameters in the APG DNS. (a) Imposed wall-normal velocity along
the top boundary. (b) black, Streamwise velocity at the top boundary, ; red, Ue/U0; green,
10uτ/U0. (c) Pressure gradient parameters: black, βm; blue, βzs; red, βτ × 10−3; green, βi.
(d) Shape factor H. Vertical dashed lines in (a) and (d) denote the four streamwise positions
where H = 2 (green), 2.5 (magenta), 3 (blue), and 3.43 (red)
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From the streamwise evolution of Ue (red curve), it is seen that the flow at the edge
of the boundary layer decelerates over most of the domain but then reaccelerates
slightly at the end. As can be deduced from the evolution of uτ (green curve), the
wall shear stress decreases and eventually becomes negative. The flow separates
near the exit of the domain in the form of a very thin separation bubble. The
height of the zone of negative mean streamwise velocity never exceeds 0.02δ. The
reacceleration of the flow at the end reattaches the boundary layer and thereby
avoids encountering problems with the outflow boundary condition.

Figure 2(c) shows the streamwise evolution of three different outer pressure
gradient parameters βm, βzs and βτ , as well as the inner pressure gradient pa-
rameter βi = ν/(ρu3

τ )(dp/dx), often denoted p+ in the literature. The tradi-
tional outer pressure gradient parameter, Rotta-Clauser’s βτ = −(∆/uτ )(dUe/dx),
where ∆ = δ∗Ue/uτ , assumes the outer region velocity scale to be uτ , which is
not the case for large-velocity defect TBLs such as the one considered here. βzs

and βm are more appropriate outer pressure gradient parameters since they are
based on velocity scales that are valid for both small and large defect TBLs.
βm = −(δ/Um)(dUe/dx) is expressed with the mixing-layer-type outer-velocity
scale Um = 2(Ue − U(y = 0.5δ)) introduced by Gungor et al. [4,5]. βzs =
−(δ/Uzs)(dUe/dx) is based on the Zagarola-Smits velocity scale Uzs = Ueδ

∗/δ.
Both Um and Uzs are proportional to the mean streamwise momentum deficit in
the boundary layer. βzs and βm are not equivalent but their streamwise evolutions
are qualitatively similar, as can be seen in Fig. 2(c).

Figure 2(c) shows that each pressure gradient parameter increases significantly
in a different upstream portion of the flow. The positive gradient of these pres-
sure gradient parameters is responsible for the increase in the streamwise mean
momentum defect as shown in Fig. 2(d) with the increase of the shape factor H.
βi and βτ tend to infinity at separation and reattachment since uτ = 0 there.
The outer pressure gradient parameters βm and βzs start decreasing in the first
half of the domain. The impact of the pressure force on the outer region is there-
fore diminishing but this change is not strong enough to reverse the situation in
terms of mean momentum defect, which keeps increasing until flow separation. At
separation, H = 3.43.

To give a better idea of the streamwise evolution of the APG TBL, selected one-
point velocity statistics are presented in Fig. 3. Note that the one-point velocity
statistics of this flow have been studied in detail by Gungor et al. [5] who also
compared them with those of other large-defect TBLs. In Fig. 3, they are compared
to those of the ZPG TBL of Ref. [24] at Reθ = 4000. For the APG TBL, the four
selected streamwise positions correspond to H = 2, 2.5, 3 and 3.43. The fourth one
is the last mesh position before separation (Cf ≈ 10−6). The streamwise mean
velocity profiles in Fig. 3(a) reveal the progressive increase of the mean velocity
defect in the APG TBL. As a result, the mean shear rates increase in the outer
region. The velocity defect profiles normalized with Um are presented in Fig. 3(b).
The defect profiles are not identical, as expected from the disequilibrium nature
of the flow, but they are all regrouped in the outer region. Um and δ are therefore
appropriate outer scales to compare velocity statistics at various positions of the
APG TBL, as well as between ZPG and APG TBLs.

Figure 3(c) shows the profiles of the Reynolds shear stress normalized with
Um. In the present APG TBL, the maximum of the Reynolds shear stress moves
away from the wall as the velocity defect increases, reaching the middle of the
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Fig. 3 Velocity statistics normalized by Um and δ: (a) Mean velocity, (b) Mean velocity
defect, (c) Reynolds shear stress, (d) Production of turbulent kinetic energy. APG TBL: green,
H = 2.0; magenta, H = 2.5; blue, H = 3.0; red, H = 3.43, Cf = 0. Black, ZPG TBL of Ref. [24]
at Reθ = 4000

boundary layer near separation. In relation to the outer velocity scale Um, the
Reynolds shear stress decreases at all wall-normal positions but more importantly
so in the lower half of the boundary layer. Gungor et al. [4,5] have shown that
these characteristics are common to all Reynolds stresses for three different types
of large-defect TBLs. The difference between ZPG and large-defect APG TBLs
is even more pronounced for the production of turbulent kinetic energy shown in
Fig. 3(d) normalized with Um and δ. As the velocity defect increases, the near-wall
production peak decreases very rapidly and vanishes near separation. A production
maximum appears in the outer region and its shift away from the wall follows that
of the maximum of the Reynolds stresses. Since Um is proportional to the mean
shear rates present in the outer region, Fig. 3(d) indicates that the present large-
defect TBL is globally less efficient in extracting turbulent energy from the mean
flow than the ZPG one. Gungor et al. [4,5] have also shown that for two other
types of large-defect TBLs.
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4 Results

4.1 Visualization of instantaneous structures

In order to illustrate global features of the coherent structures, isosurfaces of in-
stantaneous u and uv are visualized and analyzed. These variables are normalized
by their respective local standard deviations to avoid introducing a streamwise
and wall-normal bias due to their spatially varying magnitudes. Normalization by
the standard deviation scales the fluctuating variable with its local characteristic
magnitude at the given location. It is consistent with quadrant analysis, with the
definition of the Q structures in Sect. 4.3, as well as with many studies on coherent
structure identification and characterization since Nagaosa and Handler [19].

Figure 4 shows different views of instantaneous isosurfaces of u/σu = −1.75
(red) and u/σu = +1.75 (blue), where σu(x, y) is the local standard deviation
of u, in a subvolume of cross-section 0.3Ly × 0.5Lz. The isovalue 1.75 gives a
good compromise between visualizing only a few small intense u structures and
voluminous structures that all become connected. The rapid spatial growth of the
structures can be appreciated with the perspective and top views of low-speed
structures in Figs. 4(a) and (b) respectively. The large-scale outer u structures,
both low and high speed ones, are often streamwise elongated, inclined with respect
to the wall and streamwise aligned. They resemble in that respect the long streaky
u structures found in the logarithmic region of ZPG TBLs [7].

The side views of Fig. 4(c) suggest that high-speed structures tend to be closer
to the wall than low-speed structures. Such a trend has also been observed in two
experimental studies of large-defect APG TBLs. For instance, in a non-equilibrium
APG TBL, Rahgozar and Maciel [20] found that strong low-speed motions appear
more frequently above y ≈ 0.4δ, whereas high-speed ones are predominant below.
Although they did not study u-structures, Krogstad and Sk̊are [11] showed that,
contrary to a ZPG TBL, a large-defect equilibrium TBL is totally dominated by
strong Q1 and Q4 motions near the wall, hence positive u events although they are
not necessarily all strong ones. Q2 motions were found to be predominant above
y ≈ 0.4δ. It will be seen below that the wall-normal distribution of Q2 and Q4
motions is similar in the present flow.

In Fig. 4(c) one can also note that when the mean velocity defect becomes large,
H > 2, u structures appear less frequently near the wall. The near-wall behaviour
of the u structures can however be better appreciated with the top view of Fig. 5.
In this figure, only the isosurfaces of u in the layer between the wall and y = 0.05δ
are shown. The boundary layer thickness δ is used as the length scale since we do
not know of an inner length scale valid everywhere for a non-equilibrium flow with
large streamwise variations. The two dashed squares are visual aids proportional
to δ, that is to the growth of the boundary layer. They allow a comparison of
the shape, size and density of the u structures in small-velocity-defect and large-
velocity-defect regions of the flow. The near-wall u structures are found to become
less and less streaky as the velocity defect increases. The destruction of the near-
wall streaks just upstream of and in the separation region of separated boundary
layer flows has also been observed by Na and Moin [18] and Marquillie et al [16].
By comparing the u structures inside the two white dashed squares, one can see
that they occupy less space in the large-defect case. Spanwise elongated structures



10 Yvan Maciel et al.

(a)

(b)

(c)

Fig. 4 Instantaneous isosurfaces of u = −1.75σu (red) and u = +1.75σu (blue) in a subvolume
of cross-section 0.3Ly ×0.5Lz . Perspective (a) and top (b) views of low-speed u. (c) Side views
of low- and high-speed u

Fig. 5 Top view of the instantaneous isosurfaces of u = −1.75σu (red) and u = +1.75σu

(blue) in the layer between the wall and y = 0.05δ. Dashed squares have a linear dimension of
about 2.6δa where δa is the average δ over the square
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Fig. 6 Instantaneous isosurfaces of (uv)Q1
= 1.75σuσv (blue), (uv)Q2

= −1.75σuσv (red),
(uv)Q3

= 1.75σuσv (black), and (uv)Q4
= −1.75σuσv (green) for the same field and subvolume

as in Fig. 4

also start appearing in the zone where instantaneous reverse flow occurs near the
wall.

Figure 6 shows instantaneous isosurfaces of uv/(σuσv) split according to the
quadrant in the (u, v) plane, for the same field and subvolume as in Fig. 4. The
same isovalue of 1.75 is used for all quadrants. It is identical to the threshold
value selected via the percolation method in Sect. 4.3 to extract the Q structures.
The instantaneous objects shown in this figure are therefore the Q structures of
Sect. 4.3. The positive uv structures (Q1 and Q3) are smaller than the negative
ones (Q2 and Q4). The latter tend to be streamwise elongated and the longest
structures appear to be Q2 structures. These features are confirmed by the statis-
tical analysis of Sect. 4.3. The Q2 and Q4 regions shown in Fig. 6 are often almost
coincident with, respectively, the low-speed and high-speed regions of Fig. 4, but
they are smaller and less streamwise elongated.

4.2 Two-point correlations

The spatial organization of u and uv is now investigated using three-dimensional
spatial correlations. In physical space, the two-point cross-correlation coefficient
for two generic variables a and b is defined as

Cab(r, r
′) =

〈a(r)b(r′)〉

σa(r)σb(r
′)
, (1)

where r is the reference position and r′ the moving one. The averaging is over time
and spanwise direction. The correlation functions are actually computed in Fourier
space in the homogeneous spanwise direction and then Fourier transformed.
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(a) (b)

(c) (d)

Fig. 7 Three-dimensional views of Cuu with reference point at y = 0.6δ. (a) ZPG TBL of
Ref. [24] at Reθ = 4850 (Fig. 1 of [25] with permission from AIP). APG TBL at positions
corresponding to (b) H = 2 (c) H = 2.5 and (d) H = 3.45. Isosurfaces at Cuu = −0.09 (white),
+0.09 (turquoise), +0.4 (yellow) and +0.8 (blue). Same axes ranges in all four plots

Figure 7 presents three-dimensional views of Cuu with the reference point at
y = 0.6δ for three streamwise positions of the APG TBL corresponding to H = 2,
2.5 and 3.45 (separation). The three-dimensional representation of Sillero et al. [25]
for their ZPG TBL at Reθ = 4850 is also included in the figure for comparison. The
four plots are for a domain of size 6δ×1.2δ×2δ in x, y and z respectively, centered
at the reference point. The isosurfaces Cuu = 0.09 (turquoise) and Cuu = −0.09
(white) clearly show that the regions of positive and negative coherence of u are
shorter and more inclined with respect to the wall for the large-defect TBL in
comparison to a ZPG TBL. It suggests that large-scale u structures are shorter
and more inclined in this large-defect TBL. The streamwise extent of the isosurface
Cuu = 0.09 is about 4δ for the ZPG TBL and 2δ for the APG TBL. Moreover, both
the positive and negative regions become smaller as the velocity defect increases.
The negative-positive-negative spanwise trend loses coherency.

Figure 8 presents streamwise-spanwise sections of Cuu at y = 0.2δ (bottom
row) and y = 0.5δ (top row). These wall-normal reference positions allow a com-
parison with the two-dimensional Cuu results of Rahgozar and Maciel [21] for a
different large-defect APG TBL that also separates. The same contour levels are
used in all the maps of this figure. The contours at low correlation values of the
present APG TBL at separation are not statistically converged (noisy) because of
the large u fluctuations at that position caused by the unsteady character of the
separation bubble. They are therefore not considered in the analysis. More sta-
tistically independent realizations would have been necessary to obtain converged
results. At the two heights, the streamwise extent of the positive Cuu contours in
both large-defect TBLs is shorter than in the ZPG TBL. The difference is however
smaller for the APG TBL of Rahgozar and Maciel. Similar trends were observed in
equilibrium APG TBLs by Krogstad and Sk̊are [11] in a large-defect case (H = 2)
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Fig. 8 Streamwise-spanwise maps of Cuu for three different flows: ZPG TBL of Sillero et
al. [25] at Reθ = 4850, large-defect APG TBL of Rahgozar and Maciel [21] at H = 2 and at
separation, and present APG TBL at H = 2 and at separation. Reference point at y = 0.2δ
(bottom row) and y = 0.5δ (top row). Positive contours (black) start at 0.02 by increments of
0.05. Negative contours (red) start at -0.02 by increments of -0.03

and by Lee and Sung [12] in a small-defect case (mild APG). The spanwise extent
of the positive contours is slightly smaller in the present APG flow compared to
the two other flows shown in the figure.

In both APG TBLs, the negative Cuu contours are much smaller than in the
ZPG TBL and they shrink in size as the velocity defect increases. In the case of
the APG TBL of Rahgozar and Maciel, they have disappeared at separation at
y = 0.2δ and negative coherence is very weak at y = 0.5δ. These results suggest
that the alternating-sign streaky pattern of large-scale u structures occurs less
frequently as the defect increases.

Streamwise-wall-normal maps of Cvu are shown in Fig. 9 for a reference point
at y = 0.4δ. At that wall-normal height, the Reynolds shear stress is high in the
APG TBL as shown in Fig. 3(c). For the APG TBL, the low-level contours are
noisy due to the insufficient number of statistically independent flow realizations.
As expected, the negative value of the cross-correlation indicates that Q2 and Q4
motions are dominant. It is interesting to note that for all the cases shown in Fig. 9
there is a different behaviour between the high negative level contours close to the
reference point and the low negative level contours further away. The contours near
the reference point are compact and inclined in the upstream direction by about
135◦. They reflect the character of smaller-scale intense Q2 and Q4 motions and
the inclination angle is similar to what Adrian et al. [1] have observed for strong Q2
and Q4 motions in a ZPG TBL. This inclination angle is maintained as the velocity
defect increases. The weak larger-scale contours are streamwise elongated in the
case of the ZPG TBL and inclined in the downstream direction. They resemble
the Cuu contours in the same plane (not shown). Sillero et al. [25] suggested that
they probably reflect the combination of long u streaks with a smaller sweep or
ejection motion. In the case of the APG TBL, the streamwise elongation of the
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Fig. 9 Streamwise-wall-normal maps of Cvu with reference point at y = 0.4δ. (a) ZPG TBL
of Ref. [24] at Reθ = 4850. APG TBL at positions corresponding to (b) H = 2 (c) H = 2.5 and
(d) H = 3.45. Positive contours (black) start at 0.03 by increments of 0.02. Negative contours
(red) from -0.03 to -0.11 by increments of -0.02, from -0.16 to -0.36 by increments of -0.05

weak large-scale contours is reduced and the inclination with respect to the wall
is increased. The large-scale Cuu contours exhibit similar trends (not shown).

4.3 Q structures

Although they provide valuable statistical information on the structure of tur-
bulence, two-point correlations mix the signatures of various types of coherent
structures of a wide spectrum of sizes. For this reason, we now extract and di-
rectly analyze the intense three-dimensional uv structures (Qs) in both the ZPG
TBL of Sillero et al. [24] and in the present APG TBL. The procedure adopted
to identify the Qs follows the method used by Lozano-Durán et al. [13] (hereafter
denoted LFJ). The Qs are defined as regions of connected points that satisfy si-
multaneously two conditions. The first condition is |u(r)v(r)| > H∗σuσv, where
H∗ is the threshold constant discussed below, also called hyperbolic-hole size. LFJ
give a detailed justification of the choice of H∗σuσv as the threshold function. The
second condition is that all points within a Q structure are in the same quadrant
of the u, v space. Point connectivity is defined with the six orthogonal neighbours.
Following the notation of LFJ, the Q2 and Q4 structures will be referred to as
Q−s, and the Q1s and Q3s as Q+s.

Table 2 presents the parameters of the subdomains used for the extraction
of the Q structures. For the APG TBL, the extraction box covers the zone of
large velocity defect of the flow prior to separation. The streamwise extent of



Coherent structures in a large defect TBL 15

the box is 5δa where δa is the average boundary layer thickness inside the box.
The streamwise position of the box for the ZPG TBL gives ranges of the three
Reynolds numbers comparable to those of the APG TBL. Rem = Umδ/ν and
Rezs = Uzsδ/ν are Reynolds numbers of the outer region. Both extraction boxes
cover the full width of the simulation domain. The same wall-normal height of 2δa
was chosen for both boxes in order to be able to compare the volume occupied by
the Qs in the two flows. Since the extraction of the Qs is computationally intensive,
the number of instantaneous fields processed is limited to 27 for the ZPG TBL
(box of 2.2 × 109 grid points) and 45 for the APG TBL (box of 1.7 × 108 grid
points).

As in LFJ a so-called percolation threshold analysis has been performed to
determine a value for H∗ that gives an equilibrium between detecting only a few
very big objects and detecting only a few small and very intense Qs. In contrast to
LFJ however, the percolation test was performed for each Q type separately. The
results shown in figure 10 are averages over 31 fields of the parameters in the APG
TBL. Since the Qs are identified according to their uv quadrant, the ratio of the
volume of the largest Q in one field, Vlar, to the volume of all identified Qs in that
field, Vtot, does not tend to one as H∗ decreases. Qs of quadrant i cannot fill the
space since (uv)i = 0 at points where the quadrant is not i. Moreover, Qs of a given
quadrant remain disconnected when H∗ is decreased since they are surrounded by
Qs of other quadrants. Consequently, the ratio Vlar/Vtot seems to saturate as
H∗ is decreased, meaning that the size of the Qs no longer varies significantly.
Nevertheless, a percolation crisis seems to take place in the approximate range
1.2 ≤ H∗ ≤ 2.5 for Q1, Q2 and Q4. A hyperbolic hole size of H∗ = 1.75 is chosen
because it is in the middle of this range and it maximizes the number of Q−s. It
is the same value as used by LFJ in turbulent channel flows.

The linear dimensions of the Qs are defined with a rectangular box circum-
scribing them, the sides of this box being denoted as ∆x, ∆y and ∆z and the
midheight position of the box yc. Structures that are as long as the streamwise
length of the extraction box, ∆x = Bx, are disregarded because the length of these
structures is undetermined. Similarly, very small Qs with a volume V < (3∆xg)

3

are rejected because their sizes are not well resolved on the numerical grid.

With the present extraction procedure, a total of 184576 Qs are identified in the
APG TBL and 441217 Qs in the ZPG TBL. The difference in number corresponds
approximately to the difference in volume of the extraction boxes. As LFJ found
in turbulent channel flows, Q+s are less frequent than Q−s in both TBLs, and
they occupy a much smaller fraction of the space, less than 1% of the box volume
against 4 to 5% for Q−s. The difference in volume proportion is apparent from
the perpective views of instantaneous Qs in Fig. 6. Q− structures represent 57%
and 52% of all Qs in the ZPG and APG TBL respectively. Table 3 summarizes

Table 2 Parameters of the Q extraction zones. Bx, By and Bz are the box dimensions along
the three axes and δa is the average boundary layer thickness inside the box. Nf is the number
of flow fields used

Flow Reθ Rem Rezs H (Bx, By , Bz)/δa Nf

ZPG TBL 4544-5801 10195-10811 6251-6599 1.38-1.37 4.51, 2.00, 10.57 27
APG TBL 2577-3916 9204-27889 5084-13413 1.97-3.42 4.99, 2.00, 4.09 45
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Fig. 10 Percolation diagram for the identification of Qs in the APG TBL: blue, Q1; red, Q2;
black, Q3; green, Q4. Average over 31 fields of Vlar/Vtot (solid lines) and N/Nmax (dashed
lines). The vertical dashed line indicates the chosen hyperbolic hole size of H∗ = 1.75

the number and volume proportions for the Q−s. Although the number fraction of
ejections and sweeps is higher in the ZPG TBL than in the large-defect TBL, the
volume occupied by these structures is smaller (4.2% of the box volume against
5.3%). The reason lies in the different wall-normal distribution of these sweep and
ejection motions in the two flows. In the ZPG TBL, 43% of all Q−s are small
near-wall structures (near-wall Qs are defined here as structures whose center is
below 0.05δ) which is consistent with the fact that the mean shear is the strongest
there [14]. In the large defect APG TBL, which has a very different mean shear
distribution, only 10% of all ejections and sweeps are small near-wall structures.

Figure 11 shows the joint probability density function (pdf) of the minimum
and maximum wall distances for the ejections and sweeps. The structures sepa-
rate into two groups: structures reaching the wall region (wall-attached) and not
reaching it (wall-detached). In both flows, the wall-attached Q−s form the narrow
vertical band of the joint pdf with ymin < 0.05δ , while wall-detached structures
form the wide diagonal band. Note that the name wall-attached can be mislead-
ing as it seems to imply that the structure remains attached to the wall during
its whole life, which is usually not the case. In turbulent channel flows, Lozano
et al. [14] have shown that wall-attached ejections are generally born with their
base near the wall, but remain attached only for approximately 2/3 of their lives.
Lozano et al. [14] found that attached sweeps are the mirror image of attached
ejections with respect to the temporal evolutions of their size and wall-normal

Table 3 Number and volume proportions of the Q−s (Q2s and Q4s)

Case ZPG TBL APG TBL

All Q−s 57% of all Qs 52% of all Qs
4.2% of box volume 5.3% of box volume

Near-wall Q−s 43% of all Q−s 10% of all Q−s
(yc < 0.05δ) 2% of total volume of Q−s 1% of total volume of Q−s

Wall-attached Q−s 51% of all Q−s 35% of all Q−s
(ymin < 0.05δ) 73% of total volume of Q−s 58% of total volume of Q−s
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Fig. 11 Joint pdf of ymin/δ and ymax/δ for Q−s. (a) ZPG TBL, (b) APG TBL. Contour
levels are 0.01, 0.1, 1 and 10

position. They usually start as detached structures but become attached at about
1/3 of their lives and remain so thereafter.

It is seen from Fig. 11 that the height of Q−s can exceed the boundary layer
thickness. Wall-attached Q−s almost as tall as 2δ are found in both flows. In the
present APG flow the probabilities are higher everywhere, except near the origin.
This implies that, as was discussed above, there are definitely less small Q−s
close to the wall, in proportion, in the APG TBL than in the ZPG TBL. For the
detached Q−s (diagonal band), the contours are wider in the vertical direction for
the APG TBL, which indicates that the detached structures are generally taller
in that flow. They are in fact bigger in all directions as it will be confirmed below.

Wall-attached Q2s and Q4s represent 35% of the total number of Q−s and 58%
of their volume (see Table 3). In the ZPG TBL, these percentages are respectively
51% and 73%. The number and size proportions of attached ejections and sweeps
are therefore considerably reduced in a large-velocity-defect boundary layer. This
is consistent with the fact that the turbulent activity is very small near the wall.

Figures 12 and 13 presents joint pdfs of the logarithms of the streamwise and
wall-normal sizes, normalized with δ, of the boxes circumscribing Q2s and Q4s for
attached and detached structures respectively. As in LFJ for turbulent channel
flows, the Q2 and the Q4 structures have similar sizes, with Q2s slightly bigger
for the biggest structures. The very small attached Q4s seen in the ZPG TBL
(Fig. 12a) are streaky sweeps flattened against the wall [14]. They do not exist in
the APG TBL.

The Q−s in the APG TBL are generally bigger in all directions. But the largest
structures are found in the ZPG TBL with attached Q2s that can reach the length
of the extraction box ∆x ≈ 5δ while being 3 times longer than they are tall and
wide. For channel flows, LFJ found very long attached Q2s reaching ∆x ≈ 20h
and ∆y ≈ ∆z ≈ 2h, where h is the channel half-height. The rapid streamwise
variations and strong non-equilibrium state of the present APG TBL probably
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prohibit the existence of such long motions. In this flow, the longest attached Q2s
rarely exceed a length of 3δ.

In the ZPG TBL, the detached Q−s (Fig. 13a) are globally smaller than their
attached counterparts (Fig. 12a). LFJ observed that in turbulent channel flows,
detached Q−s and Q+s are often background fluctuations of small size, of the order
of a few Kolmogorov lengths, whose contributions to the Reynolds shear stress
almost cancel. In the APG TBL, the situation is very different: the distribution
of sizes of the detached Q−s (Fig. 13b) is less different from that of the attached
Q−s (Fig. 12b).

In terms of aspect ratio, Fig. 12 shows that the attached structures tend to
form a self-similar family of streamwise elongated structures, but much more so
for the ZPG TBL with a linear law ∆x ≈ 3∆y ≈ 3∆z identical to the law found
by LFJ in channel flows. In the APG TBL, the law is ∆x ≈ 1.5∆y ≈ 1.5∆z. In
both flows, the detached structures tend to be only slightly longer than they are
tall and wide with ∆x ≈ 1.2∆y ≈ 1.2∆z.

5 Conclusions

The effects of strong adverse pressure gradients on the u and uv structures of turbu-
lent boundary layers have been investigated through comparisons of the structures
in a zero-pressure-gradient TBL and in a non-equilibrium large-defect TBL. The
DNS database of the ZPG TBL is that of Sillero et al. [24]. The APG TBL comes
from a new DNS intended to produce a flow with a large streamwise increase of
the inner and outer pressure gradient parameters leading to separation at the end
of the domain in the form of a very thin separation bubble. Both flows are at
relatively high Reynolds numbers.

The present study focuses more on the structures found in the outer region
since most of the turbulent activity is there in large-defect TBLs. Nevertheless,
some information is also obtained on the near-wall structures. The findings are
consistent with the fact that Reynolds stresses and production of turbulent energy
diminish considerably in the near-wall region as the velocity defect increases. For
instance, near-wall streaks tend to disappear in the large-defect zone of the flow and
are replaced by more disorganized u motions. Near-wall Q2 and Q4 structures are
also much less numerous in the large-defect TBL in comparison to the ZPG TBL.
In the layer below y = 0.05δ, they represent only 10% of all sweeps and ejections
found throughout the boundary layer, while in the ZPG TBL they account for as
much as 43% of the sweeps and ejections.

In the outer region of the large-defect TBL, the u structures tend to be shorter,
less streaky, and more inclined with respect to the wall than in the ZPG TBL.
Moreover, the two-point correlations suggest that near separation, the occurrence
of side-by-side low- and high-speed structures is considerably reduced. The sweeps
and ejections are generally bigger with respect to the boundary layer thickness
in the large-defect boundary layer, even if the biggest structures are found in the
ZPG TBL. The distinction between wall-attached and wall-detached structures is
also not as pronounced. Contrary to the ZPG TBL, both types of structures have
similar size distributions and occupy a similar space in the boundary layer. In the
ZPG TBL, as in turbulent channel flows [13], the detached sweeps and ejections
tend to be smaller than the attached ones.
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Fig. 13 Joint pdfs p(∆x/δ,∆y/δ) of the logarithms of the sizes of the boxes circumscribing
wall-detached Q2s (solid black) and Q4s (dashed red): (a) ZPG TBL, (b) APG TBL. The
straight dashed blue lines are ∆x = 1.2∆y

In both flows, the attached sweeps and ejections are more streamwise elongated
than their detached counterparts but the difference in aspect ratio is much less
for the APG TBL. The attached sweeps and ejections tend to form a family of
self-similar structures with aspect ratios ∆x ≈ 3∆y ≈ 3∆z in the ZPG TBL and
∆x ≈ 1.5∆y ≈ 1.5∆z in the APG TBL. The streamwise elongation is therefore
considerably reduced in a large-defect boundary layer. The detached structures
also to tend form a self-similar family but with an identical aspect ratio in both
flows, ∆x ≈ 1.2∆y ≈ 1.2∆z.
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