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ABSTRACT 

Normative data for volumetric estimates of brain structures are necessary to adequately assess 

brain volume alterations in individuals with suspected neurological or psychiatric conditions. 

Although many studies have described age and sex effects in healthy individuals for brain 

morphometry assessed via magnetic resonance imaging, proper normative values allowing to 

quantify potential brain abnormalities are needed. We developed norms for volumetric estimates 

of subcortical brain regions based on cross-sectional magnetic resonance scans from 2790 

healthy individuals aged 18 to 94 years using 23 samples provided by 21 independent research 

groups. The segmentation was conducted using FreeSurfer, a widely used and freely available 

automated segmentation software. Models predicting subcortical regional volumes of each 

hemisphere were produced including age, sex, estimated total intracranial volume (eTIV), 

scanner manufacturer, magnetic field strength, and interactions as predictors. The mean 

explained variance by the models was 48%. For most regions, age, sex and eTIV predicted most 

of the explained variance while manufacturer, magnetic field strength and interactions predicted 

a limited amount. Estimates of the expected volumes of an individual based on its characteristics 

and the scanner characteristics can be obtained using derived formulas. For a new individual, 

significance test for volume abnormality, effect size and estimated percentage of the normative 

population with a smaller volume can be obtained. Normative values were validated in 

independent samples of healthy adults and in adults with Alzheimer's disease and schizophrenia.  
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1. INTRODUCTION 

Many neurological diseases and neuropsychiatric disorders display specific subcortical changes 

detectable using anatomical magnetic resonance imaging (MRI) when comparing a group of 

affected individuals to non-affected controls (Haijma et al., 2013; Scahill et al., 2002; Sheline et 

al., 1999). At an individual-level, however, measuring brain volume alterations is problematic 

given the lack of reference standards to estimate the degree of deviation from the normality 

according to one's characteristics. 

 Indeed, although many studies have described the influence of age and sex on brain 

volumes (Fjell et al., 2013; Luders et al., 2009; Pfefferbaum et al., 2013; Walhovd et al., 2011), 

very few attempts have been made to produce proper neuroanatomical volumetric normative data 

(Brain Development Cooperative Group, 2012; Kruggel, 2006). The many obstacles inherent to 

neuroimaging research likely undermine this shortcoming. To produce normative data, brain 

segmentation procedures need first to be replicable and thus ideally automated. However, 

automated segmentation techniques are often proprietary, and therefore not readily accessible 

outside of the technical teams that developed them. It can be readily shown that regional brain 

volumes display important variability according to the segmentation techniques (Mouiha and 

Duchesne, 2011; Tae et al., 2008) and anatomical definitions (Boccardi et al., 2014). Secondly, 

scanner characteristics, especially related to each manufacturer and magnetic field strength 

(MFS), have a non-negligible impact on regional brain segmentation (Jovicich et al., 2009; 

Kruggel et al., 2010; Pfefferbaum et al., 2012). Finally, to produce neuroanatomical volumetric 

normative data useful across the lifespan, a large sample of individuals covering a wide age 

range is needed; however, given that MRI is an expensive proposition, a single laboratory or 

team can achieve such sample sizes with difficulty. 
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 Our objective was to build normative data for subcortical regional volumes covering 

adulthood to facilitate neuroscience imaging studies. To this end, we federated a large sample of 

cognitively healthy individuals originating from 23 different datasets. We produced estimates of 

subcortical regional volumes using FreeSurfer, a widely used and freely available automated 

segmentation software. We built models predicting expected volumes for each subcortical region 

according to age, sex, estimated total intracranial volume (eTIV), scanner manufacturer, and 

MFS. The expected volumes allow testing each region for volume abnormality, effect sizes and 

estimates of the normative population with a smaller volume. These models are presented within 

the article and a statistics calculator is freely distributed as supplementary material (see the 

Subcortical norms calculator in Potvin et al., submitted for publication). 

 

2. MATERIALS AND METHODS 

2.1 Normative sample 

 We assembled a sample of 3D T1-weighted MRI scans from 2,799 cognitively healthy 

controls aged 18 to 94 years from 23 samples provided by 21 independent research groups (see 

Table 1 and Acknowledgments for details). Of note, this includes the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. (www.adni-info.org). 

Scans were acquired from one of the three leading manufacturers (e.g. Siemens Healthcare, 

Philips Medical Systems, or GE Healthcare) at MFS of either 1.5 or 3 Tesla. For each dataset, 

approval from the local ethics board and informed consent of the participants were obtained.  

 All samples recruited healthy control participants, except NKI1 and NKI2. Databases with 

older adults excluded neurological diseases and neuropsychiatric disorders with extensive 
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assessments for age-related disorders. For databases recruiting in the general population (NKI1 

and NKI2), we excluded participants with schizophrenia or other psychotic disorders, bipolar 

disorders, major depressive disorders and substance abuse/dependence disorders. Additional 

exclusions were made for NKI2: neurodegenerative and neurological disorders, head injury with 

loss of consciousness/amnesia, and lead poisoning. Moreover, for PPMI, additional exclusions 

were made for participants with a Geriatric Depression Scale (Sheikh and Yesavage, 1986) score 

of more than 5 (inclusion criterion used in ADNI and AIBL databases).  

 All images were visually inspected and four participants were discarded because of evident 

brain abnormalities. Five participants with extreme eTIV values were also excluded (Z scores 

higher than 3.29, p < .001). The final sample included 2,790 individuals aged between 18 and 94 

years (mean: 47.6, SD: 21.8), with a similar proportion of men (n = 1389) and women (n = 

1401). More than half of the scans were acquired using Siemens (n = 1524), a third using Philips 

(n = 787), and 17% using GE (n = 479) units. Fifty-three percent of the images were obtained 

using 3T MFS (n = 1487). Most of the datasets also had information about handedness (79%), 

race (60%), and education (58%). Based on the available data, the vast majority of the normative 

sample was right-handed (91%), Caucasian (82%; African 10%; Asian 7%), and had completed 

high school (95%). 

 Table 2 shows additional details about the age and sex of the participants according to 

scanner manufacturer and MFS strata. Table 2 also displays the voxel size and acquisition plane 

of the scan as well as the list of scanner models for each strata. 
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2.2 Validation samples 

 We randomly selected 5% (n = 140) of the normative sample stratified by manufacturer 

and MFS to validate normative volumetric formulas in an independent sample. This validation 

sample was not used to build the predictive models. Moreover we also validated the models 

using clinical samples of individuals with schizophrenia (SZ; n = 69; Age: 38.5 ±13.9, range 

18-65; 20% female) from the COBRE dataset and mild Alzheimer's disease (AD; n = 50 Age: 

74.6 ±7.6, range 56-90; 40% female) randomly selected from the ADNI-2 dataset. Schizophrenia 

was diagnosed using the Structured Clinical Interview for DSM-IV disorders (First et al., 1996). 

Alzheimer's disease was diagnosed according to National Institute of Neurological and 

Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders 

Association (NINCDS/ADRDA) criteria for probable AD (McKhann et al., 1984) and had a 

Clinical Dementia Rating of 0.5 or 1. 

2.3 Segmentation 

 Subcortical segmentation was conducted using FreeSurfer (5.3), a widely used and freely 

available automated processing pipeline that quantifies brain anatomy (http://freesurfer.net). All 

raw T1-weighted images were first converted into MINC format and then were processed using 

the "recon –all" pipeline with the default set of parameters. Freesurfer was running on an Ubuntu 

Server 12.04 LTS platform on a Dell PowerEdge R910 computer with four Intel Xeon E7-4870 

2.4GHz. The technical details of FreeSurfer have been described elsewhere (Fischl et al., 2002; 

Fischl et al., 2004; Jovicich et al., 2006; Segonne et al., 2004). The FreeSurfer software belongs 

to a class of segmentation techniques using a model-driven paradigm. In these approaches the 

algorithm first matches the new image to a template and/or series of templates from a training 

set, for which segmentation has been performed a priori, and therefore label information exists. 
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The algorithm then automatically assigns a neuroanatomical label to each voxel of a volume 

based on the probabilistic information given by the image matching procedure. Specifically, it 

assigns the most likely probability for that voxel, taking into consideration nearby voxel 

probabilities. Every structure defined in the a priori segmentation therefore becomes represented 

in the new image, based on the overall matching between images. 

 Subcortical and estimated total intracranial volumes (eTIV)(Buckner et al., 2004) were 

taken from the aseg.stats Freesurfer output file. Ventricles and corpus callosum volumes were 

generated using the sum of all subregions. FreeSurfer subcortical segmentation showed a high 

overlap and high volumetric correlations with manual segmentation (Dewey et al., 2010; Fischl 

et al., 2002; Keller et al., 2012) and high test-retest reliability (Liem et al., 2015; Morey et al., 

2010).  

 Visual inspection of each brain segmentation was conducted using FreeView 

(http://freesurfer.net) by scrolling the entire brain at least through the coronal and axial planes. 

Regions with apparent segmentation error on multiple slices were excluded of statistical analyses 

(e.g. portion of gray matter not segmented, portion of a ventricle segmented as white matter, 

hippocampal portion segmented as neocortex). Depending on the region, between 0 and 58 

participants out of 2790 were discarded (for the overall measures of ventricles and subcortical 

gray matter, which encompassed all the ventricles and all the gray matter regions, 2 and 96 

participants were excluded, respectively). Moreover, to verify the validity of outermost eTIV 

values, we verified the registration of the 5% lowest and highest values. 

In order to assure generalizability, we quantified the impact of a different hardware setup 

on the volumes generated by FreeSurfer (Xubuntu 12.04 on VirtualBox 4.3.10 installed on an 

iMac 10GB 1067 MHz DDR3 with 2.8GHz Intel Core i7 and OS X Yosemite 10.10.4). We 
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compared these volumes with those produced by the setup generating normative values on a 

random subset of the normative sample (n = 50).  

2.4 Statistical analyses 

 2.4.1 Volume prediction 

 Regression models predicting subcortical regional volumes were built using age, sex, 

eTIV, MFS, and scanner manufacturer as predictors. Quadratic and cubic terms for age and eTIV 

were tested, as well as the following interactions: age X sex, eTIV X MFS, MFS X 

manufacturer, and eTIV X manufacturer. To avoid overfitting and maximize generalizability of 

the predictions, the best predictive model was determined with a 10-fold cross-validation (Hastie 

et al., 2008), retaining the model with the subset of predictors that produced the lowest predicted 

residual sum of squares using SAS 9.4 PROC GLMSELECT (SAS Institute Inc., Cary, NC, 

USA). For each selected final model, the fit of the data was assessed using R2 (one minus the 

regression sum of squares divided by the total sum) and individual predictors' weight was 

measured by semi-partial eta squares (squared semi-partial correlations). For each brain 

subdivision and eTIV, outliers with volume Z scores higher than 3.29 (p < .001) were excluded 

(depending of the region, between 5 and 25 outliers out of 2790 were excluded). Because of 

positive skewness, the volume of all ventricles, except the fourth, was log10 transformed for 

statistical analyses. 

 2.4.2 Validation 

 In addition to the cross-validation procedure, the predictions of the models were validated 

by first calculating a validation R2, using the squared correlation between observed and predicted 

volumes in the independent validation sample of healthy controls. Secondly, we examined the 

validity of the normative values to show the expected patterns of atrophy, hypertrophy or 
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normality in the validation samples of healthy individuals and individuals with AD and SZ. For 

each group, we tested the mean difference between observed and predicted volumes using 

independent two-sample t-tests (since predicted volumes are not produced using the observed 

volumes and thus, observed and predicted volumes are not correlated) with Bonferroni 

correction. 

 The impact of a different computer hardware setup on the volumes generated by 

FreeSurfer was tested by dependent one-sample t-tests with Bonferroni correction. 

 2.4.3 Normative statistics  

 For each region, we computed prediction intervals, single case significance test of volume 

abnormality, effect size and estimated percentage of the normative population with a smaller 

volume (Crawford and Garthwaite, 2006; Crawford et al., 2012). A Microsoft Excel spreadsheet 

able to produce these statistics is available as supplementary material (see Subcortical norms 

calculator in Potvin et al., submitted for publication). Single case significance test of volume 

abnormality was computed by the formula below, a t-statistic with N - k (number of predictors) - 

1 degrees of freedom using the difference between actual (Y0) and predicted (Ŷ) volumes, 

divided by the standard error of the predicted volume where SY!X represents the root mean square 

error (also called residual standard deviation or standard error of estimate) of the model 

predicting normative values, rii identifies off-diagonal elements of the inverted correlation matrix 

for the k predictor variables, rij identifies elements in the main diagonal, and z0 = (zi0, ... , zk0) 

identifies the patient’s scores on the predictor variables in z score form (Crawford and 

Garthwaite, 2006).  
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 This method also produced an unbiased point estimate of the volume abnormality, 

supplemented with confidence intervals following a non-central t-distribution (Crawford and 

Garthwaite, 2006). For effect size, a Z score (ZOP) is obtained by subtracting the Observed value 

from the Predicted value divided by the root mean square error of the model predicting 

normative values (Crawford et al., 2012).  

 

3. RESULTS 

3.1 Prediction of subcortical volumes 

 Table 3 displays the models predicting subcortical volumes. Most models had a substantial 

amount of explained variance (mean R2: 48%, range: 14%-76%). Figure 1 shows that the 

explained variance for most regions was mainly predicted by age, followed by eTIV and sex, 

while manufacturer, MFS, and interactions between variables did not have a large effect (for 

detailed results see Table 1 in Potvin et al., submitted for publication). Age had a substantial 

effect for all regions except the brainstem. The effect of sex varied greatly across regions, with 

the strongest impact for the brainstem and the weakest for the fourth ventricle and the corpus 

callosum.  

 Figure 2 illustrates predicted volumes for each region according to age and sex. All 

relationships between age and volume were nonlinear, and included either cubic or quadratic 

terms. A few regions, including the accumbens, pallidum, and putamen, had a marked age by sex 

interaction. 

 Figure 3 displays some examples of the MFS, eTIV, and manufacturer effects observed. 

As illustrated, for some regions, MFS and eTIV had different effects depending on the 

manufacturer. The effect of eTIV was also altered according to MFS.   
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3.2 Validation 

 3.2.1 Healthy controls 

 The mean difference between validation and original R2 was -0.4% (range -10 to 12%), 

which shows adequate generalization of the models. The largest negative discrepancies were for 

the right accumbens (-9%), the right caudate (-10%) and the left putamen (-10%)(for detailed 

results see Table 1 in Potvin et al., submitted for publication). Table 4 indicates that for all 

regions, the mean actual volumes did not significantly differ from the mean predicted normative 

volumes. The mean ZOP effect size indicated very little deviation from the normative values 

across regions (Range between -0.18 and 0.08). 

 3.2.2 Schizophrenia and Alzheimer's disease 

In the SZ group (Table 4), the mean volumes of the right accumbens, bilateral amygdala, and 

bilateral hippocampi, were significantly smaller, while the left pallidum and left inferior lateral 

ventricle were significantly larger than the mean predicted normative values. The mean ZOP 

effect size for SZ indicated small deviations from the normative values across regions (range 

between -0.64 and 1.00).  

 In the mild AD group (Table 4), volumes of the right accumbens, bilateral amygdala and 

hippocampi, and total subcortical gray matter were significantly smaller, while the volumes of 

sum of the ventricles, bilateral lateral and inferior lateral ventricles were significantly larger than 

the mean predicted normative volumes. As a group, these differences varied from small to large 

deviations from the normative values (ZOP: -2.55 and 1.58).  

 Figure 4 shows examples of the distribution of effect sizes among the validation samples 

for the results discussed above.  
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3.3 Influence of computer hardware 

 The impact of using a different hardware setup to generate FreeSurfer volumes was 

minimal (see Table 2 in Potvin et al., submitted for publication); mean difference for all regions: 

0.1%, 95%CI: -0.70-0.94%) and no significant difference between setups was observed.  

 
4. DISCUSSION 

The objective of the present study was to produce normative values for subcortical regional 

volumes in cognitively healthy individuals, taking into consideration age, sex, eTIV, and 

characteristics of the MRI scanner. Our goal was to facilitate future neuroscience studies in 

adulthood, by providing a common normative reference against which to compare new 

individuals from control or clinical populations. 

 To be widely applicable, normative values need to be produced on data acquired on 

common platforms, and analyzed using an accessible automated segmentation pipeline. We 

selected data from a large number of studies involving three major manufacturers at the two most 

used field strengths in research. Further, our choice of analysis platform fell on the FreeSurfer 

algorithm, one of the most used software in the neuroimaging research community. In fine, our 

data came from 2,790 individuals aged 18 to 94 years old, and scanned in the context of 23 

different studies. The resulting models explained a substantial amount of the variance in 

subcortical volumes. To our knowledge, the present study is the first attempt to generate 

accessible normative brain volumes in adults.  

4.1 Use of the normative values 

 Comparing an individual's own volume to the model normative values allows the 

measurement of potential subcortical volumes alterations. The formulas generate expected 
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volumes for a given age, sex, eTIV, scanner manufacturer, and magnet strength. The difference 

between a real volume and a predicted normative volume divided by the root mean square error 

will result in a Z score effect size, which reflects the degree of deviation from the normative 

sample. The spreadsheet provides prediction intervals and suitable statistics including individual 

significance test for abnormality, effect size (ZOP) and estimated percentage of the normative 

population with a smaller volume. One will notice that although not identical, the individual 

significance test for abnormality is generally very close to the effect size. This subtle difference 

will not have a major impact if one uses either the t-statistic or the effect size (with 1.65 one-

tailed and 1.96 two-tailed as critical values), but is of theoretical importance since the use of the 

effect size for inferential purposes would treat the normative sample as the population (Crawford 

and Garthwaite, 2006). Moreover, in the case of using the normative values to compare values 

for a group of individuals, assessing the difference between actual and expected volumes, using a 

two-sample t-test for example (as shown in Table 4), the distinction between the effect size and 

the significance of the test is crucial for interpreting the result, since the mean ZOP can greatly 

differ from the t-statistic value depending on the sample size of the group. Indeed, even when 

effect sizes are small, significant differences between actual and expected volumes can be 

observed if the group is large.  

 The validation of the normative values using clinical samples is a good example of how the 

normative formula can be used and it showed volume differences for the regions that were 

expected. Results in the SZ group were generally coherent with those of a meta-analysis 

indicating that compared to controls, medicated patients with schizophrenia show significant 

atrophy for accumbens, amygdala, hippocampus, and thalamus and hypertrophy for the pallidum 

of small effect sizes (Haijma et al., 2013). Results in the mild AD group were also coherent with 
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previous results from the literature showing essentially ventricles enlargements and atrophy of 

the hippocampus and amygdala, but also changes to other regions such as the accumbens area, 

the thalamus, and the corpus callosum (Pedro et al., 2012; Pievani et al., 2013; Roh et al., 2011; 

Scahill et al., 2002). 

  Another utility of the volumetric normative values is to verify in case-control studies 

whether or not the control group is close to normative values. Control groups, especially if they 

are of small sizes, are not necessarily good representations of the normality. 

4.2 Effect of Age 

 In addition to producing normative values, the large sample allowed the validation of 

relationships that were previously observed using different methodologies. The results 

importantly showed the respective weight related to each predictor. Age was the predictor with 

the greatest influence on all regions, except on the brainstem, with most regions starting to 

decline as early as 18 years of age. Our results indicated that those regions declining latest in life 

are the brainstem, which showed a slight decrease in men after their 40s, and for women after 

their 60s; the hippocampi, in which volumes were relatively stable until the 4th decade; and the 

corpus callosum, which increases late to the 30s, before declining eventually. Walhovd et al. 

(2011) and Fjell et al. (2013), using substantial yet smaller samples, reported comparable results. 

 Unlike other regions, both caudate nuclei volumes showed a distinctive U-shape 

relationship with age, decreasing from entry into adulthood to the 60s, and then increasing to the 

90s. Similar results were previously observed (Fjell et al., 2009; Fjell et al., 2013; Goodro et al., 

2012; Pfefferbaum et al., 2013; Walhovd et al., 2011). Goodro and colleagues suggested that 

periventricular white matter signal hyperintensities, which is highly correlated with age, could be 

responsible for this increase of caudate volume, from the age of 60 onward. An alternate 
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hypothesis could be a selection bias related to the survival of individuals. Thus, this replicated 

finding could be either a true phenomenon due to aging, the result of a cohort effect, or an 

artifact interfering with the MRI signal; the design of this study cannot conclusively determine 

either way. Nevertheless, given our design and these results, this phenomenon is not trivial and 

the volume of the caudate nuclei in older adults has to be expected to be larger than in younger 

adults when using MRI measures such as those produced by FreeSurfer on recent recruited 

cohorts. 

4.3 Effect of sex 

 Whether differences in regional brain volumes between men and women remains after 

taking into account TIV are still a matter of debate in the literature (Crivello et al., 2014; Jancke 

et al., 2015; Leonard et al., 2008; Luders et al., 2009), but previous results indicated that the 

effect of sex on regional brain volumes is heterogeneous across the brain. Our results are in 

agreement with this finding, showing that although sex improved the prediction in all models, its 

influence had notable discrepancies between regions and diminishes with age in some regions. 

Sex had the greatest influence on the brainstem while it had little impact on the volumes of the 

accumbens, hippocampi, the ventricles, and the corpus callosum. The latter has received a lot of 

attention (Leonard et al., 2008), and recent findings suggested that there was no difference 

between men and women after correcting for total brain volume (Luders et al., 2014). In the 

present study, the corpus callosum was the region, after the left accumbens, with the least 

influence of sex on its volume (2% of explained variance).  

 Moreover, although sex by age interaction improved the prediction for most regions, with 

left accumbens, left pallidum and right putamen showing the strongest interaction, it had little 

influence compared to the other predictors (R2 ≤ 1%). These results corroborate those from other 
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studies (Crivello et al., 2014; Fjell et al., 2009; Jancke et al., 2015), which showed no or subtle 

sex by age interaction for subcortical structures.  

4.4 Effect of scanner characteristics 

 Previous reports had shown that scanner manufacturer and MFS have an influence on 

automated brain volume segmentation that needs to be taken into account (Jovicich et al., 2009; 

Kruggel et al., 2010; Pfefferbaum et al., 2012). In the present study, both manufacturer and MFS 

were retained in the models for the normative prediction of all regions (with the lateral ventricles 

as the sole exception). However, when compared to age, sex and eTIV, the magnitude of their 

main and interaction effects was minor (i.e. together, mean R2 of 3.7%) with two exceptions: the 

left accumbens (R2: 9.6%) and the left amygdala (R2: 8.6%). Thus, despite having a positive 

impact on prediction, the influence of these scanner characteristics on subcortical volumes 

remains modest compared to other predictors. Moreover, the best comparison in order to detect 

subtle neuroimaging effects is clearly within the same scanner. However, when this is not 

possible, a correction for scanner manufacturer and MFS is a minimal procedure that should be 

done in order to minimize variance not due to the effect of interest.       

4.5 Limitations 

 One should note that the federated normative sample was not randomly recruited, nor 

representative of the healthy adult population. Rather, it is comprised of healthy volunteers who 

agreed to participate in research projects involving MRI, within academic-led environments. The 

majority was right-handed, Caucasian, and had at least a high school degree. Thus, the normative 

values may not be generalizable to left-handed, non-Caucasian, or low-educated individuals. 

While it may not be an exact picture of the healthy adult population, this is one of the largest 

sample used in such study and included a wide age range. The data involved 23 samples from 21 



! ! ! 17!

independent research groups, originating from various countries (Australia, Austria, Belgium, 

Canada, Finland, Germany, Ireland, Italy, Netherlands, United Kingdom, and USA). Further, the 

large age range and the wide array of MRIs from three manufacturers at two magnetic field 

strengths, using multiple acquisition parameters, is an amalgam of data likely to produce more 

robust normative values than values generated, for example, using a sample recruited by a single 

research group at a particular geographic location and using a single set of acquisition 

parameters. Indeed, the validation procedure with independent samples of healthy individuals 

showed similar prediction in terms of R2 for the majority of the regions.  

 Moreover, MRI technology is relatively recent and there is no longitudinal data available 

spanning the lifetime of single individuals. Since the present study is cross-sectional, age effects 

may encompass cohort biases. Finally, as our goal was to produce normative values that could be 

used in other studies, we chose to use FreeSurfer, an automated segmentation software, with its 

default parameters. One should note that FreeSurfer, especially with default parameters, may not 

be the best solution for the segmentation of all subcortical regions. One of the limitations of 

model-driven algorithms is that every structure present in the a priori training set model is to be 

represented in the new image being segmented. This will happen whether or not the image 

matching procedure is able to find anatomically relevant, contrasted landmarks on the images for 

each specific substructure, given that the matching happens first at the global level, then at the 

local level, but optimized over an entire neighborhood. The end result is that some structures 

may be defined by virtue of being inside a given region that represents the software’s best 

attempt at adapting the pre-defined mask with respect to the overall shape of the new subject's 

brain, as opposed to being within clearly established – and visible – boundaries. This effect may 

result in the representation of the structure to include inaccuracies; in the case of smaller 
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structures, errors at the boundaries may have a potentially larger effect on overall volume 

compared to larger structures. However, given that we have used the exact same approach for all 

images, and that users of the normative data will be constrained to using this same approach, we 

expect this possible bias to be systematic and thus, having a quite restrained effect on inter-

subject differences. 

 
5. CONCLUSIONS 

At a group-level, many neurological and neuropsychiatric disorders display specific anatomical 

MRI changes. However, measuring brain volume alterations at an individual-level is problematic 

since it needs reference values from an automated reproducible segmentation technique taking 

into account the characteristics of the individual and of the scanner. Using a large sample of 

healthy adults, we built norms for volumetric estimates of subcortical brain regions. Estimates of 

the expected volumes of an individual based on its age, sex, intracranial volume, the scanner's 

manufacturer, and magnet strength can be obtained using derived formulas. Statistics allow 

testing each region for volume abnormality with effect sizes and estimates of the normative 

population with a smaller volume. 
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Figure 1. Variance explained by the model for each subcortical regional volume is shown (R2 

results), alongside the proportion of this variance explained by each predictor (pie charts). 
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Figure 2. Age and sex influence in each model predicting subcortical regional volumes in a large 

sample of cognitively healthy individuals aged 18-94 years old. Shaded ribbons around each 

curve denote 95% confidence intervals for the mean. Ventricles are log10 transformed.  
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Figure 3. Fitted data illustrations of the magnetic field strength (MFS) and manufacturer effects 
in the models predicting subcortical volumes. Top: Right hippocampal volume according MFS 
and manufacturer. Middle: Corpus callosum according to estimated intracranial volume (eTIV) 
and manufacturer. Bottom: Right thalamus according to MFS and eTIV. Error bars and shaded 
ribbons denote 95% confidence intervals. 
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Figure 4. Examples of the distribution of the normative effect sizes (ZOP score) in independent 

samples of healthy controls (CON), individuals with schizophrenia (SZ) individuals with mild 

Alzheimer's disease (AD). 

  



Table 1. Participants’ characteristics according to the dataset.  

Dataset 
n % 

Age 
(mean ±SD 

range) 

Female 
% 

1. Autism Brain Imaging Data Exchange (ABIDE) 184 6.6 26.1 ±7.0  
18-56 12.5 

2. Alzheimer’s Disease Neuroimaging Initiative (ADNI1) 227 8.1 76.0 ±5.0  
60-90 48.0 

3. Alzheimer’s Disease Neuroimaging Initiative (ADNI2) 179 6.4 73.6 ±6.2 
56-89 52.5 

4. Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) 158 5.7 72.1 ±7.2  
60-88 52.5 

5. BMB - Berlin Mind and Brain (Margulies, Villringer) CoRR sample (BMB) 50 1.8 30.3 ±7.1 
19-59 52.0 

6. Cleveland Clinic (Cleveland CCF) 30 1.1 43.1 ±11.1  
24-60 63.3 

7. Center of Biomedical Research Excellence (COBRE) 71 2.5 35.5 ±11.3  
18-62 29.6 

8. DS-108 from the OpenfMRI database 32 1.2 22.2 ±4.6 
18-41 50.0 

9. DS-170 from the OpenfMRI database 15 0.5 25.4 ±4.6 
19-35 20.0 

10. Functional Biomedical Informatics Research Network (FBIRN) 34 1.2 38.9 ±13.1  
19-65 41.2 

11. FIND lab sample (FIND) 13 0.5 24.1 ±3.7 
18-29 61.5 

12. International Consortium for Brain Mapping (ICBM) 148 5.3 25.0 ±4.9  
18-44 42.2 

13. Information eXtraction from Images (IXI) 558 20.0 48.5 ±16.4  
20-86 55.7 

14. F.M. Kirby Research Center neuroimaging reproducibility data (KIRBY-21) 20 0.7 31.9 ±9.7  
22-61 45.0 

15. Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD) 23 0.8 69.7 ±7.2  
58-86 47.8 

16. Nathan Kline Institute Rockland phase 1 (NKI-R1) 143 5.1 42.6 ±18.4  
18-85 42.7 

17. Nathan Kline Institute Rockland phase 2 (NKI-R2) 253 9.1 46.1 ±18.8  
18-85 64.8 

18. Open Access Series of Imaging Studies (OASIS) 301 10.8 43.9 ±23.6  
18-94 61.8 

19. Oulu FCON sample (Oulu) 101 3.6 21.5 ±0.6 
20-23 64.4 

20. POWER Neuroimage sample (POWER) 26 0.9 23.0 ±1.4  
20-25 84.6 

21. Parkinson’s Progression Markers Initiative (PPMI) 164 5.9 60.1 ±11.5  
31-83 34.2 

22. TRAIN-39 sample (TRAIN) 35 1.3 22.5 ±2.6  
18-28 71.4 

23. University of Wisconsin (Birn, Prabhakaran, Meyerand) CoRR sample (UWM) 25 0.9 25.0 ±3.2 
21-32 44.0 

Total 2790 100.0 47.6 ±21.8 
18-94 50.2 
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Table 2. Scanners, sequence, and participants characteristics 

Manufacturer 
Magnetic 

field strength 
(%) 

Voxel size 
in mm3 

(%) 

Acquisition 
plane  
(%) 

 Model (%) 
Age  

(mean ±SD) 
Range 

Sex 

GE 

1.5T 
(63.0) 

0.4 (3.0) 
0.9 (33.4) 
1.0 (5.0) 

1.1 (48.3) 
1.2 (0.7) 
1.3 (8.9) 

Unknown 
(0.7) 

Axial (52.0) 
Coronal (7.6)  
Sagittal (40.4) 

Optima MR450w (0.3) 
Signa (7.6) 

Signa Excite (30.1) 
Signa Excite HDx (5.0) 

Signa Genesis (6.6) 
Signa HDx (34.1) 
Signa HDxt (5.6) 

Signa Twin Speed Excite HD (10.6) 

47.8 ±26.2 
18-90 

Female 
(51.7) 
Male 
(48.3) 

3T 
(37.0) 

0.2 (7.3) 
1.0 (14.1) 
1.1 (38.4) 
1.2 (32.8) 
1.3 (0.6) 

Unknown 
(6.8) 

Axial (65.0) 
Sagittal (35.0) 

Discovery MR750 (27.9) 
Signa (5.1) 

Signa Echospeed (38.4) 
Signa HDx (2.3) 

Signa HDxt (24.3) 

47.3 ±22.0 
18-89 

Female 
(55.9) 
Male 
(44.1) 

Philips 

1.5T 
(65.1) 

1.0 (31.1) 
1.1 (68.9) 

Axial (61.1) 
Sagittal (38.9) 

ACS III (28.9) 
Achieva (2.7) 

Gyroscan Intera (62.1) 
Gyroscan NT (2.2) 

Intera (3.7) 
Intera Achieva (0.4) 

45.0 ±19.1 
18-86 

Female 
(50.2) 
Male 
(49.8) 

3T 
(34.9) 

1.0 (12.4) 
1.1 (69.8) 
1.2 (17.5) 
1.3 (0.4) 

Axial (64.8) 
Coronal (5.5)  
Sagittal (30.2) 

Achieva (20.7) 
Gemini (1.1) 
Ingenia (1.1) 
Intera (77.1) 

46.2 ±19.1 
18-86 

Female 
(42.9) 
Male 
(57.1) 

Siemens 

1.5T  
(32.1) 

0.5 (0.4) 
1.0 (1.2) 

1.2 (14.5) 
1.3 (61.6) 
1.9 (20.0) 
2.0 (2.0) 
2.2 (0.2) 

Sagittal (100) 

Avanto (18.4) 
Espree (1.2) 
Sonata (4.9) 

Sonata Vision (0.2) 
Symphony (10.8) 

Trio (2.9) 
Vision (61.6) 

53.8 ±23.7 
18-94 

Female 
(56.8) 
Male 
(43.2) 

3T 
(67.9) 

0.3 (2.7) 
0.9 (0.1) 

1.0 (66.8) 
1.1 (0.7)) 
1.2 (23.3) 
1.3 (3.1) 
2.3 (3.4) 

Axial (0.1) 
Sagittal (99.9) 

Allegra (8.1) 
Skyra (1.3) 
Trio (1.9) 

Trio Tim (81.39 
Verio (6.8) 

46.2 ±20.9 
18-88 

Female 
(47.6) 
Male 
(52.4) 

!
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Table&3.&Coefficients&of&models&predicting&subcortical&regional&volumes.&&&

& & & Sociodemographics&
& Estimated&total&intracranial&

volume&(eTIV)&
&

Scanner&
&

Interactions&

Region& RMSE& Int& Age& Age2& Age3&
Sex& &

eTIV& eTIV2& eTIV3&

& Strength& & Manufacturer& & GE&
X&

MFS&

Philips&&
X&

MFS&

eTIV&
X&&

MFS&

Age&
X&
Sex&

eTIV&
X&
GE&

eTIV&
X&

Philips&M&/&F& & & 1.5T&/&
3T&

& GE&/&
Siemens&

Philips&/&
Siemens&

&

Accumbens!L! 129.17! 445.740! K3.61E+00& 2.00E%02! K! 3.74E+01& & 5.31EK05& 8.06E611& K! ! 1.30E+02& ! 1.02E+02& 3.97E+01& & K1.83E+02& K1.80E+02& K! K9.51EK01& K! K!

Accumbens!R! 113.80! 510.711! K2.70E+00& 2.17EK02! %9.16E%04! 3.51E+01& & 6.32EK05& K* K! ! 3.48E+01! ! 4.02E+01! 1.90E+01* & K9.48E+01& K1.22E+02& K! K5.67EK01& K! K!

Amygdala!L! 192.38! 1513.76! K1.33E+00& %3.55E%02& K2.49EK03* 8.73E+01& & 4.35EK04& 1.25E610& K! ! K1.72E+02& ! K6.47E+01& 67.51E+00! ! 1.08E+02& 3.00E+01! K! 66.17E601* 5.22E605! 69.32E605&

Amygdala!R! 214.11! 1531.16! 68.89E601* 6.06E603& K3.02EK03* 1.01E+02& & 3.82EK04& K* K* ! K7.94E+01& ! 3.94E+01& 3.52E+01! ! 64.62E+01! K8.09E+01! K! K! K! K!

Brainstem! 1846.96! 21408.0! %1.15E+01& K1.18E+00& 1.18E%02! 5.33E+02& & 9.59EK03& 3.01EK09& K* ! 66.91E+01! ! K1.15E+03& 2.03E+02! ! 1.30E+03& 63.00E+02! K! K1.04E+01& K! K!

Caudate!L! 427.36! 3551.88! K9.05E+00& 2.13EK01& 2.11E603* 62.05E+01! ! 1.71EK03& 7.16EK10& 68.61E616* ! K! ! K6.22E+01! K1.81E+02& ! K! K! K! K2.33E+00& 61.05E604! %2.38E%04!

Caudate!R! 469.42! 3481.39! K7.91E+00& 3.68EK01& K! 1.94E+01! ! 1.57EK03& 3.80E610* K* ! 1.99E+02& & K1.86E+02& K2.48E+02& ! %1.13E+02& K2.16E+02& 2.68E%04* K2.45E+00& %2.95E%04! K3.94EK04!

Hippocampus!L! 382.57! 4175.15! K5.08E+00& K3.28EK01& K3.54EK03& 1.64E+01! ! 1.20EK03& 3.08E610& K! ! K2.34E+02& & 2.65E+02& 1.70E+02& ! K1.31E+02& 61.19E+01! 1.18E604! K2.11E+00! K! K!

Hippocampus!R! 378.69! 4318.33! K3.29E+00& K3.31EK01& K4.32EK03& 1.16E+01! ! 1.29EK03& K! K* ! K2.98E+02& & 1.81E+02& 4.34E+01! ! 68.29E+01& 9.68E+01! K! K2.11E+00! K! K!

Pallidum!L! 232.77! 1359.76! K2.87E+00* 1.30EK01& K2.05EK03* 6.54E+01& & 5.70EK04& 2.91EK10& K! ! 1.66E+02& & %4.76E+01& 4.37E+01! ! K8.14E+01! K1.95E+02& K! K2.11E+00& K! K!

Pallidum!R! 200.17! 1438.50! K2.59E+00& 7.34EK02! K3.03EK03! 6.52E+01& & 4.77EK04& 2.18E%10& K! ! 1.55E+02& & 63.87E+00& K6.14E+01& ! K1.29E+02! K1.33E+02! K! K1.45E+00& K! K!

Putamen!L! 663.69! 5155.58! K2.38E+01& 2.23EK01& K! 2.07E+02& & 1.73EK03& 6.89E%10& %1.93E%15* ! 2.54E+02! ! K2.67E+02& K1.69E+02& ! 62.05E+01! K5.41E+02& K4.26EK04* K4.49E+00& K! K!

Putamen!R! 604.53! 4836.07! K1.92E+01& 3.46EK01& %3.99E%03! 2.39E+02& & 1.25EK03& 3.65E610& K! ! 2.83E+02& & 66.70E+01& %8.68E+01* ! K2.93E+02! K6.26E+02& K! K5.57E+00& K! K!

Thalamus!L! 765.61! 7955.26! K2.52E+01& K5.15EK01& 6.84EK03& 6.23E+01& & 3.21EK03& 1.46EK09& K! ! K5.20E+02& & 1.49E+02& 5.52E+01! ! 1.11E+01! 3.92E+02& 5.96EK04& K5.68E+00& K! K!

Thalamus!R! 580.98! 7157.91! K2.46E+01& K3.44EK01& 6.08EK03* 9.68E+01& & 3.13EK03& 1.42EK09& K! ! K1.51E+02! ! %1.19E+02! K2.50E+02& ! 6.79E+01& 1.53E+02! K& K5.65E+00& 62.57E604! K5.83EK04&

Ventral!DC!L! 334.49! 3784.71! K9.25E+00& K1.48EK01& 3.51EK03* 1.09E+02& & 1.62EK03& 6.03EK10& K* ! K1.63E+02& & 1.05E+02* 1.22E+02& ! %8.36E+01! 4.99E+01! K! K1.88E+00& K! K!

Ventral!DC!R! 321.88! 3718.62! K9.16E+00& K6.32EK02& K! 1.14E+02& & 1.46EK03& 5.61EK10& K& ! K1.04E+02& & 6.31E+01& 8.73E+01! ! 65.65E+01! 1.85E+01! K! K2.22E+00& 2.18E%04! 3.12E606!

Ventricles! 0.1595! 4.25830! 6.54EK03& 1.07EK04& K! 1.03E602! ! 4.96EK07& K! K! ! 61.23E604! ! 5.66E603! K3.69EK02& ! K! K! 7.39E%08& 1.11EK03& 67.58E608! %1.02E%07&

Lateral!L1! 0.1911! 3.88998! 7.41EK03& 9.60EK05& K! 63.60E603! ! 5.79EK07& K* K! ! K! ! 6.42E603! K4.49EK02& ! K! K! K* 1.46EK03& 66.74E608! 66.89E608!

Lateral!R1! 0.1924! 3.84210! 7.56EK03& 1.11EK04& K! 7.02E603! ! 5.68EK07& K! K! ! K* ! 1.30E602! K3.47EK02! ! K! K! K& 9.79EK04* 66.83E608! %9.73E%08&

Inferior!lateral!L1! 0.2740! 2.30882! 5.24EK03& 2.57EK04& 9.87E607& 1.04EK01& & 3.83EK07& 61.84E613! 64.30E619! ! 7.64EK02& & K1.69EK01& K9.88EK02& & 1.72E601& 3.10E602! K! 1.82EK03! %1.99E%07! K2.13EK07&

Inferior!lateral!R1! 0.2908! 2.26061! 1.75E%03& 2.12EK04& 3.95EK06& 1.19EK01& & 2.40EK07& K! K! ! 1.25EK01& & 62.52E602& K9.99EK02& & K& K! 61.13E607! 2.27EK03& 61.74E607! K2.05EK07&

3rd1! 0.1209! 2.96200! 5.57EK03& 9.61EK05& 64.32E607! 4.11EK02& ! 2.98EK07& 61.06E613! K! ! 4.39E603! ! 4.60EK02& 1.19E603! ! K5.20EK02& K3.28EK02! 4.53E608! 8.60EK04& K! K!

4th! 548.67! 1806.13! 1.72E+00& 1.54EK01& K! 9.54E+01& ! 9.31EK04& 62.31E611! 61.23E615! ! K9.24E+01& ! K1.11E+02! 62.82E+01! ! K! K! K! K! 3.12E604! 2.36E604!

Corpus!callosum! 426.26! 3337.61! K9.62E+00& K3.46EK01& 2.15E603* K6.34E+01* ! 1.12EK03& 9.81E611! 67.03E616! ! K1.65E+02& ! %5.65E+01& 3.44E+01! ! K! K! %2.35E%04* K! 4.08EK04* 61.58E604!

Subcortical!gray!matter! 3369.97! 56155.6! K1.50E+02& 66.78E602* 61.28E602! 1.32E+03& ! 2.00EK02& 7.22EK09& K* ! 69.63E+01! ! 6.23E+02! 63.31E+02! ! K1.70E+03& K1.69E+03& K! K4.18E+01& K! K!

Note.!Categories!are!coded!0!and!1!with!reference!categories!(Female,!Siemens,!and!3T)!coded!0.!Age!and!eTIV!are!centered!by!the!mean!(Age!6!47.56;!eTIV!6!1521907.28).!DC:!diencephalon,!Int:!Intercept.!RMSE:!Root!mean!square!error.!
1!log10!transformed.!Italic!p<.05;!Bold!p<.01.!
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Table 4. Mean normative effect size (ZOP) and differences between actual and predicted 
normative volumes in independent samples 

 
Controls 
(n = 140)  

 
SZ 

(n = 70) 
 AD 

(n = 50) 

Region ZOP t p  ZOP t p  ZOP t p 

Accumbens L -0.04 -0.31 .755  -0.49 -4.01 <.001*  -0.19 -1.35 .182 
Accumbens R -0.01 -0.06 .950  0.01 0.07 .947  -0.47 -3.58 <.001* 
Amygdala L 0.02 0.06 .951  -0.58 -3.59 <.001*  -1.11 -5.1 <.001* 
Amygdala R 0.03 0.25 .804  -0.61 -4.15 <.001*  -1.10 -4.95 <.001* 
Brainstem 0.01 0.10 .924  -0.53 -2.41 .017  -0.33 -1.32 .189 
Caudate L 0.02 0.13 .898  -0.09 -0.41 .679  -0.42 -2.18 .033 
Caudate R 0.02 0.14 .886  0.04 0.18 .855  -0.05 -0.29 .769 
Hippocampus L -0.03 -0.30 .766  -0.61 -3.22 .002*  -2.55 -12.19 <.001* 
Hippocampus R 0.07 0.52 .606  -0.64 -3.16 .002*  -2.37 -9.42 <.001* 
Pallidum L -0.18 -1.32 .188  1.00 5.16 <.001‡  -0.06 -0.34 .731 
Pallidum R -0.15 -0.97 .335  -0.28 -1.76 .080  -0.07 -0.39 .699 
Putamen L -0.06 -0.37 .711  -0.05 -0.26 .799  -0.05 -0.29 .775 
Putamen R 0.02 0.16 .875  -0.13 -0.6 .549  -0.27 -1.58 .119 
Thalamus L 0.07 0.42 .678  -0.56 -2.85 .005  -0.54 -2.30 .024 
Thalamus R -0.06 -0.28 .782  -0.40 -1.61 .110  -0.71 -2.83 .006 
Ventral DC L -0.15 -0.84 .400  0.19 0.81 .418  -0.16 -0.61 .544 
Ventral DC R -0.06 -0.31 .760  0.05 0.2 .840  -0.35 -1.50 .136 
Ventricles -0.07 -0.41 .685  0.31 1.52 .132  0.93 4.94 <.001‡ 

Lateral L -0.10 -0.58 .561  0.28 1.41 .163  0.89 5.13 <.001‡ 
Lateral R -0.05 -0.32 .747  0.30 1.44 .152  0.71 4.18 <.001‡ 
Inferior lateral L -0.03 -0.23 .819  0.60 5 <.001‡  1.58 8.94 <.001‡ 
Inferior lateral R 0.00 -0.01 .996  0.32 2.48 .015  1.34 7.78 <.001‡ 
3rd -0.04 -0.23 .820  0.50 2.53 .013  0.60 2.82 .006 
4th 0.08 0.84 .403  -0.29 -2.03 .046  -0.16 -0.85 .399 

Corpus callosum 0.01 0.07 .944  -0.49 -2.8 .006  -0.48 -2.96 .004 
Subcortical GM -0.06 -0.36 .718  -0.37 -1.15 .252  -1.24 -4.66 <.001* 
* Volumes significantly smaller than the predicted normative values. 
‡ Volumes significantly larger than the predicted normative values. 
ZOP: Z score obtained by subtracting the observed volumes and the normative volumes predicted by the linear model divided by the root 
mean square error of the model. 
t: independent two-sample t-test between the observed volumes and the normative volumes predicted by the model. Bonferroni-
corrected critical value for significance: .002. 
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