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Résumé

La prévision de la profitabilité du client, ainsi que la tarification, sont des pièces centrales
dans le monde des sciences actuarielles. En utilisant des données sur les historiques des
clients et en optimisant des modèles statistiques, les actuaires peuvent prévoir, dans une
certaine mesure, le montant qu’un client réclamera durant une certaine période. Cependant,
ces modèles utilisent souvent des données sensibles reliées au client qui sont considérées comme
étant des facteurs de risque très importants dans la prédiction de pertes futures. Ceci est
considéré comme étant légal dans plusieurs jurisdictions tant que leur utilisation est supportée
par des données actuarielles, car ces attributs permettent aux clients d’obtenir une prime plus
précise. Toutefois, comme soulevé dans la littérature récente en apprentissage machine, ces
modèles peuvent cacher des biais qui les rendent discriminants envers certains groupes. Dans
ce mémoire, nous proposons un modèle de prévision de la profitabilité du client utilisant
des avancées récentes provenant du domaine de l’apprentissage machine pour assurer que ces
algorithmes ne discriminent pas disproportionnellement envers certains sous-groupes faisant
partie de l’intersection de plusieurs attributs protégés, tel que l’âge, la race, la religion et l’état
civil. En d’autres mots, nous prédisons équitablement la prime théorique de n’importe quel
client en combinant l’état de l’art en prédiction de pertes en assurance et appliquant certaines
contraintes d’équité sur des modèles de régression.

Suite à l’exécution de l’estimation de la profitabilité du client sur plusieurs jeux de données
réels, les résultats obtenus de l’approche proposée sont plus précis que les modèles utilisés
traditionnellement pour cette tâche, tout en satisfaisant des contraintes d’équité. Ceci montre
que cette méthode est viable et peut être utilisée dans des scénarios concrets pour offrir
des primes précises et équitables aux clients. Additionnellement, notre modèle, ainsi que
notre application de contraintes d’équité, s’adapte facilement à l’utilisation d’un grand jeu de
données qui contiennent plusieurs sous-groupes. Ceci peut être considérable dans le cas où un
critère d’équité intersectionnel doit être respecté. Finalement, nous notons les différences entre
l’équité actuarielle et les définitions d’équité provenant du monde de l’apprentissage machine,
ainsi que les compromis reliés à ceux-ci.
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Abstract

Customer profitability forecasting, along with ratemaking, are central pieces in the world of
actuarial science. By using historical data and by optimising statistical models, actuaries can
predict whether a client with certain liabilities will claim any loss and what amount will be
claimed inside a defined policy period. However, these models often use sensitive attributes
related to the customer that are considered to be crucial risk factors to consider in predicting
future losses. This is considered legal in many jurisdictions, as long as their use is backed
by actuarial data, as these attributes give a more accurate premium to clients. Nonetheless,
as it has been noted in recent machine learning literature, models can hide biases that make
them discriminate against certain groups. In this thesis, we propose a customer profitability
forecasting model that uses recent advancements in the domain of machine learning to ensure
that these algorithms do not discriminate disproportionately on a subgroup of any intersection
of protected attributes, such as age, gender, race, religion and marital status. In other words,
we fairly predict the theoretical premium of any client by combining state-of-the-art methods
in insurance loss prediction and the application of fairness constraints on regression models.

After performing customer profitability estimation on multiple real world datasets, it is shown
that the proposed approach outperforms traditional models usually used for this task, while
also satisfying fairness constraints. This shows that this method is viable and can be used in
real world scenarios to offer fair and accurate premiums to clients. Additionally, our model and
our application of fairness constraints scale easily when using large datasets that contain many
subgroups. This can be substantial in the case of satisfying an intersectional fairness criterion.
Finally, we highlight the differences between actuarial fairness and fairness definitions in the
world of machine learning, along with its related trade offs.
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Whatever is my right as a man is
also the right of another; and it
becomes my duty to guarantee as
well as to possess.

Thomas Paine
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Introduction

Machine learning is a sub-domain of artificial intelligence that is often used for automated
decision making. In businesses, its number of applications to accelerate existing processes
using historical data is constantly increasing. By optimising a function properly to predict
future outcomes using past outcomes, one can expect to reproduce a past behaviour. For
example, these algorithms can be used for regression or classification tasks. Classic instances
of classification tasks involve assigning the most probable label to a new item (e.g., image
labelling, email categorisation and cancer detection). As for regression problems, these involve
predicting a real number. This can include determining the potential grade of a student or
predicting the price of a house.

Despite all the enthusiasm that surrounds this subject, many concerns have risen from the
use of machine learning algorithms for automated decision making. As machine learning algo-
rithms have made their way into many regulated domains, these algorithms must be evaluated
as they have an impact on society. The externalities that come with the use of machine learn-
ing algorithms bring new concerns into decision making as a whole. The outcomes produced
by these algorithms can sometimes discriminate towards parts of a population on the basis of
gender or ethnicity. Of course, no ill or explicitly bad intention was considered to be the root
cause of these negative biases. Often, the historical data that is used to train these algorithms
can be biased. As such, the algorithm perpetuates and amplifies these unwanted implicit
biases onto future results.

Common examples of regulated tasks that can use machine learning include risk recidivism
prediction, loan approval, university acceptance and job hiring. These decisions need to be
monitored for crucial reasons: they can negatively affect the livelihood of people. That includes
people that are the most vulnerable. If an automated decision system discriminates against a
certain group, it affects whole communities as much as it being done by a real person when it
is based on unfounded biases. It perpetuates negative feedback loops on an even larger scale,
as it can predict outcomes on millions of different cases in a matter of seconds. That is why
government bodies must ensure fairness on these tasks. This is problematic, as these entities
are not equipped with the proper tools to measure and enforce fairness on different outcomes.

Another known task supervised by a regulatory body is ratemaking for the insurance industry.
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Estimating theoretical insurance premiums, along with customer profitability, is indispensable
for providing a different set of protections to a client according to their specific needs and risks.
As much as it is important for insurance providers to stay profitable, clients need to be in-
sured without the presence of disloyal or abusive practices. An insurer giving unnecessarily
high or inaccurate premiums to a subgroup effectively prevents them from being protected
from catastrophic events, which increases their risk of financial hardship. Hence, if a bi-
ased algorithm is used for this task, then undue harm might disproportionately be put upon
vulnerable communities.

In this thesis, we outline a framework for insurance companies and regulatory agencies alike to
measure and ensure fairness when performing customer profitability estimation in the insur-
ance industry. By intersecting many fields such as actuarial science, law, machine learning and
philosophy, we propose guidelines that permit the existence of machine learning that comply
with anti-discrimination laws, that minimises price changes to clients and that keep insurance
companies profitable. These guidelines include the encoding of sensible variables, the selection
of a metric that can be used to measure unfairness in this context and the efficient optimisation
of a gradient boosted tree model that satisfies both performance and fairness constraints as
much as possible. As these objectives often come at odds, we discuss and compromise on these
subjects. We also apply those proposals by integrating them into state-of-the-art prediction
models and by putting them in real use cases.

Chapter 1 presents preliminary notions that are essential in understanding the following
chapters of this thesis. These prerequisites include an introduction to supervised learning,
which covers classification and regression problems. Afterwards, we introduce common linear
models that are used to solve these problems, as well as the different functions that can be
optimised according to the target objective. Finally, we add an analysis of tree boosting
models, which combine many weak learners to create a strong one.

Chapter 2 introduces and reviews the current state of fairness in machine learning. We
begin by listing the many definitions that encompass fairness in this domain. Then, we show
how different processes can be applied to automated decision making pipelines to satisfy these
definitions. These processes differ in their placement in the decision making process and in
their application with regards to the algorithm that is used. We finish with the definition of
fairness that exists in actuarial science and the important distinctions that exist with machine
learning in that regard.

Chapter 3 directly addresses the main problematic of this thesis, which is to fairly forecast
customer profitability in the insurance industry using fair boosting. We formally present the
task at hand and its relation to insurance pricing. We then go through all of the different
concerns that should be taken into consideration when ensuring algorithmic fairness. This
includes selecting the right fairness criterion, the proper method to satisfy this criterion,
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the intersectional encoding of sensible attributes and the appropriate algorithm to tackle
this problem. Ultimately, we combine all of the selected methods to optimise fairness and
performance objectives simultaneously.

Chapter 4 explores various practical results obtained from the method presented in the
previous chapter. We begin by defining the methodology by which we train our model to
ensure that it is optimal and fair. We later employ this procedure by using a real-life home
insurance claim dataset. We show through empirical results that our proposal permits a more
precise and fair risk assessment while using sensible attributes.

We conclude this thesis by reflecting on the qualities and shortcomings of this work, while also
exploring future work that could be done to ensure fairness in the insurance industry.
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Chapter 1

Background Notions

In its most basic form, algorithms derived from the domain of machine learning learn in
a generic way how to perform a certain set of tasks from data. Using a set of previous
observations of an unknown distribution, an algorithm tries to detect tendencies contained in
its inputs in a way that can be applied on new ones. Each instance of the input data contain
a collection of one or multiple quantified attributes that are proper to them. These features
give out information that can be used to relate known instances to a real value, a label, a
structure or a cluster of similar instances. Thus, we are able to link these trends on new items.
Altogether, a machine learning algorithm is defined by the target task and the function that
is being optimised to solve the problem at hand. This chapter focuses on these models in the
context of regression problems.

1.1 Supervised Learning

The most common type of learning task in machine learning is supervised learning. In this
case, the goal is to learn the function that relates a set of inputs to a set of labels. This
relation is defined as a mapping X 7→ Y, where X is the space of possible inputs and Y is
the space of possible labels. It is assumed that this relation is generated from a distribution
D on X × Y, where all samples are independent and identically distributed. Since we do not
know the exact mapping between observations and labels, we hope to use a representative
set of labeled samples randomly drawn from SSS ∼ Dn to learn the most probable one. SSS is
composed of n tuples of known observations and labels (xxxi, yi), where xij is the jth component
of M real-valued attributes of the ith row of known inputs XXX and yi is the ith row of known
real-valued labels (i.e. outcomes) YYY . To represent standalone elements, xj is the jth attribute
for any chosen instance xxx with outcome y and prediction ŷ. By using SSS, a function f(xxx|θθθ) is
estimated. This function contains the parameters θθθ that represent best the relation between
XXX and YYY for any observation xxx. Afterwards, new outcomes are established by calculating the
most likely label or value ŷ = f(xxx|θθθ) of a new xxx.
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For regression problems specifically, f(xxx|θθθ) models the relationship between observations and
real-valued outcomes. For example, a specific regression task could be to predict the salary
y of an individual xxx by using different attributes xj related to it. These attributes include
the person’s age, sex, race and education level. The model would then be optimised by using
historical data XXX containing a list of other people having these features and their own salaries
YYY . A new individual could then have his/her salary ŷ approximated by using f(xxx|θθθ).

On the other hand, classification algorithms learn to categorise observations based on pre-
viously labeled data. If the task of predicting an individual’s salary becomes the task of
predicting if a person makes over or under 50,000 dollars per year, then there are only two
possible outcomes. By attributing the label y = 0 to people making under 50,000 dollars
and y = 1 to the ones making over 50,000 dollars, an algorithm can learn to apply the most
probable label to subsequent individuals.

1.1.1 Objective functions

Multiple methods exist to approximate efficiently the best parameters describing the trends
in D. As defined previously, the goal of supervised learning is to find the best function that
defines the relation between X and Y. That objective corresponds to finding the function
that minimises the expected loss LD, or true risk. The expected loss represents how far the
learned function is from the true relation on the entire space of X × Y. Hence, this objective
could be written as Equation 1.1, where L is the selected loss function. The loss function L
quantifies the discrepancy between a single label y and the predicted outcome f(xxx).

argmin
θθθ

LD(f) = argmin
θθθ

E
(xxx,y)∼D

[L(y, f(xxx|θθθ))]. (1.1)

However, it is impossible to solve this objective directly, as we only have access to samples in
set SSS. That is why instead of optimising the expected risk, the objective focuses on empirical
risk. The empirical risk LS is equal to the average error that is between ŷ and y on the
training set SSS. The resulting objective is equal to Equation 1.2.

argmin
θθθ

LS(f) = argmin
θθθ

1

n

n∑
i=1

L(yi, f(xxxi|θθθ)). (1.2)

The choice for L(y, ŷ) depends on what is better adapted for the problem that needs to be
solved. It also depends on what observations are the most critical in solving the target task.
By minimising the empirical risk, we hope to find the best θθθ that produces the model that has
the smallest true risk possible.

1.1.1.1 Basic loss functions for classification

In order to understand the concept of loss functions in a more practical setting, it is essential
to present loss functions in their most basic forms. Further examples of these objectives, along
with different instances where their usage is required, are presented in this section.
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(a) Simple linear classifier (b) Complex classifier

Figure 1.1 – Example of different classifiers on a binary classification problem

The most basic loss function for classification problems is the zero-one loss:

L(y, ŷ) = I(ŷ 6= y),where I(a) =

{
1 if a = True,
0 if a = False.

(1.3)

Consider a dataset containing n = 25 observations (xxx1,xxx2,xxx3, ...,xxx25) that each have two
attributes (xi1, xi2), where xi1 denotes the positioning of the ith observation with regards to
the x-axis and xi2 denotes the position of the element with regards to the y-axis. As seen
in Figure 1.1 elements are shaped in two moons that cannot be linearly separated, each are
assigned a class yi ∈ {−1, 1} according to their respective moon. We train a simple linear and
a more complex discriminant f(xxx) to label future elements using our previous observations.
To evaluate the zero-one loss on the training set as seen on Figure 1.1, we can simply count
the number of elements that are on the wrong side of the classifiers’ decision boundary and
divide it by the total number of labeled elements. As elements inside the light blue zone are
classified as yi = −1 and elements inside the light brown zone are classified as yi = 1, we
can count that two of each group’s elements are misclassified by the classifier. As such, the
first figure has an expected loss of 4

25 = 0.16, while the second one perfectly classifies all the
observations. Hence, we can assume that the model with the lowest loss will probably label
more accurately future observations.

Another way to quantify the empirical risk of a classifier is to use hinge loss:

L(y, ŷ) = (1− yŷ)+ = max(0, 1− y · f(xxx)), y ∈ {−1, 1}. (1.4)

Instead of quantifying the rate at which an item is assigned to the wrong class, we estimate
a distance between the predicted value and the true label. This distance is calculated by
multiplying the true label y with the predicted score ŷ. This results in a loss that can only
be decreased if both of the elements have the same sign. By using the model’s initial output,
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Figure 1.2 – Hinge loss (blue) compared to zero-one loss (green).

it is possible to determine how far off the classifier is to having the right result. By putting a
lower bound to this loss to zero, we make sure that if the f(xxx) predicts exceedingly well the
correct label (over 1 or under -1), the model is not rewarded. On the other hand, exceedingly
wrong outputs are not capped and are more severely penalised. This makes a model focus
more on elements that are far from being correctly labeled, more than ones which are close to
being correct.

If we come back to the previous example where a simple classifier makes four mistakes and
another one perfectly classifies the elements based on their predicted labels, hinge loss gives a
similar result but in a different manner. Instead of giving out the number of errors, it shows
when some instances are closer to being errors and when they are errors, it shows how far
they are to being correct. So for Figure 1.1, the predicted values in a) can cause predictions
that are way off with a loss of 0.40, while b) has a loss of 0.05. Note that b) does not have
a null loss even if all elements are correctly labeled, since some elements are too close to the
decision boundary.

As shown in Figure 1.2, the hinge loss and the zero-one loss can be easily compared side to
side in a single graphic. While zero-one loss incurs no cost to the classifier if the proper label
is applied, the hinge loss continues to consider a loss until the exact label is obtained without
using a threshold to remove any uncertainty near the decision boundary.

Depending on the use case, it is important to choose the proper loss function for the task at
hand. If we were to consider one of the two losses previously presented, both of them quantify
the capacity to correctly label elements. In a case where we want a classifier to make the least
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number of errors possible, we can use the zero-one loss. Otherwise, if an algorithm with the
average minimal distance between each y and ŷ is needed, the hinge loss would be a better
candidate. There is no loss function that is the best for all problems. Nonetheless, the hinge
loss is useful in cases where a convex and differentiable proxy to the zero-one loss is required.

1.1.1.2 Basic loss functions for regression

When applied to regression problems, loss functions such as the hinge loss are ill-suited. Since
these objectives consider discrete labels and decision boundaries established in a Rn space,
they would give out poor results where the predicted label is continuous. As such, other
distance measures must be employed in order to create regressors.

Since the predicted label and the target number are now floating point numbers, an appropriate
way to establish their discrepancies is to compute the distance between them. The main
difference with the hinge loss is that there is no need for a minimal boundary if the algorithm
is certain about its prediction. In a regression problem, a predicted outcome could be too
low, too high or exactly equal to the target label. To know how close those two points
are, we must not only determine their differences, but also the importance of that distance
towards solving the objective. For example, in some cases, not all distances are treated in a
directly proportionate manner to their size. Most of the distances contained in loss functions
are computed differently, but contain desired properties, such as being always positive and
convex.

One of the most simple ways to determine the distance between the real and predicted outcome
is to calculate the absolute difference between them,

L(y, ŷ) = |ŷ − y|. (1.5)

By taking the mean of the positive distance between predictions and outcomes, we obtain the
absolute error, which can be used to attribute and compare the performance of regression
models. This loss has the advantage of being the most simple and intuitive, as its distance is
determined by subtracting y from ŷ. It is important to note that in this case, all instances
have their errors considered as being of equal importance.

Another way to determine regressor performance is to calculate the squared error separating
expected outcomes with results:

L(y, ŷ) = (ŷ − y)2. (1.6)

Instead of determining the loss according to the absolute distance, the squared distance is used.
In return, higher errors are amplified and represented in bigger proportion in the squared
error.
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Figure 1.3 – Regression losses in relation to the distance between yi and ŷi

(a) Absolute error (b) Squared error

Figure 1.4 – Example of a regressor and its errors

Figure 1.3 shows how fast each loss grows according to a residual (1.7).

r = y − ŷ (1.7)

As squared loss increases in a quadratic way and absolute loss increases in a linear way, they
obviously output different results and are useful in different cases. The absolute loss’ penalties
grow in a linear fashion, thus being higher than squared error if the absolute difference is
under 1. Otherwise, if the absolute residual is over 1, the squared error’s growth will result in
giving it more importance.

In order to compare both of these objectives, a simple linear regression can be produced using
the same random data points, while only comparing the effect each error has on the total
mean error.

As it can be determined from Figure 1.4, using different loss functions allows to compare
different models, while weighting each observation differently in the comparison. Because the
squared error emphasises higher errors, it will also give greater importance to outliers. For
example, the next to last data point has the highest error for both objectives, but does not
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represent the same proportion of the error. In Figure 1.4 a), the total sum of the error is
15.89, the mean error is 3.18 and the maximum error is of 5.53, which gives it 34.8% of the
total error. On the other hand, in Figure 1.4 b), the error sums up to 58, the average loss
is 11.6 and the maximum error is of 30.6. This same residual now accounts for 52.8% of the
total discrepancies. Hence, comparing regressors using the mean squared error will reward
being precise on extreme values, while mean absolute error will reward being precise equally
on each instance. The trade off lies in the value of performance with outliers.

1.1.2 Model comparison and selection

Using losses to assess and compare model performance can be useful in cases where they
are used on different models in the same context. They can easily give insight into model
performance by knowing that a lower or higher value for a certain metric is better. However,
these metrics must be taken with a grain of salt if they do not take into consideration the
context in which they are used. In order to make qualitative assertions about the real world
performance of a machine learning algorithm, one must find metrics that are proper to the
task at hand. For regression problems, this means that error metrics must be scaled properly
to give real insight into model behaviour if the errors are always abnormally high in a certain
context. All relevant metrics, along with the context of application, must be considered as the
whole portrait of an algorithm’s performance and must not be taken individually. Altogether,
they can be useful when translated into business terms that can transmit the value of using a
specific model in a production setting.

1.1.2.1 Metrics for classification problems

In a simple binary classification problem, no single metric can be applied to any business
problem to determine a satisfactory level performance. That is because the context in which
an algorithm is applied matters.

A common way to represent most of the classification metrics is to place them into what is
called a confusion matrix, as shown in Table 1.1. A confusion matrix simply lays out where
each element was classified according to its true label. In other words, in the case where
there are two possible outcomes, the goal would be to maximise the numbers in the green
downwards diagonal, while minimising the numbers in the upwards red diagonal. In the case
where all elements were correctly labeled by an algorithm, this would mean that the true
elements would be counted in the upper left quadrant, that all the false elements would be
counted in the bottom right quadrant and that the remaining two quadrants wouldn’t have
any elements placed in them.

To illustrate this, we can go back to the classification problem presented in Figure 1.1 a).
In this case, twenty-five elements were used as training data. If we consider that elements
with y = 1 are in the "positive" class and that instances with y = −1 are the "negative"
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True label
Positive Negative

Predicted
label

Positive
True

positives
(TP)

False
positives
(FP)

Negative
False

negatives
(FN)

True
negatives
(TN)

Table 1.1 – A confusion matrix

ones, thirteen of them are positive, while twelve of them are negative. According to the
decision boundaries of the simple classifier, of the thirteen positive elements, eleven of them
are considered to be positive, while two of them are labeled as negative. On the other hand,
ten of the negative elements are in the correct section, whereas two are incorrectly categorised.
This would result in eleven true positives, ten true negatives, two false positives and two false
negatives.

The confusion matrix is useful as it can be used in the future to calculate more complex and
representative performance metrics. The most intuitive metric to extract out of this is the
accuracy (1.12). Accuracy represents the rate at which instances of an overall distribution
are placed in the right category by a classifier. For example, if we take into consideration the
previous problem, out of 25 elements, 21 are properly labeled by the simple classifier. This
would then mean that the algorithm has a rate of success of 21

25 = 0.84, or 84%.

TPR/Recall/Sensitivity =
TP

TP + FN
(1.8)

FPR =
FP

FP + TN
(1.9) Specificity =

TN
TN + FP

= 1− FPR (1.10)

Precision =
TP

TP+FP
(1.11) Accuracy =

TP+TN
TP+TN+FP+FN

(1.12)

As discussed previously, no metric is perfect to assess performance in every context. If we take
into consideration a problem where extremely rare events need to be detected, accuracy could
not portray an accurate depiction of classifier performance to do a certain task. For instance,
in order to find fraudulent transactions from millions of valid transactions, an algorithm must
be capable of determining the criteria that can single out these odd occurrences. The problem
here would lie in the fact that even if a model detects no anomalies, its accuracy would still
be near perfect. Supposing that there are 4% of transactions that are fraudulent and that a
model always returns "negative", it would still get a 96% accuracy score.
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Figure 1.5 – Example of a ROC Curve [59]

To evaluate classifier performance on cases containing unbalanced data where an event occurs
rarely, a metric such as the recall (1.8) can be of great use. Recall quantifies the rate at
which an algorithm can detect the overall "positive" events. In the case of fraud detection,
the true positive rate would determine the percentage of overall frauds that are detected. If 2
out of 4 total frauds are detected, then the true positive rate would be of 50%. On the other
hand, recall is not useful in all cases. If an algorithm determines that all transactions are
problematic, it would have a perfect recall, but most of the flagged transactions wouldn’t be
problematic. This would result in many clients being suspected of a crime they didn’t commit.
That is why the false positive rate (1.9) is a great metric to counterbalance recall. The
false positive rate quantifies the rate at which flagged elements are truly negative. Given a
situation that results in dire consequences when an instance is attributed the "positive" class,
it is wise to ensure low FPR, as we can consider that flagged elements have a low chance of
being "negative".

To represent the trade-off that occurs between the false positive rate and recall, a graphic
commonly known as the ROC Curve (Receiver operating characteristic), as shown in Figure
1.5, is useful in showing how much recall increases when flagging more instances and how
much the false positive rate decreases when flagging fewer instances. The higher the area
under the curve, the better the classifier tends to perform. The ROC Curve can also be used
to determine the optimal threshold to obtain a certain true or false positive rate, depending
on the target objective.
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1.1.2.2 Metrics for regression problems

With regards to problems requiring the prediction of continuous values, results cannot be put
in a simple matrix. As outcomes vary in very different ways depending on their scale and
their distribution, they cannot be put in discrete boxes. This makes the use of classification
metrics difficult to apply. In return, the evaluation metrics for regression do not require the
exact prediction, but accurate responses still result in minimal loss. Their goal is not only to
address model performance, but also target complexity and explainability.

An interesting way to represent model capability relative to the task at hand is to use the total
sum of squares of the outcomes (1.16). The total sum of squares (SST) is equal to the sum
squares of each label in YYY , but can also be decomposed in a way that determines how much a
model can explain the variation of results with its current parameterization and predictions:

ȳ =

∑n
i=1 yi
n

(1.13) x̄j =

∑n
i=1 xij
n

(1.14)

SST = SSE + SSR (1.15) SST =

n∑
i=1

(yi − ȳ)2 (1.16)

SSE =

n∑
i=1

(yi − ŷi)2 (1.17)

As shown in Equation 1.15, SST can be split into two components : the sum of squared
estimates of error (1.17) and the sum of squares due to regression. The SSE of a regressor is
the sum of the squared residuals between the prediction ŷ and the observation’s true value y.
In other words, the SSE is the unaveraged mean squared error found in 1.6. As its counterpart,
SSR represents the part of the variation of YYY that is not a residual : it considers how much
an algorithm performs better than simply using ȳ (i.e. the mean of YYY ) as a response. In the
end, it shows how much a model can explain the variability in YYY .

As standalone absolute values, SST, SSE and SSR are not meaningful metrics because they
increase naturally with the number of observations in a dataset. In order to scale these results
R-squared (1.18) produces a measure of relative performance that gives a meaning to the
previous absolute ones:

R2 = 1− SSE

SST
=
SSR

SST
. (1.18)

In short, the coefficient of determination, or R2 metric, represents the proportion of the
variability of YYY that is explained by the predictions of the present model. By returning a
proportion, it can be used on any regression problem. It also scales model improvement over
the use of the mean, where the SST would be equal to the SSE. As an example, the problem
presented in Figure 1.4 b) can be reused to illustrate its use. The calculated SST in this case
is of 60.24, the SSE of 58.14 and the SSR of 2.1. By inserting these values in 1.18, a value of
0.035 is computed, which means that 3.5% of the variation of YYY is explained by the regressor.
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Another way to scale an error metric to more explainable terms for model comparison is to
use the RMSE (Root mean squared error),

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2. (1.19)

In itself, the mean squared error often gives high numbers that do not represent by how much
a predictor is off in absolute terms. By applying a square root to this metric, Equation 1.19,
it is easier to determine by how much the predictor will be off the mark when producing
outcomes from new observations. It is still influenced by higher errors, but it is now presented
in absolute units instead of squared units.

1.1.2.3 Model selection

Model selection is an essential part in the process of creating a real-world machine learning
solution that not only facilitates the optimisation of the best θθθ for f(xxx), but also ensures that
the selected function’s type of model works well on an entire distribution, instead of only on
a training set.

Furthermore, this step in a project’s life cycle takes into consideration a model’s hyperpa-
rameters. This type of parameter, which is not included in θθθ, is constant throughout its
training. These hyperparameters are set before optimisation and alter algorithm complexity,
convergence, loss function, etc. A common use of hyperparameters is to determine the rate at
which θθθ is adjusted with regards to the chosen loss function. Another one could be the number
of relevant features to use in the algorithm. More practical applications of hyperparameters
will be presented in the next sections.

The establishment of many metrics to evaluate models facilitates the comparison of models,
which now gives way to an easier way to select good models. An important caveat to this is
that these metrics have to be used properly to keep their credibility. For instance, a metric
that is calculated on training observations does not guarantee that the model will perform
similarly on new observations, as the training observations are in the known distribution of
elements. That is why it is also crucial to have a proper training methodology to select the
best model to use on new observations.

The most simple way to properly validate a certain model would be to randomly partition a
dataset into three sections : a training set, a validation set and a test set. The splitting of
SSS into these sections ensures that the algorithm with certain hyperparameters can generalise
on other sets of data. Training data usually takes between 50% and 80% of the data, while
the rest is divided into a validation and a test dataset. Obviously, the training data is used
to train a model and to observe tendencies. On the other hand, the validation data is used to
assess model performance on unknown entities and is used to compare models. Finally, the
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Split 1 Split 2 Split 3 Split 4 Split 5
Iteration 1 Validation Training Training Training Training
Iteration 2 Training Validation Training Training Training
Iteration 3 Training Training Validation Training Training
Iteration 4 Training Training Training Validation Training
Iteration 5 Training Training Training Training Validation

Table 1.2 – Example of a 5 fold cross-validation.

Year 1 Year 2 Year 3 Year 4 Year 5
Iteration 1 Training Validation
Iteration 2 Training Training Validation
Iteration 3 Training Training Training Validation
Iteration 4 Training Training Training Training Validation

Table 1.3 – Example of a 5 year time series cross-validation.

test set is used on the selected model to guarantee model performance on data that was never
used for training or evaluation. The distinction here lies in the fact that using a validation
set too often to evaluate model performance often creates a function that is optimised only
for the validation set. The test set should preferably be only used once at the end of model
selection to have an unbiased estimate of the chosen model.

The previous method presented is traditionally used to solve machine learning problems, but
is still ineffective in most cases. To prevent the over usage of a validation set, SSS can be
randomly split into k subsets of equal size. The k-fold cross-validation algorithm trains
k times the same model using the same hyperparameters, but changes the validation and
training set every time. As shown in table 1.2, for each combination of splits possible, we
select k− 1 sets as training data for our algorithm and we validate the resulting function with
the validation set. In the end, by calculating the average of each metric and loss on each
validation set, it is possible to get a proper assessment of the model and its hyperparameters
over an entire dataset. Increasing k augments computation time, but also gives out a better
insight into model performance when using subsets that resemble the entire dataset. A test
set should still always be put aside to ensure that the selection of the final model is not only
based on its capacity to perform on the cross-validation, but also on new observations that
are not considered in the choice of model and hyperparameters. When the best combination
of hyperparameters is found, the model can be refit with the entire training set to maximise
performance.

K-fold cross-validation is a great method for validating models, but makes the crucial assump-
tion that instances in SSS must be independent and uncorrelated to illustrate real-world classifier
performance. As a counter-example, multiple observations that are taken on the same indi-
vidual over time are not independent. In this case, k-fold cross-validation does not take into
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consideration that outcome distributions changes over time and that performance is essen-
tial for future observations more than past ones. As a result, time series cross-validation
(TSCV) was created to take into consideration model performance over time. As shown in
Table 1.3 and Algorithm 1.1, TSCV splits a dataset into k time periods, instead of random
folds. In short, by ordering the splits by time period, this method sequentially adds data from
a new period to the training set and computes validation metrics with elements from the next
year. Hence, this methodology produces robust models and configurations that perform well
over time on dependent observations.

Algorithm 1.1 Time series cross-validation

1. Set validation error E = 0.

2. For i = 1 to k − 1:

a) Set training data T as (xxx, y) ∈ SSS between periods 0 and i.

b) Set validation data V as (xxx, y) ∈ SSS at period i+ 1.

c) Fit a model f(xxx) using training data T .
d) Validate the model using V.
e) Add the validation error to E.

3. Output E
(k−1) .

Grid-search is a methodology that attempts to find the best model and the optimal model
configuration. For each specific type of function that needs to be assessed, we select all
hyperparameters that may be of interest to it. For each hyperparameter, we then choose a list
of values that may be close to the ideal one. These values can be established by domain experts,
by rules of thumb for a specific algorithm or randomly if none of the above is applicable. This
results in a grid of hyperparameters to be submitted to cross-validation. As such, each possible
combination of hyperparameters is used on their target algorithm for cross-validation using
the k-fold or time series window methods.

Choosing the proper cross-validation methodology is essential because it confirms two things:
the selected algorithm is the best performing one overall according to the chosen metrics and
the algorithm does not overfit on the training set. Overfitting is a problem that arises when
an algorithm learns a training set too well, which leads to poor generalisation. For example,
consider an algorithm that predicts the label of an observation by selecting the class of the
training example which is the most similar that observation. It will have a perfect score on the
original data, but will often have high validation loss, since it has learned most of the noise
contained in the training set. Instead, models should be built to detect general tendencies
that can be applied on new data. However, models that lack variance and complexity will also
underperform on new data, as no particular tendency will have been detected. That is why
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cross-validation inherently aims to balance model complexity.

1.2 Linear Models

Linear models and their family of functions are some of the simplest types of models that can
be easily understood as they use a unique vector of independent coefficients βββ as parameters. In
the most basic cases, each coefficient is assigned an attribute that, when multiplied, shows the
linear relation between the attribute and the average outcomes. Altogether, the multiplication
of each coefficient with its attribute represents the independent impact of each attribute on
a prediction. For the prediction of continuous values, one of the most straightforward linear
models is the simple linear regression, where there is only one observed attribute:

f(xxx|θ̂̂θ̂θ) = f(xxx|β̂̂β̂β) = β̂1x1 + β̂0. (1.20)

For this particular model, the parameters β̂̂β̂β represent the estimated coefficients β̂1 and β̂0.
When making a prediction, β̂0 is the function’s intercept, which is the function’s value if x1 = 0.
β̂1 is the average variation of y in relation to the increase of x1 by one unit. An attribute x0
associated with β̂0 is implicitly present to add the intercept to the final prediction, but isn’t
indicated in the equation as it always has a value of 1.

To obtain the estimation of the coefficients that represents the relation between X and Y, we
must look to the model’s loss function, which is traditionally the squared error. By putting
Equation 1.6 and 1.20 into 1.2 the objective then becomes Equation 1.21:

argmin
θθθ

LS(f) = argmin
θθθ

1

n

n∑
i=1

(yi − ŷi)2 = argmin
β̂̂β̂β

1

n

n∑
i=1

[yi − (β̂1xi1 + β̂0)]
2. (1.21)

In order to solve Equation 1.21, one must look to Figure 1.3 to gather intuition on how to
minimise squared loss. Since we know how to calculate the loss, we can also know its gradient
by obtaining its differentiation with respect to each parameter in the regressor. As long as
we know that the loss function is convex, it is possible to know the parameters at which the
residuals stops going down. When the gradient is equal to zero, the estimated parameters
constitute the function which has reached the minimum possible loss. Equation 1.24 is an
example of the calculations required to get the proper estimation of β̂0, and Equation 1.25
provides the result of the same process for β̂1. In these equations, x̄j refers to the average
value of the jth attribute contained in set XXX.

n∑
i=1

(yi − ȳ)(xi1 − x̄1) =
n∑
i=1

yixi1 −
n∑
i=1

ȳxi1 −
n∑
i=1

yix̄+
n∑
i=1

x̄ȳ (1.22)

=

n∑
i=1

yixi1 −
n∑
i=1

ȳxi1

=

n∑
i=1

(yi − ȳ)xi1
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n∑
i=1

(xi1 − x̄1)2 =
n∑
i=1

(xi1 − x̄1)xi1 (1.23)

∂LS(f)

∂β̂0
=

n∑
i=1

∂

β0
(yi − ŷi)2

0 =
∂

∂β̂0

n∑
i=1

(yi − β̂1xi1 − β̂0)2

0 = −2
n∑
i=1

(yi − β̂1xi1 − β̂0)

n∑
i=1

β̂0 =
n∑
i=1

(yi − β̂1xi1)

nβ̂0 =
n∑
i=1

(yi − β̂1xi1)

nβ̂0
n

=
1

n

n∑
i=1

yi −
1

n

n∑
i=1

β̂1xi1

β̂0 = ȳ − β̂1x̄1. (1.24)

∂LS(f)

∂β̂1
= −2

n∑
i=1

xi1(yi − β̂0 − β̂1xi1)

0 =

n∑
i=1

xi1(yi − β̂0 − β̂1xi1)

=

n∑
i=1

xi1yi − β̂0
n∑
i=1

xi1 − β̂1
n∑
i=1

x2i1

Substituting Equation 1.24 for β̂0

0 =
n∑
i=1

xi1yi −
(
ȳ − β̂1x̄1

) n∑
i=1

xi1 − β̂1
n∑
i=1

x2i1

=
n∑
i=1

xi1yi −
n∑
i=1

xi1ȳ + β̂1

n∑
i=1

xi1x̄1 − β̂1
n∑
i=1

x2i1

=
n∑
i=1

(yi − ȳ)xi1 − β̂1
n∑
i=1

(xi1 − x̄1)xi1

β̂1 =

∑n
i=1(yi − ȳ)xi1∑n
i=1(xi1 − x̄1)xi1

.

Using equations 1.22 and 1.23

β̂1 =

∑n
i=1(yi − ȳ)(xi1 − x̄1)∑n

i=1(xi1 − x̄1)2
def
=
Cov(x1, y)

V ar(x1)
(1.25)
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In a multidimensional context, the same process to optimise a wider set of parameters is the
same: differentiate the empirical risk of multidimensional least squares regression (1.28) with
regards to each parameter and solve ∂LS(f)

∂β̂̂β̂β
= 0. Solving Equation 1.29 provides the optimal

solution for each parameter in the multivariate case, where β̂̂β̂β = [β̂0, ..., β̂j , ..., β̂M ] are the
M + 1 coefficients related to the intercept and M features:

LS(f) =
1

n

n∑
i=1

(yi − xxx′β̂̂β̂β)2 (1.26)

=
1

n
‖YYY −XXXβ̂̂β̂β‖2 (1.27)

=
1

n

(
(YYY −XXXβ̂̂β̂β)′(YYY −XXXβ̂̂β̂β)

)
(1.28)

∂LS(f)

∂β̂̂β̂β
=

1

n

∂

∂β̂̂β̂β

(
(YYY −XXXβ̂̂β̂β)′(YYY −XXXβ̂̂β̂β)

)
= 0

=
∂

∂β̂̂β̂β

(
YYY ′YYY − 2β̂̂β̂β′XXX ′YYY + β̂̂β̂β′XXX ′XXXβ̂̂β̂β

)
0 = −2XXX ′YYY + 2XXX ′XXXβ̂̂β̂β

β̂̂β̂β =
(
XXX ′XXX

)−1
XXX ′YYY . (1.29)

1.2.1 Generalised Linear Models

As the name indicates, generalised linear models (GLMs) are a more generic form of the mul-
tivariate linear regression. While making some of the same assumptions, they mostly differ in
the process in which the optimised objective is obtained and the variety of tasks that they can
accomplish. GLMs assume that y can be split into two components: a systematic component
and a random component. The systematic component is the variation of YYY explained by the
predictor f(xxx), while the random component is the unexplained variance of YYY due to missing
information in xxx or random circumstances. As a result, GLMs aim to explain the variance of
YYY as much as possible.

1.2.1.1 The exponential family of distributions

Least squares linear regression assumes that y ∈ R. When that is not the case, GLMs can
work with the assumption that y is a random variable that follows a distribution from the
exponential family of distributions, as expressed by Equation 1.30. The exponential family
of distributions includes the Gaussian, Bernoulli, Poisson, Gamma and Tweedie distributions.
It is important to note that in Equation 1.30, "Exponential" does not refer to a specific
distribution and is meant to be substituted by any distribution that is part of the exponential
family of distributions.

y ∼ Exponential(µ, φ) (1.30)
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An essential parameter of Equation 1.30 is the mean of the distribution µ(xxx). When each
attribute in xxx has a linear relationship with the mean of the outcomes, E[YYY |xxx] = µ(xxx) = xxx′βββ

and y = g(µ(xxx)) + ε, where µ(xxx) is the systematic component and ε is model error that is due
to random noise (i.e. the random component). As µ(xxx) needs to be linear with regards to xxx,
it must be transformed by using a link function. The purpose of a link function g(·) is to
model the relationship between µ(xxx) and xxx. When µ(xxx) = xxx′βββ, no link function is needed.
However, if µ(xxx) = exp(xxx′βββ) as in Equation 1.31, a link function is applied that transforms a
model with a linear relationship into a model with an exponential relationship:

g(µ(xxx)) = log(exp (xxx′βββ)) = xxx′βββ (1.31)

⇔ g−1(xxx′βββ) = µ(xxx) = exp(xxx′βββ). (1.32)

The other important parameter in 1.30 is the parameter φ, which is the dispersion parameter
of the function. It is related to the variance, but it is not the actual variance. It is the
constant component of variance which can be found in the distribution of YYY . Since a Gaussian
distribution assumes that the variance does not vary with the mean µ(xxx) and thus that the
variance is constant, σ2 would be equal to φ. All the other distributions assume that the
variance contains a constant component φ, but also that the variance depends on the mean
of the distribution µ(xxx) = xxx′βββ, as seen in Table 1.4. As such, the mean and variance of the
assumed distribution varies for each observation xxx. For the Tweedie distribution, this mean-
variance relationship can be set by using the power parameter ρ, which will be explored in
Chapter 3.

1.2.1.2 Maximum likelihood estimation

In order to optimise a GLM, it is crucial to select the proper distribution with regards to
the task to solve. As shown in Table 1.4, knowing the set of possible values of the response
variable y can help in selecting a link function, but can also help in selecting the distribution
used to compute the objective that needs to be optimised. As with linear regression, a loss
minimisation function must be built to optimise each parameter with gradient descent. For
least squares linear regression, β̂̂β̂β can be directly obtained by using Equation 1.29, which is
a closed-form expression. However, for GLMs in general, β̂̂β̂β cannot be obtained by a closed-
form expression. To overcome this, maximum likelihood estimation (MLE) can be used
to get the estimate the best parameters when knowing the distribution of the model. When
optimising a model, MLE tries to find the parameters that were the most likely to have
generated YYY using a known part of the total distribution. This likelihood is hard and inefficient
to estimate and optimise, so extra assumptions must be made about the form of the objective
and the original distribution. Firstly, the models using MLE assume that all the data that
are used are independently and identically distributed. This lets us transform the likelihood
of the distribution P (YYY |θθθ) into the product of independent likelihoods for all independent
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samples
∏n
i=i P (yi|θθθ). Secondly, since the derivative of the product of each likelihood in

Equation 1.33 can get expensive to compute, the logarithmic transformation of the likelihood
equation, or log-likelihood (1.34), can be used to transform Equation 1.33 into separate sums.
Since the logarithm function is a monotonic transformation on the likelihood estimation, an
increase of the log-likelihood is an increase of the likelihood. Afterwards, the derivative of
the log-likelihood with respect to each parameter can be computed and the objective can be
optimised by finding the parameters θθθ that maximise the likelihood. Equations 1.34 to 1.37
show the process in which the log-likelihood function of the normal distribution is transformed
into a simpler form:

P (YYY |θθθ) =

n∏
i=i

P (yi|θθθ) (1.33)

`(YYY |θθθ) def
= log(P (YYY |θθθ)) (1.34)

=

n∑
i=i

log(P (yi|µ(xxxi))) (1.35)

Assuming that yi ∼ N(µ(xxxi), σ
2)

=
n∑
i=i

log

(
1√
2πσ

exp

{
−(yi − µ(xxxi))

2

2σ2

})
(1.36)

= n · log

(
1√
2πσ

)
+

1

2σ2

n∑
i=i

−(yi − xxx′iβββ)2. (1.37)

The final objective can now be easily differentiated. Given that a derivative with respect to
any βj removes any part not containing it, the objective now becomes the maximisation of
1

2σ2

∑n
i=i−(yi −xxx′iβββ)2 with regards to βββ. Also, since that the maximisation of an objective is

equal to minimising its negation, the empirical risk function obtained from the differentiation
of Equation 1.37 would be equivalent to the original empirical risk function of Equation 1.21,
where the loss function L = − log(P (y|µ(xxx))). Hence, this method is conceptually different,
but estimates the same parameters as taking the empirical risk function that needs to be
minimised. This process can be reproduced in the same manner for the Poisson, Gamma,
Tweedie or Bernoulli distribution.

1.2.1.3 Data processing

After the log-likelihood related to the distribution of YYY has been differentiated in a way that
can be used to solve an objective, it is important to note that a dataset must be adapted
before being used in a model’s optimisation process for many reasons.

Firstly, the estimated coefficients represent the linear relation between jth feature and a func-
tion of the mean of the response variable. This bodes well if the feature is continuous. On
the other hand, categorical variables are not well supported out of the box, since the different
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Distribution
Set of
Possible
Outcomes

Most Frequently
Used Link
Function

Variance

Normal R µ(xxx) = xxx′β φ

Poisson Z+ log(µ(xxx)) = xxx′β φµ(xxx)

Gamma R+
∗ log(µ(xxx)) = xxx′β φµ(xxx)2

Tweedie R+ log(µ(xxx)) = xxx′β φµ(xxx)ρ

Bernoulli {0, 1} log( µ(xxx)
1−µ(xxx)) = xxx′β φµ(xxx)(1− µ(xxx))

Table 1.4 – GLM distributions by set of possible outcomes and their characteristics

attribute values do not have any relation to each other. To overcome this, these features must
be encoded in a way that is explainable and that allows a linear relationship to be formed
between categorical values and a function of the mean of the response variable. This is done
by encoding the categorical feature values into dummy variables. The encoding is done in
two parts: the selection of a base level value and the transformation of the non-base level
values into a vector of binary indicators. The base level, which is usually the most frequent
value of the attribute, is the value of a categorical attribute which has its effect kept implicitly
in the intercept of the model. Hence, it is not attributed a coefficient. On the other hand, all
non-base level values are attributed a coefficient which quantify the marginal effect of having
that value instead of the base value. When converting a non-base level categorical value, the
coefficient attributed to this categorical value would then be multiplied by 1 and the other
values would be multiplied by 0. A person’s marital status can be used as an example of
the creation of dummy variables, as it is a qualitative attribute that does not have an order
of magnitude. Consider that the possible values of the attribute are "single", "married" or
"divorced" and that "single" is the base level value. In this case, "single" is encoded as [0, 0],
"divorced" is encoded as [1, 0] and "divorced" is encoded as [0, 1].

Secondly, GLMs work best when all attributes (x1, ..., xM ) are not excessively correlated with
all the other attributes. If some attributes are excessively correlated, a problem known as
multicollinearity may occur. Multicollinearity happens when an attribute can be accurately
predicted by a linear combination of the other variables. If an information can be found twice
in a dataset, it is difficult to determine how much each representation of that information
contributes to y, which adds much uncertainty to the estimates of β̂̂β̂β. As a result, it causes
many problems such as inconsistent estimations of β̂̂β̂β, invalid prediction analysis, overfitting
and high standard errors. If multicollinearity is detected, it can be eliminated by removing all
but one of the correlated features from XXX. It can be assumed that minimal information will
be lost, as the information is redundant in the other attributes.
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Algorithm 1.2 Stochastic gradient descent
1: procedure SGD(S, λ)
2: Initialise β̂̂β̂β(0) = 000
3: for t = 1 to k do
4: sample xxxt, yt from SSS
5: β̂̂β̂β(t+1) = β̂̂β̂β(t) − λ · ∂

∂β̂̂β̂β
L(f(xxxt|β̂̂β̂β(t)), yt)

6: end for
7: return 1

k

∑k
t=1 β̂̂β̂β

(t)

8: end procedure

1.2.1.4 Model optimisation

Since GLMs that assume a distribution of outcomes other than a normal distribution cannot
use a closed-form expression to estimate β̂̂β̂β, stochastic gradient descent (SGD) can be used
instead to obtain β̂̂β̂β. SGD (1.2) is an iterative process in which all parameters are updated using
a single sampled observation’s gradient at a time, instead of the whole dataset. The gradient
is obtained by differentiating the loss function L, which is the log-likelihood of the selected
distribution for GLMs. In the end, SGD optimises the parameters for k iterations, which is
predefined as a hyperparameter. The rate at which the algorithm updates the parameters is
set by the learning rate λ.

1.3 Tree Boosting

1.3.1 Classification and regression trees (CART)

A decision tree represents a partitioning of a Rn feature space into subspaces by defining
the best boundaries that set apart different values of xxx with respect to y. Decision trees are
composed of three types of components: internal nodes, leaf nodes and branches. An internal
node is a representation of a decision rule, which is a boolean condition evaluated on a single
attribute. A decision rule could be, for example, determining if a person is over or under
the age of 40. Depending on the response to that question, the appropriate child branch is
taken to the next node. A leaf node is found at the bottom of the tree and contains the final
predicted value. Altogether, a decision tree is made with a single root node at the top, many
levels of internal nodes, leaves at the bottom and branches that connect them all together.

To obtain a prediction from a decision tree, an observation is passed through the root node
at the top of the tree. Then, it is guided by decision rules through the proper path of internal
nodes and branches until a leaf node is reached. Hence, a prediction is obtained from a decision
tree in a way that is similar to relating the conjunction of boolean conditions on attributes
contained in xxx to its corresponding value.

The process in which a decision tree is created with training set (XXX,YYY ) is done in five steps.
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(a) Decision boundaries

x1 ≤ 0.5

|YYY N | = 10302

ȳN = 1511.266
x0 ≤ 27.5

|YYY N | = 4114

ȳN = 1997.161

x0 ≤ 37.5

|YYY N | = 6188

ȳN = 1188.27

|YYY N | = 133

ȳN = 4495.70

|YYY N | = 3981

ȳN = 1913.68

|YYY N | = 1120

ȳN = 1665.28

|YYY N | = 5068

ȳN = 1082.8

(b) Tree representation of decision rules

Figure 1.6 – Comparison of a decision tree and its resulting partitions

First, the node is assigned a subset data (XXXN ,YYY N ) provided from its parent node. As such,
the root node is attributed the entire training set. It is also assigned the current depth i = 0,
where the depth is the number of branches required to reach the node from the root. Second,
for each attribute in XXXN , all possible decision rules are generated. Afterwards, for each xj ,
all of the possible decision rules xj ≤ η are applied to (XXXN ,YYY N ), where η can be any possible
value of xj . This creates a split sets of outcomes that would be attributed to left and right child
nodes YYY l and YYY r, depending on if the observation related to the outcome had xj over or under
the threshold η. These split sets are kept in a set Q. The split function, such as Equation
1.39, is then computed on all the split sets found in Q. The condition which minimises the
most the empirical risk, is then selected and is assigned to the node. In return, the best gain
of information about YYY N by using any attribute inXXXN is obtained, as seen in Equation (1.40).
Third, the sets YYY l and YYY r resulting from the objective 1.39 and their respective observations
XXX l and XXXr are kept aside for the child nodes. Fourth, the current depth i is incremented by
1. Fifth, if the maximum depth D is not reached, a left child node Nl and right child node Nr

are created and are assigned to the current node. The first three steps are then performed on
the child nodes with their respective datasets (XXX l,YYY l) and (XXXr,YYY r). Otherwise, the parent
node is assigned two leaves instead of nodes. The leaves are assigned values which are equal
to the mean value of their respective outcomes YYY l and YYY r, which are respectively ȳl and ȳr.

As seen in the last paragraph, many hyperparameters affect the creation of the decision tree.
Notably, the maximum depth D can be set to limit the number of decision levels inside of
a tree. In addition, the splitting function can be adapted to other empirical risk functions
than the mean square error to better minimise the target objective. The leaf value can also
be computed using a different function. For example, the median can be used instead of the
mean.

ȳN =
1

|YYY N |
∑
y∈YYY N

y (1.38)
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YYY l,YYY r = argmin
(YYY l,YYY r)∈Q

∑
y∈YYY l

(ȳl − y)2 +
∑
y∈YYY r

(ȳr − y)2

 (1.39)

YYY l,YYY r = argmax
(YYY l,YYY r)∈Q

(∑
y∈YYY N

(ȳN − y)2

|YYY N |
−
∑

y∈YYY l
(ȳl − y)2

|YYY l|
−
∑

y∈YYY r
(ȳr − y)2

|YYY r|

)
(1.40)

An example of a decision tree and its resulting partitions can be seen in Figure 1.6. In that
case, the task is to try to predict how much someone will claim losses to his/her insurer based
on his/her age x0 and his/her marital status x1. The person is single if x1 = 0, while the
person is married if x1 = 1. By associating Figure 1.6 a) to Figure 1.6 b), it can be seen
that each internal node determines the boundary a partition, while the leaves are the values
attributed to each partition. As taking either branch of an internal node leads to different
leaves, the decision rule splits the feature space. Figure 1.6 also shows how decision trees
can support either categorical or continuous values out of the box. In this case, the age is
continuous, while the marital status is categorical. The distribution of the data is clearly not
the same depending on the type of the variable, but the model manages that pretty well. Like
GLMs, it is easy to explain why the model made a certain prediction, since the decision rules
are explicit. However, decision trees do not have to assume that the effect of each feature is
independent, as decision trees are built to make predictions based on a conjunction of rules.
As such, complex decision trees can make the interaction between two variables stand out.
Another quality that makes decision trees stand out from GLMs is that they do not assume
that features have a continuous or monotonic relationship with regards to the objective. For
instance, Figure 1.6 a) shows that the relationship between xxx and y depends on the effects of
x0 and x1. Notably, the age of a single client decreases y at 27.5 years, while y decreases at
37.5 years if the client is married.

1.3.2 Boosting

Decision trees on their own produce explainable classifiers, but have low performance on
new data. That is caused by many factors, including overfitting and high variance in the
distribution of predicted outcomes. For example, training a decision tree with a high volume
of complex data often leads to deep and large trees that do not contain many samples in each
leaf. This creates terminal nodes (i.e. predictions) which are based on a small number of
samples and which highly vary with small changes in data. Also, decision trees are unstable
as they can change substantially with any slight difference in training data.

In order to obtain better generalisation, a set of decision trees can be combined by using
ensembling methods such as boosting. Boosting starts with the idea that combining many
weak learners into an ensemble of weak learners can create a strong ensemble model. To create
this ensemble model, a weak learner is fit on the training data SSS. Then, the errors of that
weak learner are computed and alter the importance of each observation in SSS, which are then
fit on another weak learner. The worse an example was classified, the more weight it has
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in future models. Sequentially, a total of k weak learners are added to a committee of weak
learners that continuously tries to label previously mislabeled observations accurately in what
are called boosting rounds. This creates a ensemble model in which all types of observations
have a higher chance of being labeled accurately.

1.3.3 Adaboost

AdaBoost, an additive boosting algorithm, is one of the most commonly known and simple
form of boosting. To explain it properly, we will take into consideration its simplest use case.
AdaBoost uses tree stumps as weak learners, which are decision trees with a maximum depth
of 1, thus having two leaves. When used on a binary classification problem where y ∈ {±1},
tree stumps will always try to find the best split that separates the positive from the negative
class. In a vacuum, these stumps minimise a zero-one loss (1.4). However, as explained in
Section 1.3.2, these weak learners do not act alone.

Algorithm 1.3 AdaBoost

1. Initialise F = 0.

2. Initialize D(1)
i = 1

n for all i = 1, ..., n, where n = |SSS|

3. For t = 1 to k:

a) Train weak learner ht(xxx|DDD(t)) with observations SSS, minimising the zero-one loss

b) Compute error εt =
∑n

i=1D
(t)
i I(ht(xxxi) 6= yi),where I(a) =

{
1 if a = True
0 if a = False

c) Calculate classifier weight αt = 1
2 log

(
1
εt
− 1
)

d) D(t+1)
i =

D
(t)
i exp(−αtyiht(xxxi))∑n

j=1D
(t)
j exp (−αtyjht(xxxj))

for all i = 1, ..., n

4. Return F (xxx) = sign
(∑k

t=1 αtht(xxx)
)

In Algorithm 1.3, the boosting process starts by defining a distribution DDD(t) ∈ Rn+ over the
training samples, with each sample starting with an equal probability mass D(t)

i of 1
n so

that
∑n

i=1D
(t)
i = 1. The first weak learner is fit with the training observations SSS and the

distributionDDD. As it makes mistakes, eachD(t)
i is readjusted higher if xxxi was wrongly classified,

or lower if xxxi was classified correctly. The next stump will then learn from these mistakes
and will try to focus on the observations that were wrongly classified. However, since each
stump will constantly need to work on observations that couldn’t be classified properly by the
previous weak learners, it will naturally increase the weak learner’s error εt, as the observations
that can’t be properly classified will constantly gain weight in the total error. That is why
AdaBoost builds functions that make predictions based on the majority vote of an ensemble of
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weak learners and the weighting αt of each vote based on the weak learner’s error at training
time (1.41). The resulting ensemble of k weak learners is designated as F (xxx):

F (xxx) = sign

(
k∑
t=1

αtht(xxx)

)
. (1.41)

As such, the principle of boosting is done through each iteration, where misclassified samples
have their importance increased, while the well classified samples have their importance de-
creased. Hence, after enough iterations, a classifier able to perform predictions on simple and
hard observations is provided.

1.3.4 Gradient Boosting

Gradient boosting is another method which uses weak learners, such as CART, and iteratively
increases the importance of misclassified samples. Nevertheless, it is quite different from
AdaBoost. For instance, it does not rely directly on the weight of each observation to optimise
the next weak learner. Also, each weak learner is not attributed a weight with regards to its
error rate. In short, the gradient boosting process improves the accuracy of the model on
observations that aren’t classified properly by setting the gradient of the errors of the previous
weak learners as the target variable of the next weak learner.

Instead of being a stepwise algorithm where each ht is independent, algorithm 1.4 is a stagewise
algorithm, where ŷ(t) is in fact the result of the sum of the predictions of t previous base learners
multiplied by the constant learning rate λ. At each stage of the algorithm, the gradient of
the errors of the previous weak learners become the target variable of the next weak learner,
while the predictions of the learner ht are added to the total predictions ŷ(t) at a learning rate
λ. The result is a function F (xxx), which is the sum of all k base learners multiplied by the
learning rate λ (1.42):

F (xxx) =
k∑
t=1

λ · ht(xxx). (1.42)

All in all, this type of boosting is similar to gradient descent, in which θ̂̂θ̂θ is replaced with ŶYY .
By trying to predict how ŷ must change to be equal to y at each iteration, the algorithm
effectively performs gradient descent on the predicted outcomes to find their optimal value
(i.e. y).

The biggest advantage that gradient boosting has over other boosting methods is that any
differentiable and convex function can easily be used as a loss function. It can naturally
use squared error and absolute error as objectives, but can also use any function that is ob-
tained by maximum likelihood estimation. Therefore, any log-likelihood function that can
be used on GLMs can also be used for Gradient Boosted Decision Trees (GBDT). Hastie et
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Algorithm 1.4 Gradient Boosting

1. Initialise F = 0

2. Set ŷ(0)i as zeroes, random values or the result of an initial predictor for all i = 1, ..., n

3. For t = 1 to k:

a) r(t)i = − ∂

∂ŷ
(t−1)
i

L(ŷ
(t−1)
i , yi) for all i = 1, ..., n

b) Fit a regression tree ht(xxx) with XXX as observations and residuals rrr(t) as targets

c) ŷ(t)i = ŷ
(t−1)
i + λ · ht(xxxi) for all i = 1, ..., n, where ŷ(t−1)i =

∑t−1
j=1 λ · hj(xxxi)

4. Return F , where F (xxx) =
∑k

t=1 λ · ht(xxx)

al. [28] demonstrated that AdaBoost is equivalent to using GBDTs with an exponential loss
L(F (xxx), y) = exp (−y · F (xxx)), but that a binary classifier could also be made with the assump-
tion that outcomes follow a Bernoulli distribution, as there are only two possible outcomes:

−`(YYY |θ) =

n∑
i=1

log(P (yi|F (xxxi)) =

n∑
i=1

log (1 + exp (−yi · F (xxxi))) , yi ∈ {−1, 1} (1.43)

− ∂

∂F (xxxi)
log(P (yi|F (xxxi))) = −yi ·

exp (−yi · F (xxxi))

1 + exp (−yi · F (xxxi))
=

−yi
1 + exp (yi · F (xxxi))

. (1.44)

Equation 1.44 shows the flexibility in which GBDTs can use the distribution of outcomes as
prior as an advantage in weighting the right elements to get the best possible distribution
of predictions. GBDTs can be flexible to the point where custom loss functions can be used
arbitrarily to fit a client’s specific needs. The importance of outliers, the consideration of
negative outcomes and the type of problem all play a role in the selection of the loss function,
which not all algorithms can easily accomodate.

1.3.5 Advanced Gradient Boosting

In an era where managing huge amounts of data is necessary, using GBDTs with CART is
often inefficient and does not generate the best results. The variety of data and the number
of possible features are sometimes so high that finding the best split for each tree node is
impossible on a large scale. Also, the number of hyperparameters can be so high that finding
the best configuration becomes a time consuming task. Libraries such as XGBoost [7] and
LightGBM [35] add multiple improvements to GBDTs that make them more accurate and
efficient.
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1.3.5.1 Optimisation method

Traditional GBDTs only use the gradient as an objective of the global stagewise algorithm.
However, recent advancements in GBDTs have shown that using the second derivative of the
loss function in addition to the gradient can obtain more accurate results. Advanced gradient
boosting uses Taylor’s second-order function approximation (1.45) on the gradient of the loss
function. As adding additional terms to a Taylor Polynomial gives a better estimate of the
curvature of a function around a certain point, it can be used to approximate the loss function
more accurately. Hence, by estimating the first and second derivatives of the loss function at
point ŷ(t−1), advanced gradient boosting methods obtain a more accurate estimation of how
ŷ should move between iterations t− 1 and t to minimise the loss. This leads to models with
higher accuracy and faster convergence.

L(y, ŷ(t)) ≈ L(y, ŷ(t−1)) + (ŷ(t) − ŷ(t−1))L′(y, ŷ(t−1)) +
1

2
(ŷ(t) − ŷ(t−1))2L′′(y, ŷ(t−1)) (1.45)

In addition to the use of second derivatives, extreme gradient boosting enables the use of
regularisation, which is implemented directly in its empirical risk and its objective. Regular-
isation is the process of constraining the complexity of models, thus preventing overfitting
and increasing generalisation. This can be done, like in the case of XGBoost, by adding a
regularisation term Ω to the empirical risk that includes the norm of the leaf values ||www|| and
the number of leaves T . Hence, regularisation permits both the minimisation of the initial
objective, while also ensuring that the model does not become too complex.

To understand how XGBoost works, Table 1.5 shows all the prior notation required to under-
stand further exploration done in equations 1.46 to 1.50. As shown in these equations, the
resulting empirical risk at iteration t is based on the value of each leaf and the number of
leaves.

LS(ht) =

n∑
i=1

L(yi, ŷ
(t−1)
i + ht(xxxi)) + Ω(www(t)) (1.46)

Using Equation 1.45 with w
(t)
i = (ŷ

(t)
i − ŷ

(t−1)
i ) = ht(xxxi), g

(t)
i = L′(yi, ŷ

(t−1)
i ) and h

(t)
i =

L′′(yi, ŷ
(t−1)
i )

LS(ht) =

n∑
i=1

L(yi, ŷ
(t−1)
i ) + g

(t)
i w

(t)
i +

1

2
h
(t)
i (w

(t)
i )2 + Ω(www(t)) (1.47)

Removing L(yi, ŷ
(t−1)
i ), since it is constant

LS(ht) '
n∑
i=1

(
g
(t)
i w

(t)
i +

1

2
h
(t)
i (w

(t)
i )2

)
+ γT +

1

2

T∑
m=1

η(w(t)
m )2 (1.48)
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Symbol Meaning Equation

Im Set of observations contained in node m

I
(t)
m Set of observations contained in node m at iteration t

gi Gradient for observation i ∂L(yi,ŷi)
∂ŷi

hi Second derivative for observation i ∂2L(yi,ŷi)
∂ŷ2i

GL Sum of gradients in left side of split
∑

g∈IL g

GR Sum of gradients in right side of split
∑

g∈IR g

GN Sum of gradients in the parent node
∑

g∈IN g

G
(t)
m Sum of gradients in node m at iteration t

∑
g(t)∈I(t)m

g(t)

HL Sum of second derivatives in left side of split
∑

h∈IL h

HR Sum of second derivatives in right side of split
∑

h∈IR h

HN Sum of second derivatives in the parent node
∑

h∈IN h

H
(t)
m Sum of second derivatives in node m at iteration t

∑
h(t)∈I(t)m

h(t)

w
(t)
i Value of leaf for example xxxi at iteration t (ŷ

(t)
i − ŷ

(t−1)
i )

w
(t)
m Value of leaf m at iteration t −

∑
i∈Im g

(t)
i∑

i∈I(t)m
hi+λ

www(t) Vector containing all leaf values for tree at iteration t

Ω(www(t)) Regularisation function for iteration t γT + 1
2λ||www

(t)||2

η Constant leaf value regularisation factor

γ Constant leaf count regularisation factor

T Number of leaves in tree

Table 1.5 – Definition of symbols used in the XGBoost algorithm

Grouping the loss per leaf m

LS(ht) =

T∑
m=1

(
G(t)
m +

1

2
(H(t)

m + η)(w(t)
m )2

)
+ γT (1.49)

Replacing w(t)
m with its definition from table 1.5

LS(ht) = −1

2

T∑
m=1

(G
(t)
m )2

H
(t)
m + η

+ γT (1.50)

Thus, the loss at iteration t can already be estimated from the loss at iteration t−1 and a next
boosting iteration’s predicted value ŷ(t)i . Nonetheless, the loss cannot be minimised directly
as the loss is estimated on the entire tree structure. Since we cannot generate all possible tree
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structures to obtain the best one, the split function of the decision tree must be altered to
adapt to this loss function.

1.3.5.2 Split function

Even if Equation 1.50 has interesting properties in estimating the empirical risk for the next
iteration, it cannot be directly minimised in an objective. As Equation 1.50 computes the
loss for the entire tree structure, it cannot be used to build a tree that minimises the loss.
However, the equation can be transformed to compute the loss on a single split at a time,
which can minimise the loss on the entire tree. Hence, as in Section 1.3.1, XGBoost computes
the loss (1.51) for every split in set Q to determine the best decision function to apply to the
current node. This contrasts with normal decision tree gradient boosting, which mostly uses
the squared error (1.39) as an objective for splits. Instead, as the split function of each tree is
altered to consider the current gradients and second derivatives, the splits which are selected
in XGBoost trees are specific to the selected loss function.

YYY l,YYY r = argmin
(YYY l,YYY r)∈Q

(
1

2

(
G2
N

HN + η
−

G2
L

HL + η
−

G2
R

HR + η

))
(1.51)

Equation 1.51 shows that XGBoost decision trees can be compared to CART decision trees, as
their split functions both share a similar form. In fact, considering that the squared error has
a constant second derivative of 2, it results in the same split function without regularisation.

1.3.5.3 Missing features handling

One shortcoming of CART is that it does not handle training setsXXX with missing values off the
shelf. In order for decision trees to handle missing values, the data is normally preprocessed
by value substitution, truncation or prediction. However, this adds unnecessary bias when
training the model, because it may distort the data’s true nature. Extreme gradient boosting
improves on CART by selecting a default direction on each branch to handle missing values.
This is done by calculating the optimal split on non-missing values twice : once with the default
direction being on the right and once on the left. What this means is that all thresholds are
tested, but the loss is also based on all instances with missing values either to the left or right
child node. In the end, no information is lost, as all observations are still distributed to their
respective children nodes for further splitting. At prediction time, the default direction can
then be reused on new elements.

1.3.6 Model Interpretation

Model interpretability and transparency is a core concern when implementing machine learning
models when it is crucial to understand why a prediction was made, instead of only having a
precise prediction. Lending or job applications all need proper justifications when making a
decision to ensure that the decision is based on valid factors. Healthcare experts cannot give a
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cancer diagnosis using a model that does not indicate which factors were relied on to determine
the outcome. Models also often need to be debugged if the model doesn’t generalise well or
if experts don’t agree with the predicted outcomes. Hence, models which are too complex
to be explained are considered black-boxes, which limits their use for many tasks. On the
other hand, some models can be used as their individual predictions, along with the global
importance of each feature, are explained properly.

1.3.6.1 Linear Model Interpretation

As noted in the simple least squares regression equation (1.20), each parameter β̂j represents
the average increase of ŷ when increasing the jth attribute of xxx by a single unit. This makes
for an easy explanation of each prediction. For example, if we try to predict the weight in
kilograms y of a person xxx using its height in centimetres x1 and age x2, the corresponding model
would be equivalent to Equation 1.52. In return, if β̂̂β̂β = [5, 0.25, 1.25] and xxx = [1, 180, 20], then
1.52 would predict that the person’s weight is 75 kilograms, with regards to the existing
population.

ŷ = f(xxx) = E[YYY |xxx] = xxx′β̂̂β̂β = β0 + β1x1 + β2x2 (1.52)

The main advantage of this equation is that it is explicit when making a prediction. Each
element of the sum shows the separate contribution of every attribute with regards to the final
result. Also, each element of the sum represents the outstanding values that differentiate xxx
from the average population.

A secondary property that contributes to model interpretability is the possibility to provide
confidence intervals (1.53) on a model’s parameters and on a model’s predictions. One key
property of linear regression is that it assumes that its errors are normally distributed. If that
is the case, then it is possible to determine the range of possible results with regards to the
existing residuals. For linear regression, the common way to do this is to compute confidence
intervals that use a t-distribution, along with the variance of the prediction. The t-distribution
has single parameter: n − p degrees of freedom, where n = |XXX| is the number of rows in XXX
and p = |β̂̂β̂β|. The variance of the prediction is estimated using the Gauss-Markov theorem
(1.55), as stated in Hayashi et al. [29]. Then, by knowing the mean and the standard error of
a prediction, a confidence interval provides the minimum and maximum value of the outcome
at a confidence level α.

CIα(f(xxx)) = xxx′β̂̂β̂β ± tα/2;n−p
√
V ar(xxx′β̂̂β̂β) (1.53)

V ar(xxx′β̂̂β̂β) = xxx′V ar(β̂̂β̂β)xxx = s2(1 + xxx′(XXX ′XXX)−1xxx) (1.54)

V ar(β̂̂β̂β) = s2(XXX ′XXX)−1 (1.55)
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s2 =

∑n
i=1(yi − ȳ)2

n− p
(1.56)

As an example, Equation 1.53 can be used on the previous weight prediction model used at
the start of this section. Supposing a sample size n = 100, the number of coefficients p = 3

and a confidence level α = 1− 0.95 = 0.05, the t-value would be equal to t0.05/2;100−3 ≈ 1.98.
If the variance of the prediction V ar(xxx′β̂̂β̂β) is equal to 2 kilograms2 and the predicted weight
is 75 kilograms, then the confidence interval would consider that the real outcome would be
between 71.04 and 78.96 kilograms at a confidence level of 95%. This shows that a model
does not only produce outcomes, but that it also can determine a range of results at a certain
confidence level.

1.3.6.2 Decision Tree Interpretation

The state-of-the-art precision of the GBDT makes it a solution of choice for many tasks
using tabular data, such as fraud detection [68]. However, when implementing a GBDT in a
production setting, it must be possible for flagged individuals to know why a certain decision
was taken.

As discussed previously, GLMs can easily be interpreted, as each independent feature gets
attributed a single coefficient. This additive contribution of features makes the explanation
of a prediction a simple task. The comparison can even be done between two predictions on
a feature by feature basis, by isolating the feature and its coefficient on each prediction. For
a single CART decision trees, the decision rules taken are in themselves easy to interpret.
However, as the prediction is the result of a conjunction of rules on multiple features, it is
difficult to determine outright the contribution of each feature to the final output. This is
exacerbated in GBDTs, as they are the result of an ensemble of trees.

Traditionally, two intuitive metrics have been used to determine global feature importance in
CART and GBDTs: the sum of gains and the number of splits per feature. By knowing how
much a feature was discriminant on a training set, or how many times an attribute was used
in the decision rules, one may get an idea of which feature probably had more incidence on
a prediction. However, these metrics do not give the exact contribution of each feature to
an individual prediction. When a prediction is calculated, not all splits in a decision tree are
used. Thus, each feature does not have the same impact on the result as if all splits were all
used. Also, the gain and the number of splits vary greatly in importance depending on the
level in which they are used. Notably, a feature which is mostly used in the top level of a tree
will naturally have a lower number of splits than features that are used in lower levels.

Using notions from game theory, Lundberg et al. [41] introduced the use of SHAP (SHapley
Additive exPlanation) values for model interpretation. In the context of model interpretation,
Shapley values are the expected marginal contributions of each feature. In other words, they
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represent how much a prediction differentiated itself from the mean prediction when adding
new information about xxx to the model.

Equation 1.57 shows how f is transformed in an additive form in which each φj(f,xxx) represents
the marginal feature contribution of each feature j on the outcome provided by the model f
with the observation xxx and φ0(f) = ȳ, where ȳ is the average of the outcomes YYY found in the
training set SSS. Thus, the prediction is decomposed as the sum of the effect of each feature
added to the training set’s expected outcome:

f(xxx) = φ0(f) +
M∑
j=1

φj(f,xxx). (1.57)

In order to obtain each φj , we must study how a prediction changes on average when a feature
xj is removed from the model. To simulate the removal of xj , the model must consider that
xj is missing and that the model must do its prediction without xj . The process in which this
must be done varies depending on the type of model used. In a GLM, for example, this would
mean that the coefficient βj would be removed from the model. For other models, where
two attributes are not necessarily independent, the effect of removing an attribute can vary
depending on which remaining attributes are used in the altered model. As such, the function
must be altered to estimate the average effect of adding xj with any set of prior features,
as shown in Equation 1.58. As there are M features, there are 2M possible combinations of
features that must be evaluated with and without xj .

Consider fG(xxx), an altered function which only considers the features in xxx whose indexes are
in G. By evaluating fG(xxx) for each subset of feature indexes G that is in the set of all possible
subsets of feature indexes F , the expected contribution of each feature j can then be obtained.

φj(f,xxx) =
1

2M−1

∑
G∈F

[fG∪j(xxx)− fG(xxx)] (1.58)

For decision trees, f(xxx) is transformed into fG(xxx) by using the TreeSHAP algorithm. The
TreeSHAP algorithm computes fG(xxx) by ignoring tree nodes if they involve a feature with an
index not contained in G. It starts exploring the decision tree at its root node and applies
the decision rules on xxx, as usual. If an encountered tree node uses a feature in G, then the
original decision path is used. However, if the feature is not in G, we must obtain the average
prediction if feature xj were not to exist. As a result, the decision rule is ignored and both
child nodes of the current node must be explored. Then, the outcomes of both child nodes are
obtained by following their respective decision paths until a terminal node is reached, which
generates two different leaf values (i.e. predictions). To combine both leaf values in a single
one, both leaf values are weighted by the number of samples s that were passed to each child
node at training time.

A simple example of the TreeSHAP algorithm can be done by using the tree in Figure 1.7,
which uses the age x1 and the marital status x2 to determine how much an individual will
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x2 ≤ 0.5

s = 10, 302

ȳN = 1, 511.266

x1 ≤ 27.5

s = 4, 114

ȳN = 1, 997.161

x1 ≤ 37.5

s = 6, 188

ȳN = 1, 188.27

s = 133

ȳN = 4, 495.70

s = 3, 981

ȳN = 1, 913.68

s = 1, 120

ȳN = 1, 665.28

s = 5, 068

ȳN = 1, 082.8

Figure 1.7 – Decision tree structure

claim in the next year. In this case, there are 4 altered functions fG(xxx) to compute, as
F = {∅, {1}, {2}, {1, 2}}. To illustrate the prediction on the tree in Figure 1.7, consider a
married individual who is 40 years old (i.e. xxx = [40, 1]). If no feature is used, then the mean of
the root node φ0(f) = f∅(xxx) = 1, 511.266 is returned. If G = {2}, then the decision rule of the
root node is applied, as 2 ∈ G. As x2 = 1, the right branch is followed. The child node has a
decision rule using x1, which must be ignored. Thus, the weighted average value of the tree’s
leaves must be obtained. The left leaf has 1,120 corresponding observations and a value of
1, 665.28, while the right leaf has 5,068 corresponding observations and a value of 1, 082.8. The
weighted average value of the child nodes is then 1,120·1,665.28+5,068·1,082.8

1,120+5,068 = 1, 188.27 = f{2}(xxx).
If G = {1}, then the decision rule at the root node is ignored, as x2 is not included, and the
weighted mean of both of its child nodes must be returned. On both sides, the decision
rule is based on x1 and 1 ∈ G, so the rules are applied, which leads to their respective
right leaves, as x1 = 40. The right leaf of the left side of the tree has 3,981 corresponding
observations and a value of 1, 913.68, while the right leaf of the right side of the tree has 5,068
corresponding observations and a value of 1, 082.8. The weighted average of the child nodes
is then 3,981·1,913.68+5,068·1,082.8

3,981+5,068 = 1, 448.34 = f{1}(xxx). Finally, if G = {1, 2}, then the usual
prediction of 1, 082.8 is returned.

To compute the marginal effect x1, we must consider its effect when adding it to an empty set of
features and its effect when adding it to x2. This is equivalent to f{1}(xxx)−f∅(xxx) = 1, 448.34−
1, 511.266 = −62.926 and f{1,2}(xxx) − f{2}(xxx) = 1, 082.8 − 1, 188.27 = −105.67. The same
can be done for x2, where f{2}(xxx)− f∅(xxx) = 1, 188.27− 1, 511.266 = −322.99 and f{1,2}(xxx)−
f{1}(xxx) = 1, 082.8− 1, 448.34 = −365.54. Then, their average contributions can be computed,
where φ1(f,xxx) = −62.926−105.67

2 = −84.298 and φ2(f,xxx) = −322.99−365.54
2 = −344.27. In

other words, compared to the average predicted claim amount, being 40 years old reduces the
predicted claim amount for the next year by 84.298$ and being married reduces the predicted
claim amount for the next year by 344.27$. By putting these contributions and the average
prediction into Equation 1.57, the predicted claim amount for the next year of this individual
is 1, 511.266− 344.27− 84.298 = 1, 082.8 = f(xxx). As a result, the TreeSHAP algorithm allows
the computation of the expected marginal effect of each feature to a prediction.
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To explain individual predictions made by GBDTs, the TreeSHAP algorithm can be used to
obtain the Shapley values of the ensemble of decision trees by summing up the mean marginal
contributions of each feature for each decision tree.

In addition to the explanation of individual predictions, Shapley values have the advantage
of providing a global interpretation for a model. By computing the Shapley values on an
entire training set SSS and then aggregating them per feature, it is possible to obtain the
absolute mean marginal contribution of each feature. Afterwards, these aggregations can give
an approximation of the global behaviour of the model, and how each feature will make the
prediction vary on average.

In the end, GBDT predictions can be interpreted accurately using the TreeSHAP algorithm
by attributing exact marginal feature attributions to each prediction, while the GBDT can be
explained by using the mean absolute Shapley values on any dataset. This enables the use
of GBDTs in regulated settings where transparency, explanation, fairness is key and where
black-box models cannot be used.
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Chapter 2

Fairness in Machine Learning and
Actuarial Science

Fairness, equity and justice have been pillars for modern societies to ensure that every single
person is treated with impartiality, in that everyone is an equal as a human being. In itself,
these principles have been codified into law for decades. However, it is important to note
that in practice, most of these only stay in qualitative definitions that bear no standard in
quantitative meaning. For example, the Charter of human rights and freedoms of Quebec [50]
considers that the presence of discrimination is determined by the presence of a causality link
between a sensitive attribute and negative outcomes, which is left open to interpretation [38].
As such, it does not indicate a specific threshold at which there is presence of discrimination.
This shows the importance of defining fairness in a quantitative setting, as it has lead to an
inconsistent application of the law.

Machine learning algorithms have long been considered able to produce fair outcomes that
reflect the true nature of any dataset. The fact that no human takes part into making future
predictions may tempt people to assume that no biases exist in these algorithms whatsoever.
Nevertheless, with the increase of the use of these algorithms in regulated domains, legal bodies
in different countries have began to scrutinise the impacts of automated decision making on
society [48, 40, 62, 8, 19]. The externalities that come with their use bring new concerns into
decision making as a whole. For example, many studies that have been made on some of these
systems show that the outcomes produced by machine learning algorithms can sometimes
discriminate towards parts of a population on the basis of gender [13, 45] or ethnicity [32].
In short, even if the process of making and using an algorithm is objective, the data and the
experts that have been provided to train and validate the model may not be. That is to say
that while negative biases may not be implied when fitting a model to predict future outcomes,
the historical data that are used to train these algorithms can be biased. That was the case
for Amazon’s hiring algorithm, which selected preferred candidates for certain jobs. Its lack
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of historical data of good female candidates for IT jobs compared to their male counterparts
inhibited the company from selecting new good female candidates [13]. As a result, future
outcomes may be skewed by a model which contains unwanted implicit biases.

This chapter focuses on the different criteria that have been proposed to quantify biases
in machine algorithms. At the same time, these criteria serve as a way to determine the
appropriate criterion that would be needed to define quantitative fairness in different settings.
We also focus on the methods that have been put forward to mitigate the chances of having
a classification or regression model discriminate against a subgroup of people. Finally, we
discuss the contradictions that exist between different definitions of fairness and the impact
it has when used in actuarial science.

2.1 Fairness Criteria for Classification and Regression

The purpose of establishing different fairness criteria is to determine if disparate impact on a
subgroup of individuals has taken place, which is the disproportionately negative effects that
a policy has on a certain subgroup of individuals. Common examples of sensitive attributes
are a person’s gender, race, marital status, age, ethnic origin, religion or disability status. For
example, in law, the four-fifth rule is a common convention that is often used to estimate
that disparate impact has taken place [61]. For example, in a hiring process, that rule implies
that no subgroup must be selected for a job more than 20% more frequently than any other
subgroup. However, as it will be determined in the next sections, it is not clear what is
considered preferential treatment in other contexts. The following proposals state possible
solutions to quantify disparate impact in classification and regression problems.

Before getting into the different criteria where fairness is considered to be achieved, it is
important to note that these criteria are not without conflict. First of all, fairness can be
defined in different terms if dealing with individuals or groups of individuals.

Individual fairness is attained when the similarity of the outcomes of a model are proportional
to the similarity of the individuals. Dwork et al. [15] formulated this definition as shown in
2.1, where both D and d are similarity functions:

D(f(xxx), f(xxx′)) ≤ d(xxx,xxx′). (2.1)

A common example of this is when ensuring equal pay for equal work in the workplace.
If a woman performs the same tasks as a man and that their curriculum are similar, then
they should be paid approximately the same. If someone has more experience or takes on
more tasks, then they should be paid in consequence. However, the difference in pay should
be proportional to the dissimilarity between someone who has less experience and someone
who has more. Hence, the similarity provided by function D should always be smaller than
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the similarity between two individuals provided by function d. This ensures that similar
individuals are always provided similar treatment.

On the other hand, group fairness is presented in multiple forms that do not rely on similarities:
it looks for the disparities in outcomes in different subgroups. As it will be described in the
next sections, group fairness can be achieved in multiple ways. That includes having equal
error rates per group or equal selection rates per group. As the concept of error and selection
rate is inconsistent between classification and regression problems, they must be discussed in
their own contexts.

2.1.1 Group Fairness Criteria for Classification Algorithms

In the most simple cases, classification models are used in a binary setting, where there is
a positive outcome and a negative one. These outcomes, unlike continuous outcomes, are
strictly bound by a probability combined with a threshold that binds the probability with the
final label. For instance, a binary classification model normally outputs a probability between
0 and 1 of the positive outcome occurring. It then considers the positive outcome more likely
than not if that probability is over 0.5. It is in this context that most fairness criteria for
classification are applicable. They are often split into two types: selection rate parity or error
parity. To simplify the notation in the next sections, AAA refers to the set of possible protected
groups of persons, a is a specific subgroup in AAA. Additionally, XXXa, YYY a, ŶYY a and SSSa are the
subsets of the observations XXX, the labels YYY , the predicted labels ŶYY and the set of tuples of
known observations and labels SSS, where the observations in the subset are part of the subgroup
a.

2.1.1.1 Group Unaware

Before any recent research was made into fairness in machine learning, it was assumed that a
great way to ensure that an algorithm was fair was to exclude all information on subgroups
from the training data. In return, an algorithm would not make predictions based on a
sensitive attribute. However, it has been proven historically that models which do not take
into consideration the presence of subgroups do not prohibit the model from discriminating
against a subgroup. The presence of attributes which correlate with subgroups unknowingly
encodes these subgroups in a dataset [15, 25]. This has been shown in multiple domains, such
as in the insurance industry [47], where the outcomes were still highly correlated with gender
even if gender was not present in the model. This was caused by the use of the employment
of an individual, which is greatly predictive of gender. Hence, it is encouraged to include
subgroup labels as features when available to quantify and mitigate bias in machine learning
algorithms.
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2.1.1.2 Demographic parity

Demographic parity, or statistical parity, is a fairness criterion in which the positive selection
rate for all subgroups is equal [15]. For example, if a bank wants to ensure that the selection
rate for a loan is equal for men and women, demographic parity would be the proper criterion.
If the bank wants 50% of all groups to be accepted for a loan, half of all women and half of
all men will be selected. In terms of the classifier, it would make predictions independently
of gender. That is because you have the same chance of being selected, whether you are a
man or a woman. In the simplest of cases, as the one pointed above, satisfying 2.2 would be
equivalent to satisfying 2.3, where AAA = {0, 1} represents gender, a ∈ AAA is a specific value of
either gender and Ŷ̂ŶY ∈ {0, 1} represents the outcome:

ŶYY ⊥⊥ AAA =⇒ (2.2)

P (ŶYY = 1|AAA = 0) = P (ŶYY = 1|AAA = 1) ∧ (2.3)

P (ŶYY = 0|AAA = 0) = P (ŶYY = 0|AAA = 1).

One of the biggest critiques of demographic parity is that it does not take into consideration
the distribution of outcomes with regards to the different subgroups. The major consequence
of having an algorithm that gives equal selection rates is the disparity in the false positive rate
of selected candidates. If one group is attributed a lower threshold of probability required for a
positive outcome to increase its selection rate, then it would naturally select worse candidates
as well. Higher false positive rates amongst groups with lower selection thresholds may even
cause harm to the communities that were meant to be protected [39]. For one, it reinforces
negative feedback loops about groups on which the algorithm performs badly on purpose: if
all subgroups are selected at the same rate for loans, but one group tends to default more than
others, experts will be weary of using the algorithm on that group. Also, by giving out too
many loans to a disadvantaged group, it will be harmed in the long run as too many people
default. That is why it is important to limit the balancing of selection rates to limit the harm
of lowering the threshold for certain groups.

2.1.1.3 Equal Opportunity and Equal Odds

An important point about demographic parity is that it does not consider that there may be
an actual existing correlation between AAA and YYY , even if it is not the causation of an outcome.
The fact that a perfect classifier isn’t always a solution for the demographic parity shows
that it ignores the performance of an algorithm, along with the distribution of outcomes per
subgroup.

Equal Opportunity [25] adds nuance to demographic parity by conditioning the independence
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between predicted outcomes and subgroups by true outcomes, in the sense that

ŶYY ⊥⊥ AAA | YYY = 1 =⇒ (2.4)

P (ŶYY = 1 | AAA = 0,YYY = 1) = P (ŶYY = 1 | AAA = 1,YYY = 1). (2.5)

Instead of focusing on the selection rate of all individuals, equal opportunity takes aim at
retrieving the same proportion of good candidates for each subgroup. In other words, it
ensures that the recall, or true positive rate, is equal for each group. As a distinction, it gives
the opportunity for anyone, regardless of subgroup, to get a positive result if they really are
a good candidate. To put the previous scenario in the frame of equal opportunity, the goal
would be to select an equal proportion of candidates who would repay the loan per subgroup
instead of selecting an equal rate for loans among all men and women. This favours better
quality results, because it considers that different factors to determine positive candidates
may exist between subgroups. It also considers the distribution of positive candidates and
prioritises recall as a metric.

Equal Opportunity has the advantage of being a simple single criterion between groups. Nev-
ertheless, it is not applicable for all contexts. Notably, it only takes into consideration the
quality of one type of outcome per subgroup. A classic case that is presented to counter it is
a case where there are no particular positive or negative outcomes, such as the presentation
of one of two possible job ads. As each company would like to have an equal proportion
of appropriate candidates, having a single metric is not sufficient. Equal Odds is a stricter
criterion that aims for equal selection rates for proper candidates of all outcomes:

ŶYY ⊥⊥ AAA | YYY =⇒ (2.6)

P (ŶYY = 1 | AAA = 0,YYY = 1) = P (ŶYY = 1 | AAA = 1,YYY = 1) ∧ (2.7)

P (ŶYY = 1 | AAA = 0,YYY = 0) = P (ŶYY = 1 | AAA = 1,YYY = 0).

Afterwards, a classifier could be evaluated for bias if it either makes too many false positives
or true positives in each group.

2.1.1.4 Error parity

In a more general sense, any other error metric can be used as a disparity measure if it
is representative of the disparate impact that could result of the usage of the algorithm.
Accuracy parity or loss parity could also be used as a fairness metric if it is appropriate for
the context. They can be evaluated in two ways : as an absolute difference of losses or as a
ratio of losses. These comparisons essentially come down to comparing the subgroup with the
worst average error and the subgroup with the best average error:

max
a∈AAA

(
E(xxx,y)∈SSSa

[L(y, f(xxx))]
)

min
a∈AAA

(
E(xxx,y)∈SSSa

[L(y, f(xxx))]
) ≤ ε (2.8)
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or
∣∣∣∣max
a∈AAA

(
E(xxx,y)∈SSSa

[L(y, f(xxx))]
)
−min

a∈AAA

(
E(xxx,y)∈SSSa

[L(y, f(xxx))]
)∣∣∣∣ ≤ ε. (2.9)

Equations 2.8 and 2.9 are generic fairness measures but they differ from the previous ones
in the fact that they are formulated as approximate fairness criteria, as opposed to absolute
fairness formulations. Instead of ensuring equality of error rates, the error between groups
lets a maximum discrepancy of ε occur. Most of the time, an exact solution may not be
obtainable if the number of groups is too high. Hence, putting an upper bound on the
maximum discrepancy between the errors of each group gives some leeway to classifiers and
expands the number of possible solutions.

2.1.2 Group Fairness Criteria for Regression Algorithms

In comparison with binary classification problems, regression problems have an unlimited
number of unique outcomes, which restricts the type of fairness criteria that can be applied on
them. Equal odds, for example, cannot work in a setting that is not discrete, as it conditions
error rates per label. As stated by Agarwal et al. [1], that leaves two group fairness criteria
that are still applicable : demographic parity (2.10) and bounded group loss (2.11). Even if
their formulation seems different, their goal are quite similar to fairness classification criteria:

∀a ∈ AAA,∀z ∈ R : |P (ŶYY a ≥ z)− P (ŶYY ≥ z)| ≤ ε (2.10)

and ∀a ∈ AAA :
1

|SSSa|
∑

(xxx,y)∈SSSa

L(y, f(xxx)) ≤ ε. (2.11)

As stated in its name, bounded group loss strides to limit the average loss of a group to a
maximum of ε. This can be reformulated in the same form as error parity as a ratio (2.8) or
a difference (2.9) between the biggest and smallest average error.

Equation 2.10 presents approximate demographic parity (2.2) in the case of continuous dis-
tributions. If each group has the same chance of having an outcome higher than z compared
to the general population for any z, then outcomes would effectively be independent of the
protected groups AAA. Outcomes could be considered almost independent of subgroup if all
discrepancies are lower than a small ε. Thus, even if it cannot be interpreted as equal se-
lection rates, demographic parity ensures an equal distribution of outcomes when applied to
regression problems.

2.1.3 Intersectional Fairness

The majority of work done on quantifying and mitigating bias on machine learning models
has often focused on the simpler cases of discrimination, that is, contexts where there is a
single binary sensitive attribute. While it is good to start with the basic cases to build upon
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them and generalise, it is crucial to understand the context in which fairness is needed and
must be applied. Some work extends to multiple attributes [42] or multinomial attributes [66],
but do not address the fact that discrimination does not only exist on independent attributes.
The intersection of multiple sensitive attributes increases drastically the number of possible
protected subgroups, and this highlights the direction in which the domain of fairness in
machine learning should go.

The matter of the fact is that intersectionality is crucial in ensuring that all minority groups
are considered when considering the fairness of an algorithm. One good case study on this
is by Buolamwini et al. [5], in which they study the accuracy of modern commercial facial
recognition algorithms. They noted that when considering independently gender and race,
men or women, as well as black or white people, all were accurately classified in the same
manner. However, by digging deeper, they noticed multiple discrepancies in the error rates
that were compounded with the intersection of protected subgroups. For example, there
was up to 20.6% difference in error rates between men and women faces and up to 19.2%
difference in error rates between light and dark faces. When race was joined with gender, the
contrast was starker, as darker women faced higher error rates of up to 34.7%. This increase
of misclassification rate by a factor of 1.75 shows that minority groups can be left out of
performance metrics if sensitive attributes are considered independently.

The undermining of minority groups in machine learning algorithms has taken place for a
simple reason: there was no incentive for algorithms to perform well with all demographics.
First of all, the datasets used to solve many problems were not representative of all subgroups.
This created skewed distributions that lacked the proper information to process everyone
properly. Secondly, the models and the loss functions used were not adapted to process
skewed data accordingly. The models could be adjusted to consider imbalanced outcomes, but
could not be adjusted if the outcomes where imbalanced for a specific subgroup. When all put
together, this lead to algorithms that could ignore parts of the population by minimising the
general loss on the general population, but that could not decipher the different factors that
would produce accurate results. Intersectionality exacerbates these previous factors by making
the point that subgroups are composed of other subgroups, and that they, in themselves, should
not be forgotten. In return, many companies have now upgraded their facial recognition
datasets and the transparency in their benchmarking so that they are now more inclusive of
the entire population [44].

As noted by Foulds et al. [18], intersectional fairness should strive for fairness among in-
dependent sensitive attributes, among all intersections of sensitive attributes and that we
understand the causes of disparate outcomes, whether they are structural, intentional or in-
cidental. Those criteria can easily be dealt with, knowing that intersectional fairness leads
to fairness with independant sensitive attributes. Since the intersection of attributes creates
subsets of subgroups, we can bound an algorithm’s fairness on groups by assessing its fairness

43



on the intersection of all sensitive features. In any case, the subgroup treated the most un-
fairly will, at best, be considered better treated if it is summed with other groups which have
an attribute in common with it [18]. For instance, taking into consideration that the highest
mean error rate on a facial recognition algorithm is always on darker women, the mean error
rate for women or darker people will always be lower. Thus, taking care of fairness under an
intersectional lens will always consider equity at broader levels.

An interesting problem added by taking into consideration the intersection of attributes is the
exponential number of constraints that result of that combination. The number of possible
intersections is determined by the product of unique attribute values per sensitive attribute.
|AAA| would then be the product of all bottom level groups, which is greater than their sum
because they all contain at least a value. Considering that there are nine sensitive attributes
and that there are at least two groups per attribute, there would be at least 29 = 512 subgroups
to consider, which is computationally expensive.

All points taken into consideration, intersectionality adds many challenges that have not been
addressed by most works in the literature on fairness in machine learning, and must be in
order to protect all individuals, no matter their ethnicity, gender, age, etc.

2.2 Supervised Learning with Fairness Constraints

While the previous section discussed how it can be determined that an algorithm is biased
towards a subgroup, recognising a problem is only part of solving it. As such, the other part
of ensuring fairness in statistical models is mitigating any discrimination that is detected by
the metrics presented previously.

Bias can take place at any part of a machine learning pipeline. Hence, it can also be corrected
at any time before a prediction is acted upon. On the other hand, not all bias mitigation
methods are equal. Each has its costs and benefits and none are perfect. The existing methods
alter data, the optimisation process or the predictions to make outcomes fair with regards to
a certain fairness criterion.

2.2.1 Preprocessing

The idea of preprocessing the data in machine learning algorithms to obtain fairness stems from
the fact that observed data can be skewed, can lack information or that sensitive attributes
can be correlated with other attributes. Zemel et al. [69] introduced the idea of preprocessing
the data by learning how to encode data into vectorial representations that do not include
information about sensitive attributes. This can be done by creating a model which learns
to map xxx to xxx′, which is an encoded observation. In Zemel et al. [69], the encoder is built
by creating a multiclass classifier that maps a label to a prototype (i.e. another existing xxx).
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The classifier outputs probabilities of xxx′ being a good representation of xxx. xxx′ is then created
as a weighted linear combination of the prototypes and the probabilities. The empirical risk
function for the classifier has two essential parts : a fairness component and a reconstruction
penalty. The fairness component ensures that each representation is as independent of sub-
group as possible. The reconstruction penalty ensures that the resulting representation is as
close as possible to the original observation. Altogether, the classifier creates a xxx′ that is close
to the original nature of xxx, but is independent of its sensitive attributes.

Encoders have many advantages, as they can help reach demographic parity without knowing
the eventual objective, are independent of model and don’t require sensitive attributes when
making future predictions, as they should not matter in the final representation. Nonethe-
less, because they do not have access to the objective, they lack the capacity of creating
representations that are for other group fairness objectives than demographic parity.

Although there have been improvements on how to create fair representations that have been
joined with in-processing methods [3, 4, 42], Zemel et al. limited their representations to a
combination of existing prototypes xxx ∈XXX. This limits the flexibility of these representations,
as the relation between the original and the optimal transformed observations may not be
necessarily linear. In fact, if new observations are out of sample, there may not be an accurate
transformation possible. This loss of information makes classification unnecessarily inaccurate
and may lead to disparate outcomes.

2.2.2 In-processing

Adding fairness to an optimisation process is intuitive, as it represents directly what needs to
be accomplished. In other words, the general objective is still to be as accurate as possible,
but the objective function is altered by the addition of a fairness constraint that limits its
learning process.

This twofold objective can be subject to two different types of constraints : approximate
constraints and absolute constraints. Absolute constraints can be thought of as all-or-nothing
solutions : no unfairness whatsoever can take place at the expense of accuracy. This would
create algorithms which respect exactly the criteria related to the constraints put upon them,
such as demographic parity (2.3), equal odds (2.6) and equal opportunity (2.5) in their basic
forms. In return, the predictions might not be accurate at all. Approximate fairness lets
some unfairness take place to an extent, but does not forbid it with complete disregard to
performance. Compatible metrics would be ones with relaxed requirements, such as error
parity (2.8, 2.9), which can approximate any of the previous criteria.
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2.2.2.1 Regularisation based fairness constraints

The first type of fairness constraint can be presented in a form similar to regularisation. The
empirical risk in 2.12 is then split into two parts, a loss function L and a group fairness loss
LA,

LS(f) =
1

|SSS|
∑

(xxx,y)∈SSS

L(y, f(xxx)) + λLA(f). (2.12)

An example of a regression fairness penalty LA was proposed in Berk et al. [2] where they
try to minimise the distance between predictions produced by function d, weighted by the
similarity between true outcomes among two groups a and a′. In order for this to work in
practice for regression problems, all of the input attributes and outcomes are standardised
so that their distributions have a mean of zero and a variance of one, while the function d

is equal to Equation 2.13. For binary classification problems, all of the input attributes are
standardised and the function d is equal to Equation 2.14.

d(y, y′) = exp(−(y − y′)2) (2.13)

d(y, y′) = I(y 6= y′), where I(a) =

{
1 if a = True
0 if a = False

(2.14)

LA(f) =
1

|SSSa| · |SSSa′ |

 ∑
(xxx,y)∈SSSa

(xxx′,y′)∈SSSa′

d(y, y′)(f(xxx)− f(xxx′))


2

, (2.15)

where a = 0, a′ = 1 and AAA = {0, 1}.

To reduce the value of this objective as much as possible, the predictions must be as close to
each other when the true outcomes are similar. The fact that the difference between predictions
is not absolute allows compensation between positive or negative differences. As long as the
average predictions across two groups even out, the group fairness penalty can be minimised.
As such, this constraint aims for even outcomes between groups, as well as similar predictions
for similar true outcomes.

As intuitive as it may be, there are many caveats to this constraint. Notably, it scales poorly
if there are too many individuals as there would be at least 1

2 |AAA|(|AAA| − 1) computations of
Equation 2.15, where each computation contains |SSSa| · |SSS′a| comparisons of outcomes. Also,
this constraint was only studied in the case where there are only two groups, which is rarely
the case in practice.

For classification problems, most in-processing solutions were found using domain-adversarial
neural networks (DANN) [20]. In short, these solutions [3, 4, 42] use DANN to create models
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that are unable to make a difference between two different subsets. These distributions can
be, in this case, two different subset of individuals. In [3], Beutel et al. create a model that
has two outputs : the first one is the normal prediction, the second predicts the subgroup
of the individual. The goal here is to minimise the accuracy loss while maximising the loss
with regards to predicting the subgroup. By inverting the gradient on the sensitive attribute
prediction, the model learns to make predictions while not considering the individuals’ sub-
group. Hence, its predictions are independent of subgroup and satisfy the demographic parity
criterion.

This was then adapted to work on other criteria, such as equal opportunity. Beutel et al.
built on their previous work and replaced LA with an absolute correlation loss [4]. In this
case, the fairness penalty measures the correlation between the predictions ŶYY

+
(2.17) made

on observations with a positive true label XXX+ (2.16) and the respective subgroup of each
observation with a positive true label AAA+ (2.18). The subgroups and outcomes must be
binary for it to work.

XXX+ = ∀(xxx, y) ∈ SSS : {xxx|y = 1} (2.16)

Ŷ̂ŶY + = ∀(xxx, y) ∈ SSS : {f(xxx)|y = 1} (2.17)

AAA+ = ∀a ∈ AAA : {a|xxx ∈XXX+ ∧ (xxx, y) ∈ SSSa}, where AAA = {0, 1} (2.18)

µŷ =
1

|ŶYY
+
|

∑
ŷ∈ŶYY +

ŷ (2.19) µa =
1

|AAA+|
∑
a∈AAA+

a (2.20)

σ2ŷ =
1

|ŶYY
+
|

∑
ŷ∈ŶYY +

(ŷ − µŷ)2 (2.21) σ2a =
1

|AAA+|
∑
a∈AAA+

(a− µa)2 (2.22)

LA(f) = |CorrXXX+ | =

∣∣∣∣∣∣
(∑

ŷ∈ŶYY + ŷ − µŷ
) (∑

a∈AAA+ a− µa
)

σŷ · σa

∣∣∣∣∣∣ (2.23)

If the absolute correlation is null, then the chance of dependence is minimised. However, since
no correlation does not imply independence, it cannot guarantee equal opportunity. Using
other measures of independence, such as mutual information [34], can ensure independence.

The approaches using DANN have the flexibility of being preprocessing approaches, as well
as in-processing approaches. Since a fair neural network uses its last layer’s outputs to make
the final prediction, the entire network can be used as a fair feature extractor, thus being an
encoder of fair representations. On top of that, these representations are much more flexible
than the previously proposed preprocessing approaches, as they are not based on predefined
prototypes. They can also yield an unlimited scope of results and can encode out-of-sample
elements.
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2.2.2.2 Risk based fairness constraints

The second form of fairness constraints is related to the domain of distributionally robust
optimisation (DRO) and risk measures. These approximate constraints divert from normal
objectives by focusing on observations with inaccurate predictions instead of aiming for the
best average error possible:

argmin
θ̂θθ

{
max
a∈AAA

(
E

(xxx,y)∈SSSa

[L(f(xxx|θ̂θθ), y)]

)}
. (2.24)

This can be adapted to a group fairness criterion by minimising the average subgroup error.
This is done during the learning process by increasing the importance of the subgroups with the
worst average errors. In an error parity setting, these restrictions allow models to minimise
the maximum error over all groups, thus minimising the generalisation gap, or unfairness,
between subgroups.

DRO is directly linked to risk measures that come from the domain of finance that were
developed to indicate the probably worse loss performance possible for a certain portfolio of
assets.

Two metrics, value at risk and conditional value at risk, are essential in order to understand
how fairness can be achieved using DRO. Firstly, value at risk (V aR) 2.25 is the smallest value
ξ such that the probability of obtaining a loss Z is lower than or equal to α. For example, let
Z be the distribution of losses for a portfolio of stocks. Then its value at risk is defined as

V aRα(Z) = inf {ξ ∈ R|P (Z ≥ ξ) ≤ 1− α}. (2.25)

All in all, V aR takes into consideration the potential risk of unforeseen events which would
disproportionately increase losses for the owner of these risks. As it is possible to determine
the VaR of a portfolio of risks based on the allocation its risks, it is possible to determine if the
allocation of risks increases or decreases the VaR of the portfolio. The problem is that VaR
is difficult to optimise, because it is not a convex objective [52]. To counter this, conditional
value at risk (CVaR) (2.26) is a great alternative that can be optimised. CVaR, mean excess
loss, expected shortfall, or tail value at risk, is the average loss over the VaR at percentile α.
In other words, it is the average loss in a distribution from percentile 1− α to 1:

CV aRα(Z) = E[Z|Z ≥ V aRα(Z)]. (2.26)

Both CVaR and VaR are very similar and can both be linked, as shown in equation 2.26 and
figure 2.1. As CVaR is the mean value of the distribution Z above the V aR at a confidence level
α, they are heavily correlated. If an actuary would like to ensure that his current reserves
are sufficient to balance his portfolio of risks Z, he would need to know what is the exact
upper bound of his possible losses at a confidence interval of 95%. This can be obtained
by calculating the V aR0.95(Z). However, he would not be able to determine the optimal
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Figure 2.1 – Comparision of VaR and CVaR [56]

allocation of risks in order to keep the V aR as low as possible. The mean of Z above the
95th percentile, CV aR0.95(Z), does not mean much in itself as it is not a single point in the
distribution. However, it has desirable properties that the V aR does not. It considers the
distribution of losses exceeding the V aR, which cannot be done for V aR if the distribution
is skewed. It can also be optimised as a smooth and convex objective [52]. Since the CV aR
is an upper bound to its V aR, minimising it naturally reduces the V aR. As such, only the
CV aR can be used as a proper objective for algorithms.

Since a loss distribution is usually not continuous and that risks are discrete, the discrete
version of the CV aR objective must be used. As presented by Williamson et al. [66], CV aR
can be used to reduce unfairness in any algorithm on a group-by-group basis, which is shown
in Equation 2.27. In this case, ma is the number of elements in set SSSa and n is the number of
protected groups in AAA:

LS(f, ξ) =
1

n · (1− α)

∑
a∈AAA

 1

ma

∑
(xxx,y)∈SSSa

L(y, f(xxx))− ξ


+

+ ξ, (2.27)

where [v]+ =

{
v if v > 0,

0 if v ≤ 0.

Compared to the original definition of CVaR (2.26), ξ and α play a different role in the
formulation of the optimised empirical risk. Instead of being the true computed VaR, ξ is an
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additional parameter which must be optimised to minimise the empirical risk, but that also
acts as a threshold for each group’s mean loss. As such, the optimal value of ξ and the optimal
function f that minimise the empirical risk LS must be determined. The resulting objective
is thus Equation 2.28:

argmin
f,ξ

LS(f, ξ), where LS(f, ξ) is Equation 2.27. (2.28)

As for α, it is used as a tuning parameter which changes how much a model should focus on
extreme values of the loss. As all losses over ξ are multiplied by ( 1

1−α) and α ∈ (0, 1), 1−α is
always between 0 and 1, all of the losses over ξ are increased by the same proportion. However,
not all losses get the same absolute increase. As a result, the more α increases, the more the
empirical risk adds weight to the largest subgroup risks. The group CV aR objective (2.28) is
then based on an empirical risk which ignores any group loss under ξ and that focuses only
on the groups having the largest average losses. Thus, the optimised objective reduces the
empirical risk over ξ instead of the mean of all the errors on SSS.

The group CV aR objective leads to algorithms with several desired characteristics. First
of all, as discussed previously, the group CV aR objective achieves error parity by reducing
the generalisation gap, which bounds the empirical risks of all groups to similar values. Sec-
ondly, the group CV aR objective is an approximate measure of fairness, which can be easily
modulated and interpreted depending on the value of α. Thirdly, the group CV aR objective
increases the generalisation performance of a model on new data, since it aims to be robust
on all groups.

The advantage of using in-processing methods is that the sensitive attributes are only needed
at training time. Because protected group labels are in themselves very confidential, it is
preferable that only a small subset of consenting individuals disclose their group labels, or
that these labels be anonymized for everyone in order to avoid disclosing them [4]. As such,
in-processing methods provide a way to keep the number of known labels to a minimum and
doesn’t require them when making predictions. In addition, these constraints always focus on
the optimal compromise between performance and fairness. This can be adjusted easily by
the importance of the approximate constraint, which can sacrifice more performance for more
fairness in an incremental fashion. Finally, the outcomes are truly allocated in the fairest way
possible, conditional to the task at hand. Notably, preprocessing approaches could come into
situations where the representations are fair but that the outcomes are not, since the task may
not be known when creating the representations.

However, there are many disadvantages to constraining only the training of the algorithm,
and not the outcomes themselves. Even if error rates or selection rates are considered fair
when training and validating the model, the fact that the data distribution changes over
time might impact an algorithm’s fairness. For example, if a fair algorithm leads to better
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Figure 2.2 – Example of valid equal odds and equal opportunity thresholds.

outcomes for a certain group after many decades, the need for the fairness constraint will not
be as critical as it once was. It could in fact lead to unfairness among individuals from the
previously advantaged group. This is not a disqualifier, as long as the predictions and models
are properly interpreted and monitored.

2.2.3 Post-processing

The final moment where predictions can be checked or altered to counter unfairness before
making a decision is right before it is acted upon. In binary classification problems, post-
processing methods rely on hard constraints or on altering the thresholds of each prediction
with regards to their protected subgroups.

Hardt et al. [25] explained that selection rates can be adjusted for equal opportunity and equal
odds by looking at a classifier’s ROC by subgroup. Since these two criteria base themselves
on the true positive rates and false positive rates, their effects can be visualised clearly by
applying different thresholds to different groups on the ROC curves. Figure 2.2 illustrates two
ROC curves made with the predictions of a toy model which was trained on a toy dataset.
The dataset contains two subgroups of individuals: a blue group and an orange group. Each
ROC curve assesses model performance for a separate group, which is designated by the colour
of their ROC curve. The less opaque sections contain the set of possible TPRs and FPRs for
each group, which can be done by altering the model’s outcomes. As such, the ROC curves
in Figure 2.2 provide the set of possible TPRs and FPRs per subgroup, which can help in
obtaining either equalized odds or equal opportunity.

For equal opportunity, the thresholds need to be set so that all points end up on the same
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horizontal line. As discussed previously, even if these selected solutions lead to equal TPRs,
the adverse impact is immediately shown on the ROC curve. Even if individuals from both
groups have the same chance of being selected if they were a good candidate, the blue group
will have a higher rate of false positives. If this disparity is too high, it may lead to active
harm on the disadvantaged group.

For equal odds, the thresholds are not clearly defined. There can be a solution, as pointed out
in the figure, that intersects both lines where both the TPR and FPR are equal. However,
if these two lines never intersect, then a sub-optimal solution must be selected from the
intersection of possible combination of solutions under each ROC curve. In essence, Hardt
et al. use a randomized threshold to determine the final label of each element. In practice,
the randomized threshold is applied after the subgroup labels, raw probabilities and true
labels have been collected. When all data is collected, the explicit constraints, as laid out in
equation 2.7, are placed in a convex optimisation problem solver. The solution provides two
essential results per subgroup: how many elements must change from positive to negative and
how many elements must change from negative to positive in order to achieve equal odds.
Then, the amount of switches are performed on random individuals for all subgroups. This
means that individuals with a positive prediction may randomly be selected to be changed
to a negative prediction for the purpose of equal error rates and vice versa. This is why it is
considered a randomized threshold.

Post-processing approaches have their purpose and have a proper context for them to be
used. If absolute fairness is essential in the target setting or the target model is already
in production, then post-processing approaches are clearly the methods of choice. The fact
that they are model agnostic and that they don’t constrain the model whatsoever adds a
flexibility that affects minimally existing processes. Also, they are the most straightforward
of all the approaches, as they transparently change outcomes to make them fair with regards
to subgroups.

Some subtle but crucial points make it less appropriate to use absolute constraints in some
contexts. If for example, a dataset contains a severely unbalanced group that has very few
positive candidates, then the only solution for equal opportunity might be to return no positive
candidates at all. After all, if there are no positive predictions, all groups would have an equal
TPR of 0, which defeats the purpose of using a predictive algorithm altogether. The approach
also does not set a target TPR, which is necessary in many settings. In cases like cancer
diagnosis or job selection where false negatives are costly, only good positive candidates need
to be selected. As such, higher thresholds will lead to lower recall, but higher precision. If the
solver chooses thresholds which results in a high FPR, that cannot be easily adjusted.

Also, if there are too many groups and equal odds are required, the intersection of possible
solutions may lead to poor classifier performance. This is because only fairness, and not
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performance, is considered. Other approaches, such as in-processing methods, can try to find
a compromise between fairness and performance. A final critical point on this approach is
the use of randomized thresholds to balance error rates which leads to inner group unfairness.
If someone is in an advantaged group, this method may cause the person to be negatively
affected, with only justification that the individual was part of a certain group, which can be
unfair with regards to the other individuals in that group.

In hindsight, no method is perfect in its ability to ensure absolute fairness in all situations, as
regression and classification problems have different varieties of outcomes. Also, the number
of groups can lead to an exponential number of checks that may constrain algorithms too
much if they are enforced too strongly. That is why it is critical to check the context where
fairness is needed.

2.3 Fairness in Actuarial Science

The use of statistical models in actuarial science is not new. In fact, for over thirty years [22],
the use of GLMs has enabled insurers to provide insurance premiums tailored to each client’s
risk. However, fairness was a concern in the insurance industry even before these models
were put in use. Historically, insurance companies have been the target of many government
regulators because of discriminatory policies that negatively affect minority groups. Hence,
many laws are now in place to make sure that insurers are fair in the distribution of the pool
of risk amongst their clients.

It is essential to review the previous and current policies, their effects and what can both
the domain of actuarial science and the broader machine learning community can learn from
each other in order to find balance in profitability, affordability, fairness and precision. As a
case study, the history of insurance in the last century can provide valuable insights into what
positive and adverse impacts fairness regulations can have on individuals and companies in
other domains that use machine learning.

Actuarial fairness has the objective to give "equal treatment for equal risks" [19, 37]. In
the instance of car insurance, this means that any two individuals with the same car and
the same driving history should get the same premium. As they should not incur different
losses for the same policy period, there is no reason for them to pay different rates. This
also means that unequal risks should result in different premiums. In the long run, actuarial
fairness implies that policyholders should only pay for their expected losses, as their premiums
"must reflect the division of people according to actuarially accurate determination of their
risks" [12]. If two individuals have identical situations and claims over time, but their initial
premium was different, those risk estimations were unfair. Therefore, an accurate premium
that appropriately estimates a client’s expected losses is fair.
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2.3.1 Impacts of Fairness Regulations in Actuarial Science

2.3.1.1 Fairness Regulations for Home Insurance

As much as it has been attributed to the financial industry for mortgage lending, redlining is
a practice that has also affected minority groups with regards to insurance policies. Redlining
generally refers to discrimination caused by racial profiling based on geographical location.
This results in the loss of economic opportunities and the decay of certain urban areas [55]. By
disproportionately raising premiums, offering worse policies, denying coverage and providing
lower settlements, insurers in the United States [55] and Canada [26] have been subject to
many out-of-court settlements due to unfair discrimination [24, 57].

Even if it is not directly related to prosperity amongst policyholders, property insurance plays
a crucial role in home ownership. In Canada, home insurance is a key component into obtaining
a mortgage that allows for home ownership. According to the Insurance Bureau of Canada,

Unlike auto insurance, home insurance is not mandatory by law. However, most
banks or mortgage holders will insist that you purchase home insurance – and

show proof that you have home insurance – before they’ll lend you money to buy
a home. They will ask to be named as the mortgage holder on your policy. [6]

As such, even if it is not necessary for all cases, most people will need home insurance if they
want to buy a home.

The impact of a premium increase in isolation might seem minor. Nevertheless, the require-
ment increases total costs for potential home owner who might not have the additional revenue
for it. The Canadian Real Estate Association indicates that "increases in premiums can pro-
hibit the marginal homebuyer from being able to afford homeownership and can severely strain
the ability of existing homeowners on fixed incomes to continue to meet the ongoing costs of
homeownership" [65]. Hence, affordability and availability of coverage is essential to give
everyone the opportunity to get a mortgage and thus own a home.

It is normal that price increases reduce consumer buying power. The case for redlining is
justified by the refusal of coverage and the higher premiums are hurting minority groups at
a much higher rate than others. For example, Squires [55] studied the rare instances where
insurance companies had to disclose publicly their coverage at a zip code level. He noted that
in 1999, for the city of Milwaukee, 72.4% of homes in white majority neighbourhoods were
covered while only 61.6% were covered in black majority neighbourhoods. This significant
disparity puts communities that are already at higher risk of future harm by depriving them
of insurance.

Coverage and price disparities are normally justified by economic, societal and property related
factors. The geographical location of homes gives insight into a building’s age, the quality of
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its construction and average revenue of the area [55]. Credit scores are often considered as a
proxy between paying back loans and taking care of your property [36, 23] or the likelihood
of fraudulent claims [55]. Even if those attributes are in themselves indicative of future losses,
they have indirectly lead to statistical discrimination towards certain subgroups of individuals.
In some cases, even controlling for income, black majority zip codes pay more dollars per loss
than white majority zip codes [33]. Also, credit scores have been criticised for targeting dis-
proportionately people with disabilities, women and racial minorities in ways that significantly
inhibits their future opportunities [23]. This lead to Newfoundland and Labrador to ban its
use for all insurance ratings [46]. The Federal Trade Commission also determined in 2013 that
5% of credit scores were based on erroneous historical data [9], which reduces their reliability.
Hence, zip codes, socio-demographic data and credit scores should be taken with a grain of
salt and should be monitored to ensure fairness.

As a response to these measures, individuals located in the United States have used the housing
accessibility provisions from the Fair Housing Act to rein in insurance companies. Since home
insurance is required to obtain a mortgage and that a mortgage is needed most of the time
to own a property, discriminatory pricing reducing accessibility to housing falls under that
law [33]. The same argument could be made under certain laws of many Canadian provinces,
including Quebec [50] (except for gender and age, which will be discussed later).

Even as these laws exist to prohibit disparate impact for home insurance, they are rarely en-
forced. Regulatory agencies often fail to act, because they do not have the tools to do so. In
order to determine that discrimination has taken place, historical data that are currently not
disclosed are needed. Some have proposed that insurers should disclose annually the informa-
tion on their clients, including their premiums, race, gender, income, coverage or location [55].
This is already done in the US for mortgages under the Home Mortgage Disclosure Act [10].
By having public access to anonymised outcomes containing all associated sensitive attributes,
anyone can easily study if the allocation of risk is fair with regards to any protected subgroup.

2.3.1.2 Fairness Regulations for Auto Insurance

For auto insurance, the need for fairness has been discussed for more than thirty years [21].
States such as Michigan, Montana, Hawaii and others had unisex rating for auto insurance
since the early 1980’s [51]. In Canada, the provinces of British Columbia, Saskatchewan,
Manitoba, Newfoundland and New Brunswick all prohibit the use of gender as a factor of risk
[64].

As with property insurance, auto insurance has been regulated to ensure fairness for certain
groups. The difference is that there have been many more studies on the effects of these regu-
lations on groups of individuals. In the past, the auto insurance industry faced many problems
with regards to providing coverage to everyone and abiding to fairness laws. Regulators know
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that their mandate is to mitigate these problems without making insurance inefficient or un-
profitable as a whole. As a result, in 1974, the Federal Insurance Administration of the United
States proposed several policies that tackled the use of sensitive attributes and that increased
the availability of policies for all groups of individuals. Following suit, states having the same
concerns such as Michigan, North Carolina and Massachusetts implemented certain measures
to ensure accessibility and fairness in their insurance markets [21]. Their different policies and
their effects were studied by the General Accounting Office (GAO) of the United States.

The states of North Carolina and Massachusetts banned the use of age and sex in 1977 and
1978 respectively. The policy had a positive effect, even if young drivers still paid more for the
same coverage as older ones. Notably, the differential of premiums between the two groups
was severely reduced and the number of insured young men increased. This was caused by
the use of other important factors of risk, such as the years of driving experience, which is
highly correlated with the driver’s age. As a counterexample, in 1981, the state of Michigan
implemented the Essential Insurance Act, which prohibited different insurance ratings based
on an individual’s sex or marital status [58]. Its impacts were then studied by the GAO, where
they found that it resulted in a decrease in policy prices for young single men by as much
as 20.4%, while increasing it by 28.9% for young single women [21]. While these cases do
show that fairness regulations for auto insurance do have an effect on policy prices, the GAO
could not establish a relationship between state regulations and the profitability of insurance
companies.

Practices however, have changed over the years, and some jurisdictions have have put in place
fairness laws for auto insurance ratings only recently. For example, the European Union
enacted in 2004 a law demanding that insurers provide unisex auto insurance ratings [16].
Its impacts were not considered substantial, as it was analysed that the premiums use of
profession, instead of gender, resulted in minor changes to premiums since they are both
highly correlated [43].

These cases show that no location is alike, as they have different assets, risks and individuals.
In the presence of the use of valid risk factors that are correlated with sensitive attributes,
prices rarely differ after the implementation of the anti-discrimination laws. If there are no
substitutes to the sensitive attributes, the resulting premiums may not reflect the true risk of
each individual.

2.3.2 Comparison with Fairness in Machine Learning

By putting insurance anti-discrimination laws in the context of fairness criteria from the
domain of machine learning, it is possible to determine many flaws in the approach taken
by regulators and the insurance industry as a whole. The major flaw in insurance anti-
discrimination laws is that they implement a "group unaware" approach to fair risk ratings,
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while demanding that premiums are fair with regards to sensitive subgroups.

All of the following consequences indicate that fairness cannot be ensured without knowing
all of the sensitive attributes of each individual. First of all, it is impossible to confirm the
presence of unfair risk assessments, as insurers do not know their risk distribution with regards
to their clients’ subgroups. Second, by being unable to determine the presence of unfairness,
insurers are unable to correct bias if there is any, while regulators cannot assume that insurers
have the capacity to be fair. Third, insurance anti-discrimination laws come directly in conflict
with the definition of actuarial fairness presented previously. Giving equal treatment to equal
risks is equivalent to the definition of individual fairness (2.1). However, anti-discrimination
laws recognise discrimination on a group level basis, not on an individual one. If a majority
group gets premiums that are more representative of their true risk, while minority groups do
not, similar individuals who are part of different groups may not obtain the same premium.
Giving inaccurate premiums to a minority group may give it unnecessarily higher average
premiums for a similar true level of risk. Also, the fact that there is no distance metric that
defines the similarity of individuals makes it impossible to obtain a certain form of individual
fairness. Fourth, any regulation with regards to protected subgroups do not consider the
intersectionality of sensitive attributes. As a result, any scrutiny that has been put onto
insurance companies to give fair premiums in the past did not consider that the combination
of some attributes may uncover discriminatory practices. This will continue under future
audits as long as regulations do not cover the intersection of sensitive attributes. Finally,
using a group unaware approach to risk assessment has historically lead to unfair premiums
when there were no correlated attributes, or minor changes when there were other correlated
attributes available. This means that their removal prohibits their explicit use as crutches for
a lack of information. However, the presence of legal and relevant correlated risk factors show
that it is impossible to remove unfairness by truncating sensitive attributes: the discrimination
should be removed from the outcomes themselves.

2.3.3 Impact on Performance

In the insurance industry, giving precise ratings is not only beneficial to clients wanting com-
petitive premiums, but also to insurers. As noted previously, abiding to a fairness constraint
frequently requires sacrificing performance. For insurers, this means that giving premiums
that are less precise for fairness purposes will lead to lower profitability. For clients, this
will mean getting unjustifiably higher or lower premiums for some individuals. Clients with
premiums truly higher than their risks will either take an unwarranted financial penalty or
change insurer to obtain a competitive rate. On the other hand, clients with rates lower than
their true risk will end up sticking with their current insurer while claiming more than they
paid in premiums, leading to unprofitability for the insurer. This phenomenon, called ad-
verse selection [22], exists when an insurer attracts high risk individuals with lower rates
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to a disproportionate degree, thus repelling low risk clients. By keeping too many high risk
individuals erroneously considered as low risk, the insurance company must raise all of its
clients premiums to keep afloat, as its entire pool is more risky on average than it once was.
Since it increases everyone’s paid premiums, risk averse individuals will easily find a better
price at another company, while high risk individuals will stay as they cannot find a better
premium anywhere else. As a result, the mean risk of the client pool increases once again
and the insurers profitability spirals out of control until a more precise risk assessment can be
done. Hence, performance is still an important factor when trying to produce fair premiums,
as both the client and the insurer lose if the risk assessments are not precise.
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Chapter 3

Customer Profitability Forecasting
with Fairness Constraints

Estimating the frequency and the severity of an unplanned event occurring, in which a current
or future client has negative financial consequences, is a central part of an insurance company’s
business. For home and auto insurance, the goal is to predict the chance of theft or damage
occurring on a client’s property, as well as the amount of financial loss related to the event.

By evaluating how much a client’s property is prone to theft or damage, an insurer can estimate
how much it should charge that client on average to cover the cost of repairing any damage
that may occur. It also gives the general portrait of a client and indicates how much the
insurer should reserve money for a client’s liabilities. Knowing how much a client’s property is
prone to theft or damage helps an insurer keep a competitive edge over its competitors, while
offering coverage to all individuals who need it.

Before jumping deeper into how this is done, it is important to define the underlying terms
related to this task. Machine learning practitioners, along with actuaries, both use statistical
models to describe, explain or predict outcomes by using historical data. Although the two of
them use similar methods, they often use different terms to describe the same things, or use
the same terms to mean different things. That is why, prior to explaining the task at hand
in more specific terms, it is crucial that all of the terms used are explained in the context
of actuarial science. As some words were defined differently in the previous chapters, it is
essential to make the distinction between the many meanings a word may have depending on
the context.

In the context of property insurance, the risk is the probability that damage will occur on a
client’s property. Thus, instead of being related to the error of a statistical model, the "risk"
is mostly used to quantify how much a client’s property is prone to damage. In the case that
a client claims a financial compensation for damages done to its property, that compensation
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is considered a financial loss for the insurer.

In order to set the price to cover a client’s assets, insurance companies must predict the amount
of loss a client will claim due to damage done to his/her assets during a future period of time.
As the amount of potential loss varies greatly depending on the number of assets covered and
the duration of the coverage, the goal is to predict the amount of loss for a single asset over a
period of an entire calendar year. This is called the pure premium. As insurance companies
also have other overhead costs, such as operational, administrative and marketing costs, they
must also add a part of these costs to each customer’s dues, which results in the rate or
premium. As a client may have a policy that covers a period other than a full calendar
year, the final price paid by the client for the entire defined period is the gross rate or gross
premium.

In exchange for paying the gross premium, a client is given an insurance policy, which is the
contract in which the insurer promises that it will indemnify financial losses in the occurrence
of a covered loss. Each policy is attributed a unique identifier, a period of enforcement (i.e. a
policy period) and may cover one to many assets. As such, the main part of insurance pricing
is to estimate, predict or assess a client’s total claimed amount over a period of a full calendar
year for each of his/her assets.

3.1 Customer Profitability Forecasting

A related task to pure premium estimation is the more generic task of estimating customer
profitability. In its simplest form, customer profitability estimation is predicting the total cost
incurred by a client and then determining if the income sources provided by that client cover
the predicted total cost. For insurers, this can be translated by the insurance premium paid
minus the incurred losses for each customer. Optionally, overhead costs, such as marketing
costs, can be added to this equation. As this type of problem requires data that is laid out
along many years, costs and premiums will have to be updated to current prices accordingly.
Since the total premiums are already set by the insurer, the only remaining unknown variable
in the equation is the incurred costs per policy, or the total claimed amount by a client for a
certain policy period. As such, predicting a client’s losses enables insurers to determine which
clients are profitable.

Most importantly, customer profitability forecasting enables insurance companies to target
the clients which are the most essential to its survival. Afterwards, the customer loyalty
schemes can be performed through better quality services, efficiency and maximising customer
satisfaction, but also through targeted advertising and lower total premiums. The goal is then
not only to be profitable as a company, but to stay profitable throughout the years by keeping
a base of loyal profitable clients. This minimisation of adverse selection is thus obtained
through accurate risk estimations and targeted customer loyalty schemes.
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In addition, the forecasting part of this problem helps actuaries determine the optimal amount
of funds that must be put aside for the next year in order to compensate for all losses, and
what should be the total amount of risk distributed amongst the pool of clients in premiums.

3.1.1 Problem Statement

As the costs related to a client’s policy are an essential part in determining client profitability,
it is crucial to study how a premium is estimated. The premium of a certain coverage can
be decomposed into multiple components, as shown in Equation 3.1. Notably, it contains
the amount of money required to cover the losses per unit of risk (i.e. the pure premium).
The units of risk (3.3) represent the yearly duration of the policy. As such, a policy with a
duration of two years will have two units of risk.

Rate = Premium = Pure Premium + Overhead costs (3.1)

Gross premium = Rate ·Units of risk (3.2)

Units of risk = Duration of policy (in years) (3.3)

Pure premium = Frequency of claim per unit of risk ·Average severity of claim (3.4)

Yearly profitability = Paid premium− Total amount claimed during a full year (3.5)

Altogether, the frequency of claim per unit of risk and the average financial loss per claim
compose the pure premium (3.4), which is equal to a client’s expected future losses during
the next policy period. That being said, the actual premium (3.1) is not equal to the pure
premium, as premiums also include overhead costs.

For this work, customer profitability forecasting refers to determining the difference between
a client’s premium and losses for a future year (3.5). Thus, a policy holder is determined
profitable if his/her pure premium is lower than his/her total premium. The goal is to predict
the client’s total claimed amount during a full year, which is equivalent to estimating the pure
premium.

As with any supervised learning, the task of customer profitability forecasting relies on histor-
ical data to determine future outcomes. In this case, the training set SSS has three components
instead of two: XXX, WWW and CCC.

Each observation xxx in XXX represents a single asset and the policy its assigned to during a
year when it was covered. As it is rare that two policies start and end on the same day, all
policies are split into multiple periods where each year a policy was enforced has an observation
related to it. In return, each row is assigned units of risk w ∈ WWW , which represent the span
of a calendar year where the policy was enforced. For example, if a policy with a single asset
has an effective date set as three quarters into the year 2019 and that the policy is effective
for a full year, the policy will be found on two different occasions in the training set: once in
2019 with 0.25 unit of risk and 0.75 unit of risk for the year 2020. This must be considered
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when training a model, as those two observations do not bear the same level of importance.
One represents three quarters of a year, while the other represents only a quarter. Also, the
pure premium is directly proportional to the duration of the policy and the number of assets.
Therefore, a model must consider that observations that encompass more time and assets
carry a bigger weight, but naturally contain more losses.

All of the considered attributes xj in xxx are called risk factors, as they help quantify the
potential risk contained in the policy. For home insurance, this can be the age of a client,
his/her credit score, the year the policy was in force, the maximum amount covered for flood-
ing, the price of the house, the number of past claims in previous years, the proximity of a
fire hydrant, the postal code of the residence, etc. Anything that is related to the behaviour
of the individual or the risk level of an asset can be used as useful information for the task,
and xxx can contain up to hundreds of attributes.

The outcomes c ∈ CCC for training observations xxx ∈XXX represent the claimed amount for a single
asset during a certain calendar year. If a policy is enforced in both 2019 and 2020, and a claim
was made in 2019, the claim will only appear once in the training set: on the observation
for the year 2019. These observations even themselves out when put together to consider the
whole duration of the policy. Since all observations must have their outcomes c normalised
by their units of risk w during model training to consider the variable span of time that they
cover, the outcomes to predict then become the claimed amount for an entire calendar year y,
which are contained in the set YYY . Thus, a predictive model needs to predict the amount that
a client will claim for a single asset during a full year (i.e. the amount claimed for a single
unit of risk).

As shown in Equation 3.4, the pure premium can be decomposed into many components.
The pure premium can be decomposed into the combination of two independent factors: the
expected frequency of losses per unit of risk and the expected amount claimed per loss. The
frequency itself is found only in whole numbers in observations. Nevertheless, the predicted
frequency of claims are usually not whole numbers, as the expected predicted frequency for
a certain xxx in an entire population might not result in a whole number. On the other hand,
the severity of each claim presupposes that a claim was made, and thus only considers policies
with non-zero claim amounts. As a result, someone can have a high premium based on the fact
that the chance that claims will be made are high, or that the claim amount will be high, and
may not be correlated. For example, in auto insurance, a driver with less driving experience
may make more accidents on average, but have a car which doesn’t cost much to repair. In
return, a driver with more experience but a pricier car will have a lower claim frequency, but
a higher severity of claim.

A way to formulate the profitability of a group of policies is to consider its loss ratio. A
loss ratio (3.6) is the sum of the claimed amounts y divided by the sum of the predicted
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Distribution Mean Variance
Poisson µ = λ µ = λ

Gamma µ = αγ φµ2 = αγ2

Tweedie µ = λαγ φµρ = λαγ2(α+ 1)

Table 3.1 – Mean and variance parameters for Poisson, Gamma and Tweedie distributions

claim amounts ŷ. It represents the percentage of financial losses that would be covered by the
predicted claim amounts if they were the premiums paid by clients. As long as a loss ratio is
under 1 for a certain set of policies, they are considered profitable, as the income is greater
than the claimed losses:

Loss Ratio for population SSS =

∑
(xxx,y)∈SSS

Claimed amount∑
(xxx,y)∈SSS

Predicted claim amount
=

∑
(xxx,y)∈SSS

y∑
(xxx,y)∈SSS

f(xxx)
. (3.6)

3.1.2 Generalised Linear Models for Pure Premium Estimation

The use of statistical models to tackle the task of pure premium estimation is not new. For
decades, actuaries have used GLMs to estimate the pure premiums of their clients. Their
simplicity, interpretability and statistical assumptions make them easy for debugging, auditing
and confirming hypotheses concerning each risk factor. Also, their use of maximum likelihood
estimation makes their optimisation intuitive with regards to justifying the loss function used.

3.1.2.1 Poisson and Gamma GLM Models

If we want to estimate pure premiums using GLMs, we can look at the distributions of the
frequency and severity components. As the frequency of claims per unit of risk is a positive
count of events, the Poisson distribution is an ideal representation of the outcomes. As for
the severity component, its distribution is non-negative and has a long tail, as claims with
huge amounts do occur, although they occur rarely. Therefore, the Gamma distribution is
an appropriate representation of the amount claimed. As such, the task of pure premium
prediction can be solved by using two separate models: a Poisson GLM fp(xxx) and a Gamma
GLM fg(xxx). Both models can have their log-likelihood obtained from their density functions
and they can then be optimised with stochastic gradient descent (1.2). By multiplying the
outcomes of both of these models, a pure premium is estimated.

Splitting pure premium computation into multiple models can be useful when the analysis
of risk factors xj is of utmost importance. As each risk factor might not have the same
importance towards the frequency as it has towards the severity, the coefficients of each model
give a more granular explanation of the pure premium [22]. In addition, only the frequency
model is dependent on the policy’s units of risk. If the analysis of risk factors by each type
of claim is required, this can be pushed even further by assigning a frequency and a severity
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model to each of them. It can be useful, considering that the risk factors of loss due to a fire
are different from those due to flooding.

Poisson GLMs are also advantageous because they can naturally integrate the units of risk
into the model with minimal required work. As Poisson GLMs usually use the log-link, they
allow to easily add terms to the model that do not need any coefficient β. Considering that
claim frequency is directly proportional to the duration of the policy, the duration of the policy
doesn’t require a coefficient. The duration of the policy can be added to predictions by adding
the log-transformed value of the duration of the policy as an offset. For w units of risks, the
offset is equal to log(w), as reflected in the Poisson GLM fp(xxx) represented in Equation 3.7:

fp(xxx) = exp(β̂0 + β̂1x1 + ...+ log(w)) = eβ̂0 · eβ̂1x1 · ... · w. (3.7)

Thus, when fitting the model, the units of risk w related to the row xxx are used, along with its
observed frequency of claims during that policy period. Afterwards, when making a prediction,
the predicted claim frequency fp(xxx) can easily be obtained by setting w = 1, as we only need
to estimate the claimed amount per unit of risk.

To increase model stability, other transformations can be performed on the training set to
reduce the effect of outliers. Notably, outcomes can be capped to a certain amount to reduce
the weight of certain observations on the entire population. If a house worth 1 million dollars
is lost due to fire, then it would highly skew the mean and variance of the distribution of
outcomes. This would result in inaccurate estimated pure premiums for the majority of the
population. To minimise the effect of aberrations, outcomes in known observations can be
capped up to a certain amount. As the capped outcomes are still high compared to the rest
of the population, the capped outcomes will still be considered as high risk and have higher
estimated pure premiums.

3.1.2.2 Tweedie GLM Models

Although the use of separate models for frequency and severity is most common in actuarial
science for better interpretability, it is also possible to use a single robust model to predict
pure premiums. Since GLMs can be used with any density function related to the exponential
family of distributions, one must look for a distribution in that family that is similar to the
distribution of pure premiums. A pure premium distribution notably has a high density at
zero, considering that most individuals do not claim anything for the duration of their policies.
However, as shown previously, the distribution of claim amounts is highly skewed, similarly to
a Gamma distribution. The resulting distribution is what is known as a Tweedie distribution
[60], as illustrated in Figure 3.1.

The parameters of the Tweedie distribution are similar to the ones other distributions in the
exponential family have. It has a mean parameter µ, a scale parameter φ, but it also has
a power parameter ρ. ρ is a shape parameter, which changes the mean-variance relation
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Figure 3.1 – A Tweedie distribution

depending on its value, as shown in Table 3.1. By changing this relation, it alters the distri-
bution to represent other types of distributions. Jørgensen [31] noted that ρ = 0 represented
a Gaussian distribution, ρ = 1 a Poisson distribution, ρ = 2 a Gamma distribution, etc.
Most importantly, he showed that when 1 < ρ < 2, the resulting distribution is a compound
Poisson-Gamma distribution, which is a sum of a Poisson distributed number of samples from
Gamma distributions.

A sample obtained from a compound Poisson-Gamma distribution can thus be decomposed
as c in Equation 3.8:

c =

{
0 if N = 0

c̃1 + c̃2 + ...+ c̃N if N = 1, 2, . . . ,
(3.8)

where N is Poisson distributed and c̃1 + c̃2 + ... are iid Gamma random variables independent
of N .

Yang et al. [67] noted that the probability density functions of the distributions found when
1 < ρ < 2 can effectively be written as the sum of the products of Poisson and Gamma
distributions with an additional mass at 0:

P (y|λ, α, γ) = e−λd0(y) +

∞∑
j=1

λje−λ

j!

λjαyjα−1e−y/γ

γjαΓ(jα)
, (3.9)

where d0 is the Dirac delta function at zero, j is a value of N ∼ Poisson(λ) and that the
conditional density of c on N = j is Gamma(jα, γ).
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As the compound Poisson-Gamma distribution is the most common use of the Tweedie dis-
tribution in statistical models, the latter usually refers to the former, as is the case in this
work.

In the context of pure premium estimation, Equation 3.8 represents the total losses c under a
specific year as the sum of N samples c̃d of N independent Gamma distributions. In this case,
N is sampled from a Poisson distribution with a mean and variance λ, while c̃d is the amount
sampled from the dth Gamma distribution, which each have their own shape parameter α and
scale parameter γ. This can also be shown by decomposing the Tweedie mean and variance
into the Poisson and Gamma parameters. As shown in Table 3.1, the mean and variance of
the Tweedie distribution is similar to the product of the mean and variance of the Poisson and
Gamma distribution. As both separate components of the pure premium can be combined
under the Tweedie distribution, the pure premium can represented under a single component,
as shown in Equation 3.10.

y = Pure premium = Average claimed amount per unit of risk (3.10)

As with Poisson GLMs, ŷ can be obtained from the Tweedie GLM by using an offset for units
of risk and setting w = 1 when the pure premium ŷ needs to be estimated.

Having equivalent computed outcomes ŷ obtained by both formulations in equations 3.4 and
3.10 that result in the pure premium for a certain policy means that either using one or
two models should theoretically have the same results. Nonetheless, Tweedie models can
be advantageous if frequency and severity are highly correlated, which Poisson and Gamma
models assume not to be the case [22]. Also, in cases of where too few observations with claims
are available or that a model must be built as quickly as possible, having a single model with
pure premiums as a unique target variable can still efficiently produce accurate results.

3.1.3 Metrics for Customer Profitability Estimation

As discussed previously, it is essential for models to be assessed before being put into a
production setting. The metrics presented in section 1.1.2, while being applicable to most
classification and regression problems, do not paint the whole picture of the model’s capacity
to solve the specific task at hand. For the task of pure premium estimation, three types of
criteria must be evaluated in order to validate and compare models: its accuracy on present
and future data, its monotonicity, and its ability to differentiate low and high risk policies
[22].

3.1.3.1 Accuracy Metrics

In order to validate that a model is accurate, two types of metrics must be computed. One
ensures that the model is accurate on all individual policies, while the other ensures that the
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model behaves properly on the entire population.

Depending on the distribution of outcomes and the maximum capped value of losses, model
accuracy on individual observations can be done using metrics such as the RMSE (1.19), the
MAE (1.5) or the R-squared (1.18). The first two can give the average dollar amounts that
separate the estimated pure premium and the claimed losses. While their weighting of the
errors differs and can vary depending on the prioritised observations, the goal is to minimise the
selected one. The latter metric must be maximised to explain the most variance in outcomes.
These metrics do give an idea of the extent to which an algorithm is accurate. However, as
the variance of claimed amounts is disproportionately high, high discrepancies bear a huge
weight on the average loss. For example, consider a typical claim amount distribution with
100,000 clients and a mean of 1,000$. In this case, 98,000 claim nothing and 2,000 clients have
a single claim of 50,000$. If the mean is always predicted and the RMSE is used, the 2,000
claims will contribute to 98% of the total RMSE of 7,000. As such, the RMSE is naturally
high because of a low mean and a high variance, but is not necessarily indicative of a bad
model if other metrics and comparative models are taken into consideration. MAE can be
used to reduce the effect of outliers, but the scale of the errors still highly varies depending
on the claim distribution.

As a result, other metrics and visualisations specific to insurance rating must be used. One
of the most popular is the use of the loss ratio (3.6) and loss ratio charts, as will be defined
later. As presented in Equation 3.6, the loss ratio for a population is the ratio between the
sum of its claimed amounts and the sum of its estimated pure premiums. The resulting metric
can be used as a validation tool to ensure company profitability. For example, if the sum of
a model’s estimated pure premiums is less than the sum of the claimed losses during a full
calendar year, an insurance company would not be profitable and could go out of business. If
the model overestimates the pure premiums on average, the insurer might charge too much to
insure clients and thus lose profitable clients to competing companies. As a result, accuracy
metrics must be accompanied by the overall loss ratio of the model to ensure that all the sum
of the estimated pure premiums are closely related to the sum of the claimed losses for the full
calendar year. Loss ratios can either be used on a case by case basis, on an entire population,
or by bins of clients that are sorted by pure premium. This latter one allows an insurer to
study the distribution of its rates and how the rates are over or underestimated on average
depending on a certain level of risk. This can easily be visualised in what is called a loss
ratio chart. Loss ratio charts, as illustrated in Figure 3.2, plot the average loss ratio of each
decile of observations Q with similar estimated pure premiums contained in Ŷ̂ŶY , which are the
estimated pure premiums attributed by the model f(xxx) [22]. By sorting the observations by
their estimated pure premiums, putting equal numbers of observations with similar estimated
pure premiums into buckets (i.e. deciles) and then computing Equation 3.11 for each bucket
Q, it is possible to determine if all segments of a population are being given an actuarially

67



Figure 3.2 – Example of a loss ratio chart

fair estimated pure premium if they have loss ratios as close as possible to 1. It is important
to note that Figure 3.2 is an example of a poorly performing pure premium estimation model,
as the first seven deciles of estimated pure premiums are greatly overestimated, while the last
two are underestimated.

Loss Ratio for decile Q of Ŷ̂ŶY =

∑
(xxx,y)∈Q

Claimed amount∑
(xxx,y)∈Q

Predicted claim amount
=

∑
(xxx,y)∈Q

y∑
(xxx,y)∈Q

f(xxx)
(3.11)

3.1.3.2 Monotonicity and Lift Metrics

According to Goldburd [22], the monotonicity criterion is there to ensure that the estimated
pure premiums increase monotonically as the true amount of pure premium increases. A
model, albeit not being necessarily exact, must preferably always attribute higher pure premi-
ums to observations with a true higher risk and lower pure premiums to observations with a
true lower risk. As in the loss ratio chart, the set of observations is split into sorted decile of es-
timated pure premiums Q with similar estimated pure premiums. Each decile of observations
is then compared by their average observed losses and average estimated pure premium, where
the former should preferably always increase. Reversals, where the estimated pure premiums
increase and the observed losses decrease, must be kept to a minimum.

An intuitive way to plot the relationship between the average claimed amount and the average
estimated pure premium is to use simple decile plots. Simple decile plots graph two lines for
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Figure 3.3 – Example of a decile plot

each decile of estimated pure premiums: the average claimed amount per observation and the
average estimated pure premium per observation. As seen in Figure 3.3, the average claimed
amount should always increase per decile and should never be lower than the previous one.
Another use of simple decile plots is the visualisation of a model’s capability of differentiating
high risk observations and low risks observations (i.e. a model’s lift). As discussed in Section
2.3, if similar risk levels get similar risk ratings and dissimilar risks get dissimilar risk ratings,
then the overall rates are considered actuarially fair. Simple decile plots can be used to
determine model lift by using the vertical distance between the actual average losses of the
first and last deciles. For example, in Figure 3.3, the spread between the worst risks and the
best risks is from 0$ to above 3,500$. Thus, when comparing pure premium estimation models
on the same dataset, the model with the larger spread is better at differentiating observations
with a true low risk level from observations with a true high risk level.

3.2 Achieving Fair Risk Assessment Models

The creation of a fair risk assessment model goes through the answering of many questions
and concerns from all the concerned domains. Are there restrictions to the types of objectives
that can be used? What types of models can be used? What fairness criterion attempts to
satisfy both actuarial fairness and group fairness? How should the model be constrained to
satisfy that criterion? How should sensitive attributes be used? The next sections proposes a
framework in which all those concerns are addressed in order to put out a robust and efficient
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solution.

3.2.1 Selecting Model Form

A primary concern for solving the task of pure premium estimation using statistical models
is to select how the final prediction is built. This can either be through the use of frequency
and severity models (3.4) or pure premium estimation models (3.10). Although many con-
cerns about efficiency and interpretability were raised previously, the addition of any fairness
criterion constrains the forms that the pure premium estimation can take. All of the fairness
criteria presented in Chapter 2 can only be used with the assumption that the final outcome
is based on solving a single task. The issue that comes up when a prediction is based on
many sub-tasks is the one of compositional fairness. Much research has been done on the
fact that the conjunction of many fair binary classifiers with AND or OR conditions does not
necessarily output fair final outcomes [14, 63]. Even though solutions were proposed to deal
with multiple-task fairness for classifiers in previous research, none of them address how to
adjust regression models to deal with compositionality. As such, to ensure that the rating
model is fair, using a single pure premium estimation model is a simpler approach to the task.

3.2.1.1 TDBoost: Tweedie GBDT Models

Although most statistical models used for pure premium estimation are GLMs, it is important
to know why more complex models are not often used for this task. As regulators ask that risk
ratings must be fully explained by the coefficients and decision rules for each risk factor used
[49], the use of interpretable models is of the utmost importance for compliance. Also, actuarial
departments may use pure premium models for other applications where interpretability is of
higher importance than model accuracy [22]. As a result, more complex models, such as
GBDTs, have rarely been applied to this task.

However, even though they can be flexible and interpretable, GLMs have many disadvantages.
Notably, as explained in Section 1.2, the target labels used on a GLM must be transformed to
represent a linear relationship between xxx and µ(xxx). This relationship might not be linear at
all. Even if some advanced transformations of attributes can be used to achieve linearity, the
relation must be known and set beforehand. They are also sensitive to the selected features,
as they try to model the relation throughout all attributes. Uninformative and correlated risk
factors thus add noise, increase error rates and decrease model explainability.

As shown in Section 1.3.6.2, much research has been done recently to increase the explain-
ability of GBDT models, which can model non-linear relationships between observations and
outcomes. As a result, the use of more complex models in regulated domains may not be as
out of reach as it once was. In fact, many new models specialised in the estimation of pure
premiums could be used in cases where they could not beforehand, eliminating the dilemma
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of choosing between high accuracy and high interpretability. Amongst those recent models is
TDBoost [67], which is the use of GBDT for Tweedie-distributed labels.

Like GLMs, gradient boosted decision trees have the flexibility of using loss functions that are
differentiated from the log-likelihood of the label distribution. As a result, similar to Tweedie
GLMs (3.1.2.2), TDBoost uses the log-likelihood of the Tweedie distribution (3.13) and its
differentiation. The difference is found in the fitted parameters, where GBDTs are composed
of boosting iterations and GLMs are composed of a single set of coefficients.

Also, as TDBoost can be used with advanced gradient boosting methods, the gradients gi
(3.15) and second derivatives hi (3.16) of the log-likelihood (3.13) must be obtained at each
boosting iteration t to fit each weak learner ht(xxx), which results in the GBDT model ŷi =

F (xxx) =
∑k

t=1 λ ·ht(xxx), where λ is the learning rate of the GBDT. To adapt GBDTs to use the
Tweedie log-likelihood function, the likelihood function of a single observation is designated
as P (yi|θθθ) = P (yi|F (xxxi), φ, ρ, wi) and the log-likelihood for the set {XXX,YYY } = SSS is designated
as `(YYY |θθθ) = `(YYY |F, φ, ρ,SSS). The Tweedie log-likelihood function’s parameters include the
dispersion parameter φ and the power parameter ρ. The Tweedie log-likelihood function’s
second term is the normalizing function a(·), which returns a constant. Hence, the development
and understanding of this function is not required for this work.

While equations 3.12, 3.13 and 3.15 can be found in the original paper by Yang et al. [67],
Equation 3.16 can be obtained from the LightGBM implementation of TDBoost [11].

Many crucial elements must be taken from equations 3.12 to 3.16. First, the Tweedie likelihood
function (3.9) is equivalent to the Tweedie likelihood function in Equation 3.12, as pointed
out by Smyth [54]. Second, it is important to note the presence of the units of risk for the
observation i (wi) inside the computation of the likelihood, the log-likelihood, the gradient
g
(t)
i (3.15) and the second derivative h(t)i (3.16) at iteration t. As yi is the claimed amount for
an entire calendar year, each original outcome ci (i.e. the claimed amount during a certain
calendar year) must be normalised by wi, as shown in Equation 3.14. This is well managed
in GLMs, which use an offset. However, to obtain the appropriate loss function without an
offset, the gradient and second derivative of each observation must be multiplied by wi to
obtain a proportional loss for each observation. Third, the gradient and second derivative do
not include the dispersion parameter φ, nor do they include the normalizing function a(·),
which are not dependent on the pure premium estimation GBDT model F (xxx).

P (yi|F (xxxi), φ, ρ, wi) = exp

(
wi
φ

(
yi

exp (F (xxxi)(1− ρ))

1− ρ
− exp (F (xxxi)(2− ρ))

2− ρ

))
×

a

(
yi,

φ

wi
, ρ

) (3.12)
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`(YYY |F, φ, ρ,SSS) =
n∑
i=1

log(P (yi|F (xxxi), φ, ρ, wi))

=
n∑
i=1

wi
φ

(
yi

exp (F (xxxi)(1− ρ))

1− ρ
− exp (F (xxxi)(2− ρ))

2− ρ

)
+

log

(
a

(
yi,

φ

wi
, ρ

))
(3.13)

Setting yi = ci
wi

=

n∑
i=1

wi
φ

(
ci
wi

exp (F (xxxi)(1− ρ))

1− ρ
− exp (F (xxxi)(2− ρ))

2− ρ

)
+

log

(
a

(
ci
wi
,
φ

wi
, ρ

))
(3.14)

g
(t)
i =

∂

∂ŷ
(t−1)
i

n∑
i=1

log(P (yi|ŷ(t−1)i , φ, ρ, wi))

Using Equation 3.13

g
(t)
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n∑
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φ

yi exp
(
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(t−1)
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)
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−
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(
ŷ
(t−1)
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)
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(
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φ
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, ρ

))

Dropping the second term, which is not dependent on ŷ(t−1)i

g
(t)
i =

∂

∂ŷ
(t−1)
i

n∑
i=1

wi
φ

yi exp
(
ŷ
(t−1)
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)
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ŷ
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)
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Removing φ, which is a constant not dependent on the observation i

g
(t)
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∂

∂ŷ
(t−1)
i

n∑
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yi exp
(
ŷ
(t−1)
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)
1− ρ

−
exp

(
ŷ
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Differentiating the equation for ŷ(t−1)i

g
(t)
i = wi

{
yi exp

[
(1− ρ) · ŷ(t−1)i

]
− exp

[
(2− ρ) · ŷ(t−1)i

]}
(3.15)

h
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∂ŷ
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∂

∂ŷ
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log(P (yi|ŷ(t−1)i , φ, ρ, wi))

Using Equation 3.15
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∂ŷ
(t−1)
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{
yi exp

[
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]
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[
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]}
h
(t)
i = wi

{
yi(1− ρ) exp

[
(1− ρ) · ŷ(t−1)i

]
− (2− ρ) exp

[
(2− ρ) · ŷ(t−1)i

]}
(3.16)

While GBDTs aren’t usually used in practice for pure premium estimation models, using the
TreeSHAP algorithm on TDBoost makes them a practical choice for increased accuracy while
keeping an appropriate level of interpretability.
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3.2.2 Selecting Fairness Criteria

Attempting to satisfy actuarial fairness and group fairness at the same time restricts the type
of fairness criteria that can be used to quantify the fairness of estimated pure premiums. As
actuarial fairness mostly relates to model accuracy in regression problems, any selected fairness
criterion to quantify the fairness of estimated pure premium must relate to error parity, as
defined in Section 2.1.1.4. As such, if actuarial fairness were to be related to a group fairness
criterion, an algorithm would then be considered more fair if the provided estimated pure
premiums have a similar level of accuracy across all subgroups of individuals. The resulting
fairness criterion is expressed in Equation 3.17:

max
a∈AAA

(CV aRα(Za))

min
a∈AAA

(CV aRα(Za))
≤ 1.2, (3.17)

where Za = {L(y, F (xxx) : (xxx, y) ∈ SSSa)}.

Equation 3.17 considers an algorithm more fair if all distributions of loss Za related to a
subgroup have similar conditional values-at-risk (2.26). The criterion considers that a model
is fair if the subgroup with the worst mean error over the percentile α is at most 20% worse
than the subgroup with the best mean error over the percentile α, as per the fourth-fifth
rule. This means that the most inaccurate α% premiums for each group will all be similarly
inaccurate, up to an error parity of 20%. Since it is difficult to reach exact group fairness on
outcomes that can vary greatly, an approximate fairness criterion is better suited to quantify
fairness for pure premium prediction models, as it allows a greater flexibility in the choice of
the solution.

In practice, this criterion does not restrict the model when optimising the model, but it
evaluates the disparity of CV aR between subgroups so that models can be properly assessed
for fairness afterwards. By using the ratio between the CV aR of the group with the maximum
CV aR and the CV aR of the group with the minimum CV aR, no group can be left behind
when assessing the model. If the criterion is not respected, actuaries and machine learning
practitioners are left with two choices: either try to increase the accuracy on the group with
the worse average group error or decrease the accuracy on the best average group error, which
can be done with the use of a fairness constraint. The use of the ratio also gives much more
flexibility, as using the difference between the best and worst group error requires the use of
an arbitrary upper bound depending on the problem on which it is used. It also enables the
use of the criteria on more than two groups at a time, as any other group that has an average
error in between both the upper and lower bound is treated more fairly than the group with
the worst error.

Since most people do not claim anything during a year, the errors for rating models are often
highly skewed. By using Equation 3.17, the model is allowed to ignore small errors in order to
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focus on the worst-case errors of each subgroup. As a result, the fairness aspect of the metric
will mostly ensure that high risk individuals in each group, which usually have the biggest
prediction errors, have similarly accurate ratings on average. All in all, this criterion allows
for fair and accurate models by ensuring that all subgroups have pure premiums with similar
worst-case errors.

As an example of the application of this criterion, consider a rating model with a Tweedie
loss function that has the marital status as a sensitive variable. Consider that there are three
possible subgroups: single, married and divorced, and that we want to be fair on 80% of the
worst losses of each group (i.e. 1 − α = 0.8 and α = 0.2). First, the loss is computed on all
individuals in a target population SSS. Second, the value-at-risk at α = 0.2 is computed on the
distribution of the losses Za for each group. In this case, suppose that the 20th percentile of
errors is 200 for single individuals, 220 for married individuals and 240 for divorced individuals.
Third, the CVaR at α = 0.2, or the average loss over the 20th percentile, is computed. In
this example, the average loss over 200 for single individuals would be 300 the average loss
over 220 for married individuals would be 350 and the average loss over 240 for married
individuals would be 360. As a result, the group of single individuals would be the most
accurately assessed, while the divorced ones would have more inaccurate ratings. However,
the error ratio of 360

300 = 1.2 separating them would not be considered disproportionate enough
to consider it disparate treatment. As such, the criterion would be satisfied.

3.2.3 Selecting Fairness Constraint

As indicated in Chapter 2, Williamson et al. introduced the use of CVaR objective (2.27) to
increase model fairness. However, it has many restrictions in the variety of its usages. First,
it is usually used as an objective that must be minimised while always keeping its initial form.
As noted in most papers optimising for CVaR [52], the objective is optimised using linear
programming. As such, it cannot be integrated directly into GBDT models. Second, it does
not take intersectionality into consideration: it can only be used on a single attribute at a
time.

To deal with the first restriction, we can integrate the CVaR objective to a GBDT with a
Tweedie loss function by obtaining its gradient and its second derivative with regards to f(xxx),
as shown in the steps provided in equations 3.18 through 3.22. Note that since the target
model here is a GBDT, the ensemble of regression trees F (xxx) is equal to the function f(xxx),
which is equal to the predicted outcome ŷ.

By knowing the gradient (3.15) and second derivative (3.16) of the Tweedie log-likelihood
function, we can substitute them into the gradient (3.20) and second derivative (3.22) of the
CVaR objective, making the objective usable with advanced gradient boosting methods. The
result is simple and intuitive, while still keeping the essence of using the CVaR. As in Equation
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2.27, the model optimises the CVaR at each boosting iteration by ignoring groups with a small
average loss under ξ, while increasing the gradient and second derivative of subgroups with
average losses over ξ by a factor of 1

1−α . As a result, the next boosting iteration will focus
more on subgroups that are not yet properly assessed, as their importance will have been
increased.

In addition, as noted in Equation 2.28, the parameter ξ must also be optimised to minimise
the empirical risk. However, since GBDTs optimise the objective with regards to f(xxx), this
additional parameter is initialised at 0 and is updated separately via gradient descent after each
boosting iteration. The gradient of LS(f, ξ) with regards to ξ, as determined by Rockafellar
et al. [52], can be used to do so. To adapt this result to Williamson’s formulation of CVaR for
group fairness (2.27), the gradient is based on the average group probability of having a loss
over ξ instead of the global probability of having a loss over ξ, as shown in Equation 3.23.

α controls how much should the model take into consideration the groups with higher average
losses. In the end, this effectively means that a GBDT can optimise a CVaR using equations
3.20 and 3.22 by reducing the empirical risk of groups of observations with an average loss
over ξ with an extreme value importance parameter α.

∂

∂f(xxx)
LS(f, ξ) =

∂

∂f(xxx)
ξ +

1

n · (1− α)

∂

∂f(xxx)

∑
a∈AAA

 1

ma

∑
(xxx,y)∈SSSa

L(y, f(xxx))− ξ


+

(3.18)

Removing the first term since it is not dependent on f(xxx).

∂

∂f(xxx)
LS(f, ξ) =

1

n · (1− α)

∂

∂f(xxx)

∑
a∈AAA

 1

ma

∑
(xxx,y)∈SSSa

L(y, f(xxx))− ξ


+

(3.19)

Keeping the parts of the equation related to the group a of observation xxx.

∂

∂f(xxx)
LS(f, ξ) =


∂

∂f(xxx)
L(y,f(xxx))

ma·n·(1−α) if

(
(xxx, y) ∈ SSSa : 1

ma

∑
(xxx,y)∈SSSa

L(y, f(xxx)) > ξ

)
0 otherwise

(3.20)

∂2

∂2f(xxx)
LS(f, ξ) =

∂

∂f(xxx)

∂

∂f(xxx)
LS(f, ξ) (3.21)

Using Equation 3.20

∂2

∂2f(xxx)
LS(f, ξ) =


∂2

∂2f(xxx)
L(y,f(xxx))

ma·n·(1−α) if

(
(xxx, y) ∈ SSSa : 1

ma

∑
(xxx,y)∈SSSa

L(y, f(xxx)) > ξ

)
0 otherwise

(3.22)

∂

∂ξ
LS(f, ξ) =1 +

1

n · (1− α)

∑
a∈AAA
−1 · I

 1

ma

∑
(xxx,y)∈SSSa

L(y, f(xxx)) > ξ

 ,

where I(q) =

{
1 if q = True
0 if q = False

(3.23)
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AAA =

Gender
Men Women
Age Group

Young Old

=⇒ Gender×Age Group
Young men Old men Young women Old women

Table 3.2 – Example of sensitive attribute transformation

All in all, the CV aR constraint can be adapted and combined to GBDTs to create fair pure
premium prediction models.

3.2.4 Selecting Sensitive Attributes

The second restriction of the original CVaR fairness constraint is that it does not take into
consideration the use of multiple sensitive attributes. Although it has been adapted to work
on an unlimited number of groups, on categorical and continuous sensitive attributes, the
case for quantifying and optimising for fairness amongst the intersection of multiple sensitive
attributes using the CVaR has yet to be explored. It is also important that a model stays
fair amongst the intersections of subgroups and the independent subgroups. For example, a
model that is fair towards young men and women in addition to old men and women should
also be fair towards men, women, young and old people independently.

In order to deal with intersectionality, the CVaR constraint and the sensitive attributes can be
adapted to ensure fairness throughout all subgroups and all of their possible intersections. The
adaptation mostly relies on transforming the intersections of attributes into a single categorical
attribute, where each attribute value represents a combination of the protected features. As
a result, the number of possible values for this single feature is the product of unique values
for each separate sensitive feature. Table 3.2 is an example of how the two attributes "Age
Group" and "Gender" are converted into a single attributeAAA which represents the combination
of both features.

This transformation can work in the context of using the feature for ensuring fairness with the
fairness criteria defined in Section 3.2.2. As noted by Foulds et al. [18], splitting a population
into smaller subsets can help in detecting unfairness in what would seem to be a fair model
when using a single sensitive attribute at a time. However, if these smaller subgroups are
merged back together, the model will never become more unfair than it was on the smaller
groups.

In the context of the proposed CVaR ratio criteria, the use of the maximum and minimum
subgroup error amongst all the encoded intersections of individual subgroups ensures that the
model is fair for all sensitive attribute intersection and for all individual sensitive attributes, as
the gap between the maximum and minimum error can only be reduced when merging groups
together.
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The biggest caveat to the proposed method is that it only supports categorical attributes as
a means to intersect different attributes into discrete subgroups, which limits the variety of
attributes it can manage out of the box. To manage any sensitive attribute which is either
too numerous or continuous, such as age, its values must be binned by putting similar values
together. This can only be done if there is a relation of similarity between the different
attribute values. For example, age can be binned by decade, while marital status cannot be
binned at all.

After selecting the encoding methodology, the selection of the sensitive attributes can begin. It
is important to define which attributes are selected and why they should be selected. Firstly,
it should be important to determine which attributes are the most susceptible to be affected
negatively for the specific task at hand. This can be from known historical biases. Second,
the selected attributes should be relevant to anti-discrimination laws. Finally, the selected
attributes must be available in the data set that is used on an individual basis, to ensure that
fairness is applied properly on real subgroups. This last point is the most important, as using
proxy attributes or trying to predict the sensitive attribute often leads to unfairness when
errors are made. For example, Bayesian Improved Surname Geocoding (BISG) is commonly
used to predict a person’s race from its geolocation and surname. Since this statistical model
always makes mistakes, it has been shown to overestimate pricing disparities between sub-
groups when auditing discrimination in lending applications and their outcomes [70]. As such,
the use of true subgroup labels should always be preferable to ensure that the mitigating and
auditing of bias is done properly.

Altogether, the laying out of the task of customer profitability estimation and the tools which
have been established in this chapter allows the creation of intersectionnaly fair and accurate
models that estimates each client’s pure premium.
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Chapter 4

Experimental Results

In this final chapter, we put together notions from the domains of machine learning, actuarial
science with a focus on model fairness. Altogether, we provide experimental results showing
that it is possible to create fair, accurate and interpretable models that are able to estimate
customer profitability. First, we lay out the steps taken to obtain the final model, which
applies the CVaR objective (2.27) to GBDTs. This includes selecting the proper risk factors,
the appropriate training methodology and the right hyperparameter values. Then, we evaluate
the accuracy and fairness of the model according to the metrics presented in sections 3.1.3
and 3.2.2. Finally, we compare these results to traditional GLMs to determine how GBDTs
could be applied to provide more accurate and fair pure premiums while sacrificing minimal
interpretability.

4.0.1 Experimental Data Set

In order to assess our fair Tweedie GBDT model, we analyse its behaviour on a large home in-
surance claim data set extracted and provided by a major Canadian insurer. The training set
contains 1,935,876 rows collected between January 2012 and December 2016 that each repre-
sent a single home assigned to a policy during a specific calendar year, along with information
about the policy holder, the previous claims made by the policy holder and the home itself,
in a way that is similar to what is described in Section 3.1.1. Additional socio-demographic
data related to the client’s geolocation is also joined on each row. In total, 205 discrete or
continuous risk factors were identified to influence a client’s pure premium, as detailed in
Table 4.1. However, only the factors that were included in the top 20 most important factors
by one of the presented models in Figure 4.3 are shown here for brevity. Also, due to the
confidential nature of the dataset, the other attributes of the dataset cannot be shown. Note
that all data was anonymised prior to use so that no individual can be identified using the
dataset. In order to reference the attributes of the dataset of Table 4.1 in the next sections
and graphs, the abbreviated variable names indicated in italic between the parentheses next
to the description of each variable will be used. For example, the payment method used by
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Policy holder
data

Home attributes Policy attributes Socio-demographic
data (by postal code)

Age (age) Basement finishing
(bas_finish)

Total value of covered
assets (in 2016 dollars)
(cov_amount_idx)

Adults with income (%)
(%_ad_income)

Gender (gender) Age of home (home_age) Total value of covered as-
sets ($) (cov_amount)

Adults with revenue
over 125,000$ (%)
(%_rev_over_125)

Credit score
(credit)

Number of plumbing ele-
ments (num_plum_elem)

Policy type (tenant or
homeowners insurance)
(pol_type)

Participation rate (%)
(%_ad_part_rate)

Payment
method
(pay_mode)

Number of wood
cords consumed per
year for heating
(num_wood_cord)

Flooding insurance
coverage amount ($)
(cov_amount_flo)

Employment rate (%)
(%_ad_emp_rate)

Number of years
where client had
home insurance
(years_insured)

FSA of home (fsa) Flooding insurance
coverage amount
(in 2016 dollars)
(cov_amount_flo_idx)

Families with 20
to 24 children (%)
(%_fam_20_24_ch)

Age of roof (roof_age) Presence of a lender
(has_lender)

Adults working at
usual place (%)
(%_work_usu_pl)

Roof covering material
(roof_cov_mat)

Calendar year of policy
(year)

Adults working in sales
or service industry (%)
(%_occ_sale_serv)

Table 4.1 – Sample of risk factors used for pure premium estimation

the client will be described by the variable pay_mode.

In total, 33,232 rows have claims, thus having a claim amount above zero. As these rows only
make 1.71% of the total data set, they are a rare occurrence, but have an immense weight on
the average claimed amount. As a result, a client claimed an amount 324$ per unit of risk on
average, while a client that made at least a claim claimed 14,308$ on average.

To properly evaluate the performance of a model, an extra data set was extracted for test
purposes. Thus, it can only be used as a final validation. It contains 184,388 rows that were
collected between January 1st 2017 and December 31st 2017. In this case, clients claimed
479$ per unit of risk on average and the 4,116 rows with a non-zero claim amount contained
an average amount of 21,460$. As assets often increase in price each year, the cost to repair or
replace them also increases. Thus, claim amounts trend upwards over time [30]. This increase
in the average claimed amount must then be taken into account when training a new model to
estimate pure premiums, either by using the policy’s calendar year as a risk factor, by trending
the future pure premiums by a separately estimated coefficient that can be obtained with a
simple linear regression or by expressing all amounts into deflated dollars (e.g. 2012 dollars).
For this assessment, we used the former method to estimate that trend.
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4.1 Training Methodology

4.1.1 Data Preprocessing and Data Engineering

Before using a dataset on our fair Tweedie GBDT model, the data needs to be transformed in
a way that makes it usable and that makes it easier for the GBDT to detect the proper risk
factors in a way that can generalise to future observations. Notably, the attributes contained
in socio-demographic data at the postal code level are often bins in which the individuals in
that postal code are put in if that bin corresponds to their label. For example, the attributes
%_ad_emp_rate and %_ad_part_rate are originally bins containing the number of individ-
uals who are employed or participating in the labour market in a certain postal code. As
these attributes are in absolute terms, they must be normalised to compare each postal code
relative to each other. As a result, %_ad_income, %_ad_emp_rate and %_ad_part_rate
are the number of individuals in a certain bin divided by the total number of adults in the
postal code and are the percentages of the total adult population in the postal code with a
specific label.

As for the categorical attributes, LightGBM can manage them as a single column by finding
the best split that can partition the categories into two subsets, as per Fisher [17]. When
computing the optimal split for a categorical attribute, each observation is assigned to a bin
based on their category, along with their current gradient and second derivative. These bins
are then sorted based on the sum of the bin’s gradients divided by the sum of its second
derivatives. Then, as these unordered categories now have a numerical order of magnitude,
the optimal split can be found by using the split function (1.51). As such, there is no need to
create dummy variables.

4.1.2 Selected Sensitive Attributes

As mentioned in Section 3.2.4, the selected sensitive attributes that must be used to study
and to create fair models must contain the true label of each individual. As such, only the
attributes that were already collected at the individual level could be used for the purpose of
this model. As a result, the two sensitive attributes that are selected were already available
in the data set were the age and the gender of the client.

Since only categorical attributes can be encoded with the methodology proposed in Section
3.2.4, the age of each individual is accordingly put into 6 age bins. The age bins were set to
0 to 25 years old, 25 to 35 years old, 35 to 45 years old, 45 to 55 years old, 55 to 65 years
old and 65 years old and older. Each of these bins were intersected with the sex of the policy
holder. Altogether a total of 12 groups have to be considered when mitigating and auditing
for bias. Table 4.2 shows the distribution of the rows for the test data set of 2017. As some
policies have two policy holders (i.e. couples) and cannot be attributed to a single individual,
they were filtered from this fairness assessment.
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Sex Age Group # of rows in group
M 0-25 722
F 0-25 176
M 25-35 3,786
F 25-35 1,941
M 35-45 5,154
F 35-45 4,696
M 45-55 6,225
F 45-55 6,463
M 55-65 5,836
F 55-65 6,354
M 65+ 4,009
F 65+ 4,209

Table 4.2 – Number of rows per group

Hyperparameter Values
Power parameter ρ {1.3;1.4;1.5;1.7;1.8}

Subsampling {0.25;0.5;0.75;1.0}
Column subsampling {0.25;0.5;0.75;1.0}

Learning rate {0.001;0.01;0.1;1.0}
Number of boosting rounds {50;100;500;1,000;5,000;10,000}

Maximum depth {1;2;3;4;5}

Table 4.3 – Grid search hyperparameter values

4.1.3 Hyperparameter Selection

As discussed in Section 1.1.2.3, using techniques such as grid search can help in searching the
space of the possible hyperparameters to find the best combination for the task at hand. In
this case, the subset of selected hyperparameters to tweak were the percentage of the training
set that was sampled at the start of each boosting round, the percentage of risk factors that
were sampled for each boosted round, the learning rate, the number of boosting rounds and
the maximum depth of each decision tree. In addition, the power parameter ρ of the Tweedie
log-likelihood (3.13) must be selected, as the negative Tweedie log-likelihood (i.e. the Tweedie
log loss) is minimised by the Tweedie models. Each hyperparameter has a set of values, as
can be seen in Table 4.3.

Then, each combination of hyperparameter is used for a 5-fold cross validation using the
training dataset, to ensure that it works best on average for any set of observations. In the
end, the selected hyperparameters were a power parameter of 1.5, a subsampling of 0.5, a
subsampling of 50% of the features, a learning rate of 0.001, 10,000 boosting rounds and a
maximum depth of 3. As for the tuning parameter α of the CVaR constraint, it was kept at
a constant value of 0.90 as to focus on each group’s error over the 90th percentile of errors.
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4.2 Cost and Effects of Fairness Constraint

After training the model, it can be tested on the test data set of 2017. For the purpose
of reviewing the effects of adding a fairness constraint, we trained a model with the same
hyperparameters without the CVaR constraint and evaluate the cost on performance and
gains made on fairness.

Additionally, we compare the GBDTs with an equivalent GLM with a Tweedie objective
provided by the partner insurance company, along with the set of current pure premium
estimation models provided by the partner insurance company. The former model is optimised
with gradient descent and uses the same power parameter as the GBDTs of 1.5. The latter
models estimate a pure premium by computing the product of the estimations of a Gamma
and a Poisson GLM for each claim type, which are then summed up to make up the entire pure
premium. All of these models were optimised using the same training set defined in Section
4.0.1. The only additional transformations made to the data are made to the categorical
attributes. As GLMs do not support the encoding of categorical attributes in a single column,
they must all be transformed into dummy variables. As such, we compare the performance of
the Tweedie GBDT models with different configurations of linear models to assess the gains
that could be made with regards to pure premium estimation accuracy.

To compare the fairness of the Tweedie GBDT with and without constraint, the CVaR ratio
(3.17) of the subgroup errors with α = 0.90 is used. As for the comparison of the performance
of the models, the R-squared, the MAE, the loss ratio along with loss ratio charts and simple
decile charts are used. Additionally, the Tweedie GBDTs and the Tweedie GLM will be
compared based on their mean Tweedie log loss as a comparative measure of pure premium
estimation accuracy, with a power parameter of 1.5. The lower the Tweedie log loss is, the
more the model is accurate.

4.2.1 Constraint effect on model fairness

As can be seen in Table 4.5, the addition of a fairness constraint decreases the ratio between
the worst and best average group loss over the 90th percentile of losses by 7%. It is important
to note that most of the conditional value-at-risks of the grouped Tweedie log loss distribu-
tions in the comparison made in Table 4.4 varied greatly for most groups. For 10 out of 12
subgroups, the addition of the CVaR fairness constraint resulted in less accurate estimated
pure premiums for the 10% most inaccurate estimated pure premiums of each of these groups.
This notably included the group which had the most accurate 10% most inaccurate estimated
pure premiums. On the other hand, the other 2 subgroups had more accurate estimated pure
premiums for the 10% most inaccurate estimated pure premiums of each of these groups. One
of these two subgroups had the highest subgroup CVaR. This shows that the constraint in-
creases the best subgroup CVaRs and reduces the CVaR of the worst subgroup CVaR. Thus,
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Sex Age CV aR0.90(Za) w/o constraint CV aR0.90(Za) w/ constraint Diff.
M 0-25 337.17 334.01 -3.16
F 0-25 290.08 302.88 12.8
M 25-35 305.49 318.51 13.02
F 25-35 326.06 336.23 10.17
M 35-45 335.73 336.61 0.88
F 35-45 333.84 348.88 15.04
M 45-55 299.56 303.52 3.96
F 45-55 270.43 286.95 16.52
M 55-65 226.67 (most accurate) 229.07 2.40
F 55-65 328.46 353.17 24.71
M 65+ 434.13 (most inaccurate) 424.53 -9.60
F 65+ 307.52 316.04 8.52

Table 4.4 – Average Tweedie log loss over the 90th percentile of Tweedie log losses per group

Model Type CVaR Ratio (α = 0.90)

GBDT without constraint 1.92
GBDT with constraint 1.85

Table 4.5 – Fairness constraint effect on fairness metric

this reduces the ratio between the worst and the best group CVaR of the losses. In other
words, the model sacrificed the worst-case accuracy of the most accurately estimated groups
in order to improve the worst-case accuracy of the less accurately estimated groups. In the
end, the addition of the fairness constraint did not manage to keep the CVaR ratio (3.17) at
or under 1.20. While the model is not fair enough, the addition of the constraint did manage
to slightly work towards the goal of creating a fair pure premium estimation model. As a
result, additional measures should be taken to increase model worst-case accuracy on the least
accurately estimated groups. This includes exploring other values of α for the fairness con-
straint and the fairness criterion, performing further hyperparameter optimisation and adding
additional attributes that contain information about the least accurately estimated groups.
Future work could be done to study the application of other constraints based on risk measures
to ensure fair pure premium estimations (e.g. [27, 53]).

4.2.2 Constraint effect on model performance

As for model performance, Table 4.6 shows that the increase of overall model fairness by using
the CVaR constraint comes at the cost of model performance. In this case, the constraint
increased the average Tweedie log loss by .08 and decreased the R-squared by 0.003%, which
is not much considering the slight gains made towards fairness. Due to the fact that a form
of error parity is used as a metric in this fairness assessment, model accuracy can still be
prioritised as long as all subgroups have similar errors. Even with this decrease in overall
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Model Mean Tweedie log loss MAE
Tweedie GBDT w/o constraint 65.90 616.48
Tweedie GBDT w/ constraint 65.98 624.81

Tweedie GLM 87.55 1,035.20
Poisson and Gamma GLMs - 934.03

Model R-squared Loss ratio
Tweedie GBDT w/o constraint 0.00075 0.97
Tweedie GBDT w/ constraint 0.00072 1.09

Tweedie GLM -0.00028 0.79
Poisson and Gamma GLMs -0.00010 1.21

Table 4.6 – Model assessment - performance metrics

accuracy, the GBDT with fairness constraint is much more accurate than Tweedie GLM and
the sum of the products of Poisson and Gamma GLMs per claim type. This shows that with
proper frameworks and regulations with regards to model fairness and transparency in pure
premium estimation, more accurate and fairer premiums could be provided to clients, all while
ensuring company profitability. Regarding the loss ratios of each model, both of the GBDTs
have overall loss ratios that are close to 1, which shows that the overall sum of estimation pure
premiums over large populations will always stay close to the true sum of pure premiums. In
contrast, the Tweedie GLM greatly overestimates the average pure premium, while the pure
premium estimation model based on the sum of the products of Poisson and Gamma GLMs
per claim type underestimates more the average premium for future years.

Figure 4.1 contrasts with the previous accuracy metrics, as the loss ratio of the entire test
set is split by decile of estimated pure premiums. As the loss ratio of the GBDT without
constraint is lower than the one with constraint, the LR charts depict a similar picture. The
most noticeable difference can be found in the higher and lower deciles of the LR chart for
the GBDT with constraint. Since the constrained model focuses on the worst errors of each
subgroup, it overestimates the pure premium of low risks observations and underestimated
the pure premium of high risk observations. The Tweedie GLM estimated much higher pure
premiums for the majority of estimated pure premium deciles, but was the most accurate on
observations with higher true risk. As for the pure premium model based on the sum of the
products of Poisson and Gamma GLMs per claim type, Figure 4.1 c) shows that observations
with low true risk get much higher premiums than with the Tweedie GBDT without constraint,
while estimating similar pure premiums on average from the 6th decile onwards. Compared
to the LR charts, the decile plots in Figure 4.2 show less contrast between the two Tweedie
GBDT models. Both Tweedie GBDT models can properly detect high risk observations to a
similar extent, with 1,702.17$ average claimed amount for the last decile of estimated pure
premiums of the Tweedie GBDT without constraint and 1,632.27$ for the Tweedie GBDT with
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(a) LR chart - Tweedie GBDT w/o constraint (b) LR chart - Tweedie GBDT w/ constraint

(c) LR chart - Sum of the products of Poisson and
Gamma GLMs per claim type

(d) LR chart - Tweedie GLM type

Figure 4.1 – Model assessment - ratio of financial loss per decile of estimated pure premium

constraint. In addition, the Tweedie GBDT with constraint had a similar capacity in detecting
low risk observations, with 298.13$ average claimed amount for the last decile of estimated
pure premiums of the Tweedie GBDT without constraint and 211.37$ for the Tweedie GBDT
with constraint. Apart from a few differences in certain deciles, both models closely match
each estimated pure premium decile with the average claimed amount of the observations
contained inside that decile. As for the sum of the product of Poisson and Gamma GLMs
per claim type, the deciles of estimated pure premiums are much lower than the actual pure
premiums contained, since the estimated pure premiums are lower than the claimed amounts
overall. Also, the first decile of pure premiums estimated by the sum of the product of Poisson
and Gamma GLMs per claim type contained an average actual pure premium of 238.39$,
while the last decile of pure premiums estimated contained an average actual pure premium
of 1,307.06$. On the other hand, the Tweedie GLM estimated much higher premiums than
the claimed amounts overall and had an average actual pure premium of 283.51$ in its first
decile, while its last decile contained an average actual pure premium of 931.39$. As the
vertical distances between the first and last deciles in both configurations of GLMs are much
smaller, they cannot differentiate low risk observations from high risk observations as well as

85



(a) Decile plot - Tweedie GBDT w/o constraint (b) Decile plot - Tweedie GBDT w/ constraint

(c) Decile plot - Sum of the product of Poisson and
Gamma GLMs per claim type

(d) Decile plot - Tweedie GLM

Figure 4.2 – Model assessment - ability to differentiate low from high risk assets

the GBDTs.

With all the metrics and charts previously gathered, we can see that using GBDTs for estimat-
ing pure premiums, and thus for estimating customer profitability, can provide more accurate
individual pure premiums, which corresponds to actuarially fairer pure premiums. Also, with
the addition of a fairness constraint such as the one added to our GBDT, strides can be made
towards achieving group-fair pure premiums with minimal impact on overall accuracy. In
the end, GBDTs are better at providing more competitive pure premiums by being better at
differentiating low risk observations from high risk observations.

4.2.3 Model interpretation

The current biggest barriers to using models other than GLMs for estimating pure premiums is
their lack of model interpretability and prediction explicability. However, as shown in Section
1.3.6.2, GBDT predictions can be explained using SHAP values, while whole models can be
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interpreted using the mean absolute SHAP values over an entire population. For a single
prediction, adding each of its computed SHAP value to mean prediction φ0 results in the final
prediction. As a result, the SHAP values of different models can also be used to compare two
different GBDTs, such as the model with and without a fairness constraint. The interpretation
of the GLMs provided by the partner insurance company could not be compared to the GBDTs
due to the confidential nature of these models.

An important point with using SHAP values on a GBDT with a Tweedie objective is that the
core model of the GBDT uses log-transformed outcomes, as with Poisson, Gamma or Tweedie
GLMs, before using the inverse link function to obtain the true outcomes. As such, the SHAP
values are still additive, but they must be transformed with the inverse link function to be
properly interpreted. When transformed, each independent SHAP value then represents the
multiplicative factor of impact an attribute has with regards to the expected prediction. For
example, if a model with a single attribute makes a prediction on a single xxx, where φ1 = 0.25

and the expected value of the model is φ0 = 5.0, then the predicted value was e(φ0+φ1) =

eφ0 · eφ1 = e5.0 · e0.25 = 190.57. In that case, the expected value was eφ0 = e5.0 = 148.41

and the attribute x1 had the impact of increasing the prediction with regards to the average
prediction by a factor of e0.25 = 1.284, or 28.4%. For the global explainability of the model,
the mean absolute SHAP values over overall populations can be transformed using the inverse
link function to obtain the average absolute multiplicative factor of impact that each attribute
has. Using the average absolute SHAP values, we can then explain the GBDTs which were
previously assessed for accuracy and fairness in Section 4.2.1. As both models are similar, we
can also study the direct effect that the constraint had on the importance of each attribute.

As can be seen in Figure 4.3, the use of a fairness constraint did not only have an impact on
estimating the pure premium for home insurance policies: it also changed the average impact
of each variable on the final estimations.

Before underlining the differences, some attributes stay important, constraint notwithstanding.
Notably, the three most important factors (the value of the covered assets, the number of wood
cords consumed per year and the year of the policy) stay in the same order of importance for
both models. Also, some important attributes show the usefulness of being able to manage
missing values out of the box. Notably, the attribute bas_finish, which indicates the basement
finishing, can be null. If the attribute is null, then the house has implicitly no basement. This
can also be said for the number of wood cords used per year (num_wood_coord), which implies
that the house is heated using a fireplace or a wood stove if that attribute is not null. This is
managed out-of-the-box by LightGBM, which is one of its many advantages over traditional
GBDTs, as it does not need the presence of an attribute to make a decision based on it,
as described in Section 1.3.5.3. As fires are the cause of the biggest claims, it is expected
that the number of wood cords consumed per year (num_wood_coord) carry the second most
importance, with an average multiplicative factor of importance of e0.2316 = 1.26 in the GBDT
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(a) SHAP summary plot - Tweedie GBDT without
constraint

(b) SHAP summary plot - Tweedie GBDT with
constraint

Figure 4.3 – Model assessment - Attribute impact on pure premium

without constraint and e0.2933 = 1.341 in the GBDT with constraint.

To explore the differences between both models, we can simply use the ratio between their
transformed mean absolute SHAP values for each attribute in both graphs in Figure 4.3 to draw
conclusions on the effect of the constraint. As the two models have similar expected values
(φ0 = e5.1393 = 170.60 for the GBDT without constraint and φ0 = e5.1517 = 172.72 for the
GBDT with constraint), their SHAP values can be compared as is. One of the main differences
is found at the level of importance of the most important attribute: the number of wooden
cords consumed per year (num_wood_coord). The initial model had an average importance
factor of e0.2316 = 1.261, while the addition of the constraint increased its importance factor to
e0.293 = 1.341. An increase of 6.3% of importance per prediction. Other notable changes are
the increase in the importance of the indexed value of the covered assets (cov_amount_idx)
(8%) and the credit score (credit) (4.1%). The increased reliance on these already important
risk factors shows that they provide a similar level of information throughout all subgroups.
By giving more importance to these attributes, the estimated pure premiums will be more
accurate for groups where these attributes were a good indicator of risk. The inverse can be
said for other attributes which became less important, such as the percentage of adults in the
postal code with income (%_ad_income) (-7.2%).

Altogether, the change in the interpretation of the model shows that adding the fairness
constraint increased the use of information that was useful for groups that were inaccurately
assessed and decreased the use of information that was useful for groups that were already well
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assessed, reducing the overall error parity of the model and thus giving group-fair premiums.

With all the previous findings taken into account, we can conclude that it is possible to use
models other than GLMs for pure premium estimation in order to gain accuracy, while also
losing minimal model interpretability.
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Conclusion

In conclusion, we have shown in this thesis that it is possible to create fairer and more accurate
machine learning models which predict future customer profitability in the insurance industry.
We also suggest a method to quantify group unfairness in pure premium estimation models,
which balances actuarial and group fairness by targeting the worst case inaccuracies of each
subgroup. To reduce this unfairness, we propose a fairness constraint that can be applied to
gradient boosted decision trees at training time.

The proposed criterion has the advantage of quantifying fairness in a multidisciplinary way
by considering the legal, actuarial and machine learning aspects of fairness. However, it still
leaves questions unanswered as to the possibility of determining a strict threshold at which
discrimination has taken place. The fairness constraint has shown in practice that it was able
to reduce unfairness, but it was not able to reduce unfairness to a point where the criterion was
satisfied. As such, research should be done to further increase the fairness of pure premium
estimation models based on the proposed criterion.

The impacts of this work also raises concerns on current regulations that oversee insurance
pricing models with regards to fairness requirements and model transparency. As a more
complex model such as a gradient boosted decision tree can have its pure premium estimations
explained by knowing the impact of each of the individual attributes related to the insurance
policy of a client, other models could become mainstream. As a result, insurance companies
could give more competitive pure premiums to clients while still being profitable.

As for fairness requirements, it is crucial that a consensus is reached on what is considered
a fair pure premium by considering legal and actuarial fairness definitions, as we attempted
to do in this thesis. Since there are currently no precise fairness regulations that require the
need to quantify fairness for insurance pricing models, insurance companies have no incentive
to quantify unfairness or to adjust models resulting of that quantified unfairness.

Therefore, regulatory bodies should look into providing insurance companies with the tools to
ensure fairness, accountability and transparency in pure premium estimation models. These
tools include the definition of a proper fairness criterion, of an explicit methodology to audit
more complex models and of a method to provide individual subgroup labels, while ensuring
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their proper use. They should be based on the successes and shortcomings of previously made
policies and consider the input of each domain involved to ensure fairness, competitiveness
and profitability.

In order to expand the possibilities of what these regulations could and should look like, future
research should be done on each level of the model creation process. This includes looking
into additional types of models, fairness constraints and insurance branches that could benefit
even more from ensured fairness, such as car and life insurance.

Altogether, insurance companies and regulatory agencies need to continue to find a balance
between profitability and fairness, in order to ensure that no population is left behind and
that everyone pays a fair share of its potential liabilities.
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