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ABSTRACT

A mathematical model for heat flow during solidifi-
cation of alloys has been postulated. This model treats
the heat of fusion released upon solidification separately
for three distinct regions of a casting; a portion is
released isothermally at the liquidus temperature, a
second portion is released over the range of temperature
between the liquidus and solidus in a specified manner,
and the remainder is released at the solidus.

The mathematical model is solved numerically, by
means of a finite difference technique, on a computer.
Results of the solutions are presented for unidirectional
heat flow, radial heat flow, and two dimensional heat flow
in thin plates. For each of these cases, effects are
considered of heat transfer coefficient at the chill
surface, superheat, heat input, and liquid convection.

Results are presented in terms of positions of
liquidus and solidus isotherms as a function of time,
width of the liquid-solid zone as a function of time, and
"local solidification time". Detailed numerical solutions
are presented, as example, for an end chilled plate cast
in various molding media. The local solidification time
of an alloy is shown to decrease at a given distance from
the chill, as (a) the heat transfer coefficient increases,
(b) the superheat increases, (c) the gradient of tempera-
ture at the solidification front increases, (d) the
characteristic distance over which heat flow occurs
decreases, and (e) the multi-dimensionality of the heat
flow path increases.

Thesis Supervisor: Merton C. Flemings
Title: Professor of Metallurgy
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Chapter I

INTRODUCTION

The important influence of dendrite arm spacing on

mechanical properties of cast aluminum alloys, and of

wrought material produced from-cast ingots, is now well

documented.(1,2) Also well documented is the experimental

observation that the major factor influencing dendrite arm

spacing of a given alloy is "local cooling rate" (or "local

solidification time") which is inversely proportional to

local cooling rate. (3-5)

Thus, it has been evident that a method, and perhaps

the only method, of significantly reducing dendrite arm

spacing in cast ingots is to alter heat flow conditions

within the solidifying ingot. Much attention has therefore

been given recently in applied studies to do this; all of

these studies have been aimed at seeking ways to accelerate

rate of heat extraction, thereby increasing local cooling

rate and reducing dendrite arm spacing.

In this work, the aim is to study analytically

heat flow in a solidifying "mushy" alloy.

The major aim, following successful computer modelling of

the heat flow problem, is to determine if there are ways,

other than by increasing rate of heat extraction, of

increasing local cooling rate, and therefore reducing

dendrite arm spacing. This and other questions to be

studied in this work are listed below:



(1) What is the effect of convection on local

solidification time?

(2) What is the effect on local solidification time

of addition of heat to the liquid or liquid-

plus-solid zone of a solidifying ingot?

(3) Will the grain structure of an ingot

appreciably affect heat flow, including local

solidification time?

(4) In addition to increasing overall rate of heat

extraction, are there practical ways to

control heat flow in ingot solidification to

reduce local solidification time?

(5) What is the effect of geometry? Specifically,

how does the local solidification time at

specific points in an ingot change as heat is

removed in more than one dimension, as in

cylindrical ingots or those in which heat is

lost through the side of the ingot as well as

the bottom or chill.

(6) How important is the heat transfer rate at

the surface of an ingot to the local solidifi-

cation time at points within the ingot.

The problem of solving heat flow equations when

melting or solidification takes place is not a new one.

Classically, the one dimensional problem of solidification

of a pure material is known as the Stefan problem; and

analytic solutions have been given for several impnortant



cases.(6-9) Several approximate analytic solutions have

been presented for the case of binary alloys,(10-12) and

these will be discussed in a later section. Two

extensive reviews of past work on the general problem

of heat flow in solidification have appeared,(13-14) and

an excellent review of Ruddle describes much experimental

and analytical work prior to 1950.(29)

Finite difference methods have been used in solution

of a wide variety of solidification problems, including

solidification of alloys and of complex shapes. Examples

are work of Mizikar, (15) Pehlke,(16) Kroeger(27), Campagna

and Eisen, (17) and Adenis.(18) In all cases, these works

have not employed "moving boundaries" as will be used in

this work. Instead, heat of solidification has been

approximately accounted for by treating it as an effective

addition to specific heat. Heat released abruptly (as by

a pure metal at its melting point or at the eutectic

isotherm in an alloy solidifying with a eutectic) cannot be

treated directly. The studies refered to above have

assumed this heat was released over a small but finite

temperature region.

In this work, the finite difference method was

employed, but with moving boundaries, so finite heat release

at discrete temperatures (e.g., at eutectic isotherms) can

be treated. The following sections discuss:



(1) the general mathematical statement of the

problem of unidirectional solidification of

binary alloys, in which the last liguid to

freeze is of eutectic composition,

(2) the solidification model employed for

calculations,

(3) methods employed previously in solution of

similar problems, and

(4) the numerical procedure employed for solution

of the problem.

Mathematical Statement of the Problem

A. Unidirectional Heat Flow

We consider here heat flow in unidirectional

solidification of an alloy cast against a flat chill wall.

The equation for heat flow through the metal ingot during

solidification is then:

(PC) (T () + (p H) s

where:

T = temperature, 0C

p = density (gms/cc)

C = local average heat capacity (cal/gms/cc)
p
K = local average thermal conductivity

(cal/cm2sec)

t = time, sec

x = distance, cm
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H = heat of fusion (cal/gm)

fs = fraction solid (weight or volume)

The underlying assumptions in use of Equation (1) are:

(1) Isotherms are parallel to the chill wall and

gradients perpendicular to the heat flow

direction are small.

(2) There are no discontinuities in temperature in

the region to which Equation (1) applies.

Therefore, the three regions of the casting

(solid, mushy, and liquid) will require

separate solutions, coupled by the boundary

conditions at the interfaces (dendrite tip

and root).

Taking x = 0 at the chill face, the following

boundary conditions apply:

glx=0 = F (t) t > 0 (2)

glx=L = F2 (t) t > 0 (3)

where:

L = length of casting (cm)

F (t), F2 (t) = specified functions.

For liquid poured rapidly in the mold at uniform

temperature, T, initial temperature of the melt is uniform:

T = T (constant) t = 0 (4)

0 < x < L



After some time, t:

T = TE t > 0 (4a)

X = XE

T = TL t > 0 (4b)

X =X t

On cooling below the liquidus temperature,

solidification begins, and thermal properties in the liquid-

solid "mushy zone" are specified functions of fraction

solid and, therefore, of temperature:

K = F 3 (T); C = F 4 (T); p = F5 (T); for T < T < TL (5)

Assuming no significant undercooling at the dendrite

tips (of an alloy such as Al-4.5% Cu alloy that freezes

over a range of temperature) the solidification "front" is

at the eutectic isotherm and there is no discontinuity in

fraction solid at the liquidus temperature. Fraction solid

is infinitesimally small at the liquidus temperature and

increases smoothly with decreasing temperature. The

boundary condition across the isotherm marks the boundary

between the liquid-solid region, and the liquid region is

then:

- dT = dT (a
Km E KL (1) (6a)

where:

Km and KL are the thermal conductivities of the



mushy and liquid zone, respectively, and E is a differential

distance on the x axis. xt is the location of the dendrite

tips, in this case equal to the location of the liquidus

isotherm, xL'

If, however, there is significant undercooling at the

solidification front, and if. this undercooling is dissipated

very close behind the front, then a finite amount of solid

forms very near xt; and the boundary condition becomes:

( = K dT) + H-p f dxt (6b)
m dx ~ L dx ktdt

where:

f = fraction solid forming discretely at the
t dendrite tips (weight or volume)

Again for an alloy such as Al-4.5% Cu, a finite amount

of solid forms at the location of the eutectic isotherm, xE

and the boundary condition at this end of the liquid-solid

region is

-dt = T+Hdx E()
s - R m( iT) + H - fE9 dtEs dx m dxEIE dt

xE~ -E+

where:

fE is fraction eutectic (weight or volume) which forms

at xE.

B. Radial Heat Flow

Consider the case of a solidifying ingot whose shape is

cylindrical, with radius R and of arbitrarily long length.



The heat flow equation equivalent to Equation (1) becomes:

(PC - (-r- ) + Hp kfs/3t (lR)

All initial and boundary conditions (Equations 2-7)

apply, where the position x now refers to position R-r.

C. Sidewise Heat Loss

Consider an ingot of length L, with heat flowing

through a chill in the x direction, and of width 2W, in

the y direction. If heat flows across the boundaries in

the x-y planes at y = W and at y = -W and we assume this

heat loss takes place slowly enough that there are no

temperature gradients in the y direction (refer to Appendix

F), then Equation (1) becomes:

(pC ) - (K '-) + Hp Bfs t+ q (ls)

All initial and boundary conditions (Equations 2-7)

still apply, with the additional conditions;

q = h(TA-T) 0 < x <L

at y = W, y = -W, t > 0 (lS,a)

If heat loss at the side boundary takes place by

radiation and/or convection, the above condition may be

suitable. For the case of a chill and plate casting, made

in sand, a more appropriate "boundary condition" for heat

loss to the sand would be:



= a/ t 1/2L

at y = W, y = -W, t > 0

where a = -(T -T) (sandpsand C (sand)'/7 1/2

The two conditions (lSa) and (lSb) are not only

boundary conditions, they are also additive terms in the

heat flow Equation (lS).

The functions F and F2 above are external boundary

conditions, to be specified as part of the problem. The

functions F3 to F4, fst and fE are based on a specific model

of the solidification process, given in the following section

and based on solidification studies at Massachusetts

Institute of Technology over the last several years. (3,19,20)

Solidification Model

Alloy solidification is characterized by the presence

of a region of finite thickness within the casting in which

solidification takes place. This mushy region is delineated

by two isothermal boundaries, the solidification "front" (at

or near the liquidus temperature) and non-equilibrium solidus

(at the eutectic temperature in binary alloys which contain

some eutectic in the final solidified structure). It is

this liquid-solid* region which separates the problem of

* In this thesis, these boundaries are hereafter referred to
as the dendrite "tips" and "roots" respectively. It is
important to recognize, however, that in most cases, a
single dendrite does not extend across the entire "mushy
zone". In equiaxed growth in particular, many randomly
oriented dendrites fill this space. Figure 5 is an example.
The terms dendrite "tips" employed herein, or "solidifica-
tion front" is equivalent to the term "start of freezing
isotherm" used by other investigators. (29) The term dendrite
"roots" or "non-equilibrium solidus" is equivalent to the
term "end of freeze isotherm" used by other investigators. (2'_)

(lS rb)0 < x < C L



alloy solidification from that of pure materials. For

alloys, the characteristics of the mushy region which must

be taken into account in the heat flow analysis are:

(1) The boundary conditions at the tip and root,

Equations (6a) or (6b) and (7) above.

(2) The distribution of solid and liquid through

the length of the zone, (fs versus x) and the

amount of liquid which solidifies isothermally

(eutectic), fE, at the roots. The distribution

f versus x or f versus T (since T versus x
5 5

will be available) is referred to as F6 (T).

(3) Taking the distribution f versus x into
S

account, the distribution of K, p, and C must
p

be specified as functions of fs (or fL ).

These distributions are referred to as F3 W,

F 4 (x), F5 (x) above.

The solidification model presented below is based on

physical arguments concerning the nature of the mushy

region, and much of this has been presented elsewhere. (19,20)

For the case of no diffusion of solute in the solid

(and other assumptions as previously stated), the Scheil

Equation applies. (20) The solution of this equation, for

constant partition ratio is:

k-l
C = C (1 - f ) (8)L 0 s



or, 1/k-1

f = 1- (9)
0

where:

C = starting alloy composition

f = fraction solid
S

k = equilibrium partition ratio, C /C
s L

C L =interdendritic liquid composition in the
region of f fraction solid

S

Fraction eutectic, fe, is readily determined by

letting Cs = kCE where CE is eutectic composition. It

is, for example, .09 for Al-4.5% Cu alloy, assuming

constant k. This value of f will be used in Equation (7).e

A distribution of fs (or fL) versus T is readily

obtained by combining Equation (9) with the equation

describing the liquidus line of the binary alloy. For

constant liquidus slope, m:

C - C
m = L (10)

T - T

The resulting distribution is termed the Scheil distribution

and is shown in Figure la for Al-4.5% Cu alloy. Al-rich

end of the Al-Cu binary diagram is shown in Figure 2.

Alternate distributions which have been explored for

simplicity in previous work on macrosegregation are a

linear distribution of solid with finite eutectic (Figure lb),

and linear distribution of solid, neglecting eutectic

(Figure lc).



In this work, we will assume finite undercooling at

the dendrite tips so that boundary condition Equation (6b)

applies. Then, assuming further linear distribution of

fraction solid in the mushy zone, the model for f vs T is
s

schematically as in Figure 3, and is described by:

T - T
~E~T-TL Ef (1-ft E TM-TE(

t E

The densities of the solid and liquid phase are assumed

herein independent of temperature and composition, and so,

average density in the mushy zone is a linear function of

fraction solid:

PM s s + pL fL (12)

Similarly, heat capacity is assumed to be a linear

function of fraction solid in the mushy zone:

C = C f + C f (13)pm ps s pL L

where:

C is local average heat capacity in the mushy zone;pm

Cps and CpL are heat capacities of the solid and liquid phase

respectively, and fs' L = volume or weight fraction of each

phase. It should be noted that for an Al-4.5% Cu alloy,

the error introduced in Equation (12) by assuming weight

fraction equals volume fraction is less than 0.03%.



The final distribution to be developed, that of thermal

conductivity versus T or x, cannot be expressed without taking

dendrite morphology into account. For this investigation,

two extreme cases of heat flow through multiphase media will

be considered. The model for the mushy region is assumed to

be parallel plates of alternating phase (Figure 4). If heat

flow takes place parallel to these plates (columnar

dendritic growth), the conductivity of the composite is:(21)

K (f sK s+ f )(14)Km ss +fLKL)

If heat flow takes place perpendicularly to the plates

(which would correspond to an exaggerated model of equi-axed

growth), then the expression for the total conductivity is:(21)

KLKs
Km fK +f K (15)

s L L s

Since equi-axed morphology in reality can be pictured

as in Figure 5, the total conductivity should lie between

Equations (14) and (15).

Solution of the Problem

It is appropriate to the following discussion of

solutions to the problem stated above to point out that it

is the terms on the right hand of (6b) and (7) that separates

this problem of solidification from other heat flow problems.

It is the way in which these terms are taken into account



that separates the various methods of solution to the

problem.

The presence of the free internal boundaries,

represented by Equations (6) and (7), has given rise to the

name "Free boundary problem" in connection with a class of

problems which contain boundary conditions whose position

is a function of the conditions around them.

Many analytic solutions (referenced below) have been

presented for various cases, but there is one common fact

which is used to take the motion of the solid front into

account. This is the use of the Boltzman similarity

1/2variable, x/(at) . Danckwerts(8) presents some interesting

extensions to these exact solutions, but the basic method

depends on the existence of the similarity variable. Adams(10)

has presented a derivation based on this method for the case

of a binary alloy freezing, which involves two free

boundaries.

The methods of Boley, (9) Koump et al.,(ll) and

Hills(12) do not depend on the existence of the similarity

variable; however, each involves approximations concerning

the shape of the temperature curve in either the liquid or

the solid, and thus constrains the velocity of the interface

to be a function of surface conditions. This allows an

integral to be developed, in Boley's method, which is then

solved numerically; in Koump's method, an equation is

derived which is solved for the position of the root and tips



of the dendrites, but temperature profiles cannot be found.

In both these methods, approximations are made which make

the solutions less meaningful to use as a tool for

investigating large ranges of external conditions.

Hillsuses an integral profile technique to obtain an

approximate analytic solution, as do Boley and Koump. The

equations are derived for the case of a pure material(12)

and compared to experimental results(22) with very good

agreement. In addition, the derivation of this equation

is performed such that the extension of the method to mushy

freezing alloys is straightforward, with the major assump-

tions being:

(1) the temperature profiles in the solid, mushy

and liquid regions are chosen by parabolic

fitting to the boundary conditions;

(2) the cooling rate across each of the three

regions is assumed to vary linearly with

distance; that no sharp thermal perturbations

occur in these regions;

(3) the assumed solidification model in the mushv

region is generally similar (although not

identical) to the one presented above.

In work yet to be published, Hills has indicated

that the agreement between predicted results with this

integral profile method compare well with experimental

results of solidification studies done with lead-tin and

lead-antimony alloys which were solidified with moderately



slow surface cooling.

The integral profile technique as presented by Hills

is an accurate and efficient method of solution for the

boundary conditions he employs. However, the numerical

method will be used here because of its flexibility in

dealing with, for example, different variations in fraction

solid with temperature, variations of thermal properties

with temperature, or very high value of interface heat

transfer coefficient, h.

In order to avoid the need to use the similarity

variable, and also to facilitate if not improve the accuracy

of the solution, a numerical approach was considered. The

only solutions presented which have been obtained through

numerical means have been for the case of a pure

materials. (23,24) It should be possible, however, to extend

the methods presented from one free boundary to two. The

method of Murray and Landis(23) is presented here.

Instead of assuming a velocity of the interface which

1/2is proportional to x/(at) , as was done for the analytic

solution, Equations (6a) and (7) can be solved numerically at

each time step of a numerical integration of the heat flow

equation, Equation (1). This is the basis of the method

which was used in this research, and the details will be

presented later with the rest of the numerical integration

description.



It should be noted that the need to consider the

dendrite tips as a free internal boundary comes from the

physical consideration of the fact that the liquid in front

of the tips may have an apparent thermal conductivity which

is higher than the interdendritic liquid, due to convection

in the liquid melt, and from the consideration of the small

but finite undercooling at the tips necessary for growth.

It is for these reasons that the liquidus temperature

position must be considered a boundary, Equation (6b). In

other words, there is a discontinuity in C versus x at
p

the tips. The apparent discontinuity in K results from

thermal convection. Vigorous convection is present in

large ingots, (25) and this convection results in a high

apparent thermal conductivity; however, this convection is

very low at the dendrite tips and within the mushy zone.

Numerical Procedure

A detailed account of the method used to solve Equation

(1) with initial conditions and boundary conditions (2), (3),

and (4) is given in the Appendix. It is described briefly below.

A finite difference equation is substituted for

Equation (1) , and the temperature at a given increment in

time is calculated for the temperature distribution at the

preceeding time interval. The boundary conditions are

satisfied by including them in the finite difference equation

set, and the internal free boundary conditions are satisfied
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by resetting the temperatures in their neighborhood at each

time step. The functions Fl and F2 are read in and used

directly as driving functions for the surface and center of

the simulated casting. Various other parameters, such as

mode of growth (Equations 13 or 14) and amount of convection

(liquid thermal conductivity), are also read in, thus giving

the program the capability to simulate a wide range of

solidification problems.

Beside the two free boundaries which this numerical

method takes into account, there is another feature of it

which is worth pointing out. Most finite difference schemes

which are derived from a parabolic differential equation,

such as the heat flow equation, result in a set of equations

(linear) which must be solved at each time step. The usual

method of solution is a straight-forward substitution of

the old temperatures (at time, t) to obtain the new

temperatures (at time, t + At). This is known as an explicit

technique, and it is known to place severe restrictions on

the size of the time step which may be used in the calcula-

tions. If the critical time step is exceeded, the solution

becomes unstable, that is, the temperatures start to

oscillate in an uncontrolled fashion. Thus, many numerical

solutions become unfeasible in terms of computer time because

of the time step restrictions. In order to prevent this,

an implicit solution technique was used, which was presented

by, and is given the name, Crank-Nicholson (technique). The

details of this method are presented in Appendix A, but the
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theory behind the method is that the temperature at time

t + At is used (as well as the temperature at time, t) to

calculate the temperature at time t + At. This means the

solution to each difference equation is implicit in its

formulation, thus, the name "implicit technique." As

indicated above, this method-was adopted in order to reduce

the computer time necessary to obtain a solution, at a

corresponding loss in accuracy. Estimates of the error

involved (presented in the Appendix) showed that the

accuracy of the Crank-Nicholson method is quite sufficient

(temperature to four places), which implies that the

accuracy of explicit techniques is far too great to justify

their use in this type of heat flow calculation.
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Table I. Definition of Symbols

Aheat

C
pm

CpL'Cps

C0, CL

constant for arabolic side heat loss,
cal/cm 2/secl/2

constant for parabolic heat input, cal/cm 2/sec

local average heat capacity in liquid-solid
region, cal/gm0 C

C for liquid solid respectively

liquid metal compositions, wt percent, original
and local, respectively

weight or volume fractions liquid and solid,
respectively

weight or volume fractions solid at the critical
position at which convection stops

weight or volume fractions solid at the tip or
root, respectively

heat of fusion, cal/gm

heat transfer coefficient at mold-metal interface
in the x-direction, cal/cm2secOC

heat transfer coefficient at mold-metal interface
in the y-direction (sidewise heat flow),
cal/cm 2sec 0C

local average thermal conductivity, cal/cm.sec C

K for liquid, mushy, or solid region

equilibrium partition ratio

length in the x direction, cm

heat input, as boundary condition, cal/cm 2/sec

dimensionless heat

radius, cm

radial distance from center of a cylinder, cm

radial position of the tip or root, respectively

fsc

ft' E

H

h B

h
s

K LKMK

KL,Km,Ks

k

L

q

q'

R

r

rt, rE



Table I , continued

t

t f

t

tLst or t st

time, (sec)

time at finish of solidification (sec)

time at start of solidification (sec)

local solidification time (sec)

T temperature, 0C

T melting temperature (liquidus), 0C

TE solidus or eutectic temperature, C

T pouring temperature of a melt, 0C

T starting temperature, C

T ambient temperature (x-direction), C

T ambient temperature, side (y-direction), C
a,s

W or w width, in y-direction, cm

x distance from the chill, cm

x or x position of the solidus or eutectic, cm

x t position of the tip, cm

2
thermal diffusivity, (K/pC ), cm /sec

a , a solid or liquid thermal diffusivity,
respectively

dimensionless constant, appearing in the
analytic solution, Equation (Rl)

differential distance, cm

dimensionless distance from the chill

2 2
T or T local solidification time/L , sec/cmLst Zst

p density, gms/cm3

pL' Gm' P5 liquid, mushy, and solid densities, respectively

AT superheat, T - T , C
s p m
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Figure l. Approximations of distribution of liquid in the mushy zone. (a) Steady state
solute redistribution, Scheil equation. (b) Linear fL vs- X, finite eutectic. N)
(c) Linear fL vs. X, no eutectic.
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Figure 2. Aluminum rich portion of aluminum-copper phase diagram.
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Figure 3. Linear distribution of fL vs. X, with finite eutectic and undercooling.
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(a)

Parallel plates of solid and liquid, representing simplified view
of parallel or series heat flow. (a) Parallel. (b) Series,

Figure 4.
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b) EQUIAXED
DENDRITIC

LIQUID

SOLID

Equiaxed growth, schematic representation of mushy region cut

along length.
Figure 5.
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Figure 6. Description of parameters in finite difference procedure.
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Chapter II

RESULTS

This section is organized in the following manner;

(A) Dimensional analysis; pertinent dimensionless

numbers to be used to simplify -the presentation of the

results.

(B) Analytical correlation; a comparison of the

results of the program for conditions of solidification of

a pure material for which there is an analytic solution.

(C) Pure material, aluminum; the effect of h

coefficient and superheat on the solidification behavior

of pure aluminum.

(D) Unidirectional solidification of an alloy; results

for various fraction solid at the tip, for columnar and equi-

axed cases.

(E) Unidirectional solidification of an alloy; results

for various surface cooling rates and superheats.

(F) Radial solidification of an alloy; results for

various surface cooling rates and superheats.

(G) Heat input with convection; results for various

parabolic heat inputs to a highly convecting melt.

(H) Side heat loss, without heat; results for various

side cooling rates and superheats.

(I) Side heat loss, with heat input and convection;

results for various parabolic heat inputs at two values of

side heat loss.



(J) Side heat loss to a sand mold; results for

parabolic heat loss, similar that in a sand mold.

(K) Equi-axed growth with high convection; results

for a convecting melt in which equi-axed grains are

carried into the melt ahead of the mushy region.

A. Dimensional Analysis

The problem of organizing the study of many

engineering problems is often simplified through the use of

dimensional analysis. In a case such as this one, a large

number of independent and dependent variables appear in the

equations, and the task of measuring and presenting the

results (independent variables) as a function of all the

dependent variables would be tedious if not impossible.

Dimensional analysis provides a method of revealing the

relationships between the variables, with dimensionless

groups, which reduces the number of parameters which must

be studied and also provides insight into the nature of the

process. Such an analysis was made on this problem of heat

flow during solidification and the results are presented in

Appendix C.

The variables of major interest in this study are

(1) the position of the tip and root as a function of time

(or position in the ingot), and (2) the local solidification

time as a function of position in the ingot. The dimension-

less form of these variables is:



atf/I

at/L

hL/K

LK (T m
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dimensionless position;

dimensionless local solidification time.

The independent variables of major interest are:

dimensionless time;

Biot number (dimensionless thermal
conductance ratio);

) dimensionless heat input, parabolic.
s

Since the dimensional analysis included the thermal

properties of the material, these properties appear in many

of the dimensionless groups. For many studies this form

would be desirable, since a change of materials would then

be easily accounted for. For this study, however, it is

more desirable that the reader have a more direct measure

of the values of the variables used, and since the study

was undertaken only for one alloy composition, that of

Al-4.5% Cu, much of the results will be presented in a

modified form, that is, the dimensionless group has been

striped of the material property, with the understanding

that this simply affects the numericalvalue of the

dimensionless group, without affecting the functional

relationships between the groups, and that these numbers

now only apply to Al-4.5% Cu.

In particular, the group hBL/K will be reduced to

hBL, the group at/L2 will be reduced to t/L2 (1Lst), and

the group (T-T )/(T -T ) will be reduced to T-T (AT ).a m a a s



B. Analytic Correlation

The program was set up to simulate the solidification

of a pure material cast at its melting point. The analytic

solution for the movement of the solidification front of an

alloy that solidifies at a single temperature is:

XE = 2 5 (at)1/2  (Rl)

where:

xE = position of the liquid-solid interface

Y. = thermal diffusivity, K/pC

t = time

5 = dimensionless parameter, constant for a
particular material and surface temperature

The constant S is found from the transcendental

equation:

62 C
5 e erf 3 = (T - T ) ps (R2)

m s H/T

where:

Cps heat capacity of solid

Tm' T s melting temperature and surface temperature,
respectively

H = heat of fusion

Figure 7 shows the results of the program, X versus

Y/t/L (the points plotted) for three values of H', dimension-

less heat of fusion. The straight lines are the analytic

solutions for these cases (Equations Rl and R2), and as can

be seen, the computer model correctly predicts the position



of the interface. The initial conditions for this case

are: T = Tm' t < 0, 0 < x < L, and the boundary conditions

are T = Ta at t > 0 at x = 0, q = 0 at x= . The material

properties used for this run were; T = 650 0 C, C = .22,m 3s '2

K = .24, p = 2.645.

It is worth noting that in order to achieve the

condition that the surface temperature drops to the ambient

temperature at time t = 0 sec., a special start-up procedure

was used. Since this start-up procedure is used in the rest

of the results to be presented whenever infinite surface

cooling is desired, it will be described here.

At time t 0, the positions of the liquid and solid

interfaces (just the solid interface for pure materials) are

set by means of a parabolic curve through the temperatures

at the surface and at the first interior node. The

temperature of the first node is interpolated also, and as

long as an interface resides in it, it is set by interpola-

tion. Thereafter, it is set to the ambient temperature.

Thus, the procedure for start-up causes a slight

error to be introduced, since the calculations proceed from

positions which are small but finite at time t = 0, whereas

in the analytic solution, the position is x = 0, at time

t = 0. This error can be corrected for, with the result that

the positions of the interfaces are adjusted slightly at

early times, but remain practically unchanged at later times.

The ability of the computer model to correctly predict

the analytic solution for the case of a pure material
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solidifying shows that the major source of error in the

following results will be; (1) values of the data used for

material properties, (2) assumptions made concerning the

mode of solidification of the alloy in the mushy region,

(3) the interaction of the tip and root when they are close

to each other, and (4) the exact method of handling the

boundary conditions at the surface and center of the ingot,

where these conditions are not the same as they were above,

namely, that the surface cools infinitely fast, and there is

no heat lost or gained at the center.

Since there is an analytic solution for the case of a

pure metal solidified with an infinite surface cooling rate,

which predicts that the position of the interface will be

proportional to the square root of time, the rest of the

results presented will be plotted using the square root of

the dimensionless time, /t/L. There are theoretical reasons

that alloys should behave in the same fashion as the pure

metals, as seen in the approximate analytic solutions of

Adams(10).

Pure Metal, Aluminum

The effect of superheat and surface heat transfer

coefficient on the solidification of pure aluminum is shown

in Figures 8 and 9. The position of the interface is given

as the dimensionless number A, versus the dimensionless //L,

as before for Figure 7.



Superheat has the effect of shifting the curves to

the right, or, of retarding the motion of the interface.

The early time portion of the curves are straight, indicating

that the superheat can be treated as an additive heat term to

the heat of fusion. It can also be seen that there is an end

effect present in the curves- at higher superheat, and this

effect will later be shown to be a very characteristic

effect in the solidification of alloys. The speed up of the

interface in pure metals at high superheat near the centerline

of the ingot is due to the dissipation of the superheat which

has taken place over most of the length of the ingot, so that

while the interface was growing into the superheated region

at early times, which retarded the velocity of the interface,

at later stages, the superheat has been dissipated (through

the interface), and the velocity increases near the end.

The effect of lowering the heat transfer coefficient

at the surface, with no superheat, is presented in Figure 9.

The major change in the X versus /t/L curves is that they are

shifted to the right (higher times) and that they are no

longer straight. This is to be expected, since the rate of

heat removal from the ingot is changing from that of being

controlled by the thermal diffusivity (or conductance) of the

metal, to control by the heat transfer rate at the surface.

As Figure 10 shows, when the heat transfer coefficient is

sufficiently low, the position of the interface is governed

only by the rate at which heat can be removed from the surface.



For

the

this case of 'h controlled' heat flow, the position of

interface is given by:

xt = hB (Tm - T /pH) t (R3)

which is what Figure 10 shows i~n the dotted lines. The error

which the computer model introduces at the early time is due

to the fact that at positions near the surface, only a two-

point interpolation can be made in calculating the velocity

of the interface (see Appendix A for details of the method),

but this error can be corrected for, since the model predicts

the correct slope of the line after the initial transient.

In general, the effects of superheat and surface heat

removal rate are distinct; the superheat changes the amount

of heat which must be removed for a given amount of solidifi-

cation to take place, but does not alter the basic character

of the relationship between position and time, however, the

surface heat removal rate does alter the character of the

curves, as the rate controlling factor shifts from

conductance through the metal to conductance across the

surface.

As to what value of bBL/K is sufficiently low such that

Equation (R3) applies, Figure 10 shows that any choice of a

number is somewhat arbitrary, but one criteria for determining

whether heat flow is 'k controlled' or 'h controlled' could

well be whether the curve obeys Equation (R3) or not. For

h-L/K = .1, the straight lines are parallel, therefore heat

35
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flow can be said to be 'h controlled'. For the I3L/K = .635,

the dashed line diverges from the curve after a short period

of time, indicating that heat flow was controlled initially

by the surface removal rate, but that it was controlled by

the heat flow rate through the metal at later times. The

value of hBx/K at the time at which the curve diverged from

the linear relationship is .1, indicating that this number

may be useful in determining how long an ingot will be in

the 'h control' region. That is, ifthL/K is less than .1,

the solidification will be h controlled over its entire

length, but ifhBI/K is larger than .1, the heat flow will

be h controlled until the interface moves out to a distance

xt .1 K/hBfrom the chill, then it will start to be

controlled by thermal diffusivity through the metal as well.

D. Unidirectional Alloy; Fraction Solid at the Tip,
Columnar and Equi-Axed

Figure 11 shows the local solidification time, at a

specific dimensionless distance away from the chill (X = 0.75),

versus fraction solid at the tip, for two cases: (a) columnar

growth; and (b) equi-axed growth. All other thermal

properties remain as before, with the conditions being no

superheat, and infinite surface cooling rate.

The investigation of the change in behavior as a

function of the fraction solid at the tip was undertaken in

order to have a quantitative measure of what effect the

assumption of Equation (6b) would have. As the two curves of

M
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Figure 11 show, the actual numerical value of the fraction

solid at the tip, which must come from physical arguments

concerning the undercooling necessary at the tip (due to

radius of curvature and kinetic restrictions) does not have

a large effect on the local solidification times, although

the extrapolation of these c.urves back to zero fraction

solid would cause difficulty; this might be a consequence

of the nature of Equation (6b), which clearly is undefined

at ft = 0.

The most interesting feature of Figure 11 is the lack

of difference between the assumption of columnar and equi-axed

structures, at a given value of ft- The model which separates

the columnar heat flow from the equi-axed is given in the

introduction, and the main result of that model is that the

thermal conductivity in the mushy region, which is a function

of fraction solid at a point, is slightly different for each

of these cases, with the conductivity for equi-axed

morphology being slightly lower, at a given fraction solid,

than for the columnar. The closeness of the curves

indicates that differences between equi-axed and columnar

structures, which are observed in practice to be much larger

than the effect seen here, must come from some other effect

than just the difference in thermal conductivities. This

difference will be shown in Section K of the Results, to

be more probably a result of the convection in the melt which

carried equi-axed grains, or dendrites, out into the melt
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ahead of the unidirectional interface. Therefore the curves

in Figure 11 are significant in the sense that they show

that an effect is not the result of simple thermal

conductivity differences between the growth morphologies.

E. Unidirectional Alloy Solidification

The variable of major concern to the solidification

behavior of alloys is the time which the material spends

between the liquidus temperature and the solidus temperature,

at a given point within the ingot. But in order to see how

this local solidification time is influenced by a particular

casting variable (superheat, for instance), the positions of

the tip and root as functions of time are valuable pieces

of information. Therefore, the dimensionless positions of

the tip and root versus V"t/L will be presented in each of

the following cases, as an aid to understanding the way in

which the local solidification time is affected.

The conditions and properties used for this case of a

binary alloy, Al--4.5% Cu, are:

Thermal properties; (cgs units) (26)

K = .24

K = .43

Cp = .22

C = .21
ps

P = 2.645

ps = 2.75



H = 75

TL

Te

f t

fe

- 650

= 548

= .05

= .09

Initial conditions;

T = T +AT degrees superheat for 0 < x < L; t = 0m s

Boundary conditions;

T = T at x = 0 for t > 0 or T = h(T - T ) at

x = 0 for t > 0

q = 0 at x = L for t > 0

The thermal properties and initial conditions will

be the same for all following cases, except where noted.

Figure 12 shows the X versus /t/L curves

for four values of superheat at a constant heat transfer

coefficient = x. The most obvious effect observed is that

both the tip and root velocities are retarded by the presence

of superheat, and that for early times, the curves are

straight lines. The root curves always have the speed up

effect at the end of solidification, since there is always a

superheat of 1020C (TL - T E) in front of the root

interface. This speed up effect of the root, and of the tip

in cases of high superheat, is important to note; it is the

cause of one of the characteristics of the local solidifica-

tion time versus distance curves, which will be pointed out

below.

39



Perhaps a less obvious feature of these curves is

that while both the tip and root velocities are retarded by

the presence of superheat, the tip is pushed closer to the

root as the amount of superheat increases, that is, the root

is less strongly affected by the superheat than the tip, but

this is a small effect.

Figure 13 shows the dimensionless local solidification

time as a function of dimensionless position from the chill.

The effect of the superheat on the positions of the tip and

root can now be seen more clearly, as the characteristics of

the curves in Figure 13 are examined: (1) the early time

portion (distances close to the chill) of the curves are

parabolic upwards, governed by the straight line X versus /t

behavior of the tip and root; (2) the peak in the curves at

X .9, due to the speed up effect of the root, mentioned

earlier; (3) the peak local solidification time is lower as

the superheat becomes larger, due to the fact that the super-

heat had more of an effect on the velocity of the tip than

that of the root; (4) the peak occurs at a position closer to

the centerline as the superheat becomes greater, due to the

fact that at higher superheats the tip also has a speed up

effect, which reduces the effect of the root speed up;

(5) the effect of the superheat is diminishingly small, that

is, for a given increase in the degrees of superheat, the

peak in the Tlst curves drops by smaller and smaller amounts,

due to the fact that although the velocity of the tip is



retarded by superheat, the width of the mushy region is

also becoming smaller, since the superheat that the root

'sees' is always 102 0C higher than that which the tip sees,

and thus has a smaller effect.

In general, the effect of superheat is to lower the

local solidification time at-a given position in the ingot,

but this effect is a maximum at X ~ 0.9 or so, and the

effect is diminishing as superheat becomes large.

Figure 14 shows the X versus /t/L curves for four

values of hL/Rat a superheat of 00C. The major characteris-

tics of these curves are: (1) the tip behaves generally in

the same way as the solid-liquid interface did for the case

of pure aluminum, i.e., as the heat transfer coefficient at

the surface decreases, the tip curves take on a curved

portion at early times, corresponding to the h control which

is evident in the early stages of solidification; (2) the

root curves also take on the curved nature of controlled heat

flow at early times, with the added effect that they start

out at larger times as h decreases, due to the increasing

amount of time which it takes to remove the 102 degrees super-

heat which the root has in front of it; (3) the tip curves

are straight lines, after the initial transient; whereas the

root curves are non-linear over almost all their length,

especially the ones at the lower h values, indicating that

the initial transient of h control is overlapping with the

end effect; (4) the slope of the tip and root curves are
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similar for a given h, indicating that, as h becomes lower,

each interface sees approximately the same thermal conditions

ahead of it.

The local solidification time curves are presented in

Figure 15. The chief characteristics of these curves are:

(1) they are less sharply peaked than the curves at various

superheats, meaning that the maximum local solidification

time in these cases is closer to the average than for the

high superheat, high h curves; (2) the effect on the average

Tlst as h decreases is increasing rapidly, i.e., as hB goes

from infinity to .1, the average Tlst is doubled, whereas

as h goes from .1 to .01, the average is increased about 10

times; (3) the peak in the curves appears near the center-

line, but moves inward toward the chill as h decreases, due

to the fact that at low valuesof h, the root is much more

affected by the rate of heat removal at the surface than the

tip, since the root always has a superheat in front of it.

The question of determining whether and for how long

a casting will be h controlled, for a given h, is more

difficult in the case of an alloy, since both the tip and

root behavior must be considered. For the tip, the same

criterion could be applied as was used for pure aluminum,

namely, that the process is h controlled as long as the

position versus time curve for the tip is linear; this again

is true for values ofhBxt/K on the order of .1. For the



F. Radial Alloy Solidification

Figures 16, 17, 18, and 19 summarize the behavior

of an alloy cast in a cylindrical mold, chilled from the

outside, with thermal properties, initial conditions, and

boundary conditions as listed previously for the case of

unidirectional solidification, where the characteristic

length is now the radius of the cylinder, R, and the

positions of the tip and root from the chill are now R-rt

or R-r e, respectively. The general nature of the curves

is completely analogous to that of the unidirectional case,

except for the following effects of geometry: (1) the tip

root, the process is controlled by h for the early

portion (curved portions at early times), then is

controlled by diffusion through the metal for intermediate

times, and finally controlled by the end effect. In the

low h cases, the h control overlaps the end effect, so the

process is not clearly defined, although if h were low

enough (hBL/K = .1) such that the temperature gradients in

the metal were very small when the surface reached the

solidus temperature, the process should then be completely

h controlled, since there would be no superheat effect to

consider. This implies that at these very small values of

hBL/K both the tip and root positions would be linear

functions of time (Equation R3), and therefore that the

local solidification time would be a constant across the

length of the ingot.



and root positions, for a given superheat and h coefficient,

progress at a faster rate than for the unidirectional case,

due to the fact that the volume from which heat must be

removed is decreasing as solidification progresses; (2) the

end effect is much more pronounced and takes place at

earlier times, so that the resultant local solidification

time curves have peaks (again, for a given superheat and h)

at distances closer to the chill than in the unidirectional

case; (3) the local solidification time, for a specific h

and superheat, is on the order of 1/3 that of the

unidirectional case, at a given position in the ingot.

G. Heat Input with High Convection

The effect on local solidification time of superheat,

presented above, suggests a practical method of controlling

the solidification process, in order to reduce the local

solidification time and therefore the dendrite arm spacing.

If the presence of heat at the dendrite tip causes the

velocity of the tip to be retarded, while the effect on the

root is somewhat less, then if the exact amount of heat at

the tip could be controlled, the velocity of the tip could

be directly controlled. Just such a control of the tip

could be attained if two conditions can be obtained:

(1) sufficiently vigorous convection can be maintained in

the liquid melt ahead of the dendrite tips, such that any

heat introduced at the centerline of the ingot will be



carried to the tip almost immediately, and (2) heat may be

introduced in a controlled fashion at the centerline of

the ingot, perhaps by means of a resistance heating element

immersed in the melt, with little or no surface contact

resistance at this boundary.

Specifically, the results of this section are for

the case of a unidirectionally cast ingot, with all thermal

properties and boundary conditions as before, except that:

(1) thermal conductivity of the bulk liquid ahead

of the dendrite tips is treated as if it were

200 times that of still liquid, and

(2) the centerline boundary condition now becomes:

q = f(t) at x = L, for t > 0.

The exact method used to handle this high convection

by the computer model is presented in Appendix A.

The center heat input boundary condition, function

f(t), was chosen, for simplicity and similarity to the rate

of motion of the tip, to be a parabolic function of time,

i.e.

f(t) = Aheat//t

where A heat is a specified constant for t > 0.

The results for the case of various values of Aheat

are shown in Figure 20. The general characteristics of

the curves are: (1) both the tip and root velocities are

slowed by the presence of the heat at the tip, as they were

in the case of superheat, (2) unlike the effect of superheat,
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however, the curves start to take on a sigmoidal nature as

the amount of heat is increased; (3) the tip and root seem

to be closely coupled, that is, the rate of growth of the

thickness of the mushy region is remarkably constant over

the time from start to finish of solidification.

Figure 21 shows the local solidification time curves

for the values of q' used in Figure 20. The characteristic

nature of the curves is as it was for the no heat input

cases, above (Figure 13). The effect of the heat input can

be seen more clearly in curve A, Figure 32, in which the loc

solidification time at a given position (X = .75) is

plotted against the value of Aheat. There is a minimum in

this curve, at q' ~ 1.27 x 10-2 (Aheat = 50). This minimum

in the curve indicates that the heat at the tip has a large

effect on the tip motion (the curves in Figure 20 show this)

but the retardation of the tip is closely coupled to the

motion of the root, with the overall result that the width

of the mushy region is approximately constant, but the

velocities of the tip and root are less, so that at higher

values of heat input, the local solidification time at a

given point is becoming larger. The retarding of the tip

motion is beneficial (lowers Tlst) at low values of q',

because the mushy region is shortened, but as q' becomes

larger, this shortening becomes smaller, and is overridden

by the slowing of the velocities.

al
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The general effect of heat input with high

convection is that a small amount of heat at the tip

shortens the mushy region and lowers the local solidification

time at a given position, but increasing amounts of heat only

slow the tip and root velocities, without shortening the

mushy region appreciably. The result is that the local

solidification time at given positions becomes larger.

This result indicates that there is potentially a

method for reducing the local solidification time, and

therefore the dendrite arm spacing, over the interior

portions of an ingot (where the maximum times occur) which

could be easily implemented in commerical foundry practice,

in which there is typically a large amount of natural

convection present during solidification.

H. Heat Loss from the Side

If heat can flow in the y-direction as well as the

x-direction, the problem of solving the heat flow equation

becomes much more complex. In order to simplify this pro-

blem, yet retain the nature of the effect of two-dimensional

heat flow, one assumption was made about the rate of heat

removal in the y-direction (as was stated in the Introduction).

We consider heat to be removed from the side (y-direction)

slowly enough that the process in this direction is completely

'h controlled', which implies, from Section E, that we chose

values of hs and W (half width), such that h sW/K is less

than .1. (Refer to Appendix F for details.)
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With this restriction, Figure 22 shows the effect of

side heat loss, with no convection or superheat, for four

values of side heat transfer coefficient. From Appendix C,

the pertinent dimensionless number for this situation is

hL 2/W. It should be noted that two dimensionless numbers

are required to describe this situation, but the second

number hs/hb, can be eliminated if we chose hb = infinity

at the chill (x-direction). This was done to simplify the

results, and all cases of side heat loss presented here and

in the following sections were obtained using hb = infinity.

The thermal properties and boundary conditions are as before.

Figure 22e shows the effect of side heat loss for a

special case; that is, if heat is removed from the side such

that the temperature is lowered very slightly, the tip

position moves infinitely fast (along the vertical axis),

since nucleation of the solid takes place ahead of the

x-direction tip interface. In this special case, it is assumed

that the root position is not affected, so that this case

represents the maximum effect of side heat loss on the local

solidification time. The other curves in Figure 22 show that

the effect of side heat loss on the tip and position is:*

(1) at zero superheat, the tip position becomes the vertical

axis, as nucleation of the solid takes place along the entire

length; (2) the root position is speeded up as the heat

transfer coefficient at the side becomes larger, with the

end effect becoming more pronounced at the high values of hs'

* It is important to emphasize here that "tip" and "root"
positions are simply short hand designations of locations
of "start of freeze" isotherms and "end of freeze"isotherms.

a
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The effect on the local solidification time curves

is shown in Figure 23. The largest change in the character-

istics of the curves is that the drop off, due to the end

effect, is somewhat eliminated. The effect on the local

solidification time at a given position in the ingot of the

side heat loss is seen more.clearly in Figure 24, where

Tlst at X = 0.75 is plotted versus hs. This curve reveals

two things: (1) as heat loss out the side becomes larger,

the local solidification time at a point in the ingot is

reduced, due to the speed up of the root position; (2) a

small amount of heat loss is worse than no side heat loss.

For values of hsL 2/W less than 0.3, the local solidification

time is increased at a given position, and for values

greater than 0.3, it is decreased. Figure 24 also shows

that the effect is diminishing, due to the fact that the

root position at the high values of hs is still controlled

by the rate of heat removal in the x-direction. At very

large values of h sW/K, where the condition that h sW/K be

less than .1 becomes violated, it is expected that heat

flow would be controlled by thermal diffusion through the

metal in both the x and y directions.

The general effect of side heat loss, in the presence

of no convection or superheat, is that the tip position is

accelerated rapidly, and the root position to a smaller

extent, such that the overall effect is that the local

solidification time at a given x may be increased or

decreased, depending on the value of hsL2 /W.



50

Figure 25 shows the effect of superheat on the tip

and root positions in the case for which the side heat

transfer coefficient, hs = 0.001. The primary characteristics

of these curves are: (1) the tip can no longer shoot out from

the chill, as nucleation from the side of the ingot is

prevented by the superheat; .(2) both the tip and root show a

pronounced end effect, due to the fact that the superheat

ahead of either of the interfaces is being dissipated in two

directions, and thus enhances the speed up effect; (3) as

superheat becomes larger, the width of the mushy region is

becoming shorter (the tip is closer to the root at any

given time), and the velocities of both are slowed. The

effect on the local solidification time is shown in Figure

26, where it can be seen that the shortening of the mushy

region out-weighs the slowing of the velocities, so that as

the superheat becomes larger, the local solidification time

at a given position drops. Figure 27 shows that this

effect is diminishing, that is, for a given increase in the

superheat, the Tlst decreases by smaller amounts, but that

the effect is still present at superheats of 250 0C.

The implication of this result is that in situations

of heat loss out the side of an ingot, the more superheat

which can be maintained at the start of solidification, the

better the dendrite arm spacings will be in the final

solidified structure. It should be noted, however, that

the conditions for these results were that heat loss through

the bottom (chill) was infinitely fast, and that there was
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no convection present. Neither of these conditions is

truely representative of what is obtained in a foundry

casting situation, especially the no convection condition.

In fact, it is more probable that there is a high amount of

convection present in large cast ingots, so that any super-

heat present at the time of pouring will be lost by the

time solidification starts at the chill or bottom of the

ingot. Therefore, a large cast ingot situation may be more

truely represented by the no superheat curves, Figures 22, 23

and 24; but Figures 25, 26 and 27 indicate that it might be

well worth while, in terms of dendrite arm spacing in the

final cast structure of commerically produced ingots, to

prevent convection in these ingots in order to preserve

superheat during the solidification process.

I. Side Heat Loss, with Heat Input and Convection

With the results of Sections G and H in mind, we

consider here an alternative method of reducing dendrite

arm spacing in large cast ingots in the presence of high

convection; namely, that of inputting heat to the convecting

melt, ahead of the tip interface in order to shorten the

mushy region without slowing the motion of the tip very

much.

Figures 28 and 30 show the effect of four values of

heat input, in the presence of convection, for two values

of h sL2/W. The general characteristics of these curves are;



(1) with the presence of heat at the tip interface, the tip

can no longer shoot forward; (2) the tip and root are

closely coupled, so that the slowing effect on the tip, as

heat input becomes larger, is experienced almost to the

same extent by the root; (3) this means that the width of

the mushy region, at a given. time, is approximately constant

for each of the different heat input levels.

The effect on local solidification time is shown in

Figure 29 for hsL 2/W = .232 and in Figure 31 for

h L2/W = .696. The characteristics of these curves are:

(1) the local solidification time at positions near the

center of the ingot has been reduced; (2) an end effect

has re-appeared, indicating that in the final stages of

solidification, when the root is approaching the centerline,

there is very little heat in front of the root interface,

and a speed up effect takes place. The most interesting

result, showing how much of a drop in local solidification

time results from a given amount of heat input, is shown

in Figure 32. These curves reveal that (1) there is a

minimum in the local solidification time at a given position

versus q' curve for all values of hsL 2/W, due to the fact

that a small amount of heat input reduces the width of the

mushy region as much as a large amount of heat, and there-

fore as more heat is input, the effect is to retard the

velocities of both the tip and root, so that a given point

in the ingot spends more time between the passage of the tip

and root; (2) this minimum occurs at a higher value of q' for
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higher values of hsL 2/W. This shift in the minimum is due

to the fact that as hs L 2/W becomes larger, more heat is

required to overcome the control which the side heat loss

has on the motion of the tip and root interfaces. This can

be seen by comparing Figures 28b and 30b, in which the

same amount of heat was input at a given time, for the two

different values of side heat loss. Figure 28b shows that

at this lower value of side heat loss, the heat flow at the

tip and root was controlled by the heat input over the

entire length of the ingot, evidenced by the smooth, almost

straight line character of the curves. Figure 30b shows

that at the higher value of side heat loss, the heat flow

was controlled by the heat input in the early stages, but

that after some time (/t/L about 0.3) the curves showed

the speed up effect characteristic of the side heat

control seen in Figure 22. Figures 30c and 30d show that

at these higher levels of heat input, the heat flow was

controlled by the heat input, which was greater than the

rate at which heat could be removed through the side. It

is to be expected, therefore, that for even higher values

of hsL 2/W, the minimum will be shifted to higher values of

q', until the h sW/K criteria becomes important, and heat

flow will be diffusion controlled in both the x and y

directions, in which heat input will have similar effects

as in the case of Section G.



As a practical method of reducing dendrite arm

spacing, the introduction of a controlled amount of heat

into a convecting melt could be quite feasible, judging

from the results of this section. One major area which

has not been touched upon here is an investigation of other

heat input functions, i.e., the parabolic function used

here was chosen for convenience and from the physical

reasoning that the motion of the tip is governed by an

inverse relation to the square root of time, in the case

in which there is no heat in front of the tip (no temperature

gradient in the melt ahead of the interface), therefore if

heat is introduced in front of the tip in an inverse square

root of time fashion, the overall effect should be that the

tip motion is held to a constant, controlled velocity. This

argument is justified in the results in Figures 28 and 30,

as the curves are smooth and almost linear, but it is quite

possible that there are many other q versus t functions

which would give more beneficial results. This is an area

which would benefit greatly from a mathematical analysis of

the effect of heat input on the tip and root positions as a

function of time; there is also available in the literature

of numerical analysis a technique for optimization of

unsteady state processes which could be utilized to determine

optimal heat input functions for particular sets of

conditions. This will be discussed later.



J. Side Loss to a Sand Mold; Parabolic Side Boundary
Conditions

In castings made in sand molds, the assumption that

the heat loss into the sand can be described by a constant

heat transfer coefficient is not valid. Instead, the

process is better described by assuming that the heat flux

at the metal/sand interface is inversely proportional to

the square root of time, as stated in an earlier section

in the introduction. The results of the dimensional

analysis on this special boundary condition reveal the

dimensionless group aL/W to be the pertinent one.

Figure 33 shows the tip and root positions* for four

values of aL/W, where the numbers were chosen to be

similar to thin plates (L/W about 15) cast in sand. As

before a value of hb = infinity was chosen in order to

eliminate the need to consider two separate dimensionless

variables. The characteristics of these curves are:

(1) the characteristic speed up effect on the tip and root

of sidewise heat loss is observed as aL/W increases;

(2) this effect is more pronounced and takes place at

earlier times as aL/W increases. Since the curves presented

in Figure 33 are for the case of metal poured at 150

degrees superheat with no convection, there is no shooting

out effect of the tip position. Figure 34 shows the effect

on local solidification times of this side heat loss, which

shows two things: (1) the curves are flat, with no drop in

Tlst near the center, due to the fact that both the tip and

*Note as described on page 9 that "tip" and "root" positions
are simply short band designations of "start of freeze"
and "end of freeze" isotherms, respectively.



root experience a speed up as they approach the centerline,

and (2) at any given point within the ingot, the local

solidification time is decreased as aL/W increases, due to

the fact that the heat loss out the side is controlling

the process over the entire length of the casting.

The implications of these results concerning the

relationship of side heat loss to tip and root motion are

the same as they were in Section H.

Figure 35 shows the tip and root curves for four

values of superheat at a constant value of aL/W = 136.

These curves reveal that; (1) at low superheats, the

process is controlled by the side heat removal rate, as

seen in the accelerated motion of the tip for the 0 and 50

degree superheat cases; (2) this effect is diminished as the

superheat becomes higher, but is never completely eliminated.

The local solidification time curves, shown in Figure 36,

show that there are two effects to be considered; (1) at

the low superheats, 0 and 500C, the speed up effect of the

root takes place over a large portion of the ingot, so that

the 1st curves are flat near the centerline, whereas at

the higher superheats, 150 and 250 0C, the speed up has

been confined to very late stages of solidification so that

the Tlst curves are inclined much more near the centerline;

(2) the width of the mushy region is becoming much smaller

as superheat increases, along with the slowing down of the

tip and root velocities. The combination of these effects can be

seen more clearly in curve D, Figure 37d in which the Tlst at
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X = 0.75 is plotted versus superheat. This curves shows

a maximum occurring at a superheat of about 150 0C, which

is due to the fact that at superheats below 150 degrees the

mushy region is still large, and the slowing effect of the

superheat on the velocities of the tip and root is the

major effect; at higher values of superheat, the size of the

mushy region is much smaller, and this causes the drop in

local solidification time. The position A = .75 was chosen

to be consistant with other sections in which this sort of

analysis was made, however, as can be seen from Figure 36,

the choice of a different position would have resulted in a

shift in the position of the maximum, although a maximum

would still have been present.

A consideration of Figures 35a and 12a shows that

if convection had been present in the melt in these

simulated castings, and any superheat present at the time

of pouring was lost through the chill or the sand mold

due to this convection, the presence of this side heat

loss is deleterious to the local solidification time at a

given point within an ingot. The same argument can be

made as was in Section H that for large commercial foundary

castings, there are two avenues open to reducing the

dendrite arm spacing within an ingot: (1) eliminate

convection during solidification in order to preserve the

superheat at pouring, although the amount of superheat which

will lower the local solidification time depends on the exact

57
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conditions present, as seen in Figure 37; or (2) input heat

into this convecting melt, as in Section J, to shorten

the mushy region and lower the local solidification times.

K. Equi-Axed Growth with High Convection

In large commercial foundary castings, in which it

is probable that there is a high amount of convection in

the melt during solidification, and when the growth

morphology of the mushy region is highly equi-axed, there is

good reason to believe that dendrites (equi-axed grains)

are carried out into the melt ahead of the mushy region by

the convection.(5) This would give rise to the following

situation; the temperature of the convecting liquid would

drop to a temperature at which the liquid would be in

equilibrium with the solid dendrites carried out by

convection, this temperature would be somewhat lower than

the liquidus temperature, and can be determined from the

non-equilibrium freezing relationship of fraction solid

versus temperature (Scheil equation), Equation (9) and

Figure la; solidification would take place in the mushy

region (somewhere behind the dendrites at the edge of the

region at which convection stops) normally, as if there

were no convection. This situation can be modeled easily,

and is worth investigating with the computer model since

it represents a situation common to many large castings.



The conditions used to simulate this situation were:

(1) high convection in the melt;

(2) a new liquidus temperature exists, 100C lower

than the equilibrium liquidus;

(3) the fraction solid at which convection stops

(or up to which dendrites are carried into the

melt) is assumed (f sc);

(4) the initial condition of the ingot is that there

is no superheat, due to the presence of the high

convection, therefore,

T = T e; O < x < L; at t > 0.

(5) heat loss through the chill is infinitely fast

(no contact resistance), and heat flow, for

this case, will be considered unidirectional.

The results for solidification taking place with the

above conditions, for four values of the critical fraction

solid, fsc' are presented in Figure 38. The characteristics

of these curves are: (1) the nucleation or presence of

dendrites in the melt at time t = 0, causes the effective

position of the tip to lie along the veritical axis; (2) the

root curves are very similar, since the fraction solid at

the tip only has a slight effect on the heat capacity of the

mushy region ahead of the root interface (the more solid

which solidifies at the tip interface; the less solidifies

over the temperature range in the mushy region, which lowers

-M



the apparent heat capacity of the region). These curves

are summarized by the local solidification time curves

shown in Figure 39. As is to be expected, the difference

between the three curves representing the high convection

case is very small, but the difference between these curves

and that for no convection is large. This is due entirely

to the fact that the start of local solidification takes

place at time t = 0, in the high convection cases, which

leads to the high local solidification times shown.

As in the previous sections, in which conditions

were presented in which the start of freeze isotherm shoots

out across the length of the casting at an early time, this

undesireable effect could be eliminated by the addition of

heat to this convecting melt; superheat would be lost during

the early stages of pouring and cooling. If convection

could be eliminated instead, it is to be expected that the

same results as before would obtain, namely, that the start

of freeze isotherms would no longer be able to shoot out,

especially if some superheat were present, so that the local

solidification time would be reduced at a given point in the

ingot.



Position of the liquid-solid interface versus /t/L,
hBL/K = 0, no superheat, for (A) Heat of Fusion =
5 cal/gm, (B) Heat of Fusion = 50 cal/gm, (C) Heat of
Fusion = 75 cal/gm. , curves are solution to equation
(RI), points are computer output.
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Figure 8. Position of the liquid-solid interface versus /tL,
hBL/K = G, for pure metal, Heat of Fusion - 75 cal/gm,
for (A) ATs = 0*C, (B) ATS = 50*C, (C) ATS - 150*C,
(D) AT5 = 250 0C,
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Figure 12. Position of the tip and root versus /t/L, Al-4,5% Cu
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Figure 13. Local solidification time versus position, Al-4.5% Cu
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ATS m 50*C, (C) A Ts = 150 0C, (D) ATs - 2500 C,
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Figure 14. Position of the tip and root versus /t/L, Al-4,5% Cu
alloy, unidirectional no superheat, for (A) hBL/K = C,
(B) hBL/R = 6.35, (C) hBL/K = 3.17, (D) hBL/K = 0,635.
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Figure 17. Local solidification time versus position, for conditions
of Figure (16).
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Figure 18. Position of the tip and root versus /t/L, Al-4.5% Cu alloy,
radial heat flow, no superheat, for (A) hBL/K = *, (B) hBL/
= 6.35, (C) hBL/K = 3,17, (D) hBL/R = 0.635.
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Figure 19. Local solidification time versus position, for conditions
of Figure (18).
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Figure 20. Position of the tip and root versus t/L, Al-4.5% Cu alloy,
unidirectional heat flow, no superheat, hBL/K = GO, high
convection, for (A) no heat input, (B) q' = 1.27 x 10-2,
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Figure 21, Local solidification time versus position, for conditions
of Figure (20).
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of Figure (22).
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Figure 26. Local solidification time versus position, for conditions
of Figure (25).
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hgL 2/W = 0.232, (C) hsL 2W = 0,696, (D) hgL2/W a 2.32.
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Figure 29. Local solidification time versus position, for condition
of Figure (28).
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Figure 36. Local solidification time versus position, for conditions
of Figure (35).
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Chapter III

DISCUSSION

A. General; Effects on Local Solidification Time of
h, Superheat, Convection and Geometry

The results presented in the previous section represent

a survey of the characteristics of alloy solidification for

several important variables; geometry, convection, superheat,

heat transfer rate at the surface, and heat loss in two dimen-

sions. To the engineer, the effect that each of these

variables can have on the "local solidification time,"* and

therefore on the dendrite arm spacing of the final cast

structure is important. From these results, several methods

for reducing or controlling the local solidification time are

evident. These will be reviewed here.

For the unidirectional solidification of plates, with

no convection, superheat lowers local solidification time.

Figure 13 shows that Tlst at X = .85 is reduced from 0.27 at

00C superheat to 0.24 at 500C to 0.22 at 250 0C. In general,

the presence of a positive gradient of temperature in front

of the dendrite tips** causes the velocity of the tip to be

retarded to a greater extent than the root velocity (the mushy

* "Local solidification time" is defined as the time at a
given location in a casting or ingot elapsing between
passage of the "start of freeze" isotherm and the "end of
freeze" isotherm.

** The termdendrite "tips" is used herein as a short hand
designation for "start of freeze" isotherm. The term dendrite
"roots" is designation for "end of freeze" isotherm. See
note on page 9. The actual structure in the mushy zone may
be columnar, in which case the terms, dendrite "tips" and
"roots" have direct and intuitive physical significance.
More often, the structure is equiaxed as in Figure 5, in
which case the terms "start of freeze" and "end of freeze"
isotherms more accurately convey the physical reality.



region width at a given time is shortened), and the overall

effect of this is to reduce the local solidification time.

The effect of the heat transfer coefficient on Tist

depends on the value of hL/K. For values of hL/K > 1, the

solidification is controlled by thermal diffusion through

the metal, and Tlst is not affected significantly. For

values of hL/K < .1, the heat flow and therefore solidifi-

cation is controlled by the heat flow across the chill

interface, according to the equation (R3). For intermediate

values, 5 > hL/K > .1, Figure 15 shows that Tlst is strongly

affected by h, with an order of magnitude drop in h from .1

to .01 producing an order of magnitude rise in Tlst at

X = .75 from .38 to 3.4.

For radial solidification, the effects of superheat

and the heat transfer coefficient on local solidification

time are qualitatively the same as for unidirectional

solidification. However, a comparison of radial versus

unidirectional heat flow shows that for a given superheat,

and heat transfer coefficient, Tlst at a given distance

from the chill is always lower for radial geometry. For

example, at 00 C superheat, h = w, Tlst at X = .85 is 0.1

for the radial case, and Tlst at X = .85 is 0.27 for the

unidirectional case. This is due to the higher cooling

rate which is caused by heat flowing in more than one

direction.

For a case in which heat flows in two directions

linearly, i.e., the side heat loss examples in the Results

section, the effect on Tlst is quite marked. For example,
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at 00 C superheat, h = w at the chill, Tlst at X = .85

is 0.27 for no side heat loss, and with side heat loss,

h sL 2/W = 2.32, Tlst at X = .85 is 0.08. Sidewise heat

loss has two separate effects; (1) the width of the mushy

region is increased, and thus can lead to problems of

macrosegregation, hot tearing and feeding defects,

and (2) the local solidification time at a given position

is increased if the loss of heat causes the tip to be

affected much more than the root (low values of side heat

loss, Figure 24), but for high values of side heat loss

the local solidification time is greatly decreased. In

general the results of the radial and side heat loss

studies show that one method for the reduction of local

solidification times in the casting or large ingots is to

design a mold with as small a characteristic distance

(half-width of a plate, length, or radius of a cylinder)

as possible, and to attain as much multi-dimensionality

to the heat .flow as possible.

Another implication of the results of the previous

section for the practice of casting large ingots,

especially sand castings, is clear. If a high degree of

convection is present during the pouring and early stages

of solidification in these castings, most or all of the

superheat will be removed before solidification starts,

with the result that the local solidification times obtained

will be much higher than they would be if either (1) the

98
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convection could be retained, so that the superheat would

be present during solidification, or (2) this convection

could be used to carry an artificial superheat, in the form

of heat input, into the convecting melt to the dendrite

tips. Results in the previous section support the

conclusion that either of these methods would work to

reduce the local solidification time.

B. Fraction Liquid and Cooling Curves

Another way of looking at the way in which the

dendrite arm spacing at a given point in a casting is

affected by geometry, convection, and two-dimensionality

of heat flow is to consider the rate of solid formation

at a given point as a function of time. Figures 40, 41

and 42 present the fraction liquid (or 1.-fraction solid)

and the dimensionless temperature versus reduced solidifi-

cation time (the time from the start of solidification to

the finish, normalized to 1) for a position X = 0.5, for

four typical cases: (1) no convection, columnar,

unidirectional growth; (2) no convection, columnar, radial

growth; (3) high convection, equi-axed unidirectional

growth, and (4) no convection, equi-axed, two-dimensional

growth (side heat loss). In all cases, the heat transfer

rate at the chill was infinite, and there was no superheat

at the start of solidification.

The information which these curves reveal is more

than that obtained from the simple consideration of local
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solidification time. Specifically, the local solidification

time at a given point in an ingot has been shown to be a

good measure of what the final dendrite arm spacing will be,(3,5)

and for most of the interpretation of the results presented

here, the local solidification time alone has and will be

used as the indicator of what the dendrite arm spacing will

be. It should always be true that if the local solidifica-

tion time at a given position can be reduced, the dendrite

arm spacing will also be reduced. What these fraction liquid

curves indicates is a different kind of information, which

is important as several other areas of solidification

behavior are considered, namely, the effect on microsegrega-

tion, hot tearing, and macrosegregation. Research in these

areas has indicated that the length of time which a point

in an ingot spends at a particular fraction liquid, or

between a certain range of fractions liquid is very

important to the final morphology of the dendrites and to

the final distribution of solute in the interdendritic

region and across the length of the casting. A detailed

analysis of the implications of the results presented

in Figures 40, 41 and 42 is beyond the scope of the

present work, rather, a general description is more germain.

The characteristics of these curves are: (1) the

slope at time t = 0 is zero, and changes rapidly as solidi-

fication progresses, and (2) as a result of this,

proportionally more time was spent by this position in the

range of low fraction solid. It must be noted here that the
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nature of the fraction liquid curves is very much

determined by the assumption made concerning the fraction

solid versus distance distribution, Figure 3. As a

direct result of that assumption, the fraction liquid curves

presented in Figures 40, 41 and 42 are exactly convertible

to the temperature curves. That is, the fraction liquid

curves are linearly calculated from the cooling curves.

In a later portion of this section this assumption of

linearity of the fraction solid distribution will be

examined as to the change in the fraction liquid and

temperature curves which would result from the use of a

Scheil distribution, Equation (9) in the Introduction.

Figure 40 compares the curves for two types of

geometry; (a) unidirectional, and (b) radial heat flow,

both for no convection, columnar growth, and no superheat,

and infinite surface cooling rate. There is not a large

effect here, but it is interesting to note that while the

radial geometry produces a much lower local solidification

time at a given position, the change in cooling rate over

the solidification time is a little slower.

Figure 41 compares the curves for the effect of

convection and growth morphology; (a) columnar, no convec-

tion and (b) equi-axed, high convection, both for no

superheat and infinite surface cooling rate. Here there is

a very marked effect, showing in the high convection case

that after an initial drop to .45 fraction solid, the mushy

-W
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liquid at this position remains at this value of fraction

liquid (.55) for 60% of the solidification time before

resuming its drop to the eutectic fraction liquid (.09).

In general, this sort of behavior indicates that in large

castings, with convection high enough that dendrites physically

transported in the direction -opposite heat flow, the mushy zone

is rapidly extended and solidification starts at very early

times across the entire length. Thus, a large portion of the

ingot, at any given time, is essentially mushy in nature,

relatively early in solidification. The effect that this has

on the final cast structure and solute distribution is great,

and, in general, not beneficial. Results of engineering

importance, to be expected from the convection are (1) increased

dendrite arm spacing as a result of increased local solidifi-

cation time (Figures 38 and 39), and (2) increase macrosegre-

gation, hot tearing, and shrinkage defects as a result of the

wide mushy zone produced by dendrites being swept out in

front of the non-convecting portion of the mushy region.

It is worthwhile to point out the difference between the

results of Figures 11 and Figures 38 and 39. The effect

thought to be observed in practice of equi-axed growth producing

longer local solidification time cannot be explained by the

difference in thermal conductivities between equi-axed and

columnar mushy regions, as seen by the small difference in the

curves in Figure 11. If convection can carry equi-axed grains

out into the melt, which effectively causes the mushy region to

extend over the length of the casting, this would explain
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the observed behavior much better. A method of reducing

the local solidification time at any given position is

suggested by the analogous results for side heat loss

(Figures 37 and 32), which is to remove the convection

and preserve the superheat or to replace the superheat

loss by means of inputting heat to the convecting melt.

Figure 42 compares the cooling curves, or analogously

the fraction liquid curves, for the effect of two-

dimensional heat flow, (a) columnar, no heat loss from the

side, and (b) equi-axed, with heat loss at the side,

hs = .001, both for no convection, no superheat, and infinite

surface cooling rate at the chill. Here the effect is

large, with the curve for side heat loss showing that for

this position in the ingot, the local solidification time

is much larger in the case of side heat loss, compared to

the unidirectional case. This result indicates another

reason why foundry engineers might appropriately concern

themselves with finding ways of minimizing convection

during solidification of sand castings. By reducing it,

they could preserve some superheat, which would reduce the

deleterious affect of the side heat loss discussed above,

as shown earlier in the Results sections, H, I, and J.

C. Scheil Versus Linear Fraction Solid Distribution

The effect of the linear distribution of fraction

solid versus temperature assumption employed for the

previous results must be examined. For the four cases
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presented above, (Figures 40, 41 and 42), the model was

modified to utilize the Scheil equation for the fL versus

T distribution (Equation 9). The results were that the

temperatures and positions of the tip and root were

affected by less than 0.1%. Therefore, the temperature

curves of Figures 40b, 41b, and 42b apply to both the

linear and Scheil distribution results. The major change,

therefore, is found in the fL versus reduced time curves,

which are presented in Figures 43, 44, and 45. These

curves indicate that the major difference in behavior is that

if the Scheil distribution applies to the mushy region, a

large portion of solidification takes place in the very early

periods of the freezing time. The significant difference

between the Scheil results and the linear results occurs for

the case of equi-axed convection. Figure 44 shows that

solidification takes place in the later time period, with

the fraction liquid equal to .55 for 60% of the time period,

whereas for columnar, no convection growth the fraction

liquid has dropped to .2 in this time period. The implica-

tions of this comparison on macrosegregation and hot tearing

depend on the analysis of these results, but it is clear

that a significant difference in structure and properties

of an ingot would result from the difference in casting

conditions for curves (a) and (b) of Figure 44.
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D. Continuous Casting

One of the most important areas for engineering

application of solidification studies is the field of

continuous casting. Some studies of the solidification of

alloys during the continuous casting process have been

done(15,18,27), in particular, with various models for

heat flow. The model employed in this work can be used to

represent the continuous casting process under the

following conditions: (1) heat flow along the length of

the continuously cast ingot can be neglected compared to

the radial component of heat flow; (2) variations of heat

transfer coefficient along the length of the ingot are

neglected, that is, if this heat transfer coefficient is

considered to be constant, for the purposes of discussion

here.

It is apparent from the work of the authors cited

above that the foregoing assumptions are reasonable only

for certain cases of continuous cast ingots. As example,

the work of Mizikar(15), and Adenis(18), shows that the

continuous casting of steel ingots is well approximated by

the above, whereas the solidification of large aluminum

ingots is not. Kroeger(27), who considers the continuous

castings of commerical copper, indicates that he includes

the axial conduction in his analysis, but some of his

results, showing pool depths, indicate that the assumption

a
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of no axial (or lengthwise) heat flow would not affect the

results by more than 10 - 20%.

Where the assumptions apply, therefore, the results

of the preceeding sections should apply to the local

solidification time distribution in continuously cast

ingots. The time axis in the plots shown in the previous

section is directly convertable to length along the z axis.

Since most of the plots in the results section are presented

for the square root of time, these would have to be

replotted for linear time in order to make a direct compari-

son to the pool shapes which the model presented here would

predict.

The local solidification time curves versus radius

(Figures 17 and 19) are indicative of the behavior to be

expected in continuous cast ingots, especially the curve at

h = .01, which might approximate the chilling conditions

for the type of molds used in the casting of steel. The

curves of Figure 19 indicate that an order of magnitude

increase in the heat transfer coefficient from h = .01 to

h = .1 would result in a shortening of the local solidifi-

cation time, but only by a factor of about 1.2 to 1.5. It

may be concluded that for values of hL/K in the vicinity

of .5 to 1 or larger, the process of solidification is

very much controlled by thermal diffusion through the metal

rather than by heat removal at the surface, so that

increasing the heat transfer coefficient at these levels of
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hL/K does not result in an appreciable benefit in the

local solidification time distribution.

As mentioned above, the results of the previous

section cannot be applied to the continuous casting of

aluminum, especially in the 'direct chill' process, where

the ingot radius is large and the casting rate (linear

velocity in the Z direction) is small, so that heat flow

in the Z direction is important. Research into the area

of heat flow during the continuous casting of aluminum

alloys could be could be conducted by using the model for

solidification and the method of numerical solution

presented here, with the addition of a consideration of

axial heat flow. A method for considering this axial heat

flow is presented by Kroeger(27), which is especially

useful for his definition of the boundary conditions at

Z = m, the axial length over which heat flow is considered.

There are other approaches for numerical procedures for

two-dimensional initial value problems which might also be

applied.

E. Experimental Examples

The discussion and results have been presented in

terms of dimensionless numbers up to this point. It will

be useful and illustrative to present some examples of

the most pertinent results in terms of laboratory

experiments which might be carried out.
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Consider the following casting; a plate 12" long,

1.57" thick, and at least 6" wide, chilled at one end

with a very high heat removal rate (a water pipe or very

smooth water-cooled copper chill). This plate can be

cast in a sand, plaster, or foamed plaster mold or with

an insulating material around the sides. For an A1-4.5%

Cu grain refined alloy, the local solidification times at

a distance of 9" from the chill, for various casting

conditions, are reported in Table II.

Figures 46, 47, 48 and 49 present the local

solidification time in seconds versus the distance from

the chill in inches; Figures 50 through 53 present the

width of the mushy region (inches) versus position of the

end of freeze isotherm, or "root" (inches), for the condi-

tions of Table II. The width reported is the distance between

the root and the isotherm at fL = 0.75, which is 646.10C,

assuming a Scheil distribution of fL versus T in the mushy

region. The reason this isotherm is chosen rather than the

liquidus isotherm is simply due to the experimental

difficulty in detecting the exact position of the liquidus

with thermocouples in the laboratory. The detection of the

range 650 - 646.1 is simpler and adds no great inaccuracy

to the thermocouple results.

The characteristics of the local solidification

time versus distance curves have been discussed earlier,

in the Results section. At high rates of heat removal
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from the side (Figure 47, for sand), superheat and heat

input with convection raise the local solidification time,

whereas for low rates of side heat removal (Figure 49),

the local solidification time at a given distance from

the chill is lowered by the presence of heat at the tip.

Table II clearly shows the directions and relative

magnitudes of the local solidification times to be

expected for this laboratory casting, which are typical

of the results presented dimensionlessly earlier.

The widths of the mushy region versus position

of the root curves are presented to give an indication of

the macrosegregation effects and feeding problems which

might be encountered during these laboratory experiments.



Table II. End Chilled Laboratory Casting, 12" x 6" x 1.57"

superheat

heat, 2 1/2
cal/cm /sec

local solidifi-
cation time,
sec. at 9"
from chill

convection

unidirectional
heat flow

0 0 150 0

0 0 0 50
VIt

200 330 155

0 00* 0

160

00

sand moldt plaster mold
-4 t

0 150 0

0 0 50
-- t

70 110 105

0 00

0 150 0

0 0 50

135 115 120

0 0 00

foamed
plaster mold

0 150 0

0 0 --

255 130 140

0 0

* Assuming liquid with up to 15% solid convects as pure liquid.
solid, liquid - solid mixtures do not convect.

At higher fraction

t The parabolic heat loss constants (a) used were: 8.9 for sand, 4.95 for plaster,
and 1.57 for foamed plaster.
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Chapter IV

CONCLUSIONS

1. A numerical procedure is presented for calculation of

heat flow in solidification of alloys. Results are

given, using Al-4.5% Cu as example, for unidirectional

heat flow and for radial heat flow in a mold at

constant temperature (e.g., water cooled mold).

2. In unidirectional solidification of an ingot of finite

length, with infinite mold-metal heat transfer coeffi-

cient and no superheat, the "start of freeze" isotherm

moves such that its position is proportional to the

square root of time. The "end of freeze" isotherm

moves such that its position is proportional to the

square root of time until the "start of freeze"

isotherm reaches the ingot extremity; thereafter it

moves at greater velocity.

3. With superheat and no convection, the "start of freeze"

and "end of freeze" isotherms also move such that their

positions are proportional to the square root of time

(until the upper extremity is approached). The

velocity of these isotherms decreases with increasing

superheat, and both isotherms move at greater rate

near the upper extremity of the ingot than that given

by the square root relationship.

4. If convection is high and mold-metal interface heat

transfer coefficient infinite, any superheat present

is lost immediately on pouring and heat flow is as if
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the ingot were poured with zero superheat. If

convection is high and mold-metal interface coefficient

is finite, solidification is delayed until all super-

heat is exhausted. Thereafter, solidification is as

if the ingot were poured with zero superheat.

5. A second effect of convection is postulated and studied

quantitatively. The effect is that of convection

sweeping away equi-axed dendrites from the outer edge

of the mushy zone, thus extending mushy zone thickness.

A corollary of the postulated model is that the

convection greatly increases the width of the mushy

zone during much of solidification. Calculations show

that local solidification time is then also greatly

increased in much of the ingot.

6. An "imperfect" unidirectional solidification (i.e.,

some lateral heat loss) start of freeze and end of

freeze isotherms always move faster than for "perfect"

unidirectional solidification, other conditions being

equal. At zero superheat, the start of freeze isotherm

moves at infinite velocity in "imperfect" unidirectional

heat flow.

7. "Local solidification time" is strongly affected by

the above variables. It increases linearly with

distance from chill in unidirectionally solidified

ingots with no interface resistance (except near the

final extremity where it may decrease slightly).
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Small amounts of side heat loss increase local

solidification time. Larger amounts decrease it.

Convection, where strong enough to sweep solid

dendrites in the direction of advancing isotherms,

increases local solidification time. Small amounts

of heat added to the melt in "perfect" or "imperfect"

unidirectional solidification decrease local solidi-

fication time. Larger amounts increase it.

8. Results of radial heat flow calculations are

qualitatively similar to those presented above for

unidirectional heat flow. Major quantitative

differences are that (1) velocities of start of freeze

and end of freeze isotherms at a given distance from

the mold are substantially higher for radial heat flow,

(2) local solidification times are reduced, and

(3) the transient effects at the ingot extremity

(ingot center in the case of radial heat flow) are

anhanced.

9. For an end chilled, plate casting, 12" long from

chill to riser, 6" wide and 1.57" thick, cast into

an insulated mold, with no superheat and no

convection present, detailed results are presented

as numerical examples of the results obtained. The

local solidification time at a distance 9" from

the chill is -200 second. With 150 C superheat

and no convection, it will be -155 sec. With a

I
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grain refiner and high convection, the local

solidification time at 9" from the chill will

be -330 seconds.

10. For the above end chilled plate, cast into a sand

mold, the local solidification time at 9" from the

chill will be ~70 seconds with no superheat and

~110 seconds with 150 0C superheat and no convection.

11. For the above and chilled plate cast into a foamed

plaster mold, the local solidification time at 9"

from the chill will be -250 seconds with no super-

heat and ~130 seconds with 150 0C superheat and no

convection.
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Chapter V

SUGGESTIONS FOR FUTURE WORK

1. The solidification of alloys other than Al-4.5% Cu

should be studied, such as those which are of

commerical interest. This could be accomplished

easily with the present computer model.

2. The analysis should be extended to treat heat flow

in two dimensions fully. This is important for

the study of continuous casting and ingot solidifi-

cation, where the results of the unidirectional

analysis presented here will not apply. This

extension to more than one dimension can be

accomplished within the framework of the present

method, which treats the tip and root boundary

conditions explicitly in the solution. A method

for two dimensional heat flow analysis with finite

differences is available in the literature, known

as the 'alternating direction' method.

3. A mathematical description of the effect of heat

input into a highly convecting melt is needed. The

results presented in the Results Section for only

one form of heat input, q = q'/(t)1 /2, showed that

there is a strong possibility for reducing local

solidification times in castings in which convection

is present, but that the effect of this heat input

on the positions and velocities of the tip and root
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is complex. Since the forms of heat input (the

function a = F(t)) are limitless, the most efficient

method of searching for an optimal function (the

definition of optimal is itself a problem) would be

to use a mathematical optimizing procedure. Such a

procedure, available in the literature of numerical

analysis, is the unsteady state optimization

algorithm referred to as "Hill climbing in function

space". The procedure is well defined, but calls

for repeated integration of the differential (or

difference) equations, which will result in a large

amount of computer time spent in reaching the optimal

function. Just the definition of the problem and

setting up of the optimizing procedure may reveal

much more about the process of heat input and its

effects on the local solidification time.

4. A survey of the Results Section will reveal that

over the wide range of values of the parameters

(see Appendix C for the list of all parameters), only

a small portion of the possible values was considered

in this work. Therefore it is possible that many

interesting and useful results were not uncovered

here (such as, what the effect of finite heat

transfer coefficient at the chill is on the results

for the side heat loss studies presented, which were

for h = m). The dimensional analysis in Appendix C

shows that there are many dimensionless groups which



117

were held at a constant value for this study, and

these groups, such as h s/hb indicate areas for

future study.

5. Experimental studies, such as proposed in the

Discussion, should be carried out to determine:

(a) whether the magnitude of the changes in the

dendrite arm spacing presented there is found in

the laboratory, and (b) whether actual laboratory

or foundry conditions of heat transfer at the chill,

amount of convection, etc., can be measured

accurately enough to be used as data for the

computer model for the prediction of final dendrite

arm spacings more accurately.
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Figure 40A. Fraction liquid at X - 0.5 versus reduced time, hBL/( = co

no superheat, no convection, for (A) unidirectional heat
flow (Figure 12A), (B) radial heat flow (Figure 16A).
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Figure 40B, Dimensionless temperature at A
for conditions of Figure 40A,

- 0.5 versus reduced time,
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Figure 41A, Fraction liquid at A = 0.5 versus reduced time, hBL/K - c,
no superheat, for (A) no convection, columnar growth (Figure
12A), (B) high convection, equiaxed growth, fsC = 0.45
(Figure 38D),
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Dimensionless temperauure at N = 0.5 versus reduced time,
for conditions of Figure 41A.



0.
* A'B

0.4

0.2-

0 0.2 0.4 0.6

(A) H

ti-to O

Figure 42A. Fraction liquid at A = 0,5 versus reduced time, hBL/ft K
no superheat, no convection, for (A) unidirectional heat
flow (Figire 12A), (B) side heat flow, hSL2 /W - 0,232
(Figure 22B),
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Figure 42B. Dimensionless temperature at A = 0,5 versus reduced time,
for conditions of Figure 42A.
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Figure 43. Fraction liquid at A = 0.5 versus reduced time, for conditions
of Figure 41A, with Scheil distribution of fraction liquid
versus temperature used in the mushy region,
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Figure 44, Fraction liquid at X = 0,5 versus reduced time, for conditions
of Figure 42A, with Scheil distribution of fraction liquid versus
temperature used in the mushy region,
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Fraction liquid at A = 0,5 versus reduced time, for conditions
of Figure 42A, with Scheil distribution of fraction liquid versus
temperature used in the mushy region,
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Figure 46, Local solidification time versus distance from the chill, 12" end-
chilled plate casting, 6" wide, 1.57" thick, insulated mold, for
(A) ATS = 0, no convection, (B) ATS = 0, equiaxed growth, high
convection (C) ATS 150*C, no convection, (D) high convection,
heat at centerline - 50//t cal/sec/cm2 ,
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Figure 47. Local solidification time versus distance from the chill,
for the casting of Figure 46, for (A) insulated mold, ATg 0,
no convection, (B) sand mold, ATg = 0*C, no convection, (C)
sand mold, ATs = 150*C, no convection, (D) sand mold, high
convection, heat in - 50/It cal/sec/cm2 , where a - 8.9 for sand,
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Figure 48. Local solidification time versus distance from the chill, for

the casting of Figure 46, for (A) insulated mold, ATS - 0, no
convection, (B) plaster mold, ATs = QDC, no convection, (C)
plaster mold, ATS = 150*C, no convection, (D) plaster mold,
high convection, heat ip = 50//t cal/sec/cm 2, where a - 4,95
for plaster.
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Figure 49. Local solidification time versus distance from the chill for
the casting of Figure 46, for (A) insulated mold, ATS = 0, no
convection, (B) foamed plaster mold, ATs = 0*C, no convection,
(C) foamed plaster mold, ATS = 150*C, no superheat, (D) foamed
plaster mold, high convection, heat in = 50//t cal/sec/cm2, where
a = 1.57 for foamed plaster.
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Figure 51. Width of the mushy region versus position of the root for cases
of Figure 47.
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Figure 52. Width of the mushy region versus position of the root for cases
of Figure 48.
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Chapter VII

APPENDIX A

Numerical Procedure Used in Calculation
of Heat Flow in Unidirectional

Solidification of Alloys

A. Standard Solution of the Heat Flow Equation (Explicit)

The standard method of solving Equation (1) numerically

is to set up a grid of N points across the length of interest,

and write a separate heat balance for each of these N points

or nodes such as:

pCp dT/dt (K AT/Ax - K AT/Ax + ) +psH Afs/At (Al)

where the symbols are as defined earlier and the + and - refer

to the right and left sides of the point, respectively.

With the solid distribution assumed in Figure lb, the

term ps H Af s/AT can be reduced to a constant additive term

H/(Tt - TE) where Tt is the liquidus temperature, TL, minus

a small amount of dendrite tip undercooling. The term is

zero for all slabs whose temperature is greater than TL or

less than TE, becuase dfs/dt is zero in these regions.

If an explicit technique is used to solve the N

equations of the form (Al):

dT(1)/dt = f1 (Tt) (A2)

dT(N)/dt = fN (Tt)

L-
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then the left hand side is replaced by some form of the time

derivative such as:

_T (J)- T (J)
dT(J)/dt t+A t (A3)

At

Although higher order terms of the expansion of the

time derivative around time = t may be used, the method is

called explicit as long as the temperature at time, t+At

may be expressed as a function of temperature at time, t.

In a following section of this appendix, an implicit

technique will be presented which will be shown to be more

advantageous than the explicit technique.

For the explicit technique, a set of N equations is

formed as follows:

T' (J) _ T(J+l) - (2-M)T(J)+T(J-l) (A4)M

For J = 1 to N

where

M = Ax 2/ant

a = K/(p-(C + H/(Tt TE

T'= Tt+At

This set can be solved for T' (1) to T' (N) at each

time step, then replacing T by T' and repeated for the next

time step (At). The technique is known as Euler's method,

and the size of the time step is constrained to be small.
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B. Murray and Landis' Treatment of Solidification
Discontinuities

Due to the presence of a heat generation event which

occurs during solidification of an alloy at the dendrite

tip and root (represented by Equations (6b) and (7) in the

text), the temperature discontinuities resulting from these

moving internal boundaries must be properly included into

the heat flow solution.

Murray and Landis (ref. 19) present a method for

including these calculations in a numerical solution to the

heat flow equation for melting or freezing of a pure

material. This method was used and applied to both the tip

and root isotherms. The slight modification of the method

required comes about when the tip and root are within two

or less grid points of each other. The method will be

presented here for a single discontinuity, since both tip

and root are treated exactly alike.

Let the solidification isotherm be contained in

slab I, which is Ax wide with the grid point I at the mid-

point. The heat which is given off at this isotherm,

H(I)dx/dt, is assumed to be felt only in this slab. All

other slabs are treated as in equation (A4). Slab I is not

included in the heat flow calculations, but rather its

temperature is calculated by forming a three point interpola-

tion on both sides of the isotherm, which gives rise to two

temperatures for the mid-point temperature of slab I,

TsE+ and T sE (refer to Figure 6). The formulae used were:



(2 - 6x/Ax)(1 - 6x/Ax)

- T(I + 1) - - x/Ax
(1 - 6x/Ax)

+ T(I + 2) . 6X/Ax
(2 - 6x/Ax)

TsE STx (A6)(2 + 6x/Ax) (1 + 6x/Ax)

+ T (1 2 oSx/Ax
+ T(I - 1) - +-6x/Ax)

( + 6x/Ax)

- T(I - 2) - 6x/Ax
( 2 + x/-Ax)

where: T = TE or Tt, depending on whether the tip or

root was in slab I

6x = distance between grid point I and the

isotherm (refer to Figure 6, where I is referred

. Ax Ax to as K)
2 2

Although 6x may be positive or negative, and

Equations (A5) and (A6) are defined over the full range

of 6x, the temperature of slab I is set to TsE when

0 < 6x and to T sE when 0 > 6x.

TsE+ and TsE~ are also used in the equations set

(A4) for the calculation of the temperatures in slabs

I + 1 and I - 1.

After the new temperature of the slabs have been

calculated from Equations (A4) and set with Equations (A5)

TsE

140

(A5)- Tx
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or (A6) in slab I, the new position of the boundary can be

calculated from Equations (6b) for the tip and (7) for

the root:

(K(TsE - T (I - 1)
Aax = (At/(f p - H)) { Ax (A7)m mm Ax

KM (T(I + 1) -i'sE

where: the subscript m refers to the properties at either

the tip or root, depending on which new position

is to be calculated.

Then 6x = 6x + A6x , for both the tip and root,t+At t

and the calculation may proceed for the next time step.

The cycle for each calculation is:

(1) Calculate new positions of the boundaries;

(2) Interpolate temperatures of the boundary-

containing slabs and set them;

(3) Perform heat flow calculations in the solid,

mushy, and liquid regions, excluding the boundary-

containing slabs;

(4) Replace T by T' and start at (1) again.

The two problems in keeping track of the two

internal boundaries by the above method are:

(1) The start up and final stages of the process

must be treated separately. That is, when either

discontinuity is within one grid point of the surface or

center of the simulated casting, special two point formulae
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must replace Equations (A5) and (A6).

(2) When and if the tip and root are within 2 or

less grid points of each other, special formulae must

again be used to replace Equations (A5) and (A6). These

formulae are of the same form as (A5) or (A6) with

appropriate substitutions made for T(I + 1), T(I + 2),

T(I - 1), or T(I - 2) where necessary.

The above problems present no mathematical

difficulty, but rather the inclusion of the tests for

each possible condition increases the run-time of the

program considerably.

C. Temperature Dependent Properties

In addition to the discontinuities, there are

temperature (and, therefore, space) dependent properties

to be included, which arise from conditions in the mushy

zone. The most important of these is the thermal

conductivity variation, as can be seen in Equation (Al),

where the right hand side must be treated as d/dx (R dT/dx)

-2 2
rather than K d T/dx

Therefore, the following method is used during the

solution at each time step: the thermal properties of the

slab J, in the mushy zone, are determined from Equations

(13), (14) and (15) or (16). The thermal conductivities

to be used for heat into slab J (R AT/Ax+ in Equation Al)

and heat out (i AT/Ax ) are taken as an average, since the

MOONDMON-MMOMM-0 - - - - . __ __ Now
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heat flows through a distance Ax/2 with one K and then
m

Ax/2 with the other K . (Refer to Figure 2a). That

is for slab J(TE < T(J) < TL9'

(m m (j+ 1) + Km(J))/2

(A8)

(( m (J-1) + Km (J))/2

-where: K m(J), K m(J+1), K m(J-l) are thermal conductivites of

slabs J, J+l, J-1 respectively; these are calculated using

Equations (15) or (16).

It should be noted that the above method is also used

in heat flow in the solid and liquid regions; but since

Km (J+l) = Km(J) in these regions, the effect is as if the
m m

right hand side of Equation (1) where R d2T/dx

For the case of high convection in the liquid, the

above method is employed. But since the slabs containing

the tip and root are treated separately, the thermal

conductivity in front of the tip, K in Equation (A7),

becomes important. Physically, there is a fluid mechanical

boundary layer in front of the tip, so that a good approxi-

mation for K is that it has the same value as KL for still

liquid. Thus the liquid directly in front of the tip is

considered to be still, but that the liquid at the next

slab ahead of the tip is considered to be highly convecting.
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D. Implicit Versus Explicit Finite Difference Techniques

As noted previously there are two general methods of

solution for a set of differential equations of the type

(A2). The explicit technique, which was presented above,

is derived by using the first term of the Taylor series

expansion of the function T around time, t. (Equation A3).

If the higher order terms are neglected, this is

called Euler's Method, and the error in using Equation (A8)
2is on the order of (At) . However, when Equation (A3) is

substituted into the set (A2) to obtain (A4), the stability

parameter M must be numerically greater than or equal to 2.

This puts a severe restriction on the size of the

time step (At) for a given Ax. For instance, for a = .65

(solid Al-4.5% Cu alloy), N = 25, length = 50 cm, this

restricts At to < 3.07 sec. Note that since we assign a

high thermal conductivity to the liquid to approximate the

effect of convection in the melt, (as much as 10 times as

high as the solid thermal conductivity) this will force

the time step to be < 0.3 sec. This requirement provides

unnecessary accuracy, since for At = 0.3 sec, the error in

the resultant dT/dt is -(At)2 or 0.09 sec. The advantage

of the implicit technique is that the solution is stable

(conditionally), so that the error requirement rather than

the stability requirement may be used to determine the

appropriate time step.
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To derive the implicit method, we substitute (A3)

into (A2) and rearrange:

Tt+At (J) t(J) + At* f (A9)

To increase the stability of this equation, a

substitution is made for f (T,t):

1 1
T (J) = T (J) + At ( f (Tt) + .1 f (Trt+At) (AlO)
t+At t2 21

where: the temperature at the time, t+At appears on both

sides of the equation. The unknown temperature at time,

t+At is implicit on the right hand side of the equation,

thus, the name of the method. That the method is more

stable than the explicit can be seen qualitatively from

the consideration that the averaging of the slopes (f )

at time, t, and t+At, tends to smooth out highly transient

behavior in dT/dt, therefore, the "overshooting" problem

of the explicit method is partially avoided.

The system of Equations (AlO) could be solved

iteratively at each time step to obtain Tt+At. However,

due to the nature of the finite difference forms of the

heat flow equation, Crank and Nicholson (Ref. 7, p. 474)

have presented a method of solution which involves solving

a new system of equations:
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N1 2Lr =At{f (Tit) + 1 E L 2 r(Tt))}
rJ=1 J r

for r = 1 to N (All)

which rearranges to a matrix equation:

= [A] B (A12)

Then:

Tt+At (J) t (J) + L (A13)

The method we use to solve the matrix equation (A12)

simultaneously with a Gaussian elimination type of solution,

taking advantage of the fact that the matrix A in the matrix

Equation (A12) is tri-diagonal. This saves computer time

and storage, and makes the implicit method all the more

useful.

This implicit method is used to solve the heat flow

equations in the solid, liquid and mushy regions. Each

region is treated separately, with the surface BC (Equation

2) and the root (Equation 4a) boundaries for the solid, the

root and the tip (Equation 4b) for the mushy region, and

the tip and the center (Equation 3) for the liquid

boundaries. The coupling of the regions is included by

Equations (6b) and (7), which are solved via Equation (A7).

Equation (A7) is solved for both the tip and root position

with Euler's method, and since the stability requirement

of these equations forces a smaller At to be used then for

the heat flow calculations, a separate loop is included in
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the computer program to cycle through P time steps of the

solution of (A7) for each single time step of the heat

flow solution, where

time step of heat flow calculation
time step of position (A7) claculation

An estimate of the error involved in the method is

presented in Appendix E.
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Appendix B

Modifications of the Uni-Directional Numerical
Procedure, for the Solution of Radial and

Side Heat Loss Heat Flow

A. Radial Heat Flow

Consider a shell balance for heat made on a

cylindrical element:

Heat accumulated = Heat in-Heat out + Heat generated

VpC dT= A KR dT
pp dtE 1 1 aF

- dT
A A2 K 2 U- 12 + p dfs

where A is the area across which heat flows into the

element, V is the volume of the element, and the subscripts

1 and 2 refer to the two surfaces across which heat flows,

r1 > r2 '

In finite different form, this becomes:

AT 2r 1  - (T - TJ+1
pCpA Ar r1 + r2 )K Ar

2r2  - (TJ- 1 - T (B2)

t + r2 Ar

+ psH Af /At

where the volume of the element has been approximated by

2r Ar(r 1 + r2)/2

(Bl)
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A comparison of Equations (B2) with Equation (Al)

shows that the finite difference forms of the heat flow

equations differ only in the coefficients in the AT/Ax

terms. This means that the solution for the radial case

is found in exactly the same manner as for the uni-

directional case except for.the coefficients

(2r /r +r J+1) and (2rJ+1 J/(r+rJ+ 1 )) which are calculated

for each element J and included in the matrix solution,

Equations (All) - (A13).

B. Side Heat Loss

The effect of heat loss from the side has been

presented mathematically in the Introduction. The computer

model implements this heat loss by simply reducing the

temperature of each slab by

AT= At

side P

where q is either h(T JTA side) or a/It, as presented in

the introduction. This is accomplished by a simple

calculation made at each time step after the x-direction

heat flow equations have been solved.

The slabs which contain the tip or root are not

treated in the same manner. Rather than reducing the

temperature of these slabs, the heat loss to the side, qx,

is included in the position equation (6b) at each time step.
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APPENDIX C

Results of Dimensional Analysis of the Problem
of Heat Flow During Solidification

A consideration of the differential equations and

the solidification model (presented in the Introduction)

pertinent to this problem shows that the variables which

must be included in the analysis are: (refer to Table I

for definitions)

property

1. hb

2. K
s

3. a L

4. T m-T

5. T -Tp S

6. T -T,
0 m

7. K

8. L

9. x

10. H

11. t

12. Cp

units
(absolute)

M/03T

ML/6 3 T

2/6

T

T

T

ML/63 T

L

L

L22L /0

L2 /2T

property

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

a

Cpl

H 1

H

Cpm

am

Kmm

q'

T -T
m a,s

W

h
S

T e

C pe

a

units
(absolute)

2

L 2/02 T

L22

L /0

L22T

L 2/02

L2T/0

L2 /

L/

ML/0) T

M/6 3

T

L

M/60 T

T

L22TL /02 T
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The Buckingham Pi method was applied to the problem

(see Reference 28 for details). The first four variables,

hb, Ks' XL, and Tm-Ts were chosen as the base of the analysis.

The resultant groups of dimensionless numbers produced are

listed below. It should be noted that the Buckingham Pi

method assures that the dimensionless groups produced will

completely describe the problem (as much as the variables

used will), but the exact form of the groups produced

depends on the choice of the variables used as the base of

the analysis. According to the rules of dimensional

analysis, however, any dimensionless group may be replaced

by a combination of other groups with no loss in information.

Therefore, the groups listed below do not represent the

actual groups produced by this analysis, rather they are the

groups which are commonly associated with heat flow. The

forms of many of these groups come from the form of the

differential equations and boundary problems, but as noted

above, they also can be obtained by combinations of the

groups formed by the Buckingham Pi method.

For Unidirectional Solidification of Pure Metals with Super-
heat, Infinite or Finite Heat Transfer Coefficient, and Any
Degree of Convection:

1. T -T /T -T 6. (T -T )C /H
p s m s p m ps

2. T-T /T -T 7. a t/L2
s m ss

3. K 1/K 8. (T -T )C /H1 s m s ps

4. hb L/Ks 9. a as

5. xs/L 10. C pl
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For radial solidification, replace L by R and Xs

by R-r5 .

For the solidification of alloys, add:

11. xs/x1

12. Hs/H

14. am/a

15. Km/Ks

13. C /Cps

For the parabolic heat input, add:

16. q/Ks (Tm-Ts ) or q /KsL (Tm-Ts)

For side heat loss, with constant heat transfer

coefficient on the side, add:

17. 2-L
5 5

19. T s Tm s

18. hs/hb

For equi-axed, high convection growth add:

20. T -T /T -Tsle s m s
21. C pe/Cps

For parabolic heat loss from the side, add:

22. a L(aS 1/ 2/Ks W

cal/sec/cm2
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APPENDIX D

A Listing of the Program

The following program was written in Fortram IV, and

was compiled with the I.B.M. Level H compiler, with an

optimization level of 2. Various statistics for compilation

and execution are:

(These apply to the I.B.M. 360/65/40 system at M.I.T.)

Number of Fortran statements = 850

Compile time (H Compiler) = 90 seconds

Core storage necessary for program and Fortran

routines = 30K bytes

Number of implementation dependent routines = none

Number of iterations (time steps) per second of

computer time = 20 to 27.

The number of iterations per computer second varies

as the variable 'CYLL' varies.

The run time required to simulate the solidification

of a casting of given length depends on the accuracy and

external conditions read into the program. A typical time

is 50 seconds of computer time to simulate the solidifica-

tion of a 6" casting, of an alloy with 0 degrees superheat,

no convection, infinite h, and accuracy level between 0.1%

to 0.03%.

The listing of the program follows.



C MAIN PROG FOR CASTING PRORLEM
C -------------------------------------------------------------------------------
C PROGRAM LAST MODIFIED MAY,1970
C------------------------------------------------------------------------------
C
C
C THIS ROUTINE IS A SOLUTION OF A ONE DIMENSIONAL HEAT FLOW PROBLEM
C IT USES A METHOD OF FINITE
C DIFFERENCESAND DOES A LINE RFLAXATION(SINGLE STEP)
C FEATURES OF THE PROGRAM..
C It HEAT AT CENTER IS SPECIFIED FUNCTION OF TIME
C 2) SURFACE TEMPERATURE IS SPECIFIED IN ONE OF TWO WAYS;
C A) AS A SPECIFIC FUNCTION OF TIME, OR 8) AS A CONSTANT HEAT TRANSFER
C COEFFICIFNT(FROM WHICH EACH TEMPERATURE IS CALCULATED. I
C THE SURFACE SLAB IS NEVER INCLUDED IN THE SIMULATION DIRECTLY,
C ONLY INDIRECTLY AS A CONSTANT TEMPERATURE.
C 3) THE POSITIONS OF THE LIQUIDUS AND SOLIDUS ARE CALCULATED
C AT EACH TIME STEP FROM SEPERATE EQUATIONS(Q IN = Q OUT+HEAT)
C THIS METHOD IS SIMILIAR TO(AN. EXTENSION OF) THE METHOD
C OF MURRY AND LANDIS. IT IS NECESSARY IN ORDER TO TAKE
C ACCOUNT OF THE HEAT EVENTS AT THE TIP AND ROOT PROPERLY.
C 4) INTEPPOLATION NECESSARY IS DONE BY USING A THREE POINT FIT
C WHENEVER POSSIBLEAND TWO POINT FITS IF NOT.
C 9) THE TEMPERATURES OF THE SLABS WHICH CONTAIN THE ROOT OR THE TIP ARE
C TREATED SPECIALLY,1E,THEIR TEMPERATURES ARE SET FROM INTERPOLATION,
C NOT CALCULATED FROM THE FINITE DIF. EONS. THESE SLABS ARE INCLUDED
C IN THE HEAT FLOW SOLUTIONHOWEVERAS THE RESULTANT TEMPERATURES ARE
C USED TO SET THE POSITIONS AT THE TIME STEP.
C----------------------------------------------------------------------------
C A CRANK-NICHOLSON METHOD IS USED TO SOLVE THE EQUATIONS
C
C-------------------------------------------------------------------------------
C L

C THE CONSTANTS APPEARING IN VARIOUS PLACES IN THIS PROGRAM
C ARE THOSE WHICH APPLY TO A AL-4.5%CU ALLOY
C THE THERMAL DATA MAY BE READ IN,SO THAT THE PROGRAM ITSELF



C WOULD RE APPLICABLE TO ANY ALLOY(THE C3OLING OF SOLIDS
C OR THE FREEZING OF PURE MATERIALS IS A SUBSET OF THIS)
C THE ONLY CONSTANTS WHICH APPLY ONLY TO AL-4.5%CU ARE
C THOSE USED IN THE SCHEIL DISTRIBUTION EQUATIONS...
C IF A LINEAR DISTRIBUTION IS USED,HOWEVER(CHOSEN BY
C SPECIFYING A VALUE OF '0' FOR THE FLAG ISHEIL,8ELOW) THEN
C THIS MODIFICATION OF THE EQUATIONS IS NOT NECESSARY
C RESULTS INDICATE THAT THE SCHEIL DISTRIBUTION HAS PRACTICALLY
C NO EFFECT ON THE TEMPERATURE DISTRIBUTION OR POSITIONS OF
C THE TIP AND ROOT,THEREFORE IF A SCHEIL DISTRIBJTION IS DESIRED,
C THE SIMULATION COULD BE RUN WITH A LINEAR DISTRIBUTIONAND THE
C RESULTANT TEMPERATURES CONVERTED TO FRACTION SJLID WITH
C THE SCHEIL EQUATION WITH THE SAME RESULTS
C
C-------------------------------------------------------------------------------
C IF THE SURFACE TEMPERATURE AT TIME ONE(SURTEM(1)) IS LESS
C THAN ZERO,THEN THE CONSTANT HEAT TRANS. COEF READ IN WILL BE USED
C OTHERWISETHE GIVEN SURFACE TEMP. WITH TIME WILL BE USED.
C-------------------------------------------------------------------------------
C RADIAL HEAT FLOW SIMULATION CAPABILITY ADDED...'ARCH 13,1970
C THIS IS ACCOMPLISHED BY RE-DERIVING THE HEAT FLOW EQUATIONS FOR
C RADIAL(CYLINDRICAL) SHELLS...THE RESULTANT HEAT FLOW EQUATIONS
C DIFFER FROM THE UNI-DIRECTIONAL ONES ONLY IN THE COEFFI TENT
C WHICH REPRESENTS THE AREA...SEE BLOCK 'MATX' FOR DETAILS
C------------------------------------------------------------------------------

DIMENSION TSAV(50),TSAVL(50),TSAVT(50),TSAVC(50 )KNIT
DIMENSION S(100),TKSAV(50),EX(50),AK(2), TKINT(50),TT(20),TR(20) INIT
DIMENSION EM1(3),EM(3) ,LIST(50),DIST(10),IN(10) INIT
DIMENSION F(100),Q(100),A(100,3) KNIT
COMMON SURTEM(20),GLOBAR(40),R(50),EPSILO( 20),T(50) KNT
C3MMON PTDELT,DCYLCYLLHIGHCFLOWCTSECTLTETKSTKL INIT
COMMON CPSCPL,RHS,RHLHOFFREFRT,FSCTKFACTALENDELX .IT
COMMON TINPOSLPOSXSEC,H,DELTSTAHSXSTASANUDELTQ KNIT
COMMON NAME(10),N,NCYCLENSCYL,ICONTKTFLGKGRNEPSLCONT INIT
COMMON ISHEIL, IRADFL, ISTFLG,KHIN INIT
REAL*B AOFEM INIT



C INIT
C INIT
C THE USE OF THE ARRAY IS: INIT
C T HOLDS THE TEMPERATURE AT TIME T FOR EACH NODE INIT
C TSAV IS A COPY OF TFOR USE BY $SOLVE' INIT
C TSAVL IS USED BY 'CONTROLS' FOR MAINTAINING INIT
C FOR MAINTAINING THE ACCURACY OF THE P3SITION LOOP INIT
C TSAVC AND TSAVT ARE USED BY CONTROLX FIR COMPARISONS OF INIT
C ACCURACY OF THE TIME STEP LOOP INIT
C AF, AND Q ARE THE MATRICES IN TH EQUATION INIT
C -1 INIT
C Q=A F INIT
C WHERE Q IS THE SOLUTION OF THE EQUATIONS FOR DELTA T INIT
C TKINTTKSAVAND EX ARE THE THERMAL PROPERTIES AND CONSTANTS INIT
C OF EACH SLAB AT TIME T INIT
C EM IS USED BY 'MUSHY' TO FILL EX INIT
C AK IS USED BY 'MATRIX' TO FILL A AND F INIT
C LIST IS USED TO KEEP TRACK OF WHICH SLABS ARE IN WHICH REGION KNIT
C DIST,IN,TTTR,S,R,AND EPSILO ARE USED FOR OUTPUTTING KNIT
C THE INTERPOLATED TEMPERATURES AND THE POSITION- INIT
C TIME INFORMATION GIVEN AT THE END OF THE SIMULATION INIT
C SURTEM AND GLOBAR ARE THE EXTERNAL BOUNDARY CONDITIONS, INIT
C SPECIFIED AS TEMPERATURE AND CALORIES AS FUNCTIONS INIT
C OF TIME , RESPECTIVELY INIT
C INIT
C INIT
801 CONTINUE INIT

READ(5,820) NAME INIT
READ(5,816) NKGRNCYCLE,NEPSNSCYL INIT
READ(5,818) DELTPTFACTTKFACTCYLLFRTFRE ,FSC KNIT
READ (5,817) TINALENTSEC,TA ,DELTSDELTQ ,TL INIT
READ(5,824) ISTFLG,IRADFL,ITHPRO,LCONTKTFLGISHEIL INIT
READ(5,819) SURTEM INIT
READ(5,819) GLOBAR INIT

READ(5,817) HSXSTAS INIT
READ(5,824) NDIST INIT



READ(5,819) DIST INIT
IF(DELT.LT.0.) STOP INIT

INIT
THE FOLLOWING VALUES OF THE THERMAL PROPERTIES ARE CONSIDEREDINIT

STANDARD....FOR SPECIAL RUNSTHEY MAY BE READ IN BY INIT
USING THE FLAG *ITHPRO* INIT

INIT
TKS=O.43
TKL=0.243
CPS=.220
CPL=O. 24
RHS=2.75
RHL=2.645
HOF=75.
TE=548.
IF(ITHPRO.EQ.1)REAf)(5,818)TKSTKLCPSCPL,RHSRHL,HOF,TE
HIGHC=1.
FLOWC=O.

THE FOLLOWING READ TAKES PLACE IF THE USER HAS SPECIFIED
THAT CONTROL OF THE LOOP WITH RESPECT TO DEL TIME IS TO TAKE
PLACE.IF NO CONTROL(LCONT=O) THE STANDARD VALUES OF THE-
CONTROL VARIABLES ARE SUCH THAT NO TESTING SHOULD TAKE
PLACEAND THEREFORETHE PROGRAM WILL OPERATE AT THE
SAME SPEED AS BEFORE
THE VARIABLES TO CONTROL THE LOOP ARE;
1) ICONT.ooTHE NUMBER OF ITERATIONS AT WHICH THE CONTROL IS

TO BE APPLIED
2) FLOWC...THE LIMIT AT WHICH THE TIME STEP MAY BE DOUBLED
3) HIGHC... THF LIMIT AT WHICH THE TIME STEP WILL BE REPEATED

AT HALF THE CURRENT TIME STEP

ICONT=10000
IF(LCONT.EQ.1)READ(5,871) ICONTFLOWCHIGHC
TCONT=ICONT*DELT

INIT
INIT
KNIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INTT
INIT
KNIT
INIT
INIT
INIT
INIT
INIT



C CONDITTONAL READ IF POINTS SPECIFIED INIT
C INIT

IF(NEPS.Nc.O) READ(51,19) EPSTLO INIT

C BEGIN INITIALIZATION INIT
C INIT
C THE PURPOSE OF BLOCK *INIT' IS INIT
C 1) INITIALIZE THE TFMPERATURE PROFILE AT TIME Tw0. INIT
C 2) INITIALIZE THF CONSTANTS WHICH WILL BE USED IN THE TIME INIT
C LOOP WHICH DO NOT CHANGE INIT
C 3) SET UP THE VALUES OF THE THERMAL PROPERTIES AND INIT
C THF FLAGS FOR THE FIRST ITERATIONWHICH WILL BE INIT
C CONTROLLED BY THF TIME STEP LOOP THEREAFTER INIT
C INIT
C INIT
C DEI.TCY USED BELOW IS THE NUMBER OF TIMES THAT THE POSITIONS ARE INIT
C CALCULATED PER TIME STEP OF HEAT FLOW INIT
C INIT

KROLD=1 INIT
KTOLD=1 INIT
IHCFLG=1 INIT
DELTCY=DELT/NCYCLF INIT
HPRINT=PT INIT

DEL X= AL EN/N INIT
DCYL=DELX/CYLL INIT
IF(NSCYL.EQO0) NSCYL=1 INIT
CONST=DELX*DELX/DFLT INIT
FX(1)=CONST*RHL*CPL KNIT

C INIT
C DrLT IS THE TIMF STEP(INITIAL) INIT
C INIT

KCNTL=1 KNIT
00 7777 J=1,N INIT
R(J)=0. KNIT
S(J)=O. INIT

7777 CONTINUE INIT



ARRAYS 'IN','S','R','OIST' ARE USED TO CALC. THE TEMPERATURES
AT SPECIFIED POINTS AL34G THE LE4GTH OF THE CASTING,
...FOR THE PURPOSE OF COMPARISON TO T.C. READINGS

IF(NDIST.EQO0l GO TO 858

R WILL BE WRITTEN OUT AND LATER

03 P59 J=1,NDIST
859 R(J)=PIST(J)

00 961 J=1,20
TR(J)=O.

961 TT(J)=O.
00 855 J=1,40
GLOBAR(J)=GLOBAR(J )*FACT

855 CJNTINUE
09 856 J=1,1O
DIST(J)=DIST(J)+DELX/2.
IN(J)=(DTST(J)/DELX)+I
s(J)=nIST(J)-((IN(J)-1)*

856 CONTINUE
858 CONTINUE

IT=0
IP=0
1=0
00 13 J=1,N

13 T(J)=TIN

RE-USED

DELX+DELX/2.)

INITIALIZATION FOR H COEFFICIENT

KHIN=2
IF(SURTEM(1).LE.0.)
H=0.

SIMUL AT ION

KHIN=1

IF( KHIN.EQ.1 )H=SURTEM(2)
FIRST ITERATION ALWAYS USES LIQUID PROPERTIES...

INIT
INIT
INIT
INIT
INIT
KNIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
KNIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
[NIT
KNIT
INIT
INIT
INIT
I NT,T
INI'T



TKSAV(1)=TKL INIT
SEC=0. INIT
GLUG=O. INIT

C INIT
C SCHEIL EQUATION CONSTANTS INIT
C INIT

SCHC=33./( 112.*4.5) INIT
SCHE=1./(.17-i.) INIT
IF(TIN.GT.TL) CPL=CPL+(FSC*HOF)/(TIN-TL) INIT
FRL=1.0-(FRE+FRT+FSC) INIT

C INIT
C NOTE THAT SINCE FSC=0) AND TL =650 4ILL PRODUCE NORMAL 9PERATIO INIT
C THE DECK DOES NOT HAVE TO BF CHANGED FOR THE EQUI-AXED CONV.RU INIT
C INIT

TKLL=TKL INIT
C INIT
C FRE AND FRT ARF THE FRACTIONS SOLID AT THE ROOT AND TIP,. INIT
C RESPECTIVELY INIT
C INIT

RHEAT=HOF*RHS*FRE KNIT
C KNIT
C THIS EOUATION RESULTS FROM THE CONSIDERATION OF THE INIT
C KINETIC UNDERCOOLING REQUIRED FOR GROWTH(AT THE TIP) INIT
C INIT

THFAT=HOF*RHL*FRT INIT
C INIT
C THESE EQUQTIONS ALLOW EITHER A 'NORMAL' STARTING SOLUTION, INIT
C OR IF IPFL,ILFL ARE NOT READ IN AS ZEROA SQUARE CURVE IS INIT
C FIT TO THE FIRST TEMPERATURE(SET TO ZERO) AND THE SECOND.... INIT
C THIS IS FOR THE PURPOSE OF ELIMINATING THE EFFECT OF INIT
C FINITE HEAT TRANSFER ON THE SURFACE,IE,AN 'INFINITE' SOLUTION INIT
C START IS USED...SURTEM(1) MUST BE SET TO ABOUT 0.01 INIT V
C INIT

IF( ISTFLG-1) 2300, 2'402,2303 INIT
C ISTFLG IS READ IN AS A FLAG TO SIGNAL: INIT
C 0) NORMAL,NON-ANALYTIC STARTING CONDITIONS INIT



C 1) ANALYTIC START1I4G C34nITKIONS...T (1 IS 0 AT TIME=0 INIT
C 2) RESTART STARTING CONDITIONS...RFAO IN OLD STATUS OF LOOP INIT
C AND CONTINUF SIMUL ATION INIT
C INIT
2303 READ(5,816)IOIR KNIT

READ(5,817) TOPTQtMTRP,TRM INIT
READ(5,817) POSL,POSXSECHPRINT INIT
READ(5,819) (T(NTP),NTPv1,N) INIT
SL*POSL-((IO-1)*fELX+fELX/2.) INIT
SX=POSX-((IR-1)*DELX+0ELX/2.) INIT
TSO=T(1) INIT
ILFL=1 KNIT
IRFL=1 INIT
ISKP=O INIT
MST=SFC/DELT KNIT
GO TO 2301 INIT

2302 CONTINUE INIT
MST=1 INIT
10=1 KNIT
IR=1 INIT
ILFL=1 INIT
IRFL=1 KNIT
SX=(DELX/2.1*(TE/TIN)**2 INIT
SL=(DELX/2.)*(TL/TKN)**2 INIT
POSL=(DELX/2.)+SL INIT
POSX=(DELX/2.)+SX KNIT
POSLS=POSL INIT
POSXS=POSX INIT
T( 1)=SURTEM(1) KNIT
TSO=SIJRTEM(1) INIT

C INIT
C ISKP IS USED AS A FLAG TO SKIP THE FIRST EXECUTION OF TH INIT
C POSITIONS ARE SPECIFIED I THE INPUT(A4ALYTIC STARTING) INIT
C POSITION CALCULATION BLOCKS,IN THE CASE WHERE THE INITIAL INIT
C INIT

ISKPal INIT



GO TO 2301 INIT
2300 CONTINUE INIi
C KNIT
C THESE STMTS FORCE A STARTING SOL11TION WHICH AVOIDS THE INIT
C SFARCH TECHNIQUE FOR STAPT-UP.THIS IS NECESSARY ONLY FOR THE INIT
C LIQUIDUS BOUNDARYSINCF THE SOLIDUS BOUNDARY APOFARS AFTER A INIT
C GRADIENT HAS REEN FIRMEDAND THE SEARCH FOR THE POSITION IS ACCURATFINIT
C THE FIRST 'VALUE OF SUIRTE'M READ IN SHOjLD BE 0.5 DEGREES LOWER THAN INIT
C THF POURING -TEMPTO INDICATE THE FACT THAT THE LIQIUDUS TIP HAS INIT
C JUST APPEARED INYT
C INIT
C INIT

MST=1 INIT
10=0 KNIT
IR=0 INIT
ILFL=O INIT
TRFL=0 INIT
POSL=0. INIT
SX=O. KNIT
SL=O. KNIT
POSX=O- INIT
TSO=TIN INIT
ISKP=0 KNIT

2301 CONTINUE INIT
T(N+I)=0- INIT
LIST(1)=1 INIT
LI ST( N+1)=1 INIT

C INIT
C INIT
C N2TE THAT THE RATIO OF LIQUID THERMAL CONDUCTIVITY IN THE MELT INIT
C TO LIQUID TH. COND. IN THE MUSHY REGION IS READ IN (TKFACT) INIT
C IT IS USED FOR THE TH. COND IN THE MELT FOR KGR=3 (CONVECTION) INIT
C INIT

IF(KGR .EQ. 2 .OR. KGR .EQ.3) TKLL*TKFACT*TKL KNIT
C INIT
C KGR IS A SWITCH...IT DETERMINES THE CONDITIONS OF THE SIMULATION INIT

El



C KGR=O...SERIFS HEAT FLOW,NO CONVFCTION INIT
C KGP=1...PARALLEL HEAT FLOW,NO CONVECTION KNIT
C KGP=2...SERIFS HEAT FLOWINFINITF CONVECTION(IN THE LIOUli) [NIT
C KGR=3...PARALLEL HEAT FLOWINFINITE CONVECTION KNT
C KNIT

TKEM=TKS KNT
TKEP=TKS INIT
TKLM=TKL KNIT

C KNIT
C THIS VERSION OF THE THERMAL CONDUCTIVITY IN FRONT OF KNIT
C OF THE INTERFACE IS EQUIVALENT TO A FINITE BOUNDARY KNIT
C LAYER TYPE OF CONVECTION...PREVIOUSLYTHE CONVECTION WAS INIT
C BROUGHT UJP TO THE INTERFACEWITH UNSTABLE RESULTS KNIT
C KNIT

TKLP=TKL KNIT
C KNIT
C TKATHE AVG SOLIDELIoUIn CONDUCTIVITY,1S USED IN THE MOTION KNT
C EOUATIONS WHENEVER THE TIP AND ROOT ARE CLOSER THAN 2 SLABS KNIT
C APART,IE,WHEN IQ<=KR+1 KNIT

TKA=(TKL+TKS)/2. KNT
TLM=TL-.5 INIT
TS=T(1) KNIT
NN=N+1 KNIT
DO 2305 J=1,NN KNIT

2305 TSAV(J)=T(J)
ANU=HS*XS/TKS KNIT

C END INITIALIZATION KNIT
C.................................................................NIT
C [NIT
C SUBROUTINE 'WRITES' SIMPLY OUTPUTS THE SIMULATION PARAMETERS KNIT
C TO THIS POINT ,THROUGH THE COMMON BLOCK ABOVE KNIT
C KNT

CALL WRITES KNIT
C.... ................... e........ ................................ t...VA

C TVAR
C MAI.N CALCULATION LOOP...J IS DISTANCE TVAR



C I IS TIMF TVAR
C LonP ELEMENTS TVAR
C TVAR
C 1) CALC. NFW SUJRFACE TEMPERATUOPE AND HEAT VALUE (BLOCK TVAR) TVAR
C 2) SET TIP AND ROOT POSITIO4S (BLOCK PSET) TVAR
C 3) FIND TEMPERATURES OF SLABS CONTAININJG TIP AND R'3OT TVAR
C AY INTERPOLATTON,AN0 SET THEM(PLOCK TSFT) TVAR
C 4) CALC. AND SFT PHYSICAL CONSTANTS OF EACH SLAB (BLOCK MUSH) TVAR
C 5) CALC AND SFT THERMAL CONDUCTIVITY IF EACH SLAB TVAR
C (AT THF TNTERFACE) TVAR
C (BLOCK TKFL) TVAR
C 6) FILL MATRIX FOR IMPLICIT SOLUTION (BLOCK MATX) TVAR
C 7) SOLVE IMPLICIT FQNS. F3R DELTA TEMP. OF EACI SLAB TVAR
C (BLOCK SOLVE) TVAR
C TVAR
C TVAR
C THEPE ARE ALSO CONTROL BLOCKS AMONG THESFWHICH ARE TVAR
C MAINTAINING ACCURACY. TVAR
C TVAR
C THE FLOW IN FAC4 TIMF STEP IS THROUGH THE FOLLOWING BLOCKS TVAR
C TVAR
C TVAR
C --------------- TVAR
C / TVAR
C / TVAR / TVAR
C / TVAR
C --------------- yyA
C TVAR
C TVAR
C TVAR
C --------------- |TVAR
C TVAR
C / CONTROLT / >e e e e e ee e ee... ...................... TVAR
C / / TVAR
C TVARC TVt&R
C I TVAR



I

/ CONTROLS / >..............

/ PSET

i POSITION Loop

/ TSFT

/ CONTROLC / <..............

TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TV AR
TVAR
TVAR
TV AR



/ MUSHY

TIh1F iOI;

/ TKFILL

/ MATRYX

/ SOLVP

, CONTRt)LX / <eeeeeoeee eo eo e. ....

TVAR
TVAR
TVAR
TVAR
TV AR
TVA R
TVAR
TVAR
TYAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAP
TVAR
TVAR
TVAR
TV AR
TVAP
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR

11



C TVAR
C TVAR
1 CONTINUF TVAR

SEC=SEC+DELT TVAR
1=1+1 TVAR

C TVAR
C CALCULATE SURFACE TEMPERATURF AND HEAT INPUT TVAR
C DELTS IS THE INCREMENT qF TIME AT WHICH THE SURFACE TEMP IS TABULATED TVAR
C DELTO IS THE TIME INTERVAL AT WHICH GLOBAR IS TAR1LATED TVAR
C DELTS IS IN SFCONOS TVAR
C SURTFM IS THF ARRAY WHICH CONTAINS THE TFMPERATIORES TVAR
C TS IS THE SURFACE TEMP AT TIME 'SEC' TVAR
C TVAR
C................................................................ CONTROLT
C ALOCK CONTROLT IS ASSOCIATED WITH BLOCK CONTRDLX... CONT ROL T
C IT SAVES THE STATUS OF THE TEMPERATURE AND POSITIONS SO THAT CONTROLT
C IF THE CURRENT TIME STEP DOES NOT MEET THE ACCJRACY TEST,IT CONTROLT
C MAY BE REPEATED CONTROLT

ICNTL=O CONTROLT
IF(SEC.LT.TCONT) GO TO 1001 CONTROLT
KCNTL=-1 CONTROLT
ICNTL=l CONTROLT
SLST=SL CONTROLT
SXST=SX CONTROLT
SECST=SEC CONTROLT
POSLST=POSL CONTROLT
POSXST=POSX CONTROLT
IST=IQ CONTROLT
TPST= IR CONTROLT
ILFLST=ILFL CONTROLT
IRFLST=IPFL CONTROLT
ISKPST=ISKP CONTROLT
TSOST=TSO CONTROLT
TK1ST=TKSAV( 1) CONTROLT
LLCT=O CONTROLT
DO 1000 J=1,N CONTROLT



1000 TSAVT (J)=T( J)
1001 CONTINUE
C....... ...................... e...-eee*************.***...............

IF(KHIN.FO.1) GO TO 1111
SOS=SEC/DFLTS
IKL=SDS
TS=(SURTFM(IKL+2)-SUJRTEM(IKL+1))*(SDS-IKL)+SURTFM(IKL+1)
TSDFL=TS-TSO
IF(TA.EQ.TS) GO TO 1112
HeC=TKSAV(1)*(T(2)-T(1))/((TS-TA)*DELX)
GO TO 1112

1111 CONTINUE

SURFACF TEMPERATURE LOOP ADDED DUE TO STABILITY PRORLEM

EXSF= X(1 )*NSCYL
03 1002 NSC=1,NSCYL
TS=TS+(( TA-TS)*H*DELX/EXSE

1002 CONTINUE
IHCFLG=O

)+( (T (2 )-TS )*TKSAV( 1)/EXSE

C NOTE THAT THE H COEF IS USED TO MATCH THE TWO POINT SLOPE
C AT THE SURFACE
C
1112 CONTINUE

TSO=TS
LCT=0

C
C FORMS OF GLOBAR TO SPECIFY HEAT INPUT;
C 1) LIST fV VALJESALL >0. ... THIS FUNCTION USED DIRECTLY
C 2) GLOBAR(1)<0.,GLORAR(2)>0.,...GLOBAR(3) USED AS CONSTANT
C FOR TIME UP TO SEC=GLOAR(4),THEN SHUT OFF
C 3) GL OBAR(1)<0., GLOBAR(2)<0. ... GLOBAR(3) IS USED AS CONSTANT

C OF PARABOLIC HEAT INPUTIEGLOBAR(3)/SQRT(SEC) IS HEAT IN

C
IF(GLO8AR( 1) )2222, 2229, 2229

CONTROLT
CONTROLT
CONTROLT
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR



2?22 IF(GLOBAR(2))2223,2224,2224
2223 GLUG=(GLOBAR(3)/SQRT(SEC+.0001))*(DFLT/OELX)

GO TO 2228
2224 GLIJG=GLORAR (3)*(DEL T/DELX)

IF(SEC.GT.GLOBAR (4)) GLUG=0.
GO TO 2228

2?29 C3NTINUE
SDO=SEC/DELTQ
IKoSloQ
GLUG=(GLORAR(IKQ+2)-GLOAR(TIKQ+1))*(SDO-IKQ)+
GLUG=GLUJG*DELT/DELX

2?28 CONTINUE
LCT=LCT+1

GLOBAR(

C.........................................................
C.......................................... . . .....

C
C

THIS CONTROL BLOCK
C CONTROL
C LOOP
C,

00 5051 J=1
5051 TSAVL(J)=T(

POSLS=PSL
POSXS=POSX
SLS=SL
SXS=SX
IQS=IQ
IRS=IR
ILFLS=ILFL
IRFLS=IRFL
ISKPS=ISKP

SAVES THE VARIOUS
BLOCK FOLLOWING THE

PARAMETERS

TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR

IKO+1) TVAR
TVAR
TVAR
TVAR
TVAR
CONTROLS
CONTROL S
CONTROLS

FOR USE BY THECONTROLS
POSITION AND TEMPERATURE SETTING

C.....
C.........................g......... g ...............................

C
C: PSFT: CALCULATES AND SETS THE NEW LIQUIDUS AND SOLIDUS POSITIONS

CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
PSET
PSET
PSET



00 4060 J=1,NCYCLF

LIQUI miS BOUNDARY

IP=IP+1
IF(T( 1) .GE.TL.OR .IQ.GT.N.OR.I SKP.FQ. t1
IF(ILFL.FQO0) GO TO 4110
IF( IQ-2)4121,4115,4116

4115 IF(SL)4122,4122,4123
4122 HEATOT=TKLM*(TL-T(1))/(POSL-DFLX/2.)

GO T3 4120
4123 HEATOT=TKLM*(TL-T(2))/SL

GO TO 4120
4121 HEATOT=TKLM*(TL-T(l))/SL

GO TO 4141

GO TO 4120
4116 HEAT3T=TKLM*(((TQM-T(IQ-2))/(2*DELX))+(DELX+SL)*((T(IQ-2)

1 -2.*T(IQ-1)+TQM)/(DELX*DELX)))
4120 CINTINUE

IF(IQ-(N-1))4117,4118,4118
4118 HEATIN=TKLP*(T(N)-TL)/((N*DELX-DELX/2.)-POSL)

GO TO 4119
4117 HEATIN=TKLP*(((T(IQ+2)-TQP)/(2*DELX))-(DELX-SL)*((TQP-2*T(IQ+1I

I +T(1Q+2))/(DELX*DELX)))
4119 CJNTINUE

C THE FOLLOWING STMT SHOULD BE A BETTER APPROXIMATION
C TWI BOUNDARIES ARE IN THE SAME SLAB

IF(IQ.EQ.IR) HEATOT=TKA *((TL-TE)/(POSL-POSX))

THE IQ=IR+1 TEST IS DUE TI THE LOSS IF HEAT IN THIS CASE
WHICH MUST BE TAKEN INTO ACCOUNT...ESPECIALLY IN CASES
WHFPE THE TIP AND ROOT SPEND A LOT OF TIME NEAR EACHOTHER

HEATOT=TKA *((TL-TE)/(POSL-POSX))

PSET
PSFT
PSFT
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSE T
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET

IF THE

IF(IO*EO*IR+I)



SIDE HEAT ADD)InT TON MADE AS HFAT OUT TERM..ADDITIVE

TSIDE=HS*(T( IO)-TAS)*DFLX/XS
TF(HS.LT.O.) HTSIDE=TAS*DELX/(50T(SFC+10**(-41)*XS)
DPSL =(DEL TCY/THEAT) *(HTSiDE+HFATlT-HEATIN)
GO TO 4140

4110 ILFL=1
00 4111 L=1,N
IF(T(L).GT.TL) GO TO 4112

4111 CONTINUE
IQ=N+1
GO TO 4141

4112 10=L-1
AAB=TKLM*(TL-T(rQ))*DELX/(TKLP*(T(IQ+1)-TL)+TKLM*(TL-T(QIQ))
IF(AAB.GT.DELX/2.) 10 TO 4113
SL=AAB
GO TO 4114

4113 SL=AAB-DELX
10= 10+1

4114 POSL=(10-1)*DELX+DELX/2.+SL
GO TO 4141

4140 POSL=POSL+DPOSL
10=(POSL/DELX)+1
SL=PJSL-(( I0-1)*DELX+DELX/2.)
IF(IQ.LE.0) ILFL=0
IF(Q.EQo.N.AND.SL.GTT.O.) IQ=NN
IF(IQ.GT.N) GO TO 4141

4160 CONTINUE
4141 CONTINUE

SOL IDUS ROUNnARY

IF(T(1).GE.TE.0 R.IR.GT.N.OR.ISKP.E. 1)
IF(IRFL.EQ.0) GO TO. 4010
IF(IR-2)4021,4015,4016

GO TO 4041

PSET
PSET
PS ET
PSET
PSET
PSET
PSFT
PSFT
PSET
PS ET
PSET
PSET
PSET
PSET
PSET
PS FT
PS ET
PSE T
PSET
PSET
PSE T
PSET
PSET
PSET
PSET
PSE T
PSET
PSET
PSFT
PSET
PS ET
PSFT
PSET
PS ET
PSET
PSET



c P SET
C TWO POINT FORMIllA ISED FflR POINTS IN PROXIMITY OF FNDS PSET
C PSFT
4015 IF(SX)4022,4022,4023 PSET
4022 HEATDT=TKFM*(TF-T(I))/(POSX-IFLX/2.I PSET

GO TO 402n PSET
4023 HEATIT=TKFM*( TE-T( ?) /SX PSFT

GO TO 4020 PSET
4021 HEATOT=TKFM*(TE-T(l))/SX PSET

GO TO 4020 PSET
C PSET
C THREE POINT FORM OF THE FINITE DIFFFRENCE FORM OF THE PSET
C TAYLOR'S EXPANSION IS iSF TO OBTAIN THE SLOPE OF TEMPERATURE PSET
C REQUIRFO BY THF MOTION FQUATIONS OF THE TIP AND ROOT PSET
C PSET
4016 HEATDT=TKEM*(((TRM-T(IR-2))/(2*DELX))+(DELX+SX)*((T(TR-2) PSET

1 -2.*T(IR-1)+TRM)/(DELX*DELX))) PST
4020 CDNTINUE PSET

IF(IR-(N-1))4017,4018,4018 PSET
4014 HEATIN=TKEP*(T(N)-TE)/((N*DELX-DELX/2.)-POSX) PSET

GO TO 4019 PSET
4017 HEATIN=TKEP*(((T(IR+2)-TRP)/(2*DELX))-(DELX-SX)*((TRP-2*T(IR+1) PSET

1 +T(IR+?))/(DELX*OELX))) PSFT
4019 CONTINUE PSET

IF(IO.EQ.tR ) HEATIN=TKA *((TL-TF)/(POSL-POSX)) PSET
IF(IQ.EQ.IR+1) HFATIN=TKA *((TL-TF)/(POSL-POSX)) PSET
HTSIDE=HS*(T(IR)-TAS)*DELX/XS PSFT
IF(HS.LT.O.) HTSIDE=TAS*DELX/(SQRT(SEC+10**(-4))*XS) PSET
POSX=(DELTCY/RHEAT)*(HTSIDE+HEATOT-HEAT IN) PSET

GO TO 4040 PSET
4010 IRFL=1 PSET

DO 4011 L=1,N PSET
TF(T(L).GT.TE) GO TO 4012 PSET

4011 CONT I NUE PSFT
4012 IR=L-1 PSET

AAB= DEL X*(T E-T ( IR TIR+ 1) -T (IR PSET



IF(AAB.GT.DFLX/2.) GO TO 4013 PSET
SX=AAB PSET
GO TO 4014 PSET

4013 SX=AAB-DELX PSET
IR=IR+1 PSET

401 POSX=(IR-1)*DELX+DELX/?.+SX PSET
G3 TO 4041 PSET

4040 POSX=POSX+)POSX PSET
TR=(POSX/DELX)+1 PSET
SX=POSX-((TR-1)*FLX+FLX/2.) PSET
IF(TR.LE.0) IRFL=0 PSET
IF(IR.EQ.N.AND.SX.GT.0.) IR=NN PSET
IF(IR.GT.N) GO TO 4042 PSET

4041 CONTINUE PSFT
4042 CONTINUE PSET

ISKP=0 PSET
C PSET
C POSITIONS HAVE NOW BEEN SET PSET
C PSET
C........................................ . . . .... ...... .. PSET

C......................................................................* TSET

C TSET
C:TSET: SET TO,TR,TQP,TQMTRPTRM TSET
C TSET
C: FIND MODULUS AND TEST TSET
C TSFT

NDO=(IQ+N-1)/N TSET
NOR=(IR+N-1)/N TSET
IF(NDQ.NE.1) GO TO 5000 TSE T
ASD=SL/DELX TSET
BSD=1 .-ASD TSET
CSD=BSD+1. TSET
DSD=1.+ASD TSET
ESD=1.+DS TSFT
IF(IO-2) 5010,5011,5012 TSET

5010 TQP=TL*(2./(CSD*BSD))-T(10+1)*(2.*ASD/BSD)+T(1Q+2)*(ASD/CSD) TSET

II



GO TO 5000' TSET
5011 TO=t*2/cnsr)-(Q1*2*S/S)T1+)(~)CO TSFT

GO TO 50'Yn TSET
5012 IF(TQ'(N-1)) 50139501495015 TSET
5015 TQ=TT-)(S)/S)T1 )(,*S/~)+L(,(fSO*ESD)) TSET

GI TO 5000 TSET
5n14 TQ=T1-)(~)Fn+IOl*2*~/s)+L(,(S*S) TSET

TQ=(gl-CE.fr)L-LI((01-L TSET
Gfl TO 5000 TSET

5013 TQ=L(,(S*SI)T1+.*?.Ar/S)+(O2*Ar/sn TSET
TDM=T(1-2)(A~r/ES)+T10-1*(2*A~/DS)+T*(2,(nS)*FD)) TSET

5000 CONTINUE T SET
IF(NDR.NE.1) GO TO 5001 TS FT
ASD=S XID FIX TSET
fSD=1 .-Asr) TS FT
csn=esD+l, TSFT
050=1 .+ASf) TSET
ESD=DSD+le TSET
IF(!P-2) 5020,5021,502? TSET

5020 TRP=TE*(2,/(csn*Rsfl))-T(1R+1)*(2.*Asn/BSD)+T(IR+2)*(ASD/CSO)) TSET
GO TP 5001 TSET

5021 TRP=TF*(2./(CSn*BSO)))-T(IR+1)*(2.*ASOI/BSD)+TUTR+2)*(ASD/CSOI TSET
TRM=T(IR-l)+(DEIXI(DELX+SX))*(TE-T(TR-1)) TSET

Go TO 5001 TSE T
5022 IF(IR-(N-1)) 502395024,5025 TSET
5025 TR=TI-)(~/S)TI-)(,ADDD+E(*(S*S) TSET

GO TO 5001 T SET
5024 TRM=-T(!R-2)*(ASD/FSn)+T(IR-I1)*(2.*ASD/0SD)+TF*(2./I05O*ESO)P TSET.

TRP-=T(TR+l)-((DELx/(OELX-SX))*IT(!R+1)-TF)) TSET
GO TO 5001 TSF T

5023 TRM=-TIIR-2)*(ASO/ESfl)+T(!R-1)*(2.*ASO/DSD)+TE*(2/(lsD*ESD)I TSET
TRP=TE*(2./(CSD*gS0) -T IR.1v*(?.*ASD/BSO)+T IR+2)*(ASD/CSOP) TSET

5001 CONTINUE T SET
5002 CONTINUE TSET

IF(10*NE.IROR*IR*IT*2) GO TO 5006 T SET



TRP=TQP
TQM=TRM

5006 CINTINUVE
IF(NDR.NE.1) GO T! 5003
IF(IR.FO.1) GO TO 5003
T(IR)=TRM
IF(SX.LT.0) T(IR)=TRP

C TR=T(IR)
5003 CONTINUE

IF(NDQ.NE.1) GO TO 9004
IF(IQ.EQ.1) GO TO 5004
T(1Q)=TOM
IF(SL.LT.0.) T(IQ)=TQP

C TQ=T(IQ)
5004 CONTINUE
4060 CONTINUE
C
C.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C CONTROL BLOCK...MONITOR THE POSITION AND TEMPERATURE LOOP
.........

THE AVERAGE CHANGE IN POSITIONS IS COMPARED TO A CONTROL
VALUE READ INAND IF THE TOLERANCE LIMIT IS EXEEDED,
NEW LOOP PARAMETERS(DELTCYNCYCLE) ARE SET ACCORDING TO
THE DEVIATION FROM THE LIMITAND THE OLD POSITIONS,TFMOS,
AND SUCH ARE RESETAND THF LOOP IS EXECUTE) AGAIN.
ALSO, IF THE TOLERANCE LIMIT IS METTHE LOOP PARAMETERS ARE
INCREASED TO MATCH THE AMOUNT OVER THE LIMIT,SD THE
TOTAL EFFECT OF THE CONTROL BLOCK IS TO KEEP THE LOOP RUNNING
AT THE MAXIMUN SPEED

ADPOSL=(POSL-POSLS) /NCYCLE
ADPOSX=(POSX-POSXS)/NCYCLE
RFACT=ADPOSL
IF(ADPOSL.LT.ADPOSX) RFACT=ADPOSX
IF(ADPOSX.GT.DCYL.OR.ADPOSL.GT.DCYL) GO TO 5050

TSFT
TSET
TSFT
TSET
TSET
TSFT
TSET
TSET
TSET
TSET
TSET
TSET
TSET
TSFT
TSET
TSET
TSET
TSET
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTRILC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
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NCYCL E=NCYCLE*(RFACT/DCYL)
IFINCYCLE.LE.1I NCYCLE=1
OELTC Y=DELT/NCYCLF
GO TO 5060

5050 NCYCLE=NCYCLE*((RFACT/DCYl )+0.5) +1
YF(LCT.GT.5) GO TO 5055
IF(NCYCLE.LT.500) GO TO 5052
WRI TE(6, 959)
WRITE(6,5053) NCYCLF-

5053 PORMAT(l PROGRAM HALTED DUE TO NCYCLE SIZE'110)
GO TO 880

5055 CONTINUE
WRITE(6,959)
WRITE(6,5056)

5056 FORMAT(' PROGRAM HALTED D!uE TO MORE THAN 5 CYCLES')
GO TO 880

5052 DELTCY=0ELT/NCYCLF

. RESET OLD PARAMFTFRS

03 5054 J=1,NN
5054 T(J)=TSAVL(J)

SL=SLS
SX=SXS
9OSL=POSLS
POSX=POSXS
IR=IRS
10=10s
ILFL=IL.FLS
IRFL=IRFLS
ISKP=ISKPS
GO TO 222P

5060 CONTINUE

C .* *. .... . ...... .... *...a. ........ ...... * .......... .. * ......

CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTRILC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROL C
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROILC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
MUSHY
MUSHY



BLOCK MUSHY
FUNCTION OF

CALCULATES THE CONSTANTS FOR FACH SLA8,AS A
TEMPFRATURE

EM(1)= CONST*RHS*CPS
EM(2)=CONST*RHL*CPL
00 3333 J=1,N

OFCIEnE WHICH REGION THIS FLFMENT

IF (T( J) .GE.TL)
IF (T(J).IE.TE
GO TO 5

2 K1=1
GO TO 3

4 K1=2
GO TO 3

C
C
C
5 CONTINUE

GS=FRL*((TL-T(
C
C THE OPTION
C OF FRACTION
C IS DECIEDEO

IS IN

GO TO 4
GO TO 2

CALCUL ATE CONSTANTS FOR MUSHY REGION

J))/(TL-TE))+FRT+FSC

OF CHOOSING EITHFR A SHEL DISTRIBUTION
SOLIO) IN THE MUSHY REGION OR A LINEAR ONE
BY THE FLAG(READ IN) ISHEIL

IF(ISHEIL.EQ.1) GS=1.-(1.+SCHC*(Ti..-T(J)))**SCHE
GL=1.-GS
IF(KGR.F.0.OR.KGR.FQ.2) GO TO 31
TKM=GS*TKS+GL*TKL
GO TO 32

31 TKM=TKS*TKL/(GS*TKL+GL*TKS)
32 CONTINUE

RHM=GS*RHS+GL*RHL
CPM=GS*CPS+GL *CPL
CPMH=HOF*FRL/ ( TE-TL)

MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY



IF ( IS SHEIL..E.1 ) CPMH=HOF*FPL *SCHC*S CHF*(1I+SCHC*( TL-T (J ) **( SCHE-1I UH
FM( 3) =CONST*RHM* (CPM-CPMH)
K1=3 MUSHY

3 CONTINUE MUSHY
FX(J)=EM(1) MUSHY
IF(Kl-2) 3334,3331,3336 MUSHY

3334 TKSAV(J)=TKS MUSHY
GO TO 3333 MUSHY

3335 TKSAV( J) =TKLL MUSHY
GO TO 3331 MUSHY

3336 TKSAV(J)=TKM MUSHY
3333 CONTINUE MUSHY

C..............................................MUSHY

C......................................... .TKFILL

C TKFILL
C BLOCK TKFIL. STORES THE VALUES OF THE AVERAGF THFRMAL TKFILL
C CONDUCTIVITIES,TO BF USED IN 'MATRIX' TKFILL
C TKFILL
C TKF ILL
C K BETWEFN J AND J+l IS IN TKINT(J) TKFILL
C TKFTLL

KKK=N-1 TKFILL
00 5500 J=1,KKK TKFILL
IF(IR-J) 5501,5502,5501 TKFILL

5502 IF(IQ-J) 5503,5504,5503 TKFILL
5504 T'INT(J)=TKLP TKFILL

GO TO 5500 TKFILL
5503 TF(I0-(J+1))5505,5506,5505 TKFILL
5505 TKINT(J)=TKEP TKFILL

GO TO 5500 TKFILL
5506 TKINT(J)=(TKEP+TKLM)/2. TKFILL

GO TO 5500 TKFILL
5501 IF(IR-(J+1))5507,5508,5507 TKFILL
5508 TKINT(J)=TKEM TKFILL

GO TO 5500 TKFILL
5507 IF(IO-J) 5509,551095509 TKFTL



5510 TKINT(J)=TKLP TKFTLL
GO TO 5500 TKFILL

5909 IF (1Q-(J+I))5511,5512,5911 TKFILL
5912 TKINT(J)=TKLM TKFILL

GO TO 5500 TKFILL
5511 TKINT(J)=(TKSAV(J)+TKSAV(J+1))/?. TKFILL
5500 CONTINUE TKFILL
C TKFILL
C....................................................... TKFTLL

C...MATRIX
C MATRIX
C BLOCK MATRIX STORES THE CONSTANTS (COEFFICIFNTS) FOR THE SOLVF MATRIX
C BLOCK MATRIX
C MATRIX
C P MEANS LOOKING FROM THE POSITIVE SIDE, M FROM THE MINUS (J-1) MATRIX
C MATRIX

DO 6600 J=2,N MATRIX
IF(J.EQ.N) GO TO 6602 MATRIX

C MATRIX
C INTERIOR MATRIX
C MATRIX

AK(1)=TKINT(J) MATRIX
AK(2)=TKINT(J-1) MATRIX
IF(IRADFL.NE.1) Gn TO 6613 MATRIX
Z=J MATRIX
ZZ=(N-Z)+0.5 MATRIX

C MATRIX
C NOTE THAT THE DROGRAM COUNTS FROM THE OUTSIDE (CHILL SURFACE)MATRIX
C IN TO THE CENTER...FOR THE RADIAL CASE,THIS REQUIRES A MATRIX
C SLIGHT MODIFICATION TO THF EQUATIONS MATRIX
C MATRIX

AK( 2) =AK(2)*(ZZ+0. 50) /ZZ MATRIX
AK(1)=AK(1)*(ZZ-0o.50)/ZZ MATRIX

6613 CONTINUE MATRIX
IF(IR-(J+1)) 6603,6404,6603 MATRIX

6604 F(J)=-AK(1)*TRM-AK(2)*T(J-1)+(AK(1)+AK(2))*T(J) MATRIX



GO TO 6660 MATRIX
6603 IF((0-J)+1)6605,6606,6605 MATRIX
6606 F(J)=-AK(1)*T(J+1)-AK(2)*TQP+(AKf1 )+AK(2)*T(J) MATRIX

GO TO 6660 MATRIX
6605 IF(I0-(J+1)) 6607,6608,6607 MATRIX
6608 IF(IR-(J-1)) 6609,6610,6609 MATRIX
6639 F(J)=-AK(1)*TOM-AK(?)*T(J-1)+(AK(1i)+AK(21)*T( J) MATRIX

GO TO 6660 MATRIX
6610 F(J)=-AK(1)*TQM-AK(?)*TRP+(AK(1)+AK(2)19'*T(J) MATRIX

GO TO 6660 MATRIX
6607 IF(( I R-,))+1)6611,6612,6611 MATR I X
6611 F(J)=-AK(1)*T(J+1)-AK(?)*T(J-1)+(AK(1)+AK(2))*T(JI MATRIX

GO TO 6660 MATRIX
6612 F( J)=-AK (1)*T( J+1)-AK( 2)*TRP+(AK(1)+AK(2) ) *T(UI MATRIX
6660 A(J,1)=AK(2)/2. MATRIX

A(J,2)=-((AK(1)+AK(2))/?.+EX(J)) MATRIX
A(J,3 )=AK(1)/2. . MATRIX
GO TO 6600 MATRIX

6602 AK(2)=TKINT(N-1) MATRIX
IF(I10-(N-1)16630,6631,6630 MATRIX

6631 F(N)=T(N)-TOP MATRIX
GO TO 6680 MATRIX

6630 IF(IR-(N-1))6633,6632,6633 MATRIX
6632 F(N)=T(N)-TRP MATRIX

GO TO 6680 MATRIX
6633 F(N)=T(N)-T(N-1) MATRIX
6680 A(N,1)=.5 MATRIX

A(N,2 )=-(X (J) /AK(2)+.5) MATRIX
A(N,3)=0.0 MATRIX

6600 CONTINUE MATRIX
C.....*..... .. .0.. ..... .............. e.......ee..... ........ ....... .. MA TR I X

C....... . ............. e...................... ....... . .......... SOLVE

C SOLVE
C SOLVE SIMULTANEOUS EONS SOLVE Cl

C SOLVE
C SOLVE



C EACH GROUP OF FQWlATIONS(REPRESFNTING ONE REGION IF THE CASTING)
C IS SOLVED AS A SEPERATE MATRIX
C THIS TECHNIQUE IS USED TO HANDLE THE SURFACF BC'S AS WFLL AS THE
C LIQUIDUS AND SoLIrDUS INTERNAL BRPUNDARIES
C THE VARIALBE ARRAY #LIST' IS USEI TO KEEP TRACK IF THE CURRENT
C POSITIONS OF THE TIP AND ROOT,FOR UISF BY THE SOLVF RLOCK,IN ORDER
C SET UP THE CORRECT SUR-MATRICES TI BE SOLVE)
C

DO 7002 J=2,N
7002 LIST(J)=0

IF(IQ) 7003,7003,7004
7004 LIST(10)=l
7003 CONTINUE

IF(IR ) 7005,7005,7006
7006 LIST(IR)=l
70C5 CJNTINUE
7014 CONTINUE

00 7007 J=2,N
IF(LIST(J).EQ.0) GO TO 7008

7007 CONTINUE
GO TO 700Q

7009 KSTART=J
00 7010 J=KSTARTNN
IF(LIST(J).EQ.1) GO TO 7011

7011 CONTINUE
7011 KEND=J-1

D 7012 J=KSTART,KEND
7012 LIST(J)=1
C
C THE FOLLOWING TWO STMTS ARE NECESSARY IN ORDFR TO CORRECTLY
C SET THE SLAB TEMPERATURES FOR SLABS NEXT TO 8OJNOARIES
C IF THESE CORRECTIONS ARE IGNOREDERRORS ARE INCURRED WHICH
C CAUSE OSCILLATION OF THE POSITONS XEXL EVEN THOUGH THE
C TEMPERATURES ARE STABLE
C

TDELL=T(KSTART-1)-TSAV(KSTART-1)

SOLVE
SOLVE
SOLVE
SOLVE
SOLVE

TO SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE



TOF
IF (

C
F(K
T(K
GO

7013 CON
F(
F(

KKH

RRR
RRH
A(K

LH=T(KEND+1)-TSAV(KEND+1) SOLVE
KSTART.LT.KEND) GO TO 7013 SOLVE

SOLVE
SOLUTION FOR ONE SLAB MATRICES SOLVE

SOLVE
START)=F(KSTART)-(A(KSTART,1)*TfELL)-(A(KSTART,3)*TlELH) SOLVE
START)=(F(KSTART) /A(KSTART,2) )+TfKSTART) SOLVE
TO 7014 SOLVE
TINUE SOLVE
KSTART)=F(KSTART)-(A(KSTART,1)*TV)ELL) SOLVE
KEND)=F(KEND)-(A(KEND,3)*TO)ELH) SOLVE

SOLVE
THE CORRECTIONS REPRESFNTED BY THE USE OF TOELL AND TDELH SOLVE
IN THE AROVE BLOCK ARE NECFSSITATED BY THE WAY IN WHICH THE SOLVE
SLRFACE TEMPERAT'RETHE CENTER TEMPERATUREAND THE TWO INTERNALSOLVE
TEMPERATURES ARE HANDLED SOLVE
THAT IS,8FCAUSE THESE VARIOUS TEMPERATURES ARE SET BY SOLVE
VARIlUS EQUATIONS RATHER THAN INCLUDED IN THE HEAT FLOW SOLVE
FQ'JATIONSTHEY MUST RE TAKFN INTO ACCOUNT IN THE MATRIX SOLVE
SOLUTION TO THE H/F EQUATIONSNAMELY,8Y INCLUDING THE RESULTANTSOLVE
TEMPERATUR E CHANGES IN THE 'SET' SLABS INTO THE MATRIX SOLVE

SOLVE
TDELL AND TDELH THEREFORE REPRFSENT THE RESULTS OF SOLVE
TEMPEPATURES BEING SET BY EQUAT tONS EXTRANEOUS TO THE SOLVE
HEAT FIOW EQUATION SET. SOLVE

SOLVE
IN=KSTART+l SOLVE
7015 K=KKHINKEN SOLVE

SOLVE
SOLVE

THESE STMTS SET UP TO PREVENT BUILD-UP OF LARGE NUMBER DURING SOLVE
SOLUTION OF THE MATRIX SOLVE

SOLVE
=A(K,1) SOLVE
=A(K-1,2) SOLVE
,2)=(A(K,2)/RRR)-(A(K-1,3)/RRH) SOLVE



A(K,3)=A(K,3)/RRR SOLVE
F(K)=(F(K)/RRR)-(F(K-1)/RRH) SOLVE

7015 CONTINUE SOLVE
Q(KEND)=F(KEND)/A(KEND,2) SOLVE
K2=KEND-1 SOLVE
O 7016 J=KSTARTK2 SOLVE
K3=K2-(J-KSTART) SOLVE
Q(K3)=(F(K3)-Q(K3+1)*A(K3,3)1/A(K3,2) SOLVE

7016 CONTINUE SOLVE
HTS=-TAS*DELT/(SQRT(SFC+10**(-4))*RHS*CPS*XS) SOLVE
03 7017 J=KSTARTKFND SOLVE

C SOLVE
C SIDE HEAT ADDITION...H CONTROLLED HEAT ASSUMED FIR THE SIDE SOLVE
C NOTE THAT LIQUID DENSITY AND HEAT CAPACITY ARE USED TO SIMPLIFYSOLVE
C SOLVE

IF(HS.LT.O.) GO TO 7101 SOLVE
HTS=(TAS-T(J))*(HS*DELT)/(RHL*CPL*XS) SOLVE

7101 CONTINUE SOLVE
T( J)=T(J)+O(J)+HTS SOLVE

7017 CONTINUE SOLVE
GO TO 7014 SOLVE

7009 CONTINUE SOLVE
C SOLVE
C SAVED TEMPERATURES USED TO CORRECT SOLUTION FOR NEXT STEP SOLVE
C 01 V F

DO 7020 J=1,NN SOLVE
7020 TSAV(J)=T(J) SOLVE

T(Nl=T(N)+(GlIlG/EX(N))*CONST SOLVE
T(1)=TS SOLVE

C SOLVE
C ASYCHRONOUS TIP MOVEMENT... SOLVE
C SOLVE
C THE PRESFNCE OF SIDE-WISE HEAT LOSS MAY CAUSE SOLVE

. C NUCLEATION fF DENDRITIES IN THE MELT AHEAD OF THE SOLVE
C UNIDIRECTIONAL TIP POSITION...THIS NECESSITATES THE SEARCH SOLVE
C FOR A NEW TIP POSITION IN THESE CASES.AT THIS POINT, SOLVE



C ONLY A FLAG(ILFL) IS SFT...THF SEARCH IS OINE AS PART OF THE
C TIP MOVEMENT BLOCK PSET.
C

ISTIP=IQ+1
IF(ISTIP.GE.N) GO TO 7022
DO 70?1 J=ISTIP,N
IF(T(J).LT.TLM) ILFL=0

7021 CONTINUE
7022 CONTINUE
C..................................................................

C.................................................................g.....
C
C BLOCK CONTROLX CONTROLS THE ACCURACY OF THE SIMULATION
C
C THIS IS DONE BY
C 1) THE DIFFERFNCE BETWEEN THE TEMPERATURE AT THE
C CJRRENT TIME STEP WITH THE CURRENT TIME STEP SIZE
C AND THAT OBTAINED BY USING A TIME STEP OF 1/2 THE CURRENT
C SIZE IS COMPARED TO A VALUE FOR ACCURACY LEVELREAD IN
C 2) IF THIS VALUE OF ACCURACY IS NOT METTHE PR3GRAM
C LEAVES THE TIME STEP AT THE HAlVED VALUEAND CONTINUES
C THE ACCURACY WILL BE CHECKED AT THE NEXT ITERATION AGAIN
C Sn' THAT THE TIME STEP WILL CONSTANTLY BE HALVED UNTIL THE
C ACCURACY IS MET OR THE LOWEST LIMIT ALLOWED IS REACHED
C 3) IF THE ACCURACY IS METTHF PROGRAM COMPARES THE
C DIFFERENCE TO A NUMBER READ IN FOR DOUBLING THE TIME STEP
C 4) THIS ACCURACY IS CHECKED EVERY N CYCLESWHERE N IS READ IN
C ALSO
C 5) IN THIS MANNERTHE EFFECT OF THE CONTROL BLOCK IS TO
C MAINTAIN THE ACCURACY OF THE SIMULATION RETWEE4 THE
C TWO LIMITS READ INAND THIS MAY RESULT IN EITHER VERY
C SHORT INNACCURATE OR LONG INEFFICIENT RUNS IF THE LIMITS
C ARE NOT CHOSEN CAREFULLY

IT=IT+1
IF(ICNTL.EQ.0) GO TO 9000

SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
CONTROLX
CONTROLX
CONTROILX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROILX
CONTROLX
CONTROLX
CONTROLX
CONTROLX



KCNTI =KCNTL+L
IF(KCNTL.FQ.O) GO TO Q007
IF(KCNTI.EQ.1) GO TO 1001
IDRFL=1
IRPFL=O
LLCT=LLCT+1
DO 9001 J=1,N
YF(ABS(T(J)).LT.10**(-5)) G
'XCFSS=ABS((T(J)-TSAVC(J))/
IF(EXCESS.GT.FLOWC) YDBEFL=0
IF(EXCESS.GT.HIGHC) TPPFL=l

9001 CONTINUE
IF(IRPFL.FO.0) GO TO 9002
GO TO 9000

9007 00 90CR J=1,N
9009 TSAVC(J)=T(J)

nELT=DELT/2.
CONST=CONST*2
EX(1)=EX(1)*2
IF(CONST.GT.200.) GO TO 901
DEL TCY=DEl T/NCYCLF
SFC=SFCST
SL=SL ST
SX=SX ST
POSL=POSLST
POSX=POSYST
Y R=T R ST
10= YOST
ILFL=ILF ST
IRFL= PcLST
ISKP= TS'KPST
TSO=TS0ST
TKSAV(1)=TKIST
09 Q003 J=IN

9003 T(J)=TSAVT(J)
Gi TO 1001

O TO 9001
T(J )

CONTROLX
CONTROLX
CONTR3LX
CONTROLX
CONTROL X
CONTROLX
CONTROL X
CONTROLX
CONTROLX
CONTROL X
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROL X
CONTROLX
CONTROLX
CONTROLX
CONTROILX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROL X
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX

2



900? CONTINUE
DELT=DELT*2.
IF(I0BFL.FQ.1) DELT=nFLT*2.
TCONT=SEC +ICONT*nFLT
ICNTL=0
CONSTS=DELX*DELX/DFLT
FX( 1)=FX( 1)*CONSTS/CONST
CONST=CONSTS
DELTCY=DELT/NCYCLE
GI TO 9000

9012 CONTINUE
WRITEF(6,959)
WRITF(6,9013) DELT

9013 FORMAT(0 PROGRAM HALTFD DUF
G9 TO 880

9000 CONTINUE

TO DELT SIZE, = ',F10.6)

TIMES OF TIP AND ROOT ARE STORED AT THIS POINT FOR LATER 0

C.... ......................................
POSXN=(POSX-DELX/?.)/(ALEN-DELX)
P0SLN=(POSL-DELX/2.)/(ALEN-nELX)
IF(NEPS.EO.0) GO TO 8014
IF(KTOLD.GT.NEPS) GO TO 8013
IF(POSLN.LT.EPSILO(KTOLD))GO TO 8013
TT(KTOLD)=SEC
EPSILO(KTOLD) =POSLN
KTPLD=KTOLD+1

8013 CONTI'NUE
IF(KROLO.GT.NEPS) GO TO 8014
IF(POSXN.LT.EPSILO(KROLO))GO TO 8014
TR(KROLD)=SEC
KROLi=KROi.O+ 1

8014 CONTINUE
IF(SFC.GE.HPRINT) GO TO 11

CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROILX
CONTROLX
CONTRILX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX

. CONTROLX
ITPITCONTROLX

CONTROLX
CONTROLX
OUTPUTC
OUTPUTC
nUT PU TC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC

II

....................... 0 0 0 0



GO T3 20
11 CONTINUE

HPRINT=HPPINT+PT
WRITE (6,40) SEC, HRC,IHCFLG
IF(KTFLG.GT.1) GO TO 8012
WRITE(6,41) (T(J),J=1,N)

C LOOP TO WRITE OUT THE INTERPOLATEn TEMPERAVJRES
C LOCATIONS ALONG THE LENGTH
C
8012 CONTINUE

IF (NDIST.LT.1 )- GO TO 8010
IF(KTFLG.GT.2) GO TO 8010
02 8001 J=1,NnIST
IF(S(J))8002,8003,8004

8002 IF (IN(J).EQ.1) GO TO 8001
TX=(T(IN(J)-T(IN(J)-1))*((nELX+S(Jf)/DELX)
R(J)=T(IN(J)-1)+TX
G1 TO 8001

8003 R(J)=T(IN(J))
GO TO 8001

8004 IF(IN(J).FQ.N) GO T! 8001
TX=(T(IN(J)+1)-T(IN(J)))*(S(J)/DFELX)
R(J)=T(IN(J))+TX

8001 CONTINUE
WRITE(6,857) (R(,J),J=1,NDIST)

857 FORMAT(' T.C.T',lFO10.3)
C DIST IS AVALAIRLE FOR STORAGF AFTER INIT LOOP

01 860 J=I,NDIST
IIST(J)=FRL*((TL-R(J))/(TL-TE))+FRT+FSC

IF(R(J).GE.TL) GO TO 862
IF(ISEIL.EQ.1) DIST(J)=1.-(1.+SCHC*(TL-R(J)))**SCHE

862 CONTINUE
IF(R(J).LT.TE)OIST(J)=1.
IF(TIN.EQ.TL) GO TO 860
IF(R(J).GT.TL ) nIST(J)=((TIN-R(J))/(TIN-TL))*FSC

AT SPFCIFIE0)

OUTPUTC
OUTPUTC
OUTPUTC
OUTDUTC
nUTPUTC
OUTPUTC
OUTPUTC
OUTPUJTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUT PU TC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC



860 CONTINUE
WRITE(6,R61) (DIST(J),J=1,N)IST)

8A1 FIRMAT(' FR.S.',1 OF10.4)
8010 CONTINUE

IF(KTFLG.GT.0) GO TO 8011
WRITE(6,831) NCYCLF
WRITE(6,26) TP,TOM,TPP,TPM
WRITE(6,25) 10,IR

8011 CONTINUE
WRITE(6,825) POSLvpSX,POSLN,POSXN
IF(IR.LT.N) GO TO 8015
WRITE (6, 8?6)
GO TO 880

8015 CONTINUE
8888 IF(SEC.LF.TSEC) GO TO 8016

WRITE(6,8?7)
GO TO 880

8116 CONTINUE
IF(I.LT.10000) GO TO 8017
WRITE(6,828)
GO TO 880

8017 CJNTINUE
20 CONTINUE

GO TO 1
601 CONTINUE
880 CONTINUE

WRITE (6,83)
WRITE(6,881) DELT,1
WRITF(6,882) SEC
WRITE(6,884) IP,IT
IF(NEPS.EO.0) GO TO 8018
WRITE(6,829)
WRITE(6,830)(EPSIL(J),TT(J),TR(J),J=1NEPS)

8018 CONTINUE
WRITE (6,883)
WRITE(6,25S) NAME

OJUT C
OUTPUTC
O0TPUTC
OUTPUTC
OUTPUTC
0ITP"UTC
OUTPUTC
OUTDIJTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUT UTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUT"UTC
OUTPUTC
OUTPUTC
OUTPUTC



C
C..
C
883
881
884
882
831
16
17
10
26
24
25
2?
23
250

41
40
816
817
818
819
820
824

GO TO 801

FOPMATS LABELED AS TO THA RLOCH TO WHICH THFY APPLY
FORMAT(/30(4H EQJ),/lX,30(4HCAST),/,30(4H EQj))
FORMAT(/ ***FIJ***,DFLT= ',F1O.5,' ITER= 0,110)
FORMAT(* PSET ITERATIONS ',Ilo, TOTAL TIME STEPS
FlRMAT(' FINAL TIME= I,FIO.5)
POPMAT(f NUMBFR nF CYCLFS 'HANGFq TO 1,I5)
FORMAT(215,F10.3)
FORMAT (5F10.3)
FORMAT(lX,'TIN',7X,'ALEN',5X,'TSEC',5X,' TA ',4X,'GL
FORMAT(' TOP'F10.2,'TOM'FIO.?,@ TRP'F1O.2,' TRM'F10.2
FORMAT(40X,'TTPP10.3,S RIOT'F10.3,' CM FROM CIILL')
FORMAT(' 1015,' TR'IS
FORMAT (1X,'HEAT TRANS COFF IS',F10.3)
FlRMAT(4X,'N',2X,'KGR',' DFLT')
FORMAT(1H1/5(12(' RON NAME ')/),5(' RUN NAMF ',103X,' R

I RUN NAME ',30X,10A4,30X,' RUN NAME '/5(' RUN NAME '

2 ' RUN NAME '/),5(12(* RUN NAME ')/))
FJRMAT(2X,6F15.4)
FORMAT(/ TIME= ',F1O.3,' SECONDS HBC= ',F10.3,I10)
FORMAT(515)
FORMAT(7F10.3)
FORMAT(8F10.'5)
FORMAT( 1OF 8.2)
FORMAT(10A4)
FORMAT(611)

826 FORMAT('
825 FORMAT('

1 F10.5,'
827 FORMAT('
828 FORMAT('
829 FOPMAT(l

1 10X,'X'

',I110)

OBAR')
)

UN NAM
,10ox,

<<< RUN TERMINATED AT ROOT FINISH >')
POSITIINS; TIP ',F10.5,' ROOT ',F10.5,' FRACTIONAL;
ROOT ',FI0.5)

<<< RUN TERMINATFD AT TOTAL TIME SPFCIFIED >>> ')
<<< RUN TERMINATED DUE TO ITERATION MAX(10000) >>')
TIME OF TIP AND ROOT THROUGH SPECIFIED POSITIONS'/
,8X,'TT',8X,'TR')

930 FORMAT(lX,3F10.5)

OUTPUTC
OUTPUTC

.... OUTPUTC
OUTPUTC
nUTPUTC
nUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPIJTC
OUTPUTC
OUTPUTC
O1UTPIJTC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC

E' /),OUTPITC
OUTPUTC
OUTPUTC
OUTPUTC
OUTPUTC
INIT
INIT
INIT
INIT
INIT
INIT
INIT

TIP',INIT
INIT
INIT
INKT
INIT
INIT
INIT



871 FORMATT5,2F1O.9) [NI
qcq FORMAT(/// $$$$$ EXFCI.TIflN FRORIR) KNIT

833 FORM4AT(' AVFRAGE STCP SIZF LI~!T lFI..5,' KNIT
1 gN D IVISIONS 'iF 'iFIX') INIT

F~J D E ND
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Appendix E

Error Estimates

The following conclusions concerning the errors in

and stability criterion of the Crank-Nicholson method are

based on the presentation given in Reference(31), Chapter 7,

pages 120-188.

1. Reasons for Chosing an Implicit Technique

The Crank-Nicholson method of implicit solution of

the finite difference equations is useful because it is

more stable than the explicit techniques. The Euler or

Rungu-Kutta techniques, which are explicit, constrain the

time step of integration to be very small in order to

obtain a stable solution. This yields a unnecessary degree

of precision in the results, with a resultant high cost of

computation. The implicit Crank-Nicholson technique

requires more computation at each time step, but a larger

time step may be chosen so that the overall effect is a

reduction in computer time to integrate over a given number

of seconds.

2. Error in the Crank-Nicholson Method

Error estimates can be obtained only for linear

problems, and it is expected that the error estimated for

the linear problem will serve only as a lower limit on the

Now
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error to be expected in a non-linear problem, such as the

one considered in this work.

The truncation error (the difference between the exact

solution at time t+At and the finite difference solution at

time t+At, over one time step) at each time step is found to

3
be on the order of (At) for one linear problem, using the

Crank-Nicholson technique. The round-off error is very

small, and for most conditions the round-off error is

swamped by other errors (truncation, non-linearity). At

extremely low values of the heat transfer coefficients, the

round-off error becomes important, but can be overcome if a

sufficiently large time step is used.

Since the technique is stable for linear problems, the

choice of an appropriate time step can be made easily.

However, instability can be re-introduced in non-linear

ii 3
problems, where this estimate of At may not apply. Therefore,

the most practical way to test the accuracy of the solution of

a non-linear problem is to do two things; (1) compare the

finite difference solution to a known analytic solution where

one is available, and (2) make a series of numerical

experiments, varying the time step and space mesh size, to

test accuracy and convergence. Step (1) above has been

presented in Figure (7) of the Results, and the results

obtained there were that the finite difference solution was

always within 0.5 sec. of the analytic solution, with the

error growing slightly at higher times. Step (2), the

convergence tests, is presented below.
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3. Sensitivity of the Method to Time Step and
Mesh Size Changes

Table III presents the results of the computer program

for the following boundary and initial conditions; infinite

surface cooling (constant temperature boundary conditions =

0 0C), initial temperature =. 700 0C (500C superheat), no

convection, columnar growth morphology. The results are

presented for 7 cases, for varying time steps and mesh sizes.

For comparison, the results at 60 seconds are useful,

since both the tip and root positions are within the

bounds of the casting at this time. The temperature at or

near the centerline, the position of the tip and root at 60

seconds are presented; with these the local solidification

time at X = 0.75 is presented for each case, in Table IV.

A. Space Mesh Size

Parts 1, 2 and 3 show the effect of doubling the

number of nodes used. Table IV indicates that as the mesh

size is reduced (number of nodes increased), the effect is

that the cooling takes place at a slightly lower rate. An

equation of the form az3 + bz2 + c = F may be fitted to the

points in order to extrapolate the results at a mesh size = 0,

where z is the mesh size and F is temperature, XL' XE or tlst

(X = 0.75). The results of interpolating back to z = 0 are

presented in Part 8 of Table IV.
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B. Time Step Size

Parts 2, 4 and 5 of Table IV show the effect of halving

the time step with a constant number of nodes (N = 38). Once

again, the higher accuracy results (At = 0.05 sec) show a

slower cooling rate than the lower accuracy ones. The fitting

3 2equation az + bz + c = F was used to extrapolate the

temperature, L' xE and tlst (X = 0.75) back to zero time

step, and the results are presented in Part 9 of Table IV.

Parts 6 and 7 of Table IV show that for two typical

values of the accuracy limits, with N = 38, the temperatures

at the centerline are within 1 0C of the interpolated zero

time step value after 60 seconds, the positions of the

liquidus and solidus isotherms are within 0.2 cm of the inter-

polated value, and the local solidification times are 5.4% to

9.4% shorter than the interpolated values.

4. Validity of the Curves in the Results Section

Table IV gives an estimate of the degree of numerical

accuracy and the degree of convergence which was obtained in

the curves plotted in the Results section. In general, the

parameters used to generate the Results (time step = 0.1 sec

and mesh size = 38 nodes) generate values close to the more

accurate results in Table IV. Specifically, the positions of

the liquidus and solidus with N = 38 and At = 0.1 sec are

within 0.13 cm of the positions extrapolated to an infinite

number of nodes, and are within 0.2 cm of the positions

extrapolated to a zero time step. The local solidification
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times at A = 0.75 are within 1.0 to 2.5 seconds of the

interpolated values. More importantly, it can be seen that

the error in the results is systematic, i.e., that the errors

occur in the same direction for changes in time step or mesh

size (as the time step is decreased the temperatures at a

given time increase, for instance). Also, a comparison of

the results in Table IV with those in Table VI, which is for

different heat flow conditions, shows that the errors occur

in the same direction for other conditions, as should be

expected. Therefore the changes in the curves in the Results

section which occur as external conditions are changed (such

as superheat or heat transfer coefficient) are quite meaning-

ful, since the numerical error in each of the curves is

systematically reproduced in each of a given set of curves.

All sets of curves in the Results section, showing the effect

of a change in an external condition, were generated with

exactly the same mesh sizes and time steps in order to insure

that this systematic error would be reproduced.

Parts 6 and 7 of Table IV were generated by allowing

the program to control the size of the time step by holding

the accuracy of the temperature calculations between an upper

and lower limit, which are given in the table. The exact

method is described in Appendix A, and can be followed

directly in the computer program (Appendix D) in the blocks

labelled 'CONTROLX'. These results, Part 6 and 7, are

presented here because most of the curves in the Results
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section were generated using this controlled time step

technique.

5. Side Heat Loss

Since the computer model for side heat loss adds some

additional computational inaccuracy to temperature profiles

and tip and root position results, a computational analysis

of the errors in one typical side heat flow case is presented

here. Tables V and VI are completely analogous to Tables III

and IV, for the same external conditions; initial temperature

= 700 0 C, no convection, hB = infinite (constant temperature

boundary condition = 00 C), columnar growth. In addition,

heat loss out the side was assumed, with hs = 0.001, W = 1 cm

(plate half thickness), Ta,s = 00C. The parts of Tables V

and VI correspond to those in Tables III and IV, and the

discussion of the preceeding section of this appendix apply

to the results presented in these tables. Hence, the general

conclusion is again that the curves presented in the Results

section are valid and meaningful, and that the numerical

values presented there are close to the fully convergent

values (presented in Parts 8 and 9 of Table VI for one specific

case).
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TAstE III .PART I

N4UMBFR OF %CqSS 74
f1NE STEP- 0.100 SFCONOS
DIST4CE AE7TNFE 400FS= 7005 CENTIMETERS

DIST.NCES FRCM THE SURFACE AT rAcH NI0E3CENTIMETERS)

1.90 1.1' 1.10
4.11 4.31 4.51
7.32 7.52 7.72

13.53 10.73 10.93
13.74 13.94 14.14

1.53 1.70
4.71 4.91
7.92 8.12

11.13 11.33
14.34 14.54

1.993
5.11
q.37

11.53
14.74

2.11 2.31
5.31 5.51
8.52 4.72

11.73 11.93
14.q4 15.14

2.51 2.71 2.91 3.115.71 5.92 6.12 6.324.92 9.12 9.32 9.52
12.13 12.53 12.53 12.73

SI 4 li TCMPERATURF43 30G8FS CI

P3SITIONS: TIP 0.1 3SLAR 03 , 50T O.C ISLA% 01
7 70.0 70.1 r9., 7:0.1 717.0 702. 7^0.C 737.0 710.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0
730.0 700.0 700.7 7.j0. 730.3 70.3 7n0.6 720.3 770.0 730.3 7n0.0 730.0 70.0 700.0 700.7 7CO.0
7i.j ?o.c 700.0 7v0.0 730.0 700.3 730.0 700.0 700. 700.0 700.0 70.3 730.0 703.l 730.0 700.3
700.7 70n.' 70:.0 7.0 730.0 700.3 700.0 730.n 700.0 710.0 700.0 730.0 700.0 700.3 7C0.0 700.0
713.3 737.r 780.h 730. 730.0 700.0 700.3 703.0 700.0 700.3 700.0 730.3

PnSITI1NS: TIP 4.80 (SLAR 251 . R3T 3.20 (SLA4 171

1. 39.1 '8.3 116.9 155.1 192.R 229.9 266.2 301.7 346.3 373.1 402.9 434.0 466.9 502.1 547.4
546.S 558.7 57-.2 S95.0 A12.4 626.4 637.3 645.8 652.6 657.5 662.2 466.5 670.5 674.1 677.3 680.2
6R2.7 685. 0*7.1 5.4 490.4 691.8 643.0 A94.1 695.0 695.9 696.4 697.3 637.5 697.9 698.3 698.6
6cR.I A49.- *40.7 %90.4 419.5 499.6 6q9.7 699.7 699.8 699.R 699.9 699.9 699.9 699.9 699.9 700.0
70.0 70.( y'r. . 7 7)1.0 V00.0 70.0 700.f 700.0 700.7 730.0 700.0 73.0

OnSITIONS: TIP 6.60 (SLA 341 , ROOT 4.9% ISLAR 25)

.0 2'.1 12.1 .1 113.9 123.5 154.9 180.1 205.0 229.5 253.7 277.5 300.9 323.7
30.4 41.' 41'.& 45.3 449.4 48.0 506.0 523.5 541.3 557.9 576.0 592.6 607.4 620.1
646.5 647. ' ,6.7 460.9 664.8 66R.3 671.6 674.6 677.2 679.7 681.9 6R3.9 685.6 647.2
69t.1 -q'. ?f19?.1 69)3. 44.7 695.3 495.9 696.4 696.9 697.3 697.6 697.9 698.2 698.4
699.0 &91.1 440.2 W99.3 99.4 695.5 499.5 699.6 619.6 699.7 699.7 659.7

POSITIONS: TIP 8.14 (5LA 41) . ROOT 6.15 (SAR 311
0.0 2M.. 41.6 67.4 43.1 103.7 124.2 144.6 164.9 185.0 204.9 224.6 244.1 263.4

319.7 337.9 3%5.9 371.5 19.7 407.7 424.3 443.5 456.4 471.9 487.1 531.l 516.3 530.4
573.1 5q46. 599.5 611.0 621.1 62Q.8 617.3 643.4 649.0 653.3 657.0 640.7 644.1 667.2
675.3 677.6 679.7 681.6 6P3.3 684.9 6464 697.7 688.9 690.0 691.0 691.9 690.7 693.5
605.? 695.7 696.1 694.4 496.7 697.0 697.2 697.4 697.5 697.7 697.7 697.

POSITIONS: TIP 9.41 (SLAR 483 , ROT 7.10 SLA 363

0.) 18.7 35.9 53.8 71.7 89.5 107.I 124.9 142.5 160.0 177.4 194.7 211.A 228.9
275.7 295.0 311.1 327.0 342.7 358.1 373.4 385.4 433.1 417.6 431.Q 445.9 459.6 473.3
511.7 524.n 536.0 548.3 560.3 573.1 585.1 596.2 606.4 415.6 623.8 631.1 637.4 642.9
64.0 658.3 661.4 664.3 667.0 669.6 671.9 674.1 676.1 678.3 679.7 691.3 682.8 6R4.1
697.S 6R.4 6P.2 6R9.9 690.5 691.3 691.5 691.9 692.2 692.4 692.5 692.6

POSITIONS: TIP 10.52 (SLAB 533 , RlT 7.91 ISLA8 403

0.0 16.1 32.1 48.1 64.1 80.0 96.0 111.5 127.6 143.3 159.0 174.5 190.0 205.3
250.7 264.6 290.3 ?94.9 309.3 373.6 337.7 351.6 3.5.4 375.3 392.3 405.5 418.5 431.3
463.4 480.3 492.0 503.5 54.7 425.5 536.4 547.4 558.3 569.7 500.6 590.8 600.2 609.0
630.7 636.4 641.4 645.7 449.7 65?.6 65.6 659.3 660.9 4.63.4 665.6 667.5 669.7 471.6
676.2 677.5 678.6 679.7 6O.6 681.4 652.0 682.6 643.1 693.4 683.6 453.7

POSfi NS: TIP 11.57 (SL4 583 . RO1T 8.63 (SLAB 441

0.0 14.7 4. 3 43.9 58.6 73.1 57.7 102.2 116.7
230.0 243.7 257.4 270.9 284.3 297.6 310.8 323.0 336.7
434.5 444.0 457.3 468.4 479.4 490.7 50.4 511.5 521.5
599.0 607.0 614.4 621.1 627.2 632.7 637.6 641.8 645.5
663.1 664.6 666.0 667.? 468.2 669.1 669.9 670.6 571.1

131.1 145.4 159.7 173.9 155.1
349.5 362.1 374.5 386.9 399.0
531.5 541.9 551.5 561.3 571.6
64.9 651.4 653.7 655.9 657.1

671.5 671.8 671.9

POSITIONS: TIP 12.66 (SLAR 64) , 900T 9.31 (SLA 471

0.0 13.6 77.2 40.7 54.3 67.9 81.3 94.A 108.2

213.7 22S.- 239.4 252.1 264.7 277.2 289.6 301.A 314.0
407.0 418.1 42R.9 439.7 450.3 460.7 471.0 481.1 491.0
566.4 575.5 584.3 592.5 630.' 607.4 614.1 621.2 625.8

651.5 657.9 654.0 S55.m 656.0 656.5 657.5 659.1 659.6

121.6 134.9 14A.' 141.5 174.4
326.1 338.0 349.9 361.6 373.1
50n., 510.5 520.0 529.3 53.5
430.- 635.2 63q.2 642.6 445.4
654.1 659.2 654.4

POSIIONS: TIP 13.01 (SLAB 703 , R0T 9.93 ISLAR 50)

0.0 17.7 25.4 3R.1 50.5 63.5 76.2 50.8 101.4 113.4 126.5 138.9 151.4 163.7

20V.5 212.7 224.7 736.7 24R.6 260.4 272.2 283.5 295.4 304.9 319.2 37q.5 540.6 351.7

384.1 304.7 405.2 415.5 425.7 435.8 445.8 455.4 465.3 474.) 484.3 443.6 532.7 511.7
537.9 546.6 544.0 563.R 472.4 580.5 5R.3 595.6 602.5 6R.c) 614.4 620.3 6?5.2 49. 6
640.2 647.9 645.1 647.0 448.6 64-1.Q 653.2 65n.3 650.5 650.6 650.7 650.7

p 0SITIONS: TIP 15.07 (LA8 761 , ROT 10.53 3MA 533

12.' 24.0 36.0 4R-n 59.3 71.Q 83.5 n5-7 107.4 114.4 131.' 142.9 154.4

201.' 212.4 23.9 7'5.1 244.4 247.5 261.6 279.6 290.4 301.4 317.2 322.9 333.4

374.R 344.9 354.8 404.7 414.5 404.1 443. 443.7 442.4 461.5 47.6 479.5 48.3

42'.' 530.5 538.5 546.7 554.5 62.5 570.8 578.4 555.7 592.6 599.1 615.2 610.9

62q.2 632.7 635.q 434.6 641.0 643.1 644.Q 646.5 447.5 649.0 h53.0

005U'I!NS: TIP 15.24 (SLAR 771 , ROIT 11.11 (SLA 563

11.4 22.R 34.2 45.5 56.9 6.2 74.5 30.A 102.1 113.3 124.6 135.7 146.q

131.0 231.Q ?12.8 223.6 234.3 245.0 255.4 266.1 ?76.6 287.0 297.3 337.5 317.7
357.5 367.? 176.- 3q4.3 395.8 405.1 414.4 423.5 432.5 441.5 453.3 459.0 467.4

S0'.9 09.C 51h.9 524.7 532.4 540.0 547.4 55.0 562.5 570.3 577.5 594.3 590.9

417.0 617.3 421.3 424.9 425.0 630.3 633.0 634.8 616.2 637.1 637.5

PSITI4S: TIP 15.24 SLA8 773 , ROOT 11.69 (SLAR 591

0.0 1n.9 71.7
171.8 182.3 102.8
332.7 34?.7 351.6
473.7 481.7 44.6
5-8.5 53-4Q 558.9

'),3 1.4 20.8
144.4 174.6' 1384.
313.3 329.4 337.6
4 RS. 463.4 471.2
567.4 45.1 78.4

32.6 43.4 54.? 45.3 75.5 86.6 97.4 108.1 118.8 120.5 140.1

23.1 213.5 723.R 234.0 244.2 254.3 264.5 274.3 2R4.? 294.1 303.9

360.9 370.1 379.3 388.3 397.3 436.2 414.9 423.6 43?.2 440.7 440.1

497.3 505.0 512.5 5?0.3 527.3 534.5 541.6 948.8 53.7 563.0 569.9
603.4 67.5 611.1 614.3 61.9 619.0 670.6 621.7 622.2

PISITIONS: TIP 15.24 (SLA5 77) , ROOT 12.23 (SIA- 42)

31.2 41.5 51.9 62.3 72.6 52.5 93.2 103.5 113.5 124.0 134.2

194.6 204.5 214.4 224.2 254.0 243.8 753.4 263.0 777.6 282.1 ?Q1.%

'465 354.5 364.0 373.1 351.7 390.3 399.9 407.2 415.6 473.8 431.'

478.9 44S.2 493.& 570.8 507.3 515.7 421.9 528.6 434.3 541.9 449.4

583.2 5A7.5 591.4 5Q4.8 597.6 59.3 4'1.6 602.8 63.4

346.2 368.1
630.8 639.4
688.7 690.0
698.6 698.8

282.4 301.2
544.7 558.4
670.1 672.8
694.1 694.7

245.6 262.2
486.2 499.1
647.5 651.6
68-5.3 686.4

220.6 235.7
443.8 456.2
617.0 624.2
673.2 674.8

232.1 216.1
411.0 422.8
591.3 590.5
659.8 661.5

1'7.7 200.8
3R4.6 395.9
547.7 556.8
648.1 650.3

176.1 188.3
362.6 373.4
520.6 529.3
613.6 637.1

166.3 177.9
343.9 354.3
497.0 505.5
616.1 620.9

158.0 169.0
327.7 337.7
476.1 484.5
596.Q 602.6

150.7 161.3
313.6 323.2
457.4 465.6
576.5 582.7

144.3 154.5
330. 310.1
440.0 447.9
554.8 561.3

0.10
3.31

9.73
12.93

0.5 I
3.51
6.7?
1.94

1l. 13

0. sc
3.71

._6.97
10.13
11.33

).73
3.91
7.17

13. 34

TISEI SC IT

10.17I

70.13

30.10

40.10

50.10

60.10

70.03

90.09

0 .
159.5
344.6
514.0
625.2

0.0
1930
347.6
402.5
607.9

100.09

120.00
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TABLE fit ,PART 2

NtlNBFR OF 46GFS 3A
TIE STEP. 0.100 SECONDS
OISTANCE FETWEEN NODFS. 0.4011 CFNTISFTERS

nISTANCES FROM THF SIIRFACE AT EACH NOO(CFNTIMETERSI

.)) (,.he l."o 1.40 1.80 2.21 2.61 3.01 3.41 3.81 4.21 4.61 5.01 5.41 5.82 6.22
6.62 7.02 7.4? 7.? 4.22 8.67 .02 9.42 9.83 10.23 10.63 11.03 11.43 11.83 12.23 12.63

11.03 13.44 13.q4 14.74 14.64 15.04

TIME(SECONDS) NIIE TFMPrPATURES(DEGrEES C)

1.0 POSITIONS: TIP 0.0 (SLAB 01 , ROOT 0.0 (SLAG 01

710.0 C70.C 700.0 700.0 7)3. 0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0
700.0 70n.n 700.C 700.0 70.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0
7C0.0 7C.0 70.0 700.- 700.0 700.0

In. 10 
0

3SITIONS: TIP 5.29 (SLA8 14) , RnnT 4.00 (SLAB I1

0.0 66.3 131.8 196.0 '58.3 318.0 374.0 429.3 478.4 524.5 570.3 606.2 635.3 653.7 664.6 673.8
680.9 686.4 690.3 693.3 695.4 696.Q 697.9 698.6 699.1 699.4 699.6 699.8 699.9 699.9 699.9 700.0
700.0 700.0 700.0 700.0 700.0 700.0

70.10 00SITIONS: TIP 7.09 (SLAR 181 , ROOT 5.36 (SLAS 141

0.0 45* 96.7 144.4 191.4 237.5 2P2.4 326.0 368.0 408.4 446.9 493.4 517.7 551.0 580.9 609.5
631.0 647.2 656.9 665.2 672.1 677.8 6R2.5 686.3 699.4 691.9 693.8 695.3 696.5 697.4 698.0 698.6
658.9 699.2 609.4 699.6 699.6 699.7

10.10 POSITIONS: TIP 8.49 (SLAR 221 , ROOT 6.40 (SLA 161

0.0 40.3 80.4 120.2 159.6 198.4 236.6 274.0 310.5 346.0 380.4 413.6 445.6 476.4 505.R 534.6
561.0 586.9 609.3 627.7 641.8 652.3 659.5 666.1 671.7 676.6 680.7 684.2 687.1 689.5 691.5 693.1
694.4 695.4 696.2 696.7 697.1 697.2

.40.10 POSITIONS: TIP 9.67 (SLAB 25) , ROIT 7.29 (SLAB 191

0.0 35.2 70.3 105.2 139.8 174.1 207.9 241.2 273.9 305.1 337.2 367.7 397.3 426.0 453.7 480.5
506.7 530.8 554.7 576.8 598.7 617.0 631.8 643.4 652.2 658.5 664.3 669.3 673.7 677.5 680.8 683.5
6P5.7 687.6 689.0 6Q0.0 690.7 691.1

50.10 POSITIONS: TIP 10.74 (SLA 271 , ROOT 8.05 (SLAB 211

0.0 31.7 63.3 94.Q 126.1 157.1 187.8 213.1 248.0 277.4 306.2 334.4 361.9 388.8 415.0 440.4
465.1 488.9 512.' 534.1 555.7 575.6 595.5 612.5 626.7 637.9 647.3 651.6 65%.9 663.6 667.6 671.1
674.1 676.5 678.4 679.9 690.8 681.3

60.10 POSITIONS: TIP 11.77 (SLA 301 , ROOT 8.76 (SLAB 221

0.0 29.1 58.1 87.0 115.8 144.4 172.7 200.7 228.4 255.7 282.5 308.9 334.7 360.0 384.8 4C8.9
432.4 455.2 477.4 408.9 539.8 540.2 5590.4 578.5 595.9 611.3 624.4 635.2 643.7 650.1 654.4 658.1
661.2 663.9 666.0 667.6 668.6 669.1

70.09 POSITIONS: TIP 12.87 (SLAB 331 , ROOT 9.42 (SLA8 741

0.0 27.0 54.0 80.9 107.7 134.3 160.7 186.9 212.8 238.4 263.6 288.5 312.9 336.9 360.4 383.5

405.9 427.9 44q. 470.0 490.2 509.7 528.6 547.2 564.6 582.2 598.1 612.0 623.8 633.4 641.1 646.9
650.4 6577 654.4 655.7 656.6 657.1

80.09 POSITIONS: TIP 14.12 (SLAR 161 , ROOT 10.01 (SLAB 261

0.0 25.4 50.7 76.0 101.1 126.1 151.0 175.6 200.1 224.2 248.1 271.6 294.8 317.6 340.1 362.1
3R3.6 404.7 425.3 445.5 465.1 484.2 507.9 521.1 538.5 555.8 571.7 587.3 601.3 613.4 673.8 632.3
639.0 644.1 647.8 650.0 650.2 650.2

90.09 OOSITIONS: TIP 15.24 (SLAB 391 , ROOT 10.62 (SLAB 271

0.0 24.0 47.0 71.8 95. 119.7 142.8 166.1 189.3 212.? 234.9 257.3 279.5 301.3 322.7 343.8
364.5 184.9 404.7 424.2 443.2 461.7 479.8 497.4 514.4 511.0 547.2 562.5 577.9 591.9 604.4 615.3
674.7 637.6 638.9 643.6 646.5 647.8

100.09 POSITIONS: TIP 15.24 (SLAB 391 q ROOT 11.17 (SLAB 28)

0.0 22.8 45.5 68.2 90.8 113.3 115.7 158.0 180.0 201.9 223.6 245.0 266.2 287.1 307.7 327.9

347.9 167.5 386.7 405.5 424.0 442.0 459.6 476.8 493.6 511.0 525.4 541.6 556.3 570.0 584.5 596.8

607.6 616.8 624.3 629.9 633.7 638.6

110.09 POSITIONS: TIP 15.24 (SLAR 39) 8 039T 11.73 (SLA 501

0.0 21.7 43.4 65.1 86.7 10q.2 129.6 150.9 172.0 192.9 213.7 234.2 254.6 274.6 294.4 314.0

133.2 35?.1 370.7 380.0 406.9 424.4 441.6 453.4 474.8 490.7 506.3 921.3 536.0 550.1 863.5 576.7

588.4 598.4 606.7 611.1 617.4 619.6

120.C9 POSIT IONS: TIP 15.24 (SLAB 39) t ROT 12.33 (SLAR 311

0.0 20.8 41.6 62.4 93.1 103.6 124.2 144.6 164.8 1R4.9 204.9 224.6 244.2 261.5 282.6 301.4

320.0 318.2 356.2 973.9 191.2 408.7 424.8 441.0 456.9 472.4 487.4 502.1 516.5 530.1 543.6 556.0

567.8 578.1 586.7 593.4 58.0 601.5
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TABLF [II ,DART 3

NiN4IFR n' NOCflS t
TINE STr-= n.100 SECUNDS
)ISTANCF 3'TWFN N00FS= '.8071 CFNrIlTEQS

DISTANCES rpRc yEe Sfl(r8ACr AT -AC NO4' C.FsTIMETEMS)

). 40 1.I? *I ?.8 1.61 4.41 5.21 6.07 6.82 7.6? 8.42 9.22 1.03 10.8R 11.63 12.43
13.?3 14.3' 14.44

TINEIS'C3)OS) *YI T14EOPOAT RESI (OoS C)

PfSIT'3NS: TIP 0.0 (SLA4 3) , ROlT 3.0 (SLAA 01

7.2 7'). 7. 7 7n7)*e 7 ..o V10.' 700.1 7"0. 0 702.0 70.0 73.1 700.' 70).) 710.) 700.0 700.0 700.0
7C3.0 7)'." 730."

10.10 PSITIINS: TIP 6.13 (SLAB '9 , 411T 4.57 (SLAB 6)

0.0 12".' 737.1 446.2 444.5 531.7 5Q9.4 645.1 657.8 682.1 690.6 695.4 697.9 699.3 694.6 699.8
6".9 70.0 700.0

70.1') P-'SITI3'OS: TIP 7.01 (SLAB 101 , RO)T 5.88 (SLAB R)

0.0 Q1.5 181.4 267.e 349.7 4?5.6 404.5 555.1 613.7 639.7 661.0 674.? 694.0 490.2 694.1 696.6
6CA.0 698.8 699.2

30.10 P'lSITIONS: TIP '1.71 (SLAB 121 , RnOT 6.92 (SLAS 09

e.0 77.0 152.9 226.9 2q9.0 365.5 47R.5 486.R 540.5 585.3 624.1 649.7 663.4 674.4 682.3 687.9
691.6 698.9 695.n

40.1n POSITIONS: TIP 1.'5 (SLAB 13) ,8R3T 7.77 (SLAB 101

0.0 67.8 135.0 200.8 264.6 326.1 3R4.3 439.2 491.5 538.3 579.7 615.6 641.9 657.1 667.6 675.5
681.1 684.7 686.4

50.10 POSITI (NS: TIP 11.38 (SLAB 15) . Rn9T 61.53 (SLAB III

1.3 61.4 122.4 182.3 240.9 297.5 357.0 43.8 452.8 4)3.6 541.6 573.1 612.9 637.5 652.8 661.5
648.1 672.4 674.6

60.1) POSITIONS: TIP 17.41 (SL9 16) , RO'T 9.21 (SLAR 121

0.0 56.6 112.8 169.3 272.7 275.6 326.7 375.8 422.6 466.9 508.4 547.5 581.5 612.6 635.0 649.6
655.5 659.6 661.6

70.09 POSITIONS: TIP 13.62 (StA 18) , R83T 9.q4 (SLAB 13)

0.0 57.8 105.2 157.1 2n8.A 257.8 3C6.2 352.Q 3Q7.7 440.5 481.1 519.2 554.7 SRS.5 613.6 633.3

646.1 650.6 651.7

80.09 POSITIONS: TIP 15.24 (SLAB ?0) , ROOT 10.42 (SLAB 14)

11.0 40.7 99.0 147.9 106.0 743.1 289.0 333.5 376.4 417.5 456.8 494.2 529.7 562.8 590.9 615.3

E32.6 643.6 649.5

80.09 POSITIONS: TIP 15.24 (SLAR ?01 , ROlT 11.01 (SLAB 141

0.0 47.1 93.A 14n.1 185.8 230.7 274.5 317.2 358.2 397.4 435.8 471.4 536.3 538.9 568.3 595.2
616.3 630.7 637.0

100.09 POSITIONS: TIP 15.24 (SLAB 20) , ROIT 11.61 (SIA3 15)

3.0 44.7 89.3 133.4 177.0 219.4 761.8 302.6 342.3 A90.6 417.5 45?.7 496.2 r1A.3 548.0 574.0

597.4 613.0 622.5

110.09 POSITIONS: TIP 15.24 (SLA 20) , ROT 12.17 (SLAB 16)

0.0 42.7 85.3 127.5 169.2 210.3 253.5 289.9 323.0 365.0 400.6 434.9 467.6 493.7 528.0 555.1

576.8 594.4 6C3.5

120.09 03SITIONS: TIP 15.24 (SLAB ?0) ROOT 12.86 (SLAB 17)

3.0- 41. 81.7 122.2 162.3 701.7 740.4 279.2 314.9 350.5 384.9 417.4 449.2 479.0 537.1 533.4

556.8 577.7 581.
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TAOLE III ,DART 4

tIMAER OF NODES Iq
T1ME STEP. ('.050 SFCONDS
OISTANCE iFTWEEN NCnCS. 0.4011 CFN9IMETFRS

OISTANCFS FRM4 TE14 S''RrACF AT &ACH3 N)F10CENTIMETPRS1

'.73 0.4f 1.00 1.4n 1.90 2.21 7.61 3.01 5.41 3.91 4.21 4.61 5.01 5.41 5.q? 6.22
6.62 7.0? 7.47 7.42 R.22 9.67 3.07 4.42 9.83 10.23 10.63 11.33 11.43 11. 9 12.23 12.63

15.01 13.44 14.H4 14.74 14.44 15.04

fTIEISECA40S3 si TEMPE6ATURF.S(lFGPlpE CS

3 POSITIONS: TIP 0.0 (SLAS 0 , ROOT 0. 4SLAA 0

7. 7%. 7:.0 7".4 71)0.0 700.c 7".0 700.) 700.0 710.3 700.- 7"1.1 700.0 700.0 720.0 700.0
7f. ) i3. 74. 7, . 7 0." 7"0.' 7u. 0 703.0 7"0.0 730.0 700.0 700.0 700.0 710.) 700.0 700.0

10. VS P1SITIONS: TIP 5.21 (SLAB 141 v RYOIT 3.97 (SlAS in)

3 67.3 134.' 100. '62.7 37.'6 391.4 435.9 496.9 534.7 576.5 613.2 640.3 656.5 667.6 676.3
643.C 44." 6Q)1.6 "94.3 ."6.1 697.4 609.3 698.9 649.3 699., 699.7 693.9 699.9 699.9 699.9 700.0
700.0 7"3.r 74MO. c 00.0 "0.0 731.n

7%.05 00ISITIO4S: TIP 6.98 (SLA 181 , RAIT 5.25 (SIAR 141

C.0 49.3 -i.t 146.0 104.6 241.4 297.1 331.3 374.0 415.0 454.2 491.5 526.9 54W.2 599.3 616.2
636.2 650.6 659.7 467.5 474.0 679.4 6R3.4 697.4 690.2 6:2.5 694.3 695.7 636. 697.6 6q8.2 698.7
649.1 690.3 6)9.5 690.6 699.7 6.9Q.7

30.05 POSITIONS: TIP 3.35 (SLAS 213 , 501T 6.29 (St.A% 161

n.0 4'.' A1.6 1?2.0 167.1 201.5 240.3 273.3 315.3 351.3 386.2 41.) 452.3 4R3.4 513.1 541.7
h4A.0 593.4 615.1 632.1 645.6 654.4 661.8 664.0 673.4 678.) 681.9 695.7 697.9 690.2 692.0 693.6

694.9 695.? 69h.4 697.0 647.3 697.5

40.04 POSITIONS: TIP Q.54 (MLAR 243 , nn0T 7.16 (SLAR 18

0.0 35.7 71.3 106.9 141.9 176.7 211.0 244.R 277.9 110.4 342.1 372.9 402.9 431.9 460.0 487.1

515.1 53.4 561.q 5A4.7 605.0 622.1 635.8 646.9 654.4 660.7 666.2 671.3 675.2- 679.9 681.8 684.4

686.6 68.3 699.7 690.6 691.3 691.4

50.04 P3SITION4S: TIP 10.59 (SLAR ?7M , RMOT 7.q3 (SLAR 703

0.3 32.1 64.2 46.2 1'7.9 159.3 10.5 271.7 251.5 '91.? 310.4 319.) 366.9 394.1 420.6 446.2

471.1 495.1 518.4 540.9 562.0 582.7 601.3 617.5 630.9 641.S 650.1 655.8 661.3 665.3 669.2 672.6

675.4 677.7 67Q.6 630.9 691.9 687.3

60.04 POSITIUNS: TIP 11.61 (SLA' All , i00T 8.63 (SLAts 221

1.0 29.5 58.9 99.2 117.4 146.3 175.n 705.4 231.4 259.1 286.3 313.) 339.7 164.8 399.9 414.3

439.0 461.1 483.5 505.1 526.1 546.4 565.4 594.3 A01.4 616.2 628.6 63R.5 646.5 652.1 656.2 659.9

667.9 665.5 f67.5 669.1 67n.1 67s4.

7.04 P1SITfNS: TIP 12.67 (SLA 323 . ROOT 9.77 (SLAA 243

0.( 27.4 54.7 9?.0 109.1 136.1 142.9 19.3 215.5 241.4 267.0 232.1 316.A 41.1 364.9 389.2

411.0 431.? 454.Q 475.9 4)6.4 516.7 535.4 553.4 571.0 599.3 603.5 614.4 6?7.7 A36.3 643.8 649.'

652.0 654.? 655.9 657.3 458.2 659.6

90.03 POSITIONS: TIP 13.88 (SLA 45 . R OT 9.99 (SLAB ?51

1.0 25.7 51.9 7h.9 102.4 127.7 152.8 177.9 702.5 ?77.) 251.1 274.9 7Q.4 321.5 344.7 366.4

AP.2 40Q.5 430.4 450.7 470.5 4PQ.7 509.4 52s.6 544.3 560.3 577.4 532.5 606.0 617.4 627.4 635.4

641.5 446.1 649.5 650.3 650.6 65n.7

90.03 OSIT1INS: TIP 14.94 (SLA 39) , ROOT 10.46 (SLA% 27

3.3 24.3 48.5 7. 6 96.7 17.7 144.5 149.1 191.5 714.7 237.7 261.4 292.7 304.9 326.5 947.8

364.7 389.3 409.4 429.1 449.3 47.o1 495.4 503.' 520.5 5937.7 553.3 50R.4 593.5 507.1 60q.R 619.0

6?7.A 634.6 6'0.1 444.3 647.4 60.e

0.09 POSITIONS: TIP 15.24 (SLAR 393 , R30T 11.03 (1459 ?3I

0.0 29.0 46.0 69.0 91.Q 114.4 137.3 153.4 192.1 204.' 226.1 A47.4 26Q.2 700.3 311.1 331.6

351.8 371.6 301.0 411.0 47R.7 446.9 464.6 442.0 496.Q 515.3 531.2 541.4 541.3 575.9 59.1 601.0

611.4 673.1 627.2 632.5 696.1 437.q

113.05 POSiTIONS: TIP 15.24 (SLAS 93 , RAT 11.5? (S1tA 29)

0.0 22.0 43.Q 65.8 97.7 1"9.4 131.0 152.5 173.Q 195.1 216.n. 236.3 257.4 ?77.6 797.7 317.4

336.49 355.0 374.7 399.1 411.7 424.4 446.2 463.1 479.7 495.9 511.5 526.9 541.7 555.9 569.4 591.'

593.0 607.7 61C.6 616.7 670.A 67?.'

170.02 POSITIONS: TIP 15.24 (1LAR 3Q) , ROOT 12.16 (SLAA i11

7.0 21.0 42.1 63.0 Qlen 104.9 125.5 146.1 166.6 196.' 207.1 2?7.3 246.9 266.3 295.6 304.6

323.4 341.A 360.0 477.A 395.3 417.5 479.3 445.7 461.9 477.4 492.7 527.5 521.9 535.9 549.3 561.4

573.1 593.2 531.6 599.1 6?.S 614.7
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TARtF III ,pApt s

NmisnfEv OF NunES 39
Vf0E STFP- n.200 SrCJNnS
OISTANCF 9ETWrEN N')FS- '.4n11 CFNTIMFTERS

9ISTANr.rS FRr THE SIIRFACE AT FArl4 NI.nE(CFNTIMETFS)

0.10 n.4( 1.00 1.40 1.30 2.21 2.61 3.01 3.41 3.R1 4.21 4.61 5.01 5.41 5.Q2 6.22
6.62 7.02 7.4? 7.A2 q.22 8.62 9.02 1.4? 9.83 10.23 10.63 11.03 11.43 11.41 12.73 12.63
1%.M3 11.44 19.44 14.24 14.44 15.04

fVIF ISFC 1I0SI %1W I- f0e'FPAT'f9S( )EGRFES CI

0.0 PISITIINS: TIP 0.0 (SLAB 01 , RrOT 0.0 (SLAB 0)

70.0 704.r ?r.' 73.0 710.0 700.0 70.0 701.0 700.0 700.3 700.0 7)0) 7.10.0 700.0 700.0 700.0
700.0 0)." 70. 7 7 700..) 7' 0.0 70.. 70 7. 7 .0.0 0. 700.0 701.1 710.0 701.) 700.0 700.0

. 7l3." F f%. 7'.' "0.n 700.0

10.'I) 0SITIINS: TID 5.29 (SLA 141 . ROOT 3.39 (SLAB 10)

'7.0 A.1 I'S.' ?"'.6 ?49.3 32?.0 379.0 431.7 4A3.4 529.6 57).1 604.1 634.9 552.9 662.2 670.6
677.7 4R.? c37. 610.3 493.9 405.? 696.6 697.7 69R.4 69%.9 699.3 699.9 699.7 699.9 69.9 699.9
6'3.9 70'.' 700'.C '00.0 700.0 700."

70.23 PSITIOS:S TIP 7.21 (SLAB 191 , Rl-T 5.49 (S8 14)

1.3 47.q 95.3 147.3 199.6 233. ' 27.0 32.6 361.7 401.1 439.6 474.? 527.R ,41.? 571.6 607.?
676.7 641.4 644.9 463.1 470.3 676.3 6R1.2 695.1 698.3 690.9 693.0 644.6 695.9 494*9 697.6 698.2
69A.7 690.0 619.2 699.4 49Q9.5 69.

30.23 DOSITIONS: TIP A.65 (SLAR 22 , ROOT 6.5A (SLAS 17)

0.0 39.5 79.9 117.9 154.4 104.5 231.9 269.6 904.3 339.1 372.7 405.2 456.5 466.4 494.9 52?.0
541.0 974.4 600.' 621.9 636.6 649.1 656.9 663.6 669.6 474.9 679.2 632.4 696.0 684.S 650.7 692.4
693.9 694.n 609.7 496.3 436.7 696.q

40.20 PISITIONS: TIP 9.ets (SLAB ?5) , en'IT 7.49 (SL AB 191

'1.0 34.9 69.1 103.0 136. 170.5 203.6 236.2 269.2 799.9 330.1 353.9 3A8.R 416.9 443.9 470.0
499.1 519.2 543.1 64.5 599.5 60R. 625.1 639.) 64A.4 65S.? 661.4 664.9 671.6 67S.7 679.2 682.1
694.6 66.5 648.0 689.2 649.9 690.3

90.21 POSITIONS: TIP 10.97 (SLAB '81 , R9OT 9.29 (SLAS 21

0.0 31.0 62.0 '2.9 1?3.4 193.R 1R3.9 213.9 242.8 271.5 299.7 327.3 354.3 390.6 4C6.2 431.0
4r5.0 474.3 500.7 V22.3 543.0 564.1 994.9 609.4 619.2 632.? 647.3 69'.4 655.7 660.7 665.1 669.8
672.0 674.6 676.7 67Q.2 679.2 679.7

V0.20 POSITIONS: TIP 12.04 (SLAR 31) , ROOT 9.0' ISLAB 231

0.0 29.5 S6.0 85.2 113.4 141.4 169.1 104.9 223.6 250.3 276.6 302.4 327.8 352.6 376.8 4C1'.5

423.5 445.9 467.6 499.6 08.R 529.4 547.9 566.4 5A5.5 602.5 617.0 523.1 638.6 646.1 651.6 655.2
65A.5 661.? 663.4 665.1 466.2 666.R

70.20 POSITIONS: TIP 13.22 (SLAR 341 , ROOT 9.64 (SLA 29I

0.0 26.5 52.9 73.3 105.5 131.6 17.4 193.1 208.4 283.5 259.2 282.5 306.5 330.0 353.0 375.6

397.6 419.2 440.2 460.6 490.r 499.4 519.5 537.^ 554.9 971.6 588.9 603.9 616.7 6?7.5 636.? 642.9

647.9 650.8 662.2 653.4 694.2 654.6

90.20 POSITIONS: TIP 14.51 (SLAB 71 , ROOT 10.2A (1SLA 2&1

0.0 24.9 49.7 74.4 39.1 125.6 147.9 172.1 196.0 219.7 743.1 ?46.1 299.9 311.3 333.7 354.9

376.0 396.6 416.9 436.6 459.9 474. 402.7 911.4 527.5 544.6 560.6 577.1 592.2 605.6 617.1 626.7

634.4 640.4 644.9 649.1 650.0 650.0

30.20 POSITIONS: TIP 15.24 (SLAB 39) , RooT 12.88 (SLAl 7.

3.0 23.5 46.0 70.5 93.7 11.9 139.9 16!.9 195.5 70.0 230.3 29?.? 273.3 29%.9 316.3 337.0

397.3 377.3 396.% 419.9 434.6 452.0 470.7 449.0 5,14.8 A 21.1 537.1 992.9 547.6 587.9 596.2 608.0

61a.2 626.6 633.3 63R.3 641.4 643.3

100.2' POSITIONS: TIP 15.24 (SLAB 39) , ROOT 11.46 (SLAS 29)

0.0 27.3 44.6 46.9 99.% 111.1 133.1 154.9 176.5 199.0 719.? 240.2 261.' 291.5 301.7 321.6

341.2 '60.4 379.3 397.9 415.Q 433.6 490.9 467.7 494.2 500.1 515.7 933.A 54S.q 960.3 524.4 987.5

509.1 60M.C 617.1 623.? 427.3 62Q.4

1IC.20 POSITIONS: TIP 15.24 (SLAB 39) , qn-T 12.01 (StA18 31)

0.0 21.3 42.6 63.9 95.0 1'-,.1 127.1 147.9 169.7 19.A 209.6 ??'.7 749.7 '69.3 298.R 3C7.0

326.9 345.4 369.6 131.9 31-.0 416.7 433.0 44J.5 465.9 491.7 406.4 911.' 524.6 '3.9 53.5 566.0
97A.4 589.0 597.7 604.5 6A9.1 611.4

120.20 PoSITI1NS: TIP 15.24 (LAR 39) , R1T 17-77 (MAR 7)

0.0 2.4 40.3 61.1 91.4 101.6 171.4 141.9 161.6 11.4 200.9 221. 1 239.4 299.4 277.1 294.5

313.7 331.6 343.2 966.4 393.4 400.0 416.2 41'.1 447.6 4 6,2. 477.4 401.'i 919.3 ;18.& 931.4 944.?

59.6 566.9 575.6 582.7 5A7.6 "00.1
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TASLE II ,PART 6

NIMBER )F NOOES 34
ff5E STEP CvNTRnttE1IGH4 I 141T- 0.10020 LnW Lt1M1- 0.)001)
OISTANCF 4IFTMFN %COFS. 0.4011 CFNTIMFTERS

0ISTANCES FRIN rHI; SUR9AfF AT rACH NOOFICENTIETERSI

0.'y 0.60 1.0n 1.40 1.80 2.21 2.61 3.01 3.41 3.81 4.21 4.61 5.f,1 5.41 5.82 6.27
6.6? 7.07 7.47 7.57 4.22 5.67 3.02 3.42 Q.93 1.23 10.63 11.03 11.43 11.43 12.23 12.63

13.04 13.44 13.44 14.74 14.44 15.04

TI5ES FC'*4S) 1' TFOrPAT)RES(O)FGREES C.

0.0 POSITIONS: TIP 0.0 (SLIR 01 , Q00T ).n ISLAS 01

73'.0 70'.0 700.O 7;0.0 700.1 700.0 700.0 709.0 700.0 700.0 700.0 70).0 700.0 703.3 700.0 700.0
701.) 1.1 71c.' 70.0 710.0 700.0 700.0 703.0 700.0 700.0 700.0 710.0 700.0 7n.3 700.0 703.0
70'.0 7rn.r 700.0 70.n 700.0 70y).)

11.04 POSITIONS: TIP 5.21 (SLA4 141 . ROOT 3.1) (StA 10)

.%7.3 133.0 10".2 262.6 323.4 381.3 435.9 486.8 534.6 576.4 612.9 640.0 456.4 667.5 676.3
6P3I. 'R.' .91.6 0044.3 436.7 607.5 698.3 699.9 69.3 S99.4 699.7 690.9 69.9 699.q 699.9 699.9
6S9.Q 63.9 690.9 6.3.0 '.09.9 699.9

70.02 POSITIONS: TIP 6.97 (SLAB 18) , ROIT 5.25 (SLA 14)

1.0 4q.? 98.4 147.0 134.4 241.6 257.2 331.3 374.0 414.9 453.9 491.1 526.1 59.5 589.0 616.2
636.2 65?.'6 653.6 667.5 674.0 679.4 693.q 637.4 690.3 692.5 694.3 605.7 636.A 47.6 698.2 698.7
609.1 699.3 609.4 633.6 603.6 693.7

30. '2 POSITIONS: TIP 8.38 (SIAS 21M , SnnT 6.3' (SLAi 16)

0.0 4A.4 51.5 121.9 161.Q 201.3 240.0 273.0 315.0 351.3 385.8 419.4 451.7 482.7 512.3 540.9
567.3 592.9 614.6 631.7 645.3 654.3 661.6 667.9 673.3 677.9 681.8 685.1 657.9 690.1 692.0 693.5
694.8 64.7 696.4 696.9 637.3 697.4

40.36 POSITIONS: TIP 4.57 (SLAR 241 . ROT 7.11 (SLA 1)

1.0 35.6 71.2 106.5 141.6 176.7 210.5 244.1 ?77.2 309.5 341.1 371.9 431.7 430.7 458.6 485.6
511.5 536.9 560.4 53.4 413.R 621.2 635.0 646.2 653.9 660.3 665.8 671.7 674.3 678.6 681.7 684.3
686.5 645.7 653.6 690.6 69.? 691.5

50.05 PqSITIONS: TIP 1.S3 (St 48 27) , RO, T 7.96 (SLA9 20)

1.0 32.0 64.0 Q5.4 127.5 158.5 199.5 22M.5 25%.. 7R).3 309.3 337.9 365.6 332.7 419.0 444.6
469.4 434.3 516.5 530.1 560.2 581.0 533.9 616.2 629.9 640.7 649.5 655.2 660.4 664.9 665.9 672.3
675.2 677.5 679.4 680.5 651.7 682.1

60.05 DOSITIONS: TIP 11.65 ISLAS 30) , ROOT 8.64 (SLAR 27

0.0 2Q.4 >8.7 47.4 116.n 145.3 174.3 212.6 230.5 254.1 2A5.2 311.3 337,8 363.4 394.3 412.6

436.2 459.2 4Q1.r 5)3.1 523.9 644.3 563.4 552.5 59.7 614.7 627.4 637.6 645.7 651.6 655.7 659.4

66?.5 665.1 667.? 649.7 663.9 67.3

70.13 PSITIONS: TIP 12.77 (SILAR 329 ROT 9.37 (SLAR 241

0.0 27.3 54.5 41.6 109.6 135.4 162.0 194.3 214.4 240.? 265.5 291.5 315.1 339.2 362.8 385.8
408.4 43f.3 451.7 47'.4 492.5 512.3 530.7 549.3 566.9 514.A 600.7 614.5 626.0 435.3 642.5 648.2

651.3 153.'. 655.1 656.7 457.6 658.0

o.r5 POSITIONS: TIP 14.00 (SLAR 36) , ROOT 3.97 (SLAR '5)

0.0 25.5 51.0 76.4 101.7 126.3 151.9 171.7 201.2 225.5 243.5 273.1 296.4 319.3 341.9 365.8

345.4 406.5 477.2 447.3 467.0 486.1 504.7 527.9 540.6 557.4 574.0 55.3 603.? 615.3 625.5 633.5
640.3 645.1 f4P.7 650.1 650.3 650.4

90.13 POSITIONS: TIP 15.24 (S.AR 3l v ROlT 10.51 (SLA 27)

3.3 24.1 4.1 77.1 96.0 119.6 143.4 166.9 In.1 213.2 235.9 25f.4 280.6 30?.5. 324.0 345.2
365.3 386.3 406.7 425.7 444.7 463.2 4A1.2 494.7 515.7 532.2 544.4 563.R 579.4 233.6 605.0 616.6
625.6 633.0 633.A 643.3 446.4 64R.3

100.05 011SIONS: TIP 13.24 (SLA 33) , ROIT 11.15 (SLAA 28)

1.0 22.9 45.7 65.5 "1.2 111.61 136.3 159.6 140.7 717.7 224.4 245.9 267.1 74.1 3C8.7 329.0

34q.9 365.5 357.7 406.6 475.0 443.0 460.6 477.7 494.4 510.7 526.5 542.2 556.3 S71.7 555.4 597.7

6C.5 617.6 67.' 630.6 b3.
3 

6.36.1

110.75 PJSITIONS: TIP 15.24 (SLA4 33) , ROOT 11.73 (SLAR ;5

0.0 21.P 43.6 65.3 A6. 9 105.5 -o30.0 151.3 17?.5 133.5 714.3 214.9 755.2 275.3 295.1 314.6

3?3.9 35?.4 371.4 380.6 437.A 425.' 442.1 4R5R. 475.1 491.0 506.4 521.4 535.9 55A.3 565.6 577.0
579.9 501.1 607.4 613.8 615.1 47' .3

120.05 DOS(TIONS: TIP 16.24 (SLAS 39 , AnOT 12.34 (SO A 31)

n.0 20.q 41.7 6?.5 R3.2 103.8 174.4 144.8 165.1 155.3 205.2 225.0 244.5 763.3 ?83.0 301.3

370.3 334.6 356.5 374.1 331.4 40R.4 475.0 441.2 47.0 477.4 457.4 502.0 516.1 57. R 543.4 555.R

567.5 575.3 547.1 59.3 538.5 '.00.9
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TARLF III ,DART 7

'413NER 'IF NCflES I9
f(NF STEP CONTRnt1E0.4'e,H LIMIT. 0.00060 Lf)N LI41T= C.00-
OISTANCF FTNEEN tincDs ).4011 CFNTIMETERS

O1ST4CES FR34 TH4E S1RrACE AT FACH NnefrcNT(uETEqr

".70 0.40 1.0' 1.40 1.*0 2.21 2.61 4.01 1.41 5.81 4.21 4.61 5.01 5.41 5.82 6.72
6.62 7.02 7.4? 7.Z q.22 4.42 9.02 9.42 9.83 10.21 10.6 11.33 11.43 11.81 12.23 12.6313.03 13.44 19.84 14.24 14.64 15.04

TT'FSEClNDSI 4.11 1MOPERA PFStOnEGFFS fl

O.C OIS(fT3NS: TIP 0.0 (SLAB ni . R0(T 0.1 (SLA9 0)
730." 73.C 70.1c 70..P 7'0. 700.1 70.0 710.1 700.0 70.) 700.0- 711.0 700.0 700. 700.0 700.0
70).A ?A^. 72(.. 73. 7)0.0 '0.00.1 700.0 72.0 700.0 700.1 700.0 700. .10.0 01 70.0 7C0.0
7%0.3 17?I.0 700.0 70"..! 730.0 700."

1P.33 Pl5T11Yg4S: TIP 5.20 (SLAB 141 , RJ'T 3.91 (SLAR 1)I

1." f..4 114.1 I'Q. 762.9 ?3.4 31.7 &3>.1 487.3 515.' 576.9 613.4 640.5 654.6 667.7 676.4
643.1 %44.r R o&.7 6M4.4 606.7 607.5 618.4 699.9 698.3 699.6 699.7 689.8 699.0 499.9 619.9 698.0
foo..9 fq.4j k% a. q 701. M 7In.0c 711.^

20.03 *'SIff3NS: TI k.97 (SLA 181 . ROOT 5.25 (SLII 14)

. 40.4 cR.4 147.0 1Q4.8 ?41.6 297.2 331.3 174.0 414.1 454.9 401.1 526.1 559.8 588.0 616.2
636.2 650.., 659.6 67., 674.0 67Q.4 681.8 687.4 600.3 692.6 694.1 695.7 686.8 6q7.6 698.2 698.7
69".0 619.1 

6
94. 609.6 69.6 699.'

1n.07 PJSITIONS: TIO 8.38 (SLAR 71) , ('07T 6.31 (SL4 16A

0.0 4 11.4 121.7 161.6 ?01.m 219.7 277.4 314.5 350.5 385.3 419.2 451.3 482.3 511.9 540.6
57.1 59?.5 614.3 631.4 645.2 654.2 661.6 667.9 673.3 677.9 681.8 695.1 687.8 463.1 692.0 693.5
694.7 695.7 696.4 696.9 407.3 697.4

40.15 PISITIONS: TIP 9.59 (SLAR 241 , R1f 7.21 (SLAB 191

0.4 35.6 71.1 106.4 141.4 176.0 21M.2 243.R 276.8 319.1 140.6 '71.2 400.9 424.7 457.5 484.3
510.1 534.' 559.R 581.9 603.0 620.6 614.4 645.8 653.3 658.9 665.5 671.5 674.8 678.5 681.6 684.2
686.4 684.7 689.5 60.5 691.2 691.5

50.n6 P(ISITIONS: TIP 1'.67 (5LR 27) , ROlT 5.11 (ta 71)1

0.1 32.r 6.R 95.6 127.1 158.3 19.2 219.7 74Q.R 279.2 30q.2 33S.4 34.0 391.1 417.0 442.4
467.0 491.o 514.q 536.4 558.3 578.1 587.) 614.7 628.7 689.7 649.7 454.6 659.9 664.6 6S8.6 672.1
675.0 677.4 678.1 691.7 691.6 682.1

40.14 P0SIT11NS: TIP 11.73 (SLAR ill , R1T R.76 (SLA 22)

1.0 2-.2 58.3 87.4 116.? 144.9 173.3 211.4 ?9.1 256.4 281.3 319.7 315.4 160.9 385.6 409.6
413.0 455.c! 477.9 49Q.l 519.9 540.4 559.6 579.0 586.6 612.2 625.3 646.1 644.3 6510.4 654.9 658.6
661.9 664.6 666.7 668.3 669.4 669.8

70.06 PSITIONC: TIP 12.85 (5LAR 33) , R1T 9.41 (SLA 241

0.0 27.) 54.1 51.1 107.9 134.6 161.1 197. 2113.2 258.3 264.0 239.9 313. 337.2 360.7 383.7
406.1 427.1 449.7 469.9 490.0 509.4 528.2 546.8 54.3 582.2 593.3 612.4 b24.3 631.4 641.5 647.2
650.9 659.? 654.R 656.2 657.1 657.6

80.14 90S1710NS: TIP 14.11 (SL4R 16) , ROT 10.0 (SLAB 761

0.0 25.4 90.7 76.0 101.1 126.1 151.0 175.6 20.0 224.1 249.0 271.5 294.6 117.4 33Q.7 361.7
389.2 404.2 424.7 444.8 464.3 481.4 501.9 518.9 556.9 554.8 570.3 586.5 610.8 613.2 623.7 632.3
6!9.0 644.? 647.P 650." 650.2 650.?

90.06 0351TIONS: TIP 15.24 (SLA 89) . 811T 10.') (SLA 27)

0.0 24.0 47.9 71.7 95.5 110.1 142.7 166.9 189.1 21?.1 234.7 257. ) 179.1 3m4. 122.2 343.2
'63.9 181.9 403.7 4?7.0 441.7 459.9 477.7 494.9 511.6 527.A 544.2 55n.S 575.R 59e.5 603.5 614.7
624.1 631.7 617.8 642.1 645.3 646.8

100.31 paSiff0NS: TIP 15.24 (SLAR 39) , 80)T 11.14 (LA% 71

1.n 27.7 45.3 68.0 90.1 112.9 135.2 157.1 178.3 201.) 222.6 741.4 ?44.9 ?5.6 306.0 326.0
345.8 369.1 3A4.1 432.6 4?0.A 439.5 455.8 472.6 48R.9 504.9 520.2 534.9 550.1 564.7 579.8 591.2
604.8 614.5 622.3 67a.2 632.1 634.1

S11. 2? P!)SIT1INS: TIP 15.24 (SLA 19, ROOT 11.14 (SLA 4no

1.0 21.A 43.2 64.7 86.2 107.8 LA.8 149.Q 170.9 191.7 212.2 217.6 252.7 77?.6 2S2.2 311.5
310.5 340.1 367.4 195.4 403.0 420.1 436.9 453.1 469.3 484.4 503.0 514.7 5?Q.) 54I.4 556.8 570.7
543.! 584.1 603. 1 610.) 614.7 617.

123.0" oflSITIfNS: 7TP 15.24 (SLA 191 , ROT 12.5S (SLAR 17)

0.0 2.7 41.1 61.9 82.4 102.8 123.2 143.4 163.5 13.4 203.1 227.7 242.1 761.1 278.0 298.5

31,. 334.0 352.5 3.4-8 146. 4013. 418.9 415.8 4S1.3 4S6.5 4A1.1 41R.S 519.6 523.1 536.1 540.1

560.6 571.7 541.0 588.4 543.4 595.9



Table IV

Results for 60 Seconds

Sensitivity of the Results to Time Step and Space Mesh Size
Unidirectional Heat Flow

T = 700 0 C, L = 15.24 cm., no
c>lumnar growth.

At, sec

.1

.1

.1

.2

.05

*.0002 max
.0001 min

*.0006 max
.0003 min

.1

convection, surface temperature = 00C (t > 0),

XL, cm

11.47

11.57

12.03

11.84

11.41

11.45

11.53

11.44

11.34

xE, cm

8.53

8.56

8.81

8.80

8.43

8.48

8.56

8.52

8.37

T~ 0
Tcenter' C

671.5

668.6

661.6

666.2

670.1

669.8

669.4

672.7

670.8

t Extrapolated back to zero slab width.

* Time steps controlled by program. These are accuracy limits.

** Extrapolated back to zero time steps.

part N

38

38

38

38

tlst

X = 0.75

46.9

46.5

45.1

44.4

48.0

46.0

44.0

47.0

48.7
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TABLE V .PART I

SILE HEAT LCSS

MUMBER CF ACDES 19
TIE STEP- C.IOC SECCNDS
DISTANCE BETWEEN NODES- 0.8321 CENTINETERS

DISTANCES FfCM To-E SURFACE AT EACI* NODECENTIMCTES)

C.4C 1.20 2.01 2.41 3.61 4.41 5.21 6.02
13.23 14.04 14.84

TIME(SECC&OSI

6.82 7.62 8.42 9.22 1o.C3 17.83 11.63 12.43

WOE TEMPERATURES(DEGREES Cl

10.10

21.10

3). 10

43.10

50.13

60.10

7C.C9

7Cr.C 70. 0 7Cf. 0 7Co. 1 700.C
7001.0 730.0 700.)

0.0 11Q.2 234.4 342.1 439.5
688.9 688.9 684.9

0.0 89.6 177.6
676.5 677.2 677.4

C.3 74.4 147.4
el.f 663.2 6e3.8

.0 64.7 128.7 191.4
650.0 649.7 649.9

C.C 57.7 114.9 171.3
636.4 638.5 319.2

C.0 52.4 104.4
618.9 624.2 o26.5

0.0 48.1 95.8
556.5 6C5.8 610.3

83.C9

90.C9

POSITIONS: TIP 0.3 (SLAB 0 9 R30T P.1 ISLAB 31

VC. 3 7c0.0 700.0 70.0 700.0 700.,3 700:.0 7s. 74 3.'c

POSITIONS: TIP 6.31 (SLAS 81 , k0OT 4.62 ISLAR 69

526.4 594.7 638.8 66G..4 672.6 68'.3 684.6 606.9 0588.n

PoSIftCMS: TIP 8.32 (SLAB 11 . ROT t.03 1SLAB so

762.3 342.5 416.9 484.6 546.0 594.7 631.2 651.3 659.3 665.8 67.3

PCSITICNS: TIP 10.12 (SLAm 131 9 ROr'T 7.19 fSLAE 41

219.4 2R8.1 353.5 414.7 471.5 524.2 57.2 6C.3 63.6 645.7 653.2

POSITICNS: TIP 13.16 (SLAB 171 9 R0T 8.23 ISLAB 11

252.4 311.3 366.8 419.5 46d.b 514.3 556.1 59.1 610.2 635.7

P3S[TICAS: TIP 15.?4 fSIaE 2(I t R'T 5.23 (SLAB 12l

226.3 279.6 33'.P 379.6 425.8 469.1 )C.4 546.9 575.1 604.4

P,.SITIN': TIP 15.24 (SIAe 201 v POCT 10.21 (SLAB 131

1 2".? 26.C 2S4.9 3C2.2 347.6 391.9 431.9 47-.4 56.2 539.9 568.4

POSITICNS: TIP 15.24 (SLAS 2iI . i(COT 11.2' (SLAP 15

143.) 189.4 234.7 278.6 321.1 361.6 47C.1 4?6.9 471.4 433.5 533.7

PnSITICwSS TIP 15.24 ISLAS 20I , RCOT 12.27 (SLAP 161

217.5 255.5 28.2 336.4 ?73.C 4f7.7 443.6 471.5 50).4

PrSITITCS: TIP 15.24 (SLAP 2rI . 4l1T 1?.b (SLA8 171

2 ?2.7 241.( 278.3 214.2 346.7 381.c 412.7 442.C 44.4

0.0 44.4 88.7 132.4 175.4
569.2 562.2 54.6

C. 41.3 82.5 123.2 163.3
536.6 554.0 561.6

7).0 740.a

688.6 .

673.4 675.3

656.4 65Q.7

645.7 648.3

(21.7 631.5

592.% 618.8

564. 581.3

527.1 551.5

4Q4.6 517.6
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TAOLE V *FART 2

sICE -EAT LOSS

NUNSER OF NOCES 38
TIME STEP- 0.100 SECCNCS
OISTANCE BEThEA 00Es C.4C11 CENTIETERS

OISTANCES FRCM THE SUscFACE AT EACH NOCE(CEfTIPETfESO

0.20 0.60 1.00 1.40 1.80 2.21 2.61 2.01 3.41 3.81 4.21 4.61 5.01 5.41 5.82 6.72

6.f2 7.c2 7.42 7.62 8.22 8.62 9.02 9.42 9.83 10.23 10.63 11.C3 11.43 11.83 1?.23 12.63

13.03 13.44 13.84 14.24 14.64 15.C4

TINEISECCACS) N0E TEMPERATURES(OEGREES CI

3.0 POSITIONS: TIP C.C ISLAS 0) . ROT 0. (St.A 0)

70'.C 700.0 00. 0 710.0 700. C 700.0 700.C 700.J 70,.C 700.0 70.. 7 .0 700. 700.0 700.' 7r0.0

700.0 70..0 70) C7.100 7C.C 00.0 .cc. .CC.) 7T.. ".C T Tr-. 700.0 710.1 710.2 yfl ,*A yqfll

70C.C 7fc. 0 700.C 700.0 700.0 702.0

10.10 PCSITICNS: TIP 5.51 (SLAB 14) . ROOT 4.11 (SLAS 11

C.0 64.5 129.3 190.9 251.8 310.3 366.3 419.2 488.6 !14.C 55e.1 !94.3 625.4 646.5 654.5 664.7

671.1 616.0 679.7 682.5 684.5 685.9 686.9 687.6 688.1 648.6 688.6 668.7 69R.8 668.0 688.9 408.9

688.9 688.9 689.7 688.9 688.9 688.9

20.10 POSITIONS: TIP 7.63 ISLAS 20)9 .MOOT ~5.5 ISLP 140

0 C 46.9 93.5 1!9.7 185.2 229.8 273.2 315.4 356.1 395.1 432.5 468.1 501.8 514.6 564.2 592.6

815.6 632.7 644.9 652.2 656.6 660.6 6e4.1 667.0 669.3 871.3 672.9 674.1 675.1 675.9 676.4 676.9

671.2 677.5 671.6 677.8 677.8 677.9

3.10 PCSITICNS3 TIP 9.57 (SLA 24 - 0 ROOT 8.77 (SLAP 17

0.0 38.4 76.7 114.8 152.4 189.6 226.1 261.8 296.e 330.7 36?.7 395.5 426.2 495.7 483.9 510.8

537.2 561.3 584.6 6)4.5 620.5 632.6 641.3 648.1 651.1 653.3 655.3 657.1 658.8 660.2 661.5 662.5

663.4 664.0 664.6 665.0 665.2 665.3

40.10 PCSITIONS: TIP 11.63 (SLAR 3N , RC*CT 7.85 (SLAP 211

*.C '3.2 66.3 99.2 131.8 164.1 196.0 227.5 258.3 288.5 318.1 346.8 374.e 4.2.r 428.2 453.5

477.8 521.1 521.5 545.4 565.3 584.8 6C1.5 615.1 625.8 64.0 640.2 644.8 64A.3 649.8 549.5 649.9

eSC.3 65C.7 651.) 651.3 651.6 651.7

50.10 PCSITIC-SS TIP 15.24 (SLAS 39) * ROCT 8.84 (SLAB 23)

.0 20. 5 5.3.9 88.1 117.2 146.1 174.6 202.8 230.6 21E.t 284.8 311.1 336.7 .61.4 '86.2 419.8

432.8 455. 476.5 497.2 517.2 536.3 555.1 571.6 597.5 6f:!.? .11.5 623.0 626.5 631.2 614.6 I36.9

638.5 639. 64C.1 640.5 640.7 64C.8

60.10 POSITtONS1 TIP 15.24 (SLAP ?1 . RCnT 9.8' (SLAP 25)

0.0 26.7 !!.2 79.8 106.1 132.3 158.2 183.9 20.3 234.3 251.9 283.1 306.8 330.1 352.9 374.9

396.5 417.5 437.8 457.5 476.6 494.9 512.6 529.6 546.3 5f1.2 575.7 548.1 508.5 606.9 613.5 614.5

622.2 824.9 626.8 628.1 628.9 629.2

70.09 PoSITICNS: TIP 15.24 (SLAS 30) * RC'T 10.84 (SLAP '6)

C.C 24.4 48.7 73.0 97.2 121.2 145.0 168.7 192.0 21.1 ?37.9 260.3 282.3 303.Q 325.1 645.9

36e.2 385.9 405.2 423.9 442.1 459.7 476.7 493.2 509.1 524.4 539.1 553.3 565.b 577.? 586.9 -94.8

601.2 6C6.1 609.8 612.4 614.1 614.9

80. CS 1 POSITINS TiE 1.24 IStaR ?Q1 , R-IrT 1 .SLAS ! "1

0 . 1 22.5 45.c. 67.4 89.8 112.0 134. Z115.9 1776 1C 22--.Z 241.' :01 .6 ?s %nI.? 121.2

34-1.2 358.9 377.1 3944.86 412.1 428.9 445.2 461 .,' 47h.'A 401.1 4C. 1q.9 53. ' 4 55f. 6 -66.5

51!.3 Sf'.4 6)6Rfl 192.1 5%4, 59s,6.1

-0.09 
PISITICAS: TIP 1S.7A (SLA6 '9 C 1.11 SLP '%)

701.9 41.9 62.9b 83.4 LC4.1 124.6 145.1 16S.2 1A5'.1 ?',4.,4 214.4 241o? 76?.6 ?8'1. 3 290.6

317.6 3.7 352.4 369.2 385.6 401.5 417.1 4!7.1 446.7 4k--. *4 681.5 5 1 976.7 534.6

54%3 553., 561.) 566.4 57M.1 571.9
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TALE V .P06T 3

SIE MEAT LCS

WOOER Of %CCES 76
T7nE STEP. 0.133 SECChoS

DISTMCE ETaE1864 73061s F.2IZ 1 C173t664TES

OSTANCES FAUW 74.c SUJFACE 41 EAC" 144 0EICENII E TE5

a.t, U.30 0.-) )7. ?. .9! 1.90 1.30 1.51, 1.7 In 1.90 2.11 ?.!1 ?.%1 2.71 2.91 it.It
3.!1 3.91 i.71 .91 4.11 4.51 4.-1 4.71 4.01 S.11 5.31 5.51 5.71 5.4 6.17 4.32
6.52 6.72 6.0? 7.12 7.32 7.52 7.12 7.92 8.12 .!2 6.52 .77 0.97 0.12 9.32 9.52
9.73 9.9S 1'.1 13.13 13.53 10.73 10.93 11.13 11.33 11.53 11.70 11.93 12.19 12.3% 12.99 12.73

12.93 13.13 19.31 13.54 13.704 13.94 14.14 14.14 14.94 14.74 14.94 15.14

T EIS6ECLCSI '47DE TEMPRAT75.E4GRISC Cl

C.O PrISITINS: TIP 3.' (51*A ff . a'nf 7.' (S&*@ 33

70C.C 7CC.C TCC.3 700.0 7CC.C 700.C 703.0 700.0 73".n 700.0 7C. 7,1.0 7 .. 752.C 70.0 710.0

700.0 70O. 700. 7 0.C 70.C 700.C IC.C 7U1. CI0.3 1 7)..C 71.: 7111.0 7l.l 700.0 700.3 73.1

7C0.3 791.C 703.0 7-3.0 70.3 700.0 700.C 703. V 1.7 CRC. ? 1 3O. C I .I 7C0. 713.1 7e.'3 TO.0

700.0 700.n 0 70. . 70..0 11Y. 0.? 7C3.0 ICC. 0 710.0 T.C 7'..' 70.C. 709.0 700.9 TO M.0 71.9
700.C 700.3 70 . 7 73.0 700.0 703.7 7 W3 . 00. 0 7 1'. 7 .

10.1C PSITlnNS TIP 4.96 (SLAB 251 . RCT !.53 (SAR 103

-. 0 38.6 77.' 119.1 132.8 169.8 22e.1 261.4 207.7 32.? W.4 30.6 419.2 446.4 472.4 497.2
521.7 !44.e 56.5 Sit.8 637.1 622.2 633.5 641.7 648.7 t!2.7 46.9 60.6 644.0 667." 664.7 672.1
874.2 676.1 677.0 679.3 60C.6 681.0 682.0 686.7 184.4 685.1 6"5.7 60f.2 060.6 647.0 67.3 687.6
617.8 66.) 688.2 6Ad.1 66.4 666.5 608.6 603.7 140.7 tee.E 665.6 686.8 66.0 6F6.9 684.9 660.9

61.0 686.9 668.9 S85.9 686.9 686.9 668.9 688.0 60 .U 619.9 6n.9 6A.*

20.10 POSITICS: TIP 7.27 (SLAP 3 . ROT 5.3? (SLAP 273

C.n 24.5 49.3 ?3.S 97.8 121.9 149.9 169.7 193.2 211.4 23c.4 262.' 264.2 36.0 327.4 346.4

360.9 389.0 4C6.5 427.5 446.0 463.9 401.3 498.2 S14.5 510.2 946.5 542.3 579.7 594.4 607.7 614.9

620.1 131.6 641.7 646.4 653.4 652.7 e59.2 157.4 89.5 e11.4 S63.1 664.7 666.1 667.5 668.6 669.7

e7r.1 a71.5 672.3 673.3 673.6 674.2 674.7 673.1 675.9 67S.0 670.1 676.4 676.6 676.9 617.) 477.2

O77.3 677.4 677.5 677.6 677.? 677.7 677.8 677.0 677.0 677.9 677.9 677.0

3D.10 PS(0I83TS: TIP 9.33 (SLAs 473 . R01T 6.06 (5118 914

3.0 19.6 39.2 54.1 7b.2 97.6 116.0 171.7 173.3 174.2 19.f 211.6 210.1 740.2 266.2 264.1

301.! 31P.6 33S.9 352.5 3*&.9 315.0 40M.9 416.1 431.4 446.3 46C.8 479.3 449.9 t 9.1 51c.5 642.4

347.3 554.6 546.9 579.6 591.1 601.5 ti^.? 616.6 625.8 631.7 66.i E41.@ S44.? 647.' 644.7 653.8

f52.0 653.1 *54.2 %S.2 656.2 657.1 656.9 658.8 69. (-f.' 76'.9 661.5 662.1 f12.6 661.'s463.5

63.8 ee4.2 114.5 f64.7 665.2 665.1 65.3 665.5 665.4 169.6 665.7 645.7

40.1 POSIT3k5: TIP 11.46 (51A6 913 . eUCT 7.74 (Sp13 31

r.C 16.7 0.4 s 0.2 66.8 93.5 LCZ.C 116.5 132.' 149.3 165.5 141.6 373.6 21.4 :29.2 244.7

260.2 271.4 290.5 335.4 321.1 334.5 348.e 742.9 376.8 390.4 433.A 417.3 429.4 -447.4 4S5.. 467.2

479.1 490.8 502.2 313.4 %24.3 334.9 545.9 556.3 567. !17.0 5S7.6 '10.4 604.4 411.1 617.I 629.3

620.1 632.2 635.9 616.5 641.5 S43.7 145.3 647.3 '48.8 849.9 .46.6 644.6 449.6 650.' 695.' 96 .4

150.1 650.9 651.1 651.3 651.5 .51.7 e51.9 672.0 1*?.1 852.7 697.3 62.9

5O.17 PCStiTCkSt TIP 13.24 (SLAP 77 . 0eT 0.78 (SLAR 441

0.0 14.8 29.6 44.' 59.1 73.8 88.4 1!..' 11.6 132.1 146.5 1-.0 175.1 1809.3 2ni.4 717.9

2!1.2 244.9 258.3 272.7' 285.3 296.5 311.0 324.4 397.1 349.7 162.1 %74.1 14.4 3948.2 4C.9 421.4

4!2.7 440.1 4!4.7 4t!.4 479.9 466.2 496.B %C6.2 936.C 52S.5 94-. 544.4 %93.3 962.9 971.0 m-1.4

3ee.2 S95.3 601.8 6,7.6 612.7 617.3 421.? 624.6 (27.6 63C.1 e32.2 e33.9 E1.4 66.6 f476 658.4

135.1 13.6 64C.1 643.4 640.7 644 441.1 441.2 641.3 641.4 641.4 641.4

60.10 PCSITICS ft 15.74 (St8 773 . Pr"T '.89 (SL4S 9no

C.0 1. 3 2.7 44.o 53.2 66.5 79.7 92.9 106.1 l1.7 132.3 14s.1 110.? 171. 10. A t06.9

200.1 221.7 234.1 246.4 25.7 770.6 267.6 294.6 V-6.4 31P.A 329.% 14r.9 '9?.1 it'.1 '34.1 384.9

395.5 406.0 416.3 426.5 41.6 444.3 454." W8.5 44.9 -4.C 099.3 S;'I. n5 I- 19.' 27.4 55.9

53.2 !!2.1 53.8 577.7 579.3 361.1 56B., 593.7 590.9 6C3.1 607.4 611.0 t14.1 4164. 64*. 621.2

623.0 62&.4 625.7 654.7 677.3 626.2 828.0 629.2 1L2 .' 620.0 63'. 1 637.1

P197t (wiols TIP 1%.24 t14 773 e C :3 17.e (tLAP 53

.3 12.2 24. ! 31.95 .( 60.6 72.q 04.9 37.' U13. ". 1 49'176 34.? ('4.9 1A. ? 1190.0

191.7 273.3 214.5 235.4 231.2 2401.4 299P.5 27".s f6.' 307.2 11.- Z1594.' 1 14.. - 44.6 AS .

714.3 34.6 36m.4 054. ) 43.5 412.6 427.c 41.1 44 .. ' 647. - -%7.' 0490 47.- : :7.' , '.94. 4..5

334.2 11.9 521.3 97.. 3m3.7 m49.2 ws".1 596.? '61., - 7".1 576. 50-14 4-9 -,.? '94.7 S96.3

LCI.4 %V4.2 6,46.N h'I.? 311.5 612.t 635.7 4 . 2 . m'.6 m3'.- 44.1

63.' P15i61 TIP 34.24 (SLA 773 . ("IT 11.07 (tilA 43

11.2 2.' 19.4 44.m 96. 17.i 30.1 E'.4 ( Is 111.9 12.5 109.5 144.4 !S%.% 145t.1

11 g 17.9- 196.2 216.7 219.1 ?24.b 24C.' 293.3 26'.4 2770.! ?7- .'r 241.3 91* 33' W. 930t .4 120.1

31A.6 747.q 937.1 364.7 3175.2 374.' !97.8 471.4 4'14. 1 41.1 421'.4 414.? 44?.? 45f.- 4c4.0 464.)

413 .91 40C.8 %6*.1 405.2? 5.I7.31 3;.. 413 57.2 i ;#.6f !74.0 541. -647.5 % 5' S064.% 9409

314. 1 57P.3 30.0 4 S51.2 Sod.LIQ .t V.9* .5f, %94.3 5341 V. . 7 493., "?.?

9).'9 P"$(TI1491 TIP 1'5.?' (918 ?73 . lr7 11.16Ma (568 61

a..) 1(*4 22.0' '13.? 4 3. %:.. C 6'.3 12.7 d%.. 4) t. I1I'. p 114.0 126.' 144.3 144.2 35.91

364.3 170.37 R4.3 18 4..1 7^ 3. 1 2311.4h 72.' 212. 9 147.4 291.' Zt- I Z 7. 779*. 7R407 P 149 . 0 lf%0

!15.F 324.4 51.0 043.9 9j*j4 96.7 161.r A157.? 'q-.1 211. A acc 1 6 S.,; %14.; 7.' 47$.4 4%6.7

4467. 45 I.,; 45T.3 6064t.7? 411.4 477.5 494.3 453I.. 4"- .4 ; 5' . t..-,. .. 7 s434.5 -A'. I r?.& 413* q 3.

541.2 '64. I.'. S4~ U... 8. 9354
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TABLE V eOfRT 4

SICE "eEAT LCS

UItB (R (I4F0E S 3P
TIE STEP- 0.200 SECONCS
DISTANCE SETWEE& AODES. 0.4011 CENTINETERS

DISTANCES VRCP 11-E SaTfACE AT EACoe %CCEICEUTIMETMS)

C.20 0.6c 1.cO 1.40 1.00 2.21 2.61 3.31 3.41 3.P1 4.21 4.61 S.51 5.41 5.82 6.22

6.62 7.02 7.42 7.82 4.22 6.62 9.02 9.42 9.83 1'.23 14.63 I1.C3 11.43 11.64 12.23 12.63
13.03 13.44 13.64 14.24 14.64 15.4 .

9 EIE( SECONOS) NOuE TE$PERATURES40DGREES Cl

0.0 POSITICS* TIP .c (SLAS of , AT . (SLAB !I

70C.C 700.0 701.3 710.0 700.0 700.0 700.0 703 710.C 7c0.0 70.' 70.0 7'0.0 70. 700.0 700.0

700.0 700.0 7C0.0 7.0C.0 700.0 700.0 7C0.C 700.3 700.5 70V.0 70.n 7n.0 7'".o 704on 700.0 700.0

Ino.0 70.0 700.l 70.0 700.0 700.3

10.ZC voSITtIIS: TIP 5.61 ISLAS 153 , RVCT 4.? ISLAB its

C.0 64.1 127.5 169.4 249.2 306.4 3WC.3 41C.6 457.2 500.3 542.8 579.7 615.5 6'9.9 654.2 661.3

687.4 673.3 677.5 680.7 683.1 604.9 606.2 687.1 607.7 68P.1 F68.4 004.5 61.7 60%.7 88. f8-6.

688.0 6*6.6 6eE.8 66.6 688.6 60.6

20.20 PCSITICMSS TIP 7.86 (SLAS 2C5 , ROfT F.P (OLAS 13

0.0 45.6 93.9 135.6 179.9 223.2 265.4 3C6.4 345.9 363.6 420. 4%4.3 46.4 S17.2 447.9 576.0

6C3.6 624.4 638.7 649.0 653.7 656.2 .62.1 6.3 668.' 670.1 671.0 673.3 674.5 f75.3 676.0 676.5

676.9 677.2 677.4 677.6 677.1 677.7

30.20 POSITIONS: TIP 3.84 (SLAS 21' , 6rVT 7.'4 (SLAP 181

0.0 37.3 74.6 111.5 148.1 164.2 219.? 254.4 28.4 321.4 151.4 3A4.4 414.2 442.S 470I.2 496.?

521.0 545.9 568.9 392.1 611.0% 625.5 636.2 64!.7 643.6 651.7 634.0 6as.8 657.6 659.2 668.6 661.7

6e2.7 663.4 644.3 66.56 .664.8 684.9

40.20 POSITICS: TIP 12.03 (Stee 343 0 aCIT S.14 SLA 211

0.0 32.2 64.4 )6.4 128.1 159.5 190.5 221.1 251.1 200.4 ?I. 2 331.1 364.4 100.8 416. 441.'

464.7 487.5 5C9.4 530.5 551.7 570.6 S6.o 60C5.9 618.? 628.5 el. 641.4 645.5 64'.4 49.1 649.4

650.0 650.1 6S0.4 t50.7 650.9 651.0

5C.2C PSIT IONS: TIP 15.24 (SLAS 03C . 900T .. 17 (SLA 233

0.0 7p.7 57.2 957 114.0 142.1 183.9 17.3 224.1 250.9 277., 39T.6 4.6 6 442.n 475.7 396.8

421.2 442.8 463.7 483.9 503.3 321.9 540.8 557.8 573.4 590.6 614.4 61.7 621.7 27.A 641.9 634.9

637.0 63P.3 f39. 6339.7 640.0 64n.1

60.20 POSITOPWS: TIP 1S.74 (SLAS 393 , RCCT 1(.14 (SLAP 26

C.C 25.9 *1.8 17.6 133.3 128.8 154.0 179.) 23.7 22P.1 257.0 275.6 236.' 321.4 343.5 365.1

386.1 406.6 426.5 445.8 464.4 482.4 499.7 516.3 532.3 48.4 563.' 577.6 54q.9 6 0.0 60q.1 614.3

613.1 922.5 624.q 626.6 627.6 628.0

70.20 PCSITICAS: TIP 15.24 (SLAS "9I . ROOT 11.2? SLAP 793

0.0 23.8 47.5 71.1 94.7 118.1 141.3 164. 3 107.1 2P9.S 23L.7 254.t6 lF4.1 294.2 31b.9 337.

356.S 376.2 335. 1 413.4 431.1 446.4 46'r.C 401.1 49f.? 11l.7 '!26.2 533.7 1554.5 56.6 '576-1 507.6

595.3 60,.4 6(t.' V. .3 611.4 612.1

80.20 PrISITIONS: 7IP 15.?4 (SLAR 403 , RCC7 12.2 (SLAP 313

0.0 22.3 43.9 t,5.7? 64. S1U9.2 13007 12.0 173.1 14.1. 2140? 215.) 755.1 274.c 294.? 313.1k

331.9 350.1 368.1 3465.3 402.2 416.7 414.7 45r.t 465.1 479.6 493.1 5069 537. 1 44.b SSM.3

565.e 574.4 581.2 566.2 519.S 591.1

+3.20 
PCSITICkS: TIP 15.24 (SLA8 2c3 , 31-'T 12.68 (SLAM '5

c . 7 0.4 40.3 b1.1 d1.4 101.5 121.t 141.4 161.1 18C.7 15%;1 219.1 237.8 2S6.0 274.5 292.4

310.0 327.2 344. ) 60.4 376.4 392.1 607.2 421.9 43n.1 449.0 66A.2 475.9 4*1.2 49*8 511.1 21.6

c31.6 54M.8 55.3 5%6.0 5o.6 S6.4
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TABLE V vPAtI s

SICE HEAT -CSS

NUMBER tF NODES 36
T NE STEP. o.Cso SECCNCS
DISTANCE 84ETWEt6 ACDES= 0.4011 CE9fTPETERS

DISTANCES FSCP T)EE SURF*Cf AT EAC)- lbCUIICENTIPETERSI

0.20 O.6C 1.C) 1.40 3.60 2.21 2.t1 3.01 3.41 3.P1 4.21 4.61 5.01 5.41 4.57 6.22
6.t2 7.02 7.42 7.82 8.22 8.62 9.02 9.42 9.83 IC.23 10.63 11.03 11.43 11.93 12.23 12.63

13.03 1M.44 13.64 14.24 14.64 15.04

TINEISECONOSI NOE TEMPERAFURkSI0EGREES Cl

PCSETIcljS: TIP f.P (SLAB r I I RMT C.r (SLAB r.,

701.C 70C.C Tc., 7I0.0 700.0 700.0 700.c 700.0 70. 730.0 73c.C 70.0 73C.. 7C." 7C0.0 7"0.0
TC0.C 700.0 700.C 700. 7C0.C 700.C 700.C TCC.0 7'r.C 7e.) 7f.t) ."n.1 yn. 7"4.0 yC7. 0 y13.0

)CC.c TCC.0 7c. 7c.0 7T0.0 700.0

10.C5 POSITIONS: TIP 5.39 (SLAB 14 , .)0rT 4.0 (SLAB I

0.0 66.1 133.5 195.6 257.8 317.1 !74.6 42e.4 478.6 52f.2 568.1 615.7 632.9 65f.6 '59.@ 667.1

73.2 677.7 681.1 643.5 685.3 686.5 687.4 687.9 e9.7 1E9.6 610.7 698.9 48.9 es8.9 489.' 689.0

639.) 680.0 6eS.3 S9. 689.0 689.0

20.35 POSITIONS: TIP 7.46 (SLAP 1-) , kCfT 5.45 SLAP 19-

C.C 47.8 9'.4 142.5 189.9 234.4 7?7.7 321.7 363.' 4)3.1 441.1 477.2 S11. 9&4.C 1-73.1 600.%

622.0 637.4 648.3 6'.d 659.3 662.1 9t5.3 668.0 67.2 672.0 673.4 674.6 675.5 676.2 676.7 677.1

677.4 677.6 677.8 677.9 677.9 678.0

30.05 PCSITICAS: TIP 9.39 (SLAB 241 , R'?T 6.f' I SLAP 17

c.O' 39.2 78.2 116.9 155.3 193.1 23.! 211.7 ?C2.3 736.c 37C.5 "7.' 454.1 464.f 492.6 519.8

!46.C 59.6 592.2 610.9 625.5 636.4 644.3 650.0 652.1 654.2 656.? 657.Q 6,0.5 640.t 662.0 66P.9

663.7 64.4 614.9 6.5.2 665.5 665.6

40.04 POSITIONS: TIP 11.42 (SLAB ?9 , frUT 7.68 t-SLA6 2")

0.0 33.8 67.4 1:. 9 134.2 167.0 1 54.5 231.4 262.8 2c3.5 321.6 7452.R 391.2 419.4 435.5 461.2

486.0 5%9.7 532.5 i54.1 573.5 592.1 607.5 619.9 125.5 (36.Q 642.4 646.6 449.4 64+.f 649.8 65".2

150.6 551.1 651.4 651.7 651.9 652.1

50.04 POSITICNS: TIP 15.24 (StA@ 9 , RDOT e.61 (SLM "??

1.0 30.0 59.A 89.6 119.2 148.5 177.5 200.2 234.4 262.' 7(0.4 316.1 342.2 3%7.6 92.4 416.4

439.7 4f2.2 483.9 5"4.7 524.8 544.1 561.9 573.8 593.4 6eb.7 615.5 21.1 6?13. 61'.r 636.' 63*.1
639.7 640.6 641.4 642.6 643.2 643.5

60.C4 POSITIONS: TIP 1'.24 (SLAR 301 , an')T C.6I (SA" ?51

C.0 27.1 54.1 81.0 17. 8 134.4 110.7 196.8 212.t 23.n 262.c 297.5 311.6 335.1 358.1 390.6

402.4 423.7 444.3 464.3 483.6 502.2 52'.2 537.4 553.n 568.2 581.2 501.3 6"2.8 63.4 61%.4 621.0

C24.5 127.0 129.8 3C.1 63.8 631.?

POSITIONS: TIP 1'.?' (SLAP A1 , GCT 10.65 (SLAP 27)

c.c 24.8 4.5 74.1 08.7 123.0 147.2 171.2 394.9 219.3 Z41.4 264.1 286.5 I'3M4 329.q 3SM.9

371.6 391.5 411.) 479.9 448.3 466.2 483.4 SCC.0 516.0 541.4 546.4 559-4 573.A 542.5 *1.5 *8-.4

6C4.6 b00.1 612.S 614.1 616.4 .17.1

- )3 POSITICAS: TIP 1'.24 (SLAR I) , 9-:T 11.66 (SLA 3)

%.0 22.% 4v.T 69.4 01.1 113.6 136.0 159.3 IF.V.1 2:1. 22t.3 244.5 265.3 ?8.8 375.9 375.7

345.) 313.9 332.4 4-').3 417.9 434. 451.4 467.4 42.8 47.8 517.7 52'-.1 510.4 *1. nS62*4 72.?

580.3 59,.8 591.4 549.6 599.1 5S.3

90.03 POSITIONS: TIP 1.74 (SLAI "C * . 1'T 1."? (SLAP VI

0.C 21.2 47.4 V4.5 84.6 105.5 126.' 147. 167.5 107.7 2"7.4 277.6 '47.1 206.1 ?9.7 e1. e

?22.n 339.8 357.3 34.1 ;9 .9 47-1 422. 438-1 '52.9 4^7. %1. ''4'' '' ' r'42.3

6!2.4 56;.2 566.8 171.7 S74eV 574.6
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T1t-E V .FART 6

SIn* ME1T LCSS

1UROER CF &CCE5 38
TIME STEP C NIXJLLEO.HIGH LI3IT 0.0032) LC6 LIPIT- 31313
DISTANCE PETadEt6 !0ES= '3.4)11 CENTEINTEAS

DISTANCES FPP T6E SURFACE AT EACH %0oE(CENTIMETEqS-

C.2C 0.60 1. Zo 1..4 1.80 2.21 2.61 3.01 3.41 3.81 4.21 4.41 5. 1 5.41 5.*! 6.22
6.6? 7.02 7.42 7.82 6.22 !4267 .02 9,42 S.83 1.23 10.63 11.C3 11.43 11.83 1.223 12.43

13.C3 13.44 13.84 14.24 14.64 15.14

71NEt SECCNOSI NCUE T8fPERATUIRES(DEG9EES C,

-. 3 PCSITICNS: TIP Z. A (StAR IP .N3'T . SLAP 4)1

70O. 0.3 7 Q3.1 70 I .0 73.0 73).C 7 -0. C 1.0 1T. r : f.I Trill 7.'. 70. .1 70Nn.) 7 00.0
7CC.C 700.0 70. 70. 3 7D0.3 TC.0 70".0 703. 72?.f 7. 7.^ )." 7.3 71').l ?nn.C 7:'.3 7%0.0
70f'.0 7.,:).0 71 . 79Vi.0 V700.C 700.C

10.)0 POSITIF3S: TIP 5.?" (SLAP 1s , kCoT A.94 ISLAP 13)

.: 67.1 1!3.6 198.7 261.9 322.5 !8.2 434.4 485.'' 532.5 574.2 61f.6 636.7 652.6 #61.4 t66.7
674.3 678.6 681.7 684.) 685.6 *66.9 687.5 696.1 638.4 6P8.6 688.5 698.4 488.0 646.n 488.9 69.0
tes.C 689. C 689.1 639.3 689.1 689.0

20.02 PVSITICNS: TIP 7.41 (SLAR 16) . ACIT c.'4 (SLAR 14)

.0 46.3 96.4 144.) 10 .; 236.7 281.4 324.8 366.7 406.8 445.2 481.5 515.Q S48.5 577.? 44.1
624.9 649.5 t49.7 34.7 659.0 662.7 665.8 668.4 67'.5 672.3 671.6 674.7 675.6 676.7 8?6.7 677.1
677.4 677.6 677.7 677.8 677.9 677.9

3.1.12 P'SITI1NS: TIP 9.14 (SLAK 241 * FOT (.60 (SLAB ITS

C.0 30.4 78.7 117.7 156.3 194.4 211.f 268.4 ?C4.1 338.8 3772.4 4:4.9 436.1 466.- 404.4 521.5
547.e 571.4 594.? 612.8 627.1 637.6 645.1 653.3 632.4 6f4.5 6Se.4 658.1 669.1 661.3 662.1 63.1
88?.9 664.! 6t5.3 665.3 665.5 665.7

4'.32 POSITICNS: TIP 11.18 (SLAB 1cl . 6:1 7.t6 I:SLAC 2'

C.^ 33.9 67.7 11.3 134.7 167.7 200.2 232.3 26).8 204.' '24.7 153.4 '82.4 41C.fc "6.6 462.3
487.) 510.7 531.3 555.2 '74.7 593.3 6C8.6 620.9 63 .3 837.5 64?.c 647.^ 65-.' 649.6 649.Q 651.3
650.7 651.2 651.N 661.9 b52.1 652.2

5C.C6 POSITICNS: TIP 14.!-2 (SLAP 37 . R IT 8.6. (SLS% 2'

Y. .3 C. 6X. n9. 119.4 148.8 117.8 2Ct.5 234.* 2t2.! 284.f4 316.5 342.5 I67. '?.6 416..
435.8 462.2 483.- 54.6 524.6 544.1 561.8 519.0 593.8 063.1 61&.9 67.5 621.7 F23.3 636.3 611.4
64n.3 641.3 642.8 645.4 657.1 650.1

60.32 P:SITIONSI TIP 1!.24 (SLAP 395 * 6Ce7 C.6 (SLAR 251

C.c 27.1 !4.1 *1.1 137.C 134.5 16.8 186.9 212.7 ?18.1 263.1 287.6 '111.6 13S.? 5A.2 ?0A.6

402.4 423.6 +44.1 444.. 43.3 51.8 519.7 636.9 3 '.4 6e. 581.e 5 3.6 603.3 611.7 611.5 672.5
e26.4 (2S.5 f31.9 633.7 635.: 635.6

70.02 P1SITICASt TIP 15.24 (Stee asi . 8rI1 I(.6S (SLAP ?7

C.C 24.8 49.5 74.1 68.6 123.0 147.2 171.1 194.P 218.2 241.3 254.) 2'6.0 319.3 ?20.7 35'.7
371.2 341.2 41J. 7 429.6 444.0 46.b 483. 499.6 514.6 53L.3 %46.L 554.3 %72.1 54'.2 9P.6 641.4
606.6 611.5 615.2 617.8 618.6 623.3

sc. cl 6fSITICNSS TI1 15.74 (SLAS 3) q m.O1T 11.+6 (SLAP 3 I

.0 72.8 45.6 63.4 91.0 113.5 13.4 156.1 18:.^ 2f.7 22'.2 244.3 265.2 2S5.7 30.3 326.6
344.f 363.7 382.2 4)l.2 417.7 434.? 451.2 467.2 482.7 47.7 '12.1 !26.1 c3.5 52.7 563.1 6!3.3
741.1 5gP.T 194.3 5;.C 8re.6 601.8

91.31 POCSITItS: TIP 15.74 (stE E ) , RCCCI 12.'e (St&e A1'1

r.C 21.2 47.4 63.5 34.5 15., 126.3 146.9 167.4 1P7.7 237.7 2?7.5 247.C 2k6.7 'PP.1 I1n.7
?21.q 331.4 11.2 374.3 ii'.9 407.1 427.9 438.2 451.1 467.4 4A1.3 494.6 447. 319.' 6'1.' 643.1
*52.S 561.4 568.? 573.4 576." 578.6
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TARLE V ,PhkT I

SIDE "EAT WLS

NUMeEM C ACCES 3P
T10nE STEP CrhTPCLLEO8IGf. LItOT. t.33063 LOM L1*I. f .0003'
OISTANCE AfToiME td)fl(S. C.4311 CUNTIOLTERS

DISTANCES FRVO TE SURFACE AT rAC4 NlifICENIlMETERSS
(.2C J.60 1.7) 1.41 1.13 2.21 2.61 3.31 ?.4 1 .8 f
6.62 7..)? 7.42 7.52 4.22 8.6? 9. ? 0.42 9.8' 10.2.1

13.C3 13.44 14.44 14.24 14.64 15.04

TEPEISECCA

10.)2

22. 2

43.12

53.02

4.21 4.61 5.C1 5.41 5.n 6.22
11.63 11.C3 11.43 11.81 12.7 12. "

CST A6rD TE"PERAF1JRESIDEGRkES C1

PISITIONS: TIP C.e ISLA 'I . Kr-iT .r IstAb at
700.C 701..0 c CC.c 7 r,. 0 ?71 .0 7 0.C TCC.MC 7CC.! 7c i. r 7c 1. r 70. 7 )0.0 VIN. 71.-1t~ 700.C

T17C. C 700 . .0 70U.3 Ir).O 70o.: 700.0 700 .0 700M.0j 700.f: 73." 7 :.f 71(.. 7 MI.C c Tlr. 0yasye
7c0.C 70C.c Cc. ? 7.C TCo. C 70r.C

PCSITICAS: TIP 5.3 (SLAF 141 . 4T 3.96 (Stag I's

c.C 66.7 132.6 17.3 260.1 320.4 377.8 431.9 482.4 S30. '71.6 e0 l.? 635.2 t51.9 f6." 668.2
674.0 678.3 481.5 6d3.9 68.6 686.7 6W7.5 60E.0 6P8.4 664.6 4k6.d 648.9 6Ae.8 669.9 684.1 649.l

68C.C 689..) 689.3 649.3 689.1 669.0

POSIIONS: TIP 7.47 (SLAR 191 R*OnT 5.46 (SLa 14)

C.0 47.9 95.5 142.7 189.1 234.6 278.C 321.9 36'.3 4C3.0 446.9 476.8 51'.8 643.5 5?2.8 60.6
62i. 3 637.7 648. 653.9 654.4 662.3 665.5 668.2 610.4 472.? 673.4 674.7 676.6 676.? 67c4. 677.1
677.4 677.6 617.e 677.9 677.9 618.0

POSITIUNS: TIP 9.40 (SLA 241 . RCCT 6.66 (6taL 17)

C.c !9.1 70. 116.7 155.0 192.7 220.8 266.1 301.6 336.0 369.4 401.7 432. 4f?.5 490.9 518.0
544.3 5b8.1 591.1 610.2 625.1 616.1 644.1 650.0 652.1 654.2 656.2 6%7.9 659.5 660.9 662.0 663.0
.663.0 604.4 6e4.+ f6.3 665.5 665.7

PJSITICNS: TIP 11.Sn (SLAN 2Cl . Pf;T ?.Fr. (i504 2")

r.0 43.6 67.) 1~ .3 133.4 166.0 ISP.? 229.9 4fl.c 291.6 321.2 3Sr.1 378.1 ''5.3 431.. 456.0
481.C 534.1 526.2 548.1 S,,.3 508.3 604.9 618.2 626.4 o36.r 641.? 644.9 O44,4 f4q.c 645.5 463*7
653.6 651.1 651.5 6.1.3 652.C 652.1

PoSITIONS: TIP 1!.24 (SLAP ?91 . kruT 8.41 sta 7)

C.c 29.7 !9.3 e.7 118.3 147.C 11'.f 2C4.1 232. ?5.' 706.4 31?.? 3'4.4 34.5 387.P 411.4
'34.3 456.4 477. 498.4 51.2 537.8 556.7 573.2 !P .? 462.5 613.2 621.5 6?. 4 652.3 o*".6 617.1

635.4 f4r.6 441.5 642.1 642.6 642.9

POSIfICAS: TIP 1.74 (SLOE 39 . 5(07 .95 (CLA 751

C.0 26.8 53.4 An.C 126.5 132.0 158.8 184.5 2,8.9 2".( 21!.6 243.P ?7.6' .4
397.1 418.0 43F.2 4i7.8 476.7 494.9 r12.4 526.2 '46. . 561.1 576.1 59d.9 549.5 618.'
423.6 626.3 629.3 9.e.6 653.4 630.8

73.21

'53.5 375.6
614.7 619.8

#A(SIT INS: TIP 1.24 41LA 3Q19 . i'T 1'."? 6SLF. 20)

0. 24.4 4d.o 73.1 97.3 121.4 145.2 6d.9 14?.2 ?1!. 3 23.1 24'.5 292.' 34.1 25.3 346.)
366.2 185.9 4C.1 423.7 441.8 454.j *76.? 492.o 501.3 23.6 S 37.'. 552.6 6.1 5 5677.3 547.4 695.7
632.? 6c7.3 oll.1 613.8 015.5 616.3

PfS1i!0NS: TIP 15.24 (SLAp 3Q) . R1'T 11.4 itT8M 3')

C.C 22.5 45., c7.4 39.7 111.0 13'.c 155.o 177.4 2...6 2? . 1&'-. 261.4 ?1.* e I1.
339.7 356.3 376.5 594.2 411.4 423.1 444.3 462.3 4 7.7 49.8 A '4.' 1 7.6 6'1. 7 rf.3.A 'j. I
615.2 592.7 54.6 512.9 595.7 597.1

120.7
p65.9

POSITICS: TIP 11.24 (LAR -,: . 4. T 1.17 1 (616 ''I

C.0 2).9 41.4 62.6 33.4 123.9 124.4 144.? l4.4 IF4. 2 . 1 '.t Z2'. 1 " 262.? :,.q 2 Q4.
316.9 334.5 !!1.6 3,..4 354.7 400.6 416.1 431.1 44'.6 451. 473.? 4"6.? . 51". ? ?.1 5'3*3

543.9 152.6 56).4 SS6.2 512.1 571.9



Table VI

Results at 60 Seconds

Sensitivity of the Results to Time Step and Space Mesh Size
Side Heat Loss

T = 700 0 C, L = 15.24

columnar growth, h5 =

cm, no convection, surface temperature = 00 C, (t < 0),

0.001, w = 1 cm, Tas = 0 C

At

.1

.1

.1

.2

.05
*.0002 max

.0001 min
*.0006 max

.0003 min

.1

0**

XL

15.24

15.24

15.24

15.24

15.24

15.24

15.24

15.24

15.24

Extrapolated back to zero slab width.

Fine steps controlled by program. These

Extrapolated back to zero time step.

XE

10.21

9.84

9.80

10.19

9.65

9.66

9.85

9.80

9.57

Tcenter

626.5

629.2

630.1

628.0

631.2

635.6

630.7

630.4

632.2

tlst

X 0.75

34.5

35.4

35.5

33.8

37.0

36.9

35.1

35.5

37.8

are accuracy limits.

part

1

2

3

4

5

6

7

8

9

N

19

38

76

38

38

38

38

oft

38

t
*

**
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Appendix F

Thin Plate Castings

This appendix describes the physical model and

analytical approximations made in describing heat flow

in end chilled plates with h controlled side heat flow.

1. Physical Basis

Many experiments made on thin plate castings(31)

have shown that for h controlled heat flow (h sw/K << 1),*

and for mushy alloys that freeze over a wide range of

temperature, the structure during the process of solidifi-

cation is as pictured in Figure 54a. For example, the work

of Bardes and Flemings(31) with thin plates (w = 0.114 cm

to w = 0.447cm) cast in a copper mold (h = 0.04
5

cal/cm 2oC sec) of Al-4.5% Cu alloy showed that the tempera-

ture gradients across the specimen were very small, that the

dendrite arm spacing was nearly constant across the specimen,

and that both the start of freeze isotherm and eutectic or

end of freeze isotherm occurred throughout the specimen at

nearly the same time, respectively.

Thus, solidification does not proceed inwards from

the mold walls as is often intuitively thought to be the

case, but proceeds at a nearly uniform rate throughout the

casting by nucleation and/or growth of dendrite arms. The

simple,$'cheil equqtlon shown to approximately apply for this
*
Note: w will be used for the half width (y direction) of the

casting in this appendix.
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and many other alloys(3,19) quantitatively relates local

fraction solid, fs, to liquid composition, CL, at any

location:

CL 1/k-i
fs C (1

0

where C = starting alloy composition

k = equilibrium partition ratio, Cs/CL

and liquid composition is a function only of temperature T:

T - TL
C = C + L (F2)
L 0 m

where TL = liquidus temperature

m = slope of the liquidus.

Thus, fraction solid at a given location is a function

only of temperature. Since temperature varies only slightly

from center to surface of a casting when h sw/K << 1, f action

solid must also vary only slightly, as sketched in Figure 54.

As a specific example, consider a variation in center to

surface temperature of 10C, for Al-4.5% Cu alloy. Calculations

using equations (Fl) and (F2) shows that at no temperature

above the eutectic can there be more than a 7% difference in

fraction solid between center and surface.

Consider now the same plate casting, where

h sw/K << 1, but with a water chill at one end of the

casting, such that hbL/K >> 1, where hb is the heat transfer

coefficient at the metal-water cooled chill interface, and L

is the length of the casting in the x direction. Now the
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distribution of fraction solid during solidification must

be as sketched in Figure 54b, with a marked variation in f

along the plate length, but negligible variation across the

plate thickness. Fraction solid at any time during

solidification remains a single valued fraction of tempera-

ture as given by equations (Fl) and (F2).

2. Mathematical Statement of the Assumptions

This section justifies the mathematical technique

used herein of treating two dimensional heat flow in end

chilled plate castings (where h sw/K << 1) by adding a

simple term to a one dimensional heat flow analysis. The

heat flow equation in two dimensions, in the absence of a

change of phase, is:

2 2 (F3)

ax ay

where a is thermal diffusivity, K/pCp.

Integrating equation (F3) from 0 to y, holding x and

t constant yields:

1 YT y a2 Fy
- / .- dy = = dy + | (F4)
a0 atoax a

Since T = f(x,y,t) where f is continuous and

differentiable with respect to t and x, then

f gdy a Tdy (F5)at at 0fd
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and
y a2T a2 y
f dy = f Tdy (F6)
0oax ax 0

y
The term aT/ay| may be evaluated directly at y = 0

0
and y = w

3T
aT = = 0 (F7)

y = 0

(centerline)

T s (T - T a,s) (F8)

y= w K

(surface)

where Tw is the temperature at the surface, C

T is the ambient temperature at the interface, 0 C

h is the heat transfer coefficient at the interface
in the y direction, cal/cm2 oC sec

Therefore

- Tw - ~ Ts - 0 (F9)
S Kas

Substituting (F5), (F6), and (F91 into equation (F4)

yields

w 2 w h

2 Tdy = f Tdy + s (Tw - T ) (FlO)
0  ax o K

Define the average temperature in the y direction, T, as

' w
w f Tdy (Fli)

0
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Substituting (Fl1) into (FlO) and dividing by w gives

= T + -(Tw -T ars) (F12)
3x Kwas

The only assumption to be made is the following; if

Tw T, which is approximately correct for h sw/K << 1, then

a substitution of T for Tw in equation (F12) yields a

differential equation

1-r 2-r hE
_ + (T - T (F13)

a-tx R a,s3xKw

which may be integrated in x to be solved.

- Equation (F13) is the result desired. That is, it

shows that for the case considered, heat flow can be treated

as in a one dimensional problem with an added term (the

term at the right of equation F13). The only assumption

made in obtaining equation (F13) is that hw/K is much less
5

than unity.

In the foregoing discussion, no mention has been made

of change in state (i.e., solidification). However, if

fraction solid is a function only of temperature, as

discussed above and as depicted in Figure 54b, then this

formation of solid will affect only the apparent macroscopic

heat capacity (C p) of the solid liquid mixture. Therefore,

the constant a (K/pC ) in equation (F13) will be changed,

but the equation will apply without modification.
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In the computer model herein discussed below, a

discontinuity in fraction solid occurs at the eutectic

temperature as predicted by the Scheil equation (9% for

Al-4.5% Cu). In addition, for mathematical convenience,

a discontinuity is assumed at the dendrite tips (5% for

most of this work). These.discontinuities are relatively

small and mean simply that even with extremely small

temperature differences across the plate thickness,

differences in fraction solid across the plate thickness

is 5% at the beginning of solidification and 9% at the end.

3. Computer Model

The canputer model for the side heat loss is as

follows. The removal of heat through the y direction is

calculated separately, applied to each slab after the x

direction heat flow equations have been applied at the

particular time step. The finite difference equation

AT = At hs a,s - T(J))/wC p (F14)

where T(J) is the temperature of the J-th slab

is applied to all slabs except those containing the tip or

root.*

* Here, the terms "tip" or "root" are used for "start of
freeze" or "end of freeze" isotherms.
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The two slabs which contain the tip or root use the

condition;

q = h (T - T(J))/w (F15)
y s a,s

where q is the heat out in the y direction, cal/cm 2/sec

and this heat is included in the motion equations (for

example, at the tip)

AxL/At = (heat in, x direction -
heat out, x direction -
gy)/ftpH (F16)

where ft is the fraction solid at the tip

H is the heat of fusion.

Finally, if sidewise cooling of liquid ahead of the

position of the tip has caused the temperature of the liquid

to drop below the start of freeze temperature, a new position

of the tip is set by interpolating the intersection of the

temperature profile with the liquidus temperature. The

program treats the position of the tip as if it represents

the boundary between the region T > TL and the region T < TL'

This treatment of the tip position can result in an apparently

infinite velocity of the tip, as seen in Figures 22, 25.

This effect is realistic only when "tip" and "root" are

defined as in the footnote on the previous page, i.e., solid

nucleates along the length of the ingot in slightly under-

cooled liquid.



a) h controlled cast plate

b) h controlled end-chilled cast plate

R ISER END-

Figure 54. Schematic representation of an h controlled cast plate.
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