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ABSTRACT

A mathematical model for heat flow during solidifi-
cation of alloys has been postulated. This model treats
the heat of fusion released upon solidification separately
for three distinct regions of a casting; a portion is
released isothermally at the liquidus temperature, a
second portion is released over the range of temperature
between the liquidus and solidus in a specified manner,
and the remainder is released at the solidus.

The mathematical model is solved numerically, by
means of a finite difference technique, on a computer.
Results of the solutions are presented for unidirectional
heat flow, radial heat flow, and two dimensional heat flow
in thin plates. For each of these cases, effects are
considered of heat transfer coefficient at the chill
surface, superheat, heat input, and liquid convection.

Results are presented in terms of positions of
liquidus and solidus isotherms as a function of time,
width of the liquid-solid zone as a function of time, and
"local solidification time" Detailed numerical solutions
are presented, as example, for an end chilled plate cast
in various molding media. The local solidification time
of an alloy is shown to decrease at a given distance from
the chill, as (a) the heat transfer coefficient increases,
(b) the superheat increases, (c) the gradient of tempera-
ture at the solidification front increases, (d) the
characteristic distance over which heat flow occurs
decreases, and (e) the multi-dimensionality of the heat
flow path increases.

Thesis Supervisor: Merton C. Flemings
Title: Professor of Metallurgy
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Chapter I

INTRODUCTION

The important influence of dendrite arm spacing on
mechanical properties of cast aluminum alloys, and of
wrought material produced from-cast ingots, is now well
documented. (1,2) Also well aocumented is the experimental
observation that the major factor influencing dendrite arm
spacing of a given alloy is "local cooling rate" (or "local
solidification time") which is inversely proportional to
local cooling rate. (3-5)

Thus, it has been evident that a method, and perhaps
the only method, of significantly reducing dendrite arm
spacing in cast ingots is to alter heat flow conditions
within the solidifying ingot. Much attention has therefore
been given recently in applied studies to do this; all of
these studies have been aimed at seeking ways to accelerate
rate of heat extraction, thereby increasing local cooling
rate and reducing dendrite arm spacing.

In this work, the aim is to study analytically
heat flow in a solidifying ‘"mushy" alloy.

The major aim, following successful computer modelling of
the heat flow problem, is to determine if there are ways,
other than by increasing rate of heat extraction, of
increasing local cooling rate, and therefore reducing
dendrite arm spacing. This and other guestions to be

studied in this work are listed below:



(1)

(2)

(3)

(4)

(5)

(6)

What is the effect of convection on local
solidification time?

What is the effect on local solidification time
of addition of heat to the liquid or liquid-
plus-solid zone of a solidifying ingot?

Will the grain structure of an ingot
appreciably affect heat flow, including local
solidification time?

In addition to increasing overall rate of heat
extraction, are there practical ways to
control heat flow in ingot solidification to
reduce local solidificatioh time?

What is the effect of geometry? Specifically,
how does the local solidification time at
specific points in an ingot.change as heat is
removed in more than one dimension, as in
cylindrical ingots or those in which heat is
lost through the side of the ingot as well as
the bottom or chill.

How important is the heat transfer rate at

the surface of an ingot to the local solidifi-

cation time at points within the ingot.

The problem of solving heat flow equations when

melting or solidification takes place is not a new one.

Classically, the one dimensional problem of solidification

of a pure material is known as the Stefan problem; and

analytic solutions have been given for several important



cases. (6-9) Several approximate analytic solutions have
been presented for the case of binary alloys, (10-12) and
these will be discussed in a later section. Two
extensive reviews of past work on the general problem

of heat flow in solidification have appeared, (13-14) and
an excellent review of Ruddle describes much experimental
and analytical work prior to 1950.(29)

Finite difference methods have been used in solution
of a wide variety of solidification problems, including
solidification of alloys and of complex shapes. Examples
are work of Mizikar, (15) Pehlke, (16) Kroeger(27), Campagna
and Eisen, (17) and Adenis. (18) 1In all cases, these works
have not employed "moving boundaries" as will be used in
this work. 1Instead, heat of solidification has been
approximately accounted for by treating it as an effective
addition to specific heat. Heat released abruptly (as by
a pure metal at its melting point or at the eutectic
isotherm in an alloy solidifying with a eutectic) cannot be
treated directly. The studies refered to above have
assumed this heat was released over a small but finite
temperature region.

In this work, the finite difference method was
employed, but with moving boundaries, so finite heat release
at discrete temperatures (e.g., at eutectic isotherms) can

be treated. The following sections discuss:



(1) the general mathematical statement of the
problem of unidirectional solidification of
binary alloys, in which the last liquid to
freeze is of eutectic composition,

(2) the solidification model employed for
calculations, ‘

(3) methods employed previously in solution of
similar problems, and

(4) the numerical procedure employed for solution

of the problem.

Mathematical Statement of the Problem

A. Unidirectional Heat Flow

We consider here heat flow in unidirectional
solidification of an alloy cast against a flat chill wall.
The equation for heat flow through the metal ingot during

solidification is then:

of

(0C) 57 = 5 ® 32 + (0 W 552 (1)
where:

T = temperature, oC

p = density (gms/cc)
Cp = local average heat capacity (cal/gms/cc)

K = 1local average thermal conductivity

(cal/cmzsec)
t = time, sec

x = distance, cm



H

i

heat of fusion (cal/gm)
fs = fraction solid (weight or volume)
The underlying assumptions in use of Equation (1) are:
(1) Isotherms are parallel to the chill wall and
gradients perpendicular to the heat flow
direction are small;
(2) There are no discontinuities in temperature in
the region to which Eguation (1) applies.
Therefore, the three regions of the casting
(solid, mushy, and ligquid) will require
separate solutions, coupled by the boundary
conditions at the interfaces (dendrite tip
and root).

Taking x = 0 at the chill face, the following

boundary conditions apply:

Al = Fp (B) t >0 (2)

al,; = F, (t) t >0 (3)
where:

L = 1length of casting (cm)

Fq (t), Fz(t) = specified functions.

For liquid poured rapidly in the mold at uniform

temperature, T, initial temperature of the melt is uniform:

T = To(constant) t = 0 (4)



After some time, t:

T = TE t >0 (4a)
X = xp

T = TL t >0 (4b)
X = X,

On cooling below the liquidus temperature,
solidification begins, and thermal properties in the liquid-
solid "mushy zone" are specified functions of fraction

solid and, therefore, of temperature:

K = F3(T); cp = F4(T); p = F5(T); for T < T < T, (5)

Assuming no significant undercooling at the dendrite
tips (of an alloy such as Al-4.5% Cu alloy that freezes
over a range of temperature) the solidification "front" is
at the eutectic isotherm and there is no discontinuity in
fraction solid at the liquidus temperature. Fraction solid
is infinitesimally small at the liquidus temperature and
increases smoothly with decreasing temperature. The
boundary condition across the isdtherm marks the boundary
between the liquid-solid region, and the liquid region is

then:

= dT _ daT
&, T R &, (6a)

t” € e
where:

K_ and K. are the thermal conductivities of the



mushy and liquid zone, respectively, and € is a differential
distance on the x axis. Xy is the location of the dendrite
tips, in this case equal to the location of the liquidus
isotherm, Xp .
If, however, there is significant undercooling at the
solidification front, and if~tﬁis undercooling is dissipated
very close behind the front, then a finite amount of solid

forms very near X and the boundary condition becomes:

t;
dx
= ,dT _ dT . t
Ko (& = K (&) +Hoopfy 3% (6b)
X, € X,+e
t t
where:
ft = fraction solid forming discretely at the

dendrite tips (weight or volume)

Again for an alloy such as Al-4.5% Cu, a finite amount
of solid forms at the location of the eutectic isotherm, X
and the boundary condition at this end of the liquid-solid

region is

dx
= dt _ = ,4T E
K (&—) = K, (a}?) + H N T (7)
X —€ X te
E E
where:
fE is fraction eutectic (weight or volume) which forms
at xg.

B. Radial Heat Flow

Consider the case of a solidifying ingot whose shape is

cylindrical, with radius R and of arbitrarily long length.



The heat flow equation equivalent to Equation (1) becomes:

T _ 13 (g.p.2T
(pcp) 3E = ¢ 5% (K-r ar) + leafs/at (1R)

All initial and boundary conditions (Equations 2-7)

apply, where the position x now refers to position R-r.

C. Sidewise Heat Loss

Consider an ingot of length L, with heat flowing
through a chill in the x direction, and of width 2W, in
the y direction. If heat flows across the boundaries in
the x-y planes at y = W and at y = -W and we assume this
heat loss takes place slowly enough that there are no
temperature gradients in the y direction (refer to Appendix

F), then Equation (1) becomes:

T _ 3 g oT
(pcp) 3t - 3% (K BX) + szafs/axt+ qx (1S)

All initial and boundary conditions (Equations 2-7)

still apply, with the additional conditions;

q = h(T,-T) 0 < x €£L
at y = W, y = -W, £t >0 (1s,a)
If heat loss at the side boundary takes place by
radiation and/or convection, the above condition may be
suitable. For the case of a chill and plate casting, made
in sand, a more appropriate "boundary condition" for heat

loss to the sand would be:



a, = a/(t)l/2 0 < x <L (1s,b)
at y =W, y=-W, £t >0

o - 1/2
where a = - (T -T) (Ksandpsandcp(sand)/ﬁ)

The two conditions (1Sa) and (1Sb) are not only
boundary conditions, they are also additive terms in the
heat flow Equation (1S).

The functions F1 and F2 above are external boundary

conditions, to be specified as part of the problem. The

functions F3 to F4, £ and fE are based on a specific model

st
of the solidification process, given in the following section
and based on solidification studies at Massachusetts

Institute of Technology over the last several years.(3,19,20)

Solidification Model

Alloy solidification is characterized by the presence
of a region of finite thickness within the casting in which
solidification takes place. This mushy region is delineated
by two isothermal boundaries, the solidification "front" (at
or near the liquidus temperature) and non-equilibrium solidus
(at the eutectic temperature in binary alloys which contain
some eutectic in the final solidified structure). It is

this liquid-solid* region which separates the problem of

* In this thesis, these boundaries are hereafter referred to
as the dendrite "tips" and "roots" respectively. It is
important to recognize, however, that in most cases, a
single dendrite does not extend across the entire "mushy
zone". In equiaxed growth in particular, many randomly
oriented dendrites fill this space. Figure 5 is an example.
The terms dendrite "tips" employed herein, or "solidifica-
tion front" is equivalent to the term "start of freezing
isotherm" used by other investigators.(29) The term dendrite
"roots" or "non-equilibrium solidus" is equivalent to the
term "end of freeze isotherm" used by other investigators. (Z2")
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alloy solidification from that of pure materials. For
alloys, the characteristics of the mushy region which must

be taken into account in the heat flow analysis are:

(1) The boundary conditions at the tip and root,
Equations (6a) or (6b) and (7) above.

(2) The distributiqn of 'solid and liquid through
the length of fhe zZone, (fS versus x) and the
amount of liquid which solidifies isothermally

(eutectic), £ at the roots. The distribution

E’
fs versus X or fS versus T (since T versus x
will be available) is referred to as F6(T).

(3) Taking the distribution fs versus X into
account, the distribution of K, p, and Cp must
be specified as functions of fs (or fL).

These distributions are referred to as F3(x),

F4(x), F5(x) above.

The solidification model presented below is based on
physical arguments concerning the nature of the mushy
region, and much of this has been presented elsewhere. (19,20)

For the case of no diffusion of solute in the solid
(and other assumptions as previously stated), the Scheil
Equation applies. (20) The solution of this equation, for
constant partition ratio is:

k-1

C, = C4 (1 - fs) (8)
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oL+ c, 1/k-1
fs = 1 - (6(;) (9)
where:
Co = starting alloy composition
fs = fraction solid
k = equilibrium paftition ratio, CS/CL
CL = interdendritic liquid composition in the

region of fS fraction solid

Fraction eutectic, fe’ is readily determined by
letting CS = kCE where CE is eutectic composition. It
is, for example, .09 for Al-4.5% Cu alloy, assuming
constant k. This value of fe will be used in Equation (7).

A distribution of fS (or fL) versus T is readily
obtained by combining Equation (9) with the equation
describing the liquidus line of the binary alloy. For
constant liquidus slope, m:

CL = %
n = o (10)
T - T

The resulting distribution is termed the Scheil distribution
and is shown in Figure la for Al-4.5% Cu alloy. Al-rich

end of the Al-Cu binary diagram is shown in Figure 2.
Alternate distributions which have been explored for
simplicity in previous work on macrosegregation are a

linear distribution of solid with finite eutectic (Figure 1b),
and linear distribution of solid, neglecting eutectic

(Figure 1lc).
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In this work, we will assume finite undercooling at
the dendrite tips so that boundary condition Equation (6b)
applies. Then, assuming further linear distribution of
fraction solid in the mushy zone, the model for fs vs T is

schematically as in Figure 3, and is described by:

T -T

_ _ _ E
£, 0= £+ (1-f, £) T (11)

The densities of the solid and liquid phase are assumed
herein independent of temperature and composition, and so,

average density in the mushy zone is a linear function of

fraction solid:

pm = pSfS + poL (12)

Similarly, heat capacity is assumed to be a linear
function of fraction solid in the mushy 2zone:

Cpm = Cpsfs + CpoL (13)

where:

cpm is local average heat capacity in the mushy zone;

Cpsand.%ﬂlare heat capacities of the so0lid and liquid phase

respectively, and fs’ fL = volume or weight fraction of each
phase. It should be noted that for an Al-4.5% Cu alloy,
the error introduced in Egquation (12) by assuming weight

fraction equals volume fraction is less than 0.03%.
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The final distribution to be developed, that of thermal
conductivity versus T or x, cannot be expressed without taking
dendrite morphology into account. For this investigation,
two extreme cases of heat flow through multiphase media will
be considered. The model for the mushy region is assumed to
be parallel plates of alternating phase (Figure 4). If heat
flow takes place parallel to these plates (columnar

dendritic growth), the conductivity of the composite is: (21)

K = (szs + fLKL) (14)

If heat flow takes place perpendicularly to the plates
(which would correspond to an exaggerated model of equi-axed

growth), then the expression for the total conductivity is: (21)

K_K

P, L S .
K = ~ (15)
m szL + ths

Since equi-axed morphology in reality can be pictured
as in Figure 5, the total conductivity should lie between

Equations (14) and (15).

Solution of the Problem

It is appropriate to the following discussion of
solutions to the problem stated above to point out that it
is the terms on the right hand of (6b) and (7) that separates
this problem of solidification from other heat flow problems.

It is the way in which these terms are taken into account
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that separates the various methods of solution to the
problem.

The presence of the free internal boundaries,
represented by Equations (6) and (7), has given rise to the
name "Free boundary problem" in connection with a class of
problems which contain boundary conditions whose position
is a function of the conditions around them.

Many analytic solutions (referenced below) have been
presented for various cases, but there is one common fact
which is used to take the motion of the solid front into
account. This is the use of the Boltzman similarity
variable, x/(at)l/z. Danckwerts (8) presents some interesting
extensions to these exact solutions, but the basic method
depends on the existence of the similarity variable. Adams(10)
has presented a derivation based on this method for the case
of a binary alloy freezing, which involves two free
boundaries.

The methods of Boley, (9) Koump et al.,(ll) and
Hills (12) do not depend on the existence of the similarity
variable; however, each involves approximations concerning
the shape of the temperature curve in either the liquid or
the solid, and thus constrains the velocity of the interface
to be a function of surface conditions. This allows an
integral to be developed, in Boley's method, which is then
solved numerically; in Koump's method, an equation is

derived which is solved for the position of the rcot and tips
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of the dendrites, but temperature profiles cannot be found.
In both these methods, approximations are made which make
the solutions less meaningful to use as a tool for
investigating large ranges of external conditions.

Hillsuses an integral profile technique to obtain an
approximate analytic solution, as do Boley and Koump. The
equations are derived for the case of a pure material (12)
and compared to experimental results(22) with very good
agreement. In addition, the derivation of this equation
is performed such that the extension of the method to mushy
freezing alloys is straightforward, with the major assump-
tions being:

(1) the temperature profiles in the solid, mushy
and liquid regions are chosen by parabolic
fitting to the boundary conditions;

(2) the cooling rate across each of the three
regions is assumed to vary linearly with
distance; that no sharp thermal perturbations
occur in these regions;

(3) the assumed solidification model in the mushy
region is generally similar (although not
identical) to the one presented above.

In work yet to be published, Hills has indicated
that the agreement between predicted results with this
integral profile method compare well with experimental
results of solidification studies done with lead-tin and

lead-antimony alloys which were solidified with moderately
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slow surface cooling.

The integral profile technique as presented by Hills
is an accurate and efficient method of solution for the
boundary conditions he employs. However, the numerical
method will be used here because of its flexibility in
dealing with, for example, different variations in fraction
solid with temperature, variations of thermal properties
with temperature, or very high value of interface heat
transfer coefficient, h.

In order to avoid the need to use the similarity
variable, and also to facilitate if not improve the accuracy
of the solution, a numerical approach was considered. The
only solutions presented which have been obtained through
numerical means have been for the case of a pure
materials. (23,24) It should be possible, however, to extend
the methods presented from one free boundary to two. The
method of Murray and Landis (23) is presented here.

Instead of assuming a velocity of the interface which
is proportional to x/(at)l/z, as was done for the analytic
solution, Equations (6a) and (7) can be solved numerically at
each time step of a numerical integration of the heat flow
equation, Equation (1). This is the basis of the method
which was used in this research, and the details will be
presented later with the rest of the numerical integration

description.
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It should be noted that the need to consider the
dendrite tips as a free internal boundary comes from the
physical consideration of the fact that the liquid in front
of the tips may have an apparent thermal conductivity which
is higher than the interdendritic liquid, due to convection
in the liquid melt, and from the consideration of the small
but finite undercooling at the tips necessary for growth.
It is for these reasons that the liquidus temperature
position must be considered a boundary, Equation (6b). In
other words, there is a discontinuity in Cp versus x at
the tips. The apparent discontinuity in K results from
thermal convection. Vigorous convection is present in
large ingots, (25) and this convection results in a high
apparent thermal conductivity; however, this convection is

very low at the dendrite tips and within the mushy zone.

Numerical Procedure

A detailed account of the method used to solve Equation
(1) with initial conditions and boundary conditions (2), (3),
and (4) is given in the Appendix. It is described briefly below.
A finite difference equation is substituted for
Equation (1), and the temperature at a given increment in
time is calculated for the temperature distribution at the
preceeding time interval. The boundary conditions are
satisfied by including them in the finite difference equation

set, and the internal free boundary conditions are satisfied
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by resetting the temperatures in their neighborhood at each
time step. The functions Fl and F2 are read in and used
directly as driving functions for the surface and center of
the simulated casting. Various other parameters, such as
mode of growth (Equations 13 or 14) and amount of convection
(liquid thermal conductivity), are also read in, thus giving
the program the capability to simulate a wide range of
solidification problems.

Beside the two free boundaries which this numerical
method takes into account, there is another feature of it
which is worth pointing out. Most finite difference schemes
which are derived from a parabolic differential equation,
such as the heat flow equation, result in a set of equations
(linear) which must be solved at each time step. The usual
method of solution is a straight-forward substitution of
the old temperatures (at time, t) to obtain the new
temperatures (at time, t + At). This is known as an explicit
technique, and it is known to place severe restrictions on
the size of the time step which may be used in the calcula-
tions. If the critical time step is exceeded, the solution
becomes unstable, that is, the temperatures start to
oscillate in an uncontrolled fashion. Thus, many numerical
solutions become unfeasible in terms of computer time because
of the time step restrictions. 1In order to prevent this,
an implicit solution technique was used, which was presented
by, and is given the name, Crank-Nicholson (technique). The

details of this method are presented in Appendix A, but the
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theory behind the method is that the temperature at time

t + At is used (as well as the temperature at time, t) to
calculate the temperature at time t + At. This means the
solution to each difference equation is implicit in its
formulation, thus, the name "implicit technique." As
indicated above, this method‘w%s adopted in order to reduce
the computer time necessary to obtain a solution, at a
corresponding loss in accuracy. Estimates of the error
involved (presented in the Appendix) showed that the
accuracy of the Crank-Nicholson method is quite sufficient
(temperature to four places), which implies that the
accuracy of explicit techniques is far too great to justify

their use in this type of heat flow calculation.
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Table I. Definition of Symbols

constant for garabolic side heat loss,
cal/cm2/secl/

constant for parabolic heat input, cal/cmz/sec

local average heat capacity in liquid-solid
region, cal/gm°C

Cp for liquid soiid respectively

liquid metal compositions, wt percent, original
and local, respectively

weight or volume fractions liquid and solid,
respectively

weight or volume fractions solid at the critical
position at which convection stops

weight or volume fractions solid at the tip or
root, respectively

heat of fusion, cal/gm

heat transfer coefficient at mold-metal interface
in the x-direction, cal/cm2secOC

heat transfer coefficient at mold-metal interface
in the y-direction (sidewise heat flow),
cal/cm2sec®C

local average thermal conductivity, cal/cm.secoc
K for liquid, mushy, or solid region

equilibrium partition ratio

length in the x direction, cm

heat input, as boundary condition, cal/cmz/sec
dimensionless heat

radius, cm

radial distance from center of a cylinder, cm

radial position of the tip or root, respectively
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Table I , continued

t time, (sec)

tf time at finish of solidification (sec)

t, time at start of solidification (sec)

tLSt or tlst local solidification time (sec)

T temperature, OC

Tm melting temperature (ligquidus), °c

TE solidus or eutectic temperature, °c

Tp pouring temperature of a melt, °c

To starting temperature, °c

Ta ambient temperature (x-direction), Oc

Ta,s ambient temperature, side (y-direction), °¢c

W or w width, in y-direction, cm

bl distance from the chill, cm

X  Or Xp position of the solidus or eutectic, cm

X, position of the tip, cm

o thermal diffusivity, (K/oC_), cn’/sec

Ggr Op solid or liquid thermal diffusivity,
respectively

B dimensionless constant, appearing in the
analytic solution, Equation (R1)

€ differential distance, cm

A dimensionless distance from the chill

Trgt OF TQst local solidification time/Lz, sec/cm2

o) density, gms/cm3

P’ Pm’r Pg liquid, mushy, and solid densities, respectively

ATS superheat, Tp - Tm, ¢
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Figure 1. Approximations of distribution of liquid in the mushy zone. (a) Steady state
solute redistribution, Scheil equation. (b) Linear fy vs, X, finite eutectic.
(c¢) Linear f; vs. X, no eutectic,
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Figure 2, Aluminum rich portion of aluminum-copper phase diagram.
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Figure 3. Linear distribution of fL vs. X, with finite eutectic and undercooling.
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Figure 4, Parallel plates of solid and liquid, representing simplified view
of parallel or series heat flow. (a) Parallel. (b) Series,
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Figure 5. Equiaxed growth, schematic representation of mushy region cut

along length,
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Chapter II

RESULTS

This section is organized in the following manner;

(A) Dimensional analysis; pertinent dimensionless
numbers to be used to simplify -the presentation of the
results. |

(B) Analytical correlation; a comparison of the
results of the program for conditions of solidification of
a pure material for which there is an analytic solution.

(C) Pure material, aluminum; the effect of h
coefficient and superheat on the solidification behavior
of pure aluminum.

(D) Unidirectional solidification of an alloy; results
for various fraction solid at the tip, for columnar and equi-
axed cases.

(E) Unidirectional solidification of an alloy; results
for various surface cooling rates and superheats.

(F) Radial solidification of an alloy; results for
various surface cooling rates and superheats.

(G) Heat input with convection; results for various
parabolic heat inputs to a highly convecting melt.

(H) Side heat loss, without heat; results for various
side cooling rates and superheats.

(I) Side heat loss, with heat input and convection;
results for various parabolic heat inputs at two values of

side heat loss.
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(J) Side heat loss to a sand mold; results for
parabolic heat loss, similar that in a sand mold.

(K) Equi-axed growth with high convection; results
for a convecting melt in which equi-axed grains are

carried into the melt ahead of the mushy region.

A. Dimensional Analysis

The problem of organizing the study of many
engineering problems is often simplified through the use of
dimensional analysis. 1In a case such as this one, a large
number of independent and dependent variables appear in the
equations, and the task of measuring and presenting the
results (independent variables) as a function of all the
dependent variables would be tedious if not impossible.
Dimensional analysis provides a method of revealing the
relationships between the variables, with dimensionless
groups, which reduces the number of parameters which must
be studied and also provides insight into the nature of the
process. Such an analysis was made on this problem of heat
flow during solidification and the results are presented in
Appendix C.

The variables of major interest in this study are
(1) the position of the tip and root as a function of time
(or position in the ingot), and (2) the local solidification
time as a function of position in the ingot. The dimension-

less form of these variables is:
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A dimensionless position;

atf/L2 dimensionless local solidification time.
The independent variables of major interest are:

at/L2 dimensionless time;

hL/K Biot number (dimensionless thermal

conductance ratio);

0/t Vo
LK (T -T,)

dimensionless heat input, parabolic.

Since the dimensional analysis included the thermal
properties of the material, these properties appear in many
of the dimensionless groups. For many studies this form
would be desirable, since a change of materials would then
be easily accounted for. For this study, however, it is
more desirable that the reader have a more direct measure
of the values of the variables used, and since the study
was undertaken only for one alloy composition, that of
Al-4.5% Cu, much of the results will be presented in a
modified form, that is, the dimensionless group has been
striped of the material property, with the understanding
that this simply affects the numericalvalue of the
dimensionless group, without affecting the functional
relationships between the groups, and that these numbers
now only apply to Al-4.5% Cu.

In particular, the group hBL/R will be reduced to
), and

Lst
the group (T—Ta)/(Tm-Ta) will be reduced to T—Ta(ATS).

hpL, the group at/L2 will be reduced to t/L2 (Tt
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B. Analytic Correlation

The program was set up to simulate the solidification
of a pure material cast at its melting point. The analytic
solution for the movement of the solidification front of an

alloy that solidifies at a single temperature is:

Xp = 2B (oct)l/2 (R1)
where:
Xp = position of the liquid-solid interface
= thermal diffusivity, K/pCp
t = time
B = dimensionless parameter, constant for a
particular material and surface temperature
The constant B is found from the transcendental
equation:
B2 C s
Be erfp = (T -1 ) £S5 (R2)
m s —
HV/T
where:
Cps = heat capacity of solid
Tm’ TS = melting temperature and surface temperature,
respectively
H = heat of fusion

Figure 7 shows the results of the program, A versus
Yt/L (the points plotted) for three values of H', dimension-
less heat of fusion. The straight lines are the analytic

solutions for these cases (Equations Rl and R2), and as can

be seen, the computer model correctly predicts the position
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of the interface. The initial conditions for this case

are: T =T t €0, 0 <x <L, and the boundary conditions

m’
are T = Ta at t > 0 at x = 0, g =0 at x = L. The material
properties used for this run were; Tm = 6500C, Cps= .22,

K = .24, p = 2.645.

It is worth noting that‘in order to achieve the
condition that the surface temperature drops to the ambient
temperature at time t = 0 sec., a special start-up procedure
was used. Since this start-up procedure is used in the rest
of the results to be presented whenever infinite surface
cooling is desired, it will be described here.

At time t = 0, the positions of the liquid and solid
interfaces (just the solid interface for pure materials) are
set by means of a parabolic curve through the temperatures
at the surface and at the first interior node. The
temperature of the first node is interpolated also, and as
long as an interface resides in it, it is set by interpola-
tion. Thereafter, it is set to the ambient temperature.

Thus, the procedure for start-up causes a slight
error to be introduced, since the calculations proceed from
positions which are small but finite at time t = 0, whereas
in the analytic solution, the position is x = 0, at time
t = 0. This error can be corrected for, with the result that
the positions of the interfaces are adjusted slightly at
early times, but remain practically unchanged at later times.:

The ability of the computer model to correctly predict

the analytic solution for the case of a pure material
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solidifying shows that the major source of error in the
following results will be; (1) values of the data used for
material properties, (2) assumptions made concerning the
mode of solidification of the alloy in the mushy region,

(3) the interaction of the tip and root when they are close
to each other, and (4) the exact method of handling the
boundary conditions at the surface and center of the ingot,
where these conditions are not the same as they were above,
namely, that the surface cools infinitely fast, and there is
no heat lost or gained at the center.

Since there is an analytic solution for the case of a
pure metal solidified with an infinite surface cooling rate,
which predicts that the position of the interface will be
proportional to the square root of time, the rest of the
results presented will be plotted using the square root of
the dimensionless time, vt/L. There are theoretical reasons
that alloys should behave in the same fashion as the pure
metals, as seen in the approximate analytic solutions of

Adams (10) .

C. Pure Metal, Aluminum

The effect of superheat and surface heat transfer
coefficient on the solidification of pure aluminum is shown
in Figures 8 and 9. The position of the interface is given

as the dimensionless number ), versus the dimensionless /t/L,

as before for Figure 7.
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Superheat has the effect of shifting the curves to
the right, or, of retarding the motion of the interface.
The early time portion of the curves are straight, indicating
that the superheat can be treated as an additive heat term to
the heat of fusion. It can also be seen that there is an end
effect present in the curves-a£ higher superheat, and this
effect will later be shown to be a very characteristic
effect in the solidification of alloys. The speed up of the
interface in pure metals at high superheat near the centerline
of the ingot is due to the dissipation of the superheat which
has taken place over most of the length of the ingot, so that
while the interface was growing into the superheated region
at early times, which retarded the velocity of the interface,
at later stages, the superheat has been dissipated (through
the interface), and the velocity increases near the end.

The effect of lowering the heat transfer coefficient
at the surface, with no superheat, is presented in Figure 9.
The major change in the X versus vYt/L curves is that they are
shifted to the right (higher times) and that they are no
longer straight. This is to be expected, since the rate of
heat removal from the ingot is changing from that of being
controlled by the thermal diffusivity (or conductance) of the
metal, to control by the heat transfer rate at the surface.
As Figure 10 shows, when the heat transfer coefficient is
sufficiently low, the position of the interface is governed

only by the rate at which heat can be removed from the surface.
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For this case of 'h controlled' heat flow, the position of

the interface is given by:

X, = hB(Tm - T, /pH) t (R3)

which is what Figure 10 shows in the dotted lines. The error
which the computer model introduces at the early time is due
to the fact that at positions near the surface, only a two-
point interpolation can be made in calculating the velocity
of the interface (see Appendix A for details of the method),
but this error can be corrected for, since the model predicts
the correct slope of the line after the initial transient.

In general, the effects of superheat and surface heat
removal rate are distinct; the superheat changes the amount
of heat which must be removed for a given amount of solidifi-
cation to take place, but does not alter the basic character
of the relationship between position and time, however, the
surface heat removal rate does alter the character of the
curves, as the rate controlling factor shifts from
conductance through the metal to conductance across the
surface.

As to what value of}b;/ﬁ is sufficiently low such that
Equation (R3) applies, Figure 10 shows that any choice of a
number is somewhat arbitrary, but one criteria for determining
whether heat flow is 'k controlled' or 'h controlled' could
well be whether the curve obeys Equation (R3) or not. For

h;/ﬁ = .1, the straight lines are parallel, therefore heat
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flow can be said to be 'h controlled'. For the}bL/ﬁ = ,635,
the dashed line diverges from the curve after a short period
of time, indicating that heat flow was controlled initially
by the surface removal rate, but that it was controlled by
the heat flow rate through the metal at later times. The
value of tht/R at the time at thch the curve diverged from
the linear relationship is .1, indicating that this number
may be useful in determining how long an ingot will be in
the 'h control' region. That is, ithL/R is less than .1,
the solidification will be h controlled over its entire
length, but ifhél/ﬁ is larger than .1, the heat flow will
be h controlled until the interface moves out to a distance
x, = .1 R/throm the chill, then it will start to be

t
controlled by thermal diffusivity through the metal as well.

D. Unidirectional Alloy; Fraction Solid at the Tip,
Columnar and Equi-Axed

Figure 11 shows the local solidification time, at a
specific dimensionless distance away from the chill (A = 0.75),
versus fraction solid at the tip, for two cases: (a) columnar
growth; and (b) equi-axed growth. All other thermal
properties remain as before, with the conditions being no
superheat, and infinite surface cooling rate.

The investigation of the change in behavior as a
function of the fraction solid at the tip was undertaken in

order to have a quantitative measure of what effect the

assumption of Equation (6b) would have. As the two curves of
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Figure 11 show, the actual numerical value of the fraction
solid at the tip, which must come from physical arguments
concerning the undercooling necessary at the tip (due to
radius of curvature and kinetic restrictions) does not have
a large effect on the local solidification times, although
the extrapolation of these cur&es back to zero fraction
solid would cause difficulty; this might be a consequence
of the nature of Equation (6b), which clearly is undefined
at ft = 0.

The most interesting feature of Figure 11 is the lack
of difference between the assumption of columnar and equi-axed
structures, at a given value of f.- The model which separates
the columnar heat flow from the equi-axed is given in the
introduction, and the main result of that model is that the
thermal conductivity in the mushy region, which is a function
of fraction solid at a point, is slightly different for each
of these cases, with the conductivity for equi-axed
morphology being slightly lower, at a given fraction solid,
than for the columnar. The closeness of the curves
indicates that differences between equi-axed and columnar
structures, which are observed in practice to be much larger
than the effect seen here, must come from some other effect
than just the difference in thermal conductivities. This
difference will be shown in Section K of the Results, to

be more probably a result of the convection in the melt which

carried equi-axed grains, or dendrites, out into the melt
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ahead of the unidirectional interface. Therefore the curves
in Figure 11 are significant in the sense that they show
that an effect is not the result of simple thermal

conductivity differences between the growth morphologies.

E. Unidirectional Alloy Solidification

The variable of major concern to the solidification
behavior of alloys is the time which the material spends
between the liquidus temperature and the solidus temperature,
at a given point within the ingot. But in order to see how
this local solidification time is influenced by a particular
casting variable (superheat, for instance), the positions of
the tip and root as functions of time are valuable pieces
of information. Therefore, the dimensionless positions of
the tip and root versus Yt/L will be presented in each of
the following cases, as an aid to understanding the way in
which the local solidification time is affected.

The conditions and properties used for this case of a
binary alloy, Al-4.5% Cu, are:

Thermal properties; (cgs units) (26)

K, = .24
K, = .43
S
Cpl = .22
c = .21
ps
0y = 2.645
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H = 75
TL = 650
T = 548

e
ft = .05
f = .09

e

Initial conditions;

T = Tm+ATS degrees superheat for 0 < x < L; t =0

Boundary conditions;
T = Ta at x = 0 for t > 0 or T = h(T - Ta) at
x =0 for t > 0

L for £t > 0

g = 0 at x

The thermal properties and initial conditions will
be the same for all following cases, except where noted.
Figure 12 shows the )\ versus Yt/L curves
for four values of superheat at a constant heat transfer
coefficient = «, The most obvious effect observed is that
both the tip and root velocities are retarded by the presence
of superheat, and that for early times, the curves are
straight lines. The root curves always have the speed up
effect at the end of solidification, since there is always a

superheat of 102°cC (. - TE) in front of the root

L
interface. This speed up effect of the root, and of the tip
in cases of high superheat, is important to note; it is the
cause of one of the characteristics of the local solidifica-

tion time versus distance curves, which will be pointed out

below.
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Perhaps a less obvious feature of these curves is
that while both the tip and root velocities are retarded by
the presence of superheat, the tip is pushed closer to the
root as the amount of superheat increases, that is, the root
is less strongly affected by the superheat than the tip, but
this is a small effect. .

Figure 13 shows the dimensionless local solidification
time as a function of dimensionless position from the chill.
The effect of the superheat on the positions of the tip and
root can now be seen more clearly, as the characteristics of
the curves in Figure 13 are examined: (1) the early time
portion (distances close to the chill) of the curves are
parabolic upwards, governed by the straight line A versus vt
behavior of the tip and root; (2) the peak in the curves at
A ® .9, due to the speed up effect of the root, mentioned
earlier; (3) the peak local solidification time is lower as
the superheat becomes larger, due to the fact that the super-
heat had more of an effect on the velocity of the tip than
that of the root; (4) the peak occurs at a position closer to
the centerline as the superheat becomes greater, due to the
fact that at higher superheats the tip also has a speed up
effect, which reduces the effect of the root speed up;

(5) the effect of the superheat is diminishingly small, that
is, for a given increase in the degrees of superheat, the
peak in the Tigt curves drops by smaller and smaller amounts,

due to the fact that although the velocity of the tip is
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retarded by superheat, the width of the mushy region is
also becoming smaller, since the superheat that the root
'sees' is always 102°c higher than that which the tip sees,
and thus has a smaller effect.

In general, the effect of superheat is to lower the
local solidification time at-a éiven position in the ingot,
but this effect is a maximum at X =~ 0.9 or so, and the
effect is diminishing as superheat becomes large.

Figure 14 shows the A versus Vt/L curves for four
values of}b;/ﬁat a superheat of 0°c. The major characteris-
tics of these curves are: (1) the tip behaves generally in
the same way as the solid-liquid interface did for the case
of pure aluminum, i.e., as the heat transfer coefficient at
the surface decreases, the tip curves take on a curved
portion at early times, corresponding to the h control which
is evident in the early stages of solidification; (2) the
root curves also take on the curved nature of controlled heat
flow at early times, with the added effect that they start
out at larger times as h decreases, due to the increasing
amount of time which it takes to remove the 102 degrees super-
heat which the root has in front of it; (3) the tip curves
are straight lines, after the initial transient; whereas the
root curves are non-linear over almost all their length,
especially the ones at the lower h values, indicating that
the initial transient of h control is overlapping with the

end effect; (4) the slope of the tip and root curves are



similar for a given h, indicating that, as h becomes lower,
each interface sees approximately the same thermal conditions
ahead of it.

The local solidification time curves are presented in
Figure 15. The chief characteristics of these curves are:
(1) they are less sharply peakéd than the curves at various
superheats, meaning that the maximum local solidification
time in these cases is closer to the average than for the
high superheat, high h curves; (2) the effect on the average

T as h decreases is increasing rapidly, i.e., as hB goes

1st

from infinity to .1, the average T is doubled, whereas

1st
as h goes from .1 to .01, the average is increased about 10
times; (3) the peak in the curves appears near the center-
line, but moves inward toward the chill as h decreases, due
to the fact that at low valuesof h, the root is much more
affected by the rate of heat removal at the surface than the
tip, since the root always has a superheat in front of it.
The question of determining whether and for how long
a casting will be h controlled, for a given h, is more
difficult in the case of an alloy, since both the tip and
root behavior must be considered. For the tip, the same
criterion could be applied as was used for pure aluminum,
namely, that the process is h controlled as long as the

position versus time curve for the tip is linear; this again

is true for values othX£/R on the order of .l1. For the



root, the process is controlled by h for the early

portion (curved portions at early times), then is
controlled by diffusion through the metal for intermediate
times, and finally controlled by the end effect. 1In the
low h cases, the h control overlaps the end effect, so the
process is not clearly defined, although if h were low
enough (hBL/ﬁ = .1) such that the temperature gradients in
the metal were very small when the surface reached the
solidus temperature, the process should then be completely
h controlled, since there would be no superheat effect to
consider. This implies that at these very small values of
hBL/R both the tip and root positions would be linear
functions of time (Equation R3), and therefore that the
local solidification time would be a constant across the

length of the ingot.

F. Radial Alloy Solidification

Figures 16, 17, 18, and 19 summarize the behavior
of an alloy cast in a cylindrical mold, chilled from the
outside, with thermal properties, initial conditions, and
boundary conditions as listed previously for the case of
unidirectional solidification, where the characteristic
length is now the radius of the cylinder, R, and the
positions of the tip and root from the chill are now R-r,
or R—re, respectively. The general nature of the curves

is completely analogous to that of the unidirectional case,

except for the following effects of geometry: (1) the tip
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and root positions, for a given superheat and h coefficient,
progress at a faster rate than for the unidirectional case,
due to the fact that the volume from which heat must be
removed is decreasing as solidification progresses; (2) the
end effect is much more pronounced and takes place at
earlier times, so that the resultant local solidification
time curves have peaks (again, for a given superheat and h)
at distances closer to the chill than in the unidirectional
case; (3) the local solidification time, for a specific h
and superheat, is on the order of 1/3 that of the

unidirectional case, at a given position in the ingot.

G. Heat Input with High Convection

The effect on local solidification time of superheat,
presented above, suggests a practical method of controlling
the solidification process, in order to reduce the local
solidification time and therefore the dendrite arm spacing.
If the presence of heat at the dendrite tip causes the
velocity of the tip to be retarded, while the effect on the
root is somewhat less, then if the exact amount of heat at
the tip could be controlled, the velocity of the tip could
be directly controlled. Just such a control of the tip
could be attained if two conditions can be obtained:

(1) sufficiently vigorous convection can be maintained in
the liquid melt ahead of the dendrite tips, such that any

heat introduced at the centerline of the ingot will be



carried to the tip almost immediately, and (2) heat may be
introduced in a controlled fashion at the centerline of
the ingot, perhaps by means of a resistance heating element
immersed in the melt, with little or no surface contact
resistance at this boundary.
Specifically, the results of this section are for
the case of a unidirectionally cast ingot, with all thermal
properties and boundary conditions as before, except that:
(1) thermal conductivity of the bulk liquid ahead
of the dendrite tips is treated as if it were
200 times that of still liquid, and

(2) the centerline boundary condition now becomes:
qg= f(t) at x = L, for t > 0.

The exact method used to handle this high convection
by the computer model is presented in Appendix A.

The center heat input boundary condition, function
f(t), was chosen, for simplicity and similarity to the rate
of motion of the tip, to be a parabolic function of time,
i.e.

f(t) =

Aheat/‘/t

where Aheat is a specified constant for t > 0.

The results for the case of various values of A

heat
are shown in Figure 20. The general characteristics of
the curves are: (1) both the tip and root velocities are

slowed by the presence of the heat at the tip, as they were

in the case of superheat, (2) unlike the effect of superheat,
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however, the curves start to take on a sigmoidal nature as
the amount of heat is increased; (3) the tip and root seem
to be closely coupled, that is, the rate of growth of the
thickness of the mushy region is remarkably constant over
the time from start to finish of solidification.

Figure 21 shows the local solidification time curves
for the values of g' used in Figure 20. The characteristic
nature of the curves is as it was for the no heat input
cases, above (Figure 13). The effect of the heat input can

be seen more clearly in curve A, Fiqure 32, in which the local

solidification time at a given position (A = .75) is
plotted against the value of Aheat‘ There is a minimum in
this curve, at gq' = 1.27 x 10"2 (Aheat = 50). This minimum

in the curve indicates that the heat at the tip has a large
effect on the tip motion (the curves in Figure 20 show this)
but the retardation of the tip is closely coupled to the
motion of the root, with the overall result that the width
of the mushy region is approximately constant, but the
velocities of the tip and root are less, so that at higher
values of heat input, the local solidification time at a
given point is becoming larger. The retarding of the tip
motion is beneficial (lowers Tlst) at low values of q',
because the mushy region is shortened, but as gq' becomes
larger, this shortening becomes smaller, and is overridden

by the slowing of the velocities.
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The general effect of heat input with high
convection is that a small amount of heat at the tip
shortens the mushy region and lowers the local solidification
time at a given position, but increasing amounts of heat only
slow the tip and root velocities, without shortening the
mushy region appreciably. The-result is that the local
solidification time at given positions becomes larger.

This result indicates that there is potentially a
method for reducing the local solidification time, and
therefore the dendrite arm spacing, over the interior
portions of an ingot (where the maximum times occur) which
could be easily implemented in commerical foundry practice,
in which there is typically a large amount of natural

convection present during solidification.

H. Heat Loss from the Side

If heat can flow in the y-direction as well as the
x-direction, the problem of solving the heat flow equation
becomes much more complex. In order to simplify this pro-
blem, yet retain the nature of the effect of two-dimensional
heat flow, one assumption was made about the rate of heat
removal in the y-direction (as was stated in the Introduction).
We consider heat to be removed from the side (y-direction)
slowly enough that the process in this direction is completely
'h controlled', which implies, from Section E, that we chose
values of h_ and W (half width), such that hSW/ﬁ is less

than .1. (Refer to Appendix F for details.)



48

With this restriction, Figure 22 shows the effect of
side heat loss, with no convection or superheat, for four
values of side heat transfer coefficient. From Appendix C,
the pertinent dimensionless number for this situation is
hst/W. It should be noted that two dimensionless numbers
are required to describe this éituation, but the second
number hs/hb’ can be eliminated if we chose hb = infinity
at the chill (x-direction). This was done to simplify the
results, and all cases of side heat loss presented here and
in the following sections were obtained using hb = infinity.
The thermal properties and boundary conditions are as before.

Figure 22e shows the effect of side heat loss for a
special case; that is, if heat is removed from the side such
that the temperature is lowered very slightly, the tip
position moves infinitely fast (along the vertical axis),
since nucleation of the solid takes place ahead of the
x-direction tip interface. In this special case, it is assumed
that the root position is not affected, so that this case
represents the maximum effect of side heat loss on the local
solidification time. The other curves in Figure 22 show that
the effect of side heat loss on the tip and position is:*

(1) at zero superheat, the tip position becomes the vertical
axis, as nucleation of the solid takes place along the entire
length; (2) the root position is speeded up as the heat
transfer coefficient at the side becomes larger, with the

end effect becoming more pronounced at the high values of hs'

* It is important to emphasize here that "tip" and "“root"
positions are simply short hand designations of locations
of "start of freeze" isotherms and "end of freeze"isotherms.
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The effect on the local solidification time curves
is shown in Figure 23. The largest change in the character-
istics of the curves is that the drop off, due to the end
effect, is somewhat eliminated. The effect on the local
solidification time at a given position in the ingot of the
side heat loss is seen more.cléarly in Figure 24, where

T at A = 0.75 is plotted versus hs' This curve reveals

1st
two things: (1) as heat loss out the side becomes larger,
the local solidification time at a point in the ingot is
reduced, due to the speed up of the root position; (2) a
small amount of heat loss is worse than no side heat loss.
For values of hst/W less than 0.3, the local solidification
time is increased at a given position, and for values
greater than 0.3, it is decreased. Figure 24 also shows
that the effect is diminishing, due to the fact that the
root position at the high values of hS is still controlled
by the rate of heat removal in the x-direction. At very
large values of hSW/K, where the condition that hSW/K be
less than .1 becomes violated, it is expected that heat

flow would be controlled by thermal diffusion through the
metal in both the x and y directions.

The general effect of side heat loss, in the presence
of no convection or superheat, is that the tip position is
accelerated rapidly, and the root position to a smaller
extent, such that the overall effect is that the local
solidification time at a given x may be increased or

decreased, depending on the value of hSLZ/W.
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Figure 25 shows the effect of superheat on the tip
and root positions in the case for which the side heat
transfer coefficient, hs = 0.001. The primary characteristics
of these curves are: (1) the tip can no longer shoot out from
the chill, as nucleation from the side of the ingot is
prevented by the superheat; (25 both the tip and root show a
pronounced end effect, due to the fact that the superheat
ahead of either of the interfaces is being dissipated in two
directions, and thus enhances the speed up effect; (3) as
superheat becomes larger, the width of the mushy region is
becoming shorter (the tip is closer to the root at any
given time), and the velocities of both are slowed. The
effect on the local solidification time is shown in Figure
26, where it can be seen that the shortening of the mushy
region out-weighs the slowing of the velocities, so that as
the superheat becomes larger, the local solidifiéation time
at a given position drops. Figure 27 shows that this
effect is diminishing, that is, for a given increase in the

superheat, the T decreases by smaller amounts, but that

1st
the effect is still present at superheats of 250°C.

The implication of this result is that in situations
of heat loss out the side of an ingot, the more superheat
which can be maintained at the start of solidification, the
better the dendrite arm spacings will be in the final
solidified structure. It should be noted, however, that

the conditions for these results were that heat loss through

the bottom (chill) was infinitely fast, and that there was
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no convection present. Neither of these conditions is
truely representative of what is obtained in a foundry
casting situation, especially the no convection condition.
In fact, it is more probable that there is a high amount of
convection present in large cast ingots, so that any super-
heat present at the time of poﬁring will be lost by the
time solidification starts at the chill or bottom of the
ingot. Therefore, a large cast‘ingot situation may be more
truely represented by the no superheat curves, Figures 22, 23
and 24; but Figures 25, 26 and 27 indicate that it might be
well worth while, in terms of dendrite arm spacing in the
final cast structure of commerically produced ingots, to
prevent convection in these ingots in order to preserve

superheat during the solidification process.

I. Side Heat Loss, with Heat Input and Convection

With the results of Sections G and H in mind, we
consider here an alternative method of reducing dendrite
arm spacing in large cast ingots in the presence of high
convection; namely, that of inputting heat to the convecting
melt, ahead of the tip interface in order to shorten the
mushy region without slowing the motion of the tip very

much.

Figures 28 and 30 show the effect of four values of
heat input, in the presence of convection, for two values

of hSLZ/W. The general characteristics of these curves are:
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(1) with the presence of heat at the tip interface, the tip
can no longer shoot foiward; (2) the tip and root are
closely coupled, so that the slowing effect on the tip, as
heat input becomes larger, is experienced almost to the
same extent by the root; (3) this means that the width of
the mushy region, at a given4time, is approximately constant
for each of the different heat input levels.

The effect on local solidification time is shown in
Figure 29 for hSLz/W = .232 and in Figure 31 for
hst/W = .696. The characteristics of these curves are:
(1) the local solidification time at positions near the
center of the ingot has been reduced; (2) an end effect
has re-appeared, indicating that in the final stages of
solidification, when the root is approaching the centerline,
there is very little heat in front of the root interface,
and a speed up effect takes place. The most interesting
result, showing how much of a drop in local solidification
time results from a given amount of heat input, is shown
in Figure 32. These curves reveal that (1) there is a
minimum in the local solidification time at a given position
versus gq' curve for all values of hSLz/W, due to the fact
that a small amount of heat input reduces the width of the
mushy region as much as a large amount of heat, and there-
fore as more heat is input, the effect is to retard the
velocities of both the tip and root, so that a given point
in the ingot spends more time between the passage of the tip

and root; (2) this minimum occurs at a higher value of g' for
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higher values of hst/W. This shift in the minimum is due
to the fact that as hst/W becomes larger, more heat is
required to overcome the control which the side heat loss
has on the motion of the tip and root interfaces. This can
be seen by comparing Figures 28b and 30b, in which the

same amount of heat was input ét a given time, for the two
different values of side heat loss. Figure 28b shows that
at this lower value of side heat loss, the heat flow at the
tip and root was controlled by the heat input over the
entire length of the ingot, evidenced by the smooth, almost
straight line character of the curves. Figure 30b shows
that at the higher value of side heat loss, the heat flow
was controlled by the heat input in the early stages, but
that after some time (Vt/L about 0.3) the curves showed

the speed up effect characteristic of the side heat

control seen in Figure 22. Figures 30c and 30d show that
at these higher levels of heat input, the heat flow was
controlled by the heat input, which was greater than the
rate at which heat could be removed through the side. It
is to be expected, therefore, that for even higher values
of hst/W, the minimum will be shifted to higher values of
g', until the hSW/i criteria becomes important, and heat
flow will be diffusion controlled in both the x and y
directions, in which heat input will have similar effects

as in the case of Section G.
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As a practical method of reducing dendrite arm
spacing, the introduction of a controlled amount of heat
into a convecting melt could be quite feasible, judging
from the results of this section. One major area which
has not been touched upon here is an investigation of other
heat input functions, i.e., the’parabolic function used
here was chosen for convenience and from the physical
reasoning that the motion of the tip is governed by an
inverse relation to the sguare root of time, in the case
in which there is no heat in front of the tip (no temperature
gradient in the melt ahead of the interface), therefore if
heat is introduced in front of the tip in an inverse square
root of time fashion, the overall effect should be that the
tip motion is held to a constant, controlled velocity. This
argument is justified in the results in Figures 28 and 30,
as the curves are smooth and almost linear, but it is quite
possible that there are many other g versus t functions
which would give more beneficial results. This is an area
which would benefit greatly from a mathematical analysis of
the effect of heat input on the tip and root positions as a
function of time; there is also available in the literature
of numerical analysis a technique for optimization of
unsteady state processes which could be utilized to determine
optimal heat input functions for particular sets of

conditions. This will be discussed later.
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J. Side Loss to a Sand Mold; Parabolic Side Boundary
Conditions

In castings made in sand molds, the assumption that
the heat loss into the sand can be described by a constant
heat transfer coefficient is not valid. 1Instead, the
process is better described by assuming that the heat flux
at the metal/sand interface‘is inversely proportional to
the square root of time, as stated in an earlier section
in the introduction. The results of the dimensional
analysis on this special boundary condition reveal the
dimensionless group aL/W to be the pertinent'one.

Figure 33 shows the tip and root positions* for four
values of aL/W, where the numbers were chosen to be
similar to thin plates (L/W about 15) cast in sand. As
before a value of hb = infinity was chosen in order to
eliminate the need to consider two separate dimensionless
variables. The characteristics of these curves are:

(1) the characteristic speed up effect on the tip and root
of sidewise heat loss is observed as aL/W increases;

(2) this effect is more pronounced and takes place at
earlier times as aL/W increases. Since the curves presented
in Figure 33 are for the case of metal poured at 150

degrees superheat with no convection, there is no shooting
out effect of the tip position. Figure 34 shows the effect
on local solidification times of this side heat loss, which
shows two things: (1) the curves are flat, with no drop in

Tigt Dear the center, due to the fact that both the tip and

*Note as described on page 9 that "tip" and "root" positions
are simply short band designations of "start of freeze"
and "end of freeze" isotherms, respectively.



root experience a speed up as they approach the centerline,
and (2) at any given point within the ingot, the local
solidification time is decreased as aL/W increases, due to
the fact that the heat loss out the side is controlling

the process over the entire length of the casting.

The implications of theée results concerning the
Vrelationship of side heat loss to tip and root motion are
the same as they were in Section H.

Figure 35 shows the tip and root curves for four
values of superheat at a constant value of aL/W = 136.

These curves reveal that; (1) at low superheats, the

process is controlled by the side heat removal rate, as

seen in the accelerated motion of the tip for the 0 and 50
degree superheat cases; (2) this effect is diminished as the
superheat becomes higher, but is never completely eliminated.
The local solidification time curves, shown in Figure 36,
show that there are two effects to be considered; (1) at

the low superheats, 0 and SOOC, the speed up effect of the
root takes place over a large portion of the ingot, so that

the curves are flat near the centerline, whereas at

1st
the higher superheats, 150 and 250°C, the speed up has

been confined to very late stages of solidification so that

the T,g¢ Curves are inclined much more near the centerline;

(2) the width of the mushy region is becoming much smaller

as superheat increases, along with the slowing down of the

tip and root velocities. The combination of these effects can be

seen more clearly in curve D, Figure 37d in which the T at

1st
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A = 0.75 is plotted versus superheat. This curves shows
a maximum occurring at a superheat of about lSOOC, which
is due to the fact that at superheats below 150 degrees the
mushy region is still large, and the slowing effect of the
superheat on the velocities of the tip and root is the
major effect; at higher Values.of superheat, the size of the
mushy region is much smaller, and this causes the drop in
local solidification time. The position A = .75 was chosen
to be consistant with other sections in which this sort of
analysis was made, however, as can be seen from Figure 36,
the choice of a different position would have resulted in a
shift in the position of the maximum, although a maximum
would still have been present.

A consideration of Figures 35a and 12a shows that
if convection had been present in the melt in these
simulated castings, and any superheat present at the time
of pouring was lost through the chill or the sand mold
due to this convection, the presence of this side heat
loss is deleterious to the local solidification time at a
given point within an ingot. The same argument can be
made as was in Section H that for large commercial foundary
castings, there are two avenues open to reducing the
dendrite arm spacing within an ingot: (1) eliminate
convection during solidification in order to preserve the
superheat at pouring, although the amount of superheat which

will lower the local solidification time depends on the exact
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conditions present, as seen in Figure 37; or (2) input heat
into this convecting melt, as in Section J, to shorten

the mushy region and lower the local solidification times.

K. Equi-Axed Growth with High Convection

In large commercial fouﬁdary castings, in which it
is probable that there is a high amount of convection in
the melt during solidification, and when the growth
morphology of the mushy region is highly equi-axed, there is
good reason to believe that dendrites (equi-axed grains)
are carried out into the melt ahead of the mushy region by
the convection.(5) This would give rise to the following
situation; the temperature of the convecting liquid would
drop to a temperature at which the liquid would be in
equilibrium with the solid dendrites carried out by
convection, this temperature would be somewhat léwer than
the liquidus temperature, and can be determined from the
non-equilibrium freezing relationship of fraction solid
versus temperature (Scheil equation), Equation (9) and
Figure la; solidification would take place in the mushy
region (somewhere behind the dendrites at.the edge of the
region at which convection stops) normally, as if there
were no convection. This situation can be modeled easily,
and is worth investigating with the computer model since

it represents a situation common to many large castings.
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The conditions used to simulate this situation were:

(1) high convection in the melt;

(2) a new liguidus temperature exists, 10°C lower
than the equilibrium liquidus;

(3) the fraction solid at which convection stops
(or up to which dendrites are carried into the
melt) is assumed (fsc);

(4) the initial condition of the ingot is that there
is no superheat, due to the presence of the high

convection, therefore,

T =T 0 <x <L; att>0.

le’
(5) heat loss through the chill is infinitely fast
(no contact resistance), and heat flow, for
this case, will be considered unidirectional.

The results for solidification taking place with the
above conditions, for four values of the critical fraction
solid, fsc' are presented in Figure 38. The characteristics
of these curves are: (1) the nucleation or presence of
dendrites in the melt at time t = 0, causes the effective
position of the tip to lie along the veritical axis; (2) the
root curves are very similar, since the fraction solid at
the tip only has a slight effect on the heat capacity of the
mushy region ahead of the root interface (the more solid
which gglidifies at the tip interface; the less solidifies

over the temperature range in the mushy region, which lowers
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the apparent heat capacity of the region). These curves
are summarized by the local solidification time curves
shown in Figure 39. As is to be expected, the difference
between the three curves representing the high convection
case is very small, but the difference between these curves
and that for no convection is iarge. This is due entirely
to the fact that the start of local solidification takes
place at time t = 0, in the high convection cases, which
leads to the high local solidification times shown.

As in the previous sections, in which conditions
were presented in which the start of freeze isotherm shoots
out across the length of the casting at an early time, this
undesireable effect could be eliminated by the addition of
heat to this convecting melt; superheat would be lost during
the early stages of pouring and cooling. If convection
could be eliminated instead, it is to be expected that the
same results as before would obtain, namely, that the start
of freeze isotherms would no longer be able to shoot out,
especially if some superheat were present, so that the local
solidification time would be reduced at a given point in the

ingot.
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Figure 10. Position of the liquid-solid interface versus t/L2,
for (A) Figure 9 C, and (B) Figure 9 D,
dashed line is solution to equation (R3), solid lines
are computer solutions,
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radial heat flow, hgR/K = ©, for (A) AT = 0°C, (B) ATg = 50°C,
©) ATg = 150°Cc, (D) ATg = 250°C.
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Local solidification time versus position, for conditions
of Figure (16).
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Figure 21,

Local solidification time versus position, for conditions
of Figure (20).
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Position of the tip and root versus /%/L Al-4.5% Cu alloy,
side heat flow, no superheat hBL/K , for (A) no side
heat flow, (B) hgL /W = 0,232, (C) hSL /W 0.696, (D)
hgL2/W = , (E) hgL?/W > 0 (minimum),
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of Figure (22).
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Position of the tip and root versus ft/L, Al-4.,5% Cu alloy,
side heat flow, hgL?/W = 0,232, hyL/K = =, for (A) ATg = 0°C,
(B) ATg = 50°C, () ATg = 150°C, (D) ATg = 250°C,
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side heat loss, high convection with heat input, hgL/K = =
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Figure 34, Local solidification time versus position, for conditions
of Figure (33).
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Figure 38, Position of the tip and root versus /t[L, Al-4,5% Cu alloy,
equiaxed growth, high convection, hBL/K = o, no superheat,
for (A) no convection, (B) critical fraction solid (fge) =
0.15, (C) fsc = 0-30, (D) fsc = 0.45-
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Chapter III

DISCUSSION

A. General; Effects on Local Solidification Time of
h, Superheat, Convection and Geometry

The results presented in the previous section represent
a survey of the characteristics of alloy solidification for
several important variables;-geometry, convection, superheat,
heat transfer rate at the surface, and heat loss in two dimen-
sions. To the engineer, the effect that each of these
variables can have on the "local solidification time,"* and
therefore on the dendrite arm spacing of the final cast
structure is important. From these results, several methods
for reducing or controlling the local solidification time are
evident. These will be reviewed here.

For the unidirectional solidification of plates, with
no convection, superheat lowers local solidification time.

Figure 13 shows that = at AA= .85 is reduced from 0.27 at

1st
0°c superheat to 0.24 at 50°C to 0.22 at 250°C. 1In general,
the presence of a positive gradient of temperature in front

of the dendrite tips** causes the velocity of the tip to be

retarded to a greater extent than the root velocity (the mushy

* "Jocal solidification time" is defined as the time at a
given location in a casting or ingot elapsing between
passage of the "start of freeze" isotherm and the "end of
freeze" isotherm. :

** The termdendrite "tips" is used herein as a short hand

designation for "start of freeze" isotherm. The term dendrite

"roots" is designation for "end of freeze" isotherm. See
note on page 9. The actual structure in the mushy zone may
be columnar, in which case the terms, dendrite "tips" and
"roots" have direct and intuitive physical significance.
More often, the structure is equiaxed as in Figure 5, in
which case the terms "start of freeze" and "end of freeze"
isotherms more accurately convey the physical reality.
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region width at a given time is shortened), and the overall
effect of this is to reduce the local solidification time.
The effect of the heat transfer coefficient on Tist
depends on the value of hL/K. For values of hL/K > 1, the
solidification is controlled by thermal diffusion through

the metal, and 1 is not affected significantly. For

1st
values of hL/K < .1, the heat flow and therefore solidifi-
cation is controlled by the heat flow across the chill
interface, according to the equation (R3). For intermediate

values, 5 > hL/K > .1, Figure 15 shows that Tt is strongly

1st
affected by h, with an order of magnitude drop in h from .1
to .01 producing an order of magnitude rise in Tist at

A= .75 from .38 to 3.4.

For radial solidification, the effects of superheat
and the heat transfer coefficient on local solidification
time are qualitatively the same as for unidirectional
solidification. However, a comparison of radial versus
unidirectional heat flow shows that for a given superheat,

and heat transfer coefficient, 1 at a given distance

1st
from the chill is always lower for radial geometry. For
example, at 0°c superheat, h = =, Tist at A = .85 is 0.1

for the radial case, and T at A = .85 is 0.27 for the

1st
unidirectional case. This is due to the higher cooling
rate which is caused by heat flcwing in more than one
direction.

For a case in which heat flows in two directions

linearly, i.e., the side heat loss examples in the Results

section, the effect on Ti1st is quite marked. For example,
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at 0°¢ superheat, h = » at the chill, at A = .85

T1st
is 0.27 for no side heat loss, and with side heat loss,

hSLz/W = 2.32, at A = .85 is 0.08. Sidewise heat

Tist
loss has two separate effects; (1) the width of the mushy
region is increased, and thus can lead to problems of
macrosegregation, hot tearing and feeding defects,

and (2) the local solidification time at a given position
is increased if the loss of heat causes the tip to be
affected much more than the root (low values of side heat
loss, Figure 24), but for high values of side heat loss
the local solidification time is greatly decreased. 1In
general the results of the radial and side heat loss
studies show that one method for the reduction of local
solidification times in the casting or large ingots is to
design a mold with as small a characteristic distance
(half-width of a plate, length, or radius of a cylinder)
as possible, and to attain as much multi-dimensionality
to the heat flow as possible.

Another implication of the results of the previous
section for the practice of casting large ingots,
especially sand castings, is clear. If a high degree of
convection is present during the pouring and early stages
of solidification in these castings, most or all of the
superheat will be removed before solidification starts,

with the result that the local solidification times obtained

will be much higher than they would be if either (1) the
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convection could be retained, so that the superheat would
be present during solidification, or (2) this convection
could be used to carry an artificial superheat, in the form
of heat input, into the convecting melt to the dendrite
tips. Results in the previous section support the
conclusion that either of these methods would work to

reduce the local solidification time.

B. Fraction Ligquid and Cooling Curves

Another way of looking at the way in which the
dendrite arm spacing at a given point in a casting is
affected by geometry, convection, and two-dimensionality
of heat flow is to consider the rate of solid formation
at a given point as a function of time. Figures 40, 41
and 42 present the fraction liquid (or l.-fraction solid)
and the dimensionless temperature versus reducednsolidifi—

cation time (the time from the start of solidification to

the finish, normalized to 1) for a position A = 0.5, for
four typical cases: (1) no convection, columnar,
unidirectional growth; (2) no convection, columnar, radial

growth; (3) high convection, equi-axed unidirectional
growth, and (4) no convection, equi-axed, two-dimensional
growth (side heat loss). 1In all cases, the heat transfer
rate at the chill was infinite, and there was no superheat
at the start of solidification.

The information which these curves reveal is more

than that obtained from the simple consideration of local



100

solidification time. Specifically, the local solidification
time at a given point in an ingot has been shown-to be a
good measure of what the final dendrite arm spacing will be,(3,5)
and for most of the interpretation of the results presented
here, the local solidification time alone has and will be
used as the indicator of what the dendrite arm spacing will
be. It should always be true that if the local solidifica-
tion time at a given position can be reduced, the dendrite
arm spacing will also be reduced. What these fraction liquid
curves indicates is a different kind of information, which
is important as several other areas of solidification
behavior are considered, namely, the effect on microsegrega-
tion, hot tearing, and macrosegregation. Research in these
areas has indicated that the length of time which a point
in an ingot spends at a particular fraction 1iquid, or
between a certain range of fractions liquid is very
important to the final morphology of the dendrites and to
the final distribution of solute in the interdendritic
regibn and across the length of the casting. A detailed
analysis of the implications of the results presented
in Figures 40, 41 and 42 is beyond the scope of the
present work, rather, a general description is more germain.
The characteristics of these curves are: (1) the
slope at time t = 0 is zero, and changes rapidly as solidi-
fication progresses, and (2) as a result of this,
proportionally more time was spent by this position in the

range of low fraction solid. It must be noted here that the
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nature of the fraction liguid curves is wvery much
determined by the assumption made concerning the fraction
solid versus distance distribution, Figure 3. As a
direct result of that assumption, the fraction liquid curves
presented in Figures 40, 41 and 42 are exactly convertible
to the temperature curves. That is, the fraction liquid
curves are linearly calculated from the cooling curves.

In a later portion of this section this assumption of
linearity of the fraction solid distribution will be
examined as to the change in the fraction liquid and
temperature curves which would result from the use of a
Scheil distribution, Equation (9) in the Introduction.

Figure 40 compares the curves for two types of
geometry; (a) unidirectional, and (b) radial heat flow,
both for no convection, columnar growth, and no superheat,
and infinite surface cooling rate. There is not a large
effect here, but it is interesting to note that while the
radial geometry produces a much lower local solidification
time at a given position, the change in cooling rate over
the solidification time is a little slower.

Figure 41 compares the curves for the effect of
convection and growth morphology; (a) columnar, no convec-
tion and (b) equi-axed, high convection, both for no
superheat and infinite surface cooling rate. Here there is
a very marked effect, showing in the high convection case

that after an initial drop to .45 fraction solid, the mushy
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liquid at this position remains at this value of fraction
liquid (.55) for 60% of the solidification time before

resuming its drop to the eutectic fraction liquid (.09).

In general, this sort of behavior indicates that in large
castings, with convection high enough that dendrites physically
transported in the direction opposite heat flow, the mushy zone
is rapidly extended and solidification starts at very early
times across the entire length. Thus, a large portion of the
ingot, at any given time, is essentially mushy in nature,
relatively early in solidification. The effect that this has
on the final cast structure and solute distribution is great,
and, in general, not beneficial. Results of engineering
importance, to be expected from the convection are (1) increased
dendrite arm spacing as a result of increased local solidifi-
cation time (Figures 38 and 39), and (2) increase macrosegre-
gation, hot tearing, and shrinkége defects as a result of the
wide mushy zone produced by dendrites being swept out in

front of the non-convecting portion of the mushy region.

It is worthwhile to point out the difference between the
results of Figures 11 and Figures 38 and 39. The effect
thought to be observed in practice of equi-axed growth producing
longer local solidification time cannot be explained by the
difference in thermal conductivities between equi-axed and
columnar mushy regions, as seen by the small difference in the
curves in Figure 11l. If convection can carry equi-axed grains
out into the melt, which effectively causes the mushy region to

extend over the length of the casting, this would explain
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the observed behavior much better. A method of reducing
the local solidification time at any given position is
suggested by the analogous results for side heat loss
(Figures 37 and 32), which is to remove the convection
and preserve the superheat or to replace the superheat
loss by means of inputting heat to the convecting melt.
Figure 42 compares the cooling curves, or analogously
the fraction liquid curves, for the effect of two-
dimensional heat flow, (a) columnar, no heat loss from the
side, and (b) equi-axed, with heat loss at the side,
hS = .001, both for no convection, no superheat, and infinite
surface cooling rate at the chill. Here the effect is
large, with the curve for side heat loss showing that for
this position in the ingot, the local solidification time
is much larger in the case of side heat loss, compared to
the unidirectional case. This result indicates another
.reason why foundry engineers might appropriately concern
themselves with finding ways of minimizing convection
during solidification of sand castings. By reducing it,
they could preserve some superheat, which would reduce the
deleterious affect of the side heat loss discussed above,

as shown earlier in the Results sections, H, I, and J.

C. Scheil Versus Linear Fraction Solid Distribution

The effect of the linear distribution of fraction
solid versus temperature assumption employed for the

previous results must be examined. For the four cases



presented above, (Figures 40, 41 and 42), the model was
modified to utilize the Scheil equation for the fL versus

T distribution (Equation 9). The results were that the
temperatures and positions of the tip and root were

affected by less than 0.1%. Therefore, the temperature
curves of Figures 40b, 41b, and 42b apply to both the

linear and Scheil distribution results. The major change,
therefore, is found in the fL versus reduced time curves,
which are presented in Figures 43, 44, and 45. These

curves indicate that the major difference in behavior is that
if the Scheil distribution applies to the mushy region, a
large portion of solidification takes place in the very early
periods of the freezing time. The significant difference
between the Scheil results and the linear results occurs for
the case of equi-axed convection. Figure 44 shows that
solidification takes place in the later time period, with
the fraction liquid equal to .55 for 60% of the time period,
whereas for columnar, no convection growth the fraction
liquid has dropped to .2 in this time period. The implica-
tions of this comparison on macrosegregation and hot tearing
depend on the analysis of these results, but it is clear
that a significant difference in structure and properties

of an ingot would result from the difference in casting

conditions for curves (a) and (b) of Figure 44.
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D. Continuous Casting

One of the most important areas for engineering
application of solidification studies is the field of
continuous casting. Some studies of the solidification of
alloys during the continuous casting process have been
done(15,18,27), in particulaf, with various models for
heat flow. The model employed in this work can be used to
represent the continuous casting process under the
following conditions: (1) heat flow along the length of
the continuously cast ingot can be neglected compared to
the radial component of heat flow; (2) variations of heat
transfer coefficient along the length of the ingot are
neglected, that is, if this heat transfer coefficient is
considered to be constant, for the purposes of discussion
here.

It is apparent from the work of the authors cited
above that the foregoing assumptions are reasonable only
for certain cases of continuous cast ingots. As example,
the work of Mizikar(1l5), and Adenis (18), shows that the
continuous casting of steel ingots is well approximated by
the above, whereas the solidification of large aluminum
ingots is not. Kroeger(27), who considers the continuous
castings of commerical copper, indicates that he includes
the axial conduction in his analysis, but some of his

results, showing pool depths, indicate that the assumption
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of no axial (or lengthwise) heat flow would not affect the
results by more than 10 - 20%.

Where the assumptions apply, therefore, the results
of the preceeding sections should apply to the local
solidification time distribution in continuously cast
ingots. The time axis in the plots shown in the previous
section is directly convertable to length along the z axis.
Since most of the plots in the results section are presented
for the square root of time, these would have to be
replotted for linear time in order to make a direct compari-
son to the pool shapes which the model presented here would
predict.

The local solidification time curves versus radius
(Figures 17 and 19) are indicative of the behavior to be
expected in continuous cast ingots, especially the curve at
h = .01, which might approximate the chilling conditions
for the type of molds used in the casting of steel. The
curves of Figure 19 indicate that an order of magnitude
increase in the heat transfer coefficient from h = .01 to
h = .1 would result in a shortening of the local solidifi-
cation time, but only by a factor of about 1.2 to 1.5. It
may be concluded that for values of hL/K in the vicinity
of .5 to 1 or larger, the process of solidification is
very much controlled by thermal diffusion through the metal
rather than by heat removal at the surface, so that

increasing the heat transfer coefficient at these levels of
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hL/K does not result in an appreciable benefit in the
local solidification time distribution.

As mentioned above, the results of the previous
section cannot be applied to the continuous casting of
aluminum, especially in the 'direct chill' process, where
the ingot radius is large and the casting rate (linear
velocity in the Z direction) is small, so that heat flow
in the 7 direction is important. Research into the area
of heat flow during the continuous casting of aluminum
alloys could be could be conducted by using the model for
solidification and the method of numerical solution
presented here, with the addition of a consideration of
axial heat flow. A method for considering this axial heat
flow is presented by Kroeger(27), which is especially
useful for his definition of the boundary conditions at
7 = m, the axial length over which heat flow is considered.
There are other approaches for numerical procedures for
two-dimensional initial value problems which might also be

applied.

E. Experimental Examples

The discussion and results have been presented in
terms of dimensionless mumbers up to this point. It will
be useful and illustrative to present some examples of
the most pertinent results in terms of laboratory

experiments which might be carried out.
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Consider the following casting; a plate 12" long,
1.57" thick, and at least 6" wide, chilled at one end
with a very high heat removal rate (a water pipe or very
smooth water-cooled copper chill). This plate can be
cast in a sand, plaster, or foamed plaster mold or with
an insulating material around the sides. For an Al-4.5%
Cu grain refined alloy, the local solidification times at
a distance of 9" from the chill, for various casting
conditions, are reported in Table II.

Figures 46, 47, 48 and 49 present the local
solidification time in seconds versus the distance from
the chill in inches; Figures 50 through 53 present the
width of the mushy region (inches) versus position of the
end of freeze isotherm, or "root" (inches), for the condi-
tions of Table II. The width reported is the distance between
the root and the isotherm at fL = 0.75, which is 646.10C,
assuming a Scheil distribution of fL versus T in the mushy
region. The reason this isotherm is chosen rather than the
liquidus isotherm is simply due to the experimental
difficulty in detecting the exact position of the liquidus
with thermocouples in the laboratory. The detection of the
range 650 - 646.1 is simpler and adds no great inaccuracy
to the thermocouple results.

The characteristics of the local solidification
time versus distance curves have been discussed earlier,

in the Results section. At high rates of heat removal
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from the side (Figure 47, for sand), superheat and heat
input with convection raise the local solidification £ime,
whereas for low rates of side heat removal (Figure 49),
the local solidification time at a given distance from
the chill is lowered by the presence of heat at the tip.
Table II clearly shows the directions and relative
magnitudes of the local solidification times to be
expected for this laboratory casting, which are typical
of the results presented dimensionlessly earlier.

The widths of the mushy region versus position
of the root curves are presented to give an indication of
the macrosegregation effects and feeding problems which

might be encountered during these laboratory experiments.



Table II.

End Chilled Laboratory Casting, 12" x 6" x 1.57"

unidirectional foamed
heat flow sand moldt plaster mold |plaster mold
superheat 0 0 150 0 0 150 0 0 150 0 0 150 0
heat,
cal/cm?/sect’? o o o 2l o 2 |0 o 2o o 2
v/t vVt Yt vt
local solidifi-~ .
cation time, 200 330 155 160 {70 110 105 {135 115 120 |255 130 140
sec. at 9"
from chill
convection 0 ook 0 o0 0 0 0 0 0 o 0 0 oo

* Assuming liquid with up to 15% solid conVects as

solid, liquid - solid mixtures do not convect.

The parabolic heat loss constants (a) used were:

and 1.57 for foamed plaster.

pure liquid.

8.9 for sand,

At higher fraction

4.95 for plaster,

0TT
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Chapter IV

CONCLUSIONS

A numerical procedure is presented for calculation of
heat flow in solidification of alloys. Results are
given, using Al-4.5% Cu as example, for unidirectional
heat flow and for radial heat flow in a mold at
constant temperature (e.g., water cooled mold).

In unidirectional solidification of an ingot of finite
length, with infinite mold-metal heat transfer coeffi-
cient and no superheat, the "start of freeze" isotherm
moves such that its position is proportional to the
square root of time. The "end of freeze" isotherm
moves such that its position is proportional to the
square root of time until the "start of freeze"
isotherm reaches the ingot extremity; thereafter it
moves at greater velocity.

With superheat and no convection, the "start of freeze"
and "end of freeze" isotherms also move such that their
positions are proportional to the square root of time
(until the upper extremity is approached). The
velocity of these isotherms decreases with increasing
superheat, and both isotherms move at greater rate
near the upper extremity of the ingot than that given
by the square root relationship.

If convection is high and mold-metal interface heat

transfer coefficient infinite, any superheat present

is lost immediately on pouring and heat flow is as if
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the ingot were poured with zero superheat. If
convection is high and mold-metal interface coefficient
is finite, solidification is delayed until all super-
heat is exhausted. Thereafter, solidification is as

if the ingot were pcured with zero superheat.

A second effect of convection is postulated and studied
quantitatively. The effect is that of convection
sweeping away equi-axed dendrites from the outer edge
of the mushy zone, thus extending mushy zone thickness.
A corollary of the postulated model is that the
convection greatly increases the width of the mushy
zone during much of solidification. Calculations show
that local solidification time is then also greatly
increased in much of the ingot.

An "imperfect" unidirectional solidification (i.e.,
some lateral heat loss) start of freeze and end of
freeze isotherms always move faster than for "perfect"
unidirectional solidification, other conditions being
equal. At zero superheat, the start of freeze isotherm
moves at infinite velocity in "imperfect" unidirectional
heat flow.

"Local solidification time" is strongly affected by

the above variables. It increases linearly with
distance from chill in unidirectionally solidified
ingots with no interface resistance (except near the

final extremity where it may decrease slightly).
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Small amounts of side heat loss increase local
solidification time. Larger amounts decrease it.
Convection, where strong enough to sweep solid
dendrites in the direction of advancing isotherms,
increases local solidification time. Small amounts
of heat added to the melt in "perfect" or "imperfect"
unidirectional solidification decrease local solidi-
fication time. Larger amounts increase it.

Results of radial heat flow calculations are
qualitatively similar to those presented above for
unidirectional heat flow. Major quantitative
differences are that (1) velocities of start of freeze
and end of freeze isotherms at a given distance from
the mold are substantially higher for radial heat flow,
(2) local solidification times are reduced, and

(3) the transient effects at the ingot extremity
(ingot center in the case of radial heat flow) are
anhanced.

For an end chilled, plate casting, 12" long from
chill to riser, 6" wide and 1.57" thick, cast into
an insulated mold, with no superheat and no
convection present, detailed results are presented
as numerical examples of the results obtained. The
local solidification time at a distance 9" from

the chill is ~200 second. With 150°C superheat

and no convection, it will be ~155 sec. With a
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grain refiner and high convection, the local
solidification time at 9" from the chill will

be ~330 seconds.

For the above end chilled plate, cast into a sand
mold, the local solidification time at 9" from the
chill will be 70 seconds with no superheat and
~110 seconds with 150°C superheat and no convection.
For the above and chilled plate cast into a foamed
plaster mold, the local solidification time at 9"
from the chill will be ~250 seconds with no super-
heat and ~130 seconds with 150°C superheat and no

convection.
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Chapter Vv

SUGGESTIONS FOR FUTURE WORK

The solidification of alloys other than Al-4.5% Cu
should be studied, such as those which are of
commerical interest. This could be accomplished
easily with the preseﬁt computer model.

The analysis should be extended to treat heat flow
in two dimensions fully. This is important for

the study of continuous casting and ingot solidifi-
cation, where the results of the unidirectional
analysis presented here will not apply. This
extension to more than one dimension can be
accomplished within the framework of the present
method, which treats the tip and root boundary
conditions explicitly in the solution. A method
for two dimensional heat flow analysis with finite
differences is available in the literature, known
as the 'alternating direction' method.

A mathematical description of the effect of heat
input into a highly convecting melt is needed. The
results presented in the Results Section for only
one form of heat input, g = q'/(t)l/z, showed that
there is a strong possibility for reducing local
solidification times in castings in which convection
is present, but that the effect of this heat input

on the positions and velocities of the tip and root
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is complex. Since the forms of heat input (the
function g = F(t)) are limitless, the most efficient
method of searching for an optimal function (the
definition of optimal is itself a problem) would be
to use a mathematical optimizing procedure. Such a
procedure, available in the literature of numerical
analysis, is the unsteady state optimization
algorithm referred to as "Hill climbing in function
space". The procedure is well defined, but calls

for repeated integration of the differential (or
difference) equations, which will result in a large
amount of computer time spent in reaching the optimal
function. Just the definition of thé problem and
setting up of the optimizing procedure may reveal
much more about the proceés of heat input and its
effects on the local solidification time.

A survey of the Results Section will reveal that
over the wide range of values of the parameters

(see Appendix C for the list of all parameters), only
a small portion of the possible values was considered
in this work. Therefore it is possible that many
interesting and useful results were not uncovered
here (such as, what the effect of finite heat
transfer coefficient at the chill is on the results
for the side heat loss studies presented, which were
for h = ). The dimensional analysis in Appendix C

shows that there are many dimensionless groups which
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were held at a constant value for this study, and
these groups, such as hs/hb indicate areas for
future study.

Experimental studies, such as proposed in the
Discussion, should be carried out to determine:

(a) whether the magnitude of the changes in the
dendrite arm spacing presented there is found in
the laboratory, and (b) whether actual laboratory
or foundry conditions of heat transfer at the chill,
amount of convection, etc., can be measured
accurately enough to be used as data for the
computer model for the prediction of final dendrite

arm spacings more accurately.



1.

10.

11.

12.

13.

14.

118

Chapter vI

BIBLIOGRAPHY

E. M. Passmore, M. C. Flemings, H. F. Taylor,
"Fundamental Studies on Effects of Solution
Treatment, Iron Content, and Chilling of Sand
Case Aluminum-Copper Alloy," Trans. AFS, v. 66,
1968, pp. 96-104.

S. N. Singh, M. C. Flemings, 'Influence of Ingot
Structure and Processing on Mechanical Properties
and Fracture of a High Strength Wrought Aluminum
Alloy," (to be published), Trans. Met. Soc. AIME.

T. F. Bower, H. D. Brody, and M. C. Flemings,
Trans. Met. Soc. AIME, v. 236, 1966, p. 624.

T. Z. Kattamis, J. M. Coughlin, M. C. Flemings,
"Influence of Coarsening on Dendrite Arm Spacing
of Aluminum-Copper Alloys," Trans. Met. Soc. AIME,
v. 239, 1967, pp. 1504-1511.

M. C. Flemings, "Application of Solidification
Theory to Large Castings and Ingots," The
Solidification of Metals, J.I.S5.I., Publication
110, 1968, pp. 13-24.

F. Neumann, Cf P. Frank, and Baron Mises, "Die
Differential und Integral Gleichungen der Mechanik
und Physck," v. 2, Vieweg, Branunschweig, 1927,

H. S. Carslaw and J. C. Jaeger, "Conduction of
Heat in Solids," Oxford university Press, London
and New York, 1959.

P. V. Danckwets, Trans. Faraday Society, v. 46,
1950, p. 701.

B. A. Boley, Quart. Appl. Math., v. 1, 1963, p. 300.

C. M. Adams, Liquid Metals and Solidification, ASM,
Cleveland, 1958, pp. 174-186.

V. Koump, R. H. Tien, and W. J. Kim, Trans. Met.
Soc. AIME, v. 239, 1967, p. 1305.

A. W. D. Hills, Trans. Met. Soc. AIME, v. 245,
1969, p. 1471.

J. C. Muehlbauer and J. E. Sunderland, Appl. Mech.
Rev., v. 18, No. 12, 1965, p- 951.

S. G. Bankoff, Advance in Chem. Eng., v. 5, 1965, p.

75.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

119

E. A. Mizikar, Trans. Met. Soc. AIME, v. 239, 1967,
p. 1747.

R. D. Phelke and M. J. Sinnott, "Unidirectional
Analysis of Heat Transfer During Continuous Casting,"
Computer Applications in Metallurgical Engineering,
ASM, 1964, pp. 75-81.

W. B. Eisen and A. J. Campagna, "A Computer Simulation
of Vacuum Remelted Ingots," TMS-AIME, v. 1, no. 4,
p. 849.

Adenis et al., J. Inst. of Metals, v. 91, 1963,
pp. 395-403.

H. D. Brody and M. C. Flemings, Trans. Met. Soc. AIME,
v. 236, 1966, p. 301.

M. C. Flemings and G. E. Nereo, Trans. Met. Soc. AIME,
v. 239, 1967, p. 1449.

D. Kingery, Introduction to Ceramics, p. 501.

A. W. D. Hills and M. R. Moore, Trans. Met. Soc. AIME,
v. 245, 1969, p. 1481. :

W. D. Murray and F. Landis, Journal of Heat Transfer,
May, 1959, pp. 106-112.

L. W. Ehrlich, Journal of Assoc. Comp. Machinery,
v. 5, 1968, p. 161.

A. Kohn, "Auto Radiograph Study of the Process of
Solidification in Killed Steel Ingots," The Solidifica-
tion of Metals, J.I.S.I., Publication 10, 1968,

pp. 356-362.

H. D. Brody, Sc.D. Thesis, Department of Metallurgy,
Massachusetts Institute of Technology, 1965.

P. G. Kroeger, "A Heat Transfer Analysis of Solidifica-
tion of Pure Materials in Continuous Casting Processes,"”
to be published at the Fourth International Heat
Transfer Conference, Paris, 1970.

H. Silberberg and J. J. McKetta, "Learning How to Use
Dimensional Analysis," Petroleum Refiner, v. 32, no. 7,
p. 129.

R. W. Ruddle, "The Solidification of Castings", Institute
of Metals, 1950.

H. H. Rosenbrook and C. Storey, "Computational Techniques
for Chemical Engineers," Pergamon Press, 1966.

B. P. Bardes, M. C. Flemings, "Dendrite Arm Spacing and
Solidification Time in Cast Aluminum-Copper Alloy,"
Trans. AFS, v. 74, 1966, pp. 406-412.



(4)

-1, | >

- te

Figure 40A. Fraction liquid at A = 0,5 versus reduced time, hgL/K = o,
no superheat, no convection, for (A) unidirectional heat
flow (Figure 12A), (B) radial heat flow (Figure 16A).
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Figure 40B, Dimensionless temperature at A = 0,5 versus reduced time,

for conditions of Figure 40A,
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Fraction liquid at A = 0.5 versus reduced time, hBL/K = o
no superheat, for (A) no convection, columnar growth (Figure

124A), (B) high convection, equiaxed growth, fgc = 0.45
(Figure 38D),

Figure 41A,
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Dimensionless temperauure at A = 0.5 versus reduced time,
for conditions of Figure 41A,
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Figure 42A,
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Fraction liquid at A = 0,5 versus reduced time, hpL/K = =,
no superheat, no convection, for (A) unidirectional heat

flow (Figure 12A), (B) side heat flow, hgL2/W = 0,232
(Figure 22B),
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Figure 42B. Dimensionless temperature at A = 0,5 versus reduced time,
for conditions of Figure 42A,
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Figure 43. Fraction liquid at A = 0,5 versus reduced time, for conditions

of Figure 41A, with Scheil distribution of fraction liquid
versus temperature used in the mushy region,
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Figure 44, Fraction liquid at A = 0,5 versus reduced time, for conditions

of Figure 42A, with Scheil distribution of fraction liquid versus
temperature used in the mushy region,
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Figure 45. Fraction liquid at A = 0.5 versus reduced time, for conditions
' of Figure 42A, with Scheil distribution of fraction liquid versus

temperature used in the mushy region,
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Figure 46, Local solidification time versus distance from the chill, 12" end-
chilled plate casting, 6" wide, 1.57" thick, insulated mold, for
(A) ATg = 0, no convection, (B) ATg = O, equiaxed growth, high
convection (C) ATg = 150°C, no convection, (D) high convection,
heat at centerline = 50/Yt cal/sec/cm?®.
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Figure 47, Local solidification time versus distance from the chill,
for the casting of Figure 46, for (A) insulated mold, ATg = O
no convection, (B) sand mold, ATg = 0°C, no convection, ?C)
sand mold, ATg = 150°C, no convection,_ (D) sand mold, high
convection, heat in = 50/V/t cal/sec/cm®, where a = 8,9 for sand,
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Figure 48, Local solidification time versus distance from the chill, for
the casting of Figure 46, for (A) insulated mold, ATg = O, no
convection, (B) plaster mold, ATg = 0°C, no convection, (C)
plaster mold, ATg = 150°C, no convection, (D) plaster mold,
high convection, heat ip = 50/Yt cal/sec/cm?, where a = 4,95
for plaster.
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Figure 49. Local solidification time versus distance from the chill for

the casting of Figure 46, for (A) insulated mold, ATg = O, no
convection, (B) foamed plaster mold, ATg = 0°C, no convection,
(C) foamed plaster mold, ATg = 150°C, no superheat, (D) foamed
plaster mold, high convection, heat in = 50//t cal/sec/cmz, where
a = 1,57 for foamed plaster.
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Figure 51. Width of the mushy region versus position of the
of Figure 47.
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Figure 52.

Width of the mushy region versus position of the root for cases
of Figure 48.
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of Figure 49,
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Chapter VII
APPENDIX A
Numerical Procedure Used in Calculation

of Heat Flow in Unidirectional
Solidification of Alloys

A. Standard Solution of the Heat Flow Equation (Explicit)

The standard method of solving Equation (1) numerically
is to set up a grid of N points across the length of interest,

and write a separate heat balance for each of these N points

or nodes such as:

+ -

_ (K AT/Ax | - K AT/Ax | )
pCp dr/dt = "

+ psH Afs/At (Al)

where the symbols are as defined earlier and the + and - refer
to the right and left sides of the point, respectively.

With the solid distribution assumed in Figure 1b, the
term Pg H AfS/AT can be reduced to a constant additive term
H/(Tt - TE) where Tt is the liquidus temperature, T, minus
a small amount of dendrite tip undercooling. The term is
zero for all slabs whose temperature is greater than TL or
less than TE’ becuase dfs/dt is zero in these regions.

If an explicit technique is used to solve the N

equations of the form (Al):

dr (1) /dt fl (T,t) (A2)

dT (N) /dt

fN (T,t)



138

then the left hand side is replaced by some form of the time
derivative such as:

T (g) - T _(J3)
t+At t
X3 (A3)

dT (J) /dt

Although higher order terms of the expansion of the
time derivative around time = t may be used, the method is
called explicit as long as the temperature at time, t+At
may be expressed as a function of temperature at time, t.
In a following section of this appendix, an implicit
technique will be presented which will be shown to be more
advantageous than the explicit technique.

For the explicit technique, a set of N equations is

formed as follows:

T (J) T(J+1l) - (ZQM)T(J)+T(J-1) (Ad)
For J =1 to N
where
M = sz/aAt
o = E/(S-(EP+H/(Tt—'TE)))
T' = T

t+At

This set can be solved for T' (1) to T' (N) at each
time step, then replacing T by T' and repeated for the next
time step (At). The technique is known as Euler's method,

and the size of the time step is constrained to be small.
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B. Murray and Landis' Treatment of Solidification
Discontinuities

Due to the presence of a heat generation event which
occurs during solidification of an alloy at the dendrite
tip and root (represented by Equations (6b) and (7) in the
text), the temperature discontinuities resulting from these
moving internal boundaries must be properly included into
the heat flow solution.

Murray and Landis (ref. 19) present a method for
including these calculations in a numerical solution to the
heat flow equation for melting or freezing of a pure
material. This method was used and applied to both the tip
and root isotherms. The slight modificatioﬂ of the method
required comes about when the tip and root are within two
or less grid points of each other. The method will be
presented here for a single discontinuity, since both tip
and root are treated exactly alike.

Let the solidification isotherm be contained in
slab I, which is Ax wide with the grid point I at the mid-
point. The heat which is given off at this isotherm,
H(I)dx/dt, is assumed to be felt only in this slab. All
other slabs are treated as in equatiqn (A4). Slab I is not
included in the heat flow calculations, but rather its
temperature is calculated by forming a three point interpola-
tion on both sides of the isotherm, which gives rise to two
temperatures for the mid-point temperature of slab I,

+

T and TS

SE E (refer to Figure 6). The formulae used were:
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+ . 2
T g = Tx (2 - 8x/Ax) (1 - 8§x/AX) (a3)
_ . _2°8x/Ax
. §x/Ax
+ T(I + 2) Z - 3x/5%)
- _ . . 2
Tse = Tx " T+ 8x/B0 (T ¥ 3%/6%) (A6)
_ . _2°0x/Ax
T - D) T Sx/ER)
. _ . dx/Ax
T(I 2) (2 + 8x/Ax)
where: Tx = TE or Tt' depending on whether the tip or

root was in slab I

dx = distance between grid point I and the

isotherm (refer to Figure 6, where I is referred
. _ Ax Ax to as K)
e o ‘7( 6x<—2-

Although 6x may be positive or negative, and
Equations (A5) and (A6) are defined over the full range

of 6x, the temperature of slab I is set to TsE- when

0 < 8x and to TsE_ when 0 > 6x.
r YanarT "
sE sE

(A4) for the calculation of the temperatures in slabs

are also used in the equations set

I +1and I - 1.
After the new temperature of the slabs have been

calculated from Equations (A4) and set with Equations (A5)
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or (A6) in slab I, the new position of the boundary can be

calculated from Equations (6b) for the tip and (7) for

the root:
(Ky (T oz~ - T(I - 1)
pX = (At/(f cp - H)) { v (a7)
- . +
Ky (T(I + 1) - TsE )}

Ax

where: the subscript m refers to the properties at either
the tip or root, depending on which new position
is to be calculated.
Then 6xt+At = Gxt + AGxx, for both the tip and root,
and the calculation may proceed for the next time step.
The cycle for each calculation is:
(1) Calculate new positions of the boundaries;
(2) Interpolate temperatures of the boundary-
containing slabs and set them; |
(3) Perform heat flow calculations in the solid,
mushy, and liquid regions, excluding the boundary-
containing slabs;
(4) Replace T by T' and start at (1) again.
The two problems in keeping track of the two
internal boundaries by the above method are:
(1) The start up and final stages of the process
must be treated separately. That is, when either
discontinuity is within one grid point of the surface or

center of the simulated casting, special two point formulae
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must replace Equations (A5) and (A6).

(2) When and if the tip and root are within 2 or
less grid points of each other, special formulae must
again be used to replace Equations (A5) and (A6). These
formulae are of the same form as (A5) or (A6) with
appropriate substitutions made for T(I + 1), T(I + 2),
T(I - 1), or T(I - 2) where necessary.

’ The above problems present no mathematical
difficulty, but rather the inclusion of the tests for
each possible condition increases the run-time of the

program considerably.

C. Temperature Dependent Properties

In addition to the discontinuities, there are
temperature (and, therefore, space) dependent properties
to be included, which arise from conditions in the mushy
zone. The most important of these is the thermal
conductivity variation, as can be seen in Equation (Al),
where the right hand side must be treated as d/dx (K dT/dx)
rather than K dzT/dxz.

Therefore, the following method is used during the
solution at each time step: the thermal properties of the
slab J, in the mushy zone, are determined from Equations
(13), (14) and (15) or (16). The thermal conductivities

to be used for heat into slab J (K AT/Ax’ in Equation Al)

and heat out (K AT/Ax ) are taken as an average, since the
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heat flows through a distance Ax/2 with one Rm and then
Ax/2 with the other Rm' (Refer to Figure 2a). That

is for slab J(TE < T(J) < TL),

+

(K (J+1) + K,(3))/2

(K )

(® )"

(A8)

(K, (3-1) + Rm(J))/z

“-wheére: ﬁm(J), Rm(J+l), Rm(J—l) are thermal conductivites of
slabs J, J+1, J-1 respectively; these are calculated using
Equations (15) or (16).

It should be noted that the above method is also used
in heat flow in the solid and liquid regions; but since
Rm(J+l) = Rm(J) in these regions, the effect is as if the
right hand side of Equation (1) where K d2T/dx2.

For the case of high convection in the liquid, the
above method is employed. But since the slabs containing
the tip and root are treated separately, the thermal
conductivity in front of the tip, Rx in Equation (A7),
becomes important. Physically, there is a fluid mechanical
boundary layer in front of the tip, so that a good approxi-
mation for Rx is that it has the same value as RL for still
liquid. Thus the liquid directly in front of the tip is

considered to be still, but that the liquid at the next

slab ahead of fhe tip is considered to be highly convecting.
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D. Implicit Versus Explicit Finite Difference Techniques

As noted previously there are two general methods of
solution for a set of differéntial equations of the type
(A2). The explicit technique, which was presented above,
is derived by using the first term of the Taylor series
expansion of the function T around time, t. (Equation A3).

If the higher order terms are neglected, this is
called Euler's Method, and the error in using Equation (AS8)
is on the order of (At)z. However, when Equation (A3) is
substituted into the set (A2) to obtaih (A4), the stability
parameter M must be numerically greater than or equal to 2.

This puts a severe restriction on the size of the
time step (At) for a given Ax. For instance, for a = .65
(solid Al-4.5% Cu alloy), N = 25, length = 50 cm, this
réstricts At to < 3.07 sec. Note that since we‘éssign a
high thermal conductivity to the liquid to approximate the
effect of convection in the melt, (as much as 10 times as
high as the solid thermal conductivity) this will force
the time step to be < 0.3 sec. This requirement provides
unnecessary accuracy, since for At = 0.3 sec, the error in
the resultant 4T/dt is ~(At)2 or 0.09 sec. The advantage
of the implicit technique is that the solution is stable
(conditionally), so that the error requirement rather than
the stability requirement may be used to determine the

appropriate time step.
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To derive the implicit method, we substitute (A3)

into (A2) and rearrange:

T () = Tt(J) + At * £ (a9)

t+At J,t

To increase the stability of this equation, a

substitution is made for fJ(T,t):

-

_ 1 .
(3) = Tt(J) + At (5 fJ(T,t) + = fJ(T,t+At) (A10)

Tesat 3

where: the temperature at the time, t+At appears on both
sides of the equation. The unknown temperature at time,
t+At is implicit on the right hand side of the equation,
thus, the namé of the method. That the method is more
stable than fhe explicit can be seen qualitatively from
the consideration that the averaging of the slopes (fJ)

at time, t, and t+At, tends to smooth out highlyntransient
behavior in dT/dt, therefore, the "overshooting" problem
of the explicit method is partially avoided.

The system of Equations (Al10) could be solved
iteratively at each time step to obtain TerAt® However,
due to the nature of the finite difference forms of the
heat flow equation, Crank and Nicholson (Ref. 7, p. 474)
have presented a method of solution which involves solving

a new system of equations:
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N
_ 1 2
L. = At{fr(T,t) + 5 Jil LJ ET; (fr(T,t))}

for r =1 to N (All)

which rearranges to a matrix equation:
- B
L = [aA] ° B (a12)

Then:

(@) = T_(@) +1L (A13)

Tisat J

The method we use to solve the matrix equation (Al2)
simultaneously with a Gaussian elimination type of solution,
taking advantage of the fact that the matrix A in the matrix
Equation (Al2) is tri-diagonal. This saves computer time
and storage, and makes the implicit method all the more
useful.

This implicit method is used to solve thé heat flow
equations in the solid, liquid and mushy regions. Each
region is treated separately, with the surface BC (Equation
2) and the root (Equation 4a) boundaries for the solid, the
root and the tip (Equation 4b) for the mushy region, and
the tip and the center (Equation 3) for the liquid
boundaries. The coupling of the regions is included by
Equations (6b) and (7), which are solved via Equation (A7).
Equation (A7) is solved for both the tip and root position
with Euler's method, and since the stability requirement
of these equations forces a smaller At to be used thenrfor

the heat flow calculations, a separate loop is included in
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the computer program to cycle through P time steps of the
solution of (A7) for each single time step of the heat

flow solution, where

time step of heat flow calculation .
time step of position (A7) claculation

An estimate of the efror involved in the method is

presented in Appendix E.
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Appendix B
Modifications of the Uni-Directional Numerical

Procedure, for the Solution of Radial and
Side Heat Loss Heat Flow

A. Radial Heat Flow

Consider a shell balance for heat made on a

cylindrical element:

Heat accumulated = Heat in-Heat out + Heat generated

ar = dT
VeCp g = MFrar |
as
= daT : s
- A2K2 a—fl + VpsH —dt (Bl)

where A is the area across which heat flows into the
element, V is the volume of the element, and the subscripts

1l and 2 refer to the two surfaces across which heat flows,

In finite different form, this becomes:

AT 5 1 ) R (TJ = T4

IS P W ‘
p At Ar r, + r, Ar

pC

+ psH Afs/At

where the volume of the element has been approximated by

2n Ar(rl + rz)/2
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A comparison of Equations (B2) with Equation (Al)
shows that the finite difference forms of the heat flow
equations differ only in the coefficients in the AT/Ax
terms. This means that the solution for the radial case
is found in exactly the same manner as for the uni-
directional case except for .the coefficients
(2rJ/rJ+rJ+l) and (2rJ+l/(rJ+rJ+l)) which are calculated
for each element J and included in the matrix solution,

Equations (All) - (al3).

B. Side Heat Loss

The effect of heat loss from the side has been
presented mathematically in the Introduction. The computer
model implements this heat loss by simply reducing the

temperature of each slab by

J c X
side e p

where q is either h(TJ—T ) or a/Yt, as presented in

A,side
the introduction. This is accomplished by a simple
calculation made at each time step after the x-direction
heat flow equations have been solved.

The slabs which contain the tip or root are not
treated in the same manner. Rather than reducing the

temperature of these slabs, the heat loss to the side, gx,

is included in the position equation (6b) at each time step.
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APPENDIX C

Results of Dimensional Analysis of the Problem
of Heat Flow During Solidification

A consideration of the differential equations and
the solidification model (presented in the Introduction)
pertinent to this problem shows that the variables which
must be included in the analysis are: (refer to Table I

for definitions)

units units
property (absolute) property (absolute)
3 2
1. hb M/6°T 13. o L°/6
2. K ML/63T 14. ¢ L2/0%r
. s . pl 2,.2
2
3. aL L”/6 15. Hl L“/0
2,2
4, Tm-Ts T 16. Hs L°/8
2,.2
5. Tp-Ts T 17. Cpm L2/6 T
6. TO-Tm T 18. am L°/6
7. K ML/93T‘ 19. Rm ML/63T
8. L L 20. q° M/63
9. Xg L 21. Tm--Ta's T
10. H 12/02 | 22. W L
11. t o 23. h_ M/o3T
, 2,.2
12. Cps L°/6°T 24. Tle T
2,.2
25, Cple L°/86°T
2.5

26. a M/



The Buckingham Pi method was applied to the problem
(see Reference 28 for details). The first four variables,
hb’ K, Gyo and Tm—Ts were chosen as the base of the analysis.
The resultant groups of dimensionless numbers produced are
listed below. It should be noted that the Buckingham Pi
method assures that the dimensionless groups produced will
completely describe the problem (as much as the variables
used will), but the exact form of the groups produced
depends on the choice of the variables used as the base of
the analysis. According to the rules of dimensional
analysis, however, aﬂy dimensionless group may be replaced
by a combination of other groups with no loés in information.
Therefore, the groups listed below do not represent the
actual groups produced by this analysis, rather they are the
groups which are commonly associated with heat flow. The
forms of many of these groups come from the form of the
differential equations and boundary problems, but as noted
above, they also can be obtained by combinations of the

groups formed by the Buckingham Pi method.

For Unidirectional Solidification of Pure Metals with Super-
heat, Infinite or Finite Heat Transfer Coefficient, and Any
Degree of Convection:

1. T,-T /T -T 6. (T T )C, /M
2. T-T_/T_-T_ 7. o t/1°

3. Ky /K, 8. (T, =T )C, /H
4. hb L/Ks 9. al/as

5. X_/L 0. ¢ ./c
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For radial solidification, replace L by R and Xs

by R—rs,

11.
12.

13.

16.

For the solidification of alloys, add:

xs/xl 14, am/as
H_/H; | 15. K /K
Cpm/cps

For the parabolic heat input, add:

q/KS(Tm Ts) or g /E/KSL(Tm Ts) cal/sec/cm

For side heat loss, with constant heat transfer

coefficient on the side, add:

17.

18.

20.

22.

2 )= - -
hSL /WKs 19. Ta,s TS/Tm TS

hs/hb

For equi-axed, high convection growth add:

Tle—-Ts/Tm—Ts 21. Cple/cps
For parabolic heat loss from the side, add:

1/2

a L(as) /sz



APPENDIX D

A Listing of the Program

The following program was written in Fortram IV, and
was compiled with the I.B.M. Level H compiler, with an
optimization level of 2. Various statistics for compilation

and execution are:

(These apply to the I.B.M. 360/65/40 system at M.I.T.)
Number of Fortran statements = 850
Compile time (H Compiler) = 90 seconds
Core storage necessary for program and Fortran
routines = 30K bytes
Number of implementation dependent routines = none
Number of iterations (time steps) per second of
computer time = 20 to 27.
The number of iterations per computer second varies
as the variable 'CYLL' varies. |
‘The run time required to simulate the solidification
of a casting of given length depends on the accuracy and
external conditions read into the program. A typical time
is 50 seconds of computer time to simulate the solidifica-
tion of a 6" casting, of an alloy with 0 degrees superheat,
no convection, infinite h, and accuracy level between 0.1%
to 0.03%.

The listing of the program follows.



C MAIN PROG FOR CASTING PROBLEM
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THIS ROUTINE IS A SOLUTION OF A ONE DIMENSIONAL HEAT FLOW PROBLEM
IT USES A METHOD OF FINITE
DIFFERENCES,AND DOES A LINE RELAXATION(SINGLE STF”)
FEATURES OF THE PROGRAM,.
1) HEAT AT CENTER IS SPECIFIED FUNCTION OF TIME
2) SURFACE TEMPERATURE IS SPECIFIED IN ONFE OF TWO WAYS;
A) AS A SPECIFIC FUNCTION OF TIME, OR B) AS A CONSTANT HEAT TRANSFER
COEFFICIENT(FROM WHICH EACH TEMPERATURE IS CALCULATED, )
THE SURFACE SLAB IS NEVER INCLUDED IN THE SIMULATION DIRECTLY,
ONLY INDIRECTLY AS A CONSTANT TEMPERATURE.
3) THE POSITIONS OF THE LIQUIDUS AND SOLIDUS ARE CALCULATED
AT EACH TIME STEP FROM SEPERATE EQUATIONS(Q IN = Q OUT+HEAT)
THIS METHOD IS SIMILIAR TO(AN EXTENSION OF) THE METHOD
OF MURRY AND LANDIS. IT IS NECESSARY IN ORDER TD TAKE
ACCOUNY OF THE HEAT EVENTS AT THE TIP AND ROOT PROPERLY.
4) INTEPPOLATION NECESSARY IS DONE BY USING A THREE POINT FIT
WHENEVER POSSIBLE,AND TWO POINT FITS IF NOT., -
5) THE TEMPERATURES OF THE SLABS WHICH CONTAIN THE ROOT OR THE TIP ARE
TREATED SPECTALLY,TE,THEIR TEMPERATURES ARE SET FROM INTERPOLATION,
NOT CALCYHLATED FROM THE FINITE DIF. EQNS. THESE SLABS ARE INCLUDED
IN THE HEAT FLOW SOLUTION,HOWEVER,AS THE RESULTANT TEMPERATURES ARE
USED TO SET THE POSITIONS AT THE TIME STEP,
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A CRANK-NICHOLSON METHON IS USED TO SOLVE THE EQUAT!DNS
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c

c THE CONSTANTS APPEARING IN VARIOUS PLACES IN THIS PROGRAM
c ARE THOSE WHICH APPLY TO A AL-4.5%CU ALLOY

c THE THERMAL DATA MAY BE READ IN,SO THAT THE PROGRAM ITSELF

VST



WOULD RE APPLICARLE TO ANY ALLOY(THE CIOLING OF SOLIDS

OR THE FREEZING OF PYRF MATERIALS IS A SUBSET OF THIS)

THE ONLY CONSTANTS WHICH APPLY ONLY T0O AL-4.5%CU ARE

THOSE USED IN THE SCHETIL DISTRIBUTION EQUATINNS...

IF A LINEAR DISTRIBUTION IS USED,HOWEVER(CHOSEN BY
. SPECIFYING A VALUE OF '0' FOR THE FLAG ISHEIL,BELOW) THEN

THIS MODIFICATION OF THE EQUATIONS IS NOT NECESSARY

RESULTS INDICATE THAT THE SCHEIL DISTRIBUTION MAS PRACTICALLY
NO EFFECT ON THE TEMPERATURE DISTRIBUTION OR PJISITIONS OF

THE TIP AND ROOT,THEREFORE IF A SCHEIL DISTRIBJTION IS DESIRED,
THE SIMULATION COULD BE RUN WITH A LINEAR DISTRIBUTION,AND THE
RESULTANT TEMPERATURES CONVERTED TO FRACTION SILID WITH

THE SCHETIL EQUATION WITH THE SAME RESULTS

IF THE SURFACE TEMPERATURE AT TIME DNE(SURTEH(I)) IS LESS

THAN ZERO,THEN THE CONSTANT HEAT TRANS, COEF READ IN WILL BE USED
OTHERWISE,THE GIVEN SURFACE TEMP., WITH TIME WILL BE USED.

RADIAL HEAT FLOH STMULATION CAPABILITY ADDED.«+MARCH 13,1970
THIS IS ACCOMPLISHED BY RE-DERIVING THE HEAT FLOW EQUATIONS FOR
RADIAL(CYL INDRICAL) SHELLS..oTHE RESULTANT HEAT FLOW EQUATIONS
DIFFER FROM THE UNI-DIRECTIONAL ONES ONLY IN THE COEFFI IENT
WHICH REPRESENTS THF AREA. .. SEE BLOCK °*MATX® FOR DETAILS

OO0 0O0O0OO0O0

DIMENSION TSAV(50)vTSAVL(50"TSAVT(50),TSAVC(50’ INIT
DIMENSTION S(100),TKSAV(SO0) ,EX{50),AK(2), TKINT(50),TT(20)y,TR(20) INIT
DIMENSION EM1(3),EM(3) oLIST(50),DIST(10),IN{10) INIY
DIMENSION F(100),Q0(100),A(100,3) INIT
COMMON SURTEM(20),GLOBAR{40),R(50),EPSILO(20),T(50) INTT
COMMON PT.DELT ¢DCYL ¢CYLLoHIGHC yFLOWC 3TSEC,TL,TE,TKS,TKL INIT
COMMON CPSoCPL sRHS yRHL HOF yFREJFRTFSCoy TKFACT,ALEN,DELX . INIT
COMMON TINGPOSLyPOSX ¢SECoH DELTS,TAoHS¢XS,TAS, ANU,DELTQ INTY
COMMON NAME (10) yNyNCYCLE4NSCYLyICONT KTFLG¢ KGR ¢ NEPS , LCONT INIT
COMMON ISHEIL, IRADFL, ISTFLGy,KHIN v INTY

" REAL*8 A,Q,F,EM INIT

S3T1
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THE USE OF THE ARRAY IS:
T HOLDS THE TEMPERATURE AT TIME T FOR FACH NODE
TSAV IS A COPY OF T,FOR USE BY *SOLVE'
TSAVL IS USED BY 'CONTROLS®* FOR MAINTAINING
FOR MAINTAINING THE ACCURACY OF THE PJSITION LOOP
TSAVC AND TSAVT ARE USED BY CONTROLX FR COMPARISONS OF
ACCURACY OF THE TIME STEP LOOP
AsFy AND Q ARE THE MATRICES IN TH EQUATINON
-1
Q=A F
WHERE Q IS THE SOLUTION OF THE EQUATIONS FNR DELTA T
TCINT,TKSAV,AND EX ARE THE THERMAL PROPERTIES AND CONSTANTS
OF EACH SLAB AT TIME T
EM IS USED BY *MUSHY' TO FILL EX
AK IS USED BY *MATRIX®* TO FILL A AND F
LIST IS USED TO KEEP TRACK OF WHICH SLABS ARE IN WHICH REGION
DISTyIN+sTToTR9SyR4AND EPSILO ARE USED FOR OUTPUTTING
THE INTERPOLATED TEMPERATURES AND THE POSITION-
TIME INFORMATION GIVEN AT THE END OF THE SIMULATION
SURTEM AND GLOBAR ARE THE EXTERNAL BOUNDARY CONDITIONS,
SPECIFIED AS TEMPERATURE AND CALORIES AS FUNCTIONS
OF TIME , RESPECTIVELY '

CONTINUE
READ(5,820) NAME
READ(S5,816) NyKGRyNCYCLE,NEPS,NSCYL
READ(54818) DELT,PT,FACT,TKFACT,CYLL,FRT,FRE ,FSC
READ (5,4817) TINyALEN,TSEC,TA +DELTS,DELTQ ,TL
READ(54824) ISTFLGy IRADFLyITHPRO,LCONT KTFLGs ISHEIL
READ(5,819) SURTEM

READ(5,819) GLOBAR

READ(54817) HS,XS,TAS

READ(54824) NDIST

INTT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INITY
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIY
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INTT
INIT
INIT
INIT

9ST
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READ(54819) DISY
IF(DELT.LT.0.) STOP

INIT
INIT
INIT

THE FOLLOWING VALUFS OF THF THERMAL PROPERTIZS ARF CONSIDEREDINIT

STANDARD.s+s FOR SPECIAL RUNS,THEY MAY BE READ IN BRY
USING THE FLAG 'ITHPRO®

TKS=0.43
TKL=0,243
CPS=,220
CPL=0,24
RHS=2,75
RHL=2,645
HOF=75.
TE=548,
IF(ITHPROL.EQ.1)READ(5,818)TKSyTKLyCPSyCPLyRHSyRHLyHOF,TE
HIGHC=1.
FLOWC=0,

THE FOLLOWING READ TAKES PLACE IF THE USER HAS SPECIFIED

THAT CONTROL OF THE LONP WITH RESPECT TO DEL TIME IS TO TAKE

PLACE.IF NO CONTROL(LCONT=0) THE STANDARD VALUES OF THE"

CONTROL VARTABLES ARE SUCH THAT NO TESTING SHOULD TAKE

PLACE,AND THEREFORE, THE PROGRAM WILL OPERATE AT THE

SAME SPEED AS BEFORE

THE VARIABLES TO CONTROL THE LOOP ARE;

1) ICONT...THF NUMBER OF ITERATIONS AT WHICH THE CONTROL IS
TO BE APPLIED

2) FLOWC.oeTHE LIMIT AT WHICH THE TIME STEP MAY BE DOUBLED

3) HIGHC... THF LIMIT AT WHICH THE TIME STEP WILL BE REPEATED
AT HALF THE CURRENT TIME STEP

ICONT=10000
IF(LCONT .EQ.1)REAN(5,871) ICONT FLOWC 4 HIGHC

TCONT=ICONT*DELT

INIT
INIT
INIT
INIT
INIT
INIT
INIT
INTT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INTT
INTT
INIY
INTT
INTTY
INIT
INIT
INIT

INIT

LZT



c CONDITIONAL READ IF POINTS SPECIFIFED

c
IF(NEPS.NF,0) READ

CO.QO0.....0’0...00........‘.....'...0......0..................0.......

THE PURPOSFE OF

3) SET UP THE

CONTR

DELTCY USED BELOW IS
CALCUYLATED PER TIME ST

OO0

KROLD=1

KTOLD=1

IHCFLG=1
NDELTCY=DELT/NCYCLF
HPRINT=PT

DEL X=ALEN/N
NCYL=DELX/CYLL
IF(NSCYL.EQ.0) NSC
CONST =DELX*DELX/DE

(54219) FPSTLD
REGIN INITIALIZATION

BLOCK *INIT' IS

1) INITIALIZE THE TEMPERATURE PROFILFE AT TIME T=0,
2) INITTIALIZE THE CONSTANTS WHICH WILL BE USFD IN THE TIME
LOOP WHICH DO NOT CHANGE

VALUES DF THE THERMAL PROPERTIES AND

THE FLAGS FOR THE FIRST TTERATION,WHICH WILL BE

OLLED BY THE TIME STEP LOOP THEREAFTER

THE NUMBER NF TIMES THAT THE POSITIONS ARF
EP OF HEAT FLOW

YiL=1
LT

EX(1)=CONST*RHL*CPL

0o

KCNTL=1
no 7777 J=1,N
R(S)=0.
StJ)=0,.

7777 CONTINUE

DELT IS THE TIME STEP(INITIAL)

INIT
INIT
INIT
INIT
INIT
INIT
INTT
INIT
INIT
INTT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INTT
INIT
INIT
INIT
INIT
INIT
INIT
INTT
INIT
INIT
INITT
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e Nelel

859

961

855

856
858

OO e

ARRAYS *IN®',!S?,'R?,'NIST* ARE USED TO CALC. THE TEMPERATURES
AT SPECIFIED POINTS ALIONG THE LENGTH OF THE CASTING,
seoFOR THE PURPOSE OF COMPARISON TO T.C, READINGS

IF(NDIST.FEQ.0) GO TN 858
R WILL BE WRITTEN OUT AND LATER RE-USED

NJ 859 J=1,NDIST
R(J)=DIST(J)

N 961 J=1,20

TR(J)=0.

TT(J)=0.

N3 855 J=1,40
GLOBAR(J)=GLOBAR(J)*FACT
CIONTINUE

N3 856 J=1,10
DIST(J)I=DIST(J)+DELX/2,
INCI)=(DIST(J) /DELX) +]
S{I)=NIST(I)I=-CLIN(I)-1)*DELX+DELX/2.)

CONTINUE
CONTINUE
IT=0

1p=0 .

I=0

DO 13 J=1,N
T(J)=TIN

INITTIALIZATION FOR H COEFFICIENT SIMULATION

KHIN=2
IF(SURTEM(1),.LE.O0,) KHIN=1
H=0,
IF(KHIN.EQs1)H=SURTEM(2)
FIRST ITERATION ALWAYS USES LIQUID PROPERTIES..e

INIT
INIT
INIT
INIT
INIT
INTT
INTT
INITY
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INTT
INIT
INIT
INIT
INIT
INTT
INIT
INIT
INIT
INIT
INTT
INTT
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TKSAV{(1)=TKL
SEC=0.
LUG=0.

SCHEIL EQUATION CONSTANTS

SCHC=33,/(112,.%4,5) ¢
SCHE=1,/(.17-1.)

IF(TIN.GT.TL) CPL=CPL+(FSCXHOF)/(TIN-TL)
FRL=1,0-(FRE+FRT+FSC)

NOTE THAT SINCE FSC=0 AND TL =650 WILL PRODUCE NORMAL NPERATIO
THE DECK DNES NOT HAVE 10O BF CHANGED FOR THE EQUI-AXED CONV.RU

TKLL=TKL

FRE AND FRT ARF THFE FRACTIONS SOLID AT THE ROOT AND TIP, .
RESPECTIVELY

RHEAT=HOF*RHS*FRE

THIS EQUATION RESULTS FROM THE CONSIDERATION OF THE
KINETIC UNDERCOOLING REQUIRED FOR GROWTH(AT THE TIP)

THFAT=HOF*RHL*FRT

THESE FQUQTIONS ALLOW EITHER A *NORMAL?' STARTING SOLUTION,

OR IF IRFL,ILFL ARE NOT READ IN AS ZEROsA SQUARE CURVE IS
FIT TO THE FIRST TEMPERATURE(SET TO ZERO) AND THE SECONDeeeo
THIS IS FOR THE PURPOSE OF ELIMINATING THE EFFECT OF
FIMITE HEAT TRANSFER ON THE SURFACE, IE,AN '"INFINITE®' SOLUTION
START IS USENe...SURTEM(1) MUST BRE SET TO ABOUT 0,01

IF(ISTFLG-1)2300,2302,2303
ISTFLG IS READ IN AS A FLAG TO SIGNAL:
0) NORMAL NON-ANALYTIC STARTING CONDITIONS

INIT
INIT
INTT
INITY
INTT
INIT
INIT
INIT
INIT
INIT
INIT
INITY
INIT
INIT
INIT
INIT
INITY
INTIT
INTT
INIT
INIT
INIT
INTT
INIT
INIT
INIT
INIT
INIT
INIT
INIY
INIT
INIT
INIT
INIT
INIT
INIT
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2303

2302

OO0

1) ANALYTIC STARTING CONDITIONS.eeY (1) IS O AT TIME=0

2) RESTART STARTING CONDITIONS ,¢oRFEAD

AND CONTINUF SIMULATION

READ(5,8156)1Q,IR

READ(5,817) TQP,TQM,TRP,TRM
READ(54817) POSLyPDOSXeSEC,HPRINT
READ(5,819) (T(NTP) 4NTP=1,N)
SL=POSL~-((TQ-1)*NELX+NELX/2.)
SX=POSX-{(IR-1)*DELX+DELX/2,)
TS0=T(1)

ILFL=1

IRFL=1

ISKP=0

MST=SEC/DELT

G3 70 2301

CONT INUE

MST=1

10=1

IR=1

ILFL=1

IRFL=1

SX=(DELX/2¢ V*(TE/TIN)*%x2
SL={DELX/2.)*{TL/TIN)*%x2
POSL=(DELX/2,)+4SL
POSX=(DELX/2,)+SX

POSLS=POSL

POSXS=PNSX

T(1)=SURTEM(1)

TSO=SURTEM(1)

IN NLD STATUS OF LOOP

ISKP IS USED AS A FLAG TO SKIP THE FIRST EXECUTION OF TH
POSITINNS ARE SPECIFIED IN THE INPUT(ANALYTIC STARTING)
POSITION CALCULATION BLOCKS,IN THE CASE WHERE THE INITIAL

ISKP=1

INIT
INIT
INIT

INIT

INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT

CINITY

INTT
INTT
INIT
INIT
INIT
INIT
INIT
INIT
INTT
INIT

INIY

INIT
INIT
INIT

INIT
INIT

INIT
INIT
INIT
INIT
INTT
INIT
INIT
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2
C
c
C

Y

c
c
C
c
c
C
C

G2 10O 2301

300 CONTINUE

THESE STMTS FORCE A STARTING SOLUTION WHICH AVNIDS THE
SFARCH TECHNIQUE FOR START-UP,THIS IS NECFSSARY ONLY FOR THE
LTQUIDUS BOUNDARY,SINCE THE SOLIDUS BOUNDARY APPFARS AFTER A

INIT
INIT
INIT
INTTY
INIT
INIT

GRADIENT HAS REEN FNRIIMED,AND THE SFARCH FOR THE POSITIAN IS ACCURATEINIT
THE FIRST VALUE OF SURTEM READ IN SHOULD BE 0,5 DEGREES LOWER THAN INIT

THF POURING TEMP,TD INDICATE THE FACT THAT THE LTQTUDUS TIP HAS
JUST APPEARED

MST=1
10=0
IR=0
ILFL=0
IRFL=0
POSL=0.
SX=0,
SL=0.
PASX=0,
TSO=TIN
ISKP=0

2301 CONTINUE

OO0 0OAOAO

T(N+1)=0,
LIST(1)=1
LIST{N+1) =1

NITE THAT THE RATIO OF LIQUID THERMAL CONDUCTIVITY IN THME MELT
0 LIQUID TH. COND. IN THE MUSHY REGION IS READ IN (TKFACT)
IT IS USED FOR THE TH, COND IN THE MELT FOR KGR=3 (CONVECTION)
IF(KGR +EQs 2 ,0OR. KGR +EQe3) TKLL=TKFACT*TKL

KGR IS A SWITCHeoo IT DETERMINES THE CONDITIONS OF THE SIMULATION

INTT
INTT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INTT
INITY
INIT
INIT
INIT
INIT
INIT
INIT

INIT

INIT
INIT
INIT
INIT
INIT
INIT
INLTY
INIT
INIT
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C KGR=0,..SERIFS HEAT FLOW,NO CONVFCTION INIT
C KGR=1..,.PARALLEL HEAT FLOW,NO CNNVECTION INIT
C KGR=2,.,.SERTIFES HEAT FLNW, INFINITF CONVECTIONCIN THE LIOQUID) INIT
C KGR=3,,,PARALLEL HEAT FLOW, INFINITE CONVECTION INIT
o , INIT
TKEM=TKS INIT
TKEP=TKS INIT
TKLM=TKL INIT

o - , INIT
c THIS VERSION NF THE THERMAL CONDUCTIVITY IN FRONT OF INIT
C OF THE INTERFACE 1S EQUIVALENT T0O A FINITE BOUNDARY INIT
C LAYER TYPE OF CONVECTION...PREVIOUSLY,THE CONVECTION WAS INIT
c BROUGHT 1P TO THE INTERFACE.WITH UNSTABLE RESULTS INIT
C INIT
TKLP=TKL INIT

c INIT
o TKA,THE AVG SOLIDELIQUID CONDUCTIVITY,IS USED IN THE MOTION INIT
C EQUATIONS WHENEVER THE TIP AND ROOT ARE CLOSER THAN 2 SLABS INIT
C APART,TE,WHEN 1Q<=T1R+1 INIT
TKA=( TKL+TKS) /2, INIT
TiM=TL~-,5 . INIT
TS=T(1) INIT
NN=N+1 INIT

DO 2305 J=1,NN INIT

2305 TSAV(J)I=T () INIT
ANU=HS* XS/ TKS INIT

c END INITIALIZATION INIT
C..OQ0.0..'00.........0.0.l....0.0..0.000..00.00.l....."’............. ‘N‘T
c _ INIT
C SUBROUTINE *WRITES® SIMPLY QUTPUTS THE SIMULATION PARAMETERS INIT
o TO THIS POINT ,THROUGH THE COMMON BLOCK ABOVE INIT
o INTIT
CALL WRIYES INIT
c...........0000..'..0.0...OOC......O....Q..O...00.......0..0.......... VVAR
c TVAR

.C MAIN CALCULATION LOOP..sJ IS DISTANCE TVAR

€yl
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LONP ELEMENTS

1) CALC. NFW SURFACE TEMPERATURE AND HEAT VALUE (BLOCK TVAR)

2) SET TIP AND
3) FIND TEMPERA
AY INTERP

4) CALC., AND SFT PHYSICAL CONSTANTS OF EACH SLAB (BLACK MUSH)

5) CALC AND SFT

(AT THE TINTER

(BLOCK TKF

6) FILL MATRIX

7) SOLVE IMPLIC
(BLOCK SOLVE)

THERE ARE ALSO
MATNTAINING ACC

THE FLNOW IN FEACH TIMF STEP IS THROUGH THE FOLLOWING BLNCKS

T IS TIMF

RNOT POSITIONS (BLOCK PSET)
TURES OF SLARS CONTAINING TIP AND RIOT
ODLATIONyAND SET THEM(BLOCK TSFT)

THERMAL CONDUCTIVITY OF EACH SLAB
FACE)

L)

FOR IMPLICIT SOLUTION (BLOCK MATX)

IT EQNS. FOR DELTA TEMP, 0OF FACH SLAB

CONTROL BLOCKS AMONG THESFE,WHICH ARE
URACY.

>'..C.....'.'..O.......0......'.'.......

TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR

TVAR

TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR

TVAR -

TVAR
TVAR
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/ /
/ CONTROLS /
/ /
A
/
/ PSE
/
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/ TSF
/
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|
/ /
/ CONTROLC /
/ /

)l".‘...’.....

|
|
| POSITION L
!
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op

TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
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|
/ / |
/ MUSHY / |
/ / |
............... |
| |
| TIME LOOP
| |
............... |
/ / |
/ TKFILL / |
/ / |
............... |
{ |
| |
- e - s - - - - - '
/ / l-
/ MATRT X / |
/ / |
............... |
| |
| |
............... '
/ / |
/ SOLVF / |
/ / |
............... |
i |
oo bdoevoovsscscenoeon |
| |
/ ' /
, CDNTROLX / <.0.00...0.......000.0......000’....0‘00
/ / |

TVAR
TVAR
TVAR
TVaR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR

‘TVAR

TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
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OO OONOND

TVAR

TVAR
CONTINUF ' TVAR
SEC=SEC+DELT TVAR
I=1+1 TVAR
TVAR
CALCULATE SURFACE TEMPERATURF AND HEAT INPUT TVAR
DELTS IS THE INCREMENT NF TIME AT WHICH THE SURFACE TEMP IS TABULATED TVAR
DELTQ IS THE TIME INTERVAL AT WHICH GLNBAR IS TAR!ILATED TVAR
DELTS IS IN SECONDS TVAR
SURTEM IS THF ARRAY WHICH CONTAINS THE TEMPERATIIRES TVAR
TS IS THE SURFACE TEMP AT TIME *SEC! TVAR
TVAR
0000000000 0000000000000 000 0000000000000 000000000000000000000600060000000 CONTROLT
BLOCK CONTROLT IS ASSOCIATED WITH BLOCK CONTROLXess CONTROLT

IT SAVFS THE STATUS OF THE TEMPERATURE AND POSITIONS SO THAT CONTRAOLT
I[F THE CURRENT TIME STEP DOES NOT MEET THE ACCURACY TEST,IT CONTROLT

MAY BE REPEATED CONTRNLT
ICNTL=0 CONTROLT
IF(SEC.LT.TCONT) GO TO 1001 CONTROLT
KCNTL=-1 CONTROLT
ICNTL=1 | CONTROLT
SLST=SL CONTROLT
SXS T=SX CONTROLT
SECST=SEC CONTROLT
POSLST=POSL CONTROL T
POSXST=POSX , CONTROLT
19ST=1Q CONTROLT
IRST=1IR : CONTROLT
ILFLST=ILFL | CONTROLT
IRFLST=IRFL CONTROLT
ISKPST=1SKP | CONTROLT
TS0ST=TS0 , CONTRALT
TK1ST=TKSAV(1) CONTROLT
LLCT=0 CONTROLT

NO 1000 J=1,4N : ‘CONTROLT

L:



1000
1001

TSAVT (J)=T(J)
CONTINUE

C............O...O..........0..0....O.....................'.......‘....

1111

OOOOONOOO

IF(KHIN.EQ.1) GO TO 1111

SNS=SEC/DELTS

1KL=SDS |
TS=(SURTEM(TKL+2)-SURTEM{IKL+1))*(SDNS=IKL)+SURTEM(IKL+1)
TSDFL=TS-TSO

IF(TA.EQ.TS) 6O TO 1112
HBE=TKSAV(1)*(T(2)=T(1))/((TS=-TA)*DELX)

60 TO 1112

CONT INUE

SURFACF TEMPERATURE LONP ADDED DUE TO STABILITY PRORLEM

EXSE=EX(1)*%NSCYL

D) 1002 NSC=1,NSCYL

TS=TS+((TA-TS)*H*NELX/EXSE 1+ ((T(2)-TS)*TKSAV(1)/EXSE )
CONTINUE

THCFLG=0

NOTE THAT THE H CNEF IS USED TN MATCH THE TWO POINT SLOPE
AT THE SURFACE

CONT INVE
TSO=TS
LCT=0

FORMS OF GLOBAR TN SPECIFY HEAT INPUT3S
1) LIST NV VALUES,ALL >0e eee THIS FUNCTION USED DIRECTLY
2) GLORAR(1)<0.+5LORAR(2)>0.904+GLOBAR(3) USED AS CONSTANT
FCR TIME UP TO SEC=GLOBAR(4&),THEN SHUT OFF
3) GLOBAR(11<0.yGLOBAR(2)<0eyeee GLOBAR(3) IS USED AS CONSTANT
OF PARABOLIC HEAT INPUT,IE,GLOBAR(31/SQRT(SEC) IS HEAT IN

IF(GLNBAR(1))2222,2229,2229

CONTROLT
CONTROLT
CONTROLT
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVaR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR

891



2222
2223
2224

2229

2228

C..............Q...O.........0..........0‘.‘............."...........O

s NeNeleNeNel

5051

Coooaooooooooooooooooooooooo.ooooooooooooooocooooooooooooooooo.oooo.ooo

c

C: PSFT:

I[FIGLOBAR( 2))2223,2224,42224

GLUG=(GLOBAR(3)/SQRT(SFC+.00N1) )*{DELT/NELX)
GO TO 2228

GLUG=GLORBAR(3)*{DELT/DELX)

IF(SEC.GT .GLOBAR
GO T0O 2228

CINTINUE

SDQ=SEC/DELTQ

IKQ=SnQ

GLUG=(GLORAR(IKQ+2)-GLOBRAR(IKQ+1)) *(SDQ-IKQ)+GLOBAR(IKQ+1)

(4)) GLUG=0N,

GLUG=GLUG*DELT/DELX

CONTINUE

LCT=LCT+]

c....'........0..........0.'....Q..O.....‘......................I......

TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
TVAR
CONTROLS
CONTROLS
CONTROLS

THIS CONTROL BLACK SAVES THE VARIOUS PARAMETERS FOR USE BY THECONTROLS

CONTROL BLOCK FNOLLOWING THE POSITION AND TEMPERATURE SETTING

Looe

N0 5051 J=14NN
TSAVL(J) =T (J)
PISLS=POSL
PJOSXS=POSX

SLS=SL
SXS=SX
10S=1Q
TRS=IR

ILFLS=ILFL
IRFLS=IRFL
ISKPS=1SKP

c...........0..'......‘..........0...l..’..'........‘..0..............'

CALCULATES AND SETS THE NEW LIQUIDUS AND SOL IDUS POSITIONS

CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTROLS
CONTRAILS
CONTROLS
CONTROLS
CONTROLS
PSET

PSET

PSET

691



NN 4060 J=1,NCYCLF

LIQUINYS ROUNDARY

OO0

IP=[P+]
IF(T(1) eGEeTLeOR TN GTNDR,ISKP,FQ, 1) GO TO 4141
IF({ILFL.FQ.0) GO T2 4110
IF(1Q-2)4121,4115,4115%
4115 IF(SL)4122+4122,4123
4122 HEATOT=TKLM*(TL-T(1))/(POSL-DELX/2,.)

GO T3 4120

4123 HEATOT=TKLM*(TL-T(2))/SL
GO TO 4120

4121 HEATOT=TKLM*(TL-T(1}))/SL
GO 7O 4120

4116 HEATOT=TKLM*(((TQM-T{IQ=-2))/(2*DELX) )+ (DELX+SLI*{(T(IQ=-2)
1 =2 .*T(1Q-1)+TQM)/ (DELX*DELX)))

4120 CINTINUE

IF(IQ-(N-1))4117,4118,4118
4118 HEATIN=TKLP*(TI(N)-TL)/((N*DELX-DELX/2.)-POSL)

GO YO 4119
4117 HEATIN=TKLPx(({T(IQ+2)-TQP )/ (2*DELX)})=(DELX-SL)I*({(TQP-2%T(IQ+1)

1 +T(IQ42))/(DELX*DELX)))

119 CINTINUE

THE FOLLOWING STMT SHOULD BE A BETTER APPROXIMATION IF THE
TWN BOUNDARIES ARE IN THE SAME SLAB

IF(1Q.EQ.IR) HEATOT=TKA *((TL~-TE)/(POSL-PDSX))
THE I1Q=IR+1 TEST IS DUE T) THE LOSS IF HEAT IN THIS CASE

WHICH MUST BE TAKEN INTO ACCOUNT...ESPECIALLY IN CASES
WHERE THE TIP AND ROOT SPEND A LOT OF TIME NEAR EACHOTHER

OO0 OO0 D

IF(1Q.EQ.IR+1) HEATNT=TKA *((TL-TE)/ (POSL~-POSX))

PSET
PSET
PSET
PSET
PSET
PSET
PSEY
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET

GLT



OO0

4110

4111

4112

4113
4114

4140

4160
4141

SIDE HEAT ADDINTINN MADE AS HFAY NUT TERM,.ADDITIVE

HTSIDE=HS*(T(TQ)-TAS)*DFLX/XS

TF{HS.LT.0s) HTSIDE=TAS*DELX/ (SQRT(SEC+10%%x(~4))%XS)

DPOSL=(DELTCY/THEAT) *(HTSINDE+HFATOT=-HEATIN)
GO TO 4140

ILFL=1

N0 4111 L=1,N

IF(T(L).GT.TL) GO TN 4112

CONTINUE

1Q=N+1

GO T3 4141

19=L-1

AAB=TKLMX(TL=T(IQ))*DELX/(TKLP*k(T(IQ+1)~TL)+TXKLM*(TL~-T(IQ)))

IF(AAB,GT.DELX/2.) 50 TO 4113
SL=AAB

GO TO 4114

SL=AAB-DELX

1Q=10+1
POSL=(10-1)*DELX+DELX/2,4SL
63 TO 4141

POSL=POSL+DPOSL
10=(POSL/DELX}) +1
SL=PISL-{(I0=-1)*DELX+DELX/2,)
IF(IQ.LE.O) ILFL=0
lF(IQ.EQONOAND.SLQGTOOO) IQ=NN
IF(IQ.GT«N) GO TO 4141
CONTINUE

CIONTINUE

SOLIDUS ROUNDARY
IF(TU1)eGECTE«NR ¢TR.GToNeOR, ISKP,EQ.1) GO TO 4041

IF(IRFL.EQ.D) GO TN 4010
IF(IR-2)4021,4015,4016

PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSETY

TLT



o0

4015
4022

4023

4021

SOOOOO0

016
4020
4018
4017

4019

4010

4011
4912

1

1

TWO POINT FORMIILA HSED FNR PNOINTS IN PROXIMITY OF ENDS

IF(SX)4022,4022,4023
HEATOT=TKFM*(TE-T( 1)) /( POSX=-NFLX/2,)
GO TO 4020

HEATOT=TKEM*(TE-T(2)) /SX

GO T2 4020

HEATOT=TKEM®(TE-T{1))/SX

GO TO 4020

THREE POINT FAORM OF THE FINITE DIFFFRENCE FORM OF THE
TAYLOR'S EXPANSION IS USED TO NBTAIN THE SLOPE OF TEMPERATURE
REQUIRFED BY THE MOTION FQUATIONS OF THE TIP AND ROOT

HEATOT=TKEM*{ ((TRM=T(IR=2))/(2%DELX) ) +(DELX+SX)*((T(IR=-2)
=2+*T(IR=1)+TRM) /(DELX*DELX)))

CINTINUE

IF(IR-(N-1))4017,4018,4018

HEATIN=TKEP®(T(N)-TE)/ ( {N*DFLX-DELX/2.)~-P0OSX)

GO TO 4019

HEATIN=TKEP*{((T(IR+2)-TRP)/(2%DELX) ) =(DELX=-SX)*({TRP-2*T( IR+1)
+T(IR+2))/(DELX*NELX))) .

CONTINUE .

IF(IQ.EQ.TR) HEATIN=TKA *((TL~-TE)/(POSL-POSX))

IFCIQ.EQ.IR+1) HEATIN=TKA *((TL-TE)/(POSL~POSX))

HTSIDE=HS*(T(IR)-TAS)*DELX/XS

IF(HS oL Te0o) HTSIDE=TAS*DELX/(SQRT(SEC+10%%(-4))%xXS)

NPOSX=(DELTCY/RHEAT ) *(HTSINE+HEATNT-HEATIN)

50 TD 4040 '

IRFL=1

DO 4011 L=1,N

TF(T(L)<GTL.TE) GO TN 4012

CONTINUE

IR=L~-1

AAB=DELX*({TE-T(IR)I/(T(IR+1)=-T(IR)))

PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSETY
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSET
PSETY
PSET
PSET
PSET
PSET
PSET
PSET
PSET

LT



IF(AAB,GT.NDELX/2,) GO TN 4013 PSET

SX=AAB PSET
GO YO 4014 PSET
4013 SX=AAB-DELX PSET
IR=IR+1 PSET
401 POSX=(IR-1)*DELX+NELX/2,4SX PSET
G) TO 4041 PSET
4040 POSX=POSX+DPOSX PSET
TIR=(POSX/DELX)+1 PSET
SX=POSX=((IR=1)%*DELX+DELX/2,) PSET
IF{IR.LE.N) IRFL=0 PSET
IF(IR.EQeN,AND,SX.T.,0.) IR=NN PSET
IFUIR.GT N} GO TO 4042 PSET
4041 CONTINUE PSET
4042 CONTINUE PSET
1SkP=0 PSET
o , PSET
C POSITIONS HAVE NOW REEN SET PSET
o PSET
c.....OOOOO..‘0..0..00...‘.0........0..0.0.0..00.0000000...00....0..... PSET
C.O..O....Q....0..0......00...0............0..00.0...0...........0.0... TSET
c TSETY
C:TSET: SET TQ,TR4TQOP+TQM,TRP,TRM TSET
C TSEY
C: FIND MODULUS AND TEST TSEY
c ' TSET
NDQO=(1Q+N-1)/N TSET
NNDR=( IR+N-1)/N ‘TSET
IF(NDQ.NE.1) GO TN 5000 _ TSET
ASD=SL/DELX k TSET
BSD=1.-ASD TSET
CSD=BSD+1., TSET
DSD=1.4+ASD TSETY
ESD=1.,40SD TSEY
IF(10-2) 5010,5011,5012 TSET

5010 TQP=TL*(2./(CSD*BSN))I-T(IO0+1)*(2,*ASD/BSD) +T(1Q+2)*(ASD/CSD) TSETY



5011
5012
5015

5n14

5013

5000

5020
5021
5022
5025

5024

5023

5001
5002

GO TO 5000

TOP=TL%(2,/(CSD*BSN) )=T(IQ+1)*(2,%ASD/BSI)+T(1Q+2) *{ASD/CSD)
TOM=T(1Q-1)+(DELX/ (DELX4SL ) )*(TL-T(1Q-1))

63 TO 5000

IF(10-(N-1)) 5013,5014,5015

TQM==T(1Q-2)*(ASD/ESD)I+T(10-1)%(2,*ASD/DSD)+TL*(2./ (NDSD*ESD))

G} TO 5000

TOM==T(10-2)%(ASD/ESD)+T(10-1)}%(2,*ASD/DSD) +TL*(2./(DSD*ESD))
TOP=T(1Q+1) =(DELX/(DELX=SL) ) *(T(1Q+1)-TL)

G0 TO 5000

TQP=TL*(2,/(CSD%RSN) )=T( 1041 )% (2 ,%ASN/BSD) +T (1Q+2) *(ASN/CSD)

TOM==T(1Q-2)*%(ASN/ESD)+T(T1Q-1)%(2,%ASD/DSD) +TL*(2,/ (DSD*ESD) )

CINTINUE

IF(NDRJNE.1) 6N TN 5001

ASD=SX/DELX

BSD=1.-ASD

CSN=BSD+1.

NSD=1.+ASD

ESD=DSD+1.

IF(IR-2) 5020,5021,5022

TRP=TE#*(2,/(CSD*RSN) )-T(IR+1) *(2,%ASD/BSD) +T (IR+2)*(ASD/CSD)

GO TD 5001

TRP=TE*(2,/(CSN*BSN) )=T (IR+1)*(2,*ASN/BSD) +T (IR+2)*(ASD/CSD)
TRM=T(IR=1)+(DELX/(DELX+SX) }*(TE-T(IR-1))

GO TO 5001

IF(IR-{N~1)) 5023,5024,5025

TRM==T(TR-2)*(ASD/ESD)+T(IR=-1)*(2,*ASD/DSD) +TE*(2, / (DSD*ESD))

GO TO 5001

TRM==T(IR-2)%(ASD/ESDI4T(IR=1)%(2,%ASD/DSD)+TE*(2./ (DSD*ESD))

 TRP=T(IR+1)=((DELX/(DELX=SX) ) *{T(IR+1)=TE))

GO TO 5001

TRM=-=T{IR-2)*(ASD/ESD)+T(IR-1)%(2,%ASD/DSD)+TEX(2,/ (NSD*ESD) )

TRP=TE*(2./(CSD*RSD))-T(IR+1)*(2,*ASD/BSN) +T([R+2) *(ASD/CSD)

CONTINUE

CONT INUE

IF(T0.NE.TR,OR.IR.LT,2) GO TO 5006

TSET
TSFT
TSET
TSET
TSET
TSET
TSET
TSET
TSET
TSET
TSET
TSETY
TSET
TSET
TSET
TSETY
TSET
TSET
TSET
TSET
TSET
TSET

TSET
TSET
TSET
TSET
TSET

TSET

TSET
TSET

TSET

TSET

TSET

TSET
TSET
TSET

LT



5006

5003

C

TRP=TQP
TOM=TRM

CONT INUE

IF(NDR.NE.1) GO TN 5003
IF{IR.FQ,1) GO TO 5003
TUIR)=TRM

TF{SXeLT40) T(IR)=TRP
TR=T{1IR)

CONT INUF

IF{NDQ.NE.1) GO TO 5004
IF{IQ.EQ.1) GO TN 5004
T{IQ)=TQM

TQ=T(19)

5004 CONTINUE
4060 CONTINUE

c

C‘O..Q‘....ll...........0.0....'..00...0.........0.0..0.....0..........

C..O.‘.O....0..........0...0.......0...‘.....0......Ol.................

C CONTROL BLOCK...MONITOR THE POSITION AND TEMPERATURE L7I0OP

OO OO0ONO0

THE AVERAGE CHANGE IN POSITIONS IS COMPARED TO A CONTROL
VALUE READ INyAND IF THF TOLERANCE LIMIT IS EXCEEDED,

NEW LONP PARAMETERS(DELTCY,NCYCLE) ARE SET ACCORDING TN
THE DEVIATINON FROM THE LIMIT,AND THE OLD POSITIONS, TEMPS,
AND  SUCH ARE RESET,AND THF LOOP IS EXECUTED AGAIN,
ALSQOy IF THE TOLERANCE LIMIT IS MET,THE LOOP PARAMETERS ARE
INCREASED TO MATCH THE AMOUNT OVER THE LIMIT,SD THE

TOTAL FFFECT OF THE CONTRO

AT THE MAXIMUN SPEED

ADPOSL=(POSL-PNSLS) /NCYCLE
ADPOSX=(PNSX-POSXSY/NCYCLE

RFACT=ADPOSL

L BLOCK IS TQ KEEP THE LOOP RUNNING

TF(ADPOSLLT.ADPOSX) RFACT=ADPOSX
IF(ADPOSX.GT.DCYL.NR,ADPOSL.GT.DCYL) GO TO 5050

TSET
TSET
TSFEY
TSET
TSET
TSFT
TSET
TSET
TSET
TSET
TSEY
TSET
TSET
TSET
TSET
TSET
TSET
TSET
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTRAILC
CONTROLC
CONTROLC
CONTRAOLC
CONTRALC
CONTROLC
CONTROLC
CONTROLC
CONTRAOLC
CONTROLC

SLT



5050

5053

5055

5056

5052

5054

5069

c.‘ooooo-oo.ooooooooooo-oooooooooooooooooooooooooooIOOOO.OOO'O00000000000

c.'........O...........O'.......C......"...0........0................Q

c

NCYCLE=NCYCLE*(RFACT/DCYL)
IF(NCYCLE.LF.1) NCYCLE=1
NELTCY=NELT/NCYCLE
GO TN 5060
NCYCLE=NCYCLE*( (RFACT/DCYL)40.5) +1
IFILCT.GT.5) 6O TN 5055
IF(NCYCLE.LT.500) GN TN 5052
WRITE(6,959)
WRITE(6,5053) NCYCLE
FORMAT(' PRNGRAM HALTED DUE TN NCYCLE SIZE*I10)
50 7O 880
CONT INUE
WRITE(64959)
WRITE(6,5056)
FORMAT (' PROGRAM HALTED DUE TN MDORE THAN 5 CYCLES?)
60 TO 880
DELTCY=DELT/NCYCLF

« RESET OLD PARAMETERS

NJ 5054 J=1,NN
T(J)=TSAVL(J)
SL=SLS
$X=5XS
POSL=POSLS
POS X=POSXS
IR=IRS
10=10S
ILFL=TLFLS
IRFL=IRFLS
1SKP=1SKPS
GO TO 2228
CONTI NUE

CONTRALC
CONTROLC
CONTROLC
CONTROLC
CONTRALC
CONTROLC
CONTRALC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTRALC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTRALC
CONTRALC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTROLC
CONTRNLC
CONTROLC
CONTROLC
CONTROLC
MUSHY

MUSHY

9LT



OO0

OO0

OO0

OO0

31
32

BLOCK MUSHY CALCULATES THF CONSTANTS FOR FACH SLAR,AS A

FUNCTINN OF TEMPFRATURE

EMU1) = CONST*RHS*CPS
EM(2)=CONST*RHL*CPL
N0 3333 J=1,N

NDFCIENE WHICH REGION THIS FLEMENT IS IN

FIT(J)GF.TL)Y GO TN 4
IF (T(J)JAELTE) G TN 2
G0 1O 5

Ki=1

G0 TO 3

K1l=2

60 70 3

CALCULATE CONSTANTS FOR MUSHY REGION

CONTINUE
GS=FRL*((TL=-T(J)V/(TL-TE)I+FRT+FSC

THE OPTION OF CHOOSING EITHFR A SHEIL DISTRIBUTION
OF FRACTION SOLIND IN THE MISHY REGION QR A LINEAR ONE
IS DECIEDED BRY THE FLAG(READ IN) [SHFEIL

IF(ISHEIL.EQal) GS=1e=(1,+SCHCR(TL=-T{J)))*%SCHE
GL=1.-GS

IF(KGR.FQes0.DRKGR,FQ,2) GO TO 31

TKM=GS*TKS +GL*TKL :

60 TO 32

TKM=TKSkTKL /(GS*TKL+GL*TKS)

CONTINUE

RHM=0G SkRHS+GL*RHL

CPM=GS*CPS+GL *CPL

CPMH=HOF*FRL/(TE-TL)

MUSHY
MUS HY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUS HY
MUSHY
MUSHY
MUSHY
MUSHY
MUS HY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUS HY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY

LLT



3334
3335

3336
3333

C....00.'..0.....0'...00‘....0...I.O............O.............O.‘......

C.....O........O....0.0...“.....0.'.'......'.l........’...0...........

OO0OOOOO0

5502
5504

55013
5505

5506

5501
5508

5507

IF(ISHETL.EQ.1YCPMH=HOFXFRLXSCHC*SCHFx (1 +SCHC*(TL=T(J)) ) **x(SCHE-1) MUSHY

EM(3)=CONST*RHM« (CPM~-CPMH)
K1=3

CONTINUE

FX{J)=EM(K1]1)

IF(K1-2) 3334,3335,3336
TKSAV(J)=TKS

GO TO 3333

TKSAV(J) =TKLL

GO TO 3323

TKSAV{J)=TKM

CIONTINUE

BLOCK TKFILL STORES THE VALUES OF THE AVERAGF THFERMAL
CONDUCTIVITIES,TO RF USED

KKK=N-1

N3 5500 J=1,KKK

IF(IR-J) 5501,5502,5501
IF{1IQ-J) 5503,5504,45503
TKINT(J)=TKLP

60 TO 5500
IF(I0-(J+1))5505,5506,5505
TKINT(J)=TKEP

GO Y0 5500

TKINT(J)=( TKEP+TKLM) /2,

GO TO 5500
[F(IR-{J+1))5507,5508,5507
TKINT(J)=TKEM

GO TO 5500

[F(10-J) 5509,5510,5509

IN *MATRIX?®

K RETWEEN J AND J+1 IS IN TKINT(J)

MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
MUSHY
TKFILL
TKFTILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL
TKFILL

8LT



5510

5509
5512

5511

5500
r

-

OOOOMD

a X Ne)

OO0

6613

TKINT(J)=TKLP TKFTLL
GO TO 5500 TKFILL
IF(IQ~-(J+1))5511,5512,5511 TKFILL
TKINT(J)=TKLM TKFILL
GO TO 5500 TKFTLL
TKINT(J)=(TKSAV(J)+TKSAV(J+1)) /2. TKFILL
CONTINUE TKFILL
TKFILL
c......."...................l........“....................‘..'I...... TKFILL
CO.‘........'........'O'......0...'.'.........'....‘.................'. MAYRIX
MATRIX

BLOCK MATRIX STORES THE CONSTANTS (COEFFICIFNTS) FOR THE SOLVF MATRIX
ALOCK MATRIX
MATRI X

MEANS LOOKING FROM THE POSITIVE SIDE, M FROM THE MINUS (J-1) MATRIX
' MATRIX

DO 660C J=2,N MATRIX
IF(J.EQ.N) 60 TN 6602 ' MATRIX
MATRT X

INTERINR MATRIX
MATRIX

AK(1)=TKINT(J) MATRIX
AK{2)=TKINT(J-1) MATRIX
IF{IRADFL.NE.1) GN TO 6613 MATRI X
1=J MATRIX
L2=(N=71+40,5 MATRIX
MATRI X

NOTE THAT THE PROGRAM COUNTS FROM THE OUTSIDE (CHILL SURFACE)IMATRIX

IN TO THE CENTER...FOR THE RADIAL CASE,THIS REQUIRES A MATRIX

SL IGHT MODIFICATION TO THE FQUATIONS MATRIX
MATRI X

AK(2)=AK(2)*(22+0.50)/122 MATRTIX
AK(1)=AK(1)*(22-0.50)/27 MATRIX
CONTINUE MATRIX
IF(IR-(J+1)) 6603,6604,65K03 MATRIX

6604

FOJ)==AK(1 ) *TRM=-AK(2)*T (J-1) +(AK (L) +AK(2))%T(J) MATRI X

oLT



5603
6606

66C5
6608
6629
6610

66C7
6611

6612
6660

€602
6631

6630
6632

6633
6680

6600

C'..O......'.l...0..0......0...........0..‘.0...‘0'..........0..‘......0

CA..0............O..O..0.....0..0'.'.....l....l..................‘......

s XeEaXe]

GO TD 6660

IF(L{I0=-J)+1)6605+6606+6605 ,
FLI)==AK{1 )T (J+1)-AK(2)%TQP+{AK(1)+AK(2))%T (])
GO TO 6660

TF(I0-(J+1)) 6607,6608,6607

IFCIR-(J-1)) 6609,6610,6609

F(J)==AK(1)*TOM=AK (2)*T(J=1)+(AK(1)+AK(2))*T(J)
GO TO 6660
F(J)==AK{1)2TQM=-AK{2)*TRP+(AK(1)+AK(2)) " T(J)

G2 TO 6660

IFCILIR=-J)I+1)6611,6612,46611
FII)==AK(1)%T(J+1)=-AK(2)%T(J-1)+(AK(1)+AK(2))=T(J)
GO TO 6660
FIJ)I==AK({1)XT(J+1)-AK(2)%TRP+(AK(1)+AK(2))«T())
AlJs1)=AKI(2)/2,
AlJe2)==(({AK(1)4+AK(2))/2,+EX(J))
AlJdy3)=AK(1)/2,

GO TC 660N

AK(2)=TKINT(N-1)

IFLIN-(N-1)16630,6631,6630

FIN)=T(N)-TQP

GO TD 6680

IF(IR-(N-1))16K633,6632,6633

FIN)=T(N)-TRP

G) TO 6680

FIN)=T(N)-T(N-1)

A(Ny1)=.5

A(N2)==(FX(J)/AK(2)+,5)

A(N,3)=0.0

CONT INUE

SOLVE SIMULTANEOUS EQNS

MATRIX
MATRIX
MATRIX
MATRIX
MATRIX
MATR IX
MATRIX
MATRIX
MATRIX
MATRI X
MATR IX
MATRIX
MATRI X
MATRTX
MATRI X
MATR I X
MATRIX
MATRI X
MATRIX
MATRIX
MATR I X
MATRIX
MATRIX
MATRIX
MATRIX
MATRI X

-MATRIX

MATRI X
MATRIX
MATRIX
MATRIX
SOLVE
SOLVE
SOLVE
SOLVE"
SOLVE
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C FEACH GRDUP 0OF FQUATINONS(REPRESENTING ONE REGION IF THE CASTING) SOLVE
C IS SOLVED AS A SEPERATE MATRIX SOLVE
C THIS TECHNIQUE IS USED TO HANDLE THE SURFACF BC'S AS WFLL AS THE SOLVE
C LIQUIDYS AND SOLINUS INTFRNAL BNUNDARIES SOLVE
C THF VARTALBE ARRAY fLIST' IS USEND TO KEEP TRACK NF THE CURRENT SOLVE
C POSITIONS OF THE TIP AND ROOT,FOR UISE RY THF SOLVE BLOCK.IN ORDER TN SOLVE
C SET UP THE CORRECT SUR-MATRICES 71 BE SNOLVED SOLVE
c SOLVE
DI 7002 J=2,N SOLVE

7002 LIST(J)I=0 SOLVE
~ IF(IQ) 7003,7003,7204 SOLVE
7004 LIST(IQ)=1 SOLVE
7003 CONTINUE SOLVE
TF{IR) T7005,7005,7006 SOLVE

7006 LIST(IR)=1 i A SOLVE
70C5 CIONTINUE SOLVE
7014 CONTINUE . SOLVE
DO 7007 J=2,4N SOLVE
IF(LIST(J).FQ.0) GO TN 7008 SOLVE

7007 CONTINUE SOLVE
GO TO 7009 SOLVE

7008 KSTART=J SOLVE
N0 7010 J=KSTART NN SOLVE
IF(LIST(J).EQ.1) GO TN 7011 SOLVE

7012 CONTINUE SOLVE
7011 KEND=J-1 SOLVE
D) 7012 J=KSTART,KEND ; SOLVE

7012 LIST(J)=1 SOLVE
c ‘ SOLVE
c THE FOLLOWING TWN STMTS ARF NECESSARY IN ORDFR TO CORRECTLY SOLVE
c SET THE SLAB TEMPERATURES FOR SLABS NEXT TO BODJNDARIES SOLVE
c IF THESE CORRELTIONS ARE IGNORED,ERRORS ARE INCURREDN WHICH SOLVE
C CAUSE OSCILLATION OF THE POSTITONS XEsXL EVEN THOUGH THE SOLVE
C TEMPERATURES ARE STABLE SOLVE
C SOLVE

TDELL=T(KSTART=1)-TSAV(KSTART-1) SOLVE

18T



OO

7013

OO0 OO0

OO0

TDELH=T(KEND+1)-TSAV(KEND+1) SOLVE

IF(KSTART.LT.KEND) 60 TN 7013 SOLVE
SOLVE

SOLUTIOM FOR ONE SLAB MATRICES SOLVE
SOLVE

FIKSTART)=F (KSTART) -(A(KSTART,1 )%*TDELL)=(A(KSTART, 3)*TDELH) SOLVE
TIKSTART)=(F(KSTART)/A(KSTART,2) )+T(KSTART) SOLVE
GO TC 7014 SOLVE
CONTINUE SOLVE
FIKSTART)=F(KSTART)-{A(KSTART,1)*TNELL) SOLVE
F{KEND) =F(KEND)-{ A(KEND,3)*TNELH) SOLVE
SOLVE

THE CORRECTIONS REPRESENTED BY THE USE OF TNDELL AND TDELH SOLVE

IN THE AROVE BLOCK ARE NECFSSITATED BY THE WAY IN WHICH THE SOLVE
SURFACE TEMPERATURE,THE CENTER TEMPERATURE,AND THE TWO INTERNALSOLVE

TEMPERATURES ARF HANDLED SOLVE
THAT IS,BECAUSE THESE VARIOUS TEMPERATURES ARE SET BY i SOLVE
VARIOUS EQUATIONS RATHER THAN INCLUDED IN THE HEAT FLOW SOLVE
FQUATINDNS,THEY MUST RE TAKFN INTO ACCOUNT IN THE MATRIX SOLVE
SOLUTINN TO THE H/F EQUATIONS,NAMELY,BY TNCLUDING THE RESULTANTSOLVE
TEMPERATURE CHANGES IN THF *SET* SLABS INTO THE MATRIX SOLVE
SOLVE

TDELL AND TDELH THEREFORE REPRFSENT THE RESULTS OF SOLVE
TEMPERATURES BEING SET BY FQUAT IONS EXTRANEOUS TO THE SOL VE
HEAT FLOW EQUATINN SET, SOLVE
SOLVE

KKHIN=KSTART+1 SOL VE
NO 7015 K=KKHINyKEND - SOLVE
SOL VE

: SOLVE

THESE STMTS SET UP TO PREVENT BUILD=-UP OF LARGE NUMBER DURING SOLVE
SOLUTION OF THE MATRIX SOLVE
SOLVE

RRR=A(K,1) SOLVE
RRH=A(K=1,42) SOLVE

A(Ky2)=(A(Ky2) /RRR)-(A{K=143) /RRH) SOLVE
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mn15

7016

OO0

7101
7017

7009

7029

(sleleleNe NeNa]

A(Ke3)=A(K,y3)/RRR
FIK)=(F{K)/RRR)=({F(KX=1)/RRH)

CIONTINUE

Q(KEND)=F(KEND)/A(KEND,2)

K2=KEND-1

DD 7016 J=KSTART,k2

K3=K2-(J-KSTART)
AUKI)=(F(K3)=-Q(K3+1)%A(K3,3))/A(K3,2)
CONTINUE

HTS==TAS*DELT/ (SQRT(SFC+10%%(~4) ) *RHS*CPS%XS)
N3 7017 J=KSTART,KFND

SIDE HEAT ADDITION...H CONTROLLED HEAT ASSUMED FOR THE SIDE

SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE

NOTE THAT LIQUID DENSITY AND HEAT CAPACITY ARE USED TO SIMPLIFYSOLVE

IF(HS.LT.0.) GO TN 7101

HTS=( TAS=T(J) ) *(HSXNELT) /(RHL*CPL%XS)
CONTINUE

T =TI +0(J)+HTS

CONTINUE

GO TO 7014

CONTINUE

SAVED TEMPERATURES USED TO CORRECT SOLUTION FOR NEXT STEP

DO 7020 J=1,NN

TSAV(J) =T ()

TIN)=T(NY+(GLUG/EX(N) ) *CONST
T(1)=T7S

ASYCHRONOUS TIP MOVEMENT,...

THE PRESENCE OF SIDE-WISE HEAT LNSS MAY CAUSE

NUCLEATION DF DENDRITIES IN THE MELT AHEAD OF THE
UNIDIRECTIONAL TIP POSITION..,THIS NECESSITATES THE SEARCH
FOR A NEW TIP POSITION IN THESE CASES.AT THIS POINT,

SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE
SOLVE

€81



OO0

7021
1022

c.'............0...0...0l.....0.0....0...0....0....0...............'...

c.'..l.....00..I..C......O...............0.....0.0.....D..I....ll......

OO MNOD

ONLY A FLAGCILFL) IS SET,.,.THF SEARCH IS DINE AS PART 0OF THE
TIP MOVEMENT BLNOCK PSET,

ISTIP=1Q+1

IF{ISTIP.GE.N) GO TO 7022
DO 7021 J=ISTIP,N
IFIT{J) LT TLM) ILFL=O
CIONTINUE

CONTINUE

BLOCK CONTRNOLX CONTROLS THE ACC!RACY 0OF THE SIMULATION

THIS IS DONE By

1) THE DIFFERFNCF BETWEEN THE TEMPERATIIRE AT THE

CJRRENT TIMF STEP WITH THE CURRFENT TIME STEP SIZF i
AND THAT ORTAINED BY USING A TIME STEP OF 172 THE CURRENT
SIZE 1S COMPARED TO A VALUE FOR ACCURACY LEVEL,READ IN

2) IF THIS VALUE OF ACCURACY IS NOT MET,THE PRIGRAM

LEAVES THE TIME STEP AT THF HAILVED VALUE,AND CONTINUES

THF ACCURACY WILL BE CHECKED AT THF NEXT ITERATION AGAIN
SO THAT THE TIME STEP WILL CONSTANTLY RE HALVED UNTIL THE
ACCURACY IS MET OR THE LOWEST LIMIT ALLOWED IS REACHED

3) IF THF ACCURACY IS MET,THE PROGRAM COMPARES THE
DIFFERENCE TO A NUMBFR RFAD IN FOR DOUBLING THE TIME STEP
4) THIS ACCURACY IS CHECKED EVERY N CYCLES,WHERE N IS READ IN
ALSO

5) IN THIS MANNER,THE EFFECT NF THE CONTROL BLOCK IS TO
MAINTAIN THE ACCURACY OF THE SIMULATION BETWEEN THE

TWO LIMITS READ IN,AND THIS MAY RESULT IN EITHER VERY
SHORT INNACCURATE OR LONG TNEFFICIENT RUNS IF THE LIMITS
ARE NOT CHOSEN CAREFULLY

IT=1T+1
IF(ICNTL.EQ.0) GO TO 9000

SOLVE
SOLVE

SOLVE

SOLVE

SOLVF

SOLVE

SOL VE

SOLVE

SOLVE

SOL VE

CONTROLX
CONTROLX
CONTROLX
CONTRALX
CONTROLX
CONTRAL X
CONTROLX
CONTROL X
CONTROLX
CONTROL X
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONT ROLX
CONTROLX
CONTROL X
CONTROLX
CONTROL X
CONTRALX
CONTROLX
CONTRNL X
CONTROLX
CONTROLX
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9101

9007
9008

9003

KCNTL =KCNTL+1
IF(KCNTL.FQ.0) GO TO 2007
IF(KCNTL.EQ.1) GO TN 1001
IDRFL=1

IRPFL=0

LLCT=LLCT+1

DO 9001 J=1,N
TFCABS(T(J))LT,10%x%x(=-5)) GO TN 9001
EXCESS=ARS((T(J)-TSAVC(I))/T(I))
IF(EXCESS.GTFLOWC)IDRFL=0
IF{EXCESS.GT.HIGHC) IRPFL=1
CONTINUE

IFC(IRPFL.FQ.0) GO TN 9002
GO 70 9000

DD 90C8 J=1,N

TSAVC(J)=T(J)

NELT=DELT/2,

CONST=CONST*2

EX(1)=EX(1)*2
IF(CONST.(T.200.) GO TN 9012
NELTCY=DEl T/NCYCLF
SEC=SFCST

SL=SLST

SX=SXST

POSL=POSLST

POSX=POSXST

IR=TPST

10=10ST

ILFL=TILFLST

[RFL=TFELST

ISKP=T1SKPST

TSN=TSNST

TKSAV(1)=TK]1ST

NO 90Nn3 J=1.N

T(I)=TSAVT(J)

G2 T3 1001

CONTROLX
CONTROLX
CONTRILX
CONTROLX
CONTROL X
CONTRILX
CONTROL X
CONTROLX
CONTRIOLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROL X
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTRNLX
CONTROL X
CONTROLX
CONTROL X
CONTROLX
CONTROLX
CONTROLX
CONTROLX
CONTROL X
CONTROLX
CONTROLX
CONTROL X
CONTROLX
CONTRNL X
CONTROLX
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9002 CONTINUE

CONTROLX

DELT=DELT*2, CONTROLX
IFCINBFL.EQ.1) DELT=NELT*2, CONTROLX
TCONT=SEC +ICONT*DFLT CONTRALX
ICNTL=0 CONTROLX
CONSTS=DELX*DELX/DELT CONTROLX
EX(L)=EX(1)*CONSTS/CONST CONTRAOLX
CONST=CONSTS CONTRNOLX
DELTCY=DELT/NCYCLE CONTRALX
G3 TO 9000 CONTROLX
9012 CONTINUE CONTROLX
WRITE(6,959) CONTROLX
WRITF(6,9913) DELT CONTRAILX
9013 FORMAT(* PRNGRAM HALTED DUE TD DELT SI12E, = ',F10.6) CONTROL X
63 TD 880 CONTROLX
9Nn00 CONTINUE CONTROLX
C : CONTROLX
C TIMES NF TIP AND ROOT ARE STORED AT THIS POINT FOR LATER OUTPUTCONTROLX
C CONTROLX
C.l.............'..'.....Q...O...O........‘.....‘.....'...........O..Q.. CONTROLX
C........O.....C.......Q......'....'...0..........................‘.... OUTPUTC
POSXN=(POSX-DELX/2.)/ (ALEN-DELX) ouTPUTC
POSLN=(POSL-DELX/2.)/(ALEN-DELX) ouTPuUTC
IF(NEPS.EQ.0) GO TN 8014 ouTPUTC
TF(KTNLD.GT.NEPS) GO TO B013 ouTPUTC
IF(POSLNLLTLEPSILO(KTOLD)IGO TO 8013 ouTPUTC
TT(KTOLD)=SEC QuTPUTC
EPSTLO(KTOLD)=POSLN guTPUTC
KTOLD=KTOLD+1 ouTePuTC
8013 CONTI'NUE : ouUTPUTC
IF(KROLND,GT.NEPS) G0N TO 8014 oUTPYTC
IF(POSXNLLTEPSILN(KROLN)IGD TO 8014 ouTPUTC
TR{KROLD)=SEC ouTPUTC
KROLD=KROLD+1 ouTPyTC
8014 CONTINUF ouUTPUTC
IF{SFC.GE.HPRINT) GO 70O 11 putPUTC

98T
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WOYOIODD

8002

3003

8004

3001

8s7

862

GO 79 20
CONTINUE

HPRINT=HPRINT+PT

WRITE (6,40) SEC,HRC, THCFLG
TF(KTFLG.GT.1) GN TN 8012
WRITE(6y4)) (T(J)yJ=1,N)

LNOP TO WRITE NUT THE INTFRPOLATEND TEMPERAT!JRES AT SPFCIFIED
LOCATIONS ALONG THE LENGTH

CONTINUE

IF (NDIST.LT.1) GO TN 8010
IF(KTFLG.GT.2) GO TO 28010
N2 8001 J=1,NNIST
IF(S(J))R002,8003,8704

IF (IN{J).EQ.1) GO TN 8001

TX=ATCINCID)=TCINCI)=1 NI % (NELX+S(J) ) /DELX)

RIS =T(INCI)-1)+TX

$) TD 8001

R(J)=T(INCI))

63 7O 8001

IFCIN(J) .EQ.N) GO TN 8001

TX=(TCINCII+1II=T(INCII ) X(SCI)/DELX)

REJI=TUIN(J))+TX

CONTINUE

WRITE(64857) (R{J),J=1,NDIST)

FORMAT (*

DIST IS AVALAIRLE FOR STORAGF AFTER INIT LOOP
N) 860 J=
NIST(II=FRLX((TL-R(JI)/(TL-TE))+FRT+FSC

TeCoT'y10F10.3)

14,NDTST

TF(R(J).GE.TL) GO TN 862

IFCISHETIL oEQel) DIST(Y)=1.-(1.+SCHC*{TL-R(J)))*%SCHE

CONTINUE

IF(RUJYLT.TEIDIST(IYI=1,
IF(TINGEQ.TL)Y GN TN 860

IF(ROJI«GTTL ) NIST(I)=C(TIN=-R(JIII/(TIN-TL))*FSC

nuTPUTC
ouTPuUTC
ouTPUuTC
ouToUuUTC
nurePyrC
ouTPUTC
ouTPuTC
ouTPUTC
ouTPUTC
nuUTPUTC
NUTPUTC
ouTPuUTC
ouTPyTC
outePuTtC
QUTPUTC
ouTPuyTC
ouUTPUTC
ouUTPUTC
ouUTPUTC
ouUTPUTC
OUTPUTC

NUTPUTC
ouTPUTC
ouTPUTC

ouTPUTC

QUTPUTC

ouTPUTC
QuUTPUTC

ouTeuTC
ouTPUTC
ouTeuTC

OUTPUTC
QuUTPUTC

ouTPUTC
ouTPUTC
gurtepuTC
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860

8A1
3010

8011

8015
8883

20 N

8017
20

401
880

8018

CINTINUE
WRITE(6,4R8A1) (DIST(J),J=1,NDIST)
FIRMAT(® FR,S.'y10F10.4)
CONTINUE
[FIKTFLG.GT.0) GO TO 8011
WRITE(6,831) NCYCLF
WRITE(6426) TQP,TOM,TRP,TRM
WRITE(6425) IQ,IR
CONTINUE
WRITE(6,4825) POSL,POSX,POSLN, POSXN
IFCIR.LT.N) GO TO 8715
WRITE(64826)
60 YO 880
CONTINUE

IF(SEC.LE.TSECY GO TO 8016
WRITE(6,827)

GO TD BRAD
CONTINUE

[F(I.,LT.10000) GO TN 8017
WRITE(6,828)
G0 TO 880

CINTINUE

CONTINUE

GO 70 1

CONTINUE

CONTINUE

WRITE(6,883)

WRITE(64881) DELT,!
WRITE(6,882) SEC

WRITE (648R4) IP,IT
[FINEPS.EN.0) GO TO 8018
WRITE(6,829)

WRITE(64830) (EPSILO(J),TT(J)yTR(J),J=1,NEPS)

CONTINUE
WRITE(6,883)
WRITE(64250) NAME

ouTeuTC
ouTeuyTC
ouTPUTC
ouTPUTC
ouTeyTC
ouTeyTC
ouTeUTC
ouTouTC
ouTPUTC
ouTeuyTC
oUTPUTC
ouTPUTC
ouTeyTC
ouTPUTC
ouTPUTC
ouTPuyTC
ouTeuTC
ouTPUTC
ouTPUTC
ouTePyTC
ouTPUTC
ouTPUTC
ouTPyUTC
ouTPUTC
ouTPUTC
ouTPUTC
ouTeuTC
ouTPUTC
ouTeuTC
ouTPUTC
ouUTPUTC
auTPyUTC
ouTeyTC
ouTPUTC
ouTPUTC
ouTPUTC
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G0 TO 801
c
C.I......CO...O..QQ.....................................0..............
C FORMATS LABELEN AS TO THA BLOCH T0O WHICH THEY APPLY
RR3 FIRMAT(/30(4H EDJ) o /1X,30{4HCAST),/,30(4H ENY))
881 FORMAT (/* *xxENJ*xk,DELT= *4F10,5, ! ITER= *,110)
B84 FORMAT(' PSET ITERATINNS o110, TOTAL TIME STEPS ',110)
882 FIRMAT(' FINAL TIME= ' 4F10,5)
831 EIRMAT (¢ NUMBER NF CYCLFS “HANGED T2 %,1I5)
15 FORMAT(215,F10,3)
17 FIRMAT (5F1C,.3) :
19 FORMAT (1 X o " TIN® y7X, *ALEN? 45Xy *TSEC?y S5X,y* TA "44X,'GLOBAR?)
26 FORMAT(* TQP'F10,2,'TOM'F10,2,* TRP'F10.2,' TRM'F10,2)
24 FORMAT (40X, *TIP'F10 4,3, RIDOT'F10.3,* CM FROM CHILL?')
25 FORMAT(® IQ*'15,! TR'15)
2?2 FORMAT (1X, *HEAT TRANS COFF IS',F10.3)
23 FOIRMAT(4 X4 "N 42X "KGR*y* DFLT ')

ouUTPUTC
ouTPUTC
ouTPUTC
ouTPUTC
nuTePUTC
ouTPuTC
ouTPUTC
ouTPUTC
ouTPUTC
ouTPUTC
ouTPUTC
ouTPuUTC
ouTPUTC
ouTPUTC
ouTPUuUTC
QuTPUTC
ouTPUTC

250 FORMAT(1HL/5(12(* RIN NAME ')/),5(" RUUN NAMF *,103X,' RUN NAME'/),0UTPUTC

1 * RUN NAME %,30X,10A4,30X,* RUN NAME ®/5(* RUN NAME ',100X,
2 ' RUN NAME */),5(12(*' RUN NAME '})/))

41 FIRMAT(2X+6F1544)

40 FORMAT(/* TIME= *,F10,3,' SECONDS HBC= *,F10,3,110)

816 FORMAT(515)

17 FORMAT(7F10.3)

818 FORMAT(RF19.5)

819 FORMAT(10F8,2)

820 FORMAT (104A4)

824 FORMAT(6T11)

826 FORMAT (' <K< RUN TERMINATED AT RONDT FINISH >>>*)

ouTeuTC
ouTPUTC
QutTPUTC
ouTPUuTC
INIT
INIT
INIT
INIT
INIT
INIT
INIT

825 FORMAT (' POSITINNS: TIP ',F10455,% ROOT *yF10,5¢" FRACTIONALS TIP*,INIT

1 F10.5,' ROOT ',F10,5)
827 FORMAT(* <<< RUN TERMINATFD AT TOTAL TIME SPECIFIED >>> *)
828 FORMAT(' <<< RUN TERMINATED DUE TO ITERATION MAX(10000) >>>°*)
829 FORMAT(® TIME OF TIP AND RONT THROUGH SPECIFIED POSITIONS®/

1 10X ,"X?¢8Xy*'TT',8X,'TR?)
330 FORMAT(1X,3F10.5)

INIT
INIT
INTT
INIT
INIT
INTT

681



871
959

833

1

FORMAT(15,2F10.5)

FORMAT(/ /7

FORMAT(* AVFRAGE STEP STZF LIMIT

END

NDIVISIONS NF DELXY)

$868¢ EXECUTION ERROR?')

"FLOQSQ'

14yF19.5,

INIT
INIT
INIT
INIT
END

06T
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Appendix E

Error Estimates

The following conclusions concerning the errors in
and stability criterion of the Crank-Nicholson method are
based on the presentation given in Reference (31), Chapter 7,

pages 120-188.

1. Reasons for Chosing an Implicit Technigue

The Crank-Nicholson method of implicit solution of
the finite difference equations is useful because it is
more stable than the explicit techniques. The Euler or
Rungu-Kutta techniques, which are explicit, constrain the
time step of integration to be very small in order to
obtain a stable solution. This yields a unnecessary degree
of precision in the results, with a resultant high cost of
computation. The implicit Crank-Nicholson technique
requires more computation at each time step, but a larger
time step may be chosen so that the overall effect is a
reduction in computer time to integrate over a given number

of seconds.

2. Error in the Crank-Nicholson Method

Error estimates can be obtained only for linear
problems, and it is expected that the error estimated for

the linear problem will serve only as a lower limit on the
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error to be expected in a non-linear problem, such as the
one considered in this work.

The truncation error (the difference between the exact
solution at time t+At and the finite difference solution at
time t+At, over one time step) at each time step is found to
be on the order of (At)3 for one linear problem, using the
Crank-Nicholson technique. The round-off error is very
small, and for most conditions the round-off error is
swamped by other errors (truncation, non-linearity). At
extremely low values of the heat transfer coefficients, the
round-off error becomes important, but can be overcome if a
sufficiently large time step is used.

Since the technique is stable for linear problems, the
choice of an appropriate time step can be made easily.
However, instability can be re-introduced in non-linear
problems, where this estimate of At3 may not apply. Therefore,
the most practical way to test the accuracy of the solution of
a non-linear problem is to do two things; (1) compare the
finite difference solution to a known analytic solution where
one is available, and (2) make a series of numerical
experiments, varying the time step and space mesh size, to
test accuracy and convergence. Step (1) above has been
presented in Figure (7) of the Results, and the results
obtained there were that the finite difference solution was
always within 0.5 sec. of the analytic solution, with the
error growing slightly at higher times. Step (2), the

convergence tests, is presented below.
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3. Sensitivity of the Method to Time Step and
Mesh Size Changes '

Table III presents the results of the computer program
for the following boundary and initial conditions; infinite
surface cooling (constant temperature boundary conditions =
OOC), initial temperature = 700° (50°C superheat), no
convection, columnar growth morphology. The results are
presented for 7 cases, for varying time steps and mesh sizes.

For comparison, the results at 60 seconds are useful,
since both the tip and root positions are within the
bounds of the casting at this time. The temperature at or
near the centerline, the position of the tip and root at 60
seconds are presented; with these the local solidification

time at A = 0.75 is presented for each case, in Table IV.

A. Space Mesh Size

Parts 1, 2 and 3 show the effect of doubling the
number of nodes used. Table IV indicates that as the mesh
size is reduced (number of nodes increased), the effect is
that the cooling takes place at a slightly lower rate. An

equation of the form az3 + b22 + ¢ = F may be fitted to the

points in order to extrapolate the results at a mesh size = 0,
where z is the mesh size and F is temperature, XL’ XE or tlst

(A = 0.75). The results of interpolating back to z = 0 are

presented in Part 8 of Table IV.
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B. Time Step Size

Parts 2, 4 and 5 of Table IV show the effect of halving
the time step with a constant number of nodes (N = 38). Once
again, the higher accuracy results (At = 0.05 sec) show a
slower cooling rate than the lower accuracy ones. The fitting
equation az3 + b22 + c=F Was used to extrapolate the
Xy Xg and tlst (A = 0.75) back to zero time
step, and the results are presented in Part 9 of Table IV.

temperature,

Parts 6 and 7 of Table IV show that for two typical
values of the accuracy limits, with N = 38, the temperatures
at the centerline are within 1°C of the interpolated zero
time step value after 60 seconds, the positions of the
liquidus and solidus isotherms are within 0.2 cm of the inter-
polated value, and the local solidification times are 5.4% to

9.4% shorter than the interpolated values.

4. Validity of the Curves in the Results Section

Table IV gives an estimate of the degree of numerical
accuracy and the degree of convergence which was obtained in
the curves plotted in the Results section. 1In general, the
parameters used to generate the Results (time step = 0.1 sec
and mesh size = 38 nodes) generate values close to the more
accurate results in Table IV. Specifically, the positions of
the liquidus and solidus with N = 38 and At = 0.1 sec are
within 0.13 cm of the positions extrapolated to an infinite
number of nodes, and are within 0.2 cm of the positions

extrapolated to a zero time step. The local solidification
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times at A = 0.75 are within 1.0 to 2.5 seconds of the
interpolated values. More importantly, it can be seen that
the error in the results is systematic, i.e., that the errors
occur in the same direction for changes in time step or mesh
size (as the time step is decreased the temperatures at a
given time increase, for instance). Also, a comparison of
the results in Table IV with those in Table VI, which is for
different heat flow conditions, shows that the errors occur
in the same direction for other conditions, as should be
expected. Therefore the changes in the curves in the Results
section which occur as external conditions are changed (such
as superheat or heat transfer coefficient) are quite meaning-
ful, since the numerical error in each of the curves is
systematically reproduced in each of a given set of curves.
All sets of curves in the Results section, showing the effect
of a change in an external condition, were generated with
exactly the same mesh sizes and time steps in order to insure
that this systematic error would be reproduced.

Parts 6 and 7 of Table IV were generated by allowing
the program to control the size of the time step by holding
the accuracy of the temperature calculations between an upper
and lower limit, which are given in the table. The exact
method is described in Appendix A, and can be followed
directly in the computer program (Appendix D) in the blocks
labelled 'CONTROLX'. These results, Part 6 and 7, are

presented here because most of the curves in the Results
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section were generated using this controlled time step

technique.

5. Side Heat Loss

Since the computer model for side heat loss adds some
additional computational inaccuracy to temperature profiles
and tip and root position results, a computational analysis
of the errors in one typical side heat flow case is presented
here. Tables V and VI are completely analogous to Tables III
and IV, for the same external conditions; initial temperature

= 7000C, no convection, h_ = infinite (constant temperature

B
boundary condition = OOC), columnar growth. In addition,
heat loss out the side was assumed, with hS = 0,001, W =1 cm
(plate half thickness), Ty,g = 0°C. The parts of Tables V
and VI correspond to those in Tables III and IV, and the
discussion of the preceeding section of this appendix apply
to the results presented in these tables. Hence, the general
conclusion is again that the curves presented in the Results
section are valid and meaningful, and that the numerical
values presented there are close to the fully convergent

values (presented in Parts 8 and 9 of Table VI for one specific

case) .



TABLE [I1 ,PART
NUMBER NF NCHES 74
TIME STEP= 0.100 SECONDS
OISYANCE RETWEEN NODFS=  0,2005 CENTIMETERS
F
DISTANCES FRCM THE SURFACE AT FACH NNOE(CENTIMETERS)
0.10 0,30 0.,5C 0,79 9,90  1.1%  1.30  1.59  1.70  1.99  2.11 2,31 2,51
31 3051 3,71 3,91 4l1 43l 4,51 A TL 4.9l S.lb 5.3l 5.51 5.7
5252 6,72 6,92 TW12 T.32 752 T.T2 7,92 R.l2 8.37  8.52  8.72  3.92
9.73 9,97 10,13 19,33 10,53 10.73 10.93 11.13 11,33 11.53 11.73 11.93 12.13
12,93 13,13 1333 13,56 13,76 13,94 1414 14,36 14.56 14.74 14.9% 15.1%
TIMECSEC 1) NI TEMPERATURES (NEGREFS €1
0.0 POSITIONS: TIP 0,0 {SLAR 0) , OIT  0.C (SLAR
70,0 700, 7A0L0 0 70,0 790.0  792.9  T70.0 730.0 790.0 709,0 700.0 709.0 700.0
700,90 00,0 700,0 79000 TH0.0 700,90 70,0 73049 790.0 790.0 700.0 7I0.0 710.0
T3 00,0 700.0 700,90 790.0 T709.9 T00.0 700.0 700,0 700,09 700.0 709.9 T00.0
700.2 700,90 TAC,C 00,0 IA0,0 70,0 T700.0 790.0 T00.0 790.0 700.0 790.0 T00.0
79,0 T0C.6 TAC,A TINLY TO0.0 TO0.H TNO.O TIN.O 730.0 700.2 700.0 T730.9
10,19 POSITIINS: TIP 4,80 (SLAR 25) , RANT 3,29 (SLAS
) 390 116,38 155.1 192,82 229.9 266,2 301.7 336.3 370.1 492.9 3.0
566.5 84,7 505.0  AL2.4 626,46 637.3 645.8 652.6 657.5 662.,2 66,5 670.5
52,7 ARS,C S39.4 490,64 A91.8 693.0 49,1 695.0 695.8 696.6 697.7 637.5
6ca A haa " 399,64 A£79,5 £99,6 €39.7 699.7 699, 8 6998 699.9 699.9 699.9
1090 TAac M. 7I0.0  709.9 T00.0 700.0 700.0 790.0 T00.0 130.0
20,19 SASITIONS: TIP 6,60 (SLAR 34) , RONT 4,93 (SLAR
- a0 260l 8201 tel 13,9 129,5 156,9 180.1 205.C 229.5 253.7 277.5 300.9
389,46 61,7 63,6 459,3 669,64 4A3, N 506,0 523.5 561.3 557.9 576.0 592.6 607.4
£46,5 £82.3  ASK,T?  AB0LT  hhe A 6693 6TL.6 6Teeb 6TT.2 679.T 681.9 683.3 685.6
£91a1 £97,7 673,01 693.9 43,7 5£95,3 £95,9 696.6 696.9 597.3 697.6 697.9 698.2
679,0  £97,1 A99,2 #99,1 699,4 99,5 99,5 699.6 679.6 699,7 699,7 699,7
30.10 POSITIONS: TIP  B.ls (SLAR &1) , ROOT 6,15 (SLAR
0.0 20,9 4lek 5246 3.1 1037 12402 14kes 1649 195.0 204.9 226.5 244,1
319,7 337,9 355.9 TS5 390.7 407.7 ©26.3 461.5 456.4 471.9 487.1 S501.2 S14.3
STI.1 S5RALA 599,5 611.0 621.1 629,88 637.3 663,46 6490 653,97 657.0 660,7 644.1
675.3 677,46 679.7 6A1.6 6R3,3 6B4,9 6.4 687,7 688.9 630.0 591.0 691.9 692,7
605,2 £O9R,7 696.1 69h.6 A96.T 697.0 697,2 69T.4 97,5 697.7 697,7 697.°
40.10 POSITIONS: TIP Q.41 (SLAR 48) 4 ROIT 7.1 (SLAB
0.9 1A.0 35,9 53,8 T1.7 9,5 10T.% 126.9 142.5 160.0 1T7.4 194,7 211.4
278.7 295.0 311.1 327.0 342.7 3581 373.4 388,64 603.1 417.6 431.9 445.9 459.6
511.7 52640 536.0 54Ra3 56043 57T3.1 SA5.1 596.2 606.4 515.6 623.8 631.1 637.4
£55,0 £58,3 661.4 666.3 667.0 669.5 671.9 6Téel 676,01 678.0 679.7 691.3 682,48
687.5 68R.4 6P9.2 6R9.9 630.5 691.9 691.5 691.9 692.2 692.% 692.5 692.6
50410 POSITIONS: TIP 10.52 (SLAB 531 , ROIT  7.91 (SLAS
0.0 1hel 3241  4A.1  6&.1 800 96,0 111.83 127.6 143,3 159.0 174.5 190.0
25C.7 265.6 280.3 294.9 309,3 323.6 337.7 351.6 3u5.4 378.9 392.3 405.5 418.5
463.4 4R0.3 492.0 603.5 514.7 525,88 S36.5 547.4 558.3 569.7 530.6 590.8 600.2
£30.7 635.4 68l.4 665.7 6497 652.6 655.6 65343 660.9 463.4 665.6 667.8 649.7
67502 677.5 6TR.A 679.7 580.6 6B8l.4 582,0 682.6 583.1 583.4 6#83.6 483.7
60,10 POSITIINS: TIP 11,57 (SLAR 581 , RDIT  8.63 [SLAB
0.0 14.7 29,3 43,9 58,6 Tl 87.7 102.2 116.7 13l.1 1645.4 159.7 173.9
2300 243,7 25T.4 270.9 284.3 297.6 310.8 323.8 1336.7 349.5 362,1 374.5 386.9
434.5 445,0 457,3 46R.4 479,64 490,72 5C0.9 5tl.3 521.5 531.5 541.9 S51.5 561.3
599.0 607.0 6l4sé 621.1 62742 632.7 637.6 641.8 6455 4548.9 551.6 6537 655.9
£63.1 664ab 666,0 667.2 £68,2 669.1 669.9 679.6 5Tl.l 671.5 671.8 671.9
70,09 POSITEONS: TIP 12,66 (SLAR 64) 4 R00T  9.31 (SLAR
5.0 13.6 2742  40.7 56.3  67.8  Al,3 94,8 1082 121.6 134,9 148, 1K1.5
21307 226.6 239.4 252.1 264.7 277.7 289.6 301.8 314.0 326.1 338.C 9.9 36l.6
407.0 41R.1 42R.9 439,7 450.3 460.7 471.0 4Al.1 491.0 500,23 510,5 520,90 529.3
S66.4 575.5 5A4.3 592.5 600,27 60T.4 6l4.1 620.2 625.8 630.3 635.2 639.2 64246
651.5 A52.8 654.0 A55.0 6560 656.9 657.5 658.1 658.6 659,70 659.2 659.4
R0.09 POSITIONS: TIP 13.91 (SLAB 70) , RAIT  9.93 (SLAR
000 12.7  25.6  3R.1 50.A 63,5 T6.2  33.8 101.6 1133 126.5 138.9 15l.6
20005 212.7 224.7 236.7 26R.6 260.4 272.2 283.3 2954 3069 318.2 329.5 340.6
386i] 39607 405.2 615.5 425.7 435.8 465.8 455,6 465,3 474,) 484.3 433.6 5077
537.9  S4h.6 555.0 563.8 572.4 680.5 5AA.3 S95.6 602,5 698.3 614.8 620.3 625.2
64012 64728 €45.1 66T.0 44B.6 663.9 651,2 650,31 550,5 650.6 650.7 650.7
20.09 POSITIONS: TIP 15,07 (SLAR T6) o ROOT 10,63 (SLAS
W0 12.7 2440 36,9 48.0 59,9 TL.@ 83,4 95,7 10T.s 119.4 131.2 142.9
1;2.5 20107 212:4 221.8 235.1 26h.6 25T.5 263.6 279.6 290.5 301.4 312.2 1322,9
306.6 1T4.R 306.0  194.8 404, T 41l6sS 26,1 4335 463,0 452,13 46L.5 67,6 479.5
514.0 527.1 530.5 53R.5 546.7 56,5 562.8 570,8 578.4 585,7 592.6 5991 635.2
€35.2 5£20,2 432.7 635.8 AWM.6 66l.0 643.1 646,09 646.5 54T.8 649.0 50,0
100,09 POSTTIONS: TIP 15,24 (SLAR 77) , ROIT 11.11 (SLAB
2 3.3 124.6 135.7
0.0 11.6  22.R 34,2 45,5 56,9 68,2 73,5 90,8 1021 11
189.0  191.0 291.9 TR 223.6 234.3 245.0 255.6 266.1 276.6 287,0 297.3 377,5
347.6 157.5 367.2 376.3 38A.3 305.8 405.1 4l4.4 423.5 432.5 441l.5 450.3 £59.0
462.8 §00.9 519.0 516.9 $24.7 532,4 540.0 567,54 555.0 5A2,8 570.3 577.5 594.3
607,90 AL2.8 61T.3 A21.3 #26.9 #29.0 630.8 633,90 634.8 636.2 637.1 63T.5
110,09 PISITIONS: TIP 15,24 (SLAB 77) , ROOT 11.69 (SLAR
A.8  120.5
. a9 21.7 43,6 56,7 65,0 75,8  R6.6  97.4 lom.l 11
172.2 lzz.s 192.8 213.5 223.8 234.0 264e2 256.3 264.3 274.3 286,72 234.1
3317.7 2.2 351.6 17001 379.3 38R.Y 97,3 406.2 4149 4236 ©32,2 440.7
Y73.7 4R1.T 4RaL6 505.0 512,85 $20.0 527.3 534.5 541.6 S4B.8 555.7 563.0
508.5 591,90 504.9 607.5 6111 616,73 6l6.9 619,00 620,55 621.7 622.2
120,09 PASITIONS: TIP 15,24 (SLAR T7) 4 RONT 12.23 (SLAY
113.8 124.0
0.2 6.6 2008 31,2  4l.S  S1.0 62,3 72,6 92,9 93.2 103.5
162.6 1;4.5 LBash 1946 20645 2146 226.2 234.0 2638 2534 263.0 272,86 zgz.;
31903 329.5 33T.6 46,5 355.5 3643 3731 39L.T 390.3 398.3 407.2 4l5.s 47A.P
eimn 4€3.h 4T1.2 4T3 445,27 493.6 500.8 507,90 5150 521,09 5286 S3%.3 Sl
S67.4 S71.1 §78.4 5832 S5AT,5 59l.4 59,8 597.6 599.3 A01.5 602.8 6334

700. 0
100.0
700,71
700.9

466.9
6Thol
697,9
699,9

6R4, 1

205.3
431,3
609,.0
ATl.6

183,11
99,0
571.6
657.7

17446
73,1
538.5
LI PEY

50)

163,7
351.7
S1l.7
49,4

154.6
333,46
48R,3
610.9

146,09
nr.ry
46746
590.3

591

140,1
303.9
449.1
569,9

2,91
6,12
932
12,53

0.0
T0C.C
700.0
7C0.0

502.1
577.3
6983
699.9

34642
630.8
688.7
698.6

282.6
5447
670.1
694, 1

245.6
«86.2
647.5
68%,3

220.6
443.8
617.0
673,2

292.1
411.0
591,3
659.8

187.7
386,56
547.7
648,.1

176.1
362.6
520.6
613,6

166.3
343,.9
497.0
616.1

158.0
327.7
47641
596.9

150.7
313.6
457.4
57645

144,3
370.4
440.0
5543

7C0.0
7CC.0
700.2
700.9

547.4
680.2
698.6
700.0

368.1
639.4
690.0
698.8

301.2
558.4
6T72.8
694, 7

26242
499.1
65146
6R6.4

235.7
45642
624.2
674.8

216.1
422.8
590, 5
661.5

200.8
395.9
5568
650.3

188,3
373.4
529.3
637,1

177.9
354.3
505.5
62049

169.0
337.7
484.5
60246

161.3
323.2
465.6
582.7

154.5
310.1
447.9
561.3

197



NUMBER OF NGOFS
TIME SVEPs

3R

DISTANCE BETWEEN NNDFS=

0.100 SECONDS

0.4011 CENTIMFTERS

DISTANCES FRNM THE SURFACE AT EACH NODF(LENTIMETERS)

"2
6462

13.03

TIME(SECONDS)

.0
1%0.C
703.9
7€0.0

17.10
N.0
680.9
1€0.0

20.10
2.0

631.0
€58.9

30.10
0.2

561.0
694.4

. 40,10
2.0
50642
685,7

50,10
0.0

4€5.1
674.1

60410
0.2

432.4
661,2

70.09
0.0

405.9
650.8

80.09
0.0

3R3.6
6319,0

90,09
0.0
364.5
624,7

100,09
0.0

347,9
6CT.6

110,09

0.9
333.2
58R.4

120.C9

2.0
320.0
567.9

Cobl
7.02
13.44

700, C
T0N N
7C2. %

66,2
LLLYS )
700.7

48,5
647.2
€99,2

40,3
586.9
695,4

35.2
53n0.8
€87.6

3.7
48R8.9
67645

29.1
455,2
€63.9

27.9
427.9
652.7

25.4
404,.7
644.1

24.0
384.9
637.6

22.8
367.5
616.8

21.7
152.1
59R.4

20.8
338,2
578.1

1.0
Tat?
13.84

1.40
7. 82
14426

1.80
4,22
14,64

INE TEMPFRATURES{DEGREES C)

700.C
700.C
770.0

131 %
690,13
700,0

6.7
656,9
699, 4

B0.4
609,13
696.2

70.3
55447
&89,.0

€3.3
512.°
6TR.4

58,1
47704
666.0

54.0
449,12
654 .4

50.7
42543
64T.A

“T7.9
40407
638.9

45.5
3R6.7
62443

43.4
7C. 7

60647

41 .6
35642
586.7

700.6
73040
T00..

196.0
493,13
700.0

146,4
665.2
699, 6

120.2
627.7
696, 7

105.2
576.8
630.0

94,7
534.1
679,9

87.0
498,9
667.6

RO.9
470.0
655.7

76.0
445.5
650.0

71.8
4264.2
663.6

68,2
40%5.5
629.9

65.1
3849,0
613.1

6241
373.9
593,4

79.0
M0.0
700.0

259.3
65,4
700.0

191. 4
672.1
699. 6

159.6
hbl.f
$97.1

139.4
598.7
690.7

126.1
555.7
590.8

115, R
Sta,8
668, 6

107.7
490.2
656,6

101.1
465.1
65042

95,4
443,2
646,5

90.8
424.0
633.7

R6,7

06,9 -

hlT.6

33,9
391.2
593, 0

TABLE Tt1
2421 2.61 3.01
8,62 9. 02 9,42
15.04
oQSITIUNS: TIP

700.,7 7%0.0 7T00.0
700.0 T700,0 702,9
T00.0

©ISITIONS: TIP
318.0 374.8 429.3
696.9 697.9 693.6
700,0

©ISITIONS: TIP
237.5 2R2. 4
677.8 6R2,5
699,7

32640
6%6.3

POSITIONS: TP

198,64 236.6 274,0

652.3 659.5 66641
697.2

POSITIONS: TIP
174.1 207.9 241.2
h1T.0 631.89 643.4
691.1

POSITIONS: TIP
157.1 187.8 213.1

575.6 595.5 612.5
581.3
PASETIONS: TIP

20%.7
578.5

146, 4
560.2
669,1

172.7
559,4

POSITIONS: TIP

134.3 160,7 186.9
509.7 528.6 547.2
657.1

POSITIONS: TIP

126s1 151.0 175.6
484,2 502,9 521,97
650.2

POSITIONS: TIP
119,2  142.8 165.1

461,77 479,88 497.4
647 .8

POSITIONS: TIP
113.3 15,7 158.0

442.0 459.6 &76.9
635.6

POSITIONS: TIP
108.2 129.6 153.9
4244 4416 453,4
519, 4

POSITIONS: TIP
10346 124.2 164,56
4CR.2 424.8 441.0
600, 3

sPART 2
Je4l 3.81 4,21 4.61 5.01
9.83 10,23 192,63 11.03 11.43
0.0 (sLas 0) , RONT 3.0 (SLAS
700.0 720.0 700.0 700.0 700.0
700.0 700.9 700.0 700.0 7970.0
5429 (SLAR 14) » RNOT 4,00 (SLAB

478.4 524,5 570.3 606.2 535.3
699 1 699.4 699.6 699,8 699.9

7.09 (SLAR 18) , ROOT 5.36 (SLAS

368.0 408.,4 446.9 4%33.4 S17.7
6R9.4 691.8 693.8 695.3 696.5
B.49 (SLAB 22) 4 RNIT 6440 (SLAB

3105 346.0 380.4 413.6 445.6

671.7 576.5 680.7 /84,2 687.1
9.67 (SLAB 25) , ROOT T7.23 (SLAB
273.9 305.3 337.2 367.7 397.3
652.2 658.5 664.,3 669.3 673.7
1C. T4 (SLAB 27) , ROOT 8,05 (SLAS
2648.0 277.4 306.2 334.4 361.9

626.7 6377 64743 653.6 658.9

11.77 (SLAR 30) , ROOT R,76 (SLAB 2
22844 255.7 282.5 303.9 334,7
595.9 611.3 624.4 635.2 643,7
12.87 (SLAB 33) , ROOT 9.42 {SLAB
212.,8 238.4 263.6 288.5 312.9
556,6 58242 598.1 612,0 623,48
14.12 (SLAR 36) , ROIT 10.01 (SLAB
200.1 224.2 248.1 271.6 294.8
538.5 555.8 571.7 587.3 601.3
15.24 (SLAB 39) , ROJT 10.62 (SLAR
189.,3 212,272 234.,9 257.3 279,5
5l4e4 531.D0 54Te2 562.5 S77.9

15.24 (SLAB 39) , ROIT 11.17 (SLAB
201.9

51%.0

223.6 245.0 26642
525.9 541.6 556.3

180,0
493.6

15.24 (SLAB 39) 11.73 (SLAR

» RODT
23442 254.6

213.7 ¢
521.3 536.0

506.3

172.0
4T74,8

192.9
490.7

15.24 (SLAR 39) , RODT 12.33 (SLAR
1R4,9 204.9 226,5 244.2

164, 8
48T.4 572.1 516.3

4569 47244

S.4t
11.83

0}

700,0
700.0

653, 7
£99,9
14)
551.0
697.4
16)

4The4
589,5

42640
677.5
21)

388,93
663.6

360.9
65043
24)

336.,9
633.4

317,56
613.4
27
301.3
591.9
28)
287.1
570,9
30)
274,6
550, 3
3

263.5
530.1

198

5.82
12.23

700.0
700.9

664.6
699.9

580.9
698.0

505.8
631.5

453, 7
680.8

415.0
667.6

384.8
6540 4

360.4
b4le1

340, 1
623.8

3227
604.6

294,4
563.5

282.6
543,6

6022
12.63

700.0
700.0

673.8
700.0

609.5
698 .6

534.6
693.1

480.5
683.5

44004
67T1.1

4C8.9
65841

383.5
64649

362.1
632.3

343.8
615.3

327.9
596.8

314.0
576.7

301.4
556.0



NIMRER NE NODES 19
TIMF STEP= N.100 SECUNDS

VUSTYANCF IFTWEFN NONFS= NeAN21 CFNTIMFTERS

DISVANCES FRCV THE SUFACT AT

Yot 1.2° P |
13.23 14,26 14,44

TIME(SEC NOS) H1IE TS ADERRATURES { DFGOFES C)

n.9 PASTTIINS: TIP
02,9 T0.C 10,8 0.7 770.9  707.0
1CIeC 727,00 T00."

1%17 PISITLINS: TIP

2.0 120,7 237,71 531.,7 599,4&4 645.1
£09,9 700, 700.0 ’
2C.10 POSITEIINS: TIP
0.0 91,5 181.4 425.6 494,5 55441
€SA.0 698, R 699,72

30.10 PISITIUNS: TP
2,0  77.0 152.9 365.5 42R,5 4R4.R
691.6 693.9 695,90

40,10 POSITIONS: TP
0.0  67.8 135.0 326,97 36,3 433.2
6R1.1 6B4.7 68heé

S0.10 BASTITIUNS: TIP

. 0.0 Bl.s 122.4 297.5 352,0 403.8
6A8,1 6T2.4 6T4.6
40419 POSITINNS: TIP
0.0 56.5 112.8 275.6 326.7 375.8
655.5 £59.6 66146

70.09 POSITIONS: TIP
0.0 52.8 105.2 257,8  3C6.2 352.9
64he 1  £50,6 651.7

39,09 e0SITIONS: TIP
N.0 49,7  99.0 2631 2R9,0 333.5
€32.6 643.6 649,5

20,09 POSITIINS: TIP
0.0 4Ten S3.8 230,7 274.5 31749
616.3  630.7 637,09

100.09 POSITIONS: TIP
7.0 44,7 89,3 219.8  261.9 302.6
597.4 613,09 622.5

11C.09 POSETIONS: TIP
0.0 42,7 85,3 210.3 259.5 289.%3
§7he 8 SO4,4 6C3.S

120.09 PISITIONS: TIP

0.0- 41,2 /1.7
556.8 S572.7 S5A1.9

TABLE 11!

TACH NONDELCFNTIMETEXS)

4o4l 5621 602

201.7 260.4 2792

0.0 (SLAB 1) , ROOT

17.%5 (SLAB 13) , ROOT
579.7 615.5 6H4l.9
11.34 (SLAB 15)
17.43 (S1LA% 16)
13.62 (SLAB 18)
15,24 (SLAR 20}
15,24 (SLAR 20)
15,24 (SLAB 20) o RNIY
15.24 (SLAS 20)

365.0 400,6 434,9 467.6

15.2% (SLAB 20}

10.82

b1

700.9

6)

6£99,%

L]

A~90,2

67404

10}
65741

n

437.5

479,0

199

11.63

700.0

6£99.6

6%, 1

692,3

667.6

652.8

635,90

613.6

590.9

568.3

548,.0

528.0

57,1

12.43

709.0

699,83

696,6

687.9

675.5

661.5

649,56

633.3

61543

595,2

57440

5561

633,64



TABLE 111
NUMRER OF NCDES a9
VIME STEP= 050 SFCINNS
DISTANCE IFTWEEN NCOFS=  0,4011 CFNTIMETERS
DESTANCES FROM THE SHUREACF AT FACH NIDF(CENTIMETFRS)
020 0467 1400 140 1.0 2,21  2.61 3,01
5,62 T,02  T.47  T.R2 A,22  R.62  3.02  2.62
1303 13,66 13,84 16,26 14,46 15,06
TEME (SECINNS) NI TEREEATURES{DEGRFES £)
"3 PISITIONS: TP
M, | SPNS TA0.0  TCALC TAN.D 70,9
™. LA TW.E TC0LS 7Dl 70%.0
0,0 T 0.0 700,0
10.05 PISEITEINS: TIP
7.7 67,1 1340 199,31 62,7 323,56 381,646 435.9
€23,0  488,7 6Al.6 9,3 46,1 #9T.4 699.3 598,9
100, AC TA0L0 TU0.D TR0, ¢ 700, N
?0.05 BASITIONS: TIP
Cod 47,3 I,V 14A.9 1%,.6 24l.4 2RT7.1 331.3
635.2 ASC.h 659,77 A6T.5 6T4.0 673.4 6R3.8 6R7,4
659,10 699,3 6£99,5 699,6 £99,7 499,7
30.05 POSITIONS: TIP
0.0 470 Al.6 122.0 162.1 201.5 240.3 273.3
S48,0 593,64 615.1 632,1 645.6 65606 661.8 66%.0
694, 695,717 6,6 AT, 0 697,3 A97,5
40,04 PASITIONS: TIP
0.0 35,7 TL.2 106.8 141.9 1767 211.0 2644.%°
S13.1 S3R,4 561.9 5%, T 605.0 622.1 635.8 6646,9
686.6 68,3 689,7 630,45 59,3 691.4
50.04 PISITIINS: TIP
0.0 32,1 66,2 96,2 127.9 159.3 190.5 221.2
4Tlel 495.1 518.4 560.9 562.0 S582.7 601.3 617.5
675.4 67T.7 6796 630.9 6#81.3 687.3
40,04 PASITIINS: TIP
0.0 29,5 58,9 38,2 117.46 146.3 175.n 203.4
438,0 461.1 4B3.5 505.1 S526.1 546,44 5AS5.4 584,31
£62.9 €65.5 €6T.5 669.1 ATNL 6TY,4
70,06 POSITIINS: TIP
0.0 274 56.7 32,0 109.1 1361 162.8 189,3
411.0 633.2 454.9 4T5.9 4%.4 51647 535.4 S533.8
£52.0 65442 6£55.9 65T¢3 558.2 65%.6
30,03 POSTTIONS: TIP
0.0 25,7 Sled  T6.9 102,64 127.7 152.8 177.3
19q,2 409,5 430,46 450,7 470.5 4RI, T S0B. 4 S26.h
661.5 b46.1 669.5 6503 650.6 6507
90,03 POSITIONS: TiP
0.0 24,3 48,5 T2.6 96,7 127,77 144.5 163,11
3A8,7 389,31 409.4 429.1 49,3 46T.1 4RS.4 503,72
£7Toh  £34.6 6601 544.3 66T.4 650,70
100,03 POSITIONNS: TIP
000 23,0 46,0 69,0 91.9 1les6 137.3 153.9
351.8 371.6 3910 4100 428.7 446,99 4h4e6 482,0
611.4 627,01 62T.2 A32.5 436.1 437.9
110.03 PSITIONS: TIP
0.0 22.0 43,9 65.8 7.7 1n9.4 131.0 152.5
336.8 355.9 374,7 307,01 411.2 424,97 6446.2 46341
593,0 A07.7 61C.6 616.7 620.8 622.9
120,02 PASITIONS: TIP
0e0 2140 42.1 3.0 83,9 106.R  125.5 l46.l
323.4 141.8 360.0 37T,R 395,31 412.5 479.3 445.7
573.1 S5R3.2 S9l.6 58,1 602,65 6367

«PART &

3.641 3.RL 421 4.61 5,01
9483 12.23 10463 11.03 11,43
0.0 {SLAR 0) , ROOT De3 (StLAR
T700.0 730,95 T700." 7MV,1 170,90
720.0 710.2 T00.0 7T00.7 T0C.0
5.21 {(SLAR l4) , RONY 3,92 {Staa
4B6.8 534.7 576.5 6K13.2 540,33
699,3 693,55 699.T 639,3 699.9
£.98 (SLAR 18) , RNDT 5.25 (SLAR

374.0
690.2

415.0 454,22 491.5 526.9
h32.5 694¢3 695.7 696.8

8.35 (SLAB 21) , R0DT 6429 (StaR

315.3 35143 38642 413.7 452.3
673.4 578,77 68l.9 695.,2 687.9
A.54 (SLAR 24) , RONT T.16 tSLAR

277.9 310.4 342.1 1372.9 402.9
654,4 650.T 666,2 6T1.) 675.2
10.59 {SLAR 27) , RONT 7.93 (sLaB
251.5 281.2 310.4 333,97 366.9
630.9 541.5 650.1 6355.3 660.3
1l.61L (SLAR 32) , WOV 3.63 (Stad
231.4  259.1 28643 313.7 339,?
ADle4  6Ll5.2 62846 633,5 646,5
12.67 (SLAR 32) , ?0NT 9,77 (SLAR
2155 241446 267.0 2932.1 316.8
571.0 538.3 603.5 61%5.56 627.7
13,88 (SLAB 315) , =09V 9.89 (SLAB ?
202.5 227.7 25l.1 274.9 ?9%,4
544,3 560,97 S5TT.4 592.5 606.0

14,94 (SLAB 38} 4 RIOT  10.46 (SLAR

191.5 214.7 237.7 262.4 282,7
52045 537.2 653.3 S5AR,4 533,85
15.26 (SLAR 39) 4 RIOT 11,03 (SLAR
1A2,1 204s2 22601 247,3 269,2
498,9 5153 531.2 545.3 S6l.3

15,24 (SLAS 19) , RONT 11,57 (SLAR

173,92 19S5.1 216,0 236,33 257.4
479,7 495.8 511.5 526.8 541.7
15.24 (SLAR 39) , RNIT 12,16 (SLAR
1666 1RE, 7 20T.1 2?7, 24€.3
461.8 4TT,4 492.7 537.5 521.9

Seél
11.33

T00.9
700.9

A5%.5
499,9
14)

56,2
597. 6

423,4
590, 2

431,.9
678.8

394, 1
665.3

36448
652.1

36l
43643

321.5
617.5

304, 8
597,

290, 3
575.9

277.6
665,93
1)

26602
535.83

5.82
12.23

770.0
700.0

66T.4
699.9

549.3
668.2

513,.1
692,90

©50.0
681.8

“20.6
669,.2

389,R
656,2

364.9
643.8

344,2
627.4

326.5
LRLL

311.1
589,1

267.7
5694

2R5,.6
549,13

200

6.22
12,63

700.0
70C.0

6763
700.0

61642
69R.7

541,7
693.6

“87.1
684,46

46602
6T72.6

414.3
659.8

388.,2
649,2

366.4
6€35.4

347.8
619.0

331.6
601.0

317.4
S5RL.9

3046
S€l.4



NUMBER OF NODES

TIME STFP=

kL]

0,200 SECUNNS
DISTANCF RETWEEN NYIF Sz

N,4011 CFNTIMETERS

DISTANCE S FRCM THE SURFACF

2.0
65462
1%.”M)

TIME(SFC NOSYH

C.0

10.22

2% 29

30.29

«0, 20

T 50.27

s0,20

70.20

a0.29

20.29

100.2°

11C. 29

129.20

Yed
6267
€98, 7

0.0
547, 0
693.8

1.0
495,.1
6R4 6

0.9
455.0
672.0

0.0
423.5
653.5

0.9
397.6
647.9

0.C
376.0
€34, 6

313.7
€68, 6

Dbt 1.00

T.02 Te4?

13.06 13.84
NV

63,1
$93,2
Mma,r

47,9
€4, 4
«99,0

39,5
T4, &
LX)

34,5
519.,2
£RA, G

31.0
473,3
ETh ot

2R,.5
445.9
661.2

26,5
419,2
650,.8

24.9
319646
6404

23,5
377.3
£26.6

22.%
260. 4
609,0

21.2
15,6
589,

204
33l.6
56645

me, e
R LT
ran, ¢

12%.2
AT 5
700, C

a5,
654,9
69,2

19,0
600, C
€095,7

6R.A
563.1
6488.0

62.0
500.7
676.7

56.9
45T, 6
663,.4

52.9
60,2
€82.2

49,7
416.9
6449

46,9
396.R
633,3

o h
379,13
617.1

4246
363.6
sat.7

4N 3
349.2
S75.6

Le40
T.82
16,24

LOLN
T07.)
TN N

ELLIS
690, 9
0.0

14243
“63.1
599,.4

117.3
627, 9
595.3

103.0
65,5
689,2

92.%
£22.13
679,2

85.2
48R, 6
66541

79.3
“60. 6
653.4

Téet
436.6
648.1

0.3
415.9
639,3

469
397.9
623,2

63.8
18t.5
60445

6l.1
166.4
5A82.7

1.8
.22
14,56

710, 0
7M0.0
yoo,n

383,3
~93,3
7.0

| LYY
570.3
699,.5

156.4
636.6
496,7

136.9
S8A, S
649,49

123,64
563, 9
619.2

113.4
508. 8
bh6e2

105,5
480, %

65442

9,1
45%5.8
£50.0

3.7
“34,6
641,56

ag,n
415,92
427.3

85,0
393,0
ANG, L

. 4
393, 4
587.6

TARLF 111

AT FACH NRDE(CENTIMETERS)

2,21 2.61  3.01
Reh2 9,02 3,62
15.0¢

THUPERATHRES(IEGRFES €)

PHSITIINS: TP
700, 0 T%.0n 7370
790,08 T0C.0 .0
00,0

PASITIINS: TIO
1229 379,7  43l.7
A95,2 696.6 697.7
703 N

PISITIONS: TIP
2 3 278.9 32%.6
AT6.3 681,2 635.1
699, 5
POSITIONS: TIP
194.,5 221.,9 263.6
64RR  656.5 663.5
596, 9

PASITIONS: TIP
170.5 203.6 2136.2
ACR, S  625.1 638,97
590, 3

OOSTTIONS: TIP
153.R 1R3,9 213.%
564.1 584.9 693,4
679.7

PISITIONS: V[P
16l.4 169.1 1945,5
G2Re%  54T7.9 566,54
66648

POSITIONS: TIP
131ep 157.4 183.1
499,88 518,5 537,"
654406

POSITIONS: TTP
123.6 147.9 172.1
4765 492,77 5124
650.0

PASITIONS: TIP
1169 139.,9 162.2
452.9 470,77 488,9
43,3

POSITEONS: TIP
1111 133,01 154.9
433.6 450,9 467,7
62% &

PISITIONS: TIP
1Pl 12741 167.9
416,77 433,00 4430.5
6l1.4

POSITIINS: T(P
10,6 121,84 14l.9

400.0 4162 632.1
590,1

ePART 6

3.41 3.81 421 4abl 5.C1
9.83 10.23 1C.63 11.03 11,43

0.0 (SLAB 0) , ROOT 0.0 (SLAS
750,0 790.) 700.0 737.0 790,0
730.0 790,2 70%.0 707,10 790.0
5429 {SLAR 14) 4, ROOT 3,95 (SLAS
483,4 529,6 57)el 604.9 63448
69R., &4 699.9 699.3 699.5 699.7
T.21 (SLAB 13) , RA°T 5.69 (SLAS
361.7 40l.1 43R,6 &74,2 S5)7.R
6498.3 690.9 693.N0 694.6 695.9
A.65 (SLAAR 22} , ROIT 6.59 (SLAS
304,3 339.1 372.7 4N5.2 4365
669,6 5T4.3 KT79,2 632,9 66,0
9.83 (SLAB 25) , *DT T.47 (SLAB
2682,2 299.5 330.1 1353, 9 3Aa8.%
b4Bak  6555.2 661.6 665.9 6Tl.6
1C.97 (SLAB 281 , RONT R.24 {Stas
262.8 2715 293.7 27,3 354,3
A19.2 632.2 642,3 657.4 655,.7
12,04 (SLAR 31) 4 RONT 9.0" (StLas
223.6 250.3 276.6 302.4 327.8
585.5 632.5 617.0 523.7 63RH
13.22 (SLAR 34) , ROOT 9.64 (SLARK
20R.4 233.5 258.2 282.5 1306.5
554.9 5Tle6 58B.8 603.3 616.,7
14,51 (SLAB 37} , ROOT 10.24 (SLAR
196.0 210,7 243.1 246.1 244,9
527.5 564.6 560.6 577.1 592.2
15,24 (SLAB 39) , RANT  LJ.88 (SLAR

185.5 208.0 230.,3 252,72 273.9
574, 8 5211 5374l 552.3 567.6

15.24 (SLAB 39) 4 ROIDT  11.46 {SLAR 2

176.5 199,0 219.2 247.2 2A1.0
434,2 S5N0.1 515.7 53).9 5645.9
15.24 (SLAB 39) , RNIT 12,03 (SLAS
168.7 139,27 209.6 229,77 249,7
465.5 4Ale2 496.4 Sll.? 525.6
15.24 (SLAR 39) , ROOT 12,72 (SLA8

161.6 131.4 200,9 22n,3 239,4
46Teb 12,6 47T7,3 421.5 5975,.3

Se4l
11.33

1)
T00.9
107.2
1

552.8
£99,8

S6l.2
694.9

466.4
hRAL S
19

416.3
675, 7

3R0.6
660,7

352,6
646.1

330.0
627.5
26)

3113
605.%

295,13
587.3

281,5
560, )

269.13
539,49
2)

25R,4
S18.%

N

5492
12.23

790.¢
T00.0

662,2
£39.9

57le6
6597, 6

4% .9
659, 7

443.9
679.2

4C6e2
66541

376.8
651.6

353,0
636,72

333,2
617.1

316.3
59642

301,7
574. 4

288.R
553.5

217.1
53le4

D
=

6,22
12,63

00,0
70C.0

670,56
699,9

602.2
£98,2

522.0
692.4

47C.0
6R2,1

431.0
668, 8

4Ch.5
655.2

375.6
642.8

354.8
626.7

337,0
608.0

321.6
587.5

3C7.9
S566.0

2S5.5
S64,2



NUMBER OF NODES
TIME STEP  CONTROLLED,HIGH | [4[Tx
DISTANCE AETWFEN NCOFS=

33

0.70020 LOW LINIT=

N.,4011 CENTIMETERS

TASLE (11

DISTANCES FRYM THE SURFACE AT FACH NODF(CENTIMETERS)

0.290
6e62
1,03

TIMECSECINDS)

c.0

17. 06

20.92

30,72

40.0%

50,905

60.05

70.13

R0.CS

90.13

100.05

110.C5

120.05

LAY ]
0% 9
00,9

a,n

603, )
€53, 9

1.0
16,2
699,10

0.0
567.3
69¢.8

.0
£11.5
686.5

2.0
469, 4
675.2

0.0
436,2
662.5

2.9
«08.4
651.3

.0
35,4
640.3

%9
365.9
€25.6

7.0
349.9
€C2. 5

n.n
379,13
567.9

0.60
" T.0?
13,44

N

L{a P}
1727
N0

7.3
£Ra, "
+aa,9

%9,
6£5%5
699,13

“n,a
592.9
98,7

35.6
536.9
69R,2

32.9
493,13
677.5

29,4
459.2
665,1

27.3
43n.3
453,85

25.5
“06,5
&£45,1

2641
186,.3
£33,0

22,9
369.5
€1 7.6

21.8
3523
599,1

20.09
29,6
STR,.3

1,00
T.42
13.48¢

70.0
T3C. 7
T0C.0

133,09
ANa bk
639,06

.o

659, 6
699, 4

al.5
614.6
696. 4

71.2
560.4
6R9,6

64,0
516.5
679,4

5847
481, €
667,72

54,5
“51.7
555.3

51.0
427.2
e4r,7

48,1
406.2
63R,.9

45,7
3IRT.T
625,

43 .-
37,4
607.4

“l.7
35645
58741

1.40
T.82
16,24

739.0
0.0
0.0

1en,2
LY TS )
699,9

1647.,0
667.5
fQQ, ¢4

121.9
631,7
696,9

16,5
S5R3. 4
690,6

5.2
53a,1
80,8

37,9
5331
669,7

31.6
12,4
656.7

T6.4
44T7.3
650.1

72.1
425.7
643.3

6R,5
40h.6
630.6

65,3
389,6
613.8

62.5
IT4.1
593,9

1.80
9,22
14.466

700.9
TM0.0
T97.0

262.5
6967
599.9

17%.8
4T4.0
699, 6

161.9
645,23
697.3

141.5
£93.8
591.2

127.5
560.2
591, 7

116.7
523.9
449,

108.6
492.5
5576

1M.7
467.0
65043

%.0
44,7
hGh K

1.2
4?5.0
536,23

6.9
“NT.5
LS P

83,2
1916
598, 5

TFMOFRATHRES(NEGREES C)

C. 2001

2,21 2.51 3.0t

8,62 .02 .62
15,06

POSITIONS: TIP

T00.9 700.0 70%.0
T00.1 793.0 799.0
T07%9

POSITIONS: TIP
323.4 331.3 435.9
69T7.5 678.3 69%.9
699, 9

POSITIONS: TP
261.6  287.2 331.3
6T3.4 633,83 6837.4
699, 7

POSITIONS: TIP

2013 240.0 278.0
654.3 661.6 667.9
697. 4

POSITIONS: TIP
176.2 210.5 244.1
6521.2 635.0 645.2
691, 5

PISITINNS: TP

158, 199.8 223.5
581.0 599.9 61%.2
682,1

SNSITINNS: TTP

145,7 174.3 202.4
646,37 563.4 542.5
670,17

PASITIONS: TIP

135.4  162.C 183,3
512.9 530.7 549.3
6£58.0

PASITIONS: TIP
126,9 151.9 175.7
4861 504,77 522,8
650.4

POSITIONS: TIP

119,8 143,4 165,9
4h3,2 4RL.2 494.7
64R, 3

OISITIONS: TIP
113.8 136.3 15%.6

443, 0 450.6 &4TT.7
63641

PISITIONS: TIP
10R,5 137.0 151.3
425,70 442,1 4SAR.8
LRAM ]

oAS{TIONS: TIP
103,8 124,64 144,38
40R,4 425,0 &4l.2
LLUT

+PARY 6

9
3.41 3.81 4e?21 %4a bl 5.01
.83 19423 10.63 11.93 11,43
0.0 (SLA8 01 , eQOT 0.0 (SLAB
>
700.0 700.0 700.0 707.0 79C.9
700.0 790.9 700.0 770.0 7100.0
S.21 (SLAS 14) , RO3T 3,72 (SLA3

486.8 534.6 STheé 612.9 640,0
699,3 499,54 6£99.T7 699,3 699,9
6.97 (SLAB 18) , ROIY 5.25 (SLAR
374.0 414.3 453.9 491.1 526.1
690.3 692.5 694.3 695.7 59.%
B8.38 (St A8 21) , RONT 6.30 (SLAR

315.C 351.7 385.8 4l93.46 4S51.7
6T73.3 AT7.9 681.8 635.1 687,9
9,57 (SLAR 24} , RNMT T.13 (SLAS

2T77.2 309.5 341.1 371.9 491.7
653.9 65N.3 665.8 6717 674.9
10.53 (St AR 27) , ROOT T.96 (SLAR
25%6 ?2%7%.3 309.3 337.3 365.6
629,9 6407 649.5 655,2 6h0.4
11,65 (SLAR 30) , &NOY 3.63 (SLAS
23C.5 253.1 2R5.2 311.9 1337.8
599.7 614.7 62T.4 63T7.5 64S5.7
12.77 (SLAB 32) , RET 9.37 (SLAR
214.4 240,72 265.5 297.5 315.1
566.9 534,3 600.7 614.5 626,0
14.00 (SLAR 36) o RNMNT 9.97 (Stan
201,22 225.5 249.5 273.1 296.4
540,6 557.4 574.0 589,33 603,2

15.2¢ (SLAB 39) , *DAT 19,59 (SLAB
190.1 21342 235.9 254.4 290.6
515.7 S32.2 S44,6 563,38 579,46
15.2¢ (SLA# 39) o RQOT  11.15 (SLAR 2
180.7 292,7 226.4 265,99 2h7,1
494,64 5192,7 526.5 542.2 556.9

15.24 (SLAG 39) 4 RUOT  11.73 (SLAR
172,5 133,5 ?214.3 234.9 ?255,2

475.1 491,07 50644 521.4 535.9

15.24 (SLAS 39) 4, RNNT 12,34 (S143
2C5.2 22%.0 244.5

§02,0 St6.l

185.3
4T2.4 497.4

165, 1

437.0

S.61
11.33

0}
00,9
9.9
10

A56.4
699, 9

-

«)
559.%
407, 6
16)

482.7
690.1

L1

430.7
678.56

192.7
664.9

363.4
651.6

339, 2
$35.3

319.3
615,13

I02.5
593,5

?93,1
5T1.7
30

275.3
550, 3

?2h3.9
52q,9

202

5.82
12.23

700.0
700.0

66T.5
659.9

589.0
658.2

512.3
652,0

458.6
681.7

419.0
668.9

389.3
655.7

362. 8
642,5

341. %
625.5

324.0
635.9

3C8. T
585.4

295.1
563.6

€022
12.63

700.0
70%.9

hT6e3
659.9

616.2
69R.7

5409
693.5

485.6
684.3

444.6
672.3

412.6
659.4

IRS. A
648,2

363.8
A23.R

345,2
6l6.6

329,.C
597.7

314.6
S77.0

301.9
55509



TARLE (i

NUMRER IF NCDES

TIME STEP CONTRNLLEDHIGH LIMIT= 0. 30060 LW (IMIT= €.n039

3e

DISTANCF AFTWEEN NODESE De&N1l CENTIMETERS

DISTANCES FROW THE SHRFACE AV FACH NINF(FENTIMETERS)

f20
6.62
13.92

TINECSEC INDS)
2.0
110.0
79).7
1. )
1093
2.2
633.1
¢aa, 9
2r. 903
20
636,2
h99.n
in. 01
0.0
547,
£9%.7

“0.15
)
510.1
CRE LG

50, N6
0.7

467,0
615.0

10.06

0. 14

90.06

N.0
263.9
€240 1

2.0
345.9
6C4. 18

110,22
7.0
330.5
523,2

122.04
Ned

316.7
560.6

N.40 .00 1. 49 1. R0 2,21 2.61 3.01
T.02 Tea? T.R2 .22 R.62 9.02 9.42
13.64 13,84 14.26¢ 14.64 15,04

NWIF 16 MPERATURES { DEGLFES ()
PASETIINS: TIP
L OIS TN

LARPII & N
TN, TN

T, T00,0 TR2.0 T90.0
T 700,17 TC0.0 T197.0
TY5.C TN

PISEITIINS: TIP

hT,4 134,11 104, 262.6 223,13 3R], T 35,3
Q82,7 A1, T 60,3 AIK,2 697,55 RIT,& 673, 9
€99,3 400,90 T02.0 TN TAN,A

POSITIWNS: T(P
40,4 €94 147,00 19%,R 241.6 28%7.2 33l.3
£5N.0  A50,F  ART.5 6T6 N 6T9,.4 6RAR 687,64
£99,1 699,55 600,4 493,66 699,7

PISITIONS: TP
40, Alee 121.7 161.6 201." 239,77 277,4
592,55 6143 43l.é ALS.2 £54.2 G61.6  64T.9
€95.T 6.4 69,3 AAT, 3 (97,4

PISITIONS: TIP
38.6 Tlel 106,46 14l.4 176,00 210,2 243,9
534.% 569.8 581.9 603.0 620.6 636,44 645,18
6BR,?2 639,5 699,5 61,2 691,5

POSTTIONS: TIP
32.7 43,8 25,6 127.1 15%.3 19,2 219.7
49%.2 513,82 536.4 5583 S5T78.1 597,27 614.7
£T7Te4 679.3 6977 631,6 6R2.1

POSITIING: Tip
29.2 SR.3 BT.6 116.2 144.9 173.3 291.4
455,28 &T7T7.9 499,3 519.9 540.4 559.6 579,0
664.5 /65, T 668.3 669.4 669,92

PASITIONS: TIP
27.) S4.1 31.1 107.9 134.%5 161,101 137.3
427.9 449,72 4599 490.0 509,46 528,2 S46.R
652,C 654,R 656,2 65T7,.1 657.6

PNSIVEONS: TIP
25.4 50.7 The® 101.1 126.1 151.0 175.5
LChe?2 424.T7 446,88 4A43 483,4 501.9 519,89
644,72 64T.R 650,N 650,2 650,2

PISITIONS: TIP
2440 47.9 Tl.7 95.5 11% 1 142.7 165.9
3R3,9 403,T7 422,9 4&leT 459.9 4T7,7 474,73
€31,7 63T.8 A42,3 He5,3 6461

POSITINNS: TIP

22.7 “5.3 5R.0 0.5 112,9 135.2 157.3
355.1 3R4.1  402.6 470.8 439.5 455,88 472.6
E1he5 62243 H2R,2 632.1 634.1

POSITIING: TIP
214 “3.2 64,7 86,2 107.5 12R.3 143.9
349.1 346T7.4 335,46 403.0 420,1 436.9 453.3
594,101 6M3.1 6L0.0 614, T 617.7

oNS IV IONS: TP
277 41,3 51.9 82,4 102.8 123.2 143.4

134,7 352.5 349, 18A,9 4035 419.3 415.8
§7T1.7 541.0 S5RR.4& 573,64 595,9

*PART 7

3.41 3.81 4e21 4.61 5.01
Q83 12423 1C.63 11,23 11,43

0.C (SLAR 2) , ROAY 0.0  (SLAS
700.0 T707.7 T00.0° 7I7.5 T00.0
700.0 700,97 7070 700,) T710.0
5420 (SLAB 14) , RONT 3.91 (SLAR
4RT,3 535,22 5T6,9 Al3,4 640.5
699,3 699.6 699.,7 699,83 699,0
~.97 (5LA8 13) , ROOT %25 (SLAR
3740 41,3 453,9 491,01 S26.1
59043 692,56 694e3 695,77 696.K
8.38 (SLAR 21) , raOnT 5031 (SLAB
34,5 350.5 385.3 419.7 451.3
673.3 6TT.9 KR1.3 635,101 687,
9.59 (SLAR 24} , RIT T.21 (SLAB
276.8 399.1 340.6 271.2 400,9
65343 559.3 665.5 6725 676,8
17.67 (SLAR 27) , ROIT 8,91 (5183
269 R 279.2 309.2 33%.4 344.0
628, T 639.7 648, 7T A54,5 659,9
11.73 (SLAR 3)) , ROOT ReTA (SLAR
229,1 256.4 2R3,3 379.7 335.4
65966 651242 625.3 634, h&4,2
12.R5 (SLABR 33) , ROOT Fe4e3 (SLAS
213.2 238.3 264.0 233,99 313,17
55443 58242 593.3 612.% 624,3
14.11 (SLAR 36) , RONT  10.75 (SLAB

2000 226441 264R.0 271.5 236.6
536.9 554e3 570.3 SRAS 6I0,8

15.24 (SLAB 39) o RIIT 19,7) (SLAR ?

19,1 212,72 234.7 257.2 279.)
511.6 527.3 544.2 55%4 575.8
1524 (SLAR 39) , ROIT 11,36 (SLaY
179.3 20l.) 222.6 243,3 264,9
4RA,9 506449 520.2 53449 550.3
15.24 (SLAR 39) , ROIT 11,7 (StLAS
170.9 191,7 212.2 232.6 252.7
469.3 484,93 500.0 S1l% T 529,19
15,24 (SLAB 39) , ROMT 12,54 {SLAR

163.5 183,44 202.1 22?2.7 242,"
451,23 4h6,5 4RI.3 495,5 599,56

Se4l
11.83

ny
700.2
0.9
19}

6£5h.6
499,39

65a,4
AQT.6
141

482.3
493.1

261

7,4
61342

00,3
599.5
2a)
235 ,h
544,7
n)
272.4
543,46
12)

261.1
52361

203

5.82
12.23

76C. 0
0.0

66T, T
KG9, 9

589,0
698,2

511.9
692,0

457.5
691.6

417.0
658.6

385.6
654, 9

360.7
641.5

339,7
~23.7

322,2
5C3.5

3%6.0
579.8

26242
55648

27°.9
53643

6,22
12.563

700.0
T7CC.0

676.6
699,09

616.2
59R,.7

56046
€93.5

484.3
684.2

“h2.4
AT2.1

409,.6
6£58,6

3823.7
647.2

361.7
632.3

43,2
616.7

326.0
5913,2

311.5
STC. T

298,5
549,1



Table IV
Results for 60 Seconds

Sensitivity of the Results to Time Step and Space Mesh Size
Unidirectional Heat Flow

T = 700°C, L = 15.24 cm., no convection, surface temperature = 0° (t > 0),
c8lumnar growth.

(o} tlst
part N At, sec X om Xgr o Teenter” © A = 0.75

1 76 .1 11.47 8.53 671.5 46.9
2 38 1 11.57 8.56 668.6 46.5
3 19 .1 12.03 8.81 661.6 45.1
4 38 .2 11.84 8.80 666.2 44.4
5 38 .05 11.41 8.43 670.1 48.0
6 3g  TeQ002 mAX 145 8.48 669.8 46.0
7 38 T10008 maX  11.53 8.56 669.4 44.0
8 - 1 11.44 8.52 672.7 47.0
9 38 0% 11.34 8.37 670.8 48.7

+ Extrapolated back to zero slab width.
* Time steps controlled by program. These are accuracy limits.
** Extrapolated back to zero time steps.

voc



TABLE ¥ oPART

SILE HEAT LCSS

NUMBER (F ACDES 19
TINE STEP= Cel13C SECCNDS
DISTANCE BETWEEN NODES= 0.8221 CENTIMETERS

DISTANCES FRCM THE SURFACE AT EACH NODE(CENTIMLCTERS)

Ce&l le 20 2. 01 2. 31 3. 61 e bl 5.21 6,02 6482

13,23 14,06 14.84

TIME(SECCADS NODE TEMPERATURES(IDEGREES C)

.G POSITIONS: TIP )

TCCaC T0Ie5H TCCeD T00.0 T02eC TCIeS TC7 0 TIe0 T0T

T3 TOC.0  70D4)

10610 POSITIONS: TIP 66 2) (SLAR  8)

0e0 119,22 234.% 302.1 433.5 52604 59T 633.8 66Ceé 672.6 6813 684.6 63649

688,9 688.9 6H83.9

20,10 PUSEITIONS: TIP 8432 (SLAB 11) , RONY

0o BLeb 1TT.06 262.2 342.5 &lE.9 4B&. € 546.0 5547

67665 6TT,2 6774

3%a.1C PCSITICNS: TIP 10.12 (SLAR 12) , RGOV

Cel Téoeh 147.3 21%.4 28801 35305 414,77 471.° 22402

€l € €€3,2 6€2.8

42410 POSIVICNS: TIP 13,168 (SLAB 17}

Ne0 64eT 128s7 191e4 25204 31l1e) 36648 &19.5 468+

650e0 €49 T €4S5.9

50.12 PISITICAS: TIP 15.24 (SLAE 20)

CeC 5TeT7 11449 171e3 22663 2796 3378 379,6 4&25,8

€36.4 6H3RS  63GF.2

60.10 PGSEITIONS: TEP 15,24 (SHAE 200

Cel 52064 10404 155, 7T 27364C 25409 3242 34Te6 39709

01849 62642 02643

e C9 POSITICHS: TIP 15424 (StAR 200

Ce9 48,1 $548 1e3.) 1d49.4 2347 Z78.€ 221,97 36l

56645 6T%.8 ©l0.?

81.C9 PASITICNS: TIP 15,24 (SLAB 230 o RTCY

Ge0 44 b BEeT 13246 1754 21Te5 25%.% 28,2 2244

56502 SR82,2 £R8.o

93.C9

el 4le3 B2e3 123e2 163¢3 2327 261eC 2T78e3 2142

53646 5547 5€las

€083 62%6 6487

4T75e6 57642 53949

4269 G716 513,5

POSITICAS: TIP 15,24 (SULAP 2

1723

6

5880

-1

6TJ.3

N

653,2

1

6315, 7

21

60%e 4

{2

S568.4

159

533.7

150

53044

YL

205

11.63

7705

688,65

6T3.4

65%.4

€45, 7

€21.7

92,1

5676

s27.1

49,06

12,43

™00

€280

6753

659,y

64843

631.5

68,8

5813

55145

S17.6



NUMBER OF NOCES
TINME STEP=

DISVANCE BETWEEN NODES=®

38
0.10C SECCNCS

CoéCll CENTIMEVERS

TABLE

¥ oFARY 2

SICE +EAT LOSS

OISTANCES FRCM THE SURFACE AT EACH NOCE(CEATIVETERS)

0.20
o €2
13.03

'INE(SECCN£§I

70%.C
T700.0
T0C.C

10.10

Ced
€Tl
688 .9

20.140

NeC
€15.6
6517, 2

3610

Oe
53762
6634

4%.10

el
4T77.8
€5Ce3

50.1C

2.0
“22.8
638.5

60,10

0.0
319645
€222

T0.09

CeC
36€.2
6€01.2

80, CS

Cad
36362
57%.2

90,99

[
317.6

54%e3

N6
T 02
1344

100
T. 42
13.84

1440
T.82
14,24

1.80
8.22
14464

NGNE TEMPERATURESIDEGREES C)

T00.C
707,92
00 2

66,5
&7€6.0
638.9

46.9
632.7
677.5

38.4
561.3
664,0

23,2
50141
€5CeT

29.5
455 9
639.%

26.7
«17.5
€24,

2604
38%.9
6C6e1

22.5
358.9
52,4

208
335,2
553.8

1C0e ©
T 9
700. C

12%.3
679, 7
68349

92,5
646e3
81T, ¢

T6.7
SE4a 6
66446

€oe 3
5235
6517

5349
47605
6601

£3,2
©3T7.3
€2648

8.7
405, 2
6C9.8

45,0
37T.1
58840

61,8
35246
56142

190.9
68245
688.9

129.7
652.2
o71.8

114.8
64e 5
606540

99,2
545. 4
6513

8841
49742
640,5

79 8
457.5%
628e1

73.0
©23% S
61244

6Te4
394,48
5921

6240
36942
5664

700, C
7305
70040

251.8
684e 5
688.9

1852
65606
6T7.8

1524
6235
66542

131.8
565¢3
6516

1172
SkTe2
640 T

10641
47646
62849

9Te2
“h2.1
61401

§9% 8
412,.1
5G4, &

8344
38506
5Thel

2021 2.€1 2,01
8,62 9.92  9e42
15.C4
POSITIONS: TIP
700,0 70C.C T7G0eJ
700.C TCCC  TCC.D
702.0
PCSITICNS: TIP
31043 J€6.2 4192
685.9 686.9 6876
688, 9
POSIVIONS: TIP
229.8 272.2 315.%
660.6 6401 6679
677.9
PCSITICNS: TIP
189.6 226.1 261.8
632.6 641.3 668.7
665e3
PCSITIONS: TIP
16601 1960 227.5
584, 8 €CleS 6151
651.7
PCSIVICNSE TIP
1461 174.€ 202.8
536.3 5%55¢1 5T1.6
eaCe
POSITIONS: TIP
132.3 158.2 18349
494,9 51246 52956
629.2
PSSILTICNSS TIP
12142 1450 16847
459,717 4T6.T 493.2
616,49
POSITIONS? T
1120 12400 155§
42869 #65.2 w610
5661
PASITICASE TiP
106el 12646 185,)
451eS  41Te) @221
$71.9

3,41 2,81 421 461 5.01
9.8 10422 1CG.63 11.C3 11.43
Lol (SLAB ©) o ROOYV Cen (SLAE
T00.C %3 TY.ul 7500
T0% " NG.C LAP U & ]

5.51 (SLAB 141 o ROOV 4ol (SLAS
L€E.6 S16sC 558.1 %943 62544
6B8RB.1 6AE.% 68B.6 688,T7 638,3

Te63 (SLAS 20T) , KOOY SeSR (SLAB
35¢el  395.1 432.5 4€8,1 SC1l.R

€693 €T71.3 672.9 676.1 675,11

9,57 (SLAR 24) o ROOV €JTT (SLAR

20,7 2627 395.5 426.2
€53.3 65543 65T.1 658.8

29642
6511

11.63 (SLAR 301 o REST  T.aS (SLAB
258.3 288,
625.6 €140

3181 346.8 374, 2
6h0e2 6Eh4a8 E6RL3

€.24 (SLAB 39) , ROCY 8,84 (SLAB
237,6 25€.C 28443 31lel 336.7
537,5 6f2.T7 6lle5S 62340 62645

15, 24 (SLAB 2S) , RCNY Sef4 (SLAR
20943 23443

S4ta3 SE€le2

253.9 283,10
ST%. 7 S48.1

068
598,5

15424 (SLAB 39) o RCOT  10.86¢ (SLAR
16247 2151 237.9 26C.3 2023
519,1 S2&.4 535e1 55343 56%S.0

15,26 (SLAR 2Q) 4 RICT 11497 (SLAB
17706 1553 22742 24157 26l
The? 4C1,1 S06, 1 &1%,9 €32,

19474 (SUAE 361 4 K{T 12411 (SLAR
16642 18541 D7he? 22604 2677
066eT  GENLR  oTdes 4FT.5 5V41

S5e41
11.83

b ]

190.0
™0.3

mn

646,
6£8.9

524.6
€75.5

455, 7
660,2

20

€32.7
6698

2

361.9
€31.2

25

32,1
6069

my

303.9
5T7.2

28] R
64, O

ALY}

262, ¢
812,72

Ny

S5.82
12.23

T30
TN

65545
82,9

56442
6€To.%

«83.,9
6615

“2Ee 2
569,5

W62
63,8

352.%8
6135

125.1
586.9

nl,?
55641

221.3
523.7

D
N

6022
12,63

0.9
TN 0

6667
6RB,9

59246
676 .9

S10.8
682,%

45345
€49 .9

409.8
63649

374.9
6185

345 .9
€94,.€

121.2
56645

269,06
£34 .6



WYNBER OF NCCES
TINE STEPs

DISTANCE SETWEEN NIOES=

16
‘P13 SECCADS

£e272% CENTIMETERS

Tam e

V JPART 3

SIDE HEAT LSS

OISTANCES FRUM T¢S SURFACE AT EACN‘ NOOE(CENTINE TERS)

SelC
3.21
6o 52
Se 13
12.93

TIPE(SECCNES)

Ca

ICel
76040
TCe 2
70040
T CeC

10.1¢C

20.10

30.10

4210

50.1C

60.10

T1e%9

83e 29

93429

a0
5227
LA LT
oET. 8
€ee. 9

Ce®
36%.9
628.1
[ 3500
oTT.3

b
301.%
56C o3
€52.0
€62.8

feC
26042
«79.1
€28.1
50,7

9.0
?2l. 2
422,7
5e€.2
€36.1

CeT
269.1
395.5
£42,2
623.0

Ce0
191.%
¢4
56,2
eCleé

Cet
16,2
338,06
413,%
5741

e 30
3.51
6,72
9.93
13.13

Ces)
.71
6.92
1713
13.2%

a3

Ce®2
11
T.32

1).53

13.7¢

let0 130 150
431 451 s
Te%2 04 e 92
1073 10e93 11.13
1396 14,16 14,34

NODE TEMPERATURE SINEGRIES C)

38.6
tae t
67641
6R8,)
LA ]

24, %
389,22
€35.6
oTl.S
8774

16,7
2754
4SCe 3
€22.2
65049

14.8
244, 9
&42.E
5553
€35.6

12.3
221.7

22,1
628 .4

122
2030
374, 6
513.9
LIS ¥

1.2
1E7.5
367.°
ear,e
51R.3

1(e &
17403
32646
LA
€6ho5

7.0
5655
LXAS ]
6RALZ
€83, 9

49,
4C8. 5
641.7
12,3

oT17,5

39,2
33% 93
565,9
05642
€€4ae 5

23,5
23045
$C2.2
€358
651.1

296
25E.5
454,7
6Cled
€4Ca 1

2307
224.1
41643
$53.8
62%.7

42
21645
8% &
S21e3
560 b

24
1he,?
33%,*
45%. 1
$83,4

T00.9
T20.0C

1151
Sut.8
87%.3
64843
58de 9

7.5
©27.5
666 .6
673.)
6T7.0

3.7
352.5
379.¢
65502
€64, T

$Ce2
335.6
S513.6
6389
051e3

4ot
272.0
4es.4
67,0
€40, &

“Ceu
24604
©2605
5677
626,7

3¢ S
22549
356 )
£28.0
LRI 4

13a8
278,17
16607
49542
5E5e 2

He?
1edel
sei.0
athe ?
€863

1528
63741
68Ce &
6886
688.9

7.8
446.0
65)3e4
673.6
eTt.7

Tse2
303.9
591.1
6%6.2
€65

6608
329,72
S2443
[ 213 0%
651.5

$9.1
28543
475,9
61247
640 T

522
258.7
“¥Wa5
5752
6205

“de b
232
4035
535+ &
5175

hbon
21%2
5.2
Sa7ek
Sade 1

6ot
PAY
35264
N4
LIS}

PNSITIONS: TIP

70%C 7070 70%9
T00.C 7C0eC 0T
70040 TC0C TI2.0
70%.2 7ClC  VCC. O
1000 T0%.C TC3D

PISITIONS: TIP

te 70 1e66 2.11
©.91 5.11 Se31
12 &2 8,52
1133 11.53 1l1.73
14,56 16,74 16,96
e
000
0% 9
102.¢
3.0

¥l

221
5.51

1.0
15,14

Ce

0,0
17 0
T 0.7

7300

109,83 22¢.1 2¢l.¢
62242 63,5 641.7
681.8 682.8 683,7
6BUL.S 6BR.¢ €88, 7
680.9 668,9 6R88.9

POSITICAS: TIP

121.9
©63.9
6527
6T4,2
[340%4

165,9
“81.3
€58,7
6767
6Tt P

169.7
493, 2
€57, 6
6751
(3228 ]

POSITIONS: TIP

et 1168
335.0 60N.8
6CleS  €10,7
65Tl
66501

12¢.2
%1603
olE. &
658.8
©65.5

POSIVIONS: TIP

33,5 1CC.C 11645
3345 Y48, € 362,9
534,9 5459 556.3
5637 €4SeT 647D
a5le? €51.9 €%2.0

PCSITICNS: TP

3.8 8.6
298.5 MlioS
©88.2 46¢.3
6173 47l
6409 6&1.1

102,
32404
SCee2
L2448
66102

POSIVICNS: TiP

565 19,7
270.8 282, 8
4663  4%¢,"
581.8 S58B.0
628e2 E2F.F

9249
2646
%S
593.7
62€,2

PNSITIONSE TP

129

25%. %

€128 422.0
%432 S5%7.1
612.0  H13L2

6.9
27,8
43l.1
556, 7
61442

PASTITICAST TIP

S6e) eted
229.6 28047
326, 82.F
5.9 S15a6
590e% 5676

18,4
25003
4CLes
522.2
AL TS 1

PoSITICASE TIP

S3.0 ©2e3 12,7
Z1% 6 22% % 2329
(LT 7% B T2 PO} L 794
T 6 &R&,3 49,
SeP.T  SES.T  SeMd

4,96 (SLAB 25) o ROTY 2,43 (SLAR
29%. T 28,7 W6 390,56 419,2
66R,T 52,7 €56.9 €606 6860
CBhek 6RS.1  GHS.T HRELY  ARKE
€T EEB.E 6BALB CAB, A 6889
688 .S 6EF.9 SRR €AR,®
To27 (SLAR 3T) , ROOY Se32 (SLAR
192.2 Zl€.4 23C.4 262.0 2842
£14.5 530.2 54565 58623 579,
EES, 5 Etle e . 666,T7 65641
615,85 ¢T5.80 6Toal 6Téeds 676,85
6T7.8 6T7.9 &7T.3 6¥T.9
Se 13 (SLAB 47} , RUNT Ge 6 TSLAR
1% 3 174e2 1327 2l1a6 2320
@316 465,3 46Ue3 &T5.0 48R.%
€25.8 621.T 63605 E4L.B  544,2
EES.E  CELL2 £E,S 6621
665,56 €65.6 6AE,T
1la4€ (SLAR S€) o =COT ToT6 (SLAR 3
13249 145.3  165.5 181.6 127.¢
276, 390aé 40348 €1T.5 429.9 -
CET.% V7.0 SBT.6 %4  604,4
R4R F  £69.9 0406 649,66 6404
€52, €52.2 €£57.3 €527
15,24 (SLAP TTH , R0DT 2,78 (SLAM
TTe6 1221 146,5 1529 175.1
337,11 349.7 2.1 VAT WAL4
516.7 52%5.5 Sl h Seh 6 S53,3
€27.6 63Ce1 €32.2 €339 &% 4
66le3 6614 LELl.4 66104
1524 (SLOE 7Y , ROV c.80 (SLAB
10€el 1197 13242 165, 1%a,2
Inheh  3IRLO 32545 6T V52,10
€16.6 464, C 49%.) 571e9 SIT.S
SR8 6C3.Y 60T6 8110 14,1
€2%e S 620.€ 63,3 30,1

1524 (SLAR TT) o KT 10,96 (SLAR
ITe? 17N 1227 1228 lea, 7
06 92,2 2T M1V.S 326D
86 o7 &4RLr 4ST.6  GRS,T 4T4,0
Cp1eT STNLL STte]  SH1.4 S34,3
015" €1% 6 t1%.° &l6.1
15024 (SLAW 771 4 <77 11,97 CSUAR
ECe® ME6,5 111.5 122.5 1S
2876 2T0S A0S 291,52V,
@Gt 6lBeY 42640 V6T &62,.7
Elheb S4 R 541,7 e,V 557 ¢
£35,7 86,7 <97, €07.7
15¢7% (SUSP TTY) ¢ ROT Q2,16 (S04
drgl 93,3 135 11%% 1267
6246 25149 Isle2 JTVeS 779,98
A3 PN €6, &R G elheS
6Lt M 8200 SARLT Sleld 4771
BT 00 LTS ST.5 NTIVeu

2.7
Sad?
%12
12.3%

n

T32eC
79049
0.3
07

466.4
667, "
637,.N
6FR. 9

bad}

376. 0
594, 6
o67.5
676s ¢

28,2
$92. %
[T 2%
£52.6

189,3
398, 2
%0249
638,56

1565
Ylhew
anr S
can, T

166,46
3.
L5C &
sag, "

2491
6,12
932
12. 5%

7620
79340
700
™0

724

~87.3
58%, 9

327. 4
el 7
668.,6
(14 5]

26642
51%. 5
686G, T
663,70

3.11
6. 22

12. 73

770,0
%9
Thde0
TN

€97 ,2
62,1
68746
688 ,9

348.4
6198, 9
669,7
8772

483,85

266.7
57,2
6233
eSleb

217.%
4216
EL RN )
6386

166.5

62142

115,9
I56.T
RIS
$98.3

164, 2

29%,0
29,6
€11,9

156,8
e 9
436,77
S,

07



NUNBER OF NCOE €

VINE STEP=

a8

DISTYANCE BETMEER AODES=

04200 SECUNCS

De4Cl) CENTINEVERS

TARLE

¥ JFIRT <

SICE HEAT LSS

DISTANCES FRCM THE SURFACE AT EACH NCOE(CENTINETEXS)

Ce2C
6. €62
12,02

TINECSECONDSY

10.2C

20020

30.20

40.20

5C. 2C

60.20

7C. 20

82420

99420

CCa €
700
00,0

Ced
€6T.6
6R8,. 8

Ce0
€C3.6
eTe.9

Cel
521.C
(1729

Ced
404,17
650.0

0.0
4212
€37.C

Cel
3861
€1Sel

0.0
35¢€.5
56%.2

0.C
331.9
£e5. €

Ce?
319%C
£31.6

046C
T 02
13. 44

1.€2
Tab2
12. 84

le 40
T.82
1424

1.80
822
14, 84

2,21 2. 61 3.1
862 9.02 9.2
15. %4

NOUE TEMPERATURE SIOEGREES C)

100D
0.8
TuCe9

64,1
673.3
688, 8

45.6
62404
617.2

37.3
54549
€€3.4

32.2
487.5
65C.1

8.7
46248
€3f.3

2%.9
©06.6
€22.5

23.8
37602
6Cle 4

2240
350.1
5Tee b

20e%
327.2
54N.8

79%2
7CC. 0
700,

127.5
677.5
€CE. 8

97,9
€33, 7
617,46

T4 6
568.9
€eth,

bee
5CS. 4
6574

57.2
©63.7
t36.2

Sle8
©2645
€24, 9

47.5
355.1
14 -2

“3.9
3¢8.)
581.2

7902
79C. ¢
T.90ed

189.4
680.7
6P, 8

135.8
569, 0
57T.6

111.5
592.1
66605

204
€30.5
650.7

85,7
483.9
€3S, 7

1T.6
©45.8
62646

Tilel
413.4
H1Qe3

eSe7
3453
56642

6leld
360e &
55640

1000
T00. ©
7000

249.2
683.1
cRB. 8

17199
653.7
ert.?

168.1
61l.C
6648

12801
551. 7
65045

1149
503.3
642 0

10% 2
©64e &
627.6

94,7
431.1
élla.?

8l.5
402, 2
53945

dle%
37644
S5t3e €

POSEVICNS: TIP

7060 T00.0 T0J I
700.C TCNT V022
T0CeD

POSITIONS: TiP
306 &4 286C.3 41C.6

680.9 686.2 0687,1
68s8.0

PCSITICNS: TIP
22342 2€%.& 3(&u 4

65802 ©062.1 665.2
[ 24294

POSITIONS: TIP
186.2 219, 7 25444

625.5 636.,2 &43,7
664.9

POSITICNS: TIF

159,5 19Ce5 221.1
570s6 589, 605.93
6512

POSITIONS: TIP

142.1 1€S.€ 1573
21,9 S4".8 557.8
€6Ng1

POSITIONSE TIP

128.3 154.F 179.)
4R2.4 &SS9, T Sl€.?
628 4C

PCSITICAS: TP
1181 1412 164,3
44Bo6 4650 48l.l
61242

PNSITINNS: YIP

1092 13CeT 15240
418, 7 4% ,7 4SC.1
591.1

PCSITICNS: TIP

10165 12l 14106
39240 40T.2 4219
5¢2, 6

3041 2.01 4,21 So€l SefY
.83 1fe23 10,63 11,03 11,43
Cef (SLAR  J) o RDOT Co"  (SLAB
IN0eC 0 WieT WG 70,2
IN0D  TCHLD  TOT THALG TYWLD
Se61 (SLAR 15) o RCNY 4,25 (Stae

457,22 5003 542.8 ST9%7 615.5
687.7 ERB. 1 ER88. &4 €08, 5 60A,T7

7486 (SLAE 2C) o A0V . 2N {SLAR
345,65 283, 8 420,35 454,3 636,98
668.° 6TTel  6TLe® €733 6T4eS

SeB4 (SLAB 25) 4 KFUT  Toe (SLAR
288.4 321.6 3574 3R4LE 414.2
€45e6 ES1.T €53.° 655,88 657.6

12,93 (SLee 23) , RCOV
251a1 280e4 2092 231 Me 6
618.7 €28.5 £35.5 6516 64565

15,24 (SLAB ) , wGOOT Sel7 (SLAR

2777 302.6 32740
6534 €137 621.7

22403
57543

25C.9
S9C. &

15024 (SLAB 39) o RCCY  1(.12 (SLAP
ZT5.¢ 25&.7

5TT.6 5R3.9

203,77 22Pa1 2524C
52243 48,6 5637

15024 (SLAB 39) o RCOT 11,22 (SLAR
1671 279.5 231.7 2%3.¢ 205,11
49€,7 E11e7 %2622 5267 5565

15,74 (SLAR 30) , RCCT  124%2 (SLA®
1731 19427 214e7 235.) 255.1
65,1 4T9.6 493, 506.9 S19.7

15.24 (SLAK 2¢) o ROV 17,68 (SLAR
16101 18847 1595 219.0 237.8
03bel 449,90 4622 4T5.,9 408,2

Re13-4SLAS

Seél
11.8%

L3

0.2
M.

629.9
6RR, 7

s17,.2
6753

184

42,9
659.2

20

390. 8
560, 6

23y

3520
€27~

260

221.¢
PLL

29

29642
566, 6

£ 18]

274, S
532.1

k1)

25643
a9, n

582
12.23

T0% 3
709.°

656,2
688,98

“47.9
676 0

“TN,2
6606

41643
549 1

AT5.7
$31.9

63,5
603,.1

31649
£78. 0

2S4.2
S64.d

27445
511 ®

6,22
12.63

0.0
00,0

576.0
676,95

496.2
61,7

4617
669,46

398,.8
6349

36%.1
6163

337.1
587.6

M3,.*
55,3

29244
521.6



NUMBEK NF NODES

TINE STEP=

DISTANCE BETWEEN ACDES=

38
2+CSC SECCNCS

VeeCll CEATIPETERS

TABLE

¥ oPARY S5

SILE MEAT LCSS

DISTANCES FECF THE SURFACE AT EACH WCOE(CENTIMETERS)

0.2¢
6,62
13,02

TINE(SECONDSY

13.C5

20635

40404

5004

60, C4

TueS4

87,03

.3

0% C
TC0.C
.t

00
€13.2
689,90

CaC
622 o0
617.4

Cal
€4€. T
663.7

(Y]
©36.°C
€5Ce 6

Nel
439.7
€39,7

Ced
4024 %
€Z4.5

CeC
ITle4
EChe b

00
34%. 0
5803

Ce 6C
71.02
12, 44

1.8)
Tae2
13. 84

le40
Te82
l4e 24

1.86
Be22
14, 64

NGOt TEMPERATURE SIDEGREES C)

I0C. C
T00.0
TCC 0

66.1
617, 7
68°,0

“l.8
537 .4
677.6

34,2
5€G. 6
6odob

33,8
509.7
5%le1

3%9
4€2.2
LTIy ]

27.1
“23.7
€27.9

24.8
391.5
6091

22.9%
3¢3.6
568¢ .8

éle2
33G.8
5€Ca2

7€ 6
10067
T0DN

121.5
681l.1
€8S, 2

5. 4
648,73
617.8

T8.2
392.2
66449

3 Y
53245
[33 )

59,9
482e S
64l1.9

S4el
4443
&Z8. 8

435
“lle
612.%

457
382, %
5919

42. %
35743
S56bet

Ti0e C
70Ca <
T

195.6
693.5
529,

142.5
€S2,48
6779

1169
6109
€952

1709
5541
a5le 7

H9.6
504e T
h6246

Bled
46403
€2l

Téel
42949
5147

63 e
4 e 3
59546

€345
ERLTS)
2717

T00e v
7C0.C
170,40

257.8
685.3
689% 0

183.9
658, 2
6T7.9

15543
62565
665, 5

134,2
57345
65149

119.2
524.8
66342

107.8
“83.6
€3C. 8

98,7
44843
6l6eb

olel
&l%e.9
598,11

2,21 2. €1 3. 01
8.62 9.02 Sek2
156 34
PCSITICNS: TIP
T00.0 70240 T700.0
TC0.C 1C0.C 7CC.0
TodeD

POSITIONS: TIP

317.€6 274, 628, 4
686.5 68T.4 6879
689, 0

POSIVIONS: TIP

23%.% 278,77 321.7
6€2.1 €€5.3 668,0
678.9

PCSITICAS: TIP
193.1 E27e2 2€€.7
©36.4 68443 650,0
£6%5. ¢

POSITIONS: TIP
1670 199,5 231.4
592.1 07,5 €19.9
6521

POSITICNS: VP

148,5% 177.5 23642
544yt 561.9 578.2
643,45

POSITIONS: TI¥

13404 1637 186448
50242 92702 53T
6312

POSITIONS: TIP
123.C 1e742 1712

46602 4834 5(%.7
8ll.1

POSITICAS: TIP

113.¢ 13%.€ 15%1
LMoY 6514 46744
566. 3

PNSITIONS: TIP
10%5 126.2 167,72
aNTel 422.0 4281
SThet

3.4l 2.P1 “a21 Lol S0
683 1€.23 1(.63 1103 11,43
Cef (SLAB ) o /OO Caf  (SLAB

TCU®  TI0el Il T20,0 T
TRI.2 Tofeu TAR Y 7O
€.3R (SLAB 14) , 20T 4o 00 (SLAR
4TBe6 %2€e2 56803 €5.T 63249
€RARLT EEMHLE OHP. T ERB,R &ARB,Q
Tobd (SLAR [S) , KOOV 5.65 t(SLAR
36342 4)3,1 4411 47T.2 Sll.3
ETTe2 £T2,0 67344 €T4,6 675,5

G429 (SLAB 24) o RTDY €of? {MLAR
3C2.3 226,C 37,5 4723 41s,]
652e1 65422 6562 657.9 £39,5

11,42 (SLAB 2G) 4 ROUY Te6F -L.5LAB

262.3 2%3.5
€25.5 €26,9

32,6 52,8 391,42
662446 636.6 A&9R

15,24 (SLAR 38) o ROOT €.6% (SLAR
36ee  F€2,2 289,46 2lh. 1l 3422
593,44 6r5.7 61%5.5 €22.1 529,
15.26 (SLAR 3°) , ™27 Ta €S (SLAR
212.5 2%Me" 262.¢ 297.5 3ll.6
55308 S6H.2 SH1eT 503,13 72,8

1524 (SLAR %) , wCCY 10465 (StLAP
184,49 ZlRe3 C4led 2641 86,5
Slbed Stled S6Eek 55%.& STleA

1€e24 (SLAR 20) 4 RIOT 1166 (SLAS

16701 2 1aE 2273 2645  265.1
ARZe8  4GT.R  S17.7 5181 S35,
S.26 (SLAB 7€) , KOAT 12,51 (SLaR
167,56 187,77 2°7e% 27Te6 6741
€E2.5 whles wRler  476e3 5071

Sebl
11.93

657 o6
€x8, 9

Ch4e C
&r6,?

“6&, "
€A1, 8

2™

4)3.2
LX2

224

AT, 6
62,7

335.1
61r. 4

2mMm

138, ¢
54245

24€, 8
secq, 0

a3y

2h6e
519,23

582
12,23

T30

59,8
689, 7

S73.1
6T6,7

492,6
662, )

“35.5
669.8

92,4
626"

358.1
[} LT

32S.¢
50,5

2RE, 2
hEARY |

6,22
12.63

770.0
.9

6673
689,00

€030e 5
6T7,.1

519.8
629

“61.2
65762

41644
€Nn,1

390 o6
8219

381.9
58,8

312547
ST2e2

rr, @
4243



NMUMBER CF ACCES
TEIME STEP CINVTRILLEG,MIGH LI%IT=
DISTANCE PETWEEN NNDES=

38

De0022) LCh LIMIT=

Vo421l CENTIMETERS

DISTANCES FRO¥ YHE SURFECE AT EACH NOUE(CENT IMETERS)

Ce2¢
Seb2
1%.C2

TIME( SECCND )

L}

1620

2Ce02

3% 32

4%)2

5C.C6

600 )2

TCe02

92431

7000
TCCe C
13040

Coc
67443
€8S, ¢

e 0
624.9
6TT.6

L]
567,28
EE7,9

Cel
487,
€50,

Lol
43S, €
6470

Cof
4C2.4
€2¢o4

CaC
371.2
€066

el

364 €
tAl. 8

foC
221e%
£€24¢

Ce 60
Ten2
13, 44

1. 29
Te42
13, 84

le ol
Te82
164024

1la 8L
8e22
léese

TABLE v ,
SINE MEAT L
2400310
221 2,61 3.0
Be£2 6,02  Se42
15.7%

NCDE TeMPCRATURES (DEGREES T

67.1
5T846
688G, ¢

“8.3
€29,5
6T7.6

39,4
571.4
EE4L, S

3% 5
513.7
651e2

30,0
462,2
641.3

27.1
422,06
€25.5

2448
391.2
611.5

22.8
363.7
5%, T

2142
326,48
36l o6

123, 6
61,7
689,17

S5 4
€49, 7
6TT.7

18,7
59%.?
€e5.)

67,7
53%.1
65la>

[l
48349
64248

€4al
+haol
€21.9

4945
4lse?
615.2

4545
382.2
€64,

424
1€7.2
56de2

T au
Ti0e 3

156, 7
6136,
649,0

lat, )
E4a 7
677,38

117.7
6lc.8
€5, 3

113
5552
651.9

n9 o8
5.6
haS. b

2l.1
@8k g
€33.7

Téel
429, 6
61708

hde b
142
5$8e <

6345
37403
573 .4

LEDTN
790,02
ICu. C

26149
585.6
669,

1932
€59, C
6779

156, 3
627.1
965, 5

13407
ST4e 7
852,1

119.4
52648
650e 1

13%.¢
4R1,3
63540

Y3t
LT L IR
6175

e ?
4177

£7Ce G

36445
37249
5T6e%

FCSITICNS: TP

T39eC T30sT V00T
THC TP 7M.
20C. €

PNSETIINS: TIP
3225 2802 4636.4
o086e3 687.5 6PB.)
649,90

POSITICNS: VIP
2367 28l.4 324,38

662, T €65,8 668,46
oT7.9

PRSITINS: YIP
194, 4 221.¢
6AT.6 645.1
€65, 7

2684
6533

POSITIONS: TIP

167.7 20n.2 232.3
56%. 3 eCR. ¢ 620.9
65242

POSIVICNS: TiP

168,84 177,80 2Cce
546,1 S561.8 579,00
655 2

POSITIONS: TIP

136.5 160,88 18649
SileB  S19 7T 539
635,06

POSITICAS: TIP
123.0 18742 171l
465,56 483.( 99,6
62343

ErSETICKHSS TiIv
113.5 12%S 1581

€34T 45142 4674l
6Cle 8

PLSITICASE VIP

17Se> 126e3 14049
4CTel 427,56 18,2
STR.S

FART 6
Css
3461 3.81 .21 L1232} Se21
Sa23 10023 10e63 11403 11.43
Cef {SLAER () 4 RIDT Tel  ASLAR
Il ThIg T80
TN TYed TMIT

€a37 (SLABR 14} , KOSV 3294 (SLAR
“B5.7  832.%
€. 4 €PRG

ST4e2 65106
£8H,8 638,37

5367
48R,

Teol (SLAR 1oy , ACNY £,23 (SLAB

3667 4068 65,2 &R1,5 5159

ETC,5 £T243 €736 6TheT 67546
9.4 (SLAH 24) , FODY € €T (SLAB
kel 33H. R IT2.4 4769 436.1
€204 €54,T €(5te4 €5B.1 €597

11.248 (SLAR ?2) , &I°T Tato {SLAE

12407
€62,

232,9
LT,

82,4
687"

26%.8
€30e3

2%t
€3T.5

16,52 (SLAR 2T) , ROV beCE (SLAR

8% 6 3l€aS 2625
B1%e5 €235 6292

2340 8 2¢2.%
562,38 o6dtll

15424 (SLAK 39) o w(CU'Y C 66 (SLAR
21247 22841 20341 297.6 3les
L34 S6°,7 S8le0 5036 6IV.%

15626 (SLAR 290 o ROTYT 10 .65 (SLAP
166eP 21862 241le? 244, 28¢41N
5166 52Le? 46,0 550,10 872,11

Se?4 ISLAS 3€) , aOOT

IR3e™ 201 ? 22342 2463 26542
4P2.T 477 Eliel T2€el %395
15424 {SLRE %) 4 RCIT 12,76 (SLAE

275 247,0
GHheb TS

167.4
“53,1

187.7
46T

277

4RY G2

1,66 (SLAR 37

Ses!
11.83

™"
me. ¢

mm

652,%
686,

1)

548.5
676, 2

“66e7
661"

27

37,0
€31

250

335,2
611,2

T

218e3
3%, 2

285,7
55242

Lad}

246, 2
19,8

210

5.482
12.23

tél.4
5A8.9

5T7.2
€6 T

“eoe
€621

“6e &
665,56

262.6
53€e 3

15R.2
6175

20,7
562,46

306543
5631

85,1
s.s

6o 22
12,63

7000
170.0

€687
689 .0

576el
6T7.1

5215
663,.1

462V
65%e3

4léen
[ ALY

w06
62245

LLO ]
eNtes

25,5
€73.%

LLEYE 4
e,y



MINEER CF ACCES
TIME STEP CONTRCLLEDMIGH LIMIT=
DISVANCE BETHEEN NNOE S=
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Table VI
Results at 60 Seconds
Sensitivity of the Results to Time Step and Space Mesh Size
Side Heat Loss

To = 700°C, L = 15.24 cm, no convection, surface temperature = o°c, (t < 0),

columnar growth, hs = 0,001, w=1ocm, Ta,s = 0%
tlst
part N At *L *E Tcenter A = 0.75
1 19 .1 15.24 10.21 626.5 34.5
2 38 .1 15.24 9.84 629.2 35.4
3 76 .1 15.24 9.80 630.1 35.5
4 38 .2 15.24 10.19 628.0 33.8
5 38 .05 15.24 9.65 631.2 37.0
6 38 *-0902 max 15.24 9.66 © 635.6 36.9
7 38 " 0008 max 15.24 9.85 630.7 35.1
8 oot .1 . 15.24 9.80 630.4 35.5
9 38 o+ 15.24 9.57 632.2 37.8

+ Extrapolated back to zero slab width.
* Fine steps controlled by program. These are accuracy limits.
** Extrapolated back to zero time step.

A4
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Appendix'F

Thin Plate Castings

This appendix describes the physical model and
analytical approximations made in describing heat flow

in end chilled plates with' h controlled side heat flow.

1, Physical Basis

Many experiments made on thin plate castings(31)
have shown that for h controlled heat flow (hsw/i << 1) ,*
and for mushy alloys that freeze over a wide range of
temperature, the structure during the process of solidifi-
cation is as pictured in Figure 54a. For example, the work
of Bardes and Flemings(31l) with thin plates (w = 0.114 cm
to w = 0.447cm) cast in a copper mold (hs = 0.04
cal/cm2°C sec) of Al-4.5% Cu alloy showed that the tempera-
ture gradients across the specimen were very small, that the
dendrite arm spacing was nearly constant across the specimen,
and that both the start of freeze isotherm and eutectic or
end of freeze isotherm occurred throughout the specimen gt
nearly the same time, respectively.

Thus, solidification does not proceed inwards from
the mold walls as is often intuitively thought to be the
case, but proceeds at a nearly uniform rate throughout the

casting by nucleation and/or growth!of dendrite arms. The

simple Qcheil equatlion shown to approximately apply for this

*
Note: w will be used for the half width (y direction) of the
casting in this appendix.
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and many other alloys(3,19) quantitatively relates local

fraction solid, fs, to liquid composition, CL' at any
location:
CL 1/k-1
£, = 1 - (9 (F1)
o

where Co = starting alloy composition

k = equilibrium partition ratio, CS/CL

and liquid composition is a function only of temperature T:

T - TL
CL d CO + -—r (FZ)
where TL = liquidus temperature
m = slope of the liquidus.

Thus, fraction solid at a given location is a function
only of temperature. Since temperature varies only slightly
from center to surface of a castihg when hsw/ﬁ.<< 1, £ action
so0lid must also vary only slightly, as sketched in Figure 54.
As a specific example, consider a variation in center to
surface temperature of 1°C, for Al-4.5% Cu alloy. Calculations
using equations (Fl) and (F2) shows that at no temperature
above the eutectic can there be more than a 7% difference in
fraction solid between center and surface,

Consider now the same plate casting, where
hsw/ﬁ << 1, but with a water chill at one end of the

casting, such that th/R >> 1, where h, is the heat transfer

b

coefficient at the metal-water cooled chill interface, and L

is the length of the casting in the x direction. Now the



disfribution of fraction solid during solidification must
be as sketched in Figure 54b, with a marked variation in fs
along the plate length, but negligible variation across the
plate thickness. Fraction solid at any time during
solidification remains a single valued fraction of tempera-

ture as given by equations (Fl) and (F2).

2. Mathematical Statement of the Assumptions

This section justifies the mathematical technique
used herein of treating two dimensional heat flow in end
chilled plate castings (where hsw/I—< << 1) by adding a
simple term to a one dimensional heat flow analysis. The
heat flow equation in two dimensions, in the absence of a

change of phase, is:

1ar _ afr, ot #3)
¢ 3 2x2  ay2

where o is thermal diffusivity, R/pcp.

Integrating equation (F3) from 0 to y, holding x and

t constant yields:

2 Y
1Y a7 Y 34 AT
=f =d = [ —5 dy + __| (Fa)
o o t o 3X 9y o

Since T = f({x,y,t) where £ is continuous and

differentiable with respect to .t and x, then

T _ o ¥
38 ¥ = athdY (F5)

0 K
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and
2 2

s _

2 Tdy (F6)
X

0 -

0 SN
Y
%
Q
<
[l
@

o
and y = w,
T .
%ir'l = 0 (F7)
y =20
(centerline)
3T Bs (r -1 ) (F8)
§E| = — w a,s
y=w K
(surface)
where Tw is the temperature at the surface, ¢
T is the ambient temperature at the interface, °c

a,s

hs is the heat transfer coefficient at the interface
in the y direction, cal/cm® °C sec

Therefore
w h
oT - _S _ -
W',o = = (Tw Ta’s) 0 (F9)

Substituting (F5), (F6), and (F9) into equation (F4)

yields
w 2 w h
1l 3 ] ]
= /Ty = — [Tdy + — (T_- T ) (F10)
o Jt o axz ° R w a,s

Define the average temperature in the y direction, T, as

1 ¥
= [ Tdy (F11)
Y o

T

11}
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Substituting (Fl1l) into (F10) and dividing by w gives

2 h

1 3T 3° = s
=% = 2 T4+ -5 (p -
a 3t 3x2 Rw ( w Tars) (F12)

The only assumption to be made is the following; if
Tw ~ T, which is approximately correct for hsw/i << 1, then
a substitution of T for T, in equation (F12) yields a

differential equation

= = h
%g—'i= 9——'—’2‘1+_—s-('r-'ras) (F13)
X Kw ’

which may be integrated in x to be solved.

- Equation (F13) is the result desired. That is, it
shows that for the case considered, heat flow can be treated
as in a one dimensional problem with an added term (the
term at the right of equation F13). The only -assumption
made in obtaining equation (F13) is that héw/i is much less
than unity. .

In the foregoing discussion, no mention has been made
of change in state (i.e., solidification). However, if
fraction solid is a function only of temperature, as
discussed above and as depicted in Figure 54b, then this
formation of solid will affect only the apparent macroscopic
heat capacity (Cp) of the solid liquid mixture. Therefore,

the constant o (R/pcp) in equation (F13) will be changed,

but the equation will apply without modification.
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In the computer model herein discussed below, a
discontinuity in fraction solid occurs at the eutectic
temperature as predicted by the Scheil equation (9% for
Al—4.5% Cu). In addition, for mathematical convenience,
a discontinuity is assumed at the dendrite tips (5% for
most of this work). These discontinuities are relatively
small and mean simply that even with extremely small
temperature differences across the plate thickness,
differences in fraction solid across the plate thickness

is 5% at the beginning of solidification and 9% at the end.

3. Computer Model

The canputer model for the side heat loss is as
follows. The removal of heat through the y direction is
calculated separately, applied to each slab after the x
direction heat flow equations have been applied at the
particular time step. The finite difference equation

AT = At hs (Ta,s - T(J))/prp (F14)

where T(J) is the temperature of the J-th slab
is applied to all slabs except those containing the tip or

root.*

* Here, the terms "tip" or "root" are used for "start of
freeze" or "end of freeze" isotherms.



219

The two slabs which contain the tip or root use the
condition;

q, = hs(Ta, - T(J))/w (F15)

Y S

where qY is the heat out in the y direction, cal/cmz/sec
and this heat is included in the motion equations (for
example, at the tip) 4
AxL/At = (heat in, x d@rect%on -
heat out, x direction -
qy)/ftpH (F16)
where £ _ is the fraction solid at the tip
H is the heat of fusion.

Finally, if sidewise cooling of liquid ahead of the
position of the tip has caused the temperature of the liquid
to drop below the start of freeze temperature, a new position
of the tip is set by interpolating the intersection of the
temperature profile with the liquidus temperature. The
program treats the position of the tip as if it represents
the boundary between the region T > TL and the region T < TL.
This treatment of the tip position can result in an apparently
infinite velocity of the tip, as seen in Figures 22, 25.

This effect is realistic only when "tip" and "root" are
defined as in the footnote on the previous page, i.e., solid
nucleates along the length of the ingot in slightly under-

cooled liquid.



h controlled end-chilled cast plate'

Figure 54,

RISER END—>

Schematic representation of an h controlled cast plate,
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