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Abstract

Forecast reliability and accuracy is a prerequisite for successful hydrological applications. This aim may be attained by using
data assimilation techniques such as the popular Ensemble Kalman filter (EnKF). Despite its recognized capacity to enhance
forecasting by creating a new set of initial conditions, implementation tests have been mostly carried out with a single model
and few catchments leading to case specific conclusions. This paper performs an extensive testing to assess ensemble bias and
reliability on 20 conceptual lumped models and 38 catchments in the Province of Québec with perfect meteorological forecast
forcing. The study confirms that EnKF is a powerful tool for short range forecasting but also that it requires a more subtle setting
than it is frequently recommended. The success of the updating procedure depends to a great extent on the specification of the
hyper-parameters. In the implementation of the EnKF, the identification of the hyper-parameters is very unintuitive if the model
error is not explicitly accounted for and best estimates of forcing and observation error lead to overconfident forecasts. It is shown
that performance are also related to the choice of updated state variables and that all states variables should not systematically be
updated. Additionally, the improvement over the open loop scheme depends on the watershed and hydrological model structure, as
some models exhibit a poor compatibility with EnKF updating. Thus, it is not possible to conclude in detail on a single ideal manner
to identify an optimal implementation; conclusions drawn from a unique event, catchment, or model are likely to be misleading
since transferring hyper-parameters from a case to another may be hazardous. Finally, achieving reliability and bias jointly is a
daunting challenge as the optimization of one score is done at the cost of the other.
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1. Introduction

Despite the modelling advances in representing hydrological
processes and providing more accurate streamflow forecasts,
there is still a need for reducing and quantifying uncertainty.
Most hydrological prediction systems are still deterministic
and provide only the most likely outcome without addressing
estimates of their uncertainty. The sources of uncertainty stem
from multiple places in the hydrometeorological chain such
as in inputs, initial conditions, parameter estimation, model
structure, and outputs (e.g. Ajami et al., 2007; Salamon and
Feyen, 2010; Liu and Gupta, 2007; Liu et al., 2012) and these
uncertainties should be deciphered to enhance model predictive
abilities and reliability for efficient decision making (Ramos
et al., 2010).

A broad range of techniques has been developed to con-
trol uncertainty at different levels such as the Generalized
Likelihood Uncertainty Estimation (GLUE), Shuffle Complex
Evolution Metropolis algorithm (SCEM) for parameter uncer-
tainty (Beven and Binley, 1992; Vrugt et al., 2003) and BMA
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combination technique for structural uncertainty (Jeremiah
et al., 2011; Duan et al., 2007; Parrish et al., 2012; Ajami
et al., 2007). Proper initial conditions are frequently identified
as one of the main factors that contributes to an accurate
forecast (DeChant and Moradkhani, 2011; Lee et al., 2011).
Among others, data assimilation (DA) is commonly used in
hydrometeorology to reduce initial condition uncertainty and
proved to be a useful tool for modelling. DA incorporates
observations into the numerical model to issue an analysis,
which is an estimation of the best current state of the system.
This has not only been largely applied to remote sensing
for snow (Kuchment et al., 2010), soil moisture estimates
(Forman et al., 2012; Meier et al., 2011; Renzullo et al., 2014;
Alvarez-Garreton et al., 2014) or hydraulic information (Bailey
and Bau, 2012), but also to update radar forcing (Harader
et al., 2012; Kim and Yoo, 2014). Many applications also use
in situ observations such as catchment discharge, snowpack
measurements, or soil moisture to update models (e.g., Seo
et al., 2009; Clark et al., 2008; Thirel et al., 2010; DeChant and
Moradkhani, 2011; Franz et al., 2014). In addition, DA may
be coupled with parameter optimization (Vrugt et al., 2005;
Moradkhani et al., 2005; Nie et al., 2011).
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Sequential DA techniques such as particle filter and the
Kalman filter family are frequently used for recursive updating
of the states of a system, each time an observation is made
available. Among them, the ensemble Kalman filter (EnKF,
Evensen, 1994) proved to be a powerful tool for hydrological
forecasting (DeChant and Moradkhani, 2012; Rakovec et al.,
2012; Vrugt and Robinson, 2007; Weerts and El Serafy, 2006;
Abaza et al., 2014) that is effective and reliable enough for
operational use (Andreadis and Lettenmaier, 2006). Several
studies claim that they developed techniques that improved
upon traditional EnKF (e.g., Clark et al., 2008; Whitaker and
Hamill, 2002) by focusing on the relaxation of constrains of
traditional EnKF implementation, or by explicitly including
time lag between the soil moisture and the discharge in the
updating process (Li et al., 2013, 2014; McMillan et al., 2013).

A key feature of EnKF is the proper specification of hyper-
parameters (perturbations of inputs and outputs) and model
states to be updated (Moradkhani et al., 2005). In most stud-
ies, EnKF implementation is based on an a priori selection of
the hyper-parameters and updated states combination, which is
then scarcely justified. Noteworthy exceptions are Moradkhani
et al. (2005) and Chen et al. (2013), but these studies are very
specific as they are performed on a single model and one or
two catchments. Accurate perturbations representing error esti-
mates are crucial since the EnKF updating scheme is based on
the weighting of the model and observation relative error. How-
ever this specification is complex in practice as the different
sources of uncertainty experience strong interactions (Morad-
khani et al., 2006; Hong et al., 2006; Kuczera et al., 2006). Sev-
eral attempts to account explicitly for structural error have been
reported, for example by directly adding perturbations to the
state variables (Reichle et al., 2002; Vrugt et al., 2006; Clark
et al., 2008), or by updating model parameters (Moradkhani
et al., 2005; Vrugt et al., 2005; Naevdal et al., 2003).

Moreover, despite encouraging results, DeChant and Morad-
khani (2012) point that little research has been done to examine
the effectiveness and robustness of EnKF and that ”studies
need to provide a more rigorous testing of these techniques
than has previously been presented”. Another issue that needs
consideration is that EnKF performance is mostly discussed as
’standalone’, regardless of the influence of the coupling with
the hydrological model. This is mainly due to the fact that
EnKF is often tested on a single model. Thus, the question of
adequacy between the DA technique and the model is rarely
assessed.

The present study aims at identifying EnKF parametrization
to reduce and quantify optimally the uncertainty related to
initial conditions in a forecast mode. A second scope addresses
the question of EnKF and hydrological model adequacy. In or-
der to achieve this, the analysis is conducted on 20 structurally
dissimilar lumped conceptual models, 38 catchments, 12
hyper-parameter sets, and all possible combinations of the state
variables to strive for general results. Finally, the effectiveness
of identifying the best EnKF parametrization without exploring
all combinations is discussed.

Section 2 presents EnKF’s basics, models, basins and scores.
Section 3 presents the results of the DA techniques followed
by a discussion and the conclusion statements are provided in
section 4.

2. Material and methods

2.1. Hydrological models, snowmelt modules, and PET

The EnKF is tested individually on 20 lumped conceptual
models, which differ by their structure. The selection was
initially carried out by Perrin (2000) and revised by Seiller et al.
(2012) for hydrological projection purposes. Because they are
based on diverse hydrological concepts and present different
degrees of complexity (4 to 10 calibrated parameters and 2 to
7 reservoirs to represent perceptual and conceptual hydrologic
processes), they allow to test the EnKF in a comprehensive
manner according to structure diversity (see Table 1). The
models have been modified to match a common frame and
they should not be directly compared to their original version.
In the case where the original models included a module to
compute evapotranspiration or snow accumulation and melting,
the module has been omitted as these processes are computed
externally beforehand.

The models exploit various conceptualizations and thus
their parameters and state variables perform particular roles
in simulating rainfall-runoff processes. Their reservoirs may
describe systems ranging from precipitation interception to
routing (or more conceptual functions). The role of state
variables is not detailed in the article for concision purpose.
For the same reason, the state variable values before and after
the analysis step will not be discussed here but only the outputs
of the models, i.e., simulated streamflow will be considered.
For further details on state variable meaning, refer to Perrin
(2000).

The lumped models are driven by potential evapotranspi-
ration and precipitation. The potential evapotranspiration is
computed from the formula proposed by Oudin et al. (2005),
which relies on mean air temperature and the calculated
extraterrestrial radiation. To partition snow accumulation,
snowmelt, and liquid precipitation, the snow module (Ce-
maneige, Valery et al., 2014) is executed before hydrological
models.

The snow module divides the watershed into 5 elevation
bands and is based on a degree-day approach modulated by an
energy balance index to simulate the dynamic of the snowpack.

The models are calibrated with the Shuffle Complex Evo-
lution algorithm (Duan et al., 1992) and the RMS E is used
on square-rooted streamflows as objective function to ensure
that calibration does not favor either low or high streamflows.
Each of the 20 models is calibrated individually with the
2-parameter snow module — the parameter values of the snow
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Table 1: Main characteristics of the 20 lumped models (Seiller et al., 2012)
Model No of No of Derived from
acronym param. reserv.
M01 6 3 BUCKET (Thornthwaite and

Mather, 1955)
M02 9 2 CEQUEAU (Girard et al.,

1972)
M03 6 3 CREC (Cormary and Guilbot)
M04 6 3 GARDENIA (Thiery, 1982)
M05 4 2 GR4J (Perrin et al., 2003)
M06 9 3 HBV (Bergström and Forsman,

1973)
M07 6 5 HYMOD (Wagener et al.,

2001)
M08 7 3 IHACRES (Jakeman et al.,

1990)
M09 7 4 MARTINE (Mazenc et al.,

1984)
M10 7 2 MOHYSE (Fortin and Turcotte,

2007)
M11 6 4 MORDOR (Garçon, 1999)
M12 10 7 NAM (Nielsen and Hansen,

1973)
M13 8 4 PDM (Moore and Clarke, 1981)
M14 9 5 SACRAMENTO (Burnash

et al., 1973)
M15 8 3 SIMHYD (Chiew et al., 2002)
M16 8 3 SMAR (O’Connell et al., 1970)
M17 7 4 TANK (Sugawara, 1979)
M18 7 3 TOPMODEL (Beven et al.,

1984)
M19 8 3 WAGENINGEN (Warmerdam

et al., 1997)
M20 8 4 XINANJIANG (Zhao et al.,

1980)

module are consequently different for each hydrological model.

2.2. Experimental design, state updating, and EnKF imple-
mentation

EnKF addresses explicitly initial conditions uncertainty by
creating an ensemble of possible model reinitializations by
updating state variables according to a recursive Bayesian
estimation scheme. It estimates the true probability density
function of the model states conditioned by the observations.

The evolution of the model state variables vector x may be
described through time with a non-linear forward operator M
driven by the previous states, the deterministic forcing u that
includes an error term ζt, and the (time-invariant) model param-
eters θ to which a model error η is added. The η error term does
not include only state variable error but also implicitly other
sources of error such as the structural and parameter error or
forcing error.

xt = M(xt−1, ut−1, θ) + ηt (1)

States and observations z are related through the following ex-
pression

zt = H(xt) + εt (2)

with H being the observation function and εt the observation
error.

The EnKF relies on an approximation of Bayesian rule to
identify the conditional density of the model states, p(xt |z1:t),
given the previous time steps observations z1:t, where xt is the
state vector that contains the model states. EnKF needs several
realisations (N members) to derive the model error matrix. As
the real true state is unknown, it is approximated by the ensem-
ble mean :

xt =
1
N

N∑
i=1

xi
t (3)

where i refers to the ith member. The model error matrix is thus
defined as the difference between the true state and the single
hydrological model realisations:

Et = (x1
t − xt, x2

t − xt, ..., xN
t − xt) (4)

Therefore, the model covariance matrix can be defined as:

Pt =
1

N − 1
EtET

t (5)

When an observation is available, model states are updated (X+)
as a combination of the prior states X− and the difference be-
tween the prior estimate HtX−t and observation.

X+
t = X−t + Kt(zt −HtX−t ) (6)

The Kalman gain Kt represents the relative importance of the
observation error with respect to the prior estimate (i.e. model
simulation) and acts as a weighting coefficient. Rt denotes the
covariance of the observational noise.

Kt = PtHT
t (HtPtHT

t + Rt)−1 (7)

Since the identification of the Kalman gain is complex, the term
PtHT

t is approximated by the forecasted covariance between the
model states and the simulation estimates and HtPtHT

t by the
variance of the estimate.

PtHT
t =

1
N − 1

N∑
i=1

(xi
t − xt)(Ht xi

t −Ht xt)T (8)

HtPtHT
t =

1
N − 1

N∑
i=1

(Ht xi
t −Ht xt)(Ht xi

t −Ht xt)T (9)

A more detailed description of EnKF equations and math-
ematical background can be found in Evensen (2003). In this
study, the filter has been implemented following Mandel’s
(2006) computational recommendations.

A critical point in the EnKF implementation is a proper
mapping of the errors ε, ζ, and η because they will determine
the observation predictive distribution. In a very vast majority
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of cases, model error is not directly identifiable. Users need
to estimate it by using stochastic perturbations through ε and
ζ computation if no more direct estimation of model error η is
made through perturbation of states or updating state variable
and parameters conjointly. Note that adding perturbations to
states and parameter updating are also subject to inaccuracies
since they are ”based on order-of-magnitude considerations,
and may therefore be statistically unreliable” (Liu et al., 2012).
In the present study, only ε and ζ are considered. Errors are
assumed to be normally distributed with zero mean but their
variances need to be put under scrutiny.

Hyper-parameters define the statistical properties of the forc-
ing and observations ensembles. This study concentrates on the
influence of the uncertainty in precipitation and temperature
forecasts and in streamflow observation. Three precipitation
perturbations (with a standard deviation corresponding to
25%, 50%, and 75% of the initial precipitation forecast
magnitude), two streamflow perturbations (with a standard
deviation corresponding to 10% and 25% of the observation),
two temperature perturbations (standard deviation of 2oC and
5oC) are evaluated. These perturbations are centred around the
perfect forecast or the observation. We thus obtain 12 sets of
hyper-parameters. All errors are assumed to be uncorrelated.
Note that the potential evapotranspiration is not directly
perturbed but it is computed by the Oudin formula forced with
a temperature ensemble creating a subsequent set of perturbed
PET values.

The present updating scheme relies on the Markov property
that asserts that the future of the system is dictated only by
the present state, not on the anterior sequence of observa-
tions. Model states are consequently updated according to
the instantaneous covariance between states and the current
streamflow observation while observations that preceded it are
not incorporated. Li et al. (2013) affirms that this assumption
may harm updating performance of models that incorporate
unit-hydrograph routing but do not affect models that include
dynamic routing stores, which is the case for 19 of the 20
models used in this study. Only model 5 (GR4J) is based on a
unit-hydrograph approach.

Prior to the hyper-parameters evaluation, the number of
members composing the EnKF ensemble is investigated. Four
sizes (25, 50, 100 and 200 members) are tested on two sets
of hyper-parameters. The experiment concerning the number
of members was not conducted on all hyper-parameter sets to
reduce computational cost.

The number and the combination of states to be updated are
next put under scrutiny. Batch testing is used to investigate all
states (reservoirs) combinations for each model regardless of
their physical meaning. The number of possible combinations
thus depends on the model at hand, varying from 3 for the
2-reservoir models up to 127 for the 7-reservoir model. As
all combinations of state variables and hyper-parameters are
tested, some cases turned out to be unrealistic and prone to

make the EnKF unstable. This difficulty was overcame by set-
ting back unrealistic states within their theoretical boundaries
identified during calibration.

The EnKF is used to update daily model’s states whenever
streamflow observations are available. The model is then
forced with the perfect meteorological forecast to issue a
10-day hydrological forecast. This lead time is sufficiently long
to be able to see the effect of DA vanishing. A series of tests
(not shown here) indicated that after 10 days, the influence of
data assimilation is almost negligible for almost every model
and catchments. Thus extending the forecast ahead would
bring no additional information. This framework is comparable
to an operational one except for the perfect meteorological
forcing.

Finally, every 20 models are tested on 38 catchments,
12 different hyper-parameter sets, and all possible reservoir
combinations.

2.3. Scores
Probabilistic scores offer the possibility to evaluate more

than individual member or ensemble mean and provide to the
forecaster a better picture of the forecast probability distribu-
tion by expressing the uncertainty level. Probabilistic forecasts
should be assessed both in terms of bias and reliability to assess
where the verification is situated among the ensemble, how the
frequency of forecasted events corresponds to the frequency
at which events are observed, and the gain of ensemble over
deterministic forecast.

The Normalized Root-mean-square error Ratio (NRR) is
used to quantify the spread of the ensemble with regard to its
predictive skills (Murphy, 1988). A value of 1 indicates an ap-
propriate spread, while greater and smaller values than 1 reflect
too narrow and wide ensembles respectively. The NRR is func-
tion of the observation yt, the ensemble forecast average ¯̂yt, the
number of members in the ensemble N, and time t.

NRR =

√
1
T

T∑
t=1

([
1
N

N∑
n=1

ŷn
t

]
− yn

t

)2

1
N

 N∑
n=1

√
1
T

[
T∑

t=1

(
ŷn

t − yn
t
)2
]

√
N+1
2N

(10)

A complementary view of the NRR is the Spread Skill
Plot (SSP) which is a graphical assessment that represents
at the same time the bias of the ensemble, its spread and
therefore its reliability. The SSP relies on the fact that the
Root-Mean-Square Error (RMSE) should match the spread to
achieve reliability (Fortin et al., 2014). In the case where the
RMSE is greater than the spread, the ensemble is overconfident
regarding to its predictive skills and vice versa.

The commonly used Nash Sutcliffe efficiency (Nash and
Sutcliffe, 1970) is used to assess the bias of the median of the
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EnKF ensemble. A NS E value equals to 1 identifies a perfect
prediction while a value below 0 indicates that the average
observation is more skilful.

To evaluate the improvement or deterioration of the quality
of the simulations, NS E and NRR gains are computed as:

G =
S sim − S re f

S opt − S re f (11)

with G the gain, S sim the score after the state updating, S re f

the score without updating (the open loop), and S opt the perfect
score. In the case of the NRR, which is not a monotonic score
(i.e. the minimization or maximization of the value does not
systematically indicate an improvement or a decrease of the re-
liability), a substitution is performed to compute the gain. We
consider that under and overdispersion should be penalized the
same way which is reflected by the distance from the optimal
score 1.

NRR∗ = |NRR − 1| (12)

NRR∗ is then negatively oriented and bounded by 0 and can be
used to compute the gain G.

2.4. Catchments and hydrometeorological data

38 watersheds are evaluated for this study. They are mainly
situated in the south of the Province of Québec, but some
extend over Ontario or the north of the states of New York
and Vermont (Fig. 1). Their latitudes range from 43o15’N
to 52o20’N and they exhibit important winter snow cover.
Consequently, the hydrological regime is dominated by a
spring freshet and a second peak in autumn is frequently
observed.

Figure 1: Spatial distribution of the watersheds

The size of the catchments ranges from 236 km2 to 15342
km2 and the median annual discharge varies from 5 m3/s to 299
m3/s. Maximal solid and total precipitation are respectively
501 mm and 1544 mm while minima are 218 mm and 985 mm.
Solid precipitation is an estimation derived from a snowmelt
model forced with rainfall and temperature observations.

16 years of daily streamflow, total precipitation, and maxi-
mum and minimum temperature are used. The meteorological
dataset was created by the Centre d’Expertise Hydrique
du Québec by kriging (interpolating) observations over a
1220-point grid at a 0.1o resolution. Temperature were then
corrected by applying an elevation-based temperature gradient
of -0.005oC/m. In this study, 10 years (1990-2000) are dedi-
cated to model calibration, 3 years (October 2005 to October
2008) are used for model’s warm up, and the period from
October 2008 to December 2010 is dedicated to hydrological
forecast assessment that is issued up to 10 days ahead.

2.5. Model performance in calibration

The study investigates EnKF implementation for many mod-
els i.e. the performance of the coupling of hydrological models
and DA. It is not intended to compare model performances
to each other. The 20 models are thus investigated separately
and the comparison of models performance with or without
EnKF updating is out of scope. However, one should recognize
that models have different initial performance as shown in
Figure 2. Their individual performance varies largely over
the 38 catchments but no model consistently out performs or
under performs the others in all situations. Best (or worst)
results are frequently obtained by different models for different
catchments. Therefore, performance after EnKF updating
should be compared to each other only in terms of gain.

0
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0.8

1

    M05   M10    M15    M20 

N
S

E

Figure 2: NS E of the 20 models over the 38 catchments. Each box plot corre-
spond to a model.

2.6. Meteorological forecast

The first scope of this paper is to reduce and quantify the
uncertainty related to the watershed initial conditions for
hydrological forecasting. Thus, to focus on that specific aspect,
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Figure 3: Influence of the number of members N on NS E and NRR in simulation

we do not use actual weather forecasts but meteorological
observations to force the models. This ensures to minimize
the error related to forcing as the remaining inaccuracies can
be attributed to the representativeness of the measurements
and the measurement errors rather than the many uncertainties
related to weather forecasting. This forcing will be referred
hereafter as ’perfect forecast’.

3. Results

3.1. An estimation of the required ensemble size

Ideally, one would propagate a large number of members
to ensure to accurately sample the state variable probability
density functions but this would increase drastically the
computational cost. Thus, the first part of the study aims
at identifying an approximation of the minimal number of
member necessary to drive EnKF without performance loss.
For this case, the hyper-parameters are fixed to 0.50P for
precipitation, 0.1Q for streamflow, and 2o for temperature for
graphical convenience, and different numbers of members are
tested (N = 25, 50, 100, 200). The influence of the number
of members has been carried out with other sets of hyper-
parameters and led to the same conclusions.

Figure 3 shows general behaviour according to the number
of members N. NS E and NRR are used to asses forecast
accuracy and reliability, respectively. On the upper sub-plots
are displayed 12768 points corresponding to all simulations
per set of hyper-parameters, i.e the results in simulation for
every catchment, model and existing reservoir combination
for a given model. As we want to quantify the effect of N on
every simulation but also more precisely on best performing
ones, the lower sub-plots display the best results by catchment
and model. This implies to retain only the best state variable
combination for updating. A single best simulation can

be identified for a particular score for a catchment, but the
simulation may be different whether it is assessed regarding
its reliability or its bias. To overcome this selection issue, we
retained the simulation offering the highest NS E among the
three best NRR. This combined criterion ensures to keep the
most reliable simulation in first place and then the lowest bias.
Reliability is chosen as first order criterion to ensure to cover
as well as possible the initial condition uncertainty without
diminishing the EnKF spread.

Interest is set on forecasts with NS E and NRR close to
1, thus the vertical axis has been truncated for readability.
Negative NS E are not shown even if they represent about 1.5%
of the total number of simulations. Note that the NRR score is
bounded for underdispersed distribution by 1/

√
(N + 1)/2N)

and thus a NRR score below 0.8 or above 1.2 indicates
doubtlessly a poorly reliable ensemble. For this purpose, an
area is defined to delimit the ranges for deemed acceptable
results (0.8 < NRR < 1.2 and 0.7 < NS E) and is represented
as a grey shade on Fig 3. The ratio φ of simulations having
performance falling inside the aforementioned range to total
number of simulations is displayed for every N. Additionally,
median NS E and median NRR of simulations are depicted
as a cross on each plot. The range of acceptable results may
seem permissive, but it has to be wide enough to encompass a
reasonable number of models and watersheds. By defining a
more demanding range, there is a risk that all the points inside
it belong to a small number of model and catchment pairs and
that the variations inside this range are only due to the state
variable choice which therefore harms the representativeness
of the φ ratio.

Results are very similar for different values of N, for all
the simulations or only the best ones. The sampling of the
states variable probability density function is more subject
to stochastic errors when the number of member is low, but
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Figure 4: Influence of added perturbations to precipitations, temperatures and streamflows on NS E and NRR for lead time 1 and 50 members

results are largely similar with various values of N. The weak
difference between the number of members indicates that it is
reasonable to keep only 25 or 50 members to limit sampling
error. Further results will be presented for 50 members.

3.2. Influence of hyper-parameters
Figure 4 depicts the bias and reliability for the 12 hyper-

parameter sets for day 1. Unlike the number of members, the
additional error to forcing and observation is a driving parame-
ter. The precipitation perturbations have the greatest influence
on performance followed by temperature and streamflow. Note
that the importance of the temperature perturbations has to be
considered regarding the dominant role of the spring freshet
for the studied watersheds.

For a given hyper-parameter set, the cloud of simulations
is greatly dispersed on both reliability and bias axes. The
diversity of performance is important and depends on model
and catchment for a specific hyper-parameter set.

Reliability is more often achieved by using important
perturbations. The lowest perturbation set (P 25%, T 2oC,
Q 10%) fails to encompass initial condition uncertainty
as only 15% of simulations fall into the acceptable range
of performance. Reliability best results are obtained with
perturbations that are clearly unrealistically high to describe
measurement uncertainty. However, few simulations using a
hyper-parameter set that include low input perturbations, are
close to perfect reliability. These simulations are very likely

to become over-dispersive when the added noise magnitude
increases, indicating that using too large perturbations also
contributes to decrease reliability.

On the other hand, best NS E are found for smaller pertur-
bations. Though, the calibration of hyper-parameters is more
sensitive to reliability as the drop in bias is less severe than the
drop in reliability.

These results indicate that in a vast majority of cases,
EnKF should not be used with best estimates of real forcing
uncertainty as it will lead to under-dispersive ensemble if
no additional technique is used to explicitly decipher other
sources of uncertainty. To achieve optimal implementation,
the noisy forcing has to take into account not only real forcing
uncertainty but it needs to compensate for the model structural
and parameter uncertainty. This contributes to drastically
increase the difficulty of identifying the correct covariances.

Figure 5 displays the same bias-reliability representation
in forecasting mode, but for the 3-day-ahead lead time where
a global loss of reliability is observed. Ensembles become
overconfident with increasing lead time but the bias remains
approximatively the same. Only a 75% perturbation of the
precipitation manages to provide more than 30% of acceptable
results. For the 7th day (result not shown here), the percentage
of acceptable results never exceeds 13%. This clearly suggests
that the uncertainty in initial conditions does not account for all
sources of uncertainty, even if it encompasses more than real
forcing and observation error. For instance, errors associated to
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Figure 5: Influence of added perturbations to precipitations, temperatures and streamflows on NS E and NRR for lead time 3
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Figure 6: Typical spread-skill plots in forecasting. a) model 9 and watershed
28, b) model 5, watershed 28, c) model 1, watershed 36, d) model 5, watershed
26, e) model 7, watershed 13.

the meteorology also needs to be accounted for as the forecast
horizon increases (Velázquez et al., 2011).

Relative performance of hyper-parameters remains un-
changed with lead time as the best performing hyper-parameter
sets for reliability or bias are the same for day 1 or day 9. The
model’s performance in forecasting thus depends on the quality
of the DA initialization.

Typical results are plotted on Figure 6 to illustrate the spread
and the bias (RMS E) of the EnKF ensemble and the gain
which is related to the difference between EnKF RMS E and
the open loop RMS E. The most common situations are cases

a) and b) in which the ensemble is reliable or close to reliability
for the first forecasting day as the spread matches or is close
to match the EnKF RMS E. The spread diminishes quickly
after the first forecasting day while the error of the ensemble
increases. Although the ensemble spread should grow to match
the increasing error, it collapses and the ensemble becomes
overconfident. However, the error remains lower than the open
loop forecasting confirming the gain provided by the EnKF.

Less frequently, the spread may remain constant up to three
days (case c) or for a very particular situation as in case d),
which happens only for model number 5 (GR4J), the spread
may increase for up to 2 days before eventually dropping.
Finally, case e) reports a case where DA is unable to improve
forecasting. In the latter case, EnKF simulation is quite similar
to the open loop. This is explained by the state variable se-
lection process where only the best state variable combination
is kept. For this very particular model-watershed pair, DA
works poorly and all state variable combinations deteriorate
accuracy beyond the open loop performance. Consequently, the
best simulation is achieved by the state variable combination
influencing the least the streamflow and this combination is
therefore selected. In an operational context and such case, the
EnKF would not be used as it does not provide any gain and
increases computational costs vainly.

In every cases, DA assimilation starts loosing its efficiency
right after the spin up and the spread stops matching the EnKF
RMS E for longer lead times. This confirms that additional
sources of uncertainty should be taken into account from the
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Figure 7: Frequency at which each of the 12 sets of hyper-parameters is better than others in term of accuracy (NS E) and reliability (NRR). Each boxplot
corresponds to a model (see Table 1) and results are displayed for lead time 3

first forecasting day to achieve a reliable system and also
implies that finding the best hyper-parameters only guarantees
to find the optimal initialization without ensuring forecasting
performances.

To investigate the possible relation between models and
hyper-parameters, Figure 7 shows the frequency at which a
hyper-parameter set outperforms the other for a given model.
Each of the 20 sub-plot corresponds to a model. The 12 hyper-
parameters are referred to by numbers as following:

1: P25%Q10%T2oC 2: P25%Q10%T5oC 3: P25%Q25%T2oC
4: P25%Q25%T5oC 5: P50%Q10%T2oC 6: P50%Q10%T5oC
7: P50%Q25%T2oC 8: P50%Q25%T5oC 9: P75%Q10%T2oC

10: P75%Q10%T5oC 11: P75%Q25%T2oC 12: P75%Q25%T5oC

The bars represent the frequency at which a hyper-parameter
set outperforms the other. The upper part and lower part of
the figure refer to the bias and reliability respectively. For
instance, the hyper-parameter set number 10 is the best one for
approximatively 10% of the catchments for the bias and 35%
for reliability for the model 1.

The repartition of the best performing hyper-parameters
confirms that no hyper-parameter set performs better than
others systematically for the NS E or the NRR and exceeds
rarely 40% for any model. Thus, to ensure to get optimal
updating performance, an optimal hyper-parameter should be
chosen according to model and catchment.

An additional difficulty arises from the fact that bias and
reliability are optimized by different hyper-parameters. Op-
timal NS E values are often obtained by low to moderate
noise magnitude while the best NRR are obtained with higher

perturbations. This highlights the challenge to optimize
bias and reliability collectively during EnKF updating, leav-
ing to the modeller the burden of prioritizing one over the other.

3.3. Influence of the choice of states variables

For the the present section, results are shown for a particular
hyper-parameters set P 50% Q 10% T 5% but similar conclu-
sions could be drawn from the other tested sets.

This section addresses the question of identification of
state variables that should be updated with the EnKF. For
a N-state-variable-model, it exists 2N − 1 combinations and
none is favored during testing. Thus, the number of possibil-
ities depends on the model; see Table 1 for the number of states.

As the reservoirs are situated at different levels in the models
(from interception to routing), their individual updating is
expected to affect differently model outputs; more precisely
they affect the time-lag between state perturbation and the
change in simulated streamflow. Seo et al. (2003) suggest to not
perturb reservoirs concerning soil moisture as it is a long-term
component that has an influence which lasts much longer than
the longest operationally used lead time. On the contrary,
Wöhling et al. (2006) encourage soil moisture updating as it
will act on all lead times. Physically based models offer the
possibility to deal with values that are theoretically measurable.
The knowledge about these values allows to estimate critical
values that are the most subject to uncertainty. Conceptual
models states values do not refer directly to a measurable value
and the identification of variable states for updating is thus
complex. The amount of uncertainty related to these variables
is hardly definable and there is no apparent clue to update a
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certain reservoir and leaving others unperturbed.

Figure 8 presents the distribution of performance of every
individual state combination per model, to illustrate the
variability of NS E over the 38 catchments. Five models
with different numbers of state variable are used to highlight
the general 20 models behavior. Each box plot refers to a
combination of updated state variable for a model. The box
plot situated on the right of each sub-plot corresponds to the
case where all model states are updated.

The main conclusion is twofold: the success of the updating
procedure lays as much in the model as in the choice of the
state variables. Most models best state combinations exhibit a
median NS E higher than 0.75 for first lead time even if few
models (model 2 in particular) seem to react poorly to the state
updating. Best short-lead-time-model performance needs to
be qualified as it frequently decreases with increasing lead time.

As median NS E values are frequently close to each other, it
is possible to conclude that there is no obvious outperforming
combination for any model – however, there are combinations
that perform consistently poorly. Additional complexity in
the choice of the best state combination to update arises from
the performance variability over catchments for a specific
updated set of states. As the median performance is close
and the variability over catchments is important, it is very
likely that one combination for a model on a catchment will
be outperformed by another combination on another catchment.

As the state updating procedure is numerically implemented
in the same way for all models, bad performance may be
attributed to the suboptimal choice of updated model states or
the potential inadequacy of the EnKF to a specific hydrologic
model rather than the EnKF technique itself. On this subject,
model number 2 open loop performances are often comparable
with other models (see also Fig. 2) while its performance after

updating are undoubtedly worse.

The question of best state set identification arises also as a
function of the lead times (results not shown). In this study,
we disregarded lead time specific states combinations since the
use of different set of state combinations lead time dependant
may improve performance for each lead time in average but it
would imply to run in a parallel fashion several simulations for
each lead time. An issue arising from such a technique would
be the creation of discontinuities in the forecasting streamflows
from one lead time to another.

Reservoirs which should be updated in priority are fre-
quently –but not always– the closest reservoirs to the model
outputs in the description of the rainfall-runoff process. The
question of the number of reservoir to update is more complex
as few global patterns emerge from the results. It is common
practice to update all model states variable but this does not
systematically lead to the best results (see also McMillan et al.,
2013; Rakovec et al., 2015). In Fig 8, model 13 illustrates this
since the updating of some state variable sub-ensembles shows
improved performance for first, second and third quartiles.
Therefore, for some models, optimal updating may be obtained
by leaving some stores from the update, for instance the routing
store for model 13. Generally, the number of updated states
remain rather low, never exceeding 4 even for high dimensional
states models (model 7, 12 and 14). All states should be
updated for model 5, 6, 10 and 19 but other models states
should be partially updated. Models with a large number of
state variable (high degree of freedom) are more prone to en-
counter equifinality issues as many outcomes frequently end up
close for a specific conditions. This lead to an already known
problem that requires the user to take an arbitrary decision
or possibly to retain several combination with the associated
computational cost increase. Also, likewise for traditional
model parameter estimation, the identification of best set
depend on the score used as objective function. Selecting states
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Figure 9: EnKF - open loop gains in NS E gains over the 38 catchments for global and locally defined hyper-parameters and state variable for lead time 1, 3 and 6.

set based on a NS E criterion does not guarantee to maximize
other accuracy scores, and even less to achieve highest possible
reliability. Thus, different sets of updated states may capture
more or less accurately specificities of the hydrograph.

3.4. Global and local updating schemes

Setting EnKF catchment specificities is possible and may
be operationally conceivable and worth considering. This case
is more computationally demanding as states identification
needs to be carried out for all watersheds. Thus, the gain of
such approach needs to be quantified to justify the increase in
commitment. In the opposite case, the forecaster takes a risk
relying on optimal updated states set identified from only one
catchment if this set is transferred onto another catchment.

Figure 9 displays gains obtained by EnKF over open loop.
Two EnKF updating schemes are compared:

• A global scheme: updating is carried out with a single set
of state variables and hyper-parameter per model, identi-
fied as best according to the combined criterion in average
over all catchments. The updated states and the hyper-
parameters are the same regardless of catchment.

• A local scheme : updating is carried out with a different
set of state variables and set of hyper-parameters for each
catchment identified as the best set of state variable per
catchment. The approach is thus catchment specific.

The gain between the two updating schemes is also ex-
amined. In that case, the global performance is used as the
reference in the gain equation (Eq. 11).

Overall, both EnKF schemes enhance open loop forecasts
in the vast majority of cases, from short to longer lead time.
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Figure 10: EnKF-open loop gains in NRR over the 38 catchments for global
and locally defined hyper-parameters and state variable for lead time 1, 3 and 6

However, the gain in accuracy depends heavily on model
and to a lesser extent on the global-local updating scheme.
One can notice that models 2, 13 and 20 have a structure
that react poorly to EnKF updating, especially for global
states updating. The increase of computational resources
may not be worth the potential gain in performance for
the majority of catchments. Yet, these results are improved
in the case where catchment specific state variable sets are used.

It is frequent –and normal– that the differences between
the two updating schemes global/local for the same model
are small. This is the case when a model has frequently the
same best set of state variable over the 38 catchments which
therefore turns to be the best in average over catchments
and explains the frequent small dispersion of the local/global
updating gain. However extremes are high as they are obtained
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Figure 11: EnKF - open loop gains in NS E over the 20 models for global and locally defined hyper-parameters and state variable for lead time 1, 3 and 6 according
to catchments

when the global updating fails largely on a catchment. The
local scheme is logically better than global as it is designed to
perform on all catchments but this does not ensure to be better
than the global scheme in all cases. Indeed, even if the local
updating is catchment specific, it is still averaged on lead times
and thus the global state variable set may perform better for a
particular lead time.

Figure 10 represents the gain between the local and the
global updating procedure in reliability (no comparison is
possible with the open loop as it is a deterministic forecast).
The gain in reliability is consistently high for the first lead
time as the second quartile is always positive and third quantile
higher than 0.8 for most of the models. Some models, as the
model 9, 12, 14 should be preferentially updated in a local way
because their gain is substantial (third quartile is greater than
0.95). Interestingly, these models are among the most complex
ones in the model pool and seem to require a more detailed
setting to exploit optimally the EnKF for the first lead time. As
with the NS E, the NRR gain decreases with lead time but stays
mostly positive up to day 6 (see also Fig. 6). The gain may be
negative for the reasons aforementioned with the NS E.

3.5. Influence of the catchments

To assess the importance of the catchments on forecasting
performance, Figure 11 represents the models’ NS E over the
38 watersheds. This complementary vision of Figure 9 reveals
that catchments also have an influence on simulations that is as
important as hyper-parameters, model structure, and the state
variable selection.

The majority of the catchment can benefit from EnKF
updating, especially in the case where local updating is used.
Yet, there is a disparity in the gain as few catchments display a
negative median gain, namely catchments 4, 8, 9, 10, 11, and
12 for the first lead time and global updating and catchments 9
and 11 for local updating.

The gain diminishes with increasing lead time except for
the catchments that exhibit a negative gain from day one. The
underlying reason is that EnKF is not able to update correctly
the state variables, attributing erroneous values to the state
variable, combined with the fact that the updated state variables
have a greater influence for short lead times.

EnKF performance and gain were compared to the available
climatic data and catchments characteristics. Specifically, the
average annual total and liquid precipitation, the area and the
estimated concentration time were put under scrutiny. No clear
correlation between these values and EnKF performance has
been identified.

4. Conclusion and recommendations

This paper discusses the performance and implementation
of EnKF in forecasting over a wide variety of catchments
and rainfall-runoff lumped models. An extensive testing was
carried out to assess EnKF state updating and how it relates to
model, catchment, and lead times.

The results show that an optimal implementation of the
EnKF is more complex than frequently suggested and that a
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detailed attention should be paid to the specification of hyper-
parameters and updated state variable. While identification of
the minimal number of members is relatively straightforward
as a vast majority of models and catchment agree, there is no
single and universal optimal EnKF implementation for any
model. In practice, it is unlikely that the best state combi-
nation and hyper-parameter set in average are optimal for all
watersheds. Unlike many case studies, it is not reasonable
to recommend precise values, as the best EnKF settings are
frequently case specific.

The hyper-parameters and more specifically, the perturba-
tions of the inputs are frequently unintuitive to identify as
there are often unrealistically high to implicitly account for
other sources of uncertainty, especially parameter and struc-
tural uncertainty, and to eventually ensure model simulation
reliability. An additional challenge arises from the difficulty
to optimize reliability and ensemble median bias jointly as the
improvement of one criterion is achieved at the expense of the
other.

Models encounter important differences in their results and
in the way they should be updated. Models with a high number
of state variable (high degree of freedom) should receive
an increased attention as they are more prone to encounter
equifinality issues as many outcomes frequently end up close
for a specific condition.

Regardless of the model, ensemble reliability decreases
quickly with lead time as the ensemble spread drops from first
days while the bias increases. This also underlines that taking
into account explicitly initial condition uncertainty solely is not
sufficient for medium range forecasting and that structural error
and forcing error are dominant in modelling rainfall-runoff

processes.

Despite these constrains, the gain that EnKF provides over
open loop is substantial, especially if the optimization is
carried out locally. The later implies a detailed testing of all
combination to identify best performing EnKF implementation
but is computationally more expensive. As the EnKF is not
efficient with every model and catchment, we recommend to
investigate data assimilation coupling with several models to
go beyond EnKF - model structure compatibility issue.

Finally, we encourage EnKF users to perform a detailed
analysis addressing the question of hyper-parameter and state
variable selection of their system to ensure to make the most
of EnKF. For further improvement, we also suggest to report
explicitly the hyper-parameters and state variables they used to
contribute to a better understanding of EnKF parametrization
and to identify techniques that would allow to robustly identify
the pertinent state variables that should be updated without the
need to run all possible combinations.
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IAHS-AISH Publication 136, 71–77.

Thirel, G., Martin, E., Mahfouf, J.F., Massart, S., Ricci, S., Regimbeau, F., Ha-
bets, F., 2010. A past discharge assimilation system for ensemble streamflow
forecasts over france - part 2: Impact on the ensemble streamflow forecasts.
Hydrol Earth Syst Sc 14, 1639–1653.

Thornthwaite, C.W., Mather, J.R., 1955. The water balance. Report. Drexel
Institute of Climatology, Centerton, New Jersey, United States, 1–104.

Valery, A., Andreassian, V., Perrin, C., 2014. ’As simple as possible but not
simpler’: What is useful in a temperature-based snow-accounting routine?

14



part 1 - comparison of six snow accounting routines on 380 catchments. J
Hydrol 517, 1166–1175.

Velázquez, J.A., Anctil, F., Ramos, M.H., Perrin, C., 2011. Can a multi-model
approach improve hydrological ensemble forecasting? A study on 29 French
catchments using 16 hydrological model structures. Adv Geosci 29, 33–42.

Vrugt, J.A., Diks, C.G.H., Gupta, H.V., Bouten, W., Verstraten, J.M., 2005.
Improved treatment of uncertainty in hydrologic modeling: Combining the
strengths of global optimization and data assimilation. Water Resour Res
41, 1–17.

Vrugt, J.A., Gupta, H.V., Bouten, W., Sorooshian, S., 2003. A shuffled complex
evolution metropolis algorithm for optimization and uncertainty assessment
of hydrologic model parameters. Water Resour Res 39, 1–14.

Vrugt, J.A., Robinson, B.A., 2007. Treatment of uncertainty using ensemble
methods: Comparison of sequential data assimilation and bayesian model
averaging. Water Resour Res 43, 1–15.

Vrugt, J.A., Gupta, H.V., Nuallain, B. O., 2006. Real-time data assimilation for
operational ensemble streamflow forecasting. J Hydrometeorol 7, 548–565.

Wagener, T., Boyle, D.P., Lees, M.J., Wheater, H.S., Gupta, H.V., Sorooshian,
S., 2001. A framework for development and application of hydrological
models. Hydrol Earth Syst Sc 5, 13–26.

Warmerdam, P.M., Kole, J., Chormanski, J., 1997. Modelling rainfall-runoff

processes in the hupselse beek research basin, in: IHP-V, Technical Docu-
ments in Hydrology, 155–160.

Weerts, A.H., El Serafy, G.Y.H., 2006. Particle filtering and ensemble kalman
filtering for state updating with hydrological conceptual rainfall-runoff mod-
els. Water Resources Research 42, 17.

Whitaker, J.S., Hamill, T.M., 2002. Ensemble data assimilation without per-
turbed observations. Mon Weather Rev 130, 1913–1924.
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