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Abstract

The regulation of gene expression underlies the morphological, physiological, and
functional differences between human cell types, developmental stages, and healthy
and disease states. Gene regulation in eukaryotes is controlled by a complex milieu in-
cluding transcription factors, microRNAs (miRNAs), cis-regulatory DNA and RNA.
It is the quantitative and combinatorial interactions of these regulatory elements that
defines gene expression, but these interactions are incompletely understood. In this
thesis, I present two new methods for determining the quantitative specificity of gene
regulatory factors. First, I present a comparative genomics approach that utilizes sig-
natures of natural selection to detect the conserved biological relevance of miRNAs
and their targets. Using this method, I quantify the abundance of different conserved
miRNA target types, including different seed matches and 3′-compensatory targets. I
show that over 60% of mammalian mRNAs are conserved targets of miRNAs and that
a surprising amount of conserved miRNA targeting is mediated by seed matches with
relatively low efficacy. Extending this method from mammals to other organisms, I
find that miRNA targeting rules are mostly conserved, although I show evidence for
new types of miRNA targets in nematodes. Taking advantage of variations in 3′ UTR
lengths between species, I describe general properties of miRNA targeting that are
affected by 3′ UTR length. Finally, I introduce a new, high-throughput assay for the
quantification of transcription factor in vitro binding affinity to millions of sequences.
I apply this method to GCN4, a yeast transcription factor, and reconstruct all known
properties of its binding preferences. Additionally, I discover some new subtleties in
its specificity and estimate dissociation constants for hundreds of thousands of se-
quences. I verify the utility of the binding affinities by comparing to in vivo binding
data and to the regulatory repsonse following GCN4 induction.
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Chapter 1

Introduction

1.1 Overview

A central goal of systems biology is to utilize the data enabled by new technolo-

gies, such as high-throughput sequencing, to further the understanding of biological

processes. Although the amount of this data has increased dramatically in recent

years, it has not been easy to translate data into quantitative or mechanistic insights

into biological processes such as the regulation of gene expression. This thesis is

presented with the underlying belief that the regulation of gene expression can be

better understood using new methods that leverage large amounts of data to de-

termine quantitative regulatory interactions. Importantly, a quantitative catalog of

regulatory interactions is useful for any approach to understanding gene expression.

It can constrain computational models of systems, help with interpretation of high-

throughput screens, and provide candidates for low-throughput experimentation.

With the goal of learning generalizable principles of gene regulation, I present

here both computational and experimental methods for determining the specificity

of trans-acting regulatory factors, and explore some ways that this data can lead

to mechanistic and evolutionary insight into the underlying biology. The rest of

chapter 1 introduces current understanding of gene regulation with an emphasis on

transcription factor and microRNA (miRNA) specificity. Chapter 2 describes in detail

a computational method for using comparative genomics to predict the targets of

miRNAs and learn the principles of their specificity. Chapter 3 extends this method
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from vertebrates to other clades and discusses some insights into the co-evolution of

miRNAs and 3′ UTRs. Chapter 4 introduces a new experimental method for the

high-throughput quantitative determination of sequence-specific transcription factor

binding affinity and applies it to gain new insights into the function of GCN4, a yeast

transcription factor. Finally, chapter 5 provides a brief discussion of the implications

of the thesis work and suggests some steps for extending this research.

1.2 Regulation by transcription factors

1.2.1 Gene regulation

Despite having the same genome, cells in a human body can have amazingly different

morphology, physiology, and function. These varied properties depend chiefly on the

proteins within each cell. As a result, levels of gene expression are regulated in a

cell-specific manner and are subject to strong purifying selection (Gilad et al., 2006;

Xie et al., 2005), suggesting that disregulation could lead to disease. In fact, there are

countless diseases driven by the misexpression of genes. For example, the transcrip-

tion factor RUNX1 has been implicated in over 30 different translocations that lead

to acute leukemia (Blyth et al., 2005). Surprisingly, both dominant negative fusions

and dominant overexpressions of RUNX1 can be oncogenic, suggesting transcriptional

effects that are cell-type dependent (Blyth et al., 2005). When beneficial, regulatory

changes can contribute to adaptation and speciation. For example, it has long been

puzzling that so few protein-coding differences separate chimpanzees and humans,

despite significant phenotypic differences (King and Wilson, 1975). However, more

substantial differences in gene expression could explain this paradox (Enard et al.,

2002). Another striking example is the KITLG gene, which has undergone regula-

tory changes in stickleback fish that adjust pigmentation, an adaptation to specific

freshwater lakes (Miller et al., 2007). This regulatory strategy is conserved in human

populations, explaining some of the pigmentation difference between Africans and

Europeans (Miller et al., 2007). A better understanding of the regulatory processes
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controlling gene expression would therefore help decipher how genotype becomes phe-

notype.

1.2.2 Control of transcription

Jacob, Monod and coworkers elucidated the first model of gene regulation, the E.

coli lac operon (Jacob and Monod, 1961). In this context, the transcription of genes

into messenger RNA may be repressed by the specific binding of a trans-acting factor

to a cis-acting promoter region of DNA directly upstream (5′) of the gene (operon).

Further work confirmed the generality of this model, in which transcription factors

either activated or repressed bacterial genes by binding to cis promoters, and it was

soon appreciated that the initiation of transcription was the most important step

for regulation. Despite major differences between prokaryotic and eukaryotic cellular

structure, DNA organization, polymerase machinery, and RNA processing, the model

of control by transcription factors binding to specific promoter sequences has gener-

alized surprisingly well to eukaryotes. Nonetheless, there are crucial differences in

the regulation of transcription between these domains of life. Most importantly, the

chromatin organization of eukaryotic DNA leads to a ground state of inactive tran-

scription, whereas the ground state of prokaryotic promoters is activation (Struhl,

1999). Therefore, the role of transcription factors in bacteria is generally limited to

either inhibiting the recruitment of RNA polymerase to the DNA or enhancing poly-

merase recruitment to compensate for a weak or incomplete promoter. In contrast,

eukaryotic transcription factors can affect transcription by either interacting directly

with polymerase or modifying chromatin to increase accessibility to the transcrip-

tional machinery (Struhl, 1999; Lee and Young, 2000). Because of the complexity of

eukaryotic gene initiation, transcription is an inherently combinatorial process, with

many trans-factors and cis-elements combining to generate tightly regulated patterns

of gene expression (Ravasi et al., 2010).

There are several classes of trans-acting factors affecting eukaryotic transcription:

general transcription factors, including RNA polymerase II and associated proteins,

involved in all transcription of protein-coding genes; promoter-specific transcription
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factors, which activate specific genes; and coactivators, which typically mediate in-

teractions between specific transcription factors and general transcription machinery

(Maston et al., 2006). The cis-acting elements that regulate transcription also are also

quite varied: core promoters are the sites of the general transcription factor binding

and define the transcriptional start site; proximal promoters flank the core promoter

and typically are rich in transcription factor binding sites; enhancers are more distal

elements that stimulate transcription; silencers are typically distal elements that re-

press transcription; and insulators block long-range effects on transcription (Maston

et al., 2006). The combination of effects of all the trans-factors binding to all these

cis-elements can be dynamic and cell-type specific. It is this combination that deter-

mines the rate of transcription initiation, in turn determining a large contribution to

the rate of gene expression.

1.2.3 Sequence-specific transcription factor binding

Although there have been many important advances in the mechanism of transcription

factor action (Struhl, 1999; Lee and Young, 2000; Maston et al., 2006), I focus here

on the specificity of transcriptional control, which is for the most part determined

by binding events. Transcription factors typically recognize degenerate sequences

ranging from a few to tens of nucleotides, although there are generally 4-6 positions

defining the binding specificity (Portales-Casamar et al., 2010). Because these motifs

typically have low information content, sites predicted to bind based on sequence are

found far more frequently throughout the genome than experimentally-determined

binding sites (Maston et al., 2006). When factors do bind these motifs, sequence

variants have a number of functional impacts: they can alter the binding affinity, select

for different dimerization partners, or induce structural alterations in the protein that

have a functional impact. For example, two κB binding sequences differing by a single

nucleotide elicit differential responses not by affecting the ability of a particular κB

dimer to bind, but instead by affecting which coactivators interact with the bound

dimer (Leung et al., 2004). Gradients between strong and weak binding affinities

can also specify spatial regions of gene expression. For example, in the developing
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Drosophila embryo, the Dorsal morphogen activates enhancers with weak binding sites

only in the ventral-most regions where Dorsal expression is highest, whereas enhancers

with strong binding sites are activated throughout the neurogenic ectoderm (Jiang

and Levine, 1993; Papatsenko and Levine, 2005). Gradients in binding affinities can

also control the timing of gene activation in a developmental context. For example,

the transcription factor PHA-4 specifies the identity of all C. elegans pharyngeal cells

and increases in expression during development. Genes with weak PHA-4 binding

sites in their promoters are activated later than genes with strong binding sites,

creating a temporal gradient of activation (Gaudet and Mango, 2002). In a similar

example, the Prep1 transcription factor controls the precise timing of Drosophila eye

lens development via two low-affinity binding sites in the Pax6 enhancer (Rowan

et al., 2010). This evidence indicates that, rather than a single motif, individual

transcription factors have a collection of binding sequences that have a range of

properties and functional impacts.

1.2.4 Determining in vivo transcription factor specificity

The human genome encodes well over a thousand transcription factors, each of which

is thought to bind to thousands of regions in the genome. As a result, it is chal-

lenging to determine experimentally the precise binding locations of transcription

factors on a genomic scale. One method traditionally used to map regulatory ele-

ments takes advantage of the nucleosome-free state of bound regulatory regions by

mapping DNase I hypersentivite regions. DNase I hypersensitivity has been applied

to whole-genome analysis of binding sites and has proven useful for defining promoter

regions, enhancers, and insulators (Crawford et al., 2004; Boyle et al., 2008). However,

nucleosome-free regions are not specific for a particular transcription factor and do

not have sufficient resolution to demarcate individual binding sites. A more specific

method, called chromatin immunoprecipitation (ChIP), involves reversible crosslink-

ing of DNA to protein followed by the selection of a particular transcription factor by

a specific antibody (Ren et al., 2000). The bound regions can then be identified by

polymerase chain reaction (PCR), by microarray chips (ChIP-Chip) (Ren et al., 2000)
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or by sequencing (ChIP-Seq) (Johnson et al., 2007). Reproducible and specific, these

techniques have been used to elucidate many thousands of transcription factor bind-

ing regions (Harbison et al., 2004; ENCODE Project Consortium, 2007). Although

the resolution of ChIP-Seq far exceeds ChIP-Chip (tens of nucleotides rather than

hundreds), the exact binding location cannot be determined using either method.

Typically, one follows a ChIP-Seq experiment with computational motif finding to

help identify precise binding specificity and locations, although the variability and

low information content of most binding motifs often make this challenging (Park,

2009). Additionally, there are inherent biases in the chromatin immunoprecipitation

due to chromatin state, DNA fragmentation, antibody specificity, or biases in recog-

nizing different conformational states or bound co-factors (Park, 2009). Therefore, it

is difficult to attribute a quantitative affinity for individual sites.

1.2.5 Computational and in vitro approaches to specificity

Because it is difficult to experimentally determine the precise binding locations and

sequence preferences of transcription factors in vivo, it is desirable to know the in

vitro sequence preferences of transcription factors. Knowledge of sequence preferences

helps to distinguish direct from indirect binding, often a problem in ChIP experiments

(Gordân et al., 2009) and to separate context effects, such as chromatin structure,

from binding affinity (Wasson and Hartemink, 2009). If one knows not only the

sequence preferences but also the quantitative biophysical affinities, one can also con-

strain models of transcriptional systems (Endy and Brent, 2001). Finally, knowledge

of in vitro affinities allows generalization of results to new biological systems with

different genomes, DNA mutations, or changes in the expression of the transcrip-

tion factor or any other involved protein. For all these reasons, many experimental

and computational techniques have been developed for assaying transcription factor

specificity in vitro.

A wide variety of approaches have been developed for finding de novo motifs that

are enriched in a set of sequences, using different definitions for motifs and different

models for statistical overrepresentation (Tompa et al., 2005). Typically these meth-
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ods are designed to be run on promoters of coexpressed genes or on regions found by

high-throughput ChIP experiments. These methods have been successfully applied

in some contexts, especially in yeast (e.g. Segal et al. (2003)). However, in mam-

mals, faced with the larger intergenic regions, increased combinatorial complexity,

and larger role of chromatin effects, the sensitivity and accuracy of these methods

is greatly reduced (Tompa et al., 2005). A complementary computational method

is to identify regulatory motifs by their conservation across species. For example,

Xie et al. (2005) identified dozens of known transcription factor motifs and over 100

new motifs by comparing human promoters to orthologous regions in other mammals.

Although successful at finding consensus sequences, this approach cannot determine

which factor binds which motif and cannot distinguish the relative binding strength

of different sequences.

Although they were first developed decades ago, experimental assays for in vitro

transcription factor specificity are currently undergoing accelerating progress. For

example, systematic evolution of ligands by exponential enrichment (SELEX) is a

general technique for selecting nucleic acids with a particular binding affinity and

has been successfully applied for many transcription factors (Klug and Famulok,

1994). SELEX has recently been coupled with high-throughput sequencing to deter-

mine transcription factor binding preferences (Zhao et al., 2009; Jolma et al., 2010).

Amazingly, these approaches can examine binding of transcription factors to mil-

lions of DNA sequences. Unfortunately, when multiple rounds of selection are used,

SELEX provides high specificity but loses its power to quantitatively determine the

affinity of weak sites. In contrast, a single round of selection leaves a high level of

noise, necessitating large amounts of data and assumptions about the binding mode

to develop a biophysical model of interaction (Zhao et al., 2009). Regardless, SELEX

provides an excellent approach for defining a consensus binding site.

An alternative method for defining the comprehensive specificity of transcription

factors is to use a protein binding microarray (PBM) (Mukherjee et al., 2004). A

PBM enumerates all sequences of 8-10 nucleotides; fluorescently labeled transcription

factors are bound directly to these sequences on the microarray, and visualized in
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situ (Berger et al., 2006). This has the advantage of directly measuring the relative

affinity of a protein to each sequence, so that preferences can be determined without

any assumptions about the biophysical nature of the interaction, such as the indepen-

dence of motif positions. One major limitation of the PBM approach is that less than

50,000 microarray features can be used, limiting the length of sequences (k -mers)

that can be completely enumerated. One can extend the length of the DNA features

to compensate, but this creates a tradeoff by complicating analysis and interpreta-

tion (Berger and Bulyk, 2009). Although the measured affinities are quantitative, a

single microarray only measures binding at one concentration, requiring the experi-

menter to sacrifice the weakest binding motifs if she wishes to differentiate between

the relatively strong motifs. Stringent washes are also required for PBMs, potentially

removing proteins from weak binding motifs. For more quantitative determination of

thermodynamic parameters, microfluidic devices have been used to trap fluorescently-

labeled protein bound to DNA at equilibrium. By adjusting the input concentration,

one can thus measure thermodynamic binding constants for hundreds of protein-DNA

pairs (Maerkl and Quake, 2007). Although this platform cannot handle thousands

of sequences at once, it can directly measure equilibrium binding in situ without the

need for a wash step, and is thus highly quantitative. A wide variety of methods

have proven useful for determining the binding specificity of transcription factors,

but there is still no method that is comprehensive, extremely high-throughput, and

highly quantitative.

1.3 Regulation by miRNAs

1.3.1 miRNA genes

The first microRNA (miRNA), lin-4, was discovered in a screen for regulators of

developmental timing in Caenorhabditis elegans (Lee et al., 1993). Remarkably, the

Ambros and Ruvkun labs postulated several of the key characteristics of miRNAs

from this single example: the lin-4 locus encoded for functional RNA, not a protein;
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the locus encoded a larger RNA, now called a precursor or pre-miRNA, processed

into a roughly 22 nucleotide RNA, now called the mature miRNA; and the lin-4

RNA downregulated a target gene, lin-14, by pairing to the 3′ UTR of its mRNA

(Lee et al., 1993; Wightman et al., 1993). However, it was nearly seven years until a

second miRNA was discovered in another screen for developmental regulators in C.

elegans (Reinhart et al., 2000). Subsequently, it was shown that this new miRNA,

let-7, was conserved throughout most metazoans (Pasquinelli et al., 2000). Thus it

was recognized that rather than being a unique mechanism for regulating a single C.

elegans gene, miRNAs are a class of gene regulators that is active in most metazoans,

including humans. Several efforts to clone small RNAs discovered dozens of abundant

miRNAs in C. elegans, D. melanogaster, and vertebrates (Lagos-Quintana et al., 2001;

Lau et al., 2001; Lee and Ambros, 2001). It soon became clear that miRNAs are a

major gene family in virtually all animals (Bartel, 2004).

1.3.2 miRNA biogenesis

Just prior to the discovery of the prominence of miRNAs, pioneering work in C.

elegans led to another fundamental discovery: RNA interference, or RNAi (Fire et al.,

1998). Fire and colleagues observed that exogenous, long double-stranded RNA could

specifically and catalytically repress the expression of genes with matching sequence.

Surprisingly, a Drosophila in vitro system revealed that the double-stranded RNA of

RNAi was processed to form 21 to 23 nucleotide RNAs, later called small interfering

RNAs (siRNAs), that were the same length as mature miRNAs (Zamore et al., 2000).

It was subsequently shown that an RNase III enzyme, Dicer, processes both dsRNAs

into siRNAs (Bernstein et al., 2001) and pre-miRNAs like the long form of lin-4 into

mature miRNAs (Grishok et al., 2001; Hutvágner et al., 2001; Ketting et al., 2001).

Combined with evidence that both functional siRNAs and miRNAs reside in the RNA-

induced silencing complex (RISC) (Martinez et al., 2002), this suggested that siRNAs

and miRNAs might join the same functional pathway. Indeed, it was later shown that

siRNAs can have non-enzymatic, miRNA-like target repression (Doench et al., 2003),

and that miRNAs can cleave target mRNAs (Hutvágner and Zamore, 2002; Yekta
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et al., 2004). Both siRNAs and miRNAs have functions mediated by Argonaute

proteins, which are the core component of the RISC. When incorporated into the

RISC with the same core Argonaute protein, all evidence points to the idea siRNAs

and miRNAs are functionally equivalent. The RNAi pathway and metazoan miRNA

pathway differ mainly in the prominence of highly complementary targets (discussed

later), and their earlier steps in biogenesis. While dsRNAs are processed directly

into siRNAs by Dicer (Bernstein et al., 2001), most miRNAs are first transcribed by

RNA polymerase II as capped, polyadenylated transcripts (Cai et al., 2004). These

primary miRNA transcripts, or pri-miRNAs, are then processed by an RNase III

enzyme called Drosha and exported from the nucleus as a pre-miRNAs (Lee et al.,

2003). In the cytoplasm, Dicer finally processes the pre-miRNA to create the mature

miRNA.

1.3.3 Principles of miRNA targeting

The first miRNA targets, discovered genetically, had sequences in their 3′ UTRs

with partial complementarity to their respective miRNA regulators (Lee et al., 1993;

Wightman et al., 1993; Moss et al., 1997; Reinhart et al., 2000). Typically, siRNAs

strongly repress RNAs with extensive complementarity by cleaving the target strand

between the portion paired with nucleotides 10 and 11 of the siRNA. In contrast,

animal miRNAs do not typically have enough complementarity to their targets to

mediate cleavage (Elbashir et al., 2001; Hutvágner and Zamore, 2002). Without

extensive complementarity between miRNAs and their targets, it was unclear what

the rules of miRNA specificity might be and how to predict further targets. Lacking

the strong effects of enzymatic cleavage of messages, miRNAs repress their targets

by translational repression and destabilizing the message, often totaling less than

20% repression at the protein level (Baek et al., 2008; Selbach et al., 2008; Bartel,

2009). Because of the noise inherent in experimental assays for gene expression, it

is difficult to evaluate such small effects for individual targets. Such experimental

noise can, however, be averaged out when aggregating a group of potential targets

to study principles of targeting. Because of the difficulty of experimentally verifying
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individual miRNA targets, many turned to computational methods to determine the

rules of miRNA specificity and to predict new targets.

A first hint of target specificity was found when it was noticed that the 5′ ends

of some Drosohpila miRNAs were perfectly complementary to motifs known as the

K box, Brd box, and GY box, which had previously been shown to confer post-

transcriptional repression (Lai, 2002). Subsequently, several groups attempted to

leverage what was known about miRNA targets to computationally predict new tar-

gets (Stark et al., 2003; Enright et al., 2003; Lewis et al., 2003; Rajewsky and Socci,

2004; John et al., 2004). This first generation of methods based predictions on some

combination of complementarity often weighted towards the 5′ end of the miRNA,

free energy of pairing to the entire miRNA, and evolutionary conservation of the tar-

get. These sets of predictions had little overlap and two major weaknesses of these

methods were soon apparent: they used an extremely small number of experimentally-

determined targets as training and/or test sets and were based on assumptions with

little or no experimental support. For example, the free-energy-of-pairing calculation

assumes two free RNA molecules in solution, but the miRNA is tightly and sta-

bly incorporated into an Argonaute protein, which constrains the possible structures

that could be formed (Rajewsky, 2006; Bartel, 2009). Although most first-generation

prediction programs were validated using a limited set of experimentally-determined

targets, Lewis et al. (2003) used conservation as an elegant and independent tool for

determining the specificity of miRNA targeting. Reasoning that bona fide miRNA

target sequences that are vital for the survival of an organism would be conserved

over evolutionary time, they tested potential targeting rules by comparing the con-

servation of miRNA complementary sequences to those complementary to shuffled

miRNAs. Using the resulting “signal to noise ratio”, or ratio of conserved sequences

complementary to miRNAs to conserved sequences complementary to shuffled con-

trols, the authors found that matches to the 5′ end of miRNAs were conserved at a

much higher rate than matches to the 3′ end. They defined nucleotides 2 through 8

of the miRNA as the “seed” sequence. They next predicted targets by selecting se-

quences with conserved perfect complementarity to the seed sequence (seed matches),
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and passing a free energy criterion for predicted pairing to the rest of the miRNA.

Although the evidence for targeting by seed matches was initially based only

on conservation, experimental evidence quickly confirmed their utility (Doench and

Sharp, 2004). A striking analysis of in vivo silencing of fluorescent protein in trans-

genic Drosophila melanogaster showed that seed matches confer repression on targets

without strong pairing to the 3′ end of the miRNA (Brennecke et al., 2005). How-

ever, extensive pairing to the 3′ end of the miRNA could supplement a weak seed

match to enhance repression or could compensate for imperfect seed matches, such as

those with G:U wobble pairs. Comparing the number of conserved sequences comple-

mentary to miRNA seed regions to those complementary shuffled miRNAs revealed

that the vast majority of miRNA targets lacked substantial 3′ pairing in Drosophila

(Brennecke et al., 2005). The next generation of mammalian target predictions re-

defined the seed as nucleotides 2 through 7 of the miRNA and found that in this

system as well, dropping any free energy criterion (leaving only the seed matches)

provided better sensitivity without sacrificing specificity (Lewis et al., 2005). This

led to the following simple strategy for predicting miRNA targets: start with perfect

seed matches in 3′ UTRs and filter them for perfect conservation between several

species, e.g. human, mouse, rat, and dog, yielding a set of predictions that are en-

riched for true targets. The second generation of target predictions was based on

these principles but had some variations: Lewis et al. (2005) found evidence for the

conservation of an adenosine opposite position 1 of the miRNA and required perfect

seed matches, whereas other methods counted Watson-Crick matches at position 1

and searched for 3′ compensatory sites as well (Krek et al., 2005; Brennecke et al.,

2005). The degree of overlap for several current target prediction programs is quite

high because all of them now require stringent seed pairing (Bartel, 2009). However,

there are also minor differences due to the use of different alignments, UTR anno-

tations, and miRNA annotations. Chapter 2 describes the development of a much

more sensitive and accurate set of unique features for a conservation-based target

prediction method that are currently not implemented elsewhere.
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1.3.4 Evolutionary impact of miRNAs

Several experimental approaches have provided genome-scale confirmation of the im-

portance of miRNA seed matches. Transfections of miRNA mimics or siRNAs into

human cell lines followed by microarray analysis repress hundreds of messages con-

taining seed matches but more extended seed pairing has little additional effect (Lim

et al., 2005; Birmingham et al., 2006; Jackson et al., 2006; Grimson et al., 2007;

Nielsen et al., 2007). Mass spectrometry approaches have confirmed this result at

the protein level (Baek et al., 2008; Selbach et al., 2008). Many of the seed matches

conferring repression in these cases are conserved, but the majority are not, suggest-

ing that nonconserved miRNA repression is widespread. If miRNAs impact general

expression in the cells in which they are present, then abundant mRNAs must avoid

complementarity to co-expressed miRNAs in order to maintain their high expression.

These hypothetical mRNAs avoiding miRNA targeting were termed “anti-targets”

(Bartel and Chen, 2004). Two remarkable studies showed that anti-targets were

common phenomena: Stark et al. (2005) used in situ hybridization evidence to show

that miRNAs were expressed in exclusive spatial patterns from their targets, and

Farh et al. (2005) used microarray data to show that miRNA seed matches were

depleted in genes that were highly and specifically coexpressed with miRNAs. Ubiq-

uitously expressed (housekeeping) genes have short 3′ UTRs and also strongly avoid

miRNA seed matches at the sequence level (Stark et al., 2005). Additionally, Farh

et al. (2005) showed that non-conserved miRNA seed matches often conferred strong

repression in luciferase reporter assays, signifying that genes coexpressed with highly

expressed miRNAs could be repressed if they did not avoid seed matches in their 3′

UTRs. In one striking example of widespread repression in vivo, Giraldez et al. (2006)

observed that miR-430, crucial for the zebrafish maternal to zygotic transition, tar-

geted hundreds of maternal mRNAs with nonconserved seed matches including many

weak 6mer seed matches. Taken together, these results show that widespread miRNA

targeting impacts the evolution of metazoan 3′ UTRs and genes in a profound way

even in the absence of extended pairing or strong conservation.
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1.3.5 Beyond conserved miRNA targeting

Reporter assays have suggested that seed matches, whether conserved or not, were

a necessary but not sufficient condition for seed match repression in mammals (Farh

et al., 2005; Grimson et al., 2007). Especially in light of the large number of 6-8 nu-

cleotide seed matches in mammalian 3′ UTRs, there must therefore be other sequence

elements beyond the mere presence or absence of a seed match that determine the

extent of repression for miRNA targets. Several of these context features have been

found by the analysis of global expression datasets. The first feature is the type of the

seed match itself, which has a large effect on target repression. A match to positions

2-7 of a miRNA (a 6mer seed match) typically has only a small effect on messages un-

less flanked by a Watson-Crick match opposite position 8 (a 7mer-M8), an adenosine

opposite position 1 (a 7mer-A1), or both (an 8mer) (Grimson et al., 2007; Nielsen

et al., 2007; Baek et al., 2008; Selbach et al., 2008). Another important feature is

positioning at least 15 nucleotides after the stop codon. Seed matches in 5′ UTRs

and ORFs are much less effective than those in 3′ UTRs, likely because the scanning

or translating ribosome interferes with RISC binding (Grimson et al., 2007). In fact,

the “ribosome shadow” of 15 nucleotides past the stop codon is also subject to steric

interference by the ribosome, decreasing the efficacy of miRNA target repression in

this region (Grimson et al., 2007). AU-rich composition of the sequence surrounding

a seed match also improves target efficacy by decreasing secondary structure and in-

creasing accessibility of the site (Grimson et al., 2007; Nielsen et al., 2007; Kertesz

et al., 2007). Finally, seed matches located between 8 and 40 nucleotides of another

seed match tend to act cooperatively, providing a potent increase in efficacy (Grimson

et al., 2007).

Combining these effects into a target prediction framework enables accurate pre-

diction of efficacy (Grimson et al., 2007; Baek et al., 2008). Therefore these features

provide not only insight into miRNA targeting mechanism but also a useful comple-

ment to predictions based on conservation, since the efficacy of repression conferred

by a potential miRNA target is not perfectly correlated with conservation. Also,
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many bona fide miRNA targets presumably represent species-specific adaptations

that are by definition not conserved. Filtering seed matches for conservation pro-

vides a greatly-reduced set of target predictions that are enriched for targets that are

subject to purifying selection, so target predictions based on context features alone

will have much higher sensitivity. However, conservation is still an extremely useful

tool for target prediction. Repression by miRNAs in a heterologous assay does not

imply endogenous targeting or function. A message with a seed match might never

be co-expressed with a miRNA under physiological conditions, precluding any chance

of interaction. Or, some repression of a gene might simply be noise if the relevant

biological process is subject to canalization, which could provides robustness to small

changes in expression. In contrast, given an appropriate null model and statistical

framework, a significant signal for evolutionary conservation likely corresponds to

function that is important for the fitness of the organism in some way, sidestepping

problems of noisy gene expression and prioritizing vital interactions for further study.

1.3.6 miRNA functions in vivo

While tremendous progress has been made in predicting target genes for miRNAs,

it has been much less clear how these targets translate into biological function. The

classical miRNAs, lin-14 and let-7, acted as switches to clearly delineate C. elegans

developmental state by repressing key targets (Reinhart et al., 2000). Since these

discoveries, miRNAs have been implicated in virtually every metazoan biological pro-

cess, including development, tissue definition, genetic disease, immune function, and

countless others. However, it has been difficult to find individual switch targets that

mediate many of these functions. It was hypothesized early on that miRNAs could

affect targets in other ways, for example by “micromanaging” gene expression as

rheostats for individual genes (Bartel and Chen, 2004). This hypothesis seemed in-

creasingly likely as evidence mounted for the widespread impact of both conserved

and non-conserved targets in animals. One example of this type is miR-8 targeting

the Drosophila transcription factor atrophin. miR-8-mediated repression of atrophin

expression is necessary to prevent apoptosis in the brain and behavioral defects, but
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excessive atrophin repression leads to the deleterious formation of extra wing veins

(Karres et al., 2007). Thus, miR-8 fine-tunes atrophin expression to a beneficial level

in the cells in which they are coexpressed. In addition to tuning targets, it is likely

many other modes of miRNA/target interaction arise from their relative expression

patterns. For example, (Shkumatava et al., 2009) used fluorescent-activated cell sort-

ing of cells from zebrafish embryos to assay the expression patterns of miRNAs and

their targets. The authors found that for most targets, miRNAs acted in concert with

other regulatory mechanisms to reinforce coherent patterns of expression, but that

some targets were switch-like and others were preferentially co-expressed with their

cognate miRNAs. Clearly, the in vivo roles of miRNAs are complex and a rich source

for further study.
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Chapter 2

Most mammalian mRNAs are conserved

targets of microRNAs

2.1 Introduction

MicroRNAs are 22-nucleotide (nt) endogenous RNAs that derive from distinctive

hairpin precursors in plants and animals (Bartel, 2004). After incorporation into

a silencing complex, which contains at its core an Argonaute protein, an miRNA

can pair to an mRNA and thereby specify the post-transcriptional repression of that

protein-coding message, either by transcript destabilization, translational repression,

or both. MicroRNAs constitute one of the more abundant classes of gene-regulatory

molecules in animals, with hundreds of distinct miRNAs confidently identified in

both human and mouse (Landgraf et al., 2007). A central goal for understanding the

functions of all these small regulatory RNAs has been to determine which messages

are targeted for repression.

The search for biological targets of metazoan miRNAs has benefited greatly from

the comparative analysis of orthologous mRNAs. Targets of miRNAs can be predicted

above the background of false-positive predictions by requiring conserved Watson-

Crick pairing to the 5′ region of the miRNA, known as the miRNA seed (Lewis

et al., 2003). Because so many messages have preferentially preserved their pairing

to miRNA seeds, targets can be predicted simply by searching for conserved 6-8mer

matches to miRNA seed region (Brennecke et al., 2005; Krek et al., 2005; Lewis et al.,
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2005). Four types of seed-matched sites are known to be selectively conserved (Lewis

et al., 2005): the 6mer site, which perfectly matches the 6-nt miRNA seed, the 7mer-

m8 site, which comprises the seed match supplemented by a Watson-Crick match to

miRNA nucleotide 8, the 7mer-A1 site, which comprises the seed match supplemented

by an A across from miRNA nucleotide 1, and the 8mer site, which comprises the seed

match supplemented by both the m8 and the A1 (Fig. 2-1A). Supporting the validity

of seed-matched target predictions, cellular messages that either decrease following

miRNA addition or increase following miRNA disruption preferentially contain seed

matches (Lim et al., 2005; Giraldez et al., 2006; Rodriguez et al., 2007), with the

following hierarchy of site efficacy: 8mer > 7mer-m8 > 7mer-A1 > 6mer (Grimson

et al., 2007; Nielsen et al., 2007). The same is true when examining protein levels

(Baek et al., 2008; Selbach et al., 2008).

In addition to its utility for predicting the identities of the regulatory targets,

comparative sequence analysis has provided fundamental insights regarding features

of mRNA sites required for effective miRNA recognition. For example, a systematic

analysis of matches to 7-nt segments spanning the length of the miRNAs showed that

only those matching the 5′ region of the miRNA are conserved more than expected by

chance, thereby defining the seed region as the key determinant of miRNA specificity

(Lewis et al., 2003). Additional analyses of preferential conservation uncovered the

importance of non-Watson-Crick recognition of an A across from miRNA nucleotide

1 and of an A or U across from nucleotide 9 (Lewis et al., 2005; Nielsen et al., 2007).

Comparative analyses revealed targeting in open reading frames (ORFs) (Lewis et al.,

2005; Stark et al., 2007a) but also supported experimental findings that sites are

more effective if they fall outside the path of the ribosome (Grimson et al., 2007).

Comparative analyses supported the importance of other features of site context,

including positioning within high local AU composition (Grimson et al., 2007; Nielsen

et al., 2007), away from the centers of long UTRs (Gaidatzis et al., 2007; Grimson

et al., 2007; Majoros and Ohler, 2007), and near to nucleotides that can pair to

miRNA nucleotides 13-16 (Grimson et al., 2007).

Comparative analysis has also revealed the wide scope of metazoan miRNA tar-
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geting, indicating that many genes of mammals, flies, and worms are miRNA targets

(Brennecke et al., 2005; Krek et al., 2005; Lewis et al., 2005; Xie et al., 2005; Lall et al.,

2006). For example, combining the 3′ UTR conservation attributed to miRNA seed

matching with that from ORFs indicates that over one third of human protein-coding

genes have been under selective pressure to maintain pairing to miRNAs (Lewis et al.,

2005). Moreover, the selective depletion of seed-matching sites in messages highly ex-

pressed in the same tissues as the miRNAs implies frequent nonconserved targeting

(Farh et al., 2005; Stark et al., 2005).

Ever since the availability of whole-genome multiple alignments (Blanchette et al.,

2004), sites have been considered conserved if they are retained at orthologous loca-

tions in every genome under consideration and considered nonconserved or poorly

conserved if they are missing or have changed in one of the genomes. This binary

approach has been very productive but becomes less suitable now that the align-

ments include more than a few genomes. Requiring conservation in every species of a

28-genome alignment would exclude sites that are under strong selective pressure to

be conserved in many genomes yet are missing at the orthologous position in some

genomes either because of lineage-specific loss, gain, or substitution, or because of im-

perfections in sequencing, assembly, or alignment. To capture more of the conserved

sites, a quantitative approach has been developed that makes the reasonable assump-

tion that aligned sites within orthologous genes have a single origin and measures

the portion of the phylogenetic tree that retains each site by summing the branch

length over which each site has been preserved (Kheradpour et al., 2007). Because

it represents an estimate of the amount of evolutionary time over which a site has

been conserved, this branch-length score yields a multivalued metric that accounts

for phylogenetic relationships between the species studied (Kheradpour et al., 2007).

The score is interpreted by selecting a branch-length cutoff that separates more con-

served and less conserved sites. Sliding the branch-length cutoff from zero to the total

length of all branches enables tuning of sensitivity and specificity. This method has

been applied to the 12-genome alignments of flies to predict conserved miRNA sites

with sensitivity substantially improved over the previous binary approach (Kherad-
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pour et al., 2007; Ruby et al., 2007) but has yet to be applied to mammalian site

conservation.

While whole-genome alignments have made it simple to detect the conservation of

sites in orthologous locations of genes, it is much more difficult to distinguish those

sites or motifs under selective pressure to be maintained from those conserved by

chance. A general attempt to detect preferential conservation of any motif used a

simple Z -score test but did not control for genomic location or sequence character-

istics (Xie et al., 2005). Another approach, developed for detecting maintenance of

miRNA sites, has been to generate cohort sets of miRNA-like sequences, then deter-

mine the number of conserved sites that match these control sequences and use this

as the estimate of chance conservation (Lewis et al., 2003). When choosing these

controls carefully so as to avoid sites underrepresented in mRNA sequences, this ap-

proach has been effective for evaluating sets of miRNA sites in aggregate (Lewis et al.,

2003, 2005; Brennecke et al., 2005; Krek et al., 2005; Stark et al., 2005; Lall et al.,

2006; Kheradpour et al., 2007; Ruby et al., 2007). As previously implemented, how-

ever, this approach breaks down when examining individual miRNA-site interactions

because of a failure to account adequately for differing mutational biases, dinucleotide

conservation rates, and local conservation rates.

Here we develop an improved method for quantitatively evaluating site conserva-

tion and apply it to the study of vertebrate miRNA targeting. The improved sensitiv-

ity uncovered classes of sites, including offset seed matches and 3′-compensatory sites,

whose conservation previously had not been detected with confidence. Overall, we

find three times as many preferentially conserved sites as detected previously, thereby

increasing the known scope and density of conserved miRNA regulatory interactions.
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2.2 Results and discussion

2.2.1 Detection of seed match conservation with increased

sensitivity and statistical power

When using a branch-length metric to evaluate motif conservation, the first step is

to build a phylogenetic tree based on the genomic regions under investigation (Kher-

adpour et al., 2007), which in our case was 3′ UTRs. One major innovation of our

method was to build the phylogeny in a way that controlled for the conservation

of individual UTRs. Because mutation, gene conversion, and crossover rates vary

throughout the genome (Wolfe et al., 1989; Hwang and Green, 2004; Kauppi et al.,

2004), different UTRs have substantially different background conservation levels.

Moreover, some vertebrate genomes have low coverage and are missing a substantial

fraction of genes, also affecting the apparent background conservation. Most meth-

ods for detecting positive selection take into account local conservation rates (Yang

and Bielawski, 2000) (for example, Ks in Ka/Ks), but genome-scale methods for de-

tecting purifying selection have thus far not accounted for this factor. In addition

to differences in basal conservation rates, UTRs have sequence-dependent functions

apart from miRNAs, which can influence conservation levels. A site falling within a

UTR with high overall conservation is far less likely to be conserved due to miRNA

targeting than is one falling within a rapidly evolving UTR (Lewis et al., 2005). Any

method that treats all the UTRs the same greatly overestimates purifying selection of

sites in well-conserved UTRs and underestimates purifying selection of sites in poorly

conserved UTRs.

Starting with a 28-way vertebrate whole-genome alignment that included 18 pla-

cental mammals and 10 other vertebrates (Miller et al., 2007), we extracted the human

3′ UTRs and homologous regions from the 22 non-fish genomes. The five fish genomes

were excluded because they lacked a sufficient amount of aligned 3′ UTR sequence.

To help control for individual UTR conservation, 3′ UTRs were separated by conser-

vation rate into 10 equally sized bins, and a unique set of branch lengths based on
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3′ UTR sequence alignments was constructed for each bin (Fig. 2-1B; Supplemental

Fig. 1). The conservation of a given sequence (e.g., an 8mer miR-1 site in a particular

3′ UTR) was then assessed by summing the total branch length in the phylogenetic

tree connecting the subset of species having the sequence perfectly aligned, using the

tree representing the bin of the 3′ UTR under investigation. This branch-length value

had no units, with a value of 1.0 corresponding to the average conservation of a sin-

gle nucleotide in similar UTRs, and thus resembled a non-normalized version of the

branch-length score described by Kheradpour et al. (2007). In our analyses, however,

a site in a more divergent UTR needed to be conserved in fewer orthologs to achieve

the same branch-length value because the branch lengths in a phylogeny representing

the more divergent UTRs were longer than those of one representing more conserved

UTRs. For example, the 8mer miR-1 site found within in the human SLC35B4 UTR

received the same value as the site within the SPRED1 UTR, even though it was

present in fewer aligned genomes (Fig. 2-1B).

Because sequences can be conserved by chance or for many reasons other than

functional miRNA targeting, the branch-length values were only interpretable when

considered within the context of the estimated background conservation. Our method

attempted to control for many factors that can affect the conservation level of a short

sequence of length k (a k -mer), including GC content, dinucleotide content, the in-

terrelation of miRNA seed-match types, genome alignment quality, and the local

conservation rate. The combined effects of all of these factors on background con-

servation were estimated based on em-pirically observed conservation of k -mers as

opposed to theoretical calculations. As done previously (Lewis et al., 2003, 2005;

Brennecke et al., 2005; Krek et al., 2005; Stark et al., 2005; Lall et al., 2006; Kherad-

pour et al., 2007; Ruby et al., 2007), the expected fraction of sites conserved due to

miRNA recognition was estimated using a cohort of k -mers with similar properties,

which were presumed to be subject to the same evolutionary pressures except for

the possible miRNA regulatory relationship. Because we did not allow conserved k -

mers that were seed matches for miRNAs with any known conservation, and because

the discovery rate of highly conserved vertebrate miRNAs has dropped dramatically
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in recent years, the control k -mers can be assumed devoid of conservation due to

miRNA targeting. Three substantial improvements to the estimation of background

conservation were introduced. First, we matched control k -mers using an expected

conservation based on both the k -mers GC content and the expected conservation of

its constituent dinucleotides, which enabled a more rigorous and accurate estimate of

background conservation levels for individual miRNAs (Fig. 2-1C). Previous methods

matched k -mers based on their abundance in human 3′ UTRs, which is adequate when

analyzing large groups of miRNAs, but this variable is poorly correlated to conserva-

tion for individual miRNAs (Fig. 2-1C) and can be affected by evolutionary avoidance

of k -mers, a known property of miRNA seed matches (Farh et al., 2005; Stark et al.,

2005). Second, we created mutually exclusive seed-match classes by subtracting the

signal and the background of larger seed matches (e.g., 8mers) from the smaller

seed matches that could be contained within them (e.g., 7mers, Fig. 2-1D). This

protected against double-counting conservation while increasing sensitivity by more

closely matching control k -mer sizes to the observed conservation (see Supplemental

material for discussion). Third, the estimate of background conservation controlled

for the conservation of individual UTRs, in that control cohorts were analyzed using

the same 10 phylogenetic trees and the same 10 UTR data sets were employed for

analysis of authentic sites. Without this improvement, different members of the con-

trol cohort had widely varying conservation. By reducing this variability, more precise

background estimates were achieved, which enabled more sensitive detection of site

conservation. Thus, we calculated 10 distributions of branch-length values for both

signal and background using both the k -mer and its set of controls and then summed

these distributions to compile the overall signal and background distributions for each

k -mer (Fig. 2-1E; Supplemental Discussion). These three innovations all helped to

control for the background conservation specific to individual seed-match sites, en-

abling statistically sound comparisons between the conservation of seed-match types,

between seed matches to different miRNAs, and even between individual sites.
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2.2.2 At least 44,000 sites are selectively maintained because

of miRNA targeting

We first looked for excess conservation of seed matches for a set of highly conserved

miRNAs that appear to have been present since the last common ancestor of all 23

vertebrate species under consideration, defined as those mammalian miRNAs also

found in chicken, lizard, or fish, which fell into 87 families based on the identity of

nucleotides 2-8 (Supplemental Table 1). For each k -mer, representing a single seed-

match type for a particular miRNA, the distribution of branch-length values was

compiled for sites present in human 3′ UTRs. As the branch-length-value cutoff was

increased from zero, the number of sites that matched control sequences decreased

faster than did the number matching authentic miRNA seed matches (Fig. 2-2A).

At any particular branch-length cutoff, if the number of conserved sites of a k -mer

(the signal) was higher than that of control sequences (the background), the excess

conservation was attributed to purifying selection. We use the term background

instead of noise because the latter term may connote variance in the background

estimate as opposed to the estimate itself. The number of sites conserved above

background reflects the sensitivity of the analysis, whereas the ratio of signal to

background reflects its specificity.

We first considered the three 7-8mer seed-match types (8mer, 7mer-m8, 7mer-A1),

which correlate most strongly with targeting efficacy (Grimson et al., 2007; Nielsen

et al., 2007) and are among the miRNA matches currently used to predict conserved

targets of metazoan miRNAs (Fig. 2-2B) (Brennecke et al., 2005; Grün et al., 2005;

Krek et al., 2005; Lewis et al., 2005; Lall et al., 2006; Ruby et al., 2006, 2007; Gaidatzis

et al., 2007). At a branch-length cutoff of 2.0, a large majority of these sites were in

excess of the background (Fig. 2-2B, right). However, this high specificity came at a

price, with many more sites detected above background at a less stringent cutoff of

1.0 (Fig. 2-2B).

Our more precise estimate of background conservation enabled robust detection of

purifying selection for 6mer seed matches that were not part of the larger, 7-8mer seed-
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matched sites (Fig. 2-2B). Ten thousand sites were conserved above background – a

high number when considering the marginal efficacy of these 6mer sites, as measured

by monitoring mRNA destabilization or protein output after adding or disrupting

miRNAs (Grimson et al., 2007; Nielsen et al., 2007; Baek et al., 2008; Selbach et al.,

2008). Analysis of mRNA expression following ectopic addition of miRNAs into

HeLa cells indicated that an offset 6mer matching miRNA positions 3-8 (Fig. 2-

1A) mediated mRNA destabilization approaching that of the seed-matched 6mer,

matching positions 2-7 (Fig. 2-2C), although the effects of the seed-match 6mer

were still significantly stronger (P = 0.03, two-sided KS test). This marginal yet

detectable activity prompted us to explore the possibility that these offset 6mer sites

might also be selectively maintained. Our analysis, subtracting conservation due to

7- or 8-nt seed-matched sites as well as that attributed to matching seeds of related

miRNAs, indicated that a small but detectable fraction of these offset 6mers were

indeed selectively maintained (Fig. 2-2B). Because these 6mer sites are so abundant

in 3′ UTRs, this small fraction corresponded to thousands of sites under purifying

selection, which have been missed by algorithms that search for only seed-matched

sites.

The result for the offset 6mer raised the question of whether 6mer matches to

nearby miRNA segments might also be selectively maintained. Analysis of matches

to miRNA segments 1-6, 4-9, and 5-10, excluding those sites that also possessed

seed matches, revealed no 6mer segments with appreciable signal above background

(Supplemental Fig. 2). Parallel analyses of the mRNA expression data also failed

to reveal 6mer sites with efficacy approaching that of the 6mer site corresponding to

segment 3-8. We therefore focused on the selective conservation of the five types of

sites that matched the seed region, one 8mer, two 7mers, and two 6mers, which we

refer to as the 6mer and the offset 6mer (Fig. 2-1A).

When examined over a broad range of branch-length cutoffs, signal-to-background

ratios plateaued at a branch-length cutoff of about 3 (Fig. 2-2D), which exceeded

the maximal branch length of the more highly conserved UTR bins. Larger signal-

to-background ratios implied higher fractions of seed matches under selection. For
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example, a signal-to-background ratio of 4.0 corresponds to 75% of matches being un-

der purifying selection and thus presumably having conserved function. Regardless of

the cutoff, the hierarchy of signal-to-background ratios remained constant, with 8mer

> 7mer-m8 > 7mer-A1 > 6mer > offset 6mer. Moreover, the signal-to-background

ratio of the five site types, which indicated the fraction of sites under selection, corre-

sponded well with the minimal fraction of sites conferring transcript destabilization

following microRNA transfection, indicating a striking correlation between the selec-

tive maintenance of site types and their efficacy (Fig. 2-2E).

When considering the number of selectively maintained sites, a moderate branch-

length cutoff of 1.0 yielded the highest signal above background (Fig. 2-2F). Increas-

ing cutoffs from 1.0 to 2.0 yielded a tradeoff between increased specificity (Fig. 2-2D)

and decreased sensitivity (Fig. 2-2F). For the five individual site types, the number

of selectively maintained sites showed little correlation with the signal-to-background

ratio. For example, the signal-to-background ratio for the 6mer (1.2 at branch length

1.0) was far lower than that for the 8mer (2.6 at branch length 1.0), but signal above

background for the 6mer (10,970 at branch length 1.0) was at least as high as that of

the 8mer (8543 at branch length 1.0). Thus, 3′ UTRs acquire and maintain marginally

effective target sites in similar numbers as they do more highly effective sites. The

7mer-m8 sites appear most important in terms of the number of sites under selection

(Fig. 2-2F), whereas 8mers are the most important in terms of the proportion of

sequences under selection and, equivalently, the power for prediction of individual

targets (Fig. 2-2D).

Summing together the signal and background estimates for the five site types at

the most sensitive conservation cutoff (1.0) yielded 46,441 ± 2175 sites conserved

above background (Fig. 2-2F), an average of 534 ± 25 per miRNA family (98 ± 2,

128 ± 7, 80 ± 8, 126 ± 22, 101 ± 14 for 8mer, 7mer-m8, 7mer-A1, 6mer, and offset

6mer sites, respectively). This number of sites was nearly three times higher than

the most sensitive previous estimate, which had required perfect 6mer conservation

in each of human, mouse, rat, and dog to detect 13,044 3′ UTR sites conserved above

background, or 210 sites conserved per miRNA family (Lewis et al., 2005). Several
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factors contributed to this large increase in the estimate of selectively maintained

miRNA sites, including the improved methodology, larger and more accurate UTR

and miRNA data sets, new genomes, and improved genome quality. To determine

whether the principal factor was the newly available genomes, we performed the

same analysis on subsets of genomes, keeping the UTR and miRNA data sets and

methodology constant (Fig. 2-2G). The sensitivity was robust to the removal of

a large number of genomes, suggesting that with current methods, the estimate of

the number of selectively maintained sites will remain relatively constant with the

addition of newly sequenced genomes.

Detection of selectively maintained sites with higher sensitivity implied that the

number of conserved miRNA targets is far higher than previously estimated. Starting

with all the sites detected at a given conservation cutoff and then randomly removing

for each site type the number of sites corresponding to the predicted background in

the relevant UTR bin yielded 9909 ± 302 genes targeted at a branch-length cutoff of

1.0. Using this method of sampling conserved sites, only 7% of genes had multiple

conserved sites for the same miRNA family. Thus, for each miRNA family, the number

of conserved targets (497 ± 49) approached the number of conserved sites (534 ± 25).

Although more sites above background were predicted at the conservation cutoff of

1.0, the number of genes targeted reached a maximum of 10,739 ± 564 at a branch-

length cutoff of 0.6, which corresponded to 57.8% ± 3.0% of the human RefSeq data

set. This percentage is about twice that of the most sensitive previous estimate

(Lewis et al., 2005). Again, the number of targets per miRNA family (438 ± 60)

approached the number of sites conserved above background per miRNA family (462

± 28). Nonetheless, 72% of the 10,739 targeted messages had sites to multiple miRNA

families, with an average of 4.2 sites per targeted 3′ UTR. Indeed, the observed twofold

increase in targeted UTRs from a threefold increase in site detection meant that our

analysis added many additional newly predicted sites to previously predicted targets,

thereby increasing not only the number of predicted targets but also the density of

predicted targeting.
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2.2.3 Sites with seed bulges and mismatches are rarely under

selection

Having found a large and statistically significant number of conserved 6mer sites

(Fig. 2-2F), despite their marginal efficacy (Fig. 2-2C), we investigated the possi-

bility of selective conservation of imperfect seed matches, which also display severely

compromised efficacy. Reasoning that if any mismatched sites were selectively main-

tained they would include those with the least disruptive mismatches, we focused on

8mer matches containing either a single mismatch, a G:U wobble, a bulged nucleotide

within the site, or a bulged nucleotide within the miRNA. In contrast to the canonical

seed-matched types, these imperfect sites displayed little enrichment of conservation

(Fig. 2-3A). For all four mismatched classes, signal-to-background ratio hovered near

1.0, rarely exceeding 1.1 at any branch-length cutoff, indicating that the number of

sites under selection was at most a small fraction of the total (Fig. 2-3A). The 8mer

with a bulge in the site was the only class for which the 5% confidence limit on the ra-

tio consistently exceeded 1.0. This class of sites appeared to have a few hundred sites

conserved above background, a number 10 times less than that of even the weakest

seedmatched class (Fig. 2-3B). We cannot exclude the possibility that a very small

fraction of other mismatched sites might also have been selectively maintained. How-

ever, because of the low signal-to-background ratio and low 5% confidence estimate

for the number of sites under selection, we conclude that seed-mismatched sites are

hardly ever selectively maintained and that including a substantial number of such

sites when predicting targets would greatly compromise prediction specificity. These

conclusions are supported by recent proteomic experiments demonstrating poor ef-

ficacy of targets predicted by methods that allow sites with seed mismatches (Baek

et al., 2008; Selbach et al., 2008).

Selective maintenance of sites with a bulge in the site but not those with a bulge

in the miRNA corresponds well with previous analyses of plant miRNA targeting

(Mallory et al., 2004). This constraint observed in both plant and animal lineages

can be explained by the idea that the Argonaute protein binds the miRNA backbone,
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preorganizing the miRNA seed region such that the Watson-Crick face is poised for

pairing to the message (Bartel, 2004). These contacts to the backbone in the seed

region, presumably present before and after binding, would constrain the seed back-

bone, spacing each seed nucleotide such that a bulge in the miRNA would impose a

gap in the site that would be difficult to span without disrupting adjacent pairs. In

contrast, a bulged nucleotide in the site would be extruded into solvent and therefore

more readily accommodated.

2.2.4 Pairing to the 3′ end of miRNAs displays small but

measurable excess conservation

Although pairing to the 3′ region of the miRNA has long been thought to be conse-

quential, evidence that such pairing enhances the efficacy of mammalian seed-matched

sites has been obtained only recently (Grimson et al., 2007). Such sites in which 3′

pairing productively augments seed pairing are called 3′-supplementary sites. Produc-

tive 3′ pairing optimally centers on miRNA nucleotides 13-16 and the UTR region

directly opposite this miRNA segment (Fig. 2-4A, top). Like seed pairing, 3′ pairing

appears relatively insensitive to predicted thermostability and instead quite sensi-

tive to pairing geometry, preferring contiguous Watson-Crick pairs uninterrupted by

bulges, mismatches, or G:U wobbles. These features are captured in a 3′-pairing score,

which awards one point for each contiguous Watson-Crick pair matching miRNA nu-

cleotides 13-16 and a half point for each contiguous pair extending the pairing in

either direction. Pairing segments offset from the miRNA are then penalized by sub-

tracting a half point for each nucleotide of offset beyond ±2 nucleotides from the

register directly opposite the miRNA, and then sites are assigned the score of the

highest scoring pairing segment (Grimson et al., 2007). For example, the site shown

in Figure 2-4A (top), which has seven contiguous, well-positioned pairs would be as-

signed a score of 5.5. Sites with scores ≥ 3 display modestly increased efficacy and

conservation (Grimson et al., 2007).

We set out to determine for each site type the selective maintenance of 3′-supplementary
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pairing. At specified cutoffs for branch length and 3′-pairing score we determined the

number of sites with supplementary 3′ pairing, estimating the background by repeat-

ing the analysis with a chimeric miRNA set created by swapping all possible 5′ and

3′ ends for miRNAs within our 87 miRNA families. For each site, the 3′ pairing

score used was the maximum over all members of the miRNA family. For each of the

four seed-matched types, and especially for the 7mer-m8 site, selective maintenance

of 3′-supplementary pairing was confidently observed (Fig. 2-4A). As expected for a

biological signal, specificity increased with greater conservation and with a greater

3′-pairing score. Sensitivity peaked at a pairing score cutoff of 3.0, indicating that

as few as 3-4 well-positioned supplementary pairs were selectively maintained (Fig.

2-4A). However, even at this sensitive cutoff, only 2281 ± 537 seed-matched sites had

preferentially conserved 3′ pairing. Assuming that sites with selectively maintained

3′ pairing were also drawn from the pool of 44,000 sites with selectively maintained

matches to the seed region, we estimate that only 4.9% ± 1.1% of all preferentially

conserved sites have preferentially conserved 3′ pairing. Nonetheless, for those rare

sites with high 3′ pairing scores, consideration of supplemental pairing provided a

useful boost to the overall signal-to-background ratio. For example, for the 49 8mer

sites with 3′-pairing scores ≥5.0 and branch-length values ≥2.0, the aggregate signal-

to-background ratio was estimated to be 13:1 (calculated as 6.3 × 2.1, using values

from Figs. 2-2D and 2-4A, respectively), implying that the conservation of these indi-

vidual sites was confidently attributed to miRNA targeting. For the remaining 95.1%

of selectively maintained seed matches, which do not have preferential conservation

of pairing to the 3′ end of miRNAs, the 3′ region of the miRNA might still interact

with the message, but in a way that does not favor matches over mismatches and

therefore does not add detectably to targeting specificity.

2.2.5 Selective maintenance of 3′-compensatory sites

Pairing to the 3′ portion of the miRNA can not only supplement a 7-8mer match,

it can also compensate for a single-nucleotide bulge or mismatch in the seed region,

as illustrated by the let-7 miRNA sites in lin-41 and the miR-196 site in HOXB8
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(Vella et al., 2004; Yekta et al., 2004). Such sites are called 3′-compensatory sites

(Fig. 2-4B, top). Previous analyses of mRNA array data failed to detect efficacy

of 3′-compensatory sites, even when considering the principles that uncovered conse-

quential 3′-supplementary pairing, which are embodied in the 3′-pairing score (Grim-

son et al., 2007). This failure is attributed to the idea that 3′-compensatory sites are

exceedingly rare, presumably because the amount of pairing needed to compensate for

seed mismatches is greater than that needed to supplement seed-matched sites, and

as a result, a significant association is difficult to detect (Grimson et al., 2007). Sup-

porting this idea, all experimentally validated examples of metazoan 3′-compensatory

sites involve pairing that centers on miRNA nucleotides 13-17 and extends to at least

9 contiguous Watson-Crick pairs, which corresponds to a 3′-pairing score ≥6.5 (Vella

et al., 2004; Yekta et al., 2004).

An analysis of preferential site conservation could be more sensitive than that of

array data, both because site-conservation analysis captures sites mediating transla-

tional repression without detectable mRNA destabilization and because site-conservation

analysis can simultaneously consider many more miRNAs. With this possibility

in mind, we examined the prevalence of 3′-compensatory sites, applying the same

methodology as used for 3′-supplementary sites. Sites with single-nucleotide mis-

matches or bulges had no enrichment in conserved or nonconserved 3′ pairing exceed-

ing the 5% confidence threshold, regardless of the cutoffs (Fig. 2-4B). This result

indicated that most of the bulged sites conserved above background (Fig. 2-3) are

not conserved because they are 3′-compensatory sites. However, 7-8mer sites with a

single G:U wobble had confidently enriched pairing at the relatively high 3′-pairing-

score cutoff of 4.0. At a branch-length cutoff of 1.0, the number of sites within

the 5% confidence interval numbered only 399, an average of only 4.5 per miRNA

family. Thus, our results support previous assertions that mismatched seed sites

with 3′-compensatory pairing are only rarely under selective pressure to be conserved

(Brennecke et al., 2005; Lewis et al., 2005). Perhaps because such sites with extensive

pairing to the 3′ portion of the miRNA possess much more informational complexity

than do the 7-8mer perfect matches and therefore emerge much less frequently and
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are harder to maintain in evolution, these 3′-compensatory sites appear to be used

only rarely for biological targeting, comprising 1.5% ± 0.7% of the conserved sites

in mammals. The somewhat higher number of 3′-supplementary sites implies that 3′

pairing, when consequential, is principally a supplementary feature of canonical seed

sites and more rarely plays a role in conferring activity to imperfect seed sites.

The paucity of 3′-compensatory sites poses special challenges for confidently de-

tecting conserved biological sites above background. Our use of the 3′-pairing score

and our observation that the G:U class of mismatches was more frequently compen-

sated by conserved 3′ pairing both represented important inroads into meeting this

challenge. The 25 conserved G:U sites with 3′-pairing scores ≥6 include the miR-196

site in the HOXB8 3′ UTR, which has an off-scale 3′-pairing score of 9.0, and a similar

miR-196 site in the HOXC8 3′ UTR (Yekta et al., 2004). These 25 sites, together

with the seven mismatched sites with scores ≥7, are listed in Table 1 and will be

included in the next release of TargetScan predictions (targetscan.org). Bulged sites

with high 3′-pairing scores (≥6) did not appear preferentially conserved and thus are

not included in the list.

2.2.6 Mammalian-specific miRNAs have few selectively main-

tained seed matches

An early study found that sites matching broadly conserved vertebrate miRNAs

were more likely to be maintained than those matching mammalian-specific miRNAs

(Lewis et al., 2003). Since then, target-prediction specificity has been estimated using

only those miRNAs conserved to fish or chicken (Krek et al., 2005; Lewis et al., 2005;

Gaidatzis et al., 2007), raising the question of whether the more recently emerged

miRNAs have acquired enough conserved targets to detect any conservation signal

above background. To address this question, we assembled a set of 53 miRNAs

that were present in diverse placental mammals but absent in all sequenced chicken,

lizard, and fish genomes (Supplemental Table 2). Examining the placental mammal

subset of the phylogeny, we found little preferential conservation for sites matching
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these mammalian-specific miRNAs (Fig. 2-5A). In contrast to sites matching broadly

conserved miRNAs (Fig. 2-2D), the full 8mer was the only seed-match type with

signal-to-background ratio consistently and confidently above 1.0 (Fig. 2-5A), and its

ratio was no higher than that of offset 6mers matching broadly conserved miRNAs.

The performance of the mammalian-only set also differed from that of the broadly

conserved set when considering signal above background, with far fewer 8mers con-

served above background (Fig. 2-5B). These differences could be due either to in-

herent differences in the miRNA sets, such as the level and breadth of expression, or

to differential evolutionary time available for beneficial site emergence. To help dif-

ferentiate between these possibilities, we screened matches to the broadly conserved

miRNAs, removing all sites with seed matches conserved beyond mammals, thereby

limiting the set of 8mer sites to those more likely to have arisen in mammals after the

divergence of mammals and other vertebrates. This removed more than half of the

conserved sites matching the broadly conserved miRNAs, showing that part of the

reason for the higher number of sites is the much greater time available for beneficial

site emergence. However, even when considering the more restricted set of sites, and

after normalizing for the numbers of miRNAs in the two sets, the broadly conserved

miRNAs had more than four times as many selectively maintained 8mer matches per

miRNA than did the mammalian-specific miRNAs (Fig. 2-5B), suggesting that the

level and breadth of miRNA expression are also important factors. Combining the

signal above background for all site types, the differential appeared far greater, with

the mammalian miRNAs averaging only 10.9 ± 3.0 selectively maintained sites.

To determine whether a few of the mammalian-only miRNAs might have con-

servation patterns resembling those of the broadly conserved set, we examined the

conservation of 8mer seed matches corresponding to individual miRNAs. As ex-

pected, the signal-to-background ratios of the broadly conserved miRNAs fell mostly

outside the control distribution (Fig. 2-5C). The observation that most fell outside

the control distribution illustrated that the high signals observed for these broadly

conserved miRNAs in aggregate also applied to most of them individually and could

not be attributed to chance overlap of a few seed matches to a few highly conserved
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regulatory sequences. In contrast, the mammalian-specific miRNAs had a distribu-

tion only slightly shifted from that of the controls, with an excess of ≈5-10 miRNAs

in the 1.5-2.5 signal-to-background range. We conclude that only a small subset

of mammalian-specific miRNAs (including most prominently miR-487b, miR-127-3p,

miR-379, and miR-543; Supplemental Table 2) have a measurable number of se-

lectively maintained sites and caution that for the majority of mammalian-specific

miRNAs, the observation that a site is conserved provides no evidence that it has

biological function.

2.2.7 Estimating confidence for selective maintenance of in-

dividual sites

The widespread scope of conserved targeting brings to the fore the question of which

of these many miRNA target interactions can be predicted with confidence. One raw

indicator is the conservation branch length of the site – clearly, more highly conserved

sites are more likely to be under selection, particularly when controlling for differ-

ential UTR conservation, as in our method. However, our branch-length values did

not account for the type of site and its sequence features. For example, a branch

length of 1.0 for an 8mer is far more compelling evidence for selective maintenance

than a branch length of 3.0 for an offset 6mer (Fig. 2-2D). To control for site type

and sequence features, we used our previously described controls to calculate a signal-

to-background ratio (S/B) for each site at each branch length. For the purpose of

evaluating individual sites, assessing controls at each branch length instead of at each

branch-length cutoff is necessary to avoid crediting poorly conserved sites for having

the same sequence as many highly conserved sites. We then converted this S/B to

a probability of conserved targeting (PCT ), which is approximately equal to (S/B -

1)/(S/B) (or near zero, for sites with S/B < 1). This score reflected the Bayesian

estimate of the probability that a site is conserved due to selective maintenance of

miRNA targeting rather than by chance or any other reason not pertinent to miRNA

targeting, allowing for uncertainty in the S/B ratio. For predicting biologically con-
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served target sites, the score represented 1 - FDR, where FDR was our estimate of

the false-discovery rate. This deceptively simple value incorporated knowledge of the

conservation level of a particular site, the seed-match type, the number of selectively

maintained seed matches for the particular miRNA, the background conservation level

for the k -mer, and the UTR conservation context.

The PCT provides a useful criterion for assessing the biological relevance of pre-

dicted miRNA-target interactions. Selectively maintained sites are more likely to

have detectable biological function, are more likely to have functions in experimen-

tal animals that are pertinent to humans, and tend to be more effective (Grimson

et al., 2007; Nielsen et al., 2007). To illustrate the ability of this measure to predict

site efficacy, we turned to experimental data examining mRNA destabilization after

introducing miRNAs (Grimson et al., 2007). As expected, site PCT correlated with

the mean level of mRNA destabilization (Fig. 2-6A). In addition, we tested a subset

of miRNA sites that were previously considered nonconserved because they were not

found in mouse, rat, or dog alignments (Lewis et al., 2005). Those sites newly recog-

nized as selectively maintained were substantially more responsive to the transfected

miRNAs than were those still lacking a signal for conserved targeting (Fig. 2-6B).

Having established a more sensitive and precise tool for evaluating site conserva-

tion, we overhauled the TargetScan web resource, separating conserved and highly

conserved 3′ UTR targets of each miRNA based on the PCT values of their 7-8mer

sites, compiling an aggregate probability of conserved targeting (aPCT ) for those tar-

gets with multiple sites for that miRNA, calculated as aPCT = 1 − (FDRsite1 ×

FDRsite2 × FDRsite3...). To capture sites that were missing in the annotated human

3′ UTRs but present in the mouse annotations, a mouse-centric version of the analy-

ses was performed in parallel. This improved web resource, called TargetScan version

5.0, also lists the PCT for each 7-8mer site, with the option of sorting the predicted

targets of each miRNA by their aPCT . Retained in TargetScan 5.0 are site context

scores, which consider features such as the AU content in the vicinity of the site and

the position of the site within the message, to predict the function and quantitative

efficacy of each site (Grimson et al., 2007). Because the context scores are determined
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based on information completely orthogonal to site conservation, the PCT values and

the context scores provide independent and complementary information useful for

predicting the biological relevance and efficacy of each site.

2.2.8 The widespread scope of conserved targeting

One of the key results of applying our new methods for quantitatively evaluating site

conservation to the study of miRNA targeting was the sheer number of preferentially

conserved sites. When considering only the 6-8mer perfect 3′ UTR matches to the

seed regions of broadly conserved miRNAs, 46,441 ± 2175 sites were conserved above

background, implying that 57.8% ± 3.0% of the human genes are conserved miRNA

targets. Considering also imperfectly matched sites added another 625 ± 239 prefer-

entially conserved sites to the total (Fig. 2-3B); 3′-compensatory sites added another

714 ± 315 (Fig. 2-4B), sites matching more narrowly conserved miRNAs added an-

other 578 ± 158 (Fig. 2-5B), altogether modestly raising the estimated number of

preferentially conserved 3′ UTR sites to 48,360. Not considered are the human miR-

NAs that have escaped confident annotation. However, because these miRNAs have

remained unannotated, in part because they are more narrowly conserved and have

more restrictive expression domains, our results for the mammalian-specific miR-

NAs suggest that eventual consideration of these unannotated miRNAs will add only

modestly to the current picture of conserved targeting. We suspect that a more sig-

nificant increase will come by considering targeting in ORFs, which is thought to

be widespread, although less than that in 3′ UTRs (Lewis et al., 2005; Stark et al.,

2007b). Further increases will come with improved UTR annotations and the con-

sideration of alternative 3′ UTRs. Anticipating these additional sites, we can say

with confidence that over 60% of human protein-coding genes are conserved targets

of miRNAs, with our best estimate of the actual fraction of human protein-coding

genes under pressure to maintain pairing to miRNAs falling above this, at about two

thirds of all protein-coding genes.

One surprise of our analysis was the substantial number of selectively maintained

6mer and offset 6mer sites, numbering 10,970 ± 1909 and 8803 ± 1276, respectively.

58



Indeed, when excluding these sites and considering only the 7-8mer sites, our estimate

of the number of conserved targets per broadly conserved miRNA dropped to 292 ±

18, which corresponded to 44.5 ± 3.4% of the RefSeq genes. With the exception of

an offset 6mer site for let-7 miRNA in the human LIN28 3′ UTR (Wu and Belasco,

2005), 6mer sites typically have very poor efficacy when examined experimentally,

as if the majority are inert, and nearly all the rest have very marginal influence on

protein output (Fig. 2-2C) (Grimson et al., 2007; Nielsen et al., 2007; Baek et al.,

2008; Selbach et al., 2008). Yet 3′ UTRs selectively maintain these 6mer target sites

in similar numbers as they do 7 and 8mer sites. Of course, 6mers are much easier

to access by mutation and then preserve from mutation, but what would be the

selection pressure to preserve such minor effects? One conundrum in the field of

miRNA-mediated gene regulation is why so many 7-8mer sites would be conserved

so broadly in metazoan 3′ UTRs, when each down-regulates protein output by very

little – nearly always less than 50% and usually less than 30%, which would only

very rarely produce observable phenotypic consequences (Baek et al., 2008). But the

7-8mer conundrum pales when considering the selective maintenance of 6mers, which

appear to tweak gene expression so finely that the effects are difficult to detect at the

molecular level, let alone the phenotypic level.

One way to reconcile the high number of preferentially conserved 6-nt sites with

the modest efficacy of these sites is to propose that these conserved 6mers are not

preferentially conserved based on their activity as 6-nt sites, but instead, represent

the inactive (or less active) decay products of preferentially conserved 7-8mer sites.

When considering this explanation, two scenarios could contribute the conserved 6mer

signals. In one scenario, the extended site has degraded to one of the 6mers in the

human lineage. For example, a 7mer site that functions in most animals but has

decayed to an inactive 6mer in primates would have contributed to our count of con-

served 6mers in human UTRs. In the second scenario, the extended site is conserved

in the UTR of human and other species but exceeds the branch-length cutoff only

when including additional species in which it has degraded to one of the 6mers. For

example, if the 8mer site conserved in the SPRED1 UTR had degraded to an inactive
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6mer in hedgehog, then the site would have contributed to our count of conserved

8mers at branch-length cutoff of 0.9, but not at 1.0; at a cutoff of 1.0 it would have

contributed to our count of conserved 6mers. When performing the analyses so as to

exclude these two scenarios, our estimate of the number of preferentially conserved

sites per highly conserved miRNA family dropped 35%, to an average of 77 ± 22 for

6mer sites and 69 ± 15 for offset 6mer sites (Supplemental Discussion). Thus, some

of the preferential conservation of 6-nt matches to the seed region can be explained by

their relationship with conserved 7mers, but thousands of 6mers and offset 6mers are

selectively maintained without the aid of 7mer conservation. Moreover, because these

decreases in preferentially conserved 6-nt sites imply corresponding increases in pref-

erentially conserved 7-8mer sites, consideration of these scenarios does not change our

estimates of the total number of preferentially conserved sites and the total number

of conserved mammalian targets.

Our observation that these 6mer sites have been selectively maintained so fre-

quently implies the existence of widespread pressure for finely adjusted protein output

with surprisingly narrow tolerances for optimal expression in different cell types. The

observation that this selective pressure persists over such long branch lengths indi-

cates that these optimal expression levels and narrow tolerances persist in the face of

many other changes over surprisingly long evolutionary distances. These results be-

come somewhat easier to reconcile when considering the possibility that 6mers might

impart more robust repression in particular cells or conditions that have yet to be ac-

cessed experimentally. Hinting at this possibility is the more readily detected activity

of 6mers matching miR-430 during the maternal-to-zygotic transition, a developmen-

tal stage at which the miR-430 family comprises most of the miRNA molecules in

the animal (Giraldez et al., 2006). An alternative possibility is that the 6mer and

offset 6mer impart some function other than repressing protein output. For example,

if transient miRNA association played a widespread role in mRNA subcellular local-

ization, then many 6mer sites could be conserved without imparting any repression.

In either scenario – widespread and persistently narrow gene-expression tolerances

or expanded miRNA function – the discovery that so many 6mers and offset 6mers
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are selectively maintained sets the stage for important future insights into miRNA

biology.

2.3 Methods

2.3.1 Alignments and phylogeny

Sequences (3′ UTR) were defined as the longest 3′ UTR for each human RefSeq gene

(Pruitt et al., 2005), resulting in 18,577 unique UTRs for 18,577 genes. Human UTR

boundaries were used to acquire orthologous UTRs from the 28-genome vertebrate

sequence alignments from the UCSC genome browser (Karolchik et al., 2008). The

average phylogeny was determined using the branching structure provided by UCSC,

and branch lengths were estimated by running DNAML, part of the PHYLIP package

(Felsenstein, 1989), on the UTR alignments. To define UTR conservation bins, human

UTRs were ranked using the median branch length over single bases. Then, DNAML

was run on the sequences in each UTR bin, creating phylogenies with the same

branching structure but modified branch lengths scaled for each UTR bin.

2.3.2 miRNA sequences

The broadly conserved miRNA set comprised all 79 families of miRBase entries (re-

lease 10.0) with both a human and zebrafish miRNA sharing the same seed sequence

(Supplemental Table 1). Additionally, we included 8 human miRNA families with

mouse miRBase entries and a conserved foldback in lizard, chicken, frog, or another

fish genome, yielding a total of 87 miRNA families. To generate the mammalian-

specific miRNA set, miRbase entries for human miRNAs conserved to mouse were

manually inspected for aligned sequences from most of the sequenced mammals, per-

fect conservation of the seed sequence within placental mammals that had aligned

sequence, no conservation in species other than placental mammals, and good pre-

dicted folding characteristics in most placental mammals. Seven of the remaining

miRNAs whose seed matches had strong excess conservation (>2.0 S/B ratio) in
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species other than placental mammals were also removed (reasoning that this excess

conservation was likely caused by an miRNA ortholog that escaped detection because

of imperfect alignments or sequencing coverage), leaving 53 mammalian-specific miR-

NAs (Supplemental Table 2). A list of miRNAs left out of the mammalian-specific

category for various reasons is found in Supplemental Table 3.

2.3.3 Background estimation

For each seed-match k -mer, possible control k -mers were first filtered to remove seed

matches to other miRNAs, and to have the same length, number of G + C bases,

and possible matches to PUF proteins (UGU[A/G]) as the seed match. In the case

of 8mer and 7mer-A1 matches, the controls were also constrained to have an A in

the 3′-most nucleotide. For each branch-length cutoff, the 50 control k -mers with the

closest expected conservation rate to the seed-match k -mer were selected. Expected

conservation was calculated using a first-order Markov model with parameters derived

from the empirical dinucleotide conservation rate in 3′ UTRs at a particular branch-

length cutoff. In other words, control k -mers were picked to exactly match length,

GC content, and PUF binding sites, and to closely match the expected conservation

rate based on the dinucleotide content. The background estimate was the number

of occurrences of the k -mer multiplied by the average fraction of sites conserved in

control k -mers at the same branch length. As done for the signal, background was

determined for each UTR bin separately, and then at each branch length, background

from the 10 UTR bins was summed to generate the overall background distribution.

At each branch length, confidence intervals were calculated using the Gaussian distri-

bution with mean equal to the background estimate and standard deviation calculated

using the background estimates given by individual control k -mers as opposed to the

average over all 50.
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2.3.4 Seed-match types

For the five major seed-match types (8mer, 7mer-m8, 7mer-A1, 6mer, offset 6mer),

raw signal and background values were calculated without regard to whether a shorter

seed match was nested within a longer one. Then, for each miRNA and for each

branch-length cutoff, the signal for the 8mer match was subtracted from the signal of

the corresponding 7mer-m8 match, and the 8mer background estimate was subtracted

from the 7mer-m8 estimate. Similarly, 8mer signal and background were subtracted

from signal and background of the other seed-match types, 7mer-m8 signal and back-

ground were subtracted from that of both 6mers and offset 6mers, and 7mer-A1 signal

and background was subtracted from that of 6mers. In cases in which a particular

seed match could be considered a 7mer-m8 match to one miRNA and a 7mer-A1 to

another miRNA, it was considered only as a 7mer-m8 match to avoid double-counting.

Likewise, seed matches ambiguous between 6mers and offset 6mers were considered

as only 6mers. Seed matches with mismatches, G:U wobbles, or bulges were filtered

so that they did not contain perfect seed matches to other miRNAs.

2.3.5 3′ pairing

Pairing scores (3′) were calculated as previously described (Grimson et al., 2007). For

sites matching miRNA families comprising miRNAs with different 3′ sequences, the

3′-pairing score used was the maximum score for any member of the miRNA family.

The branch length of a site at a particular 3′-pairing score was calculated for the

set of species having both the seed match conserved and a 3′-pairing score at least

that of the human score. Control 3′-pairing scores and conservation were estimated

by swapping every miRNA seed and 3′-end family, and recalculating 3′-pairing scores

for every combination. Background estimate and confidence intervals were calculated

as before, except that there were 86 control 3′-end families for each swap instead of

50 control k -mers. For compensatory pairing sites in Table 1, orthologous sites were

considered conserved if their 3′-pairing score was greater than 6.0, regardless of the

human pairing score. This was done to capture well-conserved human sites that have
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recently extended already strong 3′ pairing.

2.3.6 Probability of conserved targeting

For each human seed-match site, the conservation signal and background were cal-

culated using methods analogous to those described above. Rather than using a

branch-length cutoff, we used a branch-length window with a size set to meet a min-

imum of 20 occurrences of the site in human UTRs and calculated the fraction of

seed matches conserved within the branch-length window. In the few cases with less

than 20 total occurrences of the seed match, all corresponding sites were assigned a

PCT of 0. For the remaining sites, the PCT was defined as E[(S − B)/S] where B,

the background estimate, is a constant, and S is a random variable. S is defined

as maxSobs/N,B, where Sobs is the observed signal and N is the total number of

occurrences, distributed around the observed total Nobs as Poisson(Nobs). Because

the background estimate is based on a mean of many measurements, but the signal

is based on a single observation, we fix the number of conserved occurrences (Sobs)

and allow the total number of occurrences (N) to vary. Thus, the PCT , which ranges

between 0 and 1, corresponds to a Bayesian estimate of the probability that a site

conserved to a particular branch length is conserved due to miRNA targeting. For

some miRNAs, we observed high variability of PCT values for sites with close branch-

length values; therefore, we implemented a smoothing procedure when deriving PCT

values reported at the TargetScan site (Supplemental Discussion).
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site. For each UTR bin 1 through 10, with bin 1 having the least conserved UTRs and bin 10 the most conserved, the
number of miR-1 sites conserved at the indicated branch-length cutoff is plotted with estimated background (small
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plot).
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Figure 2-2: Conservation of major seed-match types. (A) Conservation of 8mer sites for 87 broadly conserved
miRNA families. High-sensitivity and high-specificity cutoffs are highlighted with broken lines at 1.0 and 2.0, respec-

tively. (B) Conservation and background estimate for mutually exclusive site types at high sensitivity (left) and high
specificity (right). The signal-to-background ratio is indicated above the pair of bars. Error bars indicate one stan-

dard deviation in the estimated background, based on subsampling of individual control k -mers. (C) Efficacy of offset
6mer sites. Microarray data monitoring mRNA destabilization following transfection of 11 miRNAs was analyzed as
described previously (Grimson et al. 2007). Shown is the cumulative distribution of changes for transcripts contain-

ing exactly one offset 6mer site and no other canonical sites in their 3′ UTR. For comparison, previously reported

analyses of messages with single canonical sites are also shown (Grimson et al. 2007). (D) Signal-to-background ratio
for indicated sites at increasing branch-length cutoff. Broken lines indicate 5% lower confidence limit (z -test). (E)

Correlation of site conservation rate and experimental efficacy. Fraction of sites conserved above background was
calculated as ([SignalBackground]/Signal) at a branch-length cutoff of 1.0. The minimal fraction of sites conferring
destabilization was determined from the cumulative distributions (C), considering the maximal vertical displacement

from the no-site distribution (correcting for the bumpiness of the distributions as described previously (Grimson et al.
2007)). (F) Estimates of signal above background for the major site types. Broken lines indicate 5% lower confidence
limit (z -test). (G) Aggregate conservation above background for all major site types when using using subsets of
genomes. To facilitate overlay of the plots, the X-axis is signal-to-background ratio rather than branch-length cutoff.
The 14-genome subset represents the non-fish species originally available in the UCSC 17-way alignments. The five-

genome subset contains human, mouse, rat, dog, and chicken, and the two-genome subset contains only human and

mouse. 70



Branch-length cutoff

 
0 1 2 3 4

S
ig

n
a

l 
a

b
o

v
e

 n
o

is
e

Branch-length cutoff

 

B

0

2000

4000

6000

8000

10,000

8mer with mismatch

8mer with G:U wobble

7mer with bulge in miRNA

A
6mer seed match

8mer, bulge in site

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
ig

n
a

l-
to

-b
a

c
k
g

ro
u

n
d

 r
a

ti
o

0 1 2 3

6mer seed match

8mer with bulge in site
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2.7 Tables

Table 2.1: Conserved sites with imperfect seed pairing and high 3′ -pairing scores.
Listed are all 7mer and 8mer G:U wobble sites with 3′ -pairing score ≥ 6.0 and branch
length ≥ 1.0. Also listed are all 7mer and 8mer mismatched sites that meet the above
criteria and have human 3’-pairing score ≥ 7.0.

3′ -Pairing score Branch length miRNA Refseq ID Gene Name Seed type
9.0 1.85 miR-196a NM 024016 HOXB8 8mer GU wobble
7.5 1.2 miR-145 NM 030809 FAM130A1 8mer Mismatch
7.0 3.25 miR-365 NM 002398 MEIS1 8mer Mismatch
7.0 2.6 miR-519d NM 153020 RBM24 8mer Mismatch
7.0 1.85 miR-153 NM 032521 PARD6B 7mer Mismatch
7.0 1.6 miR-590-5p NM 033656 BRWD1 7mer Mismatch
7.0 1.35 miR-29b NM 024834 C10orf119 7mer Mismatch
7.0 1.15 miR-222 NM 002855 PVRL1 8mer Mismatch
6.5 1.7 miR-19b NM 017637 BNC2 8mer GU wobble
6.5 1.5 miR-613 NM 014903 NAV3 7mer GU wobble
6.5 1.35 miR-191 NM 134265 WSB1 7mer GU wobble
6.5 1.3 miR-15b NM 001039590 USP9X 7mer GU wobble
6.5 1.15 miR-145 NM 001039457 ATP6V0B 7mer GU wobble
6.0 3.5 miR-301a NM 022893 BCL11A 7mer GU wobble
6.0 3.45 miR-196a NM 022658 HOXC8 8mer GU wobble
6.0 3.4 miR-19a NM 016396 CTDSPL2 7mer GU wobble
6.0 2.95 miR-20a NM 015215 CAMTA1 8mer GU wobble
6.0 2.55 miR-130a NM 004721 MAP3K13 7mer GU wobble
6.0 2.15 miR-106b NM 020814 MARCH4 7mer GU wobble
6.0 2.15 miR-424 NM 001418 EIF4G2 8mer GU wobble
6.0 2.1 miR-302d NM 002024 FMR1 7mer GU wobble
6.0 1.8 miR-520e NM 014494 TNRC6A 7mer GU wobble
6.0 1.75 miR-190 NM 001003652 SMAD2 8mer GU wobble
6.0 1.55 miR-424 NM 007374 SIX6 7mer GU wobble
6.0 1.3 miR-130a NM 012308 FBXL11 7mer GU wobble
6.0 1.25 miR-519d NM 005808 CTDSPL 8mer GU wobble
6.0 1.2 miR-190 NM 201572 CACNB2 8mer GU wobble
6.0 1.2 miR-519d NM 001012393 OPCML 7mer GU wobble
6.0 1.15 miR-15b NM 152277 UBTD2 7mer GU wobble
6.0 1.1 miR-129-5p NM 020801 ARRDC3 7mer GU wobble
6.0 1.1 miR-33a NM 178826 TMEM16D 7mer GU wobble
6.0 1.05 miR-302c NM 015215 CAMTA1 7mer GU wobble
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Chapter 3

The evolution of microRNA targeting

3.1 Introduction

In recent years, the principles of miRNA targeting have become increasingly clear.

The importance of seed matches, their relative efficacy, and the extent of pairing to

the 3′ end of the miRNA have all been verified by a number of methods. Conserva-

tion analysis, global analysis of gene expression changes following miRNA or siRNA

transfection, and knockdown of individual miRNAs are among the most prominent

(Lewis et al., 2005; Grimson et al., 2007; Nielsen et al., 2007; Baek et al., 2008; Selbach

et al., 2008). The majority of this information comes from experiments in mammals,

with a minority in Drosophila (Bartel, 2009). Despite the crucial role that C. ele-

gans genetics has had in elucidating miRNAs and their functions (Lee et al., 1993;

Wightman et al., 1993; Reinhart et al., 2000; Pasquinelli et al., 2000; Lagos-Quintana

et al., 2001; Lau et al., 2001), there is little known about the role of seed match types,

target pairing rules, or the relative efficacy of miRNA targets in C. elegans. This is

in part because the lack of cell lines and in vitro extract systems make the necessary

biochemistry more difficult in nematodes compared to other model organisms.

Conservation is an attractive approach for assessing similarities and differences

in miRNA targeting rules between clades, especially in model systems lacking other

experimental tools. This has been difficult in C. elegans until now because of the

extremely poor annotations of 3′ UTRs. However, a recent technique for the genome-

wide experimental determination of 3′ UTRs has recently been applied to C. elegans,
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yielding nearly ten thousand high-quality 3′ UTR annotations (C. Jan, in prepara-

tion). Interestingly, C. elegans 3′ UTRs are far shorter than those in mammals or

insects, more closely resembling the UTRs of S. cerevisiae than of other metazoans.

Given the widespread impact of miRNAs on 3′ UTR evolution in mammals and fruit-

flies (Farh et al., 2005; Stark et al., 2005), this raised the obvious question of whether

the mean 3′ UTR length in a species correlated with any miRNA targeting phe-

nomena. Intriguingly, proliferating mammalian cells express messenger RNAs with

shorter 3′ UTRs on average, which can play a role in oncogenesis (Sandberg et al.,

2008; Mayr and Bartel, 2009). We set out to exploit the wide variation in 3′ UTR

lengths between species to learn underlying principles of the co-evolution of 3′ UTR

length and miRNA targeting, which might apply also to cell types in the same species

expressing messages with different 3′ UTR lengths.

Having recently determined the extent of conserved miRNA targeting in verte-

brates (Friedman et al., 2009), here we apply similar methods to verify the impor-

tance of seed matches in C. elegans. We discover new seed match types that are

preferentially conserved in C. elegans but not in vertebrates or flies. Despite several

genetically-identified 3′ compensatory targets in nematodes (Reinhart et al., 2000;

Abrahante et al., 2003; Vella et al., 2004), we find that these form an extremely small

class of preferentially conserved nematode miRNA targets. We find genome-wide

evidence for nearly a thousand lineage-specific targets for C. elegans that are not

conserved in other nematodes. Finally, we discover that miRNA target efficacy and

density vary as a function of 3′ UTR length and present a model for the co-evolution

of these parameters.
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3.2 Results

3.2.1 Widespread conservation of miRNA seed matches in

nematodes

Having determined the set of C. elegans 3′ UTRs (C. Jan, personal communication),

we investigated the impact of miRNA targeting on the evolution of those 3′ UTRs.

We applied an algorithm for detecting miRNA seed match conservation described

previously (Friedman et al., 2009, chapter 2) to multiple alignments of six nematode

genomes (Figure 3-1A). Although there are far fewer nematode genomes available

than vertebrate genomes, the method was not strongly sensitive to the number of

genomes, and the evolutionary time covered by the phylogeny was comparable to

that for the vertebrates. Briefly, we quantified the extent to which any k -mer was

conserved using a branch-length score over phylogenies controlled for local conser-

vation rates. Because a sequence can be conserved for many reasons other than

microRNA targeting, we interpreted the conservation scores by comparing them to

background conservation estimated from cohorts of control k -mers, selected for simi-

lar expected conservation based on their dinucleotide content. Thus, after controlling

for local conservation rates, sequence composition, seed match type, and phyloge-

netic structure, any difference between the conservation of a miRNA seed match and

its background conservation can be attributed to selective maintenance of miRNA

targeting by natural selection.

We applied this method to sequences complementary to the 58 C. elegans miRNA

families that are conserved to C. briggsae (Supplemental table 3.3). Examining the

conservation above background of hexamers complementary to any region of the mi-

RNAs revealed strong, statistically significant, and specific conservation for sequences

matching the seed of the miRNA, nucleotides 2 through 7 (Supplemental figure 3-4).

We noted that matches to position 1 through 6 of the miRNA were also significantly

conserved above background, even when excluding matches to position 7 (full seed

matches). In contrast, matches to positions 1 to 6 are not conserved above background
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levels in vertebrates (Friedman et al., 2009, Appendix A). As a result, we investigated

the role of the nucleotide opposite position 1 of the miRNA. In vertebrates, miRNA

seed matches are more often conserved and confer more transcript downregulation

if they have an adenosine in this position than if they have a Watson-Crick match

(Lewis et al., 2005; Nielsen et al., 2007; Grimson et al., 2007). Surprisingly, we found

that in worms matches to positions 2-8 were nearly equally conserved when flanked by

an adenosine or a uridine, whereas we observed a strong preference for an adenosine

in vertebrates (Figure 3-1C). Interestingly, recent expression profiling in miR-124

knockout worms showed a targeting preference for uridines opposite position 1 (Clark

et al., 2010). In contrast to the slight preference for adenosines and uridines flanking

matches to positions 2-8, matches to positions 2-7 or 2-6 only showed a clear preference

for an adenosine opposite position 1 (Supplemental figure 3-5A). Because most C.

elegans miRNAs have a 5′ uridine, the preference for adenosines flanking 2-6 or 2-7

matches could be due to Watson-Crick interactions. However, when examining the set

of seven conserved miRNAs that do not have a 5′ uridine, we observed a statistically

significant preference for an adenosine rather than a Watson-Crick match opposite

position 1 of the miRNA (Supplemental figure 3-5B).

In total, we found evidence for substantial and statistically significant conserva-

tion above background of six seed match types (Figure 3-1B), including two that have

not been observed in genome-wide analysis of vertebrate targeting: the 8mer-U1 and

the 6mer-A1. We observed statistically significant conservation for hexamer matches

to nucleotides 3-8 or 4-9 as well, although the signal-to-background ratios for these

shifted hexamer seed matches were low enough to have little use for target prediction

(Supplemental figure 3-4). Because the 8mer-U1 and 6mer-A1 have no genome-wide

experimental support for efficacy, we tested these new seed match types using two

sources of data: an alg-1 cross-linking immunoprecipitation (CLIP) experiment, rep-

resenting the genome-wide targeting preferences of miRNAs in C. elegans (Zisoulis

et al., 2010), and a miR-124 knockout experiment (Clark et al., 2010). We found

significant enrichment of known seed match types as well as of 8mer-U1 seed matches

in alg-1 CLIP tag clusters, but not of 7mer-U1 or 6mer-U1 matches (Table 3.1).
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The 6mer-A1 matches failed to achieve statistical significance, but were still clearly

enriched more than matches to nucleotides 2-5 flanked by other nucleotides oppo-

site position 1 of the microRNA. In miR-124 knockout cells, mRNAs containing any

seed match type including the 8mer-U1 and 6mer-A1 were significantly de-repressed

(Figure 3-1D). Therefore, we performed further analyses using the set of seven seed

match types with strong evidence for preferential conservation as well as experimental

evidence for in vivo targeting (Figure 3-1B).

We next addressed the relative importance of the seed match types in nematode

miRNA targeting. The signal-to-background ratios, or fold-enrichment of conserva-

tion, of the seed matches form a natural hierarchy at moderate branch-length cutoffs,

with 8mers conserved at a higher rate than 7mers, which were conserved more than

6mers (Figure 3-2A). In vertebrates, a similar ranking was observed, corresponding

precisely to the experimentally measured efficacy of the seed match types in human

cells (Friedman et al., 2009, Figure 2-2E). Therefore, we predict that the hierarchy of

seed match type efficacy is qualitatively similar between nematodes and vertebrates.

With the seed match types confidently annotated, we examined the scope of se-

lectively maintained miRNA targeting. Each seed match type has over 600 sites

confidently conserved above background levels (Figure 3-2B). Combining the signal

and background from each seed match type at a sensitive branch-length cutoff of

0.5, we find 8,993 ± 278 more seed matches conserved than background controls,

representing our estimate for the number of selectively maintained target sites. This

corresponds to an average of 0.55 ± 0.02 target sites per C. elegans UTR. In order

to estimate the number of genes targeted by selectively maintained seed matches, for

each seed match type at each UTR conservation level, we randomly selected con-

served sites totaling the signal above background and asked how many genes were

represented by the target sites. This yielded 4,934 ± 670 genes with conserved seed

matches, or 29.9% ± 4.1% of the dataset. While similar methods had found 57.8%

± 3.0% human genes targeted, we can predict that the estimate for the number of

nematode genes targeted will rise slightly when more genomes become available for

comparison.
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3.2.2 Detectable but weak conservation of pairing to the 3′

end of microRNAs

In light of strong genetic evidence for some miRNA targets with mismatches or bulges

disrupting seed pairing in C. elegans, compensated by strong pairing to the 3′ end of

the miRNA (Reinhart et al., 2000; Vella et al., 2004), it is possible that these target

types are both broadly effective and well conserved in nematodes. Therefore we next

searched for preferential conservation of imperfect seed matches. As is the case in

vertebrates (Friedman et al., 2009), there were small amounts of conservation for seed

matches with G:U wobbles or bulges in the target, but less than 400 of these imperfect

seed match sites are conserved above background levels(Figure 3-6). There was no

significant conservation above background for sites with other mismatches or bulges

on the miRNA side of the duplex (data not shown). These analyses only required

that the position of the bulged or mismatched nucleotide be conserved, not that the

nucleotide itself be conserved.

In vertebrates, pairing to the 3′ end of the miRNA has been shown to supplement

seed matches or compensate for imperfect seed matches, increasing the efficacy of

miRNA targets (Grimson et al., 2007). We next examined whether this could also be

a targeting determinant in nematodes. Querying the flanking sequences of conserved

seed matches using a model for conserved 3′ pairing previously developed (Friedman

et al., 2009), we see statistically significant conservation totaling over 50 sites at a 95%

confidence level (Supplemental figure 3-7). This supplementary targeting remains an

extremely small class compared to the number of seed match target sites. Imperfect

seed matches are also flanked by a small amount of conserved 3′ pairing, although

there was no pairing cutoff or conservation cutoff that yielded more than 15 sites of

compensatory pairing conserved above background at 95% confidence (Supplemental

figure 3-8).

Even if there are a small number of 3′ compensatory targets in nematodes, perhaps

the most significant members of the class are both conserved above background and

biologically relevant. Indeed, we found seven conserved instances with a 3′ pairing

84



score of at least six, compared to zero instances for shuffled control cohorts (Table

3.2). Notably, the top three of these targets are the two let-7 target sites in lin-41 and

the let-7 target site in hbl-1, all of which have been genetically identified (Reinhart

et al., 2000; Abrahante et al., 2003; Vella et al., 2004). We therefore predict that

the remaining four sites could have important regulatory roles as well. In addition,

we found seven sites with bulges (whether on the miRNA or target side) with a 3′

pairing score of at least five and a branch length score of at least 1.0, compared with

about two expected by chance. Interestingly, we predict that miR-45 targets lin-14 at

the exact 3′ end of its 3′ UTR via a compensatory site. Therefore we conclude that

strong 3′ compensatory sites form a tiny but interesting class of conserved miRNA

targets in C. elegans.

3.2.3 Short 3′ UTRs are associated with a higher seed match

density and greater relative usage of weak seed matches

Because 3′ UTRs contain important regulatory information both in nematodes and

vertebrates, one expects differences in UTR length to have substantial functional and

evolutionary consequences. C. elegans UTRs have a median length of 115 nucleotides,

compared to 224 in D. melanogaster and 733 in H. sapiens. We therefore used miRNA

seed matches as a case study for the functional impact of varying 3′ UTR length. Al-

though C. elegans 3′ UTRs contain fewer selectively conserved miRNA seed matches

than human 3′ UTRs (149 compared with 534 per conserved miRNA family), the

density is far higher in C. elegans (50.8 compared with 26.2 per conserved miRNA

family per megabase 3′ UTR, Figure 3-3A, top). Given that conserved miRNA tar-

gets are rare at the extreme ends of human 3′ UTRs, one possible explanation is that

this space is made available for miRNA targeting in C. elegans. However, there is no

increase in seed match density in the first 15 nucleotides of the UTR, known as the

“ribosomal shadow” (Supplemental figure 3-9A), or after the polyadenylation signal

(Supplemental figure 3-9B). Because the polyadenylation signal occurs closer to the

3′ end of C. elegans UTRs than human UTRs, there is an increase of effective UTR
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of about 5 nucleotides per gene, but only enough to explain a 3% increase in target

density. Thus, we conclude that the increase in conserved seed match density is due

to selective pressure to maintain miRNA targeting despite the small 3′ UTRs.

Because our miRNA target prediction approach can only find substantially con-

served targets, we also considered the evolutionary footprint of non-conserved seed

matches. We observed that miRNA seed matches, particularly 8mers, occurred at

a higher density than expected by chance in C. elegans 3′ UTRs but not human 3′

UTRs (Figure 3-3A, bottom). This increase was specific to 3′ UTRs, and was highly

significant relative to a first-order Markov model or to control 8mers with similar

expected occurrence rates (Supplemental figure 3-10). The high rate of occurrence of

miRNA seed matches in C. elegans can be explained by decreased mutation away from

seed matches. In humans, both conserved and non-conserved miRNA seed matches

have a widespread impact on mRNAs and protein levels (Farh et al., 2005; Baek

et al., 2008). As a result, there is a strong evolutionary pressure for many 3′ UTRs

to mutate seed matches, creating “anti-targets”. The selective pressure to maintain

beneficial seed matches is balanced in humans by the selective pressure to avoid detri-

mental seed matches, resulting in no net enrichment of miRNA seed matches in 3′

UTRs (Figure 3-3B, 3-10). In C. elegans, beneficial seed matches still occur at a

high density in a high percentage of genes. However, detrimental seed matches are

expected to occur at a lower rate, simply because the 3′ UTRs are shorter. Hence,

the evolutionary impact of anti-targets is smaller and the resulting selective pressure

in balance is to maintain seed matches, leading to their overall enrichment (Figure

3-3B). If this model is true, then miRNA seed match enrichment should be a general

property of short 3′ UTRs in any context, assuming comparable numbers of selec-

tively maintained miRNA targets. We tested this hypothesis by assembling a set of

validated Refseq annotations and conserved miRNA families for various vertebrate

species (Supplemental table 3.4). Using this dataset, we found that the enrichment

of 8mer seed matches correlated with the mean 3′ UTR length of the species (Fig-

ure 3-3C). The property of enrichment should also occur for short 3′ UTRs within a

species, again assuming comparable numbers of selectively maintained seed matches
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in short and long 3′ UTRs. Indeed, binning C. elegans, human, or D. melanogaster

3′ UTRs by their length, we consistently observe the greatest enrichment of miRNA

seed matches in the shortest UTRs (Figure 3-3D).

There are 1,155 occurrences of 8mer-A1 seed matches in excess of those expected

to occur by chance in C. elegans 3′ UTRs, presumably due to preferential maintenance

of conserved beneficial miRNA targets. However, we found evidence for only 784 8mer

seed matches conserved above background levels by our metrics (Figure 3-2B). This

left a balance of 371 seed matches with evidence of selective maintenance but without

evidence for conservation in the whole-genome alignments. Noting that the closest

relatives of C. elegans in our phylogeny are separated by an evolutionary distance

comparable to the distance between human and mouse, it is likely that many such

targets are conserved between C. elegans and closely related nematodes that are not

represented in the phylogeny. We therefore predict that at least 371 seed matches

are preferentially conserved in a lineage-specific manner, i.e. within the C. elegans

lineage as represented in our phylogeny.

Despite the high density of seed matches within C. elegans 3′ UTRs, the total

number of seed matches is still roughly four-fold less than in vertebrates. Because

miRNAs are expressed in nematodes at a similar copy number per cell as in humans

(Lim et al., 2003), this signifies a greater number of miRNA molecules per seed match

in nematode cells compared to human cells. As a result, one might speculate that

the miRNA silencing complex begins to saturate the strongest mRNA binding sites,

freeing more of the silencing complex to target weaker binding sites. Under this

model, when UTRs are shorter, the differences in efficacy between seed match types

become smaller, because weaker seed match types are targeted more often. Indeed, we

observe that 6mer and 7mer seed matches are relatively more conserved in nematodes

than in vertebrates (Figure 3-3E). As a further test, we applied our method for finding

conserved seed matches to a set of 16 drosophila species using D. melanogaster Refseq

3′ UTR annotations and 51 conserved drosophila miRNA families. Drosophila 3′

UTRs have a median length of 224, intermediate between human and C. elegans 3′

UTRs (733 and 115, respectively). Likewise, the drosophila 7mer and 6mer seed
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match types have more preferential conservation than in vertebrates, but less than in

nematodes. Thus, we propose that increased relative efficacy of marginal seed match

types is a general property of cells containing short 3′ UTRs.

3.3 Discussion

Taking advantage of experimentally determined 3′ UTRs, we used a conservation

approach to examine the specificity of miRNA targeting in C. elegans. We found

that the rules for miRNA targeting elucidated in vertebrates generally hold true in

nematodes, including the hierarchy in which 8mer seed matches are more conserved

than 7mers or 6mers. However, there were some notable differences in specificity,

including strong conservation for two new seed match types, the 8mer-U1 and the

6mer-A1. The in vivo efficacy of these new seed matches was verified by derepression

of targets in a miRNA knockout context (Clark et al., 2010) and by enriched binding

in a cross-linking experiment (Zisoulis et al., 2010). We also show that despite their

prominance in the C. elegans miRNA targeting literature, 3′ compensatory targets

represent a tiny portion of all conserved nematode miRNA targeting. We find evi-

dence for widespread conserved miRNA targeting in nematodes, with nearly 150 seed

matches conserved above background per miRNA family, and over 40% of C. elegans

mRNAs as conserved targets of miRNAs. In addition, we find the first genome-wide

evidence for selective maintenance of lineage-specific targeting, totalling over 350

8mer seed matches in C. elegans. Presumably, this lineage-specific targeting extends

to many more 7mer and 6mer seed matches, despite the fact that we cannot observe

their enrichment in 3′ UTRs due to a higher level of neutral occurrences and anti-

targeting. Therefore, we expect that lineage-specific selective maintenance of seed

matches forms a large class of miRNA targeting in C. elegans rivaling the extent of

broadly conserved seed matches. It is tempting to speculate that this is true in other

lineages, such as primates.

We find two properties that consistently correlate with the mean 3′ UTR length

of a species. First, the density of seed matches, whether conserved or non-conserved,
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is increased in species with short 3′ UTRs. We proposed a model in which UTR

shortening contributes to avoidance of deleterious seed matches, as opposed to the

more familiar mechanism of avoidance by mutation. This model predicts that seed

matches will be enriched in all contexts when 3′ UTRs are short but miRNAs are

still relatively highly expressed. Indeed, the property holds when comparing between

several species and also when comparing genes with varying UTR lengths within a

species. Stark et al. (2005) previously observed that housekeeping genes have short

3′ UTRs and further avoid miRNA seed matches by mutation, presumably due to

evolutionary pressure to maintain high levels of expression. In the case of C. elegans,

the short 3′ UTRs may be due to selection to maintain a small genome size, especially

given the extremely small size of intergenic regions. However, this does not affect our

model because it predicts enrichment of seed matches as a consequence, not a cause, of

short 3′ UTRs. One crucial assumption of this model is that the number of beneficial

miRNA seed matches is not linearly proportional to 3′ UTR length. The fact that

the 3′ UTR length is correlated with both non-conserved and conserved seed match

density (Figure 3-3A) suggests that this assumption is reasonable.

The second property correlated with 3′ UTR length was the conservation signal-

to-background ratio of weaker seed matches such as 6mers and 7mers (Figure 3-3E).

Given that the efficacy of seed match types correlates well with their conservation

above background (Friedman et al., 2009), the higher conservation of marginal seed

matches could be explained by an increased number of miRNA molecules relative to

the amount of expressed 3′ UTR sequence. Although there are far fewer seed matches

in C. elegans 3′ UTRs than in human 3′ UTRs, miRNAs are expressed at similar levels

between these species (Lim et al., 2003). As a result, miRNAs may begin to saturate

the strongest targets (8mer-A1 sites), leaving a higher effective concentration to target

7mers and 6mers. One interesting question is the extent to which this phenomenon

causes new seed match types such as the 6mer-A1 to become effective, relative to

differences in Argonaute proteins that enable the efficacy of these new target types.

The principles learned here have implications both for the use of C. elegans as

a model system for miRNA targeting, as well as for the evolution of 3′ UTRs in
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general. Although miRNA targeting in nematodes largely follows the same rules

as in vertebrates, the differences highlighted here should be taken into account when

generalizing interactions and mechanisms across species. In contrast, the conservation

of seed matches we found in the Drosophila clade qualitatively mirrored the results

in vertebrates more closely, suggesting that results from fruitfly miRNA experiments

may generalize slightly better to mammals. The co-evolution of miRNAs and 3′

UTR length has become more interesting in light of recent evidence that widespread

shortening of 3′ UTRs is involved in proliferation and oncogenesis (Sandberg et al.,

2008; Mayr and Bartel, 2009). Evolutionary pressures to maintain or avoid miRNA

targeting act along a continuum of UTR lengths expressed under various physiological

conditions in humans. Our model predicts that under any conditions in which 3′

UTRs are shorter, there may be a higher density of miRNA seed matches and weaker

seed matches may be more effective. As cancers decrease their 3′ UTR lengths, they

may experience an increase in the efficacy of weak miRNA seed matches, causing

widespread misregulation of gene expression. This may be a partial explanation for

the observation that overall miRNA expression levels are generally lower in cancers

(Lu et al., 2005).

3.4 Methods

3.4.1 Datasets and conservation

3′ UTR annotations were based on a dataset of experimentally determined 3′ ends for

C. elegans (C. Jan, in preparation), or RefSeq annotations for D. melanogaster. 3′

UTR alignments were extracted from Multi-Z alignments, (6-way for nematodes, 15

way for drosophila) from the UCSC genome browser. Conservation analysis was done

exactly as in Friedman et al. (2009) (Chapter 2), except that 5 UTR conservation

bins were used for D. melanogaster, and 4 UTR bins for C. elegans. This was to

compensate for the smaller total sequence space of 3′ UTRs in these species.
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3.4.2 Enrichment of k-mers

For each set of seed matches, 1000 cohorts of control k -mers were chosen to match the

seed match length, number of G+C nucleotides, and number of CpG dinucleotides.

An enrichment is calculated by taking the ratio of the number of seed match occur-

rences in a given region to the mean number of occurrences for the controls. The

p-value is generated by counting the fraction of control cohorts with more extreme

observed / expected occurrence ratios (based on a first-order Markov model) than

the seed matches.

3.4.3 Microarray analysis

Microarrays following miR-124 knockout (Clark et al., 2010) were analyzed by select-

ing sets of genes for each seed match. Set consists of genes with exactly one 3′ UTR

seed match of a given type and no other matches of any type. The background was

based on genes with no seed matches of any type in their 3′ UTRs. Only the top 50%

of genes in terms of expression are analyzed.
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The microRNA miR-124 controls gene expression in the sensory nervous system of
Caenorhabditis elegans. Nucleic acids research, Feb 2010. doi: 10.1093/nar/gkq083.

91



K. K.-H. Farh, A. Grimson, C. Jan, B. P. Lewis, W. K. Johnston, L. P. Lim, C. B.
Burge, and D. P. Bartel. The widespread impact of mammalian MicroRNAs on
mRNA repression and evolution. Science, 310(5755):1817–21, Dec 2005. doi: 10.
1126/science.1121158.

R. C. Friedman, K. K.-H. Farh, C. B. Burge, and D. P. Bartel. Most mammalian
mRNAs are conserved targets of microRNAs. Genome Res, 19(1):92–105, Jan 2009.
doi: 10.1101/gr.082701.108.

A. Grimson, K. K.-H. Farh, W. K. Johnston, P. Garrett-Engele, L. P. Lim, and D. P.
Bartel. MicroRNA targeting specificity in mammals: determinants beyond seed
pairing. Molecular Cell, 27(1):91–105, Jul 2007. doi: 10.1016/j.molcel.2007.06.017.

M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl. Identification of novel
genes coding for small expressed RNAs. Science, 294(5543):853–8, Oct 2001. doi:
10.1126/science.1064921.

N. C. Lau, L. P. Lim, E. G. Weinstein, and D. P. Bartel. An abundant class of
tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294
(5543):858–62, Oct 2001. doi: 10.1126/science.1065062.

R. C. Lee, R. L. Feinbaum, and V. Ambros. The C. elegans heterochronic gene lin-4
encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5):843–54,
Dec 1993.

B. P. Lewis, C. B. Burge, and D. P. Bartel. Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA targets. Cell,
120(1):15–20, Jan 2005. doi: 10.1016/j.cell.2004.12.035.

L. P. Lim, N. C. Lau, E. G. Weinstein, A. Abdelhakim, S. Yekta, M. W. Rhoades,
C. B. Burge, and D. P. Bartel. The microRNAs of Caenorhabditis elegans. Genes
Dev, 17(8):991–1008, Apr 2003. doi: 10.1101/gad.1074403.

J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-
Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, H. R.
Horvitz, and T. R. Golub. MicroRNA expression profiles classify human cancers.
Nature, 435(7043):834–8, Jun 2005. doi: 10.1038/nature03702.

C. Mayr and D. P. Bartel. Widespread shortening of 3’UTRs by alternative cleavage
and polyadenylation activates oncogenes in cancer cells. Cell, 138(4):673–84, Aug
2009. doi: 10.1016/j.cell.2009.06.016.

C. B. Nielsen, N. Shomron, R. Sandberg, E. Hornstein, J. Kitzman, and C. B. Burge.
Determinants of targeting by endogenous and exogenous microRNAs and siRNAs.
RNA, 13(11):1894–910, Nov 2007. doi: 10.1261/rna.768207.

A. E. Pasquinelli, B. J. Reinhart, F. Slack, M. Q. Martindale, M. I. Kuroda, B. Maller,
D. C. Hayward, E. E. Ball, B. Degnan, P. Müller, J. Spring, A. Srinivasan, M. Fish-
man, J. Finnerty, J. Corbo, M. Levine, P. Leahy, E. Davidson, and G. Ruvkun.

92



Conservation of the sequence and temporal expression of let-7 heterochronic regu-
latory RNA. Nature, 408(6808):86–9, Nov 2000. doi: 10.1038/35040556.

B. J. Reinhart, F. J. Slack, M. Basson, A. E. Pasquinelli, J. C. Bettinger, A. E.
Rougvie, H. R. Horvitz, and G. Ruvkun. The 21-nucleotide let-7 RNA regulates
developmental timing in Caenorhabditis elegans. Nature, 403(6772):901–6, Feb
2000. doi: 10.1038/35002607.

R. Sandberg, J. R. Neilson, A. Sarma, P. A. Sharp, and C. B. Burge. Proliferating
cells express mRNAs with shortened 3’ untranslated regions and fewer microRNA
target sites. Science, 320(5883):1643–7, Jun 2008. doi: 10.1126/science.1155390.
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Figure 3-1: A) Phylogeny of six nematode species with sequenced genomes. B) Schematic of selected seed match
types with conservation evidence in C. elegans. Watson-Crick (WC) matches to the miRNA seed can be flanked by
adenosines at position 1 or a WC match at position 8. There are also two off-register match types, the offset 6mer and

the 6mer-A1. C) Assessment of “t1A” effect in vertebrates and nematodes. Conservation signal-to-background ratio
of matches to nucleotides 2-8 flanked by specific nucleotides opposite position 1 is plotted as a function of conservation

stringency. Broken lines indicate 5% lower confidence limit (z-test). D) Cumulative distribution functions for gene
expression differences after miR-124 knockout in C. elegans (Clark et al. 2010). Each gene in a set has exactly one
3′ UTR seed match of that type and no other matches of any type. All seed match types plotted are statistically
significant versus messages with no miRNA seed match (Kolmogorov-Smirnov test).
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Figure 3-2: Conservation of C. elegans seed matches in nematodes. A) Conservation signal-to-background ratio

of various seed match types is plotted as a function of conservation stringency (branch-length cutoff). Broken lines
indicate 5% lower confidence limit (z-test). B) Conservation signal above background of seed match types is plotted
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Figure 3-3: Relationship between UTR length and miRNA targeting. A) Density of seed matches in three
clades. Top panel: Number of conserved miRNA seed matches above background at a maximally sensitive branch

length cutoff per miRNA family per kilobase of 3′ UTR. Error bars represent one standard deviation. Bottom panel:

enrichment of seed matches in 3′ UTRs above expectation based on dinucleotide content. Error bars represent one
standard deviation. B) Model for relationship between 3′ UTR and miRNA target evolution. At top, seed matches
are placed randomly in a gene in the 5′ UTR (left), ORF (grey box), and 3′ UTR (right). Deleterious seed matches

can be avoided by either mutating them, leaving a signature of anti-targets (center), or by shortening 3′ UTRs and
re-arranging some beneficial seed matches (bottom). C) Enrichment of 8mer-A1 seed matches in 3′ UTRs above

expectation based on dinucleotide content for five species with validated UTR annotations. D) Enrichment of 8mer-

A1 seed matches in 3′ UTRs within species. For each species, 3′ UTRs are sorted by length into ten bins of equal size,
and the z-score for enrichment in that bin is plotted. E) Relative strength of seed match types across clades. Fraction
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3.7 Tables

Table 3.1: Enrichment of potential seed match types in ALG-1 CLIP tags from
(Zisoulis et al., 2010). For each set of seed matches, 1000 cohorts of control k-
mers were chosen to match the number of G+C nucleotides and the number of CpG
dinucleotides. The observed/expected ratio compares the number of seed match oc-
currences to the mean of the controls, and the p-value represents the fraction of control
cohorts with more extreme observed / expected occurrence ratios. Seed match types
with conservation support are highlighted in bold.

Potential Seed Match type Observed / Expected Ratio P-value
8mer A1 1.46 < 0.001
8mer C1 1.11 0.16
8mer G1 1.13 0.12
8mer U1 1.16 0.03
7mer A1 1.19 < 0.001
7mer C1 1.05 0.30
7mer G1 1.07 0.21
7mer U1 1.05 0.22
6mer A1 1.07 0.07
6mer C1 0.99 0.57
6mer G1 0.99 0.61
6mer U1 1.03 0.29
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Table 3.2: Highly conserved 3′ compensatory targets. Sites with mismatches or bulges
in a seed match but meeting conservation cutoffs providing significant signal above
background are shown. Sites with any mismatch or bulge type having a 3′ pairing
score of at least 6 and a conservation branch length of at least 0.5 are shown. Ad-
ditionally, sites with a bulge, a 3′ pairing score of at least five, and a branch length
score of at least 1.0 are shown.

miRNA Target mRNA Mismatch type Branch length 3′ pairing score
let-7 lin-41 Target bulge 0.9 6.5
let-7 lin-41 7mer G:U wobble 0.9 6.5
let-7 hbl-1 miRNA bulge 0.9 6.5

miR-255 unc-83 Mismatch 1.25 6
miR-356 stn-1 miRNA bulge 1.1 6
miR-75 ZK1127.10 Mismatch 0.9 6
miR-266 ceh-14 G:U wobble 0.5 6
miR-87 pde-4 miRNA bulge 1.25 5.5

miR-1834 ram-2 Target bulge 1.25 5.5
miR-45 lin-14 miRNA bulge 1.1 5.5
miR-90 H28G03.1 miRNA bulge 1.25 5

miR-239b icd-1 miRNA bulge 1.25 5
miR-228 acn-1 miRNA bulge 1.25 5
miR-72 M02B1.2 miRNA bulge 1.05 5
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3.8 Supplemental Figures
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Figure 3-4: Signal-to-background ratios for hexamers complementary to contiguous por-
tions of the microRNA are plotted as a function of branch-length cutoff. All 7mer matches
to the miRNA are excluded from this analysis. Colored broken lines indicate 5% confi-
dence lower bounds. Matches to the canonical seed have the highest conservation above
background levels, while matches to positions 1-6 and 4-9 surprisingly have statistically sig-
nificant conservation above background. These site types have signal-to-background ratios
rivaling or exceeding that of the 3-8 match, which has experimental support in vertebrates.
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Figure 3-5: A) Signal-to-background ratio for matches to nucleotides 2-7 of the miRNA
(left) or 2-6 of the miRNA (right), flanked by specific nucleotides opposite position 1.
Broken lines indicate 5% confidence lower bounds. Matches flanked by an adenosine are
significantly more conserved in both cases. B) As in part A but only for the seven conserved
nematode miRNA families that do not start with a U. The signal-to-background ratio for
Watson-Crick matches to position 1 are less conserved than adenosines at position 1 for
both 7mers and 6mers.
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Figure 3-6: Signal above background for 8mer seed matches with a single nucleotide target
bulge or a single G:U wobble pairing. Each type has statistically significant conservation
above background (broken lines above zero), but a small amount of conservation relative to
a perfect 2-7 6mer match, included for comparison.
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Figure 3-7: Supplemental 3′ pairing conservation. For selected seed match types, signal-to-
background ratio (A) or signal above background (B) is plotted versus the 3′ pairing score
cutoff. The branch-length cutoff used was 0.5, which yielded the maximum statistically-
significant signal above background. There are too few sites to be plotted with a 3′ pairing
score of 5 or greater. Broken lines indicate 5% confidence lower bounds.
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Figure 3-8: Compensatory 3′ pairing conservation. As in figure 3-7, but 3′ pairing flanks
8mer seed matches with a single mismatch, G:U-wobble, bulge on the target or miRNA
side, or 7mer-m8 seed match with G:U-wobble pair. The branch-length cutoff with maximal
statistically-significant signal above background was 1.05, shown here. Again, there were
too few sites meeting a 3′ pairing score cutoff of 5 to plot.
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Figure 3-9: Positional density and conservation of miRNA seed matches. A) 7mer-M8 seed
match occurrence and conservation near the stop codon. Seed matches per base of sequence
per miRNA family are plotted in red (left axis). Mean conservation branch length of seed
matches is plotted in blue, with dinucleotide-matched background mean branch length as
blue dashed line (right axis). The “ribosome shadow” in the first 15 nucleotides of 3′ UTR
affects both seed match density and conservation in both humans and nematodes. B) As in
part A, except that position is relative to the site of cleavage and polyadenylation. C. elegans
have slightly more effective UTR space due to a shorter distance from polyadenylation signal
to the site of cleavage.
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Figure 3-10: Enrichment of 8mer-A1 seed matches in human and C. elegans mRNA regions.
Background expectation is based on 1000 control cohorts of k-mers with matching G+C
content and CpG dinucleotides. Error bars represent one standard deviation. The only
region with statistically significant enrichment of seed matches is C. elegans 3′ UTRs.
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Table 3.3: Conserved nematode miRNA families examined in this chapter. The
common miRNA seed and a list of C. elegans miRNAs comprising the family are
shown.

Seed + nt 8 miRNAs in family
AAAUGCA miR-232
AAAUGCC miR-357
AACUGAA miR-255
AAGCUCG miR-231;miR-787
AAGGCAC miR-124
AAGUGAA miR-86;miR-785
AAUACGU miR-70
AAUACUG miR-236
AAUCUCA miR-259
AAUGCCC miR-786
ACAAAGU miR-85
ACCCGUA miR-51;miR-52;miR-53;miR-54;miR-55;miR-56
ACCCUGU miR-57
ACUGGCC miR-240
AGCACCA miR-49;miR-83
AUCACAG miR-2;miR-43;miR-250;miR-797
AUCAUCG miR-392
AUGACAC miR-63;miR-64;miR-65;miR-66;miR-229
AUGGCAC miR-228
AUUAUGC miR-60
AUUGCAC miR-235
CACAACC miR-67
CACAGGA miR-249
CACCGGG miR-35;miR-36;miR-37;miR-38;miR-39;miR-40;miR-41;miR-42
CACUGGU miR-359
CCCUGAG lin-4;miR-237
CCCUGCC miR-789
CCGCUUC miR-788
CCUUGUU miR-354
CUUUGGU miR-244
GAAAGAC miR-71
GACCGUA miR-360
GACUAGA miR-44;miR-45;miR-61;miR-247
GAGAUCA miR-80;miR-81;miR-82;miR-1834
GAGAUCG miR-58
GAGGUAG let-7;miR-48;miR-84;miR-241;miR-795
GAUAUGU miR-50;miR-62;miR-90
GCAAAUC miR-254
GCAAGAA miR-268
GGAAUGU miR-1;miR-796
GGCAAGA miR-72;miR-73;miR-74;miR-266
GGCACAA miR-784
GGCAGUG miR-34;miR-1824
GUCAUGG miR-46;miR-47
UAAAGCU miR-75;miR-79
UAAGUAG miR-251;miR-252
UACAUGU miR-246
UAUUAGU miR-230
UAUUGCU miR-234
UCAUCAG miR-77
UGAGCAA miR-87;miR-233;miR-356
UGCGUAG miR-242
UUGGCAC miR-790;miR-791
UUGGUCC miR-245
UUGUACU miR-238;miR-239a;miR-239b
UUGUUUU miR-355
UUUGUAU lsy-6
ACAGAAG miR-ruby
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Table 3.4: UTR dataset used in figure 3-3C. For C. elegans, UTRs were annotated us-
ing experimentally-determined 3′ ends (C. Jan, personal communication). For other
species, only Refseq annotations with “validated” status were used. MicroRNA fam-
ilies used were as in (Friedman et al., 2009), table 3.3, or in the case of Drosophila,
all miRNAs with seeds conserved to D. pseudoobscura

Species Number of 3′ UTRs miRNA families
H. sapiens 18,383 87
M. musculus 10,866 87
R. norvegicus 1,542 87

D. melanogaster 9,259 51
C. elegans 8,143 58
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Chapter 4

High-throughput quantitative

measurement of the DNA binding

specificity of the GCN4 transcription

factor

4.1 Abstract

In recent years, progress in determining the binding sites and binding affinities of

transcription factors has accelerated. High-throughput sequencing and microarray

technology have been applied to chromatin immunoprecipitation (ChIP), in vitro

selection, or direct protein binding (protein binding microarrays, or PBMs) to de-

termine transcription factor binding specificity in vivo and in vitro. However, no

method yet exists that is high-throughput, comprehensive, extremely quantitative,

and can measure biophysical parameters of binding directly. Here we present High-

Throughput Sequencing - Fluorescent Ligand Interaction Profiling (HiTS-FLIP), a

new technique that couples high-throughput sequencing with direct visualization of

in vitro transcription factor binding. We apply HiTS-FLIP to S. cerevisiae GCN4,

a transcription factor that acts as a master regulator of the response to amino acid

starvation. With a single flow cell and single experiment, we collect over 440,000,000

direct measurements of Gcn4p binding over a range of concentrations. The measured

intensities predict regions bound in an in vivo ChIP-chip assay better than PBMs or
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other models. Using this data, we reconstruct all known Gcn4p binding preferences

and describe several new features of Gcn4p binding, including an extended consensus

sequence of binding (TATGACTCATA), the global importance of half-site binding

for Gcn4p binding, and interdependencies between individual positions of the binding

motif. We utilize the concentration-dependent binding curves to estimate dissociation

constants for Gcn4p binding to all 10mers. Finally, we show the in vivo relevance of

these intensities, explaining the activation timing of genes following GCN4 induction

using the expected binding affinity of Gcn4p to promoters.

4.2 Introduction

A key goal of systems biology is to gain a global understanding of the regulation of

gene expression by cataloging molecular interactions. Many techniques applied to this

end to date have been high-throughput but not quantitative (e.g. yeast two-hybrid,

affinity co-purification), or quantitative but not high throughput (e.g. surface plas-

mon resonance, gel shift assays). In the case of protein-DNA interactions, methods

such as ChIP-Chip (Ren et al., 2000) and ChIP-Seq (Johnson et al., 2007) enumerate

global in vivo interactions, but often reflect the binding of multi-protein complexes

rather than the direct binding (Gordân et al., 2009). Additionally, ChIP is subject

to biases due to fragmentation, antibody specificity, and differential affinity for pro-

tein confirmations that make quantification difficult. Techniques based on in vitro

selection (Klug and Famulok, 1994) have proven useful for defining consensus bind-

ing preferences, and protein binding microarrays (PBMs) (Mukherjee et al., 2004)

for enumerating all short sequences bound by a protein. Although semi-quantitative,

these methods do not directly observe binding in multiple conditions and therefore

do not provide direct measurement of biophysical parameters. The fully quantitative

and comprehensive binding preferences of transcription factors would be useful for

separating direct from indirect binding (Gordân et al., 2009), for distinguishing con-

text effects such as chromatin structure from binding affinity (Wasson and Hartemink,

2009), and for constraining computational models of transcriptional systems (Endy
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and Brent, 2001).

Here we address this problem by taking advantage of the ease of generating vast

amounts of data using second-generation sequencing technologies such as the Illumina

Genome Analyzer. We describe High-Throughput Sequencing - Fluorescent Ligand

Interaction Profiling (HiTS-FLIP), a general method for the direct and quantitative

measurement of protein-DNA interaction affinities on a scale of hundreds of millions of

datapoints in a single experiment. For the proof of principle experiment, we profile the

binding of GCN4, a yeast transcription factor with a large body of knowledge about

its binding preferences built over three decades of research. GCN4, a basic leucine

zipper protein (bZIP), binds as a dimer to a relatively simple sequence, is itself a

classic example of a translationally regulated mRNA, and is a master regulator of

the response to amino acid starvation with conserved function in mammalian cells

(Hinnebusch, 2005). In a single experiment, we reconstruct all known aspects of

GCN4 binding preferences, learn new subtleties of its specificity, and quantify its

binding affinity to hundreds of thousands of sequences.

4.3 Results

4.3.1 HiTS-FLIP: High-Throughput Sequencing Fluorescent

Ligand Interaction Profiling

The Illumina Genome Analyzer provides well over a hundred million sequences per

run by building clusters of DNA containing the same sequence on a flow cell and

sequencing by synthesis in situ. Nucleotides tagged with individual fluorophores are

added one at a time, and visualized using a charge-coupled device (CCD) camera.

The sequences of each cluster of DNA are then assembled in silico by matching the

fluorescence of each cluster cycle-by-cycle. We reasoned that in analogy to fluorescent

nucleotides, we could add fluorescently tagged proteins to the flow cell, visualize their

binding over every DNA cluster, and match the bound clusters to their sequences

based on their position in the flow cell. Assuming an even coverage over sequence

113



space, one could then observe the unbiased in vitro binding preferences of the tagged

protein. Our procedure was therefore conceptually simple: 1) Build and sequence

over 100 million clusters of random synthetic DNA; 2) Wash away the sequenced

second strand and rebuild double-stranded DNA; 3) Flow on various concentrations

of fluorescently-tagged proteins; 4) Quantify the binding to each cluster by visualizing

fluorescence; and 5) Combine the bound sequences into a comprehensive, quantitative

landscape of binding preferences (Figure 4-1).

4.3.2 Gcn4p binds its canonical motif on flow cells in vitro

We chose to demonstrate the HiTS-FLIP method using S. cerevisiae GCN4, a well-

characterized dimeric bZIP transcription factor and a master regulator of yeast amino

acid biosynthesis (Hinnebusch, 2005). We expressed and purified the GCN4 protein,

Gcn4p, with an mOrange fluorescent tag and applied the HiTS-FLIP method to

a single flow cell of random synthetic 25-mers. We imaged five concentrations of

Gcn4p-mOrange: 1, 5, 25, 125, and 625 nM. After matching the fluorescent intensity

of Gcn4p-mOrange binding to sequencing clusters and normalizing for cluster size

and flow cell position (see supplemental discussion), we were able to quantify the

binding of Gcn4p to over 88 million clusters. Selecting the top 0.5% of clusters by

raw intensity with Gcn4p at a 125nM concentration, the known binding motif of

Gcn4p, TGACTCA (Oliphant et al., 1989), was enriched by 40-fold over its rate of

occurrence in all clusters. An unbiased search for enriched 7mers and by MEME

(Bailey and Elkan, 1994) both found TGACTCA as the top enriched motif (data not

shown).

Because each heptamer occurred roughly 124,000 times on our flow cell, we rea-

soned that subtle preferences for individual sequences would be quantifiable. The

binding intensity of clusters with the Gcn4p binding heptamer did not depend on the

location of the heptamer within the sequence, so we considered the binding intensity

on all clusters containing a given k -mer as equivalent and independent measurements

(see supplemental discussion). Therefore we devised a simple algorithm for quantify-

ing Gcn4p binding preferences for sequences of length k : we searched for the k -mer
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with the highest mean binding intensity, removed the sequences containing that motif,

and repeated to yield a ranked list of k -mers by binding preference. After normal-

izing for cluster size and background fluorescence (see supplemental discussion), we

quantified the binding of the top 10 mutually-exclusive heptamers as well as four

randomly-selected control k -mers with no expected binding to Gcn4p (Figure 4-2).

For the canonical heptamer, we observed concentration-dependent binding ranging

from virtually zero to saturating binding. Other heptamers did not reach saturation,

but exhibited clear concentration dependent binding with a consistent hierarchy of

binding strength regardless of the concentration. Treating each of seven lanes used

in a flow cell as technical replicates, we observed little variability (Figure 4-2, error

bars). Thus, we observed reproducible and consistent rankings of all 8,192 heptamers

(treating reverse complements as equivalent).

4.3.3 The Gcn4p binding motif is surprisingly complex

Previous studies using ChIP-Chip data or protein binding microarrays (PBMs) have

found that the flanking nucleotides of the Gcn4p motif can also affect binding (Hill

et al., 1986; Oliphant et al., 1989; Zhu et al., 2009). Given the vast amount of data

available, we asked to what extent the sequence flanking the canonical heptamer

influenced binding. Because the ranking of k -mers was consistent between concen-

trations, we considered only binding intensities at a single concentration, 125nM, for

this portion of the analysis. We enumerated all single nucleotide extensions of the

canonical motif TGACTCA and asked whether any had a statistically different mean

binding intensity. Four 8mers, representing single-base extensions of the 7mer, had

significantly higher binding intensity. Repeating the procedure with the top scoring

8mers revealed that the near-palindromic 9mer sequence ATGACTCAT had signifi-

cantly higher binding intensity than all 8mers, confirming previously known in vivo

preferences (Hill et al., 1986). Little is known about the binding preferences of Gcn4p

to sequences longer than 9 nucleotides in vitro. We surprisingly found two 10mers,

ATGACTCATA and TATGACTCAT, occurring 1462 and 2241 times on our flow cell

respectively, having significantly higher binding intensity than the highest-scoring
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9mer. Repeating the procedure, we did not find any 11mer motifs with significantly

higher binding than either of the top 10mers. This suggests that noise precludes us

from determining the binding preferences of all 11mers with statistical confidence.

However, we combined the two top 10mers to define a new near-palindromic 11mer

binding consensus for Gcn4p, TATGACTCATA.

We next asked whether sequences that are not canonical GCN4 binding motifs

could nevertheless be bound in vitro and in vivo. We compared the mean binding

intensity of all 8mers with their expected intensity based on a position weight ma-

trix (PWM) developed from ChIP-Chip binding and evolutionary conservation data

(MacIsaac et al., 2006), (Figure 4-3A). The highest ranked 8mer sequences were sim-

ilar for the PWM and for the HiTS-FLIP binding intensity, but the two methods

agreed poorly for hundreds of sequences. The differences between binding on the

flow cell and the expectation based on the PWM could be due to differing conditions

in vitro and in vivo. However, sequences that bind surprisingly well in the HiTS-

FLIP assay, but are expected to bind poorly based on the PWM (Figure 4-3A, red),

are highly enriched in regions recovered in a GCN4 ChIP-Chip experiment following

amino acid starvation (Harbison et al., 2004), (Figure 4-3B, red). In contrast, se-

quences that scored well in the PWM model but had low binding intensity (Figure

4-3A, green) were slightly but not significantly less enriched in ChIP-Chip binding

regions (Figure 4-3B, green). Similar results were found when comparing to a PWM

based on in vitro binding data (Zhu et al., 2009), suggesting that the deficiency was

inherent to the PWM representation and not to the specific method used.

To extend these results, we undertook a systematic comparison between multiple

predictions for GCN4 binding affinity. We ranked all 8mers by their expected binding

strength based on 125nM HiTS-FLIP, the PWM based on ChIP-Chip and conserva-

tion data (MacIsaac et al., 2006), a PWM based on in vitro binding using a protein

binding microarray (PBM) (Zhu et al., 2009), and raw intensities for PBM binding.

The top ranked 8mers for all methods were significantly enriched in the ChIP-Chip

bound regions (Harbison et al., 2004) (Figure 4-3C). HiTS-FLIP found statistically

significant enrichment in the ChIP-Chip binding data for roughly 1,100 8mers, sug-
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gesting that our method was sensitive for weak-binding motifs that are, at least in

aggregate, relevant in vivo. The top 1,000 8mers by HiTS-FLIP had a significantly

higher enrichment than those for PBMs, and equaled the enrichment for the PWM,

despite the fact that the PWM was trained on this same dataset and the HiTS-FLIP

method is completely independent from ChIP-chip.

The fact that both HiTS-FLIP and PBM-based binding intensities for 8mers pre-

dicted in vivo binding enrichment much better than PWMs, even when the PWM was

based on k -mer binding intensities (Zhu et al., 2009), suggested an inherent limitation

of the PWM representation for the Gcn4p binding motif, such as interdependency be-

tween positions of the motif. We next systematically determined the effect of pairwise

mismatches from the consensus 7mer on binding affinity (Figure 4-3D). If each posi-

tion within the consensus sequence were recognized independently of other positions,

then mismatch would reduce the binding affinity by a constant amount regardless

of the identity of the rest of the 7mer. In visual terms, each column in figure 4-3D

would be uniform, whereas rows would be identical. Instead, each half of the 7mer is

nearly independent of the other half, consistent with a model in which a half-site is

the crucial unit of recognition. Gcn4p binds as a dimer in which each subunit prefers

the sequence ATGAC, introducing inherent asymmetry into the binding motif (Sellers

et al., 1990). We confirm that asymmetry with our binding intensities (Supplemental

figure 4-6). Our pairwise interdependencies make sense in light of the binding of a

dimer to two half-sites. Given that a mismatch already exists in the right half of

the sequence, successive mismatches in the right half have a small effect, compared

to mismatches in the left half that would destroy an intact half-site. Corroborating

the model of half-site binding, we found that cumulative mismatches within either

half-site have successively weaker effects (Supplemental figure 4-6). In fact, Hollen-

beck and Oakley (2000) previously showed that Gcn4p dimers can bind to half-sites

in isolation. Clearly this introduces an inherent dependence between positions in the

binding model, since the ATGAC half-sites are nearly independent of each other.

Importantly, this effect cannot easily be captured by considering pairwise or tertiary

dependencies, since each nucleotide of the ATGAC half-site will be dependent on the
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others.

The Gcn4p dimer is also flexible enough to accommodate variable spacing of the

half sites, binding both ATGACTCAT and ATGACGTCAT (Sellers et al., 1990).

HiTS-FLIP confirms these known binding preferences and finds that Gcn4p binds

with surprisingly high affinity to a sequence with an extra nucleotide spacer, yielding

ATGACNGTCAT (Supplemental figure 4-7). To determine whether this binding is

due to simultaneous recognition of a site with a central spacer or two separate half-

sites, we compared the affinity of the sequence with the half-sites in the same orien-

tation (precluding simultaneous binding by a dimer) to the sequence with half-sites

in reverse-complement orientation (potentially permitting simultaneous binding). In

fact, the sequence with the tandem orientation had a significantly higher affinity than

the sequence with reverse-complement orientation, suggesting that the binding to AT-

GACNGTCAT may be due to independent binding to two half-sites (Supplemental

figure 4-7).

4.3.4 Direct measurement of hundreds of thousands of equi-

librium binding constants

A key advantage of the HiTS-FLIP assay is the ability to adjust conditions on the

flow cell and re-image binding. In this work, we demonstrate this ability by alter-

ing the concentration of Gcn4p on the flow cell in order to determine equilibrium

binding constants. By varying the concentration from 1nM to 625nM, we observed

the full range from no appreciable Gcn4p binding to saturation of binding for the

canonical 7mer motif, TGACTCA (Figure 4-2). Other 7mers bound more weakly but

approached the canonical motif’s binding strength at high concentrations. Gcn4p is a

coiled-coil bZIP transcription factor, binding as a dimer. Previous assays have mod-

eled Gcn4p binding as a cooperative process with a Hill coefficient of 2 (Hollenbeck

and Oakley, 2000). To verify this assumption, we fit a curve to the binding intensities

for TGACTCA using the standard Hill equation. The resulting Hill coefficient (h)

of 2.1 was quite close to the 2.0 expected for cooperative binding by a dimer. We
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therefore fixed h to 2.0 and fit curves to data for all 7mers, 8mers, 9mers, and 10mers,

calculating KD values for each. These KD values will be published online separately.

This compendium of dissociation constants represents a quantitative landscape of the

thermodynamic equilibrium of Gcn4p binding on an unprecedented scale. Calculating

these constants for 10mers, for which we had enough statistical power to observe sub-

tle differences in affinity, we have compiled dissociation constants for Gcn4p binding

to 524,800 sequences in a single experiment. We suspect that this represents as many

dissociation constants for pairs of protein and DNA sequence as have been previously

quantified.

4.3.5 Quantitative binding constants reflect in vivo function

While we have shown that the HiTS-FLIP binding intensities reflect in vivo bind-

ing, binding does not necessarily lead to functional relevance. To verify whether

HiTS-FLIP binding intensities are functionally significant, we turned to timecourse

microarray assays following induction of transgenic GCN4 (Chua et al., 2006), and fol-

lowing amino acid starvation, which induces endogenous GCN4 (Gasch et al., 2000).

Most genes that were activated following GCN4 induction should contain binding

sites to Gcn4p in their promoters, and indeed both sets are highly enriched for strong

binding sites (Supplemental figure 4-8). However, transcription factor binding is

concentration-dependent (Figure 4-2). Therefore one would expect that if the lev-

els of Gcn4p are monotonically increasing over a timecourse, then genes with strong

binding sites in their promoters would be activated early, while genes with increas-

ingly weak binding sites would be activated later. In both the case of GCN4 driven

by a GAL promoter, and in the more physiological case of amino acid starvation,

we see exactly that trend (Figure 4-4). This suggests that differences in the affin-

ity of Gcn4p binding to promoters are not random, but rather reflect a gradient of

functionally distinct responses.
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4.4 Discussion

In a single flow cell and a single experiment, we have taken roughly 440 million

measurements of protein binding to particular DNA sequences (88 million clusters

times five concentration points). If one decided to build flow cells with a higher density

of clusters and take measurements for more concentrations, we expect that one could

easily take more than a billion such measurements in a single experiment. While

each data point is fairly noisy, the large amount of data provides enough statistical

power to determine the binding preferences of a factor with remarkable accuracy.

Using this data, we were able not only to confirm the large body of knowledge about

Gcn4p binding preferences (Hill et al., 1986; Oliphant et al., 1989; Sellers et al., 1990;

Hollenbeck and Oakley, 2000; Zhu et al., 2009), but to learn several new nuances in

Gcn4p specificity. First, we determined global quantitative affinities in the form of

equilibrium dissociation constants for all 10mers. Second, we identified with statistical

significance a longer Gcn4p optimal binding site, which extends to an 11mer sequence,

TATGACTCATA. Third, we underscored the importance of taking into account the

underlying biophysics of Gcn4p binding, in which each of the two dimers binds to a

half-site with at least moderate affinity by itself.

We observed a correlation between the Gcn4p binding affinities determined by

HiTS-FLIP and in vivo binding (Figure 4-3), but more importantly, we observed a

correlation between binding affinity and the timing of gene activation following the

induction of GCN4 expression (Figure 4-4). This phenomenon is reminiscent of other

systems in which the timing of responses is controlled by binding motif strength.

For example, during pharynx development in C. elegans, PHA-4 binding sites in the

promoter of pharyngeal genes control not only the activation of their expression but

also the timing of their activation by the relative affinity of the binding motif (Gaudet

and Mango, 2002). This confirms the importance of weak binding motifs in two ways:

first, it shows that sequences with low affinity are bound in vivo when their regulator

is at a high concentration; but it also shows that sequences with low affinity are

functionally distinct and therefore may be evolutionarily adaptive.
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We expect that HiTS-FLIP will be a broadly useful approach for quantitative

profiling of the sequence-specific binding affinity of any DNA binding molecule. This

method is complementary to others that are highly quantitative but have lower

throughput (Maerkl and Quake, 2007), or are effective but provide less data and

are less quantitative (Mukherjee et al., 2004). However, HiTS-FLIP provides several

advantages that cannot be matched by other methods, including protein binding mi-

croarrays. First, it provides hundreds of millions of data points, more than is possible

using any other technology. Second, it allows for easy manipulation of conditions

on the flow cell, such as temperature, pH, and salt concentrations. We have varied

the simplest parameter, protein concentration, but one could also obtain informative

data about protein folding, electrostatics, enthalpy, heat capacity, and other interest-

ing biophysical parameters of binding. Third, it is flexible in terms of the length and

sequence of DNA placed on the flow cell, allowing proteins with much more complex

motifs to be profiled. Fourth, the ability to measure multiple fluorescent wavelengths

allows hetero- and homo-dimerization of protein bound to the flow cell to be mea-

sured. Finally, one could perform multiple runs of HiTS-FLIP on a flow cell after a

sequencing run, reducing its cost per run. We expect that the availability of quan-

titative and accurate biophysical catalogs of weak binding affinities will enable new

types of modeling for synthetic biology and systems biology applications, and will

open the door for a new and more nuanced understanding of the regulation of gene

expression.

4.5 Methods

4.5.1 HiTS-FLIP

Flow cells were built using random 25mer oligonucleotides using the single-end adapter

kit and sequenced on a Genome Analyzer IIX instrument. DNA was denatured and

resynthesized using a fluorescently labeled primer. The GCN4 fusion with mOrange

was cloned and expressed in E. coli and purified using nickel columns to a concen-
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tration of 3.25 µM. Gcn4p was serially diluted in PBS and sequentially applied at

1, 5, 25, 125, and 625 nM with 300 µg BSA. Before imaging we washed with 600

µg BSA in 2mL PBS. Mapping of protein intensities to clusters was performed using

Firecrest, part of the Genome Analyzer software package.

4.5.2 Normalization

Becuase the raw intensity varies from cluster to cluster and based on position within

the flow cell during sequencing, we normalize the protein binding intensity to the

average intensity of the cluster measured during sequencing cycles (see supplemen-

tal discussion). The intensity from the fluorescently-labeled primer is not used to

normalize, but rather assists with mapping. The background intensity is calculated

as the median normalized intensity over all clusters and is then subtracted from the

normalized intensity of each clusters to yield the normalized intensity above back-

ground. Finally, we added a correction for photobleaching for concentrations greater

than 1nM (see supplemental discussion). This normalized intensity above background

is the intensity reported in all figures.

4.5.3 Dissociation constants

Dissociation constants were calculated by least squares fit with the hill coefficient

fixed at 2 and the maximum intensity fixed at the median measured intensity for the

canonical 9mer motif, using the equation:

φB =
[Gcn4p]h

[Gcn4p]h +Kh
D

Where φB is the fraction of DNA bound, [Gcn4p] is the Gcn4p concentration, KD

is the dissociation constant of Gcn4p to the sequence, and h is the Hill coefficient of

binding. Constants were determined up to 1 µM due to noise in the estimates after

this point.
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4.5.4 Enrichment of k-mers

Enrichment in ChIP-Chip bound regions (Harbison et al., 2004) or promoters of

activated genes (Chua et al., 2006; Gasch et al., 2000) was calculated with a simple

counting procedure. The frequency of the occurrence of each k -mer was calculated in

all yeast promoters (500 nucleotides upstream of each ORF, or to the next annotated

gene if closer than 500 nucleotides upstream). The expected occurrence of a k -mer in

the region of interest was then the expected frequency of that k -mer times the number

of k -mers in the region. Enrichment was simply the number of occurrences minus the

expected number of occurrences. 8mers were scored against the PWM by selecting

the highest score over any orientation and register having at least four nucleotides of

overlap.
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4.7 Figures

Flow cell
ssDNA
dsDNA
GCN4 protein
mOrange tag

A

B

C

D

E F

Figure 4-1: Schematic of HiTS-FLIP method. A) A Genome Analyzer flow cell is built and sequenced as usual.

The DNA on the chip is organized into clusters having the same sequence, which in this case is random 25mer

oligonucleotides. The second strand is then denatured to yield a single strand. B) A primer and polymerase are
added to generate complete double-stranded DNA on the flow cell. C) As small amounts of fluorescent fusion protein

are added, only high affinity sites are bound after washing. The locations and amounts of binding are imaged by CCD
camera. D) With higher concentrations of protein, high affinity sites are bound by more protein, and low affinity sites

also begin to be bound. E) A small portion of a sequencing image from a flow cell, showing the roughly one out of

four clusters with a fluorescently tagged adenine for that cycle. F) The same portion of the flow cell with fluorescently
tagged Gcn4p bound. The small number of clusters with fluorescent signal can be matched with the clusters from

sequencing images in silico.

126



1 10 100 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

[Gcn4p] (nM)

No
rm

ali
ze

d 
wa

sh
 in

te
ns

ity
 ab

ov
e b

ac
kg

ro
un

d

 

NNTGACTCANN
NATGACTCNNN
NNTGACTAANN
NGTGACTCNNN
TATGACTNNNN
NATGACTANNN
NATGACTGNNN
NNNGACTCATN
GATGACTNNNN
NATGACACNNN
NNNTACAGGTN
NNNAGCTACCN
NGATACTANNN
NNNTCCTAACN
NATGAATGNNN

Figure 4-2: HiTS-FLIP binding by concentration. For five concentrations of Gcn4p-mOrange, the median intensity
of binding is plotted for selected 7mers. The median was calculated separately for each of seven lanes on the flow

cell, and error bars represent one standard error over the seven lanes. Four negative control 7mers are included for

comparison. 7mers are aligned to the consensus 11mer of TATGACTCATA with the convention that the 7mer be
oriented to match the C in the middle position. Grey “N” letters indicate that any nucleotide could be included in

that position; red letters indicate mismatches from the consensus.
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Figure 4-3: HiTS-FLIP intensities correlate well with ChIP-Chip data. A) Scatter plot of all 8mers, comparing
the HiTS-FLIP binding intensity at 125nM of Gcn4p-mOrange and the score using a PWM based on ChIP-Chip and

conservation data (Macisaac et al. 2006). Points in red are 8mers with high HiTS-FLIP binding intensity but low

PWM score, points in green have high PWM score but low HiTS-FLIP intensity. B) 8mers that only scored well in
HiTS-FLIP were highly enriched in Gcn4p-bound regions following amino acid starvation (Harbison et al., 2004). In

contrast, 8mers that scored well with the PWM but poorly with HiTS-FLIP were marginally enriched in the bound

regions. Error bars represent one standard error. C) Comparison of three methods for scoring 8mers: HiTS-FLIP
binding intensity with 125nM Gcn4p-mOrange, direct binding intensity from protein binding microarrays (Zhu et

al., 2009), and PWM (Macisaac et al. 2006). All 8mers are ranked using each method, and mean enrichment in

Gcn4p-bound regions is shown for a running average of 50 8mers. Dotted lines represent ± one standard error. D)
Matrix of asymmetrical nucleotide interdependencies. Each square represents the ratio of the binding signal for a

7mer having a mismatch in the left half (e.g. T) to the symmetrical mutation in the right half (e.g. T′). 7mer
sequences are consensus in all other positions except for the position indicated by each row. The first four and last

three nucleotides have the most correlated effects, signifying the importance of intact half sites (TGAC).
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Figure 4-4: Activation by Gcn4p in vivo. A) Gene expression was measured by microarray timecourse in yeast

cells overexpressing GCN4 driven by a GAL promoter (Chua et al., 2006). For genes significantly activated at each

timepoint, we searched their promoter for Gcn4p binding sites and report the highest expected intensity for a 9mer.
Genes with weaker binding motifs are activated later, when GCN4 expression is the highest. Error bars represent one

standard error of the mean. B) As in part A, except in a microarray timecourse during amino acid starvation (Gasch

et al., 2000). In these conditions, GCN4 is expected to be both translationally and transcriptionally upregulated
(Hinnebusch, 2005).
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4.8 Supplemental discussion

4.8.1 Technical corrections

To determine the corrections needed for mapping normalization, photobleaching, and

other factors, we performed a set of pilot experiments using various lengths of random

oligomers.

We focused on the intensity of sequences containing the canonical GCN4 binding

motif (TGASTCA), reasoning that most of the variation in the intensity of these

clusters would be due to technical rather than biological reasons. Variables correlating

with the intensity of these clusters should therefore be corrected for.

First, we examined whether the motif position in the sequence correlated with

intensity due to accessibility of different parts of the DNA. Shown below is a plot

of motif-containing-cluster raw intensity for the random 25-mers as a function of

position in the sequence. The distribution of raw intensities for motif-containing

clusters appears to be independent of the position of the motif in the sequence. Similar

results were obtained for 20-mers and 15-mers.
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We next examined whether intensity varies as a function of position within the

flow cell. Plotted below is the average sequencing intensity for tile 25 of a 15-mer
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run. Clearly, intensity is strongly influenced by position within a particular tile. For
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different tiles, different patterns were observed. Therefore, we investigated normal-

ization based on the average sequencing intensity of a cluster or the labeled primer

intensity. The average sequencing intensity correlates better with protein intensity

(R2 = 0.48) than the labeled primer intensity does (R2 = 0.30). One interpretation of

this data is that the intensity measurements are inherently noisy, and that averaging

over dozens of sequencing cycles provides a better measurement of cluster size and

brightness than a single measurement. As a result we decided to proceed with anal-

ysis based on protein intensity normalized by the average sequencing cycle intensity,

reducing technical noise.

To determine the efficiency of washing and photobleaching, we performed an ex-

periment in which we imaged a bound flow cell twice in a row without washing, and

in a separate experiment imaged after washing. We found that the second round

of imaging without washing reduced fluorescent intensity of TGASTCA clusters by

roughly 35%, presumably due to photobleaching. The washing reduced intensity by

roughly 65%. When we sequentially flow on increasing concentrations of Gcn4p, we

do not completely wash off the protein on the flow cell, and some of what remains will

be photobleached. Therefore, we correct the intensity at concentration i (Ci) using
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the equation:

Ci,corrected = Ci + Ci−1 × (1− 65%)× (35%)

This equation assumes that the fraction of Gcn4p remaining after washing and

photobleaching will remain bound in the next set of imaging. We believe this to be

a reasonable assumption, given that without this correction we observe decreasing

Gcn4p signal for TGASTCA clusters at the highest concentration.

4.9 Supplemental figures

Figure 4-5: HiTS-FLIP intensities correlate better with ChIP-Chip data than PWM pre-
dictions. Plot is exactly as in figure 4-3A and B except that the PWM is based on protein
binding microarray data (Zhu et al., 2009).
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Figure 4-6: Half-site asymmetry and importance of intact half-sites. For three 9mers, the
result of changing either the left or right half is plotted. On the right half of the graph,
mismatches accumulate in the 3′ end of the sequence; likewise the number of the left half
corresponds to the number of mutations in the 5′ half of the sequence. The central “C”
nucleotide is always maintained. The intensity is relative to no mismatches, so the bars at
zero have a height of exactly one. The green bars show mismatches away from the canonical
binding sequence, revealing that mismatches are better tolerated on in the 3′ half of the
binding site. This confirms known preferences of Gcn4p (Sellers et al., 1990). When a
mismatch already exists in the 3′ half (red bars), the asymmetry is maintained. However,
when a symmetrical mismatch exists instead in the 5′ half (blue bars), the asymmetry is
reversed. Because the 3′ half is closer to a consensus half-site match, further mismatches
are tolerated better in the 5′ half in this case. Taken together, these results confirm that
intact half-sites are an important feature in Gcn4p binding.
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Figure 4-7: Effect of spacing between half-sites on Gcn4p binding. The canonical 9mer
motif, a palindromic 10mer consisting of two complete half-sites, and palindromic 10mers
with intervening spacers are plotted. For each sequence, a set of two half-sites in the same
orientation (as opposed to reverse-complement) and with equivalent spacing is plotted with
dashed lines for comparison. Half-sites in forward orientation are marked in blue; those
in reverse orientation are marked in red. The dashed lines should represent only binding
to two half-sites separately, whereas solid lines represent both independent binding of two
half-sites as well as cooperative binding by one Gcn4p molecule.
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Figure 4-8: Enrichment of Gcn4p binding sequences in promoters of GCN4 -activated genes.
For a transgenic GCN4 experiment (Chua et al., 2006) and an amino acid starvation time-
course (Gasch et al., 2000), the promoters of genes that were significantly activated were
examined. For the top ten 7mers by HiTS-FLIP binding intensity, the average enrichment
over an expectation based on all yeast promoters was plotted. Error bars represent one
standard error of the mean.
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Chapter 5

Conclusions

5.1 Summary

This thesis has presented two novel approaches to assaying gene regulatory interac-

tions, both leading to novel biological insights. In chapter 2, I described a method for

quantifying the conservation of miRNA target sites above background levels, build-

ing on previous work (Lewis et al., 2003, 2005; Brennecke et al., 2005; Kheradpour

et al., 2007) but providing substantial improvements that enabled new types of anal-

ysis. For the first time, I was able to reliably quantify the relative contribution of

different seed match types to conserved mammalian miRNA targeting, discovering

a new seed match type (the offset 6mer) and uncovering the surprising prevalence

of natural selection acting on seed matches with low experimental efficacy. I quan-

tified the conservation of minor classes of targets having imperfect seed matches or

strong 3′ supplementary or compensatory pairing. I showed that mammalian-specific

miRNAs are qualitatively different from more broadly-conserved miRNAs, having far

less conservation. In chapter 3, I applied this method to nematodes and flies, finding

some surprising differences in miRNA target conservation between clades. Nema-

todes show surprisingly high conservation of weak seed matches in comparison to

vertebrates, as well as two types of seed match with no evidence for efficacy or con-

servation in vertebrates, the 6mer-A1 and the 8mer-U1. I showed that 3′ UTR length

correlated with the conservation of weak seed match types, as well as the density of

miRNA targets. I provided a plausible evolutionary model to explain this correlation
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based on the avoidance of deleterious seed matches, a well-known phenomenon (Farh

et al., 2005; Stark et al., 2005). In chapter 4, I presented HiTS-FLIP, a new method

for quantifying transcription factor binding preferences with hundreds of millions of

measurements. I applied this method to the yeast transcription factor GCN4, con-

firming all known preferences for GCN4 binding and discovering new subtleties in

its binding preferences, including an extended consensus sequence and an ability to

accommodate a spacer between two half binding sites. This assay also provides direct

and quantitative estimates for hundreds of thousands of dissociation constants, which

should prove invaluable for computational modeling of transcription factor binding.

5.2 Conceptual progress

5.2.1 Technical advances

Although there were countless technical problems solved during the course of this

thesis work, there are a few conceptual advances that I hope will stand out and

impact a broad community of researchers. Perhaps the most general is the necessity

of controlling for local variation in conservation rates during analysis of purifying

selection. Most classical methods for measuring natural selection, for example the

Ka/Ks test, explicitly control for local conservation rates (Yang and Bielawski, 2000).

However, many genome-scale methods for detecting purifying selection on motifs, for

example Xie et al. (2005), have not accounted for this variable. I have shown that

local variation in conservation rates, due to both alignment artifacts and biological

causes, can strongly influence measured patterns of natural selection (appendix A). In

particular, predictions for the selection on individual sites in the genome such as the

PCT (section 2.2.7) are extremely susceptible to this bias if it is not properly controlled

for. A related lesson is that dinucleotide conservation rates and interrelationships

between target sequences must be accounted for in order to have accurate prediction

of individual target sequences. It was only by carefully disentangling 6mer seed

matches from 7mers and 8mers that I could confidently measure the surprising extent
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of 6mer targeting in mammals (section 2.2.2, appendix A). The PCT itself represents

a third technical advance, providing a convenient score for the natural selection of a

potential target sequence. The PCT has the advantage of a simple interpretation (the

probability of a sequence being under natural selection to maintain miRNA targeting)

that hides the complexity of taking into account local conservation rates, alignment

artifacts, dinucleotide composition, seed match types, and the global extent of natural

selection for seed matches of a miRNA. The major impact of this project will likely be

the widespread use of its target predictions (www.targetscan.org), but hopefully the

methods behind the target prediction will have an influence on future evolutionary

analysis as well.

The HiTS-FLIP project represents mostly a proof of principle, showing that the

method recapitulates in vivo binding and function and can reveal complex binding

preferences in remarkable detail. Because HiTS-FLIP generates remarkable amounts

of data, is amenable to the study of proteins with extremely complex binding motifs,

and can quantify biophysical properties of binding, I expect this method to be used

for a number of applications. Hopefully, my analysis of GCN4 binding preferences

will convince others that HiTS-FLIP is tractable and generates biologically relevant

data, especially details about suboptimal binding sites.

5.2.2 Importance of low affinity interactions

A major theme of this thesis is that low-affinity interactions between trans-acting

factors and cis-elements are biologically relevant, both in the context of 6mer seed

matches having strong conservation despite their weak efficacy (chapters 2 and 3) and

GCN4 binding affinity determining the timing of gene activation following amino acid

starvation (chapter 4). The idea that quantitative affinities are important for gene

regulation is hardly a new insight – examples of weak interactions having profound

effects are strewn throughout the literature. And yet, I believe this fact is often

overlooked, chiefly for two reasons: the reductionist approach to biology necessitates

prioritizing only strong effects for followup; and the noise inherent in experimen-

tal determination of biological effects makes validation of weak interactions difficult.
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One way of circumventing these limitations is to focus on situations in which the

trans-factor is expressed at a high level relative to its targets, causing formerly weak

interactions to become prominent. For example, I found stronger conservation of

6mer seed matches in species with short 3′ UTRs (chapter 3). The zebrafish maternal

to zygotic transition provides another example, in which miR-430 is expressed at an

extremely high level, repressing many maternal mRNAs having only “weak” 6mer

seed matches. The ratio between the expression of a trans-factor and a cis-element

can vary in a spatial dimension as well. For example, in the developing Drosophila

embryo, Dorsal activates enhancers with weak binding sites (Type 1 enhancers) only

in ventral regions of the embryo, which paradoxically have the highest levels of Dorsal

expression (Papatsenko and Levine, 2005). This thesis serves as a reminder from a

systems biology point of view that low affinity interactions should not be ignored.

5.3 Approaches to studying molecular interactions

I have utilized two disparate approaches to studying regulatory interactions, evo-

lutionary conservation and an in vitro binding assay. I have verified the relevance

of predictions based on these two approaches by applying them to explain microar-

ray data following the induction of regulators or in vivo ChIP-Chip binding data.

These different approaches each have strengths and weaknesses that complement each

other. Methods to profile in vivo binding events, such as ChIP-Seq and CLIP-Seq,

have deservedly enjoyed particular attention. However, I would like to emphasize

the strengths of an evolutionary conservation approach over other methods. A ma-

jor challenge in studying genome-wide gene regulation is how to determine whether

interactions are biologically relevant. Profiling of gene expression, for example af-

ter introducing a transgenic regulator or knocking out an endogenous one, can as-

sign function to binding events. However, small differences in gene expression could

simply be noise, whereas the biologically important processes might be subject to

canalization that masks the impact of these changes from the phenotype. Given an

appropriate null model and statistical framework, a significant signal for evolutionary
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conservation surely corresponds to function that is important for the survival of the

organism in some way, sidestepping any problem of noisy gene expression. On the

other hand, knowledge of the in vitro binding preferences of trans-factors enables

a more mechanistic understanding of gene regulation. Using in vitro data, one can

disentangle the intrinsic binding affinity of sites from co-factor binding and context

or chromatin effects (Gordân et al., 2009; Wasson and Hartemink, 2009).

5.4 Extensions and applications

There are several avenues of research that would be fruitful follow-ups to this thesis

work. The miRNA target prediction algorithm would be well served by a more thor-

ough determination of 3′ UTR alignments. So far I have been using UCSC’s multi-z

alignments due to their accessibility and comprehensive nature, but believe that a

more careful consideration of orthologous versus paralagous relationships could sub-

stantially expand the estimate for the number of conserved targets. Also, to date

I have focused on 3′ UTRs, the regions in which miRNA targeting is most effective

(Grimson et al., 2007). However, miRNAs are known to repress messages with tar-

gets in the ORF (Bartel, 2009), leaving an opening for new target predictions to

make a substantial contribution. A new conservation model would need to be aware

of reading frame and amino acid coding in order to separate conservation signal from

background in this context.

The analysis of HiTS-FLIP could benefit greatly from a biophysical model of

binding based on the measured dissociation constants. In chapter 4, the analysis of

promoter regions and regions bound in ChIP-Chip is based on the maximum binding

intensity of any k -mer in the region. A biophysical model could convert dissociation

constants into occupation probabilities, allowing an integration of weak binding over

a long sequence. As for further experiments, HiTS-FLIP would be quite informative

for a number of transcription factors. A gene such as p53, with a complex 20-mer

consensus binding sequence and numerous splice variants and polymorphisms that

have unknown effects on binding, would be an excellent candidate.
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However, there is a different kind of follow-up question that is perhaps personally

more interesting: how exactly does one translate catalogs of molecular interactions

such as those provided by this thesis into true biological insight? Although I have

attempted to address this in small ways already (for example, see figure 3-3B), the

answer is not at all obvious. As an illustration, let us consider the innate immune

response in the mammalian gut. If one wants to design a drug that reduces inflam-

mation, thereby resolving chronic infections that depend on an inflammatory state,

there are several possible approaches to selecting a candidate target gene. For ex-

ample, one could employ a high-throughput screen of small molecules or siRNAs,

take a reductionist approach and use low-throughput techniques to identify individ-

ual interactions, or use a systems approach and model the immune response network,

simulating the response to different perturbations. For a system as complex as innate

immunity, the problem would be daunting even with a combination of all three ap-

proaches. However, quantitative catalogs of gene regulatory interactions could assist

with all three approaches. For candidates found by a high-throughput siRNA screen,

predicted regulatory interactions could point to potential mechanisms of action and

prioritize follow-up experiments. In the case of the innate immune response, rela-

tionships with known regulatory cytokines and NF-κB family members might help

separate false positives from promising candidates. Likewise, predicted interactions

could be used to generate hypotheses for low-throughput techniques. For example, in-

teractions found between a miRNA and an NF-κB gene by conservation analysis, but

not supported in the literature, might point to fruitful avenues of research. Finally,

modeling approaches are hopeless unless they are constrained by large amounts of

quantitative data. Models of the transcriptional response mediated by NF-κB might

become quantitative enough to be useful if informed by a HiTS-FLIP assay first. As

always, the devil is in the details – how exactly global regulatory data is translated

into meaningful and practical biological advances will ultimately determine the utility

of systems biology.
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Supplemental Discussion 

 

Combining signal and background distributions for the 10 UTR bins 

Controlling for the local conservation rate is of vital importance in this type of study.  Local 

conservation rate can affect the variability in the background estimate, thereby decreasing sensitivity 

and statistical power of the analysis.  Moreover, the local conservation rate can dramatically distort 

estimates of preferential conservation (Lewis et al., 2005).  To illustrate this distortion, we estimated 

the conservation signal and background without controlling for UTR conservation, and then plotted 

the signal-to-background ratio for conserved sites that fall within ten different levels of local 

conservation (Supplemental Fig. 3, upper panel).  These results illustrate how previous methods, 

which use a single tree and have a single estimate of the background distribution for all UTRs, 

overestimate the preferential conservation of sites in highly conserved UTRs and can miss the 

preferential conservation of sites in poorly conserved UTRs.  Indeed, when using a single tree and 

single background estimate, miRNA seed matches in the poorly conserved UTRs appear to be 

actively avoiding conservation when compared to the background, an observation that is very 

unlikely to be biological.  Therefore, previous methods, which do not control for local conservation, 

reliably show that many seed-matched sites are preferentially conserved, but they are not reliable in 

distinguishing individual sites that are preferentially conserved from those that are conserved by 

chance.  

There are multiple reasonable ways to control for local conservation.  Our method of separating 

the UTRs into bins based on their conservation rates raised the question of how to combine the data 

from these bins.  It was not obvious a priori that the bins could be treated in the same way.  If the 

bins were not equivalent with respect to the relevant measurement (in this case, branch-length cutoff), 

the complete analysis might have to be performed separately for each of the ten UTR bins.  However, 

if the bins were equivalent, then the signal and background values for each bin could be safely 

combined by simply summing at each cutoff to create the aggregate signal and background 

distributions. 

In order to make the UTR bins more comparable, we recalculated the phylogenetic trees 

separately for each bin.  This approach allowed for fine-tuning of the relative branch-lengths, which 

may provide additional benefits beyond a uniform rescaling of all branch lengths.  We reasoned that 

after this kind of scaling, the signal-to-background ratio would be close to equivalent for all ten bins 

at a given branch-length cutoff.  Indeed, the signal above background reached a maximum at about 

the same branch-length cutoff (1.0) for each of the bins, after recalculating the trees for each bin (data 

146



Friedman et al., Supplemental Material, page 2 

not shown).  Moreover, the large variability in signal-to-background ratio observed with a single tree 

was greatly reduced upon recalculating the trees for each bin (Supplemental Fig. 3).  Most of the 

remaining variability could be attributed to edge effects in bin 1 and bin 10.  Hence, after 

recalculating the phylogenetic trees for each bin, we could safely combine the results for the ten UTR 

bins into one estimate of signal and background, since our confidence in the preferential conservation 

of a site at any particular branch length was largely independent of the UTR bin to which it was 

assigned. 

 

Nested seed matches 

As schematically depicted in Figure 1D, we nested smaller seed matches within larger ones, which 

led to a substantial increase in sensitivity.  Because many miRNA sites have species-specific 

differences in seed-match type, a sensitive method was required for determining the largest conserved 

unit.  Our approach was to begin with the largest seed-match class (8mers), and subtract both the 

signal and the background of the larger seed matches from the signal and background of the smaller 

ones.  Hence, a 6mer conserved to branch length 1.0 contributed to the number of conserved 6mers 

only if it was the largest functional seed-match unit that was conserved to that branch length; if the 

6mer was subsumed in an 8mer conserved to branch length 1.0, it was not counted as a conserved 

6mer.  In this way, we classified seed match conservation as the longest seed-match type possible, but 

also allowed for species-specific differences without losing sensitivity. 

 

6mer signal above background 

Given the observation of many conserved 6mer seed matches above background, it is natural to ask 

whether these sites are being selectively maintained or whether there could be other, technical reasons 

for their preferential conservation.  Indeed, because of the methodology discussed above, conserved 

6mers may appear in some species as 7mer or 8mer seed matches.  This leaves open the possibility 

that the observed preferential conservation of 6mers could be due to mutation from conserved 7mers, 

i.e., it could be due to preferential conservation in the 7mer form, with only chance conservation as 

6mers.  

We have performed two analyses to test whether the 6mer conservation observed could be 

attributed to decay of conserved 7mers.  First, we tested the possibility that 7mer sites in human 

contribute to 6mer conservation signal through decay in orthologous species by examining only the 

subset of 6mers that were not part of a 7mer in the human UTR.  We found in this subset that there 
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was significant enrichment in conservation for both canonical 6mer seed matches and offset 6mers 

(Supplemental Figure 2B).  The converse possibility is that the seed match is conserved as a 7mer in 

other species, but is a 6mer in human. Because of technical issues, this possibility was difficult to 

evaluate directly.  But to get a sense of its impact we reasoned that the number of 6mers in human 

preferentially conserved as a 7mer in other species that include mouse, would mirror the number of 

6mers in mouse preferentially conserved as a 7mer in other species that include human.  With this in 

mind, we performed an analysis examining conserved 7mers that have decayed to 6mers in the mouse 

UTRs.  Testing all possible branch-length cutoffs, we counted the number of such sites, scaled by the 

proportion of 7mer sites conserved above background (given by (S-B)/S).  The cutoff yielding the 

most 6mer decay (i.e., capturing the most sites above background) was 0.9, corresponding to 

selectively maintained 7mer sites that are conserved to a branch length of 0.9 but would appear as a 

6mer conserved to 1.0 in a mouse-centric analysis.  For all 87 broadly conserved families combined, 

there were 888 decayed 6mers and 362 decayed offset 6mers above background.  Symmetrically, one 

would expect that roughly the same number of conserved 6mers we observed in human are conserved 

because the site is a selectively maintained 7mer or 8mer in other species. Combining these two 

sources of error in an aggregate estimate, we still predict 77 6mer seed matches conserved above 

background per miRNA, and 69 per miRNA for offset 6mers.   

By eliminating all 6mer conservation when the human site has a 7mer, some sites that are 

preferentially conserved as 6mers were surely lost, causing the first analysis to overestimate the 

number of 6mers conserved due to decay of a human 7mer.  In fact, when allowing for single 

mismatches in 7mers that create 6mer seed matches, extra conservation is added equally to the signal 

and to the background, yielding roughly the same number of predicted targets as a 7mer conservation 

analysis.  This suggests that when our methods detect a preferentially conserved 6mer that is a 7mer 

in human, the preferential conservation of the site is due to its presence as a 6mer in other vertebrates 

and not due to its presence as a 7mer.  In the second analysis, in all likelihood there are selectively-

maintained 7mers conserved to branch-lengths less than 0.9 that are not accounted for because this 

preferential conservation is difficult to detect with our methods, potentially leading to an 

underestimate of the number of human 6mers preferentially conserved only because of their activity 

as 7mers in other species.  In balance, we believe that the overestimate of the first analysis outweighs 

the underestimate of the second analysis, making our aggregate estimate conservative.  Thus, we 

cannot explain the conservation of 6mer seed matches by their relationship to conserved 7mers.  

It is worth noting that in cases found by the above analysis, in which the 6mer preferential 

conservation might be attributable to conserved 7mers, our estimate for the number of sites conserved 
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above background and the number of preferentially conserved miRNA targets remains the same.  The 

difference in our two estimates of 6mer conservation above background merely reflects the difficulty 

of assigning the preferential conservation we observe to individual seed-match types.  In cases in 

which a seed-match site is broadly conserved, but exists as different seed-match types in different 

species, it is not obvious which type should be assigned the preferential conservation, and in many 

cases orthologous sites with different seed match types are sure to be simultaneously selectively 

maintained.  Despite this uncertainty, our methods find such preferential conservation with high 

sensitivity without double-counting, and we have shown that even the weakly effective 6mer and 

offset 6mer seed matches have substantial conservation independent of the other types. 

 

PCT values reported on the TargetScan website 

While calculating PCT values for the TargetScan website, we observed a high variability of PCT values 

for sites with close branch-length values. This variability was observed for only a subset of miRNAs, 

and even for those in which it was observed, the strong underlying trend of higher PCT at higher 

branch lengths was clear, which explains the correlation with the experimental data when looking at 

the PCT scores in aggregate (Figure 6).  Nonetheless, we considered it prudent to implement a 

smoothing procedure when deriving PCT values reported at the TargetScan website.  Thus, for each 

miRNA and for each seed match type, we fit a modified sigmoid function to the PCT scores using a 

least squares estimator.  The function was given by: 

 

where, x is the branch length value for a particular site.  In other words, the PCT score reported on the 

Targetscan website was either the output of a modified sigmoid function given by !0 + !1/(1 +     

exp(-!2x + !3)), or zero if that function was negative.  The values of !0, !1, !2, and !3, were fit so that 

the function would best match the raw PCT values. !0 and !1 can be interpreted as offsetting and 

scaling the PCT, respectively, whereas !2 and !3 can be interpreted as scaling and offsetting the 

influence of the branch-length value, respectively.  There is no special significance to the particular 

form of the function or the value of the parameters — rather, we observed that the PCT values closely 

followed this modified sigmoid function, and that in all cases the modified sigmoid function closely 

matched the data but substantially smoothed curves plotting PCT with respect to the branch-length. 
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Supplemental Table 1: Broadly conserved miRNA families. 

Seed + nt 8 Human miRNAs in family 

8mer signal-to-

background ratio 

 in 23 vertebrates 

(cutoff 1.0) 

8mer signal  

above background* 

in 23 vertebrates 

(cutoff 1.0) 
GAGGUAG let-7a;let-7b;let-7c;let-7d;let-7e;let-7f;miR-98;let-7g;let-

7i 

6.33 235 

GGAAUGU miR-1;miR-206;miR-613 3.08 182 

GGAAGAC miR-7 2.38 79 

CUUUGGU miR-9 3.77 229 

ACCCUGU miR-10a;miR-10b 1.86 25 

AGCAGCA miR-15a;miR-16;miR-15b;miR-195;miR-424;miR-497 3.51 222 

AAAGUGC miR-17;miR-20a;miR-93;miR-106a;miR-106b;miR-

20b;miR-519d 

4.59 304 

AAGGUGC miR-18a;miR-18b 2.81 44 

GUGCAAA miR-19a;miR-19b 3.06 316 

AGCUUAU miR-21;miR-590-5p 2.07 49 

AGCUGCC miR-22 3.19 61 

UCACAUU miR-23a;miR-23b 1.86 253 

GGCUCAG miR-24 2.66 130 

AUUGCAC miR-25;miR-32;miR-92a;miR-363;miR-367;miR-92b 4.18 222 

UCAAGUA miR-26a;miR-26b 3.28 247 

UCACAGU miR-27a;miR-27b 2.95 260 

AGCACCA miR-29a;miR-29b;miR-29c 4.22 205 

GUAAACA miR-30a;miR-30c;miR-30d;miR-30b;miR-30e 3.59 514 

GGCAAGA miR-31 1.77 56 

UGCAUUG miR-33a;miR-33b 1.62 29 

GGCAGUG miR-34a;miR-34c-5p;miR-449a;miR-449b 3 158 

UUGGCAC miR-96 3.83 175 

ACCCGUA miR-99a;miR-100;miR-99b 13 Near zero 

ACAGUAC miR-101 3.15 196 

GCAGCAU miR-103;miR-107 2.18 92 

GGAGUGU miR-122 1.7 28 

AAGGCAC miR-124;miR-506 5.63 212 

CCCUGAG miR-125b;miR-125a-5p 4.08 206 

CGUACCG miR-126 7.5 Near zero 

CACAGUG miR-128a;miR-128b 3.96 203 

UUUUUGC miR-129-5p 0.89 Near zero 

AGUGCAA miR-130a;miR-301a;miR-130b;miR-454;miR-301b 3.27 133 

UUGGUCC miR-133a;miR-133b 3.38 130 

AUGGCUU miR-135a;miR-135b 3.09 131 

UAUUGCU miR-137 3.12 258 

GCUGGUG miR-138 3.58 144 

CUACAGU miR-139-5p 1.13 Near zero 

AGUGGUU miR-140-5p 2.34 44 

AACACUG miR-141;miR-200a 2.43 135 

GUAGUGU miR-142-3p 4.45 94 

GAGAUGA miR-143 1.86 70 

ACAGUAU miR-144 1.44 75 

UCCAGUU miR-145 2.19 148 

GAGAACU miR-146a;miR-146b-5p 0.9 Near zero 

CAGUGCA miR-148a;miR-152;miR-148b 3.23 162 

CUCCCAA miR-150 0.89 Near zero 

UGCAUAG miR-153 3.73 135 

UAAUGCU miR-155; 1.62 56 

ACAUUCA miR-181a;miR-181b;miR-181c;miR-181d 2.14 232 

UUGGCAA miR-182 2.67 228 

AUGGCAC miR-183 3 66 

GGACGGA miR-184 2.06 Near zero 

CGUGUCU miR-187 0.65 Near zero 
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Supplemental Table 1 (continued) 

GAUAUGU miR-190;miR-190b 1.54 23 

AACGGAA miR-191 3.75 Near zero 

UGACCUA miR-192;miR-215 0.99 Near zero 

ACUGGCC miR-193a-3p;miR-193b 2.17 29 

GUAACAG miR-194 1.89 48 

AGGUAGU miR-196a;miR-196b 3.62 33 

CCAGUGU miR-199a-5p;miR-199b-5p 3.5 136 

AAUACUG miR-200b;miR-200c;miR-429 3.14 199 

UGAAAUG miR-203 1.33 52 

UCCCUUU miR-204;miR-211 1.44 81 

CCUUCAU miR-205 1.61 56 

UAAGACG miR-208;miR-208b 2.19 Near zero 

UGUGCGU miR-210 2.42 Near zero 

AACAGUC miR-212;miR-132 2.33 54 

CAGCAGG miR-214 2.1 61 

AAUCUCU miR-216b 1.09 Near zero 

AAUCUCA miR-216a 0.78 Near zero 

ACUGCAU miR-217 1.35 22 

UGUGCUU miR-218 3.25 230 

GAUUGUC miR-219-5p 3.79 82 

GCUACAU miR-221;miR-222 1.78 68 

GUCAGUU miR-223 1.69 41 

AAGUGCU 

miR-302a;miR-302b;miR-302c; 

miR-302d;miR-372;miR-373;miR-

520e;miR-520a-3p;miR-520b;miR-

520c-3p;miR-520d-3p 

2.24 70 

CCAGCAU miR-338-3p 1.14 Near zero 

AAUGCCC miR-365 2.11 30 

UUGUUCG miR-375 2.73 Near zero 

GAUCAGA miR-383 1.03 Near zero 

AUGACAC miR-425 1.07 Near zero 

AACCGUU miR-451 3.08 Near zero 

AUGUGCC miR-455-5p 1.25 Near zero 

AACCUGG miR-490-3p 0.88 Near zero 

UAAGACU miR-499-5p 1.19 16 

AGCAGCG miR-503 5.15 Near zero 

CGACCCA miR-551a;miR-551b 3.75 Near zero 

*Values for signal above background of <16 sites were designated as “near zero.”  This cutoff was chosen because the 

most poorly performing 8mer had a background estimate 16 sites greater than the signal, putting a conservative upper 

limit on the ability to distinguish preferentially conserved sites from background. 
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Supplemental Table 2.  Mammalian-specific miRNA families. 

Seed + nt 8 Human miRNAs in family 

8mer signal-to-background 

ratio in placental mammals 

(cutoff 0.85) 

CAGGUGA miR-125a-3p 0.61 

CGGAUCC miR-127-3p 2.94 

GUGACUG miR-134 0.85 

CUCCAUU miR-136 0.84 

AGGUUAU miR-154 0.93 

GGAGAGA miR-185 1.10 

UCACCAC miR-197 1.24 

AGGAGCU miR-28-5p;miR-708 1.40 

AGGGUUG miR-296-3p 0.68 

AUGUGGG miR-299-3p 0.85 

GCAUCCC miR-324-5p 0.69 

UGGCCCU miR-328 1.14 

CUCUGGG miR-330-5p;miR-326 1.80 

CAAGAGC miR-335 1.67 

CCCUGUC miR-339-5p 1.01 

UAUAAAG miR-340 1.46 

CUCACAC miR-342-3p 0.69 

GUCUGCC miR-346 1.10 

UAUCAGA miR-361-5p 1.34 

ACACACC miR-362-3p;miR-329 1.33 

CCUGCUG miR-370 1.29 

CUCAAAC miR-371-5p 0.71 

UAUAAUA miR-374a;miR-374b 0.88 

UCAUAGA miR-376a;miR-376b 1.14 

ACAUAGA miR-376c 0.69 

UCACACA miR-377 1.16 

CUGGACU miR-378;miR-422a 0.99 

GGUAGAC miR-379 1.46 

AUACAAG miR-381;miR-300 1.38 

AAGUUGU miR-382 1.16 

UUCCUAG miR-384 0.84 

AUAUAAC miR-410 1.05 

UCAACAG miR-421 1.19 

GUCUUGC miR-431 1.27 

UCAUGAU miR-433 1.30 

UUUGCGA miR-450a 0.59 

GAGGCUG miR-485-5p 0.92 

AUCGUAC miR-487b 0.77 

UGAAAGG miR-488 1.02 

GUGGGGA miR-491-5p 0.75 

GAAACAU miR-494 0.89 

AACAAAC miR-495 1.28 

GAGUAUU miR-496 1.01 

GACCCUG miR-504 1.25 

GUCAACA miR-505 1.29 

GAGAAAU miR-539 1.16 

GUGACAG miR-542-3p 1.14 

AACAUUC miR-543 1.38 

UUCUGCA miR-544 1.28 

UGUUGAA miR-653 0.85 

UUGUGAC miR-758 1.27 

UGCCCUG miR-874 1.30 

GGAUUUC miR-876-5p 1.01 
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Supplemental Table 3: miRNA families with intermediate conservation.  These families were 

not found in enough non-mammalian genomes to be placed in the broadly conserved set 

(Supplemental Table 1), yet they were found in too many non-placental animals to be part of the 

mammalian-only set (Supplemental Table 2). 

 

Seed + nt 8 Human miRNAs in family 

8mer signal-to-

background ratio in 

placental mammals 

(cutoff 0.85) 
Notes 

CUGGCUC miR-149 2.14 non-placental mammal conservation 

AAAGAAU miR-186 1.06 found in opossum, platypus 

GAGGUAU miR-202 4.30 seed changes in mammals and in fish 

AAGUCAC miR-224 1.46 non-placental mammal conservation 

AAAGCUG miR-320 2.23 non-placental mammal conservation 

AGUAGAC miR-411 1.79 non-placental mammal conservation 

AUGACAC miR-425 1.00 found in opossum, platypus, lizard 

UGCAUAU miR-448 1.91 non-placental mammal conservation 

CCUGUAC miR-486-5p 1.35 non-placental mammal conservation 

AGCAGCG miR-503 5.45 non-placental mammal conservation 

CGACCCA miR-551a;miR-551b 1.67 found in opossum, platypus, chicken 

AAUUUUA miR-590-3p 0.76 found in platypus 

UUGUGUC miR-599 1.01 found in chicken, platypus, opossum 

CCGAGCC miR-615-3p 1.72 chicken, platypus, lizard alignment 

CAGGAAC miR-873 1.06 found in opossum, platypus 

AUACCUC miR-875-5p 0.97 found in opossum, platypus, lizard 
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Supplemental Figure 1.  Trees for the ten UTR bins, with bin 1 being least conserved and bin 10 

being most conserved.   
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A B 

 

Supplemental Figure 2.  A systematic analysis of matches to each 6-nt segment across the 87 

broadly conserved miRNA families.  (A) Analysis performed without excluding those sites that 

also possessed canonical 7mer matches. Comparison to panel B indicates that much of the 

preferential conservation is due to overlap with parts of larger, canonical sites.  (B) Analysis 

performed excluding those sites that also possessed canonical 7mer matches, revealing no other 

segment with appreciable enrichment in conservation.  
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Supplemental Figure 3.  Reduced variability of signal-to-background ratios when using UTR 

bin-specific trees.  Top panel:  Analysis performed using a single tree, which was estimated using 

all UTRs.  UTRs were divided into ten equally populated bins, based on their conservation rates, 

and the signal-to-background ratio for 8mer sites matching the 87 broadly conserved miRNAs is 

plotted separately for each bin.  For each UTR bin, the fraction of conserved sites (the signal) was 

divided by the fraction of conserved controls (the background), using the same background 

estimate for all ten bins, which was the overall background, estimated using all UTRs.  Bottom 

panel:  As above but signal and background were calculated for each UTR conservation bin with 
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a unique tree (Supplemental Fig. 1), estimated using only the UTRs from that bin.  In other 

words, sites were compared only with background in the same UTR bin.  Note that the bin that 

deviates most at high cutoffs is the one with the most poorly conserved UTRs.  Because at high 

cutoffs this bin had too few conserved sites for reliable signal-to-background determination (less 

than one site per miRNA family conserved at branch-length cutoffs exceeding 1.5), its deviation 

at high cutoffs is not informative, and even if it were informative, it would involve too few sites 

to be of concern.  
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