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ABSTRACT 
In an underground mining operation, the design of safe excavations can be influenced by the quality and quantity of 
collected geomechanical data. Data collection is the first step in mine design, and a sufficient level of confidence in the 
input data should be reached depending on the project stage and the design requirements (e.g. temporary and non-entry 
vs. permanent and entry excavations). This paper compares two statistical analysis methods for quantifying the level of 
confidence in the intact rock properties obtained through a series of laboratory tests. The laboratory testing database of 
an underground hard rock mine was used to highlight the variations in the two methods. The impact of the two methods, 
from an engineering perspective, was illustrated with an example using the Kirsch analytical solution. This investigation 
demonstrated that the selection of the appropriate analysis method should be guided by the project requirements. 
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1 INTRODUCTION 
 

Although geomechanical data collection is recognised as the first step in geomechanical design, the reality is that there 
are considerable variations in how these data are analysed and used. A fundamental goal of gap analysis of 
geomechanical data is to establish if adequate data are collected and the confidence in these data. This would dictate 
whether it is necessary to undertake additional data collection campaigns. In this context there are two approaches, both 
based on small-sampling theory that can be employed. The first approach requires a decision on what precision index is 
required a priori. This is directly related to the specifics of a project. It is then possible to identify the level of confidence 
that meets this objective and to determine, if necessary, the additional number of data required to reach higher levels of 
confidence. The second approach selects a defined confidence level in the interval estimate (i.e. the lower and upper 
confidence limits on the true mean) for a given rock property. This second approach looks at the precision index to 
determine if this is acceptable for the project under consideration. This is a precursor to further data collection. 

Even if these approaches appear very similar, there are significant differences on how the two problems are tackled 
from a statistical and engineering perspective. This paper compares both approaches using historical data from the Raglan 
underground hard rock mine. This particular mine site undertook several data collection campaigns and comprehensive 
laboratory testing. 
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2 MINE SITE AND DOMAINS 
 

Raglan Mine, a Glencore Company, is located in Quebec, Canada, north of the 55th parallel (Nunavik). The property 
is about 70 km long and consists of a series of high-grade sulphide deposits (nickel, copper and platinum-group elements). 
Ore zones are generally found in intrusive or extrusive mafic–ultramafic rocks. The footwall is composed of gabbro rocks, 
while ultramafic rocks, volcanic rocks and metasediments characterize the hanging wall. Argillaceous sediments can be 
present in the vicinity of the mineralized zones. A typical section view of the geology is presented in Fig. 1. Table 1 presents 
a description of the Raglan Formation identifying the rock types and rock units (domains) investigated in this paper. 

 

 
 
 

 
 

The various mining projects at Raglan are shown in Fig. 2. Raglan Mine (Phase I) began in 1997 and current operations 
consist of Mine Katinniq, Mine 2, Mine Kikialik and Mine Qakimajurq. Phase I operations are expected to gradually cease 
after 2020. In order to extend the life of Raglan Mine, the Sivumut Project was launched (Phase II). The Phase II of Raglan 
consists of two new underground mining project: Mining Project 8H (PM8H in Fig. 2) and Mining Project 14 (PM14 in Fig. 
2). 

 
Figure 2. Raglan mine operations (Phase I) and developing projects. (Glencore 2018) 

Figure 1. Typical geological cross-section of existing 
Raglan Mine workings. (Glencore 2012) 

Table 1. Rock types and rock units in the Raglan 
formation 



 

3 
 

3 LABORATORY TESTING 
 
The compilation of the laboratory testing database includes data from Qakimajurq Mine, PM8H, PM14 and Donaldson 

(potential mining project). The most recent laboratory test results database (i.e. the early 2018 database) includes uniaxial 
compressive strength UCS (𝜎𝜎𝑐𝑐), tensile strength (𝜎𝜎𝑡𝑡), density (𝜌𝜌), Young’s modulus (𝐸𝐸) and Poisson’s ratio (𝑣𝑣) properties. 
The rock sample density was evaluated for UCS, tensile strength and triaxial laboratory tests and the elastic properties 
(Young’s modulus and Poisson’s ratio) were assessed from instrumented uniaxial compressive strength (UCS) laboratory 
tests. All testing was conducted at external laboratories that complied with the ISRM suggested methods (ISRM 2007). 
The compiled number of laboratory tests, per mining project, is presented in Table 2. Due to the location and distinctions 
between the rock unit properties, the mining projects are characterized separately. 

 
 
Table 2. Number of laboratory tests for the Qakimajurq, PM14, PM8H and Donaldson mining projects 

 
 
The best fit between the normal or lognormal distribution, was assigned to the rock properties based on the distribution 

fit on the histograms, the probability plots and the goodness of fit testing (Mathwave 2017). It was possible to evaluate the 
compatibility of the samples with the theoretical normal or lognormal probability distribution functions. When both 
distributions were compatible with the geomechanical data samples, the best fit between the normal or lognormal 
probability distribution functions was assigned. The goodness of fit tests agreed well with the majority of the analysed rock  

 
 

 
Figure 3. Example of UCS data distribution fit for rock units 10b (normal distribution) and 10c (lognormal distribution) 
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properties. An example of normal and lognormal data distributions, and the associated goodness of fit test results, is given 
in Fig. 3 for UCS data from the peridotite (10b) and olivine pyroxenite (10c) rock units collected for mining project PM14. 
The data distribution was determined qualitatively based on the similarity of the distribution fit on the histograms (e.g. 
symmetrical for the normal distribution and rightly skewed for the lognormal distribution) and the linearity of data on the 
normal or lognormal probability plots. A quantitative assessment of the best distribution fit was obtained with the 
acceptance of the null hypothesis (H0 = the data follow the specified distribution) from goodness of fit. For the goodness 
of fit testing, the distribution parameters were estimated with the method of moments (Mathwave 2017). 

 
 

4 QUANTIFYING THE CONFIDENCE LEVEL IN THE GEOMECHANICAL PROPERTIES OF ROC 
 

The confidence level in the geomechanical rock properties was evaluated using two statistical methods based on small-
sampling theory employing the confidence interval approach. This is an interval estimate, defined by upper and lower 
limits, of a population parameter (e.g. the true mean) that potentially includes the true population parameter with a stated 
confidence level. The confidence level is the probability that the value of a population parameter falls within the specified 
limits of the confidence interval. For example, a 95% confidence level implies that 95% of the confidence intervals would 
include the true population parameter. The small-sampling theory is a widely used statistical method to determine the 
confidence interval for the true mean when the number of specimens is smaller than 40 (Montgomery and Runger 2003) 
and has several applications in rock engineering (Fillion and Hadjigeorgiou 2017; Gill et al. 2005; Grenon et al. 2015; 
Ruffolo and Shakoor 2009). In practice, due to cost constraints, it is sometimes difficult to justify the requirement for 
additional data collection. Consequently, the geomechanical properties of rock are routinely estimated based on less than 
40 laboratory tests on a given rock type or rock unit. A prerequisite of the use of small-sampling theory is that the data are 
normally distributed. This is justified by histograms and probability plots that are representative of a normal distribution, 
and by the results of the goodness of fit testing that corroborate the hypothesis that the data follow the normal distribution 
at a selected significance level (𝛼𝛼). The 100(1-𝛼𝛼) % confidence interval on the true mean of a normal distribution is obtained 
using Eq. 1 (Hines et al. 2003): 
 
 

 
(1) 

 
 

 
where 𝑋𝑋� = the arithmetic sample mean; s = the sample standard deviation, 𝜇𝜇 = the population arithmetic mean, 𝑡𝑡𝛼𝛼

2,𝑛𝑛−1= the 
confidence coefficient obtained from the Student t distribution for a two-side confidence on 𝜇𝜇 with n - 1 degrees of freedom, 
𝛼𝛼 = a confidence parameter, 𝓃𝓃 = the number of elements in the sample.  

In some cases, a lognormal distribution may be more representative of the laboratory test results for geomechanical 
rock properties. There have been several studies in the literature on constructing the confidence interval on a lognormal 
mean (Zhou and Gao 1997). The methods are evaluated based on the coverage error, the interval width and the relative 
bias. Olsson (2005) presented a modified version of the Cox method to improve the coverage for small-sample sizes. To 
use the modified version of the Cox method, the lognormally distributed variable X must first be transformed to its natural 
logarithm (𝑌𝑌 = 𝑙𝑙𝑙𝑙(𝑋𝑋)) to obtain a normal distribution of data. 

The 100(1 - 𝛼𝛼) % confidence interval for the lognormal mean obtained from the modified version of the Cox method is 
presented in Eq. 2. 
 
 

 
(2) 

 
 

 
 
where 𝑌𝑌� = the arithmetic sample mean of the normally distributed variable 𝑌𝑌 = 𝑙𝑙𝑙𝑙(𝑋𝑋) and 𝑋𝑋 is the lognormally distributed 
variable, 𝑆𝑆𝑌𝑌2 = the variance of variable Y = 𝑙𝑙𝑙𝑙(X) and SY is the standard deviation of variable 𝑌𝑌, tα

2,n-1 = the confidence 

coefficient obtained from the Student t distribution for a two-sided confidence on 𝜇𝜇𝑋𝑋 and with 𝓃𝓃-1 degrees of freedom, 𝛼𝛼 = 
a confidence parameter,  𝓃𝓃 = the number of elements in the sample, 𝜇𝜇𝑋𝑋 = the mean of the lognormally distributed variable 
X. 

The confidence limits (i.e. the lower and upper bounds of the confidence interval) of the lognormally distributed variable 
X are obtained by calculating the inverse of the natural logarithm (i.e. base ℯ) of the confidence interval limits obtained 
from Eq. 2. 
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The two statistical methods used in this paper to evaluate the confidence level in the mechanical rock properties were 
developed from the theoretical concepts presented in Eq. 1 for normally distributed data and in Eq. 2 for lognormally 
distributed data. 

The first method, described in detail by Fillion and Hadjigeorgiou (2017), is based on the confidence interval (CI) 
calculated for a desired precision index on the estimation. The precision index is the ratio of the upper and lower limits of 
the confidence interval and controls the length of the confidence interval, i.e. a lower precision index implies a wider 
confidence interval. It is desirable to obtain a confidence interval that is small enough for decision-making purposes and 
that also provides an adequate or desirable confidence level. One way to achieve this is by choosing the sample size (𝓃𝓃) 
to be large enough to give a 𝐶𝐶𝐶𝐶 of specified length (precision) for a prescribed confidence level (Montgomery and Runger 
2003). Figure 4 illustrates the confidence interval method. It shows that, by fixing the precision index to 𝑝𝑝 = 1.35 (i.e. the 
relative error on the true mean Er = 15%), the length of the confidence interval is the same regardless of the confidence 
level. For a fixed p, additional data must be collected to increase the confidence level (e.g. from 𝐶𝐶𝐶𝐶=60%to𝐶𝐶𝐶𝐶=80%). 

The second method, presented by Grenon et al. (2015), links target levels of data confidence (𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶) to the relative 
error obtained for a fixed confidence level of 95%. The maximal relative error (Er) is defined by the half length of the 
confidence interval divided by the sample mean. This was originally applicable to normally distributed data. It was mod- 
ified for this work to lognormally distributed data. Figure 5 illustrates the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method. This figure shows that for a fixed 
𝐶𝐶𝐶𝐶 = 95%, the length of the confidence interval is reduced as the relative error (Er) on the true mean is reduced. Additional 
data must be collected to reduce Er (e.g. from 40% to 10%) in order to increase the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 (e.g. from 60% to 90%). The 
two methods are detailed in Sects. 4.1 and 4.2. 
 
 

 
 
Figure 4. Example of the confidence intervals obtained by fixing the precision index to 𝑝𝑝 = 1.35 
 
 
 

 
Figure 5. Example of the confidence intervals obtained by fixing 𝐶𝐶𝐶𝐶 = 95% 
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4.1 Confidence Interval (𝐶𝐶𝐶𝐶) 
 

Gill et al. (2005) were the first to suggest a method to determine the confidence interval characterizing the mean value 
of normally distributed rock properties for a pre-determined precision index. Selecting a precision index implies choosing 
the maximum relative error on the determination of the true mean and controls the length of the confidence interval. Fillion 
and Hadjigeorgiou (2017) modified and extended the approach by Gill et al. (2005) to be used with lognormal data 
distributions. The confidence level on the interval for the true mean (𝐶𝐶𝐶𝐶) is obtained from the confidence coefficient, 𝑡𝑡𝛼𝛼

2,𝑛𝑛−1, 
where 𝛼𝛼 is obtained from the Student’s t probability density function. The confidence level is calculated using Eq. 3. 
 
 

(3) 
 

 
 

For normally distributed data, the confidence coefficient is obtained from Eq. 4 that incorporates the desired precision 
index (p), i.e. the ratio of the upper and lower limits of the confidence interval. The precision index (p) is linked to the 
relative error on the true mean, i.e. 𝐸𝐸𝑅𝑅 =  𝑝𝑝−1

𝑝𝑝+1
, and a higher 𝑝𝑝 implies a higher relative error. 

 
 
 

(4) 
 

 
 

For lognormally distributed data, the confidence coefficient is obtained from Eq. 5, which includes the desired precision 
index (𝑝𝑝𝑌𝑌) on the confidence interval on 𝑙𝑙𝑙𝑙 (𝜇𝜇𝑋𝑋). 
 

 
 
 

(5) 
 
 

Because of the multiplicative effect of the error, the initially selected 𝑝𝑝𝑌𝑌, i.e. the precision index on the transformed 
variable 𝑌𝑌 = 𝑙𝑙𝑙𝑙(𝑋𝑋), must be smaller than the targeted precision index (𝑝𝑝) on the back transformed confidence interval (i.e. 
the interval for the lognormally distributed variable 𝑋𝑋). 𝑝𝑝𝑌𝑌 is selected by trial and error to ensure the targeted 𝑝𝑝 for the back 
transformed confidence interval is reached. 

 
4.2 Target Levels of Data Confidence 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 

 
In previous work, Grenon et al. (2015) proposed linking target levels of data confidence (𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 (%)) to the relative 

maximal error (𝐸𝐸𝑟𝑟) on the mean of the investigated geomechanical property, as shown in Eq. 6. This implies that the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 
is further increased as 𝐸𝐸𝑟𝑟 is reduced. In this previous work, a fixed confidence level of 95% in the interval estimate is 
suggested. The justification to fix the confidence level at 95% is that a high confidence level in the interval estimate for the 
true mean should be targeted for all project stages, i.e. from the early conceptual stage to the more mature operational 
stage. Accordingly, a large confidence interval can be accepted at the early stages of a mining project and this interval 
should reduce as the project advances towards construction and operation (Grenon et al. 2015). 
 
 

(6) 
 

 
 

The maximal relative error (Er) is obtained by dividing the half length of the confidence interval of a 100(1 - 𝛼𝛼) % 
confidence level by the sample mean.  

For normally distributed data, the confidence interval is symmetric and Er can be reduced to Eq. 7 (Grenon et al. 2015). 
 

 
(7) 

 
 



 

7 
 

 
The confidence coefficient, 𝑡𝑡𝛼𝛼

2,𝑛𝑛−1, is obtained for a 95% (𝛼𝛼 = 0.05) confidence interval on the true mean (𝜇𝜇).  
In the present investigation, the approach by Grenon et al. (2015) was modified to accommodate data distributions 

using Eq. 2. For lognormally distributed data, the confidence interval is asymmetric and Er is calculated using Eq. 8. This 
represents the half length of the confidence interval on 𝜇𝜇𝑋𝑋, obtained with the inverse of the natural logarithm of the 

confidence limits and divided by the sample mean of the lognormally distributed variable 𝐸𝐸[𝑋𝑋] =  ℯ𝑌𝑌�+
𝑆𝑆𝑌𝑌
2

2 . 
 
 
 
 

(8) 
 
 
 

The confidence coefficient, 𝑡𝑡𝛼𝛼
2,𝑛𝑛−1, is obtained for a 95% (𝛼𝛼 = 0.05) confidence interval on the true mean (𝜇𝜇𝑋𝑋). 

 
4.3 Additional Number of Tests Required to Reach Higher Confidence Levels 

 
It has been demonstrated that in certain cases the minimum number of specimens proposed in rock engineering best 

practice, e.g. the ISRM suggested methods (ISRM 2007), can be inadequate (Gill et al. 2005; Ruffolo and Shakoor 2009; 
Fillion and Hadjigeorgiou 2013). The ISRM suggested methods state that the minimum number of specimens to test should 
be at least five for UCS, Young’s modulus and Poisson’s ratio, three for density and ten for tensile strength. In fact it is not 
possible to determine a priori the number of required tests for a given rock type, and for a targeted precision index and 
confidence interval. When a number of laboratory test results become available, and the confidence level in the existing 
data is considered too low for the purposes of the work desired, it is possible to evaluate the number of additional laboratory 
tests required to reach a higher level of confidence. 

According to small-sampling theory, the minimum number of specimens in a group (minimum sample size) can be 
expressed in terms of the precision index 𝑝𝑝, 𝑡𝑡𝛼𝛼

2,𝑛𝑛−1Student’s statistic and the coefficient of variation 𝑐𝑐𝑣𝑣 =  𝑠𝑠
𝑋𝑋�
 . The minimum 

sample size 𝑙𝑙 for normally distributed data is defined by Eq. 9. 
 
 

 
(9) 

 
 
 

It is not straightforward to solve Eq. 9 because the confidence coefficient, 𝑡𝑡𝛼𝛼
2,𝑛𝑛−1, is a function of the sample size (𝑙𝑙). 

Consequently, the required 𝑙𝑙 must be determined through trial and error or by using a solver for nonlinear equations. 
Because the coefficient of variation can be different with additional data, i.e. 𝑐𝑐𝑣𝑣 is function of 𝑙𝑙, and 𝑙𝑙 is a function of the 
confidence coefficient, iterations must be performed to solve Eq. 9. 

For lognormally distributed data, the equation for the minimum number of specimens to reach a predetermined 
confidence level is derived from Cox’s modified equation (Eq. 2) (Olsson 2005) to determine the confidence interval on 
𝑙𝑙𝑙𝑙(𝜇𝜇𝑋𝑋) and from the precision index (𝑝𝑝𝑌𝑌). The detailed steps are presented by Fillion and Hadjigeorgiou (2017). The 
minimum sample size (𝑙𝑙) for lognormally distributed data is defined by Eq. 10. 
 
 

 
(10) 

 
 
 

In practice, it is not straightforward to solve Eq. 10 for the minimum number of specimens because the standard 
deviation (𝑆𝑆𝑌𝑌), the average (𝑌𝑌�) and the coefficient of variation (𝑐𝑐𝑣𝑣𝑌𝑌) of variable 𝑌𝑌 =  𝑙𝑙𝑙𝑙(𝑋𝑋), as well as the confidence 
coefficient, 𝑡𝑡𝛼𝛼

2,𝑛𝑛−1, are also functions of the number of specimens (𝑙𝑙). Consequently the required n must be determined 
through trial and error or using a solver for nonlinear equations. 

Regardless of the data distribution (i.e. normal or lognormal), additional laboratory testing is required for each 
performed iteration to determine the minimum number of specimens to test until the targeted precision index and 
confidence level are reached. 
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5 CONFIDENCE LEVEL IN GEOMECHANICAL DATA FOR UNDERGROUND MINING PROJECTS 
 

The geomechanical design and development of an underground mine is a complex process. This requires a sufficient 
degree of confidence in the geomechanical data used for the design of the underground excavations. The level of 
knowledge in the rock properties should arguably improve during the design process from the early conceptual stage to 
the late operation stage. Read and Stacey (2009) suggested guidelines for the targeted levels of confidence in the different 
components of a geotechnical model, as a function of the different stages of a mining project. Those guidelines were 
developed as part of the large open pit mines project (LOP) (Read and Stacey 2009). For underground openings at the 
operation stage, Grenon et al. (2015) made the distinction between temporary and permanent underground excavations. 
A higher level of confidence is suggested for permanent excavations that will be accessible to mine personnel for a long 
period of time, as opposed to temporary excavations. Cepuritis and Villaescusa (2012) presented a reliability-based 
approach to open stope span design in underground mining. Different levels of data reliability are suggested for different 
project stages with a distinction, at the operations stage, between early to mid-life and mature operations. Table 3 shows 
the suggested degrees of confidence in the rock properties as a function of the project stages. As shown in Table 3, the 
degrees of confidence in the mechanical rock properties for underground mining projects are similar and a confidence 
level of 85% is suggested for mature or permanent excavations at the operations stage (Grenon et al. 2015; Cepuritis and 
Villaescusa 2012). 

The existing guidelines have some limitations. As outlined, the reporting systems that define levels of confidence or 
reliability in the data is qualitative (or subjective). Furthermore, there is no universally accepted process to quantify the 
required number of laboratory tests to determine the rock properties with a targeted confidence. 

This paper provides a quantitative assessment of the confidence in geomechanical data collected for an underground 
mining project, using the two statistical methods presented in Sect. 4. The results for mining project 14 (PM14) are 
presented in this paper. This mining project was selected for the higher number of laboratory tests available in a variety of 
domains. 

A fixed precision index (𝑝𝑝) of 1.35 or less was targeted with the use of the Fillion and Hadjigeorgiou (2017) method. In 
reality, there are no established guidelines for determining an acceptable precision index. For example, Gill et al. (2005) 
suggested that for permanent mine openings, 𝑝𝑝 should be ≤ 1.35 while keeping the confidence interval at 95%. This 
condition ensures a maximum relative error on the true mean of approximately 15%. However, an equally valid case could 
have been made that a different precision index could have been employed to determine 𝐶𝐶𝐶𝐶. A fixed confidence interval of 
95% was targeted with the use of the Grenon et al. (2015) method. A 95% confidence interval implies that the true mean 
will lie in the calculated confidence interval 19 times out of 20. It cannot be certain that the interval contains the true 
unknown population mean, but the interval is constructed so there is a higher degree of confidence that it does. The results 
for UCS, tensile strength, density, Young’s modulus and Poisson’s ratio data are respectively presented in Sects. 5.1–5.5. 
 
 
Table 3. Suggested degrees of confidence in the rock properties for the different stages of a mining project 

 
 
5.1 Uniaxial Compressive Strength 

 
Uniaxial compressive strength data were available for a total of 11 domains for PM14 at Raglan mine. The confidence 

level in the uniaxial compressive strength data was calculated for 9 geotechnical domains present in Mining Project PM14. 
It was not possible to calculate the confidence for 2 domains because the data distribution could not be assigned due to 
the limited amount of UCS data. Table 4 presents the lower and upper limits of the confidence intervals, the corresponding 
confidence level, and the minimum number of specimens that should be tested (𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙) to reach 85% confidence, for 
mature operations or permanent excavations at the operations stage, based on the recommendations in Table 3. For 
comparison purposes, the length of the confidence intervals constructed with the two methods and the associated levels 
of confidence are illustrated in Fig. 6. 
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Table 4. Confidence intervals and minimum number of specimens required to reach an 85% confidence level, obtained 
with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods for PM14 UCS data 

 
 

 
 
Figure 6. Confidence intervals (whisker plots) and associated levels of confidence obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods 
(black and white diamond symbols on top) for PM14 UCS data 
 
 

The confidence intervals are represented by the whisker plots in Fig. 6, with straight lines extending from the minimum 
to the maximum limits of the confidence intervals. The middle line is the average value, which is the same for a specific 
rock unit using both methods. The values for the average and confidence limits correspond to the left vertical axis. The 
confidence levels obtained using both methods are illustrated with the black (𝐶𝐶𝐶𝐶 method) and white (𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method) 
diamond symbols at the top of Fig. 6. The values for the level of confidence can be obtained from the right axis of the 
chart. The red dashed line represents the 85% confidence level suggested for the design of a mature or permanent 
excavation at the operation stage. The 85% confidence level is given as an indicator of domains that potentially require 
additional data collection. 

The results show that generally wider confidence intervals and lower confidence levels are obtained with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 
method. The results in the 𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙 column of Table 4 show that the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method requires more specimens to reach the 
same precision (e.g. 𝐸𝐸𝑟𝑟 = 15% which implies  𝑝𝑝 = 1.35) and confidence than the 𝐶𝐶𝐶𝐶 method. Finally, additional laboratory 
testing would be recommended to reach an 85% confidence level for 5 domains (i.e. rock units 4f, 6b, 6 h, 9b and Ore) 
using the 𝐶𝐶𝐶𝐶 method. Based on this analysis additional testing would be required for 8 domains (i.e. rock units 10c, 4a, 4f, 
6b, 6e, 6 h, 9b and Ore) if the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method is employed. 
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Table 5. Confidence intervals and minimum number of specimens required to reach an 85% confidence level, obtained 
with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods for PM14 tensile strength data 

 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Confidence intervals (whisker plots) and associated levels of confidence obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods 
(black and white diamond symbols on top) for PM14 tensile strength data 
 
 
5.2 Tensile Strength 
 

Tensile strength data were available for a total of 10 domains for PM14 at Raglan mine. The confidence level was 
calculated for 7 domains. It was not possible to calculate the confidence for 3 domains because the data distribution could 
not be assigned due to the limited amount of tensile strength data. This highlights some of the practical issues in reviewing 
mechanical data. Table 5 and Fig. 7 present the confidence intervals and the associated levels of confidence obtained 
with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods. 

An analysis of the tensile strength data follow a similar trend to that obtained for the UCS data, i.e. generally wider 
confidence intervals, lower confidence levels and higher Nmin obtained with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method. The results for rock unit 
6a (Fig. 7) show that, when the coefficient of variation is low (i.e. 0.07 in that particular example), high precision and confi- 
dence can be obtained by applying the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method. This results in a narrow 95% confidence interval for rock unit 6a. 
Additional laboratory testing would be recommended to reach an 85% confidence for the remaining 5 domains (i.e. rock 
units 4a, 4f, 6b, 6e and9b) using the 𝐶𝐶𝐶𝐶 method, as opposed to 7 domains (i.e. rock units 10b, 4a, 4f, 6b, 6e, 9b and Ore) 
if the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method is employed. 
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Table 6. Confidence intervals and minimum number of specimens required to reach an 85% confidence level, obtained 
with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods for PM14 density data 

 

 
Figure 8. Confidence intervals (whisker plots) and associated levels of confidence obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods 
(black and white diamond symbols on top) for PM14 density data 
 
 
5.3 Density 

 
The density data were obtained for the specimens used in the UCS, tensile strength and triaxial laboratory tests. 

Density measurements were available for a total of 11 domains for PM14 at Raglan mine. The confidence level was 
calculated for 10 domains. It was not possible to calculate the confidence for rock unit 4f because the data distribution 
could not be assigned due to limited test results. Due to the naturally lower variability of the density data (i.e. density 
measurement generally about 2–3 t/m3), the coefficient of variation (𝑐𝑐𝑣𝑣) of density laboratory tests is significantly lower 
than for other rock properties. To increase the precision on the estimation and reduce the length of the confidence interval, 
a precision index (𝑝𝑝) of 1.04 instead of 1.35 was targeted using the 𝐶𝐶𝐶𝐶 method. This implies that the maximum 𝐸𝐸𝑟𝑟 is about 
2% and results in a smaller confidence interval. Table 6 and Fig. 8 show the confidence intervals and the associated levels 
of confidence obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods. 
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Table 7. Confidence intervals and minimum number of specimens required to reach an 85% confidence level, obtained 
with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods for PM14 Young’s modulus data 

 
 
 

 
 
Figure 9. Confidence intervals (whisker plots) and associated levels of confidence obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods 
(black and white diamond symbols on top) for PM14 Young’s modulus data 
 
 

The results show that, contrary to more variable rock properties, the level of confidence in density data is generally 
high. This is partly due to the higher number of density test results (obtained during the testing of three other rock 
properties), and partly due to the naturally lower variability of density measurements, in comparison to other rock 
properties. For density data, the length of the calculated confidence interval is generally smaller with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method, 
which implies a higher precision on the estimation. Furthermore, an issue with the pre-selection of p was observed with 
the 𝐶𝐶𝐶𝐶 method. For example, the selection of 𝑝𝑝 = 1.04 for rock unit 6h resulted in a 72.3% 𝐶𝐶𝐶𝐶 of 3.00–3.12 t/m3, which 
implies that additional density data should be collected for a mine at the operation stage. However, as shown in Table 6 
for rock unit 6h, an 85% 𝐶𝐶𝐶𝐶 of 2.98–3.15 t/m3 can be obtained by increasing p to 1.057 (i.e. 𝐸𝐸𝑟𝑟 about 3%). This demonstrates 
that a significant difference in the confidence level can be obtained for a similar confidence interval by increasing 𝑝𝑝 with 
only a small increment. Finally, additional laboratory testing is recommended for rock unit 4f to be able to identify the data 
distribution. The number of density test results is sufficient for all other geotechnical domains. 
 
5.4 Young’s Modulus 

 
Young’s modulus data were obtained from instrumented UCS laboratory tests for 9 domains for PM14 at Raglan mine. 

The confidence level was calculated for 8 domains because the data distribution could not be assigned to rock unit 4f due 
to the limited amount of Young’s modulus data. Table 7 and Fig. 9 present the confidence intervals and the associated 
levels of confidence obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods. 
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Although the higher confidence is obtained using the 𝐶𝐶𝐶𝐶 method, the length of the confidence interval is generally 
smaller for the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method. This is due to the generally low variability of the measured Young’s modulus data for this 
particular location. For more variable domains, such as rock units 6e and 9a, wider confidence intervals are obtained with 
the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method, and a greater number of specimens is required to reach 85% confidence compared to the 𝐶𝐶𝐶𝐶 method. 
Additional laboratory testing would be recommended to reach an 85% confidence for 2 domains (i.e. rock units 4f and 6e) 
using the 𝐶𝐶𝐶𝐶 method, as opposed to 3 domains (i.e. rock units 4f, 6e and 9a) if the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method is employed. 

 
 
Table 8. Confidence intervals and minimum number of specimens required to reach an 85% confidence level, obtained 
with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods for PM14 Poisson’s ratio data 

  
 
 

 
 
Figure 10. Confidence intervals (whisker plots) and associated levels of confidence obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods 
(black and white diamond symbols on top) for PM14 Poisson’s ratio data 
 
 
5.5 Poisson’s Ratio 

 
Poisson’s ratio data were obtained from instrumented UCS laboratory tests. Poisson’s ratio measurements were 

available for a total of 9 domains for PM14 at Raglan mine. The confidence level was calculated for 7 domains because 
the data distribution could not be assigned to rock units 4f and 6b due to the limited amount of Poisson’s ratio results. 
Table 8 and Fig. 10 show the confidence intervals and the associated levels of confidence obtained using both statistical 
methods. 
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Similarly to the density data, the Poisson’s ratio is naturally less variable than other rock properties with typical values 
between 0 and 0.5. Consequently, generally high confidence levels can be reached with limited Poisson’s ratio 
measurements (5–16 for this particular case). For Poisson’s ratio data, the length of the calculated confidence interval is 
generally smaller with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method which implies a higher precision on the estimation. However, the confidence levels 
are smaller with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method and a higher number of specimens (𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙) must be tested to reach 85% confidence for 
domains with higher variability. For example, the confidence level is higher than 85% for rock units 6a and 6e if the 𝐶𝐶𝐶𝐶 
method is used, but testing one additional specimen is recommended for those two domains if the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method is 
considered. Additional laboratory testing would be recommended to reach an 85% confidence for 2 domains (i.e. rock 
units 4f and 6b) using the 𝐶𝐶𝐶𝐶 method, as opposed to 4 domains (i.e. rock units 4f, 6a, 6b and 6e) if the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method is 
employed. 

The results for rock unit 9b demonstrate the difference with both methods for the same 𝐶𝐶𝐶𝐶 = 95% and 𝑝𝑝 = 1.35 (𝐸𝐸𝑟𝑟 = 
15%). This implies that the length of the confidence interval is the same with both methods, i.e. 0.22–0.30 for this particular 
domain (Table 8 and Fig. 10). However, the confidence level is smaller with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method because 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 (%) = 100–
𝐸𝐸𝑟𝑟 with 𝐸𝐸𝑟𝑟 calculated for a 95% 𝐶𝐶𝐶𝐶. This illustrates why the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods result in lower confidence levels than the 
𝐶𝐶𝐶𝐶 method. 
 
 
6 PRACTICAL CONSIDERATIONS 
 

This section presents the practical considerations using two approaches based on small-sampling theory in evaluating 
the level of confidence in normally or lognormally distributed rock properties obtained through a series of laboratory tests 
(i.e. UCS, tensile strength, density, Young’s modulus and Poisson’s ratio). A practical example using the Kirsch analytical 
solution (Kirsch 1898) is presented to illustrate the implications of selecting one analysis method over the other. The two 
methods used are equally applicable to other rock properties following a normal or a lognormal data distribution. For other 
data distributions, those two methods cannot be used to determine the level of confidence. Other methods such as the 
modified Bayesian approach (Read 2013) could be employed to establish the reliability of laboratory test results when a 
data distribution other than normal or lognormal is identified. The use of other methods is outside the scope of this work. 

For a statistical method to be valid, the sample must be representative of the population, i.e. it is desirable to select a 
random sample to avoid introducing a bias into the sample which may result in an over or underestimation of the parameter 
of interest. In reality, the sampling and testing methods can have a significant impact on the parameter estimate, the 
delineation of the geotechnical domains and the resulting confidence level in the rock properties (e.g. weaker samples not 
tested, test results excluded from the geotechnical database, variability underestimated for spatially correlated samples, 
borehole orientation bias, discrepancies in the rock type identification over time and with different personnel logging the 
core, high variability in the rock properties within a single geotechnical domain, etc.). The implications of the potential 
sources of sampling bias is outside the scope of this work. Nevertheless, statistical analyses can aid in 
identifying potential bias and may contribute to a better zoning of the geotechnical domains. 
 
6.1 Differences Between the 𝐶𝐶𝐶𝐶 and the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 Analysis Methods 

 
The first approach, i.e. the 𝐶𝐶𝐶𝐶 method, requires that a precision index is targeted a priori, based on the specifics of the 

project. It is then possible to determine the level of confidence that meets this criteria and to decide if additional laboratory 
tests should be conducted to increase the confidence level. The second approach, i.e. the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method, suggests that a 
high confidence level of 95% in the interval estimate of the investigated rock property should be targeted, and the decision 
to collect additional data or not for the project under considerations is based on the associated precision index. Although 
these approaches appear very similar, the results presented in Sect. 5 for the different rock properties identified differences 
on how the two problems are addressed from a statistical and engineering perspective. 

For both methods, it was shown that a higher number of laboratory tests does not necessarily imply a higher level of 
confidence. Distinct geotechnical domains have different levels of geological and structural complexity which results in 
different number of specimens to reach a targeted level of confidence. Furthermore, within a specific geotechnical domain, 
collecting additional data may result in a smaller level of confidence if the data variability was previously underestimated. 
Similarly, comparable coefficients of variation may lead to different confidence levels in the rock properties because the 
confidence level is function of various parameters, including the number of specimens in the sample. For example, for the 
tensile strength data samples of rock units 10b and 4a (Table 5), the coefficient of variation is equivalent (i.e. 𝑐𝑐𝑣𝑣 = 0.33), 
but the associated 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 is significantly higher for domain 10b. This further demonstrates that a decision to test 
additional samples guided solely on cv values may be inadequate to assess the reliability of the collected geomechanical 
data. Both the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods can be employed in identifying gaps in data collection and in selecting drilling targets 
for additional data collection. Effectively, those two methods provide a quantitative assessment of the confidence level in 
geomechanical data based on a predetermined precision requirement. This quantitative measure aids in justifying the 
need for additional data collection in particular geotechnical domains in order to meet the precision and confidence criteria 
for a specific design. The main differences between the 𝐶𝐶𝐶𝐶 and the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods are: 

• For the same precision index 𝑝𝑝, the confidence level determined with the 𝐶𝐶𝐶𝐶 method is generally higher. 
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• As illustrated in Fig. 6, for rock properties that are generally more variable (e.g. UCS), the length of the confidence 
interval established with the 𝐶𝐶𝐶𝐶 method is generally smaller for the selected 𝑝𝑝 = 1.35. Wider confidence intervals would be 
obtained with higher 𝑝𝑝. 

• As illustrated in Figs. 8 and 10, for rock properties with a naturally low coefficient of variation (e.g. density, Poisson’s 
ratio), the length of the confidence interval established with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method is generally smaller. Smaller confidence 
intervals can be obtained with the 𝐶𝐶𝐶𝐶 method by reducing 𝑝𝑝, but this will also reduce the confidence level in the interval 
estimate. 

• As shown in Tables 4, 5, 6, 7 and 8, the additional number of specimens required to reach higher confidence levels 
in the interval estimate for the rock properties is higher with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method. This is due to the use of a fixed 𝐶𝐶𝐶𝐶=95% to 
establish the lower and upper limits of the confidence interval. 

 
 

Table 9. Advantages and limitations of the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods 

 
 

The results obtained from both the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods allowed the identification of advantages and limitations to 
those approaches, as summarized in Table 9. It is important to consider these advantages and limitations when selecting 
a method to determine the level of confidence in the laboratory test results. The selection of the analysis method depends 
on the project requirements. 

A major advantage of the 𝐶𝐶𝐶𝐶 method is that it provides more flexibility to the designer, depending on the type of project. 
Contrary to the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method, which fixes th𝑒𝑒 𝐶𝐶𝐶𝐶 𝑎𝑎𝑡𝑡 95%, 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶 𝑁𝑁ethod allows the targeting of different 𝐶𝐶𝐶𝐶 and 𝑝𝑝 values. 
For example, there is less need to reach high 𝐶𝐶𝐶𝐶 values in domains that are not located in the vicinity of less critical mine 
excavations. Nevertheless, the 𝐶𝐶𝐶𝐶 value must be adequate if the specific domain is present in the back/walls of a temporary 
excavation, prior to the final excavation. It is further possible to increase p to reach higher confidence levels without having 
to collect additional data (e.g. rock unit 6h in Table 6). This implies a wider confidence interval. The impact of higher 𝑝𝑝 on 
the selection of the design value and consequently on the project design, could be investigated through sensitivity 
analyses. This requires the use of a higher precision index on the confidence interval for the true mean to determine if the 
design requirements are met for the required precision. 

A considerable benefit of using the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method is the high level of confidence of 95% in the interval estimate. This 
can be a critical criterion for entry excavations (i.e. personnel exposed) or permanent excavations such as the mine’s 
shaft. Based on this approach, a higher number of additional specimens is required to increase the confidence in the rock 
properties values. This can be considered a relatively more conservative choice and may be more appropriate for critical 
excavations. 

In underground mining projects, such practical site specific considerations have an impact on the number of data 
collected and can also influence the timing for data collection. For example, at Raglan mine, many drifts are excavated in 
the peridotite rock unit (10b) (Grenon et al. 2015) which explains the generally higher number of tests available for this 
specific domain in the mine’s laboratory testing database. 
 
6.2 Practical Example Using the Kirsch Analytical Solution 

 
This section presents an example of the implications of quantifying the level of confidence in the geomechanical data 

used in mine design. Two approaches were employed to determine the level of confidence in rock unit 9a (Normal Gabbro) 
UCS data for two different stages of the PM14 mining project, i.e. a 2014 scoping study and a 2015 prefeasibility study. 
The results for the prefeasibility study represent the compilation of the 2014 and 2015 laboratory testing campaigns. The 
data distribution fit for the 2014 and 2015 project stages are presented in Fig. 11. The confidence intervals and the 
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associated level of confidence for the two stages are presented in Table 10. The results show that, for this particular case, 
the additional data collection resulted in a different distribution best fit (i.e. lognormal at the 2014 scoping stage and normal 
at the 2014–2015 prefeasibility stage) and a higher level of confidence in the data at the later stage. Furthermore, as 
shown in Fig. 12, the confidence intervals obtained with both methods are similar at the 2014–2015 prefeasibility stage, 
but a wider confidence interval is obtained with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method at the 2014 scoping stage. This can have significant 
implications in mine design. 
 
 

 
 
Figure 11. UCS data distribution fit for rock units 9a at the 2014 scoping stage (lognormal distribution) and at the 2015 
prefeasibility stage (normal distribution) 
 
 
Table 10. 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 obtained for rock unit 9a UCS laboratory test results conducted for a scoping study (2014 database) 
and a prefeasibility study (compiled 2014–2015 database) undertaken for PM14 mining project 

 
 
 

A simple example using the Kirsch analytical solution (Kirsch 1898) is presented to illustrate the potential 
consequences of the analysis method in the design process. The Kirsch solution was selected for this example because 
it is an analytical solution derived from the theory of elasticity. The use of a simple analytical solution is optimal for this 
example and helps illustrate the impact of data analysis. 

The Kirsch solution is used to calculate the stresses around the circular excavation illustrated in Fig. 13. The stresses 
at the boundary of a circular opening (i.e. 𝑟𝑟 = 𝑎𝑎) are given by Eq.11 to Eq.13: 
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(11) 

 
(12) 

 
(13) 

 
where 𝜎𝜎𝑟𝑟𝑟𝑟 = the radial stress and 𝜎𝜎𝑟𝑟𝑟𝑟 = 0 because there is no internal pressure at the boundary, 𝜎𝜎𝜃𝜃𝜃𝜃 = the tangential stress, 
𝜎𝜎𝑟𝑟𝜃𝜃 = the shear stress and 𝜎𝜎𝑟𝑟𝜃𝜃 = 0 at a traction-free boundary, 𝑝𝑝 = the vertical stress, 𝑘𝑘 = the stress ratio (𝑘𝑘 =  𝜎𝜎ℎ 𝑝𝑝⁄ , i.e. 
the ratio of the horizontal stress to the vertical stress), 𝜃𝜃 = angle from a reference direction in the polar coordinate system, 
𝑟𝑟 = distance from a reference point in the polar coordinate system, 𝑎𝑎 = radius of the circular excavation. 

 
 

 
Figure 12. Confidence intervals (whiskers plots) and associated levels of confidence obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 
methods (black and white diamond symbols on top) for PM14 UCS data collected to characterize rock unit 9a at two 
different project stages 
 

 
In this example, the induced stress at the roof of a circular excavation (𝜃𝜃 = 90°) in rock unit 9a (i.e. Normal Gabbro) is 

evaluated to determine if the compressive strength of the rock on the excavation boundary will be exceeded at depth 𝑧𝑧 = 
800 meters. Since the excavation has neither a support pressure nor an internal pressure applied to it, the local stresses 
at the boundary have 𝜎𝜎3 = 𝜎𝜎𝑟𝑟𝑟𝑟 = 0 and 𝜎𝜎1 = 𝜎𝜎𝜃𝜃𝜃𝜃. The stress ratio is assumed to be 𝑘𝑘 = 2. The density of rock unit 9a is 
estimated to be about 3.0 t/m3 (i.e. unitweight γ = 29.4 kN/m3). The vertical stress due to the weight of the overburden 
(𝑝𝑝 = 𝛾𝛾𝑧𝑧) is 23.5 MPa. By replacing the values in Eq. 12, the tangential stress (𝜎𝜎𝜃𝜃𝜃𝜃) at the roof is approximately 118 MPa. 

The confidence intervals for the mean uniaxial compressive strength obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 analysis methods 
for two project stages are given in Table 10. The calculated confidence intervals implies that the true mean can take any 
value in the specified range. To perform probabilistic analyses, the parameters (mean and standard deviation) of the 
probability distribution (normal or lognormal for this specific example) must be determined. Strength values are then 
generated randomly from the specific probability distribution. The lower bound of the confidence interval was selected as 
a design value for the stability analysis. Selecting another value (e.g. the sample average or the upper limit of the 
confidence interval) would result in a smaller probability of failure. The sample standard deviation of strength values for 
rock unit 9a at the scoping (2014) and the prefeasibility (2014–2015) stages are respectively 65.1 and 68.8 MPa. The 
probability that the compressive strength is exceeded for rock types at the roof of the excavation, i.e. the probability that 
the compressive strength will be less than 118 MPa, was calculated from the associated cumulative distribution function. 
The results are presented in Table 11. Figure 14 shows the data distributions obtained with the two methods with the 
simulation of 10,000 random UCS values at the 2014 scoping stage and at the 2014–2015 prefeasibility stage. The 
probability that the compressive strength will be less than 118 MPa is represented by the shaded area in Fig. 14.  

In this example, for simplicity purposes, the focus was on the estimation of the level of confidence on the mean using 
a constant value for the sample standard deviation. In reality, the sample standard deviation is a variable parameter 
influenced by the number of specimens in the sample, as opposed to the population standard deviation which is a constant 
value. Confidence intervals for the true standard deviation can be constructed for normally distributed data, e.g. Hines et 
al. (2003), and for lognormally distributed data, e.g. Tang and Yeh (2016). For a predetermined confidence level, the 
precision index on the confidence interval for true standard deviation can be different than the precision index on the 
confidence interval for true mean. Tang and Yeh (2016) concluded that, typically, the number of specimens needed for the 
lognormal standard deviation confidence interval is larger than that for the lognormal mean confidence interval. The 
influence of the variability of the standard deviation estimate was outside the scope of this work.  
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For this particular example, the probability that the compressive strength is exceeded, i.e. P (strength \ 118 MPa), at 
the roof of a circular excavation is lower at the early 2014 stage (scoping study) compared to the 2015 prefeasibility study 
using both the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods. This suggests that, because of the smaller number of UCS data available at the 
2014 project stage (i.e. 10 UCS values at the 2014 project stage vs. 28 at the 2015 project stage), the data variability was 
underestimated. With additional data collected in 2015 (i.e. 18 additional UCS laboratory tests conducted), a better 
understanding of the true variability can be achieved. This resulted in a slightly higher cv at the 2015 prefeasibility stage, 
but a complete change in the best data distribution fit (i.e. lognormal distribution at the 2014 project stage vs. normal 
distribution at the 2015 project stage). Underestimating the true data variability can have significant implications on the 
design. For example, the design can be accepted for a probability that the compressive strength is exceeded at the roof 
of the excavation ≤ 0.15. This acceptance criterion would be accepted at the 2014 project stage but would not be met at 
the 2015 prefeasibility stage. Other acceptance criteria could be selected based on the project requirements. The choice 
of an appropriate acceptance criterion is outside the scope of this work. 

 
 

 
Figure 13. Stresses induced around a circular excavation. (Brady and Brown 2006) 
 
 
Table 11. Practical example for the probability that the compressive strength is exceeded, i.e. 𝑃𝑃 (strength \ 118 MPa), at 
the roof of a circular excavation using the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 analysis methods at two different stages of a mining project 

 
 

The results of the analysis, summarised in Table 10, illustrate that with additional collected data for the 2015 
prefeasibility study, the level of confidence is significantly higher, i.e. 97.7% vs. 82.6% with the 𝐶𝐶𝐶𝐶 method and 87.3% vs. 
76.8% with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method. The relative error obtained with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method is reduced significantly with additional 
data collected (i.e. 12.7% vs. 23.2%). This resulted in similar upper and lower limits for the confidence interval obtained 
with both methods and a similar UCS value selected for design purposes, i.e. 179 MPa with the 𝐶𝐶𝐶𝐶 method and 184 MPa 
with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method (see Table 11). Since a similar design value is selected at the 2015 prefeasibility stage, the 
probability that the compressive strength is exceeded at the roof of the excavation is similar (i.e. 0.19 with the 𝐶𝐶𝐶𝐶 method 
vs. 0.17 with the 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method). 

This simple example illustrated the practical implications of selecting the 𝐶𝐶𝐶𝐶 or 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 method in establishing the level 
of confidence in laboratory test results on the resulting design output. The analysis of two different project stages (i.e. a 
2014 scoping study and a 2015 prefeasibility study) further demonstrated the importance of reaching a sufficient level of 
confidence in the collected data to ensure a reliable design. 
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Figure 14. Data distributions obtained with the 𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 methods at the 2014 scoping stage and at the 2014–2015 
prefeasibility stage 
 
 
7 CONCLUSIONS 
 

A major challenge in geotechnical analysis and design of underground mine excavations is the availability of sufficient 
and reliable data. Through the life of a mine, defining the scope of geotechnical data collection campaigns and the 
necessity for additional data collection is not a straightforward task. This requires knowledge of the level of confidence in 
the existing database to select targets for additional data collection. In this paper, two statistical approaches, based on 
small-sampling theory, were investigated to quantify the level of confidence in the rock properties obtained through a series 
of ISRM suggested methods for an underground mining project in Northern Canada. The level of confidence in UCS, 
tensile strength, density, Young’s modulus and Poisson’s ratio data was calculated for a specific mining project prior to the 
operation stage. The results identified the main differences, including the advantages and limitations, of the two methods. 
The results further illustrated the impact of choosing one analysis method over the other on the resulting confidence level, 
precision index and additional number of specimens required to reach a higher confidence level in the rock properties. 
This investigation demonstrated that the selection of the appropriate analysis method should be guided by the specifics of 
the project, i.e. the required confidence level and precision index. 
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