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  Abstract— We propose a new wireless communication archi-
tecture for implanted systems that simultaneously stimulate neu-
rons and record neural responses. This architecture can support 
large numbers of electrodes (>500), providing 100 Mb/s for the 
downlink of stimulation signals, and Gb/s for the uplink neural re-
cordings. We propose a full-duplex transceiver architecture that 
shares one antenna for both ultra-wideband (UWB) and the 2.45 
GHz ISM band. A new pulse shaper is used for the Gb/s uplink to 
simplify transceiver design, while supporting several modulation 
formats with high data rates. To validate our system level design 
for brain-machine interfaces (BMI), we present an ex-vivo experi-
mental demonstration of the architecture. While the system design 
is for an integrated solution, the proof-of-concept demonstration 
uses discrete components. Good bit error rate performance over a 
biological channel at 0.5, 1, and 2 Gbps data rates for uplink te-
lemetry (UWB) and 100 Mb/s for downlink telemetry (2.45 GHz 
band) are achieved. 
 

Index Terms—Neural recording and stimulating, Full-Duplex, 
Downlink, Uplink, Ultra-wideband (UWB), ISM, Brain machine 
interface.  
  

I. INTRODUCTION 
MPLANTABLE wireless transceivers are an essential part of 
implanted neural recording systems used for treatment and 

for research on neurological impairments [1-8]. Simultaneous 
neural stimulating and recording systems in large scale require 
many electrodes interfaced, perhaps permanently, to the central 
and peripheral nervous systems. In neural recording and stimu-
lating applications, increasing the number of electrodes en-
hances understanding of the targeted part of the brain [9]. 

Wireless implantable devices can be powered by two differ-
ent methodologies: 1) with an un-chargeable battery or energy 
harvester, or 2) wirelessly from external sources by an antenna 
or an inductive coil [10-15]. Since we target permanent im-
plants for a high number of electrodes, we do not consider the 
first option. The second option can be divided into partially pas-
sive and fully passive subgroups. The high bit rates we target 
preclude the use of fully passive methods: where neuropoten-
tials modulate an externally generated carrier and the modu-
lated carrier is backscattered to an external receiver. While the 
fully passive circuits can reduce risks related to power dissipa-
tion in implants (they dissipate little of the induced power), an-
alog modulation is incompatible with large-scale neural record-
ing systems.   
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We therefore focus on passive powering which is suitable for 
permanent implants and can provide enough (milliwatts) power 
for an implanted device. In wireless BMI transceivers with the 
passive power systems, conventionally three separate links 
have been employed: one power inductive link and two separate 
communications subsystems (uplink and downlink), as shown 
in Fig.1-a [8, 16, 17]. 

Inductive data links are utilized when the required data rate 
is low, on the order of a few Mb/s [16-17]. At low frequencies, 
unlicensed bandwidth is limited, pushing high speed links to 
higher RF frequencies. To achieve a higher data rate for the up-
link in a neural recording system, an ultra-wideband RF link 
was utilized instead of an inductive approach; the inductive ap-
proach was kept for the downlink [7-8]. As the number of elec-
trodes increases, the downlink needs wider bandwidth (and 
hence a higher RF frequency) to be able to support 100 Mb/s 
data rates. Recently, we proposed 2.45 GHz industrial, scien-
tific and medical (ISM) band as a downlink [18]. We will show 
in this paper that the 2.45 GHz downlink receiver can be oper-
ated in full duplex with a high data rate ultra-wideband band 
(UWB) uplink transmitter. 

The most important features for the implanted circuit are 
small size and very low power consumption [1-7]. To achieve 
these goals we modify the traditional use of separate uplink and 
downlink subsystems, and propose a full-duplex data trans-
ceiver, with one dual band RF bidirectional data link. We avoid 
a power-hungry circulator by considering a diplexer. The di-
plexer is not the conventional type using band pass filtering, but 
a stripped down version that capitalizes on pulse shaping of the 
transmitted signal to take advantage of the low noise amplifier 
(LNA) filtering feature at the implanted downlink receiver. We 
shape the transmitted pulse to put most energy between 3.1-
7 GHz. This also allows for good isolation from the 2.45 GHz, 
achieving low crosstalk between uplink and downlink. Because 
the transmitted pulse in an implant-to-air channel faces high in-
sertion loss at 7-10.6 GHz [19, 20], shaping the pulse between 
3.1-7 GHz and focusing energy in this subband actually en-
hances the uplink power efficiency compared to covering the 
entire UWB band. Our approach yields much simpler hardware 
than traditional full-duplex methods (using a circulator or con-
ventional diplexer): fewer components, leading to greater 
power efficiency and smaller size - important properties for bi-
omedical applications.  

The final enabling element for our architecture is an antenna 
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which covers both frequency bands with small size and good 
performance in a channel composed of biological materials. We 
developed and fabricated antennas, one implantable and one ex-
ternal, designed specifically for transcranial channels, which 
were presented in [19]. The antennas for this work were de-
signed for dual bands, supporting both uplink and downlink.  

We investigate achievable data rates of the proposed wireless 
links via ex vivo experiments with discrete components and bi-
ological tissues as the transmission media. We examine data 
rates of 0.5, 1 and 2 Gbps for the uplink. For the downlink (stim-
ulation signals) we consider only on-off keying (OOK) at 
100 Mb/s. We confirm that acceptable bit error rates (BER) can 
be achieved at these rates. These results greatly outstrip previ-
ous data rates for biological channels, such as 80 Mb/s for wire-
less implant-to-air data communications for gastro applications 
[21]. In that work, a multiband orthogonal frequency division 
modulation (MB-OFDM) was used, which consumes more 
power than impulse-radio UWB.  

In summary our contributions are: 1) proposing a new full-
duplex data transceiver architecture (for simultaneous neural re-
cording and stimulation) with one antenna and without using a 
conventional diplexer or circulator, and 2) for the first time 
demonstrating nearly simultaneous high-speed transmissions in 
both 2.45 GHz-ISM and UWB bands. 
 In section II, we present an overview of the proposed system. 
In section III we describe the experimental implementation of 
the proposed architecture with discrete components, including 
an ex vivo emulation of the biological channel. Section IV pre-
sents several options for signal modulation. In section V we pre-
sent BER performance. In section VI we motivate integration 
of the proposed architecture. Finally, conclusions are drawn in 
section VII. 

II. SYSTEM ARCHITECTURE 
As shown in Fig. 1-a, to date two separate communications 

subsystems are used for uplink and downlink data transmission. 
We propose a full-duplex data transceiver architecture which 
consists of one dual band RF bidirectional subsystem.  This ar-
chitecture requires fewer components (thus minimizing size and 
power consumption) by exploiting a small set of efficient and 
integrable components: a single antenna, an LNA that doubles 

as a bandpass filter, and a pulse shaper formed from delay ele-
ments and amplifiers. In this section we motivate the selection 
of this set of components, and contrast them with other solu-
tions available in the literature. In section III we present an ex-
perimental proof-of-concept demonstration for this architecture 
(destined for integration) using discrete components.   

Fig. 1-b shows a block diagram of the proposed transceiver 
supporting a bidirectional, high-data rate link through the head 
for neural stimulation and recording. The integrated solution 
will include a UWB pulse shaping transmitter and a 2.45 GHz 
receiver with an LNA with limited passband. The design of the 
external system, not considered here, is less demanding than the 
implantable system; it need not be biocompatible, and size and 
power consumption requirements are greatly relaxed. Com-
pared to prior solutions, our architecture eliminates one antenna 
and an inductive link.  

A. Simplified Diplexer  
To replace two separate data links by one bidirectional data 

link, the transceiver must operate in full-duplex architecture 
(stimulation and simultaneous recording). Typically circulators 
or diplexers are used to implement a full-duplex transceiver 
(FDT) [22-27]. As a passive circulator uses ferrite materials, to 
have a CMOS compatible solution for integration an active cir-
culator would be required [22-24]. Active circulators attenuate 
the signal at least 3 dB, increase size and power consumption, 
and decrease the signal-to-noise ratio of the receiver. Another 
solution might be implementing a conventional diplexer (two 
sharp band-pass filters) to separate the frequency bands [25-27]. 
The narrow band frequency band must be close to the UWB 
band for coverage by a single antenna (TX and RX). Imple-
menting filters to operate in these two bands in CMOS technol-
ogy would require significant space and add loss to transmitted 
and received signals.  

To avoid the two sharp band-pass filters in a conventional 
diplexer, we propose a simplified diplexer where two separate 
frequency bands are supported by exploiting pulse shaping else-
where in the transceiver. We propose one dual band transceiver 
to replace separate 1) 2.45 GHz-ISM band down link, and 2) 
UWB uplink. The UWB band (uplink) and 2.45 GHz-ISM band 
(downlink) were chosen for the communications bands because 
1) the two frequency bands are close enough to be covered by a 
single antenna, and 2) they are readily available unlicensed 
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Fig. 1. Brain-machine interface solutions: (a) conventional architecture with separate uplink transmitter and downlink receivers for), and (b) the proposed full-
duplex, dual-band transceiver. 
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bands per Federal Communications Commission (FCC) regula-
tions. We show in the inset in Fig. 1-b the spectra of a UWB 
and a 2.45 GHz-ISM signal. 

We propose implementing a FDT by 1) shaping the UWB 
pulse and 2) exploiting the LNA 2.45 GHz passband.  The 
UWB pulse (see next section) is sculpted to have a spectrum 
beginning at 3.1 GHz. This signal is routed to the implanted 
antenna. This signal therefore also propagates to the 2.45 GHz 
receiver. Within that receiver is a low noise amplifier (LNA) 
designed to operate at 2.45 GHz for reception of uplink signals.  
The LNA has a limited passband, rejecting any UWB signal 
components (high impedance in UWB). Also, when the 
2.45 GHz modulated signal is received by the implanted an-
tenna, the signal is facing with high impedance output of UWB 
transmitter and it is routed to the 2.45 GHz LNA. By this archi-
tecture, we can have two separated bands with a good isolation 
between them. The FDT thus avoids use of a circulator or tra-
ditional (separate band pass filters) diplexer.  

B. UWB Pulse Shaping  
UWB impulse radio (UWB-IR) transmits information 

through short nanoseconds baseband pulses without employing 
a carrier, leading to advantages such as low complexity, and low 
power consumption [28, 29]. To generate a UWB pulse, a num-
ber of methods are available. The choice is affected by several 
factors such as power consumption, simplicity in implementa-
tion, modulation scheme achievable, bit error rate (BER), data 
rate and so on. Pulse filtering method because of using induc-
tors in their implementation needs larger space than shaping the 
pulse [29]. Among different pulse shapes, the Gaussian pulse 
and its derivatives have a desirable compromise in frequency 
and time-bandwidth [29]. Gaussian derivatives are widely used 
in UWB transmitters; their center frequency is increased when 
taking an additional derivative and their spectrum bandwidth is 
optimized by tuning the pulse time duration [29].   

We optimize the transmitted pulse subject to multiple con-
straints. The first one is efficient exploitation of the FCC mask. 
Second is isolating the transmitter and receiver in our full-du-
plex structure. The third is matching the frequency response of 
the biological communications channel. EM waves see more 
loss at higher frequencies in our channel; we should try to put 
more power in lower band of UWB band (3.1-7 GHz). And fi-
nally, the achieved pulse duration should be short to support 
high data rates (to avoid intersymbol interference). We target 
pulses with 500 ps duration to support data rates as high as 
2 Gbps. 

To shape the UWB pulse, the amplitude and the time duration 
of the fifth derivative of a Gaussian pulse is manipulated. The 
optimized pulse is generated by summing time-shifted Gauss-
ian pulses algorithm as shown in Fig. 1b. This architecture 
promises a low power implementation because of its simplicity 
in comparing with other pulse shaping method [30-33]. To pro-
vide the systems designer maximum flexibility this architecture 
has the added advantage of supporting three signaling methods: 
on-off keying (OOK), phase-shift keying (BPSK), and differ-
ential phase-shift keying (DPSK). Four impulses are used to 
shape and generate the required UWB signal for transmitting 
logical “1” data during OOK modulation. To produce BPSK 

and DPSK modulated signals, a similar algorithm is used, pro-
ducing the same signal with a 180° phase difference when log-
ical 0” data is transmitted.  

The choice of modulation scheme depends on the required 
BER and data rate, power consumption and system complexity. 
There is a trade-off between complexity and power consump-
tion, leading us to consider both coherent and incoherent archi-
tectures. Coherent detection requires more complex circuitry 
which results in higher power consumption; incoherent detec-
tion is less complex, which results in lower power consumption, 
but worse BER performance [34]. We consider binary phase 
shift keying (BPSK: coherent), differential phase shift keying 
(DPSK: incoherent) and on-off keying (OOK: incoherent) mod-
ulations for the uplink. DPSK has the low complexity of inco-
herent detection and has only a 1 dB power penalty vis-a-vis 
BPSK for an additive white Gaussian noise channel. A 3 dB 
power penalty is incurred for OOK [34].  

C. Antenna Design  
The final enabling element for our architecture is an antenna 

which covers both frequency bands with small size and good 
performance in biological materials. We require one implanta-
ble and one external, designed specifically for transcranial 
channels. We designed and fabricated spiral antennas that cover 
2-11 GHz frequency band (both ISM and UWB bands) using 
ANSYS HFSS (a commercial finite element method solver). 
The fabrication and simulation results, the biological model, 
measurement set-up, and the material used for their fabrication 
are all provided in more detail in [19]. We plot in Fig. 2 the 
propagated electric-field between the antennas (TX and RX). 
The illustration shows placement of both antennas and the lay-
ers of inhomogeneous model used in ANSYS HFSS. The high-
est electric-field intensity is localized close to the antennas, 
leading to higher coupling between the antennas, and thus 
higher received signal-to-noise ratio (SNR). This model is used 
for both antenna design and for assessing transfer of heat to sur-
rounding tissue, as explained in the next subsection. 

Highest Intensity  of the Propagated 
Electric-Field

External 
Antenna

Implant 
AntennaZ-Y Plane

0 50 100 (mm)

30 mm 26.3 mm
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Dura
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Fig. 2. Radiated E-field while implant and external antennas are 
communicating through biological tissues in Z-Y plane in HFSS. 
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D. Average Specific Absorption Rate 
Average Specific Absorption Rate (ASAR) describes the 

electromagnetic energy that is absorbed in biological tissues 
and is a critical parameter for assessing the tissue-safety of im-
plant-air wireless communications. The peak 1-g ASAR spatial 
distribution is simulated in HFSS for implanted antennas in 3.1-
7 GHz frequency range (transmitter for uplink) and external an-
tenna in 2.45 GHz-ISM band (transmitter for downlink). The 
ASAR is calculated for the implanted antenna transmitting on 
the UWB band, and for the external antenna transmitting on the 
2.45 GHz band. The American National Standards Institute 
(ANSI) limitations for a maximum peak 1-g ASAR of 1.6 W/kg 
[35] translates into the following average radiated 
power: 6.4 mW (8 dBm) for the implanted antenna and 9 mW 
(9.5 dBm) for the external antennas. The ASAR for the external 
antenna is calculated assuming the antenna is placed 0.7 mm 
from the skin. Sending more power can dam age the biological 
tissues.  

III. EXPERIMENTAL PROOF-OF-CONCEPT 
In the previous section we proposed an architecture that can 

be integrated in CMOS technology in smaller size and with 
lower power consumption than previously proposed systems. In 
this section we use test equipment and discrete components to 
investigate performance (achievable bit rate) of this new system 
level design. Our choice of discrete components emulates the 
integrated solutions. We test several modulation formats and 
measure bit error rate when propagating through animal tissue 
in an ex-vivo trial. To emulate the human head, the implanted 
and external antennas are separated by animal brain, bone, fat, 

and skin tissues harvested within one day of death. The ex-vivo 
setup which is used in this work is discussed in more detail in 
[19, 20]. 

Test equipment and discrete components for our test set-up 
are shown in Fig. 3-a. An arbitrary waveform generator (AWG) 
is programmed to generate the uplink UWB pulse, a pulse shape 
resembling that which would be produced by the architecture in 
Fig. 1. Note we use an AWG for experimental convenience, but 
the pulse shaper will be implemented in CMOS technology for 
the integrated solution [32, 33]. The UWB pulse is modulated 
by a pseudorandom binary sequence (PRBS) of order 15 by the 
arbitrary waveform generator. One million bits are transmitted 
using OOK, BPSK, or DPSK modulation. An attenuator is used 
at the transmitter for sweeping the signal-to-noise ratio (SNR) 
in the receiver. The attenuator is followed with a UWB band-
pass filter to achieve high impedance outside its supported fre-
quency band. The uplink signal is transmitted through the ani-
mal tissue. At the external receiver, a 3 dB power divider 
(22 dB isolation) is used between the two summation ports. The 
signal is amplified with an ultra-wideband low noise amplifier 
(LNA) with 27 dB flat gain and noise figure (NF) 4 dB.  The 
uplink signal is captured by a real-time oscilloscope to be ana-
lyzed off-line in MATLAB - MathWorks. 

In the downlink transmitter, the output of bit pattern genera-
tor (PRBS of order 15) running at 100 Mb/s is mixed with a 
2.45 GHz tone, followed by an attenuator used for sweeping the 
SNR. The downlink signal is transmitted through the animal tis-
sue. The 2.45 GHz signal received by the implanted antenna is 
rejected by the UWB bandpass filter before the uplink transmit-
ter and is diverted to the implanted receiver which is 50 Ω 
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Fig. 3. (a) Block digram of the system level implementation of the proposed link, and (b) the measured frequency response of the wireless channel. 
 

 
Fig. 4. Set-up for data communications. 
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matched. A discrete band-pass filter centered at 2.45 GHz with 
sharp cutoff is used to emulate the passband of a LNA specially 
designed for this application. The LNA has NF=2.1 dB and a 
gain 15 dB. The amplified signal is captured by a real-time os-
cilloscope for processing offline in MATLAB.  

We fabricated the implanted antenna on flexible PCB and            
the external antenna on rigid FR4 PCB [19]. 50-Ω SMA con-
nectors connect the antennas to the other equipment, as shown 
in Fig. 4. To emulate the head environment, the following ani-
mal tissues are used: skin (1 mm), fat (0.5 mm), bone (6 mm), 
and brain (30 mm), thicknesses chosen to mimic typical human 
head tissues [36]. We measured and plot in Fig. 3-b the fre-
quency response of the wireless channel (S21), amplitude and 
phase, using an HP-8722ES network analyzer. We see the in-
sertion loss of the channel increases with frequency. Operation 
at lower frequencies improves the BER performance of the sys-
tem. Pulse shaping can help us to put more power of the trans-
mitted pulse in lower frequency and increase link efficacy. 
Fig. 4 shows a photo of the measurement setup. 

Isolation of the uplink transmitter from the downlink receiver 
in our implant is challenging. For the external unit we can use 
a discrete power divider with excellent isolation (22 dB in Fig. 
3a). The implant requires an integrated solution. The UWB up-
link transmitter in an integrated solution (on-chip) will naturally 
have very high impedance, providing isolation to the 2.45 GHz 
downlink receiver. In our experiment with discrete components 
(not integrated) we emulate this high isolation via a UWB band-
pass filter (see Fig. 3a). The bandpass filter rejects the 2.45 GHz 
downlink signal, effectively routing all energy to the 2.45 GHz 
receiver.  

To isolate the 2.45 GHz downlink receiver from transmitted 
UWB signal, we use pulse shaping for UWB pulse to have the 
lowest crosstalk with 2.45 GHz ISM band. Fig. 5a shows the 
measured UWB pulse with OOK modulation at the output of 

the AWG, as captured by the real-time oscilloscope. In Fig. 5b 
we see the spectrum for the UWB signal. The pulse is shaped 
to place energy between 3.1-7 GHz, and to introduce a notch at 
2.45 GHz, yielding good isolation between uplink and down-
link. 

The final determination of the effectiveness of isolation is the 
bit error rate performance of uplink and downlink. We will see 
in the following sections that measured BER is close to theoret-
ical limits, hence crosstalk is negligible.  

IV. MODULATION OPTIONS 
To provide the systems designer maximum flexibility this ar-

chitecture has the added advantage of supporting three signal-
ing methods: OOK, BPSK and DPSK. Each modulation format 
is briefly described, including the required receiver.  

A. BPSK Modulation 
Phase-Shift Keying (PSK) is a modulation scheme in which 

the phase of a signal is varied to transmit information. In binary 
phase shift keying (BPSK) the phase of the signal is varied by 
180 degrees with the polarity of the binary data. BPSK is de-
tected by using a matched filter or the equivalent correlation 
receiver. To detect the received signal coherently a template 
pulse is needed for the correlation receiver as shown in Fig. 6. 
To generate the optimal template, the frequency response of the 
channel must be known [34]; the measured frequency response 
of the channel is plotted in Fig. 3-b. The transmitted, received 
and detected signals are shown in Fig. 7-a for 500 Mb/s and 
SNR=20 dB.   

B. DPSK Modulation 
DPSK modulation transmits data on changes in phase from 

symbol to symbol. Because the data are detected by correlation 
with a delayed version of the received waveform, the data must 
first be encoded in a differential fashion [34]. Self-homodyne 
detection (i.e., correlation with a delayed version of the re-
ceived signal), is followed by integration and detection blocks 
as shown in Fig. 6-b. The transmitted, received and detected 
signals are shown in Fig. 7-b for 500 Mb/s and SNR=20 dB.   

C. OOK Modulation  
On-Off Keying (OOK) is the simplest form of amplitude-

shift keying modulation. The presence of a waveform for a spe-
cific duration represents a binary one, while its absence for the 
same duration represents a binary zero [34]. For detection, the 
received signal is multiplied by itself, integrated and detected 
as shown in Fig. 6-c. The transmitted, received and detected 
signal for uplink are shown in Fig. 7-a for 500 Mb/s and 
SNR=20 dB. Also, the data transmission for downlink is pre-
sented in Fig. 7-d for 100 Mb/s and SNR=20 dB. 

Fig. 6 shows the block diagram of the receiver systems for 
different modulations, performed offline in MATLAB on data 
captured by the real-time oscilloscope. For the uplink, Fig. 7 
shows the modulated waveforms with random digital data at the 
transmitter, the receiver, and following detector. In Fig. 7 
“Transmitted signal” is the waveform modulated with a PRBS 
of order 15 and 1 million bits length for different modulations 
which is uploaded in AWG. “Received signal” is the signal 
which is captured by real-time oscilloscope. “Filtered signal” is 
the captured signal after band-pass filter in Fig. 6. “Integrated 
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Fig. 5. Measurment result: (a) OOK modulation waveform in AWG output 
for 500 Mb/s (b) its spectrum.   

a) 
 

b) 

 

c) 
 

Fig. 6. Receiver blocks implemented in MATLAB (off-line processing) for 
(a) BPSK, (b) DPSK, and (c) OOK. 

BPSK Mixer

Template Pulse

Data
DetectorData 

Out

BPF

DPSK 
Data 
Out

Mixer

T
Delay

Data
Detector BPF

Data 
Out

OOK Mixer
Data

Detector BPF

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



signal” is the output of the integrator (a RC low-pass filter) in 
Fig. 6. The red dash-lines in the “Integrated signal” are the sam-
pling times. In order to detect transmitted data, the sampled sig-
nal (dashed red line) is compared with a threshold value. 
“Transmitted signal” in Fig. 7-d refer to the downlink at output 
signal of the mixer which is captured by the real-time oscillo-
scope. “Received signal”, “Filtered signal” and “Integral Sig-
nal” are similar to those discussed for the uplink. Discussions 
about different modulations are provided below. 

V. DATA RATES AND BER PERFORMANCE 
Recent neural research targets a large number of channels for 

neural recording and stimulating to enable better understanding 
of complex dynamic behavior [9, 37]. The reported data rates 
for neural recording in the UWB band are shown in Table I. 
Circuit design has been the primary focus of BMI research, with 
less attention on data transmission performance of implant-to-
air communications. Recently data transmission of 80 Mbps in 
the UWB band was investigated for wireless implant-to-air data 
communications for gastro applications [21]. We were able to 
push data rates above the 80 Mbps by using more bandwidth in 
UWB band and because of less insertion loss for the BMI than 
the gastro application [38]. Our architecture improves the data 
rate, without penalty in power consumption, and retaining 
small-form factor and CMOS compatible solution. Here we de-
scribe the bit error rate performance at various data rates, both 
experimentally and in simulation. 

Using the setup described in the previous section, transmitted 
data are captured by the real-time oscilloscope for UWB and 
2.45 GHz links simultaneously. The BER is calculated and the 
BER vs. SNR of each link is presented in Fig. 8. Uplink BER 
appears in Fig. 8 a-c for BPSK, OOK and DPSK modulations 
at 500 Mb/s, 1 Gbps and 2 Gbps, respectively. The downlink 
BER is presented in Fig. 8-d for OOK modulation at 100 Mb/s.  

The SNR penalties between modulation formats at 0.001 
BER are shown in the Fig. 8. As expected, the best BER perfor-
mance is obtained by BPSK. When the data rate is increased, 
the BER performance is reduced due to the ISI effect. Increas-
ing the data rate leads to greater ISI and worse BER perfor-
mance. However, equalization techniques can be used to solve 
this issue at rates above 500 Mb/s. As this processing would 

TABLE I 
REPORTED BRAIN MACHINE INTERFACE DATA RATE 

 
Ref.,  

Type of Link 

 
BW 

(GHz) 

 
Data rate 
(Gbps) 

 
Modulation 

[7], TX 3.1-5 90 OOK 
[36], TX 3.1-5 200 PPM 

[This work], TX  
 
 
 

[This work], RX 

3.1-7 2000 OOK, BPSK 
DPSK 

Link type Data rate 
(Mb/s) 

Modulation 

RF 100 OOK 
[37], RX Inductive  1 ASK 
[38], RX Inductive  2.5 FSK 
[39], RX Inductive  2 DPSK 

TABLE II 
AVERAGE TRANSMITTED POWER AT .001 BER FOR DIFFERENT RECEIVER 

SENSITIVITIES FOR 500 Mb/s UPLINK AND 100 Mb/s DOWNLINK 

Receiver Sensitivity -67 
dBm 

-40 
dBm 

-30 
dBm 

-15 
dBm 

UW-link 
TX-Power (dBm) 

OOK -17.3     9.7   19.7         34.7 
BPSK -25.6     1.4   11.4   26.4 
DPSK -21.46    5.54   15.54  30.54 

Receiver Sensitivity -47 
dBm 

-40 
dBm 

-30 
dBm 

-15 
dBm 

2.45 GHz-link  
TX-Power (dBm) 

OOK  - 25.7   -18.7   -8.7    6.3 
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Fig. 7. Different stages of data transmission for (a) BPSK uplink, (b) DPSK 
uplink, (c) OOK uplink, and (d) OOK downlink. 
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occur in the external receiver, the added complexity is not bur-
densome.  For the downlink, data rates are moderate, below 
100 Mb/s, and equalization should not be necessary in the im-
plant. The maximum data rate and the BER performance are 
plotted for this link in Fig. 8-d.  

We use off-line process to emulate the external hardware for 
uplink detection, and the implanted receiver for the downlink. 
The receiver sensitivity in our off-line calculations are deter-

mined by the real time oscilloscope which it is high. We esti-
mate the required transmit power to attain 0.001 BER with less 
ideal sensitivities, i.e., which can be implemented by CMOS 
circuits. The average of the transmitted power is calculated for 
different receiver sensitivities and is presented in Table I. These 
values are calculated at 500 Mb/s for the uplink and 100 Mb/s 
for the downlink.  

In section II-D we found the maximum safe transmit power 
was 8 dBm for the uplink and 9.5 dBm for the downlink. There-
fore for the 100 Mb/s downlink we can achieve .001 BER with 
any of the receiver sensitivities examined in Table II. For the 
500 Mb/s uplink we are more limited. For BPSK and DPSK a 
receiver sensitivity of -40 dBm is required. For OOK greater 
sensitivity would be required. While Table II gives required 
power for 100 Mb/s uplink and 500 Mb/s uplink to achieve .001 
BER at given receiver sensitivities, for other data rates and 
points on the BER curves of Fig. 8, the transmitted power can 
be calculated (as a function of the SNR and the data rate) to 
determine if ASAR limits are respected. 

To reach our BER target for OOK with -40 dBm receiver 
sensitivity, we can place more power in lower frequency than 
7 GHz and try to limit the spectrum of the optimized pulse (to 
a subband of 3.1-7 GHz) to increase the power efficiency and 
improve BER. Another solution is to reduce the data rate below 
500 Mb/s. In other words, to keep average power constant while 
the energy per bit is increased, the data rate must be reduced.   

Simulations were run to predict BER based on measured 
characteristics of the discrete components. The uplink pulse 
shapes, Tx_uplink, were generated in MATLAB, and were identi-
cal to those generated experimentally and uploaded to the arbi-
trary waveform generator.  We used the frequency response, 
h(t), in Fig. 3b to simulate the overall channel (transceiver hard-
ware, antennas and biological tissues). The receiver used detec-
tion algorithms identical to those used on captured experimental 
data (Fig. 6). We simulated simultaneous transmission of one 
million bits in both links (UWB and 2.45 GHz). The received 
pulses Rx_downlink  and Rx_uplink for the uplink and downlink, re-
spectively, were calculated from 

 
             (Rx_downlink+Rx_uplink)=h(t)*(Tx_downlink + Tx_uplink)         (1) 

 
where Tx_downlink is the square wave OOK downlink signal. The 
simulated BER performance is in good agreement with meas-
urements in Fig. 8 (experiment in markers, simulations in con-
tinuous curves). This agreement shows the frequency domain 
characterization is sufficient for predicting BER performance.   

VI. DISCUSSION OF INTEGRATED CIRCUIT SOLUTION 
The experimental demonstration with discrete components 

confirms that the proposed architecture can indeed support the 
highest reported bit rates for BMI wireless transceivers. The 
utility of this architecture must also be validated in integrated 
solution. In this section we provide some additional information 
on the integrated solution with all components that has been 
sent for fabrication and will be used in later experiments.  

The proposed full-duplex transceiver includes a 2.45 GHz 
OOK receiver and a UWB 3.1-7 GHz transmitter. Since both 
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Fig. 8. BER for (a) 500 Mb/s uplink, (b) 1Gb/s uplink, (c) 2 Gb/s uplink, and 
(d) 100 Mb/s downlink link. Markers are measured BER, while continuous 
curves are simulations. Red arrows are SNR penalties at  10-3; points at 10-3 
in (a) are described in Table II. 
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the receiver and the transmitter use the same antenna and com-
municate simultaneously on different frequency bands for this 
application, our solution decreases design complexity and the 
total size of the implanted device. The block diagram of the 
2.45 GHz OOK receiver component (reported in [18]) is shown 
in Fig. 9. The input signal is amplified by the LNA, down-con-
verted to baseband and low-pass filtered before being digitized 
by a comparator.  

A customized circuit shown in Fig. 9 sculpts the UWB pulses 
by adjusting the amplitude and the time duration of the 5th de-
rivatives of a Gaussian pulse. Several time-shifted glitch pulses 
are summed to form the UWB pulses [5, 33]. The UWB trans-
mitter circuit uses regular CMOS logic gates, such as inverters 
and NORs, and NMOS transistors. Four inverter-based delay 
lines shift the generated pulses. The four shifted impulses are 
output via transistors M1-M4, to form the required UWB signal 
data transmission.  

OOK modulation is produced when only the top half of the 
circuit is active. For BPSK modulation, the same circuit with a 
different output configuration produces impulses with a 180° 
phase difference using the bottom half of the circuits depicted 
in Fig. 3. Digital “1” are produced by the top circuit, while dig-
ital “0”, which corresponds to the 180°-phase shifted impulses, 
are produced by the bottom circuit. DPSK modulation has same 
transmitter as BPSK but it needs a precoding before transmit-
ting [34].   

VII. CONCLUSION 
Designing a reliable wireless high speed data link in the pres-

ence of lossy biological tissues is a challenging task. We pro-
posed a new wireless communications architecture for im-
planted systems that simultaneously stimulate neurons and rec-
ord neural responses. The proposed full-duplex dual-band 
transceiver configuration avoids using a circulator or a conven-
tional diplexer and includes only one data link which makes the 
implanted integrated transceiver more compact and power effi-
cient at the circuit level. This architecture can support a large 
number of electrodes (>500), providing 100 Mb/s for the down-

link of stimulation signals, and Gb/s for the uplink neural re-
cordings.  

We presented an ex-vivo experiment using discrete compo-
nents achieving Gb/s uplink rates. The BER performance of 
BPSK, OOK and DPSK were investigated with the 5th deriva-
tive of a Gaussian pulse as the uplink UWB waveform. The 
BER performance of OOK was examined for the downlink. A 
receiver sensitivity of -40 dBm is required for BPSK and DPSK 
to achieve BER of 10-3 at 500 Mb/s for the uplink. For the OOK 
downlink at 100 Mb/s a receiver sensitivity of -15 dBm is suf-
ficient. Future work will focus first implementing the circuit 
level of this new architecture. Our group is working on design-
ing and optimizing the other blocks [43, 44] of brain machine 
interface system. The ultimate goal is to have an integrated so-
lution to test the neural recording and stimulation system in-
vivo. 
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