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Abstract 34 

Background: Patients with chronic aortic valve regurgitation (AR) causing left ventricular 35 

(LV) volume overload can remain asymptomatic for many years despite having a 36 

severely dilated heart. The sudden development of heart failure is not well understood 37 

but alterations of myocardial energy metabolism may be contributive. We studied the 38 

evolution of LV energy metabolism in experimental AR.  39 

Methods: LV glucose utilization was evaluated in vivo by positron emission tomography 40 

(microPET) scanning of 6-month AR rats. Sham-operated or AR rats (n=10-30 41 

animals/group) were evaluated 3, 6 or 9 months post-surgery. We also tested treatment 42 

intervention in order to evaluate their impact on metabolism. AR rats (20 animals) were 43 

trained on a treadmill 5 times a week for 9 months and another group of rats received a 44 

beta-blockade treatment (carvedilol) for 6 months. 45 

Results: MicroPET revealed an abnormal increase in glucose consumption in the LV 46 

free wall of AR rats at 6 months. On the other hand, fatty acid beta-oxidation was 47 

significantly reduced compared to sham control rats 6 months post AR induction. A 48 

significant decrease in citrate synthase and complex 1 activity suggested that 49 

mitochondrial oxidative phosphorylation was also affected maybe as soon as 3 months 50 

post-AR.  51 

Moderate intensity endurance training starting 2 weeks post-AR was able to partially 52 

normalize the activity of various myocardial enzymes implicated in energy metabolism. 53 

The same was true for the AR rats treated with carvedilol (30mg/kg/d). Responses to 54 

these interventions were different at the level of gene expression. We measured mRNA 55 

levels of a number of genes implicated in the transport of energy substrates and we 56 
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observed that training did not reverse the general down-regulation of these genes in AR 57 

rats whereas carvedilol normalized the expression of most of them. 58 

Conclusion: This study shows that myocardial energy metabolism remodeling taking 59 

place in the dilated left ventricle submitted to severe volume overload from AR can be 60 

partially avoided by exercise or beta-blockade in rats. 61 

62 
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Background  63 

The role of impaired myocardial energetics in the development and progression of heart 64 

failure (HF) seems to be central [1]. The energy-depletion theory of HF is not new and a 65 

multitude of recent studies have provided solid evidence that myocardial metabolism is 66 

strongly affected in humans as well as in many animal models of left ventricular 67 

hypertrophy and HF [1–3]. Both systolic and diastolic functions seem to be intimately 68 

affected by impaired myocardial energetics [4–8]. 69 

Alterations of myocardial metabolism caused by chronic valve disease such as aortic 70 

regurgitation (AR) are unclear and have not been studied like the ones caused by 71 

pressure overload or ischemia [9–19]. Chronic AR is usually well tolerated for many 72 

years before HF occurs. AR patients develop severely dilated and hypertrophied hearts 73 

but remain in a clinical pre-HF state with a normal LV ejection fraction for long periods of 74 

time [20]. The reason why they suddenly progress towards symptoms and HF after this 75 

long stable period is not well understood. There is currently no treatment proven 76 

effective to decrease AR related morbidity-mortality or delay the evolution towards HF in 77 

humans [21]. The only solution available for now remains valve replacement surgery 78 

when the left ventricle becomes too dilated, systolic indices progressively decrease or 79 

when symptoms occur. Over the years, we have showed that treatment targeting the 80 

renin-angiotensin-aldosterone or the adrenergic systems can help reduce LH 81 

hypertrophy, maintain cardiac function and improve survival in a rat model of chronic AR 82 

[22-25]. We did observe a similar effect by non-pharmaceutical strategy i.e. moderate 83 

endurance training [26]. 84 

We suggested that AR left ventricles with severe eccentric hypertrophy suffer from 85 

significant myocardial metabolic impairment even before systolic dysfunction becomes 86 
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apparent and observed that as early as 8 weeks post-AR myocardial energy substrate 87 

preference was altered and a switch toward increased glucose utilization was observed 88 

[27].  89 

Here, we studied the long-term alteration in LV energy metabolism associated with 90 

chronic volume overload caused by severe AR in Wistar rats. We show that treatments 91 

(training and beta-blockade) that reduce LV dilatation and help maintain function are 92 

also associated with a normalization of the energy metabolism.   93 

 94 

Methods 95 

Animals:  Six groups of Wistar male rats (350-375 g) were studied for either 90, 180 or 96 

270 days. For each end-point time, the animals were divided in two groups: sham-97 

operated animals (sham) or surgically induced AR. All groups consisted of 15 animals 98 

with the exception of the 270-day AR group consisting of 30 animals.  An additional 99 

group (n=10) of young healthy rats served as controls. For the µPET study, eight 100 

additional animals (4 shams and 4 AR) were studied 6 months after surgery. For 101 

endurance training protocol, a group of 20 animals were exercised 5 days/week for 270 102 

days on a motorized treadmill with a slope of 10°. The duration and the intensity 103 

increased progressively during the first 8 weeks until the animals were running for 30 104 

minutes at 20 m/min as previously described [26]. The influence of beta-blockade was 105 

tested using carvedilol in four groups of male Wistar rats (15 animals/group): sham and 106 

AR animals receiving or not carvedilol (30mg/kg/d in drinking water). Training or 107 

carvedilol were started two weeks post-surgery for six months. The protocol was 108 

approved by the Université Laval’s Animal Protection Committee and followed the 109 

recommendations of the Canadian Council on Laboratory Animal Care. The animal PET 110 
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imaging protocol was approved by the Animal Ethics Committee of the Faculty of 111 

Medicine of the Université de Sherbrooke. Severe AR was induced by retrograde 112 

puncture of the aortic valve leaflets as previously described [28]. At the end of the 113 

protocols, surviving animals were sacrificed, hearts were quickly dissected and all 114 

cardiac chambers were weighed. LV was snap-frozen in liquid nitrogen and kept at -115 

80oC for further analysis. All sacrifices were scheduled at similar times of the day to 116 

avoid circadian variations. 117 

 118 

Echocardiography: A complete M-Mode, 2D and Doppler echocardiogram was 119 

performed on the animals under 1.5% inhaled isoflurane anesthesia using a 12 MHz 120 

probe with a Sonos 5500 echograph (Philips Medical Imaging, Andover, MA) 121 

immediately before and during surgery, after 2 weeks, 3, 6 and 9 months as previously 122 

described [26]. 123 

 124 

Small animal PET protocol: Imaging experiments and data analysis were performed 125 

essentially as described before [29-32] on a LabPET™ avalanche photodiode-based 126 

small animal PET scanner (Gamma Medica, Northridge, CA) at the Sherbrooke 127 

Molecular Imaging Centre. [18F]-fluorodeoxyglucose ([18F]-FDG) (30–40 MBq, in 0.3 ml 128 

plus 0.1 ml flush of 0.9% NaCl) was injected via the caudal vein over 30 s. A 45-min 129 

dynamic PET data acquisition followed by a 15-min static acquisition was done to 130 

determine glucose utilization [myocardial metabolic rate of glucose (MMRG)] using 131 

multicompartmental analysis as previously described [32, 33]. The static scan served to 132 

draw regions-of-interest (ROIs) on each segment of the LV wall. Blood samples were 133 

taken before and after the scans to determine an average blood glucose level.  134 
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Analysis of mRNA accumulation by quantitative RT-PC R: The analysis of LV mRNA 135 

levels by quantitative RT-PCR has been described in details elsewhere [26].  136 

 137 

Enzyme activity determination: Enzyme activity assays are described in details in the 138 

supplementary section (Additional file 1, Methods) [25, 27, 34].   139 

 140 

Statistical analysis: Results are presented as mean ± SEM unless specified otherwise. 141 

Inter-group comparisons were done using Student’s t-test or Mann-Whitney t-test for 142 

PET protocol. One-way or two-way ANOVA were also used for the analysis of data 143 

when required. Statistical significance was set at a p<0.05. Data and statistical analysis 144 

were performed using Graph Pad Prism version 6.04 for Windows, Graph Pad Software 145 

(San Diego, CA). 146 

 147 

Results  148 

All sham-operated animals were alive at the end of the protocol. After 3, 6 and 9 months, 149 

14/15, 12/15 and 14/30 animals were still alive in the AR groups, respectively. As 150 

illustrated in Figure 1, no differences in body weight were observed between the sham 151 

and AR groups. Overall growth was similar between groups (similar tibial lengths, results 152 

not shown). LV wet tissue weights were significantly increased in the AR groups 153 

compared to controls and this increase was steady over the 9 month period.  154 

 155 

Echocardiographic data (Figure 1) 156 

The echocardiographic data from all study groups are also presented in Figure 1. End-157 

diastolic (EDD) and end-systolic diameters (ESD) sharply increase during the first 3 158 
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months and continue to increase but at a slower pace thereafter. AR animals have a 159 

lower ejection fraction than normal sham animals. Ejection fraction slowly decreases 160 

over the 9 months but it still remains within what is considered a normal range (above 161 

60%). The end result after 9 months of chronic severe AR is a severely dilated ventricle 162 

with eccentric hypertrophy and relatively preserved ejection fraction. AR animals have 163 

as expected an increased stroke volume compared to normal sham animals whereas 164 

their heart rate is slightly diminished. Diastolic echocardiographic parameters were also 165 

measured. AR animals had a significantly higher E/Ea ratio than sham animals 166 

suggesting increased left ventricular end-diastolic pressures. This correlated well with 167 

the invasive LV end-diastolic pressures (EDP) measurements that were also increased 168 

in the AR groups. 169 

 170 

Markers of hypertrophy and extracellular matrix rem odeling (Figure 2). 171 

The relative gene expression of both the alpha and beta forms of myosin heavy chains 172 

was modified in AR animals in which the alpha/beta ratio was strongly reduced (Figure 173 

2). As expected, ANP gene expression was elevated in AR animals.  174 

 175 

Myocardial glucose consumption (Figure 3) 176 

Micro-PET imaging was used to investigate how glucose consumption was altered in 177 

vivo in AR rats after 6 months of severe volume overload. Regional myocardial 178 

metabolic rate of glucose (MMRG) was estimated from the dynamic uptake of [18F]-FDG 179 

after intravenous bolus injection using µPET. As illustrated in Figure 3, MMRG was 180 

increased in AR myocardium and this increase was preferentially located to the LV free 181 

wall (anterior and lateral).  182 
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Myocardial metabolic enzymes (Figure 4) 183 

We measured enzymatic activity levels in LV crude homogenates. The HADH 184 

(hydroxyacyl-Coenzyme A dehydrogenase) responsible for fatty acid β-oxidation was 185 

less active in the AR group after 9 months compared to sham animals. Normal aging 186 

also reduced HADH activity levels in the shams after 9 months but much less than in 187 

chronic AR. Normal aging was accompanied by a steady decrease in the activity level of 188 

the glycolytic enzyme phosphofructokinase (PFK) whereas it remained stable in AR 189 

animals over the 9 month follow-up. This resulted in a higher PFK activity level in AR 190 

animals after 9 months compared to age-matched sham animals. The entry of acetyl-191 

CoA in the citric acid cycle is catalyzed in the mitochondria by the citrate synthase (CS). 192 

Again, normal aging was accompanied by a decrease in CS activity levels. CS activity 193 

levels were however significantly lower in AR animals after 3, 6 and 9 months when 194 

compared to aged-matched sham animals. The first step of glycolysis is catalyzed by the 195 

hexokinase (HK). HK activity levels were significantly increased in all AR animals 196 

compared to the shams after 9 months. On the other hand, the first step in the electron 197 

transfer chain (mitochondrial ETC complex 1) was strongly reduced in AR rats compared 198 

to sham after 9 months while lactate dehydrogenase levels were not significantly 199 

changed. 200 

 201 

Endurance training can help normalize myocardial met abolic enzymes (Figure 5) 202 

In order to evaluate if some alterations of the myocardial energy metabolism could be 203 

reversed, we tested the impact of moderate endurance training we previously showed to 204 

improve the condition of chronic AR rats. AR rats were thus submitted to moderate 205 
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intensity endurance training on a treadmill (up to 20 m/s for 30 minutes) for a period of 9 206 

months. Of the 20 animals, 14 survived the entire protocol. As illustrated in Figure 5, 207 

endurance training did not reduce the heart hypertrophy in AR animals although a trend 208 

was observed. Levels of enzymatic activity were normalized for the HADH, CPT, PFK 209 

and CS suggesting an improvement of the myocardial metabolic profile associated with 210 

exercise.  211 

 212 

Endurance training does not reverse the down-regula tion of genes associated 213 

with energy metabolism in AR (Figure 6) 214 

The results of the 9 month AR gene expression levels of various enzymes and 215 

transporters related to fatty acid and glucose metabolism in the myocardium compared 216 

to age-matched sham animals as well as the effects of training are summarized in 217 

Figure 6. FAT/CD36 gene expression (responsible for fatty acids transport into the cell) 218 

as well as those of CPT1b and CPT2 (responsible for the entry of fatty acids in the 219 

mitochondrion), were all decreased in AR animals. Glucose transporters (GLUT) 1 and 4 220 

mediate glucose entry in the cell. GLUT4 mRNA expression levels were decreased by 221 

about 25% in AR animals whereas mRNA levels encoding for GLUT1 remained 222 

unchanged.  The formation of acetyl-CoA from pyruvate is catalyzed by the pyruvate 223 

dehydrogenase complex. We evaluated the gene expression of one member of this 224 

complex (PDH1α) as well as one of its inhibitors (PDH kinase 4 or PDK4). The 225 

expression of those two genes was significantly down-regulated in AR animals. One 226 

main regulator of fatty acid oxidation is the peroxisome proliferator-activated receptor 227 

alpha (PPARα). PPARα mRNA levels were lower in AR animals after 9 months. The 228 
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mechanism by which PPARα activates a mitochondrial biogenic response involves one 229 

of its inducible co-activator: the peroxisome proliferator-activated receptor gamma 230 

coactivator-1-alpha or PGC-1α. The mRNA levels encoding for this gene was also 231 

markedly reduced in our AR animals. The same was true for the gene expression of the 232 

uncoupling protein 3 (UCP3). We also evaluated ANT1 (adenine nucleotide translocase 233 

1) which is known to facilitate the exchange of extra-mitochondrial ADP with 234 

mitochondrial ATP. We observed again a strong decrease in the expression of this gene 235 

in the AR animals compared to the sham controls. Training did not modulate gene 236 

expression in AR rats for the molecules evaluated. 237 

 238 

A six-month carvedilol treatment improves the energ y metabolism enzyme activity 239 

levels as well as the expression profile of metabol ic genes in AR rats (Figure 7 240 

and 8).  241 

At the end of the 6-month protocol, all sham-operated treated or not with carvedilol were 242 

alive while 9/15 and 12/15 rats were still present in the AR-Veh and AR-Carv groups, 243 

respectively. LV hypertrophy was present in both AR groups but significantly less in the 244 

animals treated with carvedilol (Figure 7). This was also true for the size of cardiac 245 

myocytes as evaluated in LV sections (Additional File 1, Figure S1) 246 

As illustrated in Figure 7, the carvedilol treatment partially reversed the changes in 247 

HADH, hexokinase, citrate synthase and complex 1 associated with eccentric LHV in AR 248 

rats. 249 

The same was true for the LV mRNA levels of a number of genes associated with 250 

energy metabolism where the general down-regulation was mostly reversed by 251 

carvedilol. 252 
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Discussion 253 

Factors influencing the development and evolution of LV remodelling in AR are poorly 254 

understood. Here, we provide a longitudinal study focusing on myocardial energy 255 

metabolism in the LV of rats with chronic severe AR.  256 

The heart is in a constant need of energy substrates since it does not maintain 257 

significant reserve [1]. The myocardial energetic machinery is complex and can be 258 

affected at many interacting levels including: substrate utilization/preference, oxidative 259 

energy production in the mitochondria, energy transport and consumption by the 260 

contractile myofibrils [35].  261 

Our experimental model causes severe LV dilatation. Despite the presence of important 262 

hypertrophy in this rat model, HF remains a late occurring event as seen in humans [36]. 263 

As we have previously reported, the majority of AR rats have a systolic function within 264 

normal range (ejection fraction>60%, normal dP/dt+) even after 9 months [26]. Diastolic 265 

abnormalities become clearly evident as soon as 2 or 3 months after AR induction [34, 266 

37].  267 

As reported by others in models of LV concentric hypertrophy and of HF, we too 268 

observed a shift in the ratio of the gene expression of myosin heavy chains α and β in 269 

AR rats. This also occurs but much less, with normal aging [38]. This shift can 270 

significantly affect the energetic efficiency of the heart and could point towards an 271 

imminent shift towards HF.   272 

In this study, we showed in vivo using µPET that the LV myocardium of AR rats 273 

increased its glucose consumption. This increase seems to be more pronounced in the 274 

LV free wall mostly in the lateral and anterior portions. It could be suggested that dilation 275 
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may not be homogeneous through the LV was and that the observed metabolic changes 276 

in the LV myocardium may reflect this. We already observed the opposite situation in the 277 

AR rat where fatty acid uptake was reduced in the same LV region where we now 278 

observe an increase in glucose uptake [25].  Concentric LV hypertrophy is associated 279 

with a shift in substrate preference from free fatty acids to glucose [35]. Our µPET 280 

results confirm this for our animals in vivo with eccentric VO LVH. 281 

We also described the impact of normal aging on the levels of enzymatic activity related 282 

to myocardial metabolism. We detected a significant loss of myocardial activity for three 283 

central metabolic enzymes (HADH, CS and PFK) due to normal aging. The activity 284 

levels of these enzymes decreased by at least 25% in the last six months of the 285 

protocol. It is possible though that these changes reflect a progression from a stage of 286 

global body growth at a younger age to the more stable adult stage. Adding AR 287 

amplified this effect on HADH and CS activities. This suggests that fatty acid oxidation is 288 

further impaired in the late stage of AR and that the total mitochondrial oxidative 289 

capacity of the myocardium may then be less than normal [10]. On the other hand, PFK 290 

activity remained stable in the hearts of AR animals suggesting a shift towards glucose 291 

utilization as previously seen in concentric LV hypertrophy and HF [39]. µPET imaging 292 

also confirmed this hypothesis. Our data show a decrease in fatty acid transport-related 293 

Fat/CD36 in the animals with AR. Carnitine palmitoyl-transferase gene expression and 294 

enzymatic activity was also decreased. These observations are consistent with data 295 

published in other models of LVH [11, 40]. The mitochondrial energetic machinery also 296 

seems to be affected by the LV volume overload as shown not only by the decrease in 297 

CS activity but also by the strong decrease in the activity of the ETC complex I in 9-298 
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month AR animals. These mitochondrial enzymatic abnormalities could result in 299 

myocardial energy starving either in the basal state or in response to an acute stress 300 

such as exercise or ischemia. It has been previously reported that VO could induce an 301 

inappropriate response to various stresses in two different animal models during the 302 

compensated phase of the disease [16,19]. The down-regulation of ANT1 is another 303 

clue pointing towards an abnormal exportation of ATP from the mitochondrion [41] which 304 

seems to be seriously impaired in our AR animals after 9 months. The gene expression 305 

of PDH1α which is responsible for pyruvate entry into the mitochondria was reduced in 306 

AR animals after 9 months compared to normal age-matched controls. Myocardial 307 

energetic status at this late stage of the disease in our AR animals probably shares 308 

similarities to the one seen in established HF even if systolic function remains in the 309 

normal range in our animals.  310 

This study also clearly shows that regular exercise has beneficial effects on the 311 

myocardial energetic machinery in this animal model of volume overload 312 

cardiomyopathy even before systolic heart failure occurs. These effects were detectable 313 

on enzymes and pathways related to fatty acid oxidation and glycolytic capacity as well 314 

as to mitochondrial efficiency. The benefits of exercise on LV remodeling, diastolic 315 

function and survival we have recently reported could therefore be in part related to 316 

improvement in myocardial energetics [26]. One possible mechanism may be via the 317 

activation of the IGF1/PI3K/Akt pathway by exercise which can activate survival 318 

pathways in cardiac myocytes [42,43].  319 

We also observed an improvement of myocardial energetics in AR animals treated with 320 

the beta-blocker, carvedilol. We had reported that beta-blockade using either metoprolol 321 
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or carvedilol can reduce the extent of LV hypertrophy development in the rat AR model 322 

[23, 36]. The benefits in maintaining systolic function were similar to those observed in 323 

endurance-trained animals [26]. It is interesting to observe that although the effects of 324 

beta-blockade and exercise were similar at normalizing metabolic enzyme activities, 325 

carvedilol treatment also restored gene expression of a number of proteins implicated in 326 

the control of substrate uptake and metabolism. This suggests that similarities and 327 

differences exist between the mechanisms of action of exercise and beta-blockade. 328 

Another possibility is that by a better control of LVH development by carvedilol, many 329 

parameters may remain in the normal range. 330 

Limitations:  331 

In this study, we used a range of techniques to evaluate myocardial metabolism in AR 332 

rats to demonstrate that substrate preference as well as general energy metabolism is 333 

modified in this model and that endurance training and beta-blockade can partially 334 

reverse these changes. Obviously, our study can only offer an incomplete portrait of the 335 

complex metabolic changes taken place in the myocardium submitted to severe and 336 

chronic volume overload. Enzyme activity determinations and gene expression studies 337 

made here cannot encompass the wide array of modification in energetics in the 338 

hypertrophied myocardium. More thorough studies using µPET in vivo, isolated heart or 339 

mitochondria studies could offer supplementary information to better describe these 340 

changes.  341 

Conclusion :  342 

Our results clearly show that the myocardium with chronic VO suffers from a significant 343 

metabolic stress and develops over time important metabolic abnormalities.  344 
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These findings provide for the first time new longitudinal data which may improve our 345 

view of the dilated hearts of patients with severe AR. Clinicians currently feel 346 

comfortable to follow those patients without any intervention for many years, simply 347 

waiting for the LV to become too dilated, for the occurrence of symptoms or until systolic 348 

function begins to fall. Based on our findings, we suggest that those volume overloaded 349 

hearts develop severe metabolic abnormalities even when systolic function seems 350 

preserved. Focusing on myocardial metabolism by various interventions such as 351 

targeted drugs, specific diets or exercise may help this metabolically stressed 352 

myocardium to improve energy production and maybe prolong the pre-heart failure state 353 

significantly. Further studies will be needed to confirm this hypothesis.  354 

 355 

Additional file 1.pdf: Supplemental methods and data. This file contains more detailed 356 

methods for the enzymatic assays as well as references. In addition, Figure S1 is a 357 

complement of data for the carvedilol study of Figures 7 and 8 in the manuscript. 358 
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Figure legends: 514 

 515 

Figure 1: Evolution of LV remodeling as evaluated by echocard iography in 516 

experimental volume overload from severe aortic val ve regurgitation in Wistar 517 

rats.  LV dimensions, ejection fraction (EF), heart rate (HR), stroke volume (SV) and ratio 518 

of early transmitral velocity to tissue Doppler mitral annular early diastolic velocity (E/Ea 519 

ratio) were evaluated throughout the course of the protocol as assessed by 520 

echocardiography in sham-operated animals (sham: white circles or bars) and AR rats 521 

(AR: black circles or bars) at the beginning of the protocol, after 90, 180 and 270 days. 522 

Body weight was also recorded at the time of echocardiography. Left ventricular wet 523 

tissue weight was evaluated at sacrifice. End-diastolic pressures (EDP) were evaluated 524 

by direct LV catheterization prior euthanasia. LV weight, EDD: end-diastolic diameter, 525 

ESD: end-systolic diameter, Septum: septal wall thickness. Results are reported in as 526 

mean ± SEM (n = 10-15 per group). *p<0.05, **: p<0.01 and ***: p<0.001 between sham 527 

and AR groups. 528 

 529 

Figure 2: Evaluation by real-time quantitative RT-PCR of the LV mRNA levels of 530 

genes related to LV hypertrophy. *: p<0.05 and ***: p<0.001 between sham and AR 531 

groups. Sham (sham-operated animals) at 90 days post-surgery group mRNA levels 532 

were normalized to 1. ANP, atrial natriuretic peptide; αMHC, myosin heavy chain alpha; 533 

βMHC, myosin heavy chain beta; α/β: ratio of the two MCH forms. 534 

 535 
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Figure 3: In vivo glucose uptake by the left ventricle of AR and sham rats as 536 

evaluated by micro positron emission tomography (µP ET). Myocardial metabolic 537 

rate of glucose (MMRG) was evaluated as described in the Material and Methods 538 

section for each segment of the LV wall as schematized in the bottom right of the figure. 539 

Regional MMRG evaluation was realized in four different animals per group and results 540 

were expressed as the mean ± SEM. *: p<0.05 between sham and AR groups. Sept: 541 

septal wall, Ant: anterior wall, Lat: lateral wall and Inf: inferior wall.  At the right of the 542 

column graph, representative transaxial µPET scan images after injection of [18F]-FDG 543 

are illustrated.  544 

 545 

Figure 4: LV myocardial activity levels of enzymes implicated  in fatty acid ββββ-546 

oxidation, glucose metabolism and mitochondrial ene rgy production in 9-month 547 

AR rats and relative evolution over time.  HADH (hydroxyacyl-Coenzyme A 548 

dehydrogenase; A), PFK (phosphofructokinase; B), citrate synthase (CS; C) enzymatic 549 

activities were measured in LV homogenates from at least 10 animals in each group as 550 

described in the Materials and Methods. Hexokinase (HK; D), complex 1 (ETC complex 551 

1, rotenone-sensitive activity; E) and LDH (lactate dehydrogenase (F) activities were 552 

measured in LV homogenates from 10 270-day animals. Results are reported relative to 553 

activity level measured in 90-day sham rats (A, B and C) or in µmoles/min/mg of tissue 554 

(D, E, and F) or. *: p<0.05, **: p<0.01 and ***: p<0.001 between sham and AR groups. 555 

 556 

Figure 5: Moderate endurance training (tr) helps normalize act ivity levels of 557 

enzymes implicated in the LV energy metabolism in 9 -month AR rats.  Indexed (i) 558 
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heart weight was corrected for the tibial length. HADH (hydroxyacyl-Coenzyme A 559 

dehydrogenase), HK (hexokinase) PFK (phosphofructokinase), citrate synthase (CS) 560 

and complex 1 enzymatic activities were measured in LV homogenates as described in 561 

the Materials and Methods. Results are expressed as mean ± SEM (n=10/group) in 562 

µmoles/min/mg of tissue. *: p<0.05, **: p<0.01 and ***: p<0.001 between sham and AR 563 

and ¶: p<0.05 between AR and AR-tr groups.  564 

 565 

Figure 6: Evaluation by real-time quantitative RT-PCR of the LV mRNA levels of 11 566 

genes related to cardiac metabolism in 9-month rats  and impact of endurance 567 

training.  Results are reported in arbitrary units as mean ± SEM (n=15/gr). Levels in 568 

sham animals were fixed to 1. FAT/CD36: fatty acid transporter/CD antigen 36, CPT1b: 569 

carnitine palmitoyltransferase 1b and CPT2: carnitine palmitoyltransferase 2, Glut1: 570 

glucose transporter 1, Glut4: glucose transporter 4, PDH1a: pyruvate dehydrogenase 1 571 

alpha and PDK4: pyruvate dehydrogenase kinase 4, PPARα: peroxisome proliferator 572 

activator receptor alpha, PGC-1α: Peroxisome proliferator-activated receptor gamma 573 

coactivator-1-alpha, UCP3: uncoupling protein 3 and ANT: adenine nucleotide 574 

translocase. P values are indicated above each bar compared to sham controls. ¶: 575 

p<0.05 between AR and AR-tr groups. 576 

 577 

Figure 7: Beta-blocker carvedilol treatment helps normalize ac tivity levels of 578 

enzymes implicated in the LV energy metabolism in 6 -month AR rats.  Indexed (i) 579 

heart weight was corrected for the tibial length. HADH (hydroxyacyl-Coenzyme A 580 

dehydrogenase), HK (hexokinase) PFK (phosphofructokinase), citrate synthase (CS) 581 
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and carnitine palmitoyl transferase (CPT) enzymatic activities were measured in LV 582 

homogenates as described in the Materials and Methods. Results are expressed as 583 

mean ± SEM (n=9-12/group) in µmoles/min/mg of tissue. *: p<0.05, **: p<0.01 and ***: 584 

p<0.001 between sham and AR groups and ¶: p<0.05 between AR and AR-Carv groups.  585 

 586 

Figure 8: Carvedilol reverses down-regulation of genes implic ated in cardiac 587 

energy metabolism in 6-month AR rats. Results are reported in arbitrary units as 588 

mean ± SEM (n=15/gr). Levels in sham animals were fixed to 1. FAT/CD36: fatty acid 589 

transporter/CD antigen 36, Glut1: glucose transporter 1, Glut4: glucose transporter 4, 590 

PDH1a: pyruvate dehydrogenase 1 alpha and PDK4: pyruvate dehydrogenase kinase 4, 591 

PPARα: peroxisome proliferator activator receptor alpha, PGC-1α: Peroxisome 592 

proliferator-activated receptor gamma coactivator-1-alpha, UCP3: uncoupling protein 3 593 

and ANT: adenine nucleotide translocase. P values are indicated above each bar 594 

compared to sham controls. ¶: p<0.05 between AR and AR-tr groups. 595 
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Lachance et al. Figure 1. Evolution of LV hypertrophy over 9 months in AR rats. 
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Lachance et al. Figure 2. Pro-hypertrophic LV markers in AR rats. 
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Lachance et al. Figure 3. Glucose utilization in the LV of 6-month AR rats. 
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Lachance et al. Figure 4. Evolution of myocardial activity of metabolic enzymes in AR. 

Figure 4
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Lachance et al. Figure 5. Impact of exercise on myocardial metabolic profile in AR rats. 
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Lachance et al. Figure 6. Exercise does not normalize gene expression of metabolic 

markers in AR rats.
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Lachance et al. Figure 7. Carvedilol treatment of AR rats helps maintain normal 

myocardial energetics.
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