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Quantifying the Coupling and Degeneracy of OAM 
Modes in High-Index-Contrast Ring Core Fiber

Mai Banawan, Member, IEEE, Lixian Wang, Member, OSA, Sophie LaRochelle, Senior Member, IEEE, and Leslie
A. Rusch, Fellow, IEEE

Abstract—We study orbital angular momentum (OAM) mode
coupling in ring-core fibers (RCFs) due to elliptical shape defor-
mation. We introduce a coupling model based on numerical mode
solver outputs of perturbation. We show improved predictions in
calculating coupling strength compared to the classical modeling
approach. Our model captures and quantifies the disparate
behaviors of coupling in lower and higher order degenerate
OAM modes. The ideal orthogonality of modes is undermined by
fiber imperfections. Our model predicts the OAM order at which
the orthogonality within OAM mode pair is maintained despite
elliptical deformation. We use our coupling model to simulate
propagation effects and compare the performance of two fibers
(thin and thick RCF) designed under the same constraints. Our
numerical propagation results show different performance for the
two fibers under the same level of elliptical deformation. This
model uncovers distinct digital signal processing requirements
for these two types of fiber, and predicts their signal-to-noise
ratio penalty. For each fiber, we examine the large number of
supported modes and find the optimal subset of mode groups, i.e.,
the groups with the lowest penalty. We show that this optimal
subset is different from that predicted during the fiber design
optimization.

Index Terms—Orbital angular momentum (OAM), ring core
fiber (RCF), coupled-mode equations (CMEs), elliptical defor-
mation, mode coupling, crosstalk (XT), multiple-input multiple-
output (MIMO), digital signal processing (DSP)

I. INTRODUCTION

MODE-division-multiplexing (MDM) is widely studied
to increase the capacity of optical fibers [1], with each

mode carrying an independent data stream. Spatial modes mix
during propagation due to fiber imperfections. Multiple-input
multiple-output (MIMO) digital signal processing (DSP) is
typically used to compensate for this coupling for linearly
polarized (LP) modes [2]. Orbital angular momentum (OAM)
modes have recently attracted significant interest in MDM
systems, as they can reduce DSP complexity [3].

Transmission of OAM over a kilometer was demonstrated
with MIMO-free [3] or 2×2 MIMO reception [4]. Large differ-
ence in effective-index-of-refraction (∆neff ) between mode
groups (MGs) is required to reduce crosstalk (XT), and can
be achieved with high index contrast ring core fibers (RCFs)
[5]. An OAM mode is formed from two fiber eigenmodes and

M. Banawan, S. LaRochelle and L. A. Rusch are with the Cen-
tre for Optics, Photonics and Lasers, Department of Electrical and
Computer Engineering, Université Laval, Québec, QC, G1V 0A6,
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pure OAM mode has circular polarization. Spin-orbit aligned
(A) OAM pair have modes with polarization and phase front
rotating in the same direction; anti-aligned (AA) modes have
them rotating in opposite directions. Good ∆neff between A
and AA mode pairs [3] requires less complex DSP.

OAM modes at low vs. high mode order have disparate
behavior. In [6], [7] the authors posited that high order
degenerate A (equally applicable to AA) mode pairs resist
coupling under bending, while lower order degenerate modes
couple. They used a simple perturbation approach; coupling
coefficients at higher order were shown negligible [7]. In [8],
the authors validated this behavior through 1.2 km transmis-
sion using the three highest mode orders supported by the
fiber.

An analytical formalism was introduced in [9], [10] to
study mode mixing due to ellipticity and fiber bending. Selec-
tion rules were established using scalar-perturbation analysis;
specifically, they found that OAM modes whose topological
charge differ by ±1(±2) can mix in the first order of pertur-
bation due to fiber bending (ellipticity). OAM mode coupling
was quantitatively related to 1) the mode topological charge, 2)
the strength of perturbation either ellipticity [9] or bend radius
[10] and 3) the propagation distance. Coupling between degen-
erate OAM modes was examined by considering contributions
of higher order perturbation. The model shows the resistance
of higher order modes to fiber perturbation in agreement of
previous literature [6], [7]. However, the model considers only
scalar modes and neglects polarization effects.

A gap currently exists between the predictions made from
OAM numerical propagation models and observations made
both experimentally and analytically. Current numerical propa-
gation models fail to predict and quantify the coupling varying
from low to high order [11]. The models also assume com-
plete coupling within degenerate A(AA) mode pairs, whereas
this coupling was overcome in the MIMO-free experimental
reception of these mode pairs [8].

In [12], we proposed an updated numerical approach that
predicts and quantifies these missing effects. In this paper, we
extend our work, using our model to compare and contrast the
performance of various fiber designs. Recently, a similar for-
malism was introduced in [13] to study the coupling between
fiber eigenmodes. The authors assumed that perturbed fiber
eigenmodes can be expanded as a superposition of unperturbed
modes. The authors limited their study to an analytical formu-
lation, without quantifying the coupling coefficients as we did
in [12]. They did not examine numerical mode propagation
and XT assessment.
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We compute the coupling coefficients in a manner that 
accounts for the birefringence between the even and odd fiber 
eigenmodes induced by elliptical deformation. This birefrin-
gence was recognized in [14], [15] to decrease gradually with 
mode order, but the effect on coupling was not examined. In 
[11] the coupling coefficients were calculated, but assuming 
zero birefringence between the even and odd fiber eigenmodes.

The new method uses a numerical mode solver instead 
of the traditional approach based on perturbation theory. 
Previous methods used the mode solver only once for the 
perfectly circular ring, and approximated coupling coefficients 
calculated using these ideal mode fields. By simulating an 
elliptical deformed fiber and recalculating the mode effective 
indices we can capture missing, key effects impacting OAM 
coupling. First, we can quantify the coupling not only with 
other modes, but within OAM mode pairs. For a given fiber, 
we can also predict at which order the degenerate A(AA) mode 
pair is still orthogonal. The model agrees with literature in 
demonstrating the greater perturbation immunity of high order 
OAM modes; it can quantify this effect as a function of the 
level of deformation.

The use of strongly guiding (high index contrast) fibers 
for OAM leads to eigenmodes forming residual levels of a 
secondary OAM mode in addition to the targeted or primary 
OAM mode. This is referred to as mode impurity. This 
impurity results in spin-orbit coupling [16], [17], whereby 
modes two orders apart have a conduit for coupling. The 
level of polarization purity varies with ring-core fiber thickness 
relative to the core radius [16].

The design of OAM fibers could be enhanced with better 
modeling of mode coupling. We use our model to better 
predict coupling during propagation. Using predictions of XT 
accumulation with propagation distance, we compare the ca-
pabilities of thin vs. thick ring designs introduced in [18]. Our 
model uncovers the subset of supported modes with the lowest 
XT, which were not the subset the original fiber designers 
predicted. The use of our model during the design process 
would allow greater insight into the eventual exploitation of 
the fiber.

The remaining sections of this paper are organized as fol-
lows. In section II, we briefly review the classical perturbation 
theory model, and introduce our mode-solver-based model for 
elliptical deformation. In section III, we simulate an air-core 
RCF and compare predictions from the previously proposed 
and new models, including degenerate A(AA) coupling and 
dependence on mode order. In section IV, we simulate two 
published OAM fiber designs, one thick and one thin RCF, and 
contrast their performance. In section V, we turn to optimize 
the choice of MGs to be exploited in transmission for these 
two fiber designs, highlighting the utility of the new model. 
Finally, a discussion of the results in section VI is followed 
by concluding remarks in section VII.

II. MODAL EQUATIONS

An OAM mode is formed from two fiber eigenmodes having 
the same propagation constants. These OAM modes are mostly 
circularly polarized, and have a ring-shaped intensity profile

and helical phase front along the direction of propagation.
Each order of OAM-MG has one pair of A modes and another
pair of AA modes, and thus can support four data channels.

A. OAM and Coupled-Mode Equations

OAM modes can be described as a linear combination of
even and odd eigenmodes

OAM±±l,m = HEeven
l+1,m ± iHEodd

l+1,m

OAM∓±l,m = EHeven
l−1,m ± iEHodd

l−1,m
(1)

where l is the mode topological charge, |l| is the mode
order, m is the radial index and the superscripts + and −
signs indicate the circular polarization of the OAM dominant
component, right and left, respectively [19]. The first line in
(1) is the A mode pair, the second is the AA mode pair. In
our notation (+)4AA indicates OAM with topological charge
of +4 and left circular polarization, or OAM−+4,1.

For fibers with high index contrast, the solution of the
waveguide characteristic equation will result in impure eigen-
modes [11], [16]. The transverse components of the fiber OAM
modes, with respect to cylindrical coordinates (r, ϕ), can be
written as

OAM±±l,m = fl+1(r)e±ilϕσ̂± + gl+1(r)e±i(l+2)ϕσ̂∓

OAM∓±l,m = fl−1(r)e±ilϕσ̂∓ + gl−1(r)e±i(l−2)ϕσ̂±
(2)

where σ̂± represents right or left circular polarization, and
functions fl±1(r) and gl±1(r) depend on the fiber design
parameters; for weakly guiding fibers with pure eigenmodes
(and hence pure OAM modes), gl±1(r) becomes zero. The
dominant component in (2) is OAM with topological charge
l. The secondary component is OAM with topological charge
l ± 2. The ratio of the dominant component power to the
secondary component power is called the OAM polarization
mode purity [18].

We start with the classical coupled-mode equations (CMEs)
[20] to find coupling coefficients in the presence of elliptical
deformation. Let Eµ be the electric field of the µth ideal OAM
mode (1) of a perfectly circular ring. The same core that is
deformed has eigenmodes Ẽv . They are related by

Ẽ v =

∞∑
µ=1

cµv(z)Eµ (3)

where cµv is the µth element of the eigenvector of the vth

eigenmode and it varies with propagation distance z. Using
Maxwell’s equations and (3), the CMEs are [20]

dclv(z)

dz
= i

[
βlclv(z) +

∞∑
µ=1

klµcµv(z)

]
(4)

where βl is the propagation constant of the lth unperturbed
OAM mode, and klµ is the coupling coefficient between OAM
modes l and µ.

In Fig. 1 we see a flow chart of two procedures for
addressing the impact of ellipticity. Both start with a mode
solver software (COMSOL) finding the propagation constants
and electric fields of the eigenmodes for a perfectly circular
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Fig. 1. Flow chart illustrates the steps of our proposed method in black arrows
and the previously proposed method in red-dashed arrows for comparison

ring fiber. The red dashed lines to the left indicate steps
in the traditional perturbation approach that is described in
subsection B. To the right with solid black arrows are steps
in the proposed mode solver approach described in subsection
C. The two methods differ in their calculation of the coupling
coefficients.

B. Perturbation Theory Model for Coupling

Perturbation theory assumes the nominal dielectric constant
is perturbed by δε(ϕ, r). Under this approach the coupling
coefficient is calculated via the overlap integral [11], [20],
[21] over the fiber cross-section

klµ =
ω

4P

∫∫
rE∗l δεEµdϕdr (5)

where ω is the angular frequency, P is a normalization
coefficient derived from the orthogonality condition, and *
indicates the complex conjugate.

For RCF with elliptical shape deformation, dielectric per-
turbation defined as [11]

δε = ε0 cos(2ϕ)
R−1∑
h=1

γh(n2h − n2h+1)δ(r − rh) (6)

where ε0 is the free-space dielectric constant and R is the
number of fiber rings. The klµ linearly depends on the defor-
mation level γh. The radial dependence of klµ is only discrete
given that nh and rh are the refractive index and radius of the
hth ring respectively and δ(.) is the Dirac function.

The overlap integral due to elliptical deformation, based on
(6), was shown to vanish unless the mode topological charges
differ by ±2 [11], leading to zero coupling within the A or
AA mode pairs. Only order zero modes have non-zero bire-
fringence induced between the even and odd eigenmodes in
this model. Yet birefringence was predicted between the even

and odd eigenmodes in [14], [15]. Perturbation theory cannot
capture this effect, motivating our new approach to finding
coupling coefficients. A further limitation of the perturbation
theory model is that coupling coefficients kl,µ can scale only
linearly with the strength of elliptical deformation.

C. Mode Solver-Based Model for Coupling

To overcome the shortcomings in the previous model we
adopt an approach similar to that used for silicon arrayed
waveguides in [22]. Our method exploits a mode solver to find
the mode profiles and propagation constants of the unperturbed
(circular) and perturbed (elliptical) fibers; see the right path of
Fig. 1. The fiber material is assumed isotropic.

We consider an elliptical deformation that flattens the fiber
cross-section along one axis. In our simulation, we assume
that this flattening occurs in the same direction for all fiber
layers. Other cases could be considered without any change
in the methodology. We define ellipticity (η) as the ratio
of the difference between the major and minor radii in the
perturbed fiber to the radius of the unperturbed fiber. Thus
η = 2(ah − bh)/(ah + bh) where ah and bh are the major
and minor radii of the hth layer.

We assumed in (3) the perturbed eigenmodes are a linear
combination of the unperturbed OAM modes, i.e., the coupled
mode equations (CME) apply. We now further assume no fiber
losses and that the only deformation is a uniform ellipticity
along the fiber. Therefore, only the phase evolves along z
(not amplitude), as in (22) in [20]. In other words, the spatial
distribution of modes is independent of z. The CMEs in (4)
can then be written as(

βl − β̃v
)
clv(z) +

∞∑
µ=1

klµcµv(z) = 0 (7)

with β̃ v the propagation constant in the perturbed fiber (which
can also be considered the eigenvalue of the vth eigenmode).
Note that in the case of weakly-guiding fibers, (7) can be
reduced to the set of linear equations (13.2-23) in [23]1.

For N supported modes in the fiber, and thus N independent
eigenvectors, we define propagation constants matrices

B̃e = diag
(
β̃ 1, β̃ 2, . . . , β̃ N

)
Be = diag (β1, β2, . . . , βN)

(8)

Then (7) can be written in matrix form as

CB̃e = (Be + Ko)C (9)

where C is the matrix of the independent eigenvectors and
Ko is the matrix of the coupling coefficients between the
OAM modes. The matrix C is unitary due to the orthogonality
between the fiber eigenmodes, yielding kl,µ = k∗µ,l, i.e., the
coupling matrix Ko has Hermitian symmetry as in [11], [24].

Per the superposition principle and (3), cµv over the fiber
cross-section area can be found by projecting the perturbed
field onto the unperturbed orthogonal ideal OAM modes after
proper normalization. Thus we find C from cµv =

〈
Eµ|Ẽv

〉
.

1These linear equations derived from the scalar wave-equation [23] can be
found from (7) by multiplying by (β l + β̃ v) and use (β l + β̃ v ≈ 2β l).
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Fig. 2. Comparison between OAM coupling matrix Ko in dB/m calculated (a) using numerical mode solver-based method and (b) using perturbation theory-
based method from [11]. Coupling coefficients are normalized to the maximum value.

A closed form for these superposition coefficients for scalar
modes under weakly guiding approximation was introduced in
[9], [10], while we focus on strongly guiding fibers and vector
modes.

Given the unitary property of C [13], we can compare C†C
to the identity matrix to quantify our numerical accuracy. For
our simulations the off diagonals are 35 dB down from the
diagonal entries, giving a close approximation of the identity
matrix.

Matrices B̃e and Be are found from the COMSOL output.
The coupling coefficients, Ko, are found from (9) as illustrated
in Fig. 1.

III. SIMULATION OF HOLLOW RING-CORE FIBER

We simulate the hollow-core thin-RCF designed in [19]
and compare our results with the modeling approach used in
[11]. The fiber has four layers: air-core, ring-core, trench, and
cladding. The fiber parameters are summarized in Table A.1
in Appendix A. This fiber supports up to order seven OAM.

A. Fiber Coupling Coefficients

We examine η of 1%. The choice of deformation level is
somewhat arbitrary without experimental evidence. However,
this level of deformation is reasonable for fiber fabrication
error in the laboratory [25]. In addition, this parameterization
leads to XT levels on the same order of magnitude as those
observed experimentally. The perturbation model [11], [20],
[21] uses a scaling factor; levels of ellipticity lead to a simple
multiplicative factor for the XT level.

The coupling matrix Ko calculated using our proposed
method is shown in Fig. 2a, and results for the perturbation
theory-based method in Fig. 2b. The columns/rows of the cou-
pling matrices are labeled with order number and alignment;
AA modes have a shaded label. The coupling is given in dB
scale as indicated to the right of the figure. The 4 × 4 sub-
matrices on the diagonal corresponding to a single OAM MG
are outlined in black. The amplitude of Ko is shown in Fig. 2;

the phase is not examined as average XT is dominated by the
amplitude [26].

The two methods clearly lead to different predictions of
coupling. Fig. 2a exhibits coupling across a greater number
of mode pairs, though the range of coupling values is similar.
The most profound differences, however, can be seen in the
4 × 4 sub-matrices along the diagonal with black outline for
OAM orders 3-7. For both models, the anti-diagonal 2 × 2
sub-matrices within the highlighted 4 × 4 matrices are non-
zero. Thus both models can predict coupling between A and
AA mode pairs.

The previously proposed model [11] cannot reveal coupling
within A or AA modes as the overlap integral vanishes for all
modes other than fundamental and (±)2AA modes2. Patterned
squares in Fig. 2b recall that these degenerate modes are
assumed to completely mix during propagation. In Fig. 2a,
the same 2 × 2 sub-matrices on the main diagonal are now
calculated and can inform us of degenerate mode coupling.
The two anti-diagonal entries become zero when the two
degenerate modes do not couple and keep their orthogonality.
For example, the normalized entry Ko between +7A and −7A
is less than -60 dB/m in Fig. 2a. We observe that degenerate
mode coupling evolves with mode order. The tendency of
coupling between degenerate modes reduces relatively faster in
the A pairs than the AA pairs. The normalized Ko is -12 dB/m
for +3AA and −3AA, while the normalized Ko is -38 dB/m
between +3A and −3A.

Another significant difference between the two methods is
the variation of the highlighted 4 × 4 matrices across mode
order. Contrast mode 3 and mode 7; the 4 × 4 sub-matrices
are almost identical in the previously proposed model, and
disparate in the new method. To clarify, birefringence between
the even and odd eigenmodes forming OAM mode, see (1),
is induced by the elliptical deformation. In our method, this

2For these two mode pairs, the dominant component of one mode and
the secondary component of its degenerate mode have a difference in their
topological charges by 2 as in (2) resulting in non-zero coupling coefficient
according to (6).
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Fig. 3. Power evolution vs. transmission distance when launching (a) lower-order OAM(+)4AA, (b) higher-order OAM(+)7AA; solid lines for AA modes,
dashed lines for A modes, topological charge beside curves; and (c) effective refractive indexes of unperturbed modes.

birefringence is captured by B̃e as in [14], [15], and thus
influences Ko. In particular, this leads to non-zero coupling
coefficients between the OAM mode pair and is the improve-
ment offered by our method. Moreover, the detuning of the
degenerate OAM mode pair (self-coupling coefficients on the
main diagonal Fig. 2a) may lead to spatial beating between
them [21] as it represents changes in the OAM propagation
constants that were previously the same for the A(AA) modes.
The difference in the self-coupling coefficients is hard to
distinguish in Fig. 2a. This indicates a small delay within the
A(AA) mode pair, and hence short-length MIMO-DSP.

B. Numerical Propagation

One of the most important applications of our model is
the prediction of how power leaks from one mode to another
during propagation. The coupling coefficients found in the
previous section indicate vulnerability to XT due to the core
deformation induced during the fiber fabrication process, while
∆neff between the modes controls how that vulnerability
evolves during propagation. Modes with vastly different ef-
fective refractive indices would not couple much, even if
they had a non-zero coupling coefficient. We evaluate the
mode propagation along the optical fiber by solving (4) when
random rotation of deployed fiber principle axes are modeled
as stochastic. A description of the Monte Carlo statistical
technique we used is included in Appendix B, following along
the lines of that in [11].

We launch one mode and observe the power leaked to the
other modes as a function of propagation distance assuming
continuous-wave operation. Fig. 3a shows the results when
launching one polarization of mode 4AA, and Fig. 3b for mode
7AA. For order 4, the two degenerate AA modes (right and
left polarized) mix immediately; DSP would be required to
demultiplex these modes. This is predictable given the high
coupling coefficients across (±)4AA modes in Fig. 2a, and
the identical effective refractive indexes. Coupling between
other modes tracks with their ∆neff from the 4AA mode;
see Fig. 3c. The closest pair (4A) couples significantly after

1 km, as does mode 2AA. Even 4 × 4 MIMO-DSP may not
be sufficient for km-length scale at mode order 4.

For order 7 behavior changes significantly, as seen in Fig. 3b
compared to Fig. 3a. There is no initial coupling between
degenerate modes (+7AA loses little energy to −7AA) and
the launched mode could be received with no MIMO for some
distance (few meters). Coupling between opposite polarization
and same topological charge (e.g., +7AA and +7A) is more
significant than within the AA pair. The AA/A coupling at
1 km is higher for order 7 than order 4, as order 7 has
lower ∆neff . Coupling with other modes is relatively small
for (±)7AA compared to (±)4AA, hence 2 × 2 MIMO-DSP
may be sufficient for this mode for some longer distance.
The small level of coupling within the AA pair indicates:
1) direct coupling due to birefringence between even and
odd eigenmodes is negligible for higher order modes and 2)
indirect coupling between degenerate modes through multiple
MGs (|l| steps for the case of ellipticity) that is captured by
numerical propagation is also small. This agrees qualitatively
with the analytical results derived in [9].

Compared to the perturbation-theory approach showing
only coupling between different MGs, our method uncovers
coupling behavior within a mode pair. For the hollow core
fiber, we see that higher order modes have distinctly different
behavior from lower order modes.

IV. SIMULATION OF THIN & THICK RCFS

In the previous section, we took one fiber design and
compared the predictions of two different models. Our new
model allowed us to predict different coupling behaviors. In
this section, we use our new model to compare two candidate
fiber designs. We compare the performance of fibers (a thin-
RCF and a thick-RCF) that were designed under one set of
constraints [18]. The first constraint is to support the prop-
agation of 4 OAM MGs (i.e., 16 spatial channels) with high
mode purity. The second constraint is to ensure ∆neff > 10−4

between the A and AA modes in all four MGs. Our simulations
use the reported parameters for those fibers, reproduced in
Table A.2. Per [18], the Thick-RCF has a relatively high mode
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(a)

(b)

Fig. 4. OAM Coupling coefficients Ko in dB/m for (a) Thin-RCF and (b)
Thick-RCF. Row/column labels shaded grey refer to modes with dual intensity
rings, i.e., m = 2. Coupling coefficients are plotted without normalization

purity, while thin-RCF does not. Lower polarization purity
means each mode is indexed by its dominant component |l|,
but is corrupted by a secondary component with |l±2|. These
modes propagate with a slightly elliptical polarization instead
of circular. The Thick-RCF supports propagation of 2nd radial
modes, while thin-RCF does not; these modes are an added
conduit leaking power from desired modes.

A. Fiber Coupling Coefficients

The coupling matrix calculated using our mode solver-based
method for both fibers is shown in Fig. 4. We present absolute
coupling coefficients (no normalizing to the largest coupling);
the color scale for each one is plotted to the right. Once again,

(a)

(b)

Fig. 5. Coupling coefficients Ko in dB/m between A(AA) OAM mode pairs
for (a) thin-RCF and (b) thick-RCF (1st radial modes only). Blue/solid curves
are for A modes, while red/dashed curves are for AA modes.

we assumed η of 1%. Qualitatively, the thin-RCF has a similar
matrix to that of the hollow core fiber (also a thin ring fiber)
of the previous section. The thick-RCF also supports dual
intensity ring modes, which are not targeted for transmission
in the fiber design; the index of these modes is shaded gray
in the row/column labels. They will leech off some energy
from targeted modes, but not cause XT, as no power will be
launched on these modes.

Fig. 5 plots the coupling coefficients within a (nominally)
degenerate OAM mode pair, for various OAM mode orders;
blue/solid for A modes and red/dashed for AA modes. For
reference, the relevant 2 × 2 matrices from Fig. 4 are given
below; it is the anti-diagonal entries that are plotted. We
can clearly see the order at which orthogonality, and not
degeneracy, occurs for this specific level of deformation.

From (1) and (5), the coupling within mode pairs depends
on the self-coupling coefficients of even (odd) eigenmodes,
that is, the birefringence between them and the coupling
coefficient between them. From Fig. 5, for both fibers, the
value of coupling coefficient within an OAM mode pair tends
to saturate below -30 dB/m at higher order modes. In theory,
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(a)

(b)

(c)

Fig. 6. Power in dBm leaked to other modes after 1km when launching one
mode at a time, (a) thick-RCF, (b) thin-RCF, and (c) thin-RCF with permuted
mode order.

the coupling coefficient between degenerate modes should
decrease with increasing the topological charge. Numerical
accuracy limitation of the simulation (discussed in Appendix
A) causes the coupling coefficient saturation. Numerical prop-
agation results in the following sections will also support the
reduced XT for higher order modes; they no longer couple
with each other, up to some distance.

For thin-RCF, Fig. 5a shows orthogonality between A(AA)
mode pairs above order 5; their 2 × 2 coupling coefficient
sub-matrix is approximately an identity matrix (Fig. 4a). At

lower order modes, the ideal zero birefringence between the
even and odd eigenmodes, as well as the coupling coefficient
between them, are not negligible and thus induces the cou-
pling between degenerate OAM mode pair. The progressively
smaller birefringence and coupling coefficients of even/odd
eigenmodes at higher modes, maintains the orthogonality
between degenerate OAM modes. Perturbation theory-based
models miss this distinction. For thick-RCF, orthogonality is
preserved for degenerate modes above order 4 (Fig. 5b). This is
reasonable since, for the same percentage of ellipticity, thin-
RCF has higher relative radius deformation than thick-RCF.
For both fibers, the coupling between degenerate A modes
reduces faster than the AA pairs.

B. Numerical propagation

We again use Monte Carlo techniques to predict power
leakage to other modes following 1 km of propagation, as
described in Appendix B. These results are presented in
Fig. 6. To save space and to concentrate on results of the
greatest importance, we present only a few sections of the
1 km power leakage matrix. We present the results for modes
with the best potential for exploitation: orders 5-10 for thick-
RCF and 6-11 for thin-RCF. We present sub-matrices for
these launched orders, and sub-matrices for the biggest XT
contributors (neighboring modes at a separation of two orders
larger and smaller). Contributions from other neighboring
modes are excluded here as they are less than -20 dB.

To clarify, the section labeled “Mode (l)” presents 4 × 4
matrices from the diagonal of the complete matrix; the other
4× 4 matrices come from two off-diagonals: 1) two intervals
above the main diagonal and 2) two intervals below the main
diagonal. Note that for the highest order modes there are
eventually no supported modes at separation two orders higher,
hence the grey sections in Fig. 6. The performance of the
targeted modes is fairly uniform for both thick-RCF or thin-
RCF. This is expected from the fiber design criteria used in
the PSO-algorithm [18].

The sub-matrices in Fig. 6 can provide us with guidance on
the MIMO strategies appropriate to each fiber. The thick ring
fiber targets modes 7-10 [18]. In Fig. 6a, we see the diagonal
entries evolving towards identity matrices at the higher order
modes. For lower modes, degenerate mode coupling is rela-
tively high; the matrix is far from the identity matrix. This
is consistent with experimental demonstrations of other thick
core fibers exploiting only the higher order modes [8]. Power
leaked to other modes within the group is low enough at higher
orders (below -20 dBm) to support MIMO free reception. The
dominant leakage from order l modes is to modes at a distance
of l±2. Power leaked to the 2nd radial modes and more distant
modes is negligible.

For the thin ring fiber, targeting modes 8-11 [18], MIMO
free operation is not an option at 1km. The diagonal matrices
in Fig. 6b evolve toward a checkerboard pattern, rather than
the form of an identity matrix. In Fig. 6c the order of modes
in the matrix is permuted from the default order (in ascending
order of propagation constant) to one that highlights coupling
within MG. We see that +(l)A and +(l)AA modes couple
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Fig. 7. Average (a) crosstalk and (b) SNR-penalty for QPSK modulation; error bars give maximum and minimum values across 16 spatial modes.

with each other (as are the negative versions). Our model has
predicted the mode pairs that should be demultiplexed together
for 2× 2 MIMO. Standard 2× 2 MIMO is easily adopted in
coherent receivers and is the norm in polarization-multiplexed
single-mode transmission. In comparing the performance of
thick and thin ring RCF, we will assume ideal 2 × 2 MIMO
reception of the coupled mode pairs in one MG for thin-RCF.

V. OPTIMIZATION OF MODAL EXPLOITATION

In the preceding section, modal coupling was shown to have
distinct behavior for thin and thick-RCFs. In this section, we
examine the XT in terms of the signal-to-noise ratio (SNR)
penalty as a function of transmission distance. Using our
simulation results, we uncover the optimal subset of MGs for
both fibers. These are not the MGs originally targeted in [18].

A. Crosstalk and SNR-Penalty

The XT on a given mode is the ratio of interference power
to the received power. As discussed in the previous section,
we assume MIMO-free reception for thick-RCF and ideal 2×
2 MIMO for thin-RCF. We therefore need to calculate the
XT in different ways for each fiber. Let Pi|j be the power
received on mode i when unit power is launched on mode j.
We assume the interference noise is independent across modes,
so the interference powers are additive.

We define the accumulated XT on mode i for MIMO-free
reception as

XTw/o =

∑
j 6=i

Pi|j

Pi|i
(10)

where i and j are indices for the subset of launched modes.
Different combinations of launched modes will be considered
in the balance of this paper. The inverse of the XT represents
the extinction ratio of the targeted mode.

Let i and i
′

be the indexes of two coupled (highly corre-
lated) modes for which ideal 2 × 2 MIMO is applied at the

receiver. As these modes do not contribute to XT, the following
calculation applies

XTw =

∑
j 6=(i,i′ )

Pi|j

Pi|i + Pi′ |i
. (11)

The SNR penalty is defined as the added signal power re-
quired to achieve a bit-error rate of 10−3 in the presence of XT,
relevant when using hard-decision forward error-correction.
We calculate the XT-induced SNR-penalty for quadrature
phase-shift keying (QPSK) modulation based on Monte Carlo
simulation of 217 modulated symbols. As in [27], we take
into account a phase difference between the desired signal and
interference signal. We assume a uniformly distributed phase
offset, and find the average SNR penalty.

B. Performance of the targeted modes

The XT and SNR-penalty evaluated after 1 km of propa-
gation are shown in Fig. 7a and b, respectively. We assume
that the targeted modes from the optimization in [18] are
launched. We plot the average for the 16 spatial modes; error
bars indicate the maximum and minimum values across all
16 spatial channels. The set of modes launched is indicated
next to the curves. Two curves are provided for the thin-RCF.
One uses (10) for MIMO-free reception; the other uses (11)
assuming ideal 2× 2 MIMO between A and AA mode pairs.
We evaluate the performance for thick-RCF assuming MIMO-
free transmission, i.e., with (10).

From Fig. 7, thin-RCF could support propagation without
MIMO for only a few meters. Coupling between A and AA
dominates performance. Thin-RCF with 2 × 2 MIMO signif-
icantly improves the performance of thin-RCF and increases
achievable transmission distance. However, thick-RCF has the
best performance even without MIMO processing. The use
of 2 × 2 MIMO with thin-RCF does reduce the variance in
performance across launched modes. Thick-RCF can support
MIMO-free transmission for km-length scale. The best mode
suffers from -12.5 dB XT which leads to about 2 dB penalty.
The worst mode suffers from -10 dB XT after 1 km, which
leads to 4 dB SNR-penalty. Thick-RCF has a relatively higher
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Fig. 8. Worst SNR-penalty for different subsets of 4 MGs (16 spatial channels) for (a) thin-RCF (MGs chosen from 6-11), and (b) thick-RCF (MGs chosen
from 6-10). For subsets that give the same penalty, we indicate only one with a black arrow.

variance in the XT (SNR-penalty) as the 4 MGs have some
variations in the coupling performance shown in Fig. 6a.

C. Optimizing launched modes

Several subsets of four MGs, different from the subset
proposed in [18], will be compared for each fiber. Both
fibers support propagation of a large number of OAM modes,
which enables exploitation of variety subsets. These subsets
will have some modes with a relatively lower ∆neff or
polarization purity, but the overall performance can improve.
The next greatest contribution to XT (after the in-group XT,
i.e., intra-mode coupling) comes from modes at order ±2;
these contributions are shown in Fig. 6. Coupling between
mode orders can be minimized by choosing modes other than
successive mode orders.

We choose to compare the SNR-penalty of the worst mode,
i.e., the mode that suffers from the highest XT, as this
determines maximum reach for a given modulation format. In
Fig. 8, the mode subset is indicated on each curve. Thick-RCF
is MIMO-free reception, while thin-RCF uses 2× 2 MIMO.

For thin-RCF in Fig. 8a, changing the targeted modes
significantly improves the performance compared to the initial
subset (8-11). The optimal subset for thin-RCF is (6, 7, 10
and 11), avoiding the dominant contributors at orders ±2.
Transmission of 1 km can be achieved using this subset
with the worst penalty of 4.5 dB. Compared to the thin-
RCF, there is only 1 dB improvement for thick-RCF using the
optimal subset. For thick-RCF, the second neighbor coupling
can be suppressed using OAM (5, 6, 9 and 10). We excluded
this subset as MIMO-DSP would be required to compensate
coupling in OAM5, as indicated in Fig. 6.

D. Changing the targeted capacity

To achieve greater reach, the system designer may sacrifice
capacity and exploit a fewer number of channels. In this
section we again examine subgroups of modes, but this time
for 8 or 12 exploited modes (2 or 3 MGs, respectively. We
consider the worst case SNR-penalty after 1 km at 1% and
0.5% of elliptical deformation. Results are presented in Table I.

We indicate the optimal mode subset for each case. When
two sets appear, they have equivalent performance. Mode with
the worst SNR-penalty is dropped as the number of MGs is
reduced.

For thin RCF, the worst-case SNR-penalty decreases by
1.8 dB when we target three MGs instead of four. There
is relatively high coupling between the AA pair of OAM 6
compared to other modes in the four MG optimal subset.
Coupling is also high between OAM6 and OAM4 (in OAM4,
modes completely mix). Thus, the best subset of three MGs
excludes OAM6.

For thick RCF, OAM7 is the worst mode due to coupling
with OAM9. In addition, there is XT between its A and AA
modes, which we do not compensate with MIMO. Thick-RCF
suffers more performance degradation than thin-RCF at lower
deformation. This is due to the use of 2× 2 MIMO between
the highly correlated modes for thin-RCF.

TABLE I
WORST-CASE SNR PENALTY IN DB (SHADED) FOR 1% AND 0.5% OF

ELLIPTICITY

Thin RCF Thick RCF
w/ 2× 2 MIMO w/o MIMO

1% 0.5% Modes 1% 0.5% Modes
4-MGs 4.5 0.4 (6,7,10,11) 3.5 1.1 (6,7,9,10)

3-MGs 2.7 0.26 (7,8,11)
(7,10,11) 2.5 0.75 (6,9,10)

2-MGs 0.15 0.0 (8,9) 0.0 0.0 (9,10)

VI. DISCUSSION

Several studies in the literature corroborate predictions
from our model. First, the formalism introduced in [12] and
extended here agrees with the theoretical formulation newly
introduced in [13] for fiber eigenmodes. Second, our results
for coupling between A(AA) OAM mode pairs being low for
high mode orders are compatible with predictions in [6]. In
particular, the coupling coefficients in Ko between degenerate
mode pairs become small for higher order modes due to the
small birefringence between even and odd eigenmodes shown
in [14], [15] and represents the direct source of coupling.
Moreover, the indirect coupling due to mode mixing through
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multiple MGs also becomes small. The last observation we 
find numerically is in agreement with the analytical scalar-
perturbation theory in [9], [10].

Although we omit the effect of modal group delay and 
dispersion during propagation, performance of the thin-ring 
and thick-ring fibers agrees with the reported results. Thick-
RCF supports MIMO-free transmission for a moderate level of 
deformation (1%) for a kilometer scale distances, which agrees 
with the experimental demonstration in [8]. We expect that 
modal group delay will not degrade the system performance 
significantly as thick-RCF has negligible intra-mode coupling 
and small inter-mode coupling.

Transmission experiments of thin-RCF are limited to a 
few meters [17]. This aligns with our simulations; longer 
distances for thin-RCF would require at least 2 × 2 MIMO-
DSP. For the thin fiber, modal group delay may affect the 
system performance especially at moderate (high) bit rate as 
the fiber suffers both intra-mode and inter-mode coupling.

We can benefit from our model in several ways. For previ-
ously designed fibers, our model allows us to determine the 
most appropriate MIMO for a given fiber length. The model 
can also be used to choose the optimal MGs to launch for 
a given capacity target. The system designer can select MGs 
based on capacity, distance, or a hybrid.

For fibers under development, we can take into account 
more pertinent optimization criteria using our model. Today 
OAM fibers are designed with a constraint on minimal ∆neff 
(∼ 10−4) and mode purity [3], [5], [18], [25]. However, the 
constraint levels are heuristic and not pegged to specific per-
formance indicators. Optimization requires better knowledge 
of modal interactions to determine the impact of deformation.

We have established the advantage of using our model in 
fiber design, by contrasting the behavior of thin and thick RCF 
optimized under identical constraints on ∆neff and purity. 
These design constraints produced exploitable fibers, but the 
behavior is quite distinct. These two parameters and the ad 
hoc constraints are not sufficient to inform us even of which 
supported modes would offer the best performance.

In particular, coupling between degenerate mode pairs could 
be an important design criterion, and our model for the 
high-index fibers is the first to address and predict quanti-
tatively which modes will resist this coupling. For instance, 
for MIMO-less systems we could target modes that avoid 
degenerate mode coupling. For MIMO systems, the level of 
coupling could be linked to the level of MIMO processing that 
could be tolerated by the application. The distinctly different 
behaviors of thick and thin ring cores, even more than the 
relative difficulty in their manufacture, may influence their 
adoption in MDM systems.

VII. CONCLUSION

We have introduced a coupling model of OAM modes prop-
agating in RCFs; we assumed an elliptical deformation of the 
circular core. Our model, compared to [11], provides coupling 
results in agreement with the observations and predictions 
reported in the literature. For a specific fiber and percent 
of ellipticity, our simulations predict which degenerate mode

pairs remain orthogonal. We considered the effect of random
fiber orientation rotation during mode propagation. We showed
how modes propagate differently in thin and thick-RCFs.
Strong coupling between A and AA modes propagating in
thin-RCF can be compensated using 2×2 MIMO, while thick-
RCF allows MIMO free transmission as reported in literature.
Coupling between order l and l±2 is relatively larger in thin-
RCF than thick-RCF for the same percentage of deformation.
This inter-mode coupling can be indirectly compensated by
selecting the optimal subset of MGs.

Our model presents a good tool to predict the performance
of specific fiber design. This prediction must next be confirmed
by experimental characterisation of deformation level, and by
collecting statistics on fiber propagation. Sweeping the level
of deformation, other than 1%, can be used to fit experimental
measurements in order to validate our approach. Our model
can also be used to improve the current fiber design strategy.

APPENDIX A
FIBER PARAMETERS USED IN SIMULATIONS

Parameters of the hollow-RCF simulated in section III are
given in Table A.1 [11], [19]. All refractive indexes are at
the wavelength of 1.55 µm. Table A.2 shows the parameters
of the thin-RCF and thick-RCF simulated in section IV [18].
Notation in Table A.2 is as follows: a is inner ring radius, b is
outer ring radius, n1 is ring core index and n2 is inner cladding
index. For both thin and thick-RCF, The cladding radius and
refractive index are 25 µm and 1.444 at 1.55 µm. We choose
this value for the cladding radius to limit the computation time
of the mode-solver software.

We follow an approach similar to [28] to achieve sufficient
accuracy in COMSOL. Our criteria of choosing the mesh size
was based on the calculated value of effective refractive index,
as this parameter is crucial in our model. We swept mesh size
until the difference between even and odd eigenmodes indexes
(ideally zero for the unperturbed fiber) is ∼ 10−13. Our
maximum mesh size is 0.2 µm and the number of elements
in the mesh is 1.5 × 105. The spatial resolution of the grid,
from which we extract the electric fields used to calculate
the coupling coefficients, is 0.1 µm. While finer accuracy is
possible, it would require excessive computational resources.
The current accuracy level leads to saturation of the coupling
coefficients observed in Fig. 5. Nonetheless, this saturation
will not have significant impact for simulation of longer
transmission distances than those in Fig. 5. Most penalty at
higher order modes will then come from the coupling with
second neighbors and/or near degenerate modes.

TABLE A.1
HOLLOW RING-CORE FIBER PARAMETERS [19]

Air-hole Ring-core Trench Cladding
Outer radii (µm) 9.1 11.3 16.2 25
Refractive index 1 1.474 1.438 1.444

TABLE A.2
ALL-GLASS FIBER PARAMETERS [18]

b (µm) a (µm) n1 n2
Thick-RCF 9.92 4.64 1.484 1.415
Thin-RCF 13.97 12.35 1.484 1.395
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APPENDIX B
MONTE CARLO PREDICTION OF PROPAGATION EFFECTS

The impact on coupling of deformation in deployed fiber 
can be captured by assuming random, periodic rotations of 
fiber axes. We follow the same procedure as in [11], which 
is briefly summarized here. The rotation angle, θ, at a given 
section is taken in the clockwise direction. Using complex 
space inner product properties the rotated electric field of mode 
(±)lA, described in (2), can be written as

OAM±±l,rotated = fl+1e
±jlϕe±jθσ̂′± + gl+1e

±j(l+2)ϕe∓jθσ̂′±

= fl+1e
±jl(ϕ′+θ)e±jθσ̂′± + gl+1e

±j(l+2)(ϕ′+θ)e∓jθσ̂′±

= OAM±±le
±j(l+1)θ

(12)
where ϕ′ is the azimuthal angle in the new, rotated frame.
From (12), rotating an OAM mode only introduces a phase
shift to the field profile.

We define M(θ) as the rotation matrix of the electric fields
of all modes. In other words, M(θ) transforms the electric
fields in (2) from the σ̂± frame to the rotated σ̂′± frame. The
rotation matrix M(θ) for all modes will be a diagonal matrix.
The 2 × 2 block matrix on the diagonal R(lθ) is defined for
the 2 modes in the same pair as

R(lθ) =

(
e+i(l±1)θ 0

0 e−i(l±1)θ

)
(13)

where + and − signs are for A modes and AA modes,
respectively. This matrix replaces (17) in [11].

As derived, the light is circularly polarized; rotating the
fiber principle axes results only in a phase shift between the
mode pair. This is intuitive as the OAM mode profile has
a 360◦ rotational symmetry; rotating the principle axes has
no effect. In contrast, LP modes are not symmetric with any
rotation angle. Also LP modes have a linear polarization that
is perturbed with rotating fiber principle axes. This leads to
a coupling between the 4-fold degenerate modes in each LP
MG, while it has no coupling effect between OAM modes.

As in [11], [29], we transform the initial coupling matrix
Ko(0) into the new rotated fiber axes via

Ko(θ) = M−1(θ)Ko(0)M(θ). (14)

The fiber is modeled as a concatenation of small fiber subsec-
tions, each subsection has a length below the fiber correlation
length and Ko(θ) is assumed to be constant along each
subsection.

The angle θ of fiber axes changes randomly along the fiber
length per a Wiener process; see the fixed modulus model
in [11], [15]. The rate of change of θ(z) is determined by
dθ
dz = gθ(z), where gθ(z) is a white Gaussian noise of zero
mean and σ2 variance. The auto-correlation function of θ(z)
is exp(σ2z/2) = exp(z/Lc). The fiber correlation length
is represented by Lc. In all simulations, the chosen Lc was
20 meters, close to the one measured for RCF in [15]. For
different Lc, the XT can be obtained by re-scaling the distance
axis proportional to the new Lc [11], [30].

In simulations, the fiber was divided into subsections of 1
meter, much less than Lc. Independent, random rotations were

generated for each subdivision up to 1 km. The simulation was
repeated over 100 realizations. We present the power averaged
over all 100 realizations in the numerical propagation results.

APPENDIX C
AGREEMENT BETWEEN MODE SOLVER-BASED MODEL AND

PERTURBATION THEORY-BASED MODEL

We propose a model based on a mode solver for fiber ellip-
ticity to capture behavior shown in other literature [14], [15]
that is not predicted by models based on classical perturbation
theory.

Unlike ellipticity, for the case of material anisotropy the
models based on a mode solver and perturbation theory would
yield the same results. In this section we take our mode solver
approach and show that our steps of calculating coupling
coefficients lead to agreement between the two methods for
material anisotropy.

Consider a fiber simulated in section III with material
anisotropy instead of an elliptical deformation. The dielectric
perturbation in layer h defined per (10) in [11] and (7) in [29]
in x-y basis

δεh = ε0nh∆nh

1 0 0
0 −1 0
0 0 0

 (15)

where ε0 is the vacuum permittivity, nh and ∆nh are the
refractive index, the birefringence induced of the hth layer.
Materiel anisotropy changes the material dielectric permittivity
in x and y directions. To capture this effect, in COMSOL
for our proposed method, the perturbed fiber is circular. We
introduce a difference in the relative permittivity in x and y
directions by 1×10−5 for all materials: ring-core, trench, and
the cladding. The coupling matrix Ko calculated using the
two methods has maximum difference between coefficients of
-16 dB (the difference is less than 0.5% of coupling coefficient
value).
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