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Résumé

Dans cette thèse on s’intéresse à la modélisation de la dépendance entre les risques en as-
surance non-vie, plus particulièrement dans le cadre des méthodes de provisionnement et en
tarification. On expose le contexte actuel et les enjeux liés à la modélisation de la dépendance
et l’importance d’une telle approche avec l’avènement des nouvelles normes et exigences des
organismes réglementaires quant à la solvabilité des compagnies d’assurances générales.

Récemment, Shi et Frees (2011) suggère d’incorporer la dépendance entre deux lignes d’af-
faires à travers une copule bivariée qui capture la dépendance entre deux cellules équivalentes
de deux triangles de développement. Nous proposons deux approches différentes pour géné-
raliser ce modèle. La première est basée sur les copules archimédiennes hiérarchiques, et la
deuxième sur les effets aléatoires et la famille de distributions bivariées Sarmanov.

Nous nous intéressons dans un premier temps, au Chapitre 2, à un modèle utilisant la classe
des copules archimédiennes hiérarchiques, plus précisément la famille des copules partielle-
ment imbriquées, afin d’inclure la dépendance à l’intérieur et entre deux lignes d’affaires à
travers les effets calendaires. Par la suite, on considère un modèle alternatif, issu d’une autre
classe de la famille des copules archimédiennes hiérarchiques, celle des copules totalement im-
briquées, afin de modéliser la dépendance entre plus de deux lignes d’affaires. Une approche
avec agrégation des risques basée sur un modèle formé d’une arborescence de copules bivariées
y est également explorée. Une particularité importante de l’approche décrite au Chapitre 3 est
que l’inférence au niveau de la dépendance se fait à travers les rangs des résidus, afin de pallier
un éventuel risque de mauvaise spécification des lois marginales et de la copule régissant la
dépendance.

Comme deuxième approche, on s’intéresse également à la modélisation de la dépendance à
travers des effets aléatoires. Pour ce faire, on considère la famille de distributions bivariées
Sarmanov qui permet une modélisation flexible à l’intérieur et entre les lignes d’affaires, à
travers les effets d’années de calendrier, années d’accident et périodes de développement. Des
expressions fermées de la distribution jointe, ainsi qu’une illustration empirique avec des tri-
angles de développement sont présentées au Chapitre 4. Aussi, nous proposons un modèle
avec effets aléatoires dynamiques, où l’on donne plus de poids aux années les plus récentes, et
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utilisons l’information de la ligne corrélée afin d’effectuer une meilleure prédiction du risque.
Cette dernière approche sera étudiée au Chapitre 5, à travers une application numérique sur
les nombres de réclamations, illustrant l’utilité d’un tel modèle dans le cadre de la tarification.

On conclut cette thèse par un rappel sur les contributions scientifiques de cette thèse, tout
en proposant des angles d’ouvertures et des possibilités d’extension de ces travaux.

Mots clés : Dépendance hiérarchique, Triangles de développement, Méthodes de provisionne-
ment, Copules, Maximum de vraisemblance, Estimation basée sur les rangs, Effets aléatoires,
Sarmanov, Bootstrap, Tarification, Mesures de risque et allocation de capital.
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Abstract

The objective of this thesis is to propose innovative hierarchical approaches to model depen-
dence within and between risks in non-life insurance in general, and in a loss reserving context
in particular.
One of the most critical problems in property/casualty insurance is to determine an appro-
priate reserve for incurred but unpaid losses. These provisions generally comprise most of the
liabilities of a non-life insurance company. The global provisions are often determined under
an assumption of independence between the lines of business. However, most risks are related
to each other in practice, and this correlation needs to be taken into account.

Recently, Shi and Frees (2011) proposed to include dependence between lines of business
in a pairwise manner, through a copula that captures dependence between two equivalent
cells of two different runoff triangles. In this thesis, we propose to generalize this model with
two different approaches. Firstly, by using hierarchical Archimedean copulas to accommodate
correlation within and between lines of business, and secondly by capturing this dependence
through random effects.

The first approach will be presented in chapters 2 and 3. In chapter 2, we use partially
nested Archimedean copulas to capture dependence within and between two lines of busi-
ness, through calendar year effects. In chapter 3, we use fully nested Archimedean copulas,
to accommodate dependence between more than two lines of business. A copula-based risk
aggregation model is also proposed to accommodate dependence. The inference for the de-
pendence structure is performed with a rank-based methodology to bring more robustness to
the estimation.

In chapter 4, we introduce the Sarmanov family of bivariate distributions to a loss reserving
context, and show that its flexibility proves to be very useful for modeling dependence be-
tween loss triangles. This dependence is captured by random effects, through calendar years,
accident years or development periods. Closed-form expressions are given, and a real life il-
lustration is shown again. In chapter 5, we use the Sarmanov family of bivariate distributions
in a dynamic framework, where the random effects are considered evolutionary and evolve
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over time, to update the information and allow more weight to more recent claims. Hence,
we propose an innovative way to jointly model the dependence between risks and over time
with an illustration in a ratemaking context.

Finally, a brief conclusion recalls the main contributions of this thesis and provides insights
into future research and possible extensions to the proposed works.

Keywords : Hierarchical dependence, Reserving, Copulas, Loss triangles, Bootstrap, Rank-
based estimation, Maximum likelihood estimation, Risk capital allocation, Ratemaking, Claim
counts, Random effects, Sarmanov.
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Avant-propos

Cette thèse étudie des modèles de dépendance hiérarchiques pour l’évaluation des réserves et
de mesures de risque, ainsi que la tarification en assurance non-vie.
Elle est constituée de six chapitres, le premier et le dernier étant une introduction et une
conclusion générales. Les chapitres de 2 à 5 sont présentés sous forme de quatre articles scien-
tifiques.

Plus spécifiquement, le Chapitre 2 est constitué d’un article co-écrit avec mon co-directeur
de thèse de l’Université du Québec à Montréal, Jean-Philippe Boucher, professeur au Dé-
partement de mathématiques et ma directrice de thèse à l’Université Laval, Hélène Cossette,
professeure à l’École d’actuariat, s’intitulant Modeling Dependence Between Loss Triangles
with Hierarchical Archimedean Copulas et publié dans la revue ASTIN Bulletin. Le modèle
présenté dans cet article capture la dépendance à l’intérieur et entre les lignes d’affaires, à
travers les effets calendaires à l’aide des copules archimédiennes partiellement imbriquées. Cet
article a été récipiendaire du prestigieux prix Hachemeister de la Casualty Actuarial Society
(CAS) pour l’année 2016. Le critère principal d’attribution de ce prix est déterminé par l’im-
pact potentiel de la publication scientifique sur l’assurance IARD en Amérique du Nord et de
sa mise en application pratique.

Le deuxième article, présenté au Chapitre 3, propose une méthode alternative à celle du cha-
pitre précédent, avec une modélisation de la dépendance entre six lignes d’affaires à l’aide
des copules archimédiennes totalement imbriquées, ainsi qu’un modèle d’agrégation par co-
pules. Dans cet article, intitulé Rank-Based Methods for Modeling Dependence Between Loss
Triangles, l’inférence est basée sur les rangs des résidus de façon à offrir une estimation plus
robuste à la structure de dépendance. Cet article est en cours de publication à la revue Euro-
pean Actuarial Journal et co-écrit avec Marie-Pier Côté, étudiante au doctorat en statistique
à l’Université McGill et son directeur de thèse Christian Genest, professeur au Département
de mathématiques et de statistique de l’Université McGill.

Le quatrième chapitre est basé sur un article publié dans la revue North American Actuarial
Journal et intitulé Sarmanov Family of Bivariate Distributions for Multivariate Loss Reser-
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ving Analysis. Cet article est co-écrit avec mes deux directeurs de thèse Jean-Philippe Boucher
et Hélène Cossette, ainsi que Julien Trufin, professeur au Département de mathématiques à
l’Université Libre de Bruxelles (ULB). On s’intéresse dans ce chapitre à la modélisation de la
dépendance à l’intérieur et entre les lignes d’affaires à l’aide des effets aléatoires et la famille
de distributions bivariées Sarmanov. Nous démontrons la flexibilité et l’utilité de cette famille
de distributions dans le contexte des réserves.

Cette même famille de distributions est utilisée dans un contexte de tarification en assurance
automobile dans le chapitre 5. On expose une dépendance entre les nombres de réclamations
entre différentes couvertures, basée sur des effets aléatoires dynamiques, où la dimension tem-
porelle y est incorporée. Ce dernier travail repose sur un quatrième article, Sarmanov Family
of Multivariate Distributions for Bivariate Dynamic Claim Counts Model, qui est également
publié dans la revue Insurance : Mathematics and Economics et réalisé en collaboration avec
mes directeurs de thèse Jean-Philippe Boucher et Hélène Cossette.
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Chapitre 1

Introduction

Ce premier chapitre est une introduction générale de la thèse, où les méthodes de provision-
nement en assurance générale et la modélisation de la dépendance entre les lignes d’affaires
sont présentées. Les définitions et les outils qui seront utilisés pour la suite de la thèse y sont
également fournis. Cette introduction se divise en trois sections : la première définit la notion
de réserve en assurance générale, avec une description du contexte actuel et des méthodes de
provisionnement existantes, alors que la deuxième partie traite des enjeux liés à la modélisa-
tion stochastique et de la dépendance entre les risques dans le cadre des réserves. La troisième
section élabore le plan des travaux de la thèse et introduit les contributions proposées dans
cette thèse.

1.1 Les provisions en assurance générale

1.1.1 Définitions et notations

En assurance, les opérations se font de manière bilatérale, de telle sorte que l’assuré se fait
promettre en échange d’une prime, en cas de réalisation d’un risque, une prestation par
l’assureur. Cela implique que le cycle de production dans le domaine de l’assurance est
inversé, c’est-à-dire que l’assureur perçoit le prix de son produit d’assurance avant même de
connaître son coût. De cette manière, ce coût de production n’est connu qu’après la prime
perçue, ce qui contraint alors les assureurs à se baser sur une estimation du coût, qui doit
être la plus proche possible de la réalité future, afin de rester solvable.
En effet, en raison de sa particularité et de sa position extrêmement importante et sensible
dans l’économie, l’assurance est ainsi soumise à une réglementation supervisée par des or-
ganismes de réglementaires. Les assureurs doivent donc détenir suffisamment de capital pour
faire face à leurs engagements envers les assurés. Un des rôles principaux de l’actuaire est par
conséquent d’estimer les risques que porte une assurance et projeter les flux futurs qui y sont
associés.
À ce titre, des provisions techniques doivent être calculées à chaque fin d’année, pour gérer et

1



couvrir les risques de l’entreprise d’assurance et lui permettre d’honorer ses engagements. Les
provisions techniques, comme le définit Partrat et al. (2007), sont «les provisions destinées
à permettre le règlement intégral des engagements pris envers les assurés et bénéficiaires de
contrats. Elles sont liées à la technique même de l’assurance, et imposées par la réglementa-
tion».
Formellement, à la date t, la compagnie d’assurance est tenue de constituer une provision,
aussi appelée réserve, pour les sinistres survenus avant la date t et qu’elle sera amenée à
indemniser. Elle doit donc estimer le coût des sinistres survenus, et retrancher les montants
déjà versés. Ceci revient à un problème de prévision. Les coûts de sinistres ne sont pas
connus le jour de la survenance du sinistre, il y a tout d’abord un délai avant que le sinistre
ne soit déclaré à la compagnie d’assurance par l’assuré, puis un temps (plus ou moins long)
de gestion du sinistre, d’expertises, de paiements, avant de clôturer le dossier plusieurs mois,
ou plusieurs années plus tard. Il est également possible parfois, dans des cas exceptionnels,
que des dossiers soient réouverts après leur clôture.
De plus, le paiement des sinistres ne s’effectue pas toujours en une fois, dans l’année même de
survenance. Cela est particulièrement vrai dans certaines branches de l’assurance, comme par
exemple la responsabilité civile automobile dans le cas de sinistres avec dommages corporels,
surtout en cas de dommage corporel grave qui nécessite de nombreuses années avant que l’état
de santé se stabilise.
En effet, le règlement des sinistres s’étale au fil du temps et il devient nécessaire de constituer
des réserves pour pouvoir honorer les dettes futures. Comme le montant qui sera finalement
payé pour le sinistre est inconnu au départ, la somme à mettre en réserve est également incon-
nue et il faut l’estimer. Cet exercice est d’autant plus important sachant que les provisions
représentent la plus grande partie de l’ensemble du bilan. Ainsi, l’analyse des provisions (aussi
appelées provisions techniques ou des réserves) a un impact majeur sur la profitabilité d’une
compagnie d’assurance.
La Figure 1.1 illustre le bilan simplifié d’une compagnie d’assurance où une grande partie de
son passif est composée des provisions, souvent estimées par des méthodes statistiques.

Figure 1.1 – Bilan simplifié d’une compagnie d’assurance

Ces estimations peuvent être calculées par des techniques, dites techniques IBNR (Incurred
But Not Reported), qui se basent sur l’évolution passée du coût des sinistres pour estimer
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son développement futur. En pratique, ces techniques sont utilisées soit pour estimer les
réserves purement IBNR, soit les réserves de sinistres totales. Ceci est illustré à la Figure
1.2 à travers un diagramme de Lexis qui schématise l’évolution de la vie des sinistres. Les
sinistres surviennent à la date •, sont déclarés à l’assureur à la date + et clôturés à la date ×
. L’exercice de provisionnement consiste à estimer à une date donnée, aussi appelée la date de
coupure (ici en 2010, correspondant au trait plein vertical), le montant des paiements restant
à faire pour l’ensemble des sinistres survenus (déclarés ou pas).

Figure 1.2 – Diagramme de Lexis de l’évolution de la vie des sinistres

Il est primordial que l’évaluation de ces provisions techniques soit faite de manière rigoureuse
et scientifique, afin d’assurer la stabilité de la compagnie d’assurance. Une mauvaise éval-
uation peut avoir de lourdes conséquences pour l’entreprise, allant d’une simple perte à
l’insolvabilité. Il est donc important de garder à l’esprit les différents enjeux que le pro-
visionnement représente pour une société d’assurance, et ce, à plusieurs égards.

Évidemment, il y a tout d’abord un enjeu de solvabilité et de réputation pour une entreprise,
dans le sens où une évaluation insuffisante des provisions techniques entraînerait la société
d’assurance à ne pas pouvoir faire face à ses engagements. De plus, en supposant la présence
d’événements défavorables dans le développement de la sinistralité, cette situation pourrait
mener à plus ou moins long terme à la faillite de la société d’assurance.
Il y a également un enjeu fiscal pour la société lorsque dans le cas contraire, la réserve est
surévaluée. En effet, un provisionnement excessif entraînerait une baisse d’impôts à payer
pour la société. Ce qui explique les contrôles fiscaux sur l’estimation des réserves afin de
s’assurer qu’aucun excès des provisions n’est volontairement constitué.
Enfin, une mauvaise estimation des réserves pourrait avoir comme conséquence une interpré-
tation erronée des résultats de la compagnie. Par exemple, une surévaluation des provisions se
traduira par un développement favorable des réserves, et donc par un résultat positif (bonus).
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Inversement, une sous-estimation des provisions générera un développement défavorable, qui
se traduira par une diminution du résultat de la compagnie (malus).

Ainsi, on voit qu’il s’agit finalement d’un problème d’optimisation sous plusieurs contraintes.
Cela implique qu’en réalité, les réserves calculées seront basées sur des estimations et ne seront
en pratique jamais exactement égales au montant réel du coût futur. Il est généralement
préférable d’être plus prudent (ou conservateur) dans l’estimation de la réserve, c’est-à-dire
une estimation à la hausse plutôt qu’à la baisse pour mieux protéger l’entreprise. Ce qui est
d’autant plus vrai avec les nouvelles exigences des organismes réglementaires.

1.1.2 Méthodes de provisionnement

Nous distinguerons deux approches pour le calcul de la réserve. La première étant détermin-
iste, ou aussi appelée méthode classique de provisionnement, alors que la deuxième approche
est stochastique, où les montants futurs à payer sont considérés comme des variables aléatoires.

Techniques intuitives

Dans certaines situations où les paiements d’assurance futurs sont très stables et prévisibles,
il est possible d’utiliser des méthodes simples, dites intuitives, pour l’estimation des réserves.
Par exemple, en assurance automobile au Québec, comme les dommages corporels sont cou-
verts par un régime public, il est donc plutôt simple d’estimer les dommages matériels où
les fermetures de dossiers se font beaucoup plus rapidement. Nous citerons deux techniques
principales:

1. Méthode des réserves enregistrées: l’idée de la méthode est d’utiliser le total de toutes
les réserves individuelles de sinistres et d’ajouter un pourcentage arbitraire afin d’inclure
l’évolution possible de tous les coûts des réclamations.

2. Méthode des ratios de pertes espérés: l’idée de la méthode est d’utiliser le rapport
sinistres/primes prédit (attendu) de la branche d’affaire et les montants de réclamations
payés à ce jour afin d’estimer la réserve. Ainsi, pour une année i fixée, nous avons :

Pertes ultimes estimées = Ratio de perte espéré× Primes acquises

Réserve estimée = Pertes ultimes estimées−montants payés

En sommant toutes les années de couverture, nous obtenons un estimé de la réserve

Réserve estimée totale =
∑
i

Réserve estimée totale

Évidemment, deux problèmes évidents de cette méthode, entre autres, seraient l’estimation
du pourcentage et l’inclusion du jugement.
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Triangles de développement

Il y a deux écoles de pensées pour le calcul des provisions, la première s’intéresse au provi-
sionnement agrégé, et l’autre au provisionnement par dossier. Cette dernière est aussi appelée
évaluation dossier-dossier, ou Micro-level Reserving, qui consiste en une anticipation du coût
ultime du dossier, voir par exemple Antonio et Plat (2014), et Pigeon et al. (2013). La prin-
cipale préoccupation de cette méthodologie est faite à un niveau granulaire, soit individuel.
Cette approche est devenue d’autant plus populaire avec le nouveau domaine technologique
qui a vu le jour, le Big Data, pour faire face à l’explosion du volume d’informations.
Dans cette thèse, on prendra la direction de la première approche, celle du provisionnement
agrégé (Macro-level Reserving), communément appelée provisionnement avec triangles de
développement.
En assurance non-vie, afin de refléter la dynamique des sinistres, une construction typique
est l’utilisation de triangles de développement. Un triangle de développement consiste en un
tableau à double entrée, dont seule la partie supérieure gauche est connue. Les lignes du
triangle correspondent aux années d’origine des sinistres qui y seront reportés, et les colonnes
aux années de développement (qui représentent la durée de règlement d’un sinistre). Il existe
différents types de triangles de développement, à savoir les triangles d’encourus ou de payés
qui peuvent être soit décumulés (incrémentaux) ou cumulés.
Prenons pour exemple un triangle de payés, le report des sinistres dans chaque cellule (i, j)
se fait de la façon suivante :

Ci,j =
∑
si∈Si

Y si
j ,

où Si est l’ensemble des sinistres déclarés à l’année i, ou d’origine i. Ci,j correspond donc
aux paiements cumulatifs des sinistres d’année d’origine i, et qui ont été effectués lors de leur
année de développement j avec un paiement Yj . Ainsi, Ci,j est le montant cumulé jusqu’à
l’année de développement j, des sinistres survenus à l’année d’accident i, pour 1 6 i, j 6 n.
Ci,j peut représenter soit le montant payé, soit le coût total estimé du sinistre, appelé aussi
l’encouru (paiement déjà effectué plus réserve). Les montants Ci,j sont connus pour i + j 6

n + 1 et on cherche à estimer les valeurs des Ci,j pour i + j > n + 1, et en particulier les
valeurs ultimes Ci,n pour 2 6 i 6 n.
Ces notations sont illustrées dans le triangle suivant :

C =



C1,1 C1,2 · · · C1,n−1 C1,n

C2,1 C2,2 · · · C2,n−1
...

... . . .
Cn−1,1 Cn−1,2

Cn,n
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Approche déterministe

Le modèle le plus célèbre et répandu dans le monde des méthodes de provisionnement en as-
surance non-vie, est certainement la méthode déterministe de Chain-Ladder. La très grande
simplicité du modèle de Chain-Ladder lui vaut un engouement particulier à tel point que
les modèles stochastiques tentent de correspondre au mieux à ses résultats. Certains remar-
quent que la charge ultime obtenue par la méthode de Chain-Ladder peut être obtenue en
maximisant la vraisemblance d’un modèle de Poisson (Hachemeister et Stanard (1975), Kre-
mer (1985) et Mack (1991)). D’autres ont associé la méthode de Chain-Ladder à un modèle
linéaire généralisé (Renshaw (1989) et Renshaw et Verrall (1998)) ou encore, à la manière
de Verrall (1989), ont associé un filtre de Kalman au triangle de données. Les modèles sont
différents mais aboutissent souvent à des résultats proches de Chain-Ladder. Le modèle de
Mack (1993a) donne exactement les mêmes résultats.
La méthode de Chain-Ladder estime les montants inconnus, Ci,j pour i+ j > n+ 1, par

Ĉi,j = Ci,n+1−i.f̂n+1−i · · · f̂j−1 , i+ j > n+ 1 , (1.1)

où
f̂j =

∑n−j
i=1 Ci,j+1∑n−j
i=1 Ci,j

, 1 6 j 6 n− 1 . (1.2)

Il est donc supposé que Ci,j est proportionnel à Ci,j−1 et que le coefficient de proportionnalité
fj−1, calculé sur base des données de sinistres du passé, ne dépend pas de l’année d’accident
i.
Le montant ultime des sinistres survenus à l’année d’accident i est alors estimé par

Ĉi,n = Ci,n+1−i.f̂n+1−i · · · f̂n−1 , 2 6 i 6 n .

La réserve de sinistre pour l’année d’accident i (c’est-à-dire ce qui reste à payer pour les
sinistres survenus en l’année i), qui est définie par Ri = Ci,n−Ci,n+1−i, est alors estimée par

R̂i = Ci,n+1−i.f̂n+1−i · · · f̂n−1 − Ci,n+1−i , 2 6 i 6 n .

Bien que la méthode de Chain-Ladder soit populaire dans le calcul des provisions techniques en
assurance de dommages et qu’elle fournisse de l’information utile sur la réserve, cette méthode
reste toutefois assez limitée. En effet, la première limitation est due au fait que l’hypothèse
de proportionnalité directe entre Ci,j et Ci,j+1 est très contraignante. Cela fait que le calcul
de provisions devient fortement lié au dernier montant de charge connu, ce qui n’est pas
forcément le cas pour des triangles présentant des irrégularités. D’autres modèles ont été
proposés pour améliorer la méthode Chain-Ladder, entre autres, la méthode London-Chain
où Ci,j+1 = fjCi,j + aj . Aussi, nous pouvons citer par ailleurs les méthodes Bornhuetter-
Ferguson et Cape Cod, où de l’information exogène au triangle est utilisée, notamment un
avis d’expert.
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En somme, ces méthodes déterministes se trouvent limitées devant la possibilité de prendre
en compte une inflation non-constante, de repérer un changement de jurisprudence, de dé-
tecter des irrégularités potentielles du triangle, etc. Dans un tel contexte, nous ne pouvons
détecter les irrégularités potentielles du triangle et surtout obtenir une estimation de la loi de
probabilité de la provision totale, qui nous donnerait plus d’information sur la variabilité et
la distribution de la réserve.
Il est connu qu’en pratique, un actuaire est plus intéressé à obtenir la distribution et toutes
les valeurs possibles de la réserve, plutôt que d’avoir une seule estimation ponctuelle, qui
correspondrait finalement à un seul point de la distribution. Au vu de ces limites, nous
tâcherons donc d’y remédier en ayant recours aux méthodes stochastiques, ce qui nous amène
à la sous-section suivante.

1.1.3 Du déterministe au stochastique

L’approche dite stochastique permet de modéliser plus justement la volatilité des réserves,
de quantifier et comprendre le comportement aléatoire des réserves. Le mot stochastique est
donc synonyme d’aléatoire et s’oppose par définition au déterminisme.
Dans le contexte des réserves, le premier pas vers la modélisation stochastique est fait à travers
le modèle de Mack, présenté dans Mack (1993a) , Mack (1993b) et Mack (1994) et qui est
une transition entre la méthode Chain-Ladder et la sphère stochastique. En effet, il s’agit de
la méthode Chain-Ladder analysée dans un cadre stochastique, permettant l’estimation de la
variabilité des réserves calculées. Nous aurons ainsi des expressions pour l’erreur standard sur
la réserve correspondant à chaque année de survenance de sinistres examinée ainsi que sur la
réserve totale. Ces mesures de variabilité nous permettront de construire des intervalles de
confiance pour les réserves.
Ce modèle repose sur les trois hypothèses suivantes :

E[Ci,j+1 | Ci,1, ..., Ci,j ] = E[Ci,j+1|Ci,j ] = fjCi,j , 1 ≤ i ≤ n et 1 ≤ j ≤ n− 1.

{Ci,1, ..., Ci,n}, {Ck,1, ..., Ck,n} ∀i 6= k, sont indépendants.

V ar(Ci,j+1 | Ci,1, ..., Ci,j) = σ2
jCi,j , 1 ≤ i ≤ n et 1 ≤ j ≤ n− 1.

où,

σ̂2
j = 1

n− j − 1

n−j∑
i=1

Ci,j

(
Ci,j+1
Ci,j

− f̂j

)2

;

σ̂2
n−1 = min

(
σ̂4
n−2
σ̂2
n−3

,min
(
σ̂2
n−3, σ̂

2
n−2

))
.

La première hypothèse signifie qu’étant donné le développement Ci,1, ..., Ci,j des sinistres
survenus à l’année i, il existe un coefficient fj tel que l’espérance de Ci,j+1 soit égale à Ci,jfj .
Ceci est une conséquence directe de la méthode de Chain-Ladder. La deuxième hypothèse
quant à elle, signifie que les années de survenance sont indépendantes entre elles. Enfin,
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la dernière hypothèse sert à l’obtention de la variance de Ci,j et sous-tend implicitement la
méthode de Chain-Ladder.
En somme, l’avantage majeur de cette méthode, est que non seulement elle est simple et
fournit exactement les mêmes réserves que la méthode Chain-Ladder, mais elle permet aussi
d’avoir un niveau d’incertitude associé à cette réserve. Un intervalle de confiance autour de
la réserve peut également être obtenu, en supposant une loi sous-jacente, notamment la loi
normale ou log-normale.
Ceci nous permet d’avoir une idée plus précise sur la variabilité et la volatilité de la réserve.
De plus, cela permet de mieux répondre aux exigences et réglementations internes de la
compagnie. Il est à noter qu’un autre avantage qu’offre le modèle de Mack, surtout d’un
point de vue pratique, est la possibilité d’effectuer un test de validation des hypothèses,
proposé par Denuit et al. (2000).
Toutefois, le modèle de Mack présente encore des lacunes, qui sont essentiellement les mêmes
défauts que la méthode Chain-Ladder. En effet, la première hypothèse n’est plus vérifiée en
cas de changement important dans la gestion des sinistres ou dans le taux d’inflation par
exemple. Aussi, supposer une loi (log)normale pour construire un intervalle de confiance est
restrictif. C’est un modèle qui a l’avantage d’être pratique et simple mais qui peut être parfois
simpliste.

1.2 Réserves stochastiques

Dans cette section, nous allons commencer par introduire brièvement les modèles linéaires,
par la suite on s’intéressera surtout à leur généralisation, soit les modèles linéaires généralisés,
qui constituent la base des méthodes sur le provisionnement stochastique. Nous rappelons
que le terme stochastique se dit de phénomènes qui, partiellement, relèvent du hasard et qui
font l’objet d’une analyse statistique.

1.2.1 Modèles linéaires

On cherche à exprimer la variable aléatoire Y (variable réponse) comme une fonction linéaire
des variables explicatives (X1, X2, ...)

Y = β0 + β1X1 + β2X2 + ... .

Les paramètres de cette fonction linéaire (β0, β1, β2, ...) sont estimés par moindres carrés
ordinaires, moindres carrés généralisés, etc. Il est alors possible d’estimer les valeurs futures
des observations et par conséquent de compléter la partie inférieure du triangle.
Les avantages d’une telle régression, c’est qu’elle permet de calculer la distribution estimée
des provisions à travers des méthodes de simulations (cf. Section 1.2.2) et de calculer les
volatilités ultimes. Il y a également la possibilité d’introduire comme variable explicative des
variables exogènes au triangle.
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Toutefois, une telle méthodologie nécessite la vérification de nombreuses hypothèses, surtout
la normalité des réponses (voir Neter et al. (1996)). Ainsi, il est populaire de travailler avec
une généralisation des modèles linéaires, où nous avons un plus large éventail de choix quant
à la distribution de la variable réponse.

1.2.2 Modèles linéaires généralisés

Comme mentionné plus tôt, les modèles linéaires généralisés (GLM) sont la base de la mod-
élisation stochastique des réserves. La théorie des GLM est donc utilisée dans le contexte
des méthodes de provisionnement. Les démonstrations et les écrits complets sur les modèles
linéaires généralisés se trouvent notamment dans De Jong et Heller (2008) et McCullagh et
Nelder (1989).

GLM et réserves

Les modèles stochastiques supposent que les pertes incrémentales Yi,j , avec Yi,j = Ci,j−Ci,j−1,
sont une réalisation d’une loi de probabilité provenant de la famille exponentielle linéaire.
Ainsi, l’objectif est de modéliser la moyenne µi,j de ces lois de probabilités et la variance, en
utilisant la théorie des modèles linéaires généralisés.
La façon la plus élémentaire de paramétriser la moyenne µi,j de la variable aléatoire Yi,j
est de supposer que l’effet de l’année d’accident est indépendant de l’effet de la période de
développement. On suppose ainsi que chaque année d’accident aura besoin d’un paramètre
distinct pour représenter une réserve finale différente.
Ensuite, dans la même logique, on suppose qu’à chaque période de développement, un pour-
centage spécifique de la réserve finale sera réclamé, ainsi on aura besoin de paramètres dif-
férents selon la période de développement.
En ce qui concerne les triangles de développement, nous utilisons la modélisation suivante

g(µi,j) = γ + αi + βj ,

où i ∈ {2, 3, ..., n} représente l’année d’accident et j ∈ {2, 3, ..., n}, l’année de développement,
alors que g() est une fonction de lien qui relie la moyenne de la variable réponse (réserve) aux
variables explicatives (années d’accident et périodes de développement).

On observe ainsi que la moyenne de la variable aléatoire Yi,j est affectée par un paramètre
correspondant à la ligne du triangle de développement, et à un paramètre correspondant à la
colonne de ce même triangle.
On remarque aussi γ représentant les pertes incrémentales moyennes pour la cellule de
référence, qui est définie comme étant la première année d’accident et la première année
de développement. Pour des fins d’identification des paramètres, on suppose α1 = β1 = 0.
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Année 1 2 · · · n-1 n
1 g−1(γ) g−1(γ + β2) · · · g−1(γ + βn−1) g−1(γ + βn)
2 g−1(γ + α2) g−1(γ + α2 + β2) · · · g−1(γ + α2 + βn−1) · · ·
· · · · · · · · · · · · · · · · · ·
n-1 g−1(γ + αn−1) g−1(γ + αn−1 + β2) · · · · · · · · ·
n g−1(γ + αn) · · · · · · · · · · · ·

Table 1.1 – Expression du triangle de développement à travers la fonction de lien.

Valeur incrémentale Yi,j X0 c2 c3 c4 · · · l2 l3 l4 · · ·
Y1,1 1 0 0 0 · · · 0 0 0 · · ·
Y1,2 1 1 0 0 · · · 0 0 0 · · ·
Y1,3 1 0 1 0 · · · 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
Y2,1 1 0 0 0 · · · 1 0 0 · · ·
Y2,2 1 1 0 0 · · · 1 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
Y4,3 1 0 1 0 · · · 0 0 1 · · ·
Y4,4 1 0 0 1 · · · 0 0 1 · · ·
...

...
...

...
...

...
...

...
...

...

Table 1.2 – Illustration de la forme de la matrice des régresseurs

Soit g−1, la fonction réciproque de la fonction de lien, ainsi afin de pouvoir estimer nos
paramètres, il est possible d’exprimer le triangle de développement à l’aide de g−1, comme
dans la Table 1.1.
À première vue, cette représentation peut sembler complexe, toutefois, il est possible d’exprimer
le triangle des réserves d’une manière plus générale, avec une forme matricielle, à l’aide de
régresseurs :

g(µi,j) = γX0 + β′C + α′L,

où

— α est le vecteur des αi pour i ∈ {2, 3, ..., n};

— β est le vecteur des βj pour j ∈ {2, 3, ..., n};

— C est le vecteur des cj pour j ∈ {2, 3, ..., n};

— L est le vecteur des li pour i ∈ {2, 3, ..., n},

avec lk = 1 pour Yi,j si i = k (et 0 sinon), et ck = 1 pour Yi,j si j = k (et 0 sinon).
En utilisant ces régresseurs, il est donc possible d’exprimer les Yi,j dans une grande matrice
tel qu’illustré à la Table 1.2.
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Variance d’une réserve

Un des grands atouts des modèles stochastiques est que l’on peut obtenir le degré d’incertitude
de la réserve. Nous appelons variance de la réserve, une mesure de la fluctuation de la réserve
qui peut être causée par l’ensemble des types d’erreur d’assurance. On définit l’erreur comme
étant la variabilité ou la fluctuation associée à un élément du modèle. Boucher (2011) indique
que l’erreur d’assurance totale se décompose en quatre parties principales:

1. L’erreur du processus ∗, appelée aussi parfois l’erreur statistique, est le bruit causé par
la distribution choisie. Par exemple, pour un individu donné, la perte suit une loi
quelconque qui aura des réalisations possiblement différentes à chaque observation. Ce
type d’erreur est généralement inévitable et présent dans presque tous les modèles.

2. L’erreur d’estimation indique l’incertitude des paramètres optimaux estimés par rapport
à ce que pourraient être les vrais paramètres. Par exemple, lorsqu’on utilise les estima-
teurs issus du principe de vraisemblance maximale, on suppose la normalité asympto-
tique.

3. L’erreur de sélection spécifie l’incertitude face à des variables cachées qui ne sont pas
présentes dans le modèle, mais qui, en réalité ont un impact sur le modèle. Un bon
exemple est lorsqu’il y a dans la réalité un effet d’année de calendrier, mais qu’on ne
l’inclut pas dans le modèle.

4. L’erreur de spécification essaie d’identifier la pertinence de la loi choisie par rapport
à d’autres lois. Par exemple, l’incertitude face au paramètre p du modèle de Tweedie
(voir Wüthrich (2003)) sert à déterminer lequel parmi le modèle de Poisson, Gamma,
ou une combinaison des deux est le plus approprié.

Finalement, il est à noter que ces quatre types d’erreurs ne constituent qu’une partie de
l’incertitude d’assurance. Lorsqu’on établit une réserve, il existe d’autres risques à considérer
qui ne seront pas pris en compte dans aucun des modèles présentés dans cette thèse. Par
exemple, les risques financiers (rendement des actifs dans la réserve, taux d’intérêt, inflation
sociale), les risques de souscription (risque de défaut, risque moral), les risques juridiques
(changement dans les lois qui gouvernent l’assurance), environnementaux (catastrophes na-
turelles), les risques du marché (offre et demande, marketing, stratégies des compétiteurs),
les risques opérationnels, etc.

De nouveaux types d’analyses émergent pour tenir compte de ces types de risques, notamment
l’analyse financière dynamique †, et la gestion du risque de l’entreprise ‡, mais ces concepts
vont au-delà des objectifs de notre sujet de thèse et ne seront pas considérés.

∗. 1. Statistical Error (Process Error) 2. Estimation Error 3. Selection Error 4. Specification Error
†. Dynamic Financial Analysis
‡. Enterprise Risk Management
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Erreur Quadratique Moyenne de Prédiction

Une statistique courante reliée à la variance de la réserve Ri est l’erreur quadratique moyenne
de prédiction (EQMP), aussi appelée MSEP §.
Cette statistique, définie dans England et Verrall (2002), est une combinaison de l’erreur du
processus et de l’erreur d’estimation. Ces deux éléments, auxquels nous donnerons une déf-
inition mathématique plus bas, ont été présentés plus tôt. En bref, l’erreur d’estimation est
reliée aux observations du passé, et l’erreur du processus est causée par le bruit des observa-
tions futures. Nous référons à Wüthrich et Merz (2008) pour plus de détails.

Soit Yi,j et sa prédiction Ŷi,j , deux variables aléatoires représentant respectivement les pertes
incrémentales (haut du triangle) et celles futures, estimées à l’aide du modèle (bas du triangle).
On définit l’EQMP de la façon suivante :

EQMP [Ŷi,j ] = E[(Yi,j − Ŷi,j)2]

= E[((Yi,j − E[Yi,j ])− (Ŷi,j − E[Yi,j ]))2].

En supposant que E[(Yi,j−E[Yi,j ])(Ŷi,j−E[Ŷi,j ])] = 0, c’est-à-dire que les observations futures
sont indépendantes des observations passées, on obtient:

EQMP [Ŷi,j ] ≈ E[(Yi,j − E[Yi,j ])2] + E[(Ŷi,j − E[Ŷi,j ])2]

= V ar[Yi,j ]︸ ︷︷ ︸
l′erreur de processus

+ V ar[Ŷi,j ]︸ ︷︷ ︸
l′erreur d′estimation

.

Distribution prédictive

La modélisation stochastique nous permet donc de passer du meilleur estimé (best estimate)
obtenu par les méthodes déterministes à la variabilité autour de cette réserve. Toutefois, il est
maintenant connu qu’en pratique, un actuaire préfère avoir toute la distribution de la réserve,
soit toutes les valeurs possibles, plutôt que d’avoir des points estimés. Il est souvent impossible
d’avoir l’expression analytique explicite de la densité de la réserve totale, mais plusieurs
approximations ont été proposées afin d’approcher numériquement cette distribution. L’une
des méthodes les plus populaires, et qui sera utilisée dans la suite de la thèse, est la technique
du Bootstrap.
Certaines applications de cette méthode ont été initialement proposées dans le contexte des
réserves dans Lowe (1994), Hartl (2010) et Taylor (2000).
Dans le contexte des triangles de développement, la procédure du Bootstrap peut être résumée
comme suit:

§. Mean Square Error of Prediction
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1. À partir des paramètres estimés sur les données (GLM), on génère des réalisations du
triangle supérieur.

2. À partir de ce nouveau triangle, on estime de nouveaux paramètres.

3. À partir de ces nouveaux paramètres, on simule des réalisations du triangle du bas
(réserve simulée).

4. Nous répétons les étapes ci-dessus N fois.

Figure 1.3 – Illustration d’une distribution prédictive d’une réserve avec une estimation par
noyaux

Ainsi, nous obtenons une distribution telle que celle illustrée à la Figure 1.3. Cette approxi-
mation numérique nous donne par conséquent une information précieuse sur le comportement
de la réserve, en fournissant une distribution prédictive. Ceci est particulièrement utile dans
l’analyse financière dynamique (DFA) et aussi afin de satisfaire les prochaines exigences du
Office of the Superintendent of Financial Institutions (OSFI ). Par ailleurs, une des exigences
principales qui serait à satisfaire, est la modélisation de la dépendance entre les triangles de
développement. Ceci sera traité davantage dans la prochaine section.

1.2.3 Dépendance entre les lignes d’affaires

Mise en contexte et motivations

Par abus de langage, on parle souvent de corrélation au lieu de dépendance. La corrélation
(souvent appelée corrélation linéaire) permet de rendre compte d’une dépendance existante
entre deux variables linéairement liées. La dépendance englobe ce type de liaison, mais aussi
les liaisons non linéaires.
Modéliser la dépendance entre les lignes d’affaires permet entre autres de mieux compren-
dre le comportement global du portefeuille, éclairer les décisions stratégiques et aider les
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gestionnaires des risques dans la détermination du capital économique pour un portefeuille
d’assurance.
Les risques peuvent être dépendants sous différents angles: risques dépendants au sein d’une
même branche, ou encore types de risques dépendants. Ainsi, avec l’arrivée de nouvelles
normes, il devient nécessaire pour une compagnie d’assurance de pouvoir estimer au mieux le
montant des provisions totales de l’ensemble de ses engagements, ce qui implique de prendre
en compte la dépendance entre les lignes d’affaires.
Dans la théorie classique, les risques auxquels sont soumis les sociétés d’assurance sont consid-
érés indépendants. Toutefois, intuitivement, plusieurs exemples peuvent laisser penser que ce
n’est pas le cas en pratique. Il semble alors nécessaire de s’intéresser à cette dépendance pou-
vant exister entre les variables aléatoires qui impactent le résultat d’une société d’assurance,
et d’évaluer ses effets sur la santé financière de cette société.
En effet, un des principaux risques de dépendance auquel peut faire face une compagnie
d’assurance est celui de la dépendance entre les sinistres des différentes branches. Il serait par
exemple intuitif de considérer que le montant des sinistres de la branche Dommage automobile
n’est pas indépendant de celui de la branche Responsabilité Civile en automobile. Toutefois, en
pratique, cette évaluation se fait le plus souvent de façon indépendante, et l’un des objectifs
majeurs de cette thèse est de montrer que la prise en compte de la dépendance entre les
différentes branches a un impact sur l’incertitude du montant des provisions à constituer, sur
les mesures de risques et sur l’allocation du capital économique.
À cet effet, nous distinguerons deux écoles de pensées différentes. La première est basée sur
une approche non-paramétrique, qui se veut principalement une généralisation de la méthode
de Mack, présentée plus haut, dans un contexte multivarié. La deuxième approche traite des
méthodes paramétriques. Nous présentons succinctement quelques modèles existants pour
chacune des deux approches.

1. Approche non-paramétrique
Comme mentionné plus tôt, les méthodes non-paramétriques sont inspirées du mod-
èle de Mack (1993a). La méthode de Braun (2004) par exemple, prend en compte les
corrélations entre les segments en introduisant un coefficient de corrélation entre les
facteurs de développement. Pröhl et Schmidt (2005) et Schmidt (2006) adoptent une
approche multivariée en réalisant une étude simultanée sur l’ensemble des segments du
portefeuille, et Merz et Wüthrich (2008) généralisent cette méthode de manière à pou-
voir calculer l’erreur de prédiction. Des méthodes basées sur des régressions linéaires
permettent également de répondre à cette problématique comme le modèle additif mul-
tivarié de Hess et al. (2006) et Schmidt (2006). Wüthrich et Merz (2009) ont proposé
une extension permettant le calcul de l’erreur de prédiction.

2. Approche paramétrique
L’autre volet de recherche examine les méthodes paramétriques basées sur les familles de
distribution, permettant un plus large éventail de distributions et surtout, tel que soulevé

14



à la section 1.2.2, l’obtention d’une distribution prédictive des paiements futurs, qui est
considérée comme plus informative et pertinente aux actuaires que l’erreur quadratique
moyenne de prédiction. De plus, et contrairement aux modèles non-paramétriques, les
méthodes paramétriques permettent une allocation du capital plus éclairée entre les
différentes branches d’activités.
En général, les modèles paramétriques incorporant la dépendance entre les triangles de
développement, utilisent principalement les copules pour introduire la corrélation entre
les lignes d’affaires.
Une copule gaussienne est souvent utilisée, notamment dans Brehm (2002) pour créer
des distributions totales de sinistres impayés, tandis que Shi et Frees (2011) suggèrent
d’introduire une dépendance entre les cellules équivalentes entre deux triangles de développe-
ment. Aussi, une approche flexible est suggérée par De Jong (2012) pour modéliser la
dépendance entre les secteurs d’activité à travers une matrice de corrélation gaussienne.
Shi et al. (2012), proposent une distribution log-normale multivariée, avec une ma-
trice de corrélation gaussienne multivariée pour tenir compte de la corrélation sous
différentes formes de dépendances, tandis que Wüthrich et al. (2013) suggèrent une
structure de corrélation flexible pour introduire la dépendance à l’intérieur et entre les
sous-portefeuilles.
Le Bootstrap paramétrique est également un moyen pour introduire la dépendance
entre les lignes d’affaires. Par exemple, Kirschner et al. (2008) utilisent un Bootstrap
synchronisé au sein du portefeuille et une extension de cette méthode a également été
proposée par Taylor et McGuire (2007) afin de l’utiliser avec des modèles linéaires
généralisés.
L’approche paramétrique est celle que nous allons étudier dans la suite de la thèse, plus
particulièrement celle utilisant les copules hiérarchiques, ainsi qu’une modélisation à
l’aide des effets aléatoires communs capturés par la famille de distributions multivariées
Sarmanov.

Copules et provisions

Avec leur forme de dépendance très flexible entre différentes variables aléatoires, les copules
sont devenues en quelques années un outil important dans la modélisation de la structure de
dépendance de deux ou plusieurs variables aléatoires.
Il existe un grand nombre de familles de copules qui conduisent à des structures de dépendance
positive ou négative très variées. Certaines permettent, par exemple, de la dépendance dans les
queues de distributions ce qui est particulièrement intéressant dans les domaines de l’assurance
et de la finance. Pour la modélisation des réserves en assurance non-vie, le choix de cette
structure est central. Par exemple, si le calcul est effectué à l’aide d’un critère de type Value
at Risk ou Tail Value at Risk, il sera bien plus considérable en cas de dépendance des valeurs
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élevées, qu’en cas de dépendance concentrée sur les valeurs intermédiaires puisqu’il s’agit d’un
quantile.
On voit ainsi que dans une telle situation, on ne peut pas se contenter d’une loi normale mul-
tivariée qui, de plus, n’a jamais été appropriée dans la modélisation des sinistres en assurance.
Il est donc nécessaire d’utiliser un outil qui permet de choisir quelle est la structure de dépen-
dance la plus adéquate possible pour les triangles de développement. C’est pourquoi, dans
la suite de ce que nous allons présenter, la dépendance entre les triangles sera modélisée
principalement à l’aide des copules.
Le point fort de cette approche est que nous disposons déjà d’outils de diagnostic pour valider
nos méthodes et que nous disposons d’un large éventail de distributions pour mieux compren-
dre le lien entre les différentes lignes d’affaires.
Depuis les années 90, les applications de la théorie des copules n’ont pas cessé de se multiplier
dans différents domaines, notamment en finance, par exemple Embrechts et al. (1999), et en
actuariat, en l’occurrence Frees et Valdez (1998). Pour une revue sur les copules voir Nelsen
(2006), Joe (1997) et Genest et Favre (2007).
Une copule est un outil permettant de séparer la dépendance du comportement marginal.
Formellement, les copules ont été introduites par Sklar (1959) par le théorème suivant:

Théorème 1.2.1. Soit G une fonction de répartition multidimensionnelle continue de di-
mension d, associée aux variables aléatoires X1, ..., Xd de fonctions de répartition continues
respectives F1, ..., Fd. Alors il existe une unique fonction continue [0, 1]d → [0, 1] satisfaisant

G (x1, ..., xd) = C {F1(x1), ..., Fd(xd)} .

La fonction C est appelée copule. Inversement, étant donnée une copule C et des fonctions
de répartition unidimensionnelles arbitraires F1, ..., Fd, la fonction G construite à partir du
théorème (1.2.1) est une fonction de répartition de dimension d, dont les marges sont F1, ..., Fd.
Le théorème de Sklar nous permet donc de décomposer n’importe quelle fonction de répartition
en deux composantes: la copule et les marges. Cette flexibilité nous permet d’étudier la
structure de dépendance indépendamment des marges.
Dans cette thèse nous nous intéresserons à une classe importante des copules, soit la classe
des copules archimédiennes, et plus particulièrement à la famille des copules archimédiennes
hiérarchiques. Notre point de départ sera le modèle de Shi et Frees (2011).
Dans cet article, les auteurs ont considéré une dépendance bivariée entre les cellules équiva-
lentes entre les triangles. C’est-à-dire que deux paiements qui ont eu lieu dans la même année
d’accident et même période de développement seront couplés.
En considérant un portefeuille avec deux lignes d’affaires, la distribution conjointe des mon-
tants incrémentaux standardisés (Y (1)

i,j , Y
(2)
i,j ), peut être représentée, selon le théorème 1.2.1,

par une copule unique:
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Fi,j(y(1)
i,j , y

(2)
i,j ) = Pr(Y (1)

i,j ≤ y
(1)
i,j , Y

(2)
i,j ≤ y

(2)
i,j ) = C(F (1)

i,j , F
(2)
i,j ;φ) , (1.3)

où C(.;φ) est la fonction de la copule, avec le vecteur de paramètres φ, et les fonctions de
répartition des distributions marginales F (1)

i,j et F (2)
i,j . Celles-ci sont définies comme suit :

F
(`)
i,j = Pr(Y (`)

i,j ≤ y
(`)
i,j ) = F (`)(y(`)

i,j ; η(`)
i,j , γ

(`)), ` = 1, 2,

où

— Y
(`)
i,j =

X
(`)
i,j

ω
(`)
i

, où X(`)
i,j et ω(`)

i représentent respectivement les paiements incrémentaux et

la variable d’exposition au risque du triangle `.

— η
(`)
i,j , est la composante systématique, qui représente le paramètre de localisation, qui
est souvent une fonction linéaire des variables explicatives (variables exogènes), de la
forme η(`)

i,j = x
(`)′

i,j β
(`)
i,j .

— x
(`)
i,j est la matrice des variables indicatrices, représentant les variables explicatives, et
β

(`)
i,j , sont les coefficients que nous devons estimer.

— γ(`) est le vecteur qui regroupe tous les paramètres additionnels de la distribution de
Y

(`)
i,j , qui déterminent la forme et l’échelle.

Étant dans un contexte paramétrique, l’équation (1.3) peut aisément être estimée par la
méthode du maximum de vraisemblance. Pour ce faire, soit c(.) la fonction de densité de
la copule correspondante, C(.). La fonction de log-vraisemblance du modèle par paires peut
alors s’écrire ainsi :

L =
I∑
i=0

I−i∑
j=0

ln c(F (1)
i,j , F

(2)
i,j ;φ) +

I∑
i=0

I−i∑
j=0

ln(f (1)
i,j ) + ln(f (2)

i,j ) , (1.4)

où f (`)
i,j représente la fonction de densité de la distribution marginale F (`)

i,j , c’est-à-dire f
(`)
i,j =

f (`)(y(`)
i,j ; η(`)

i,j , γ
(`)), pour ` = 1, 2.

Par conséquent, le modèle est estimé en utilisant les paiements observés y(`)
i,j , pour (i, j) ∈

{(i, j) : i+ j 6 I}, afin de prévoir une réserve adéquate qui couvrira les paiements futurs y(`)
i,j ,

pour (i, j) ∈ {(i, j) : i+ j > I}.

1.3 Plan des travaux de la thèse

Pour le plan élaboré de cette thèse, nous allons considérer l’article de Shi et Frees (2011)
comme étant le point départ de notre analyse et nous nous intéresserons à la généralisation
de leur modèle décrit à la section 1.2.3. Pour ce faire, nous allons étudier deux approches
différentes, la première utilisant la famille des copules archimédiennes hiérarchiques (section
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1.3.2), et l’autre utilisant des effets aléatoires et la famille de distributions bivariées Sarmanov
(section 1.3.3).

1.3.1 Généralisation de Shi et Frees (2011)

La modélisation par paires incorpore la dépendance entre des cellules équivalentes de triangles
de développement. C’est une méthode intuitive et simple qui a été utilisée avec succès dans
la littérature.
Toutefois, cette méthode a aussi été critiquée par le fait qu’elle ne tient pas compte des effets
exogènes qui ne peuvent être détectés par cette modélisation. En effet, plusieurs facteurs
communs, tels que l’inflation, les taux d’intérêt, les changements de jurisprudence, ou les
décisions stratégiques comme l’accélération des paiements pour tout le portefeuille, peuvent
impacter simultanément toutes les lignes d’affaires, mais ne peuvent être directement capturés
par une dépendance par paires.
Afin de mieux prendre en considération ces effets exogènes, une dépendance par année de
calendrier, année d’accident ou période de développement pourrait être considérée. Une
telle modélisation capturerait également la dépendance à l’intérieur et entre les triangles de
développement.
D’autre part, un modèle utilisant une seule copule par paires entre différents triangles de
développement ne serait pas approprié dans le cas où nous avons plus de deux lignes d’affaires
et plusieurs secteurs d’activité différents. En effet, il ne serait pas adéquat de considérer que
tous les risques sont capturés à travers le même degré de dépendance, peu importe le secteur
d’activité ou la région géographique. Pour pallier cela, nous nous intéresserons à une modéli-
sation avec dépendance hiérarchique.

Pour ce faire, nous allons considérer deux approches différentes, chacune d’elle découlera à
son tour de deux articles scientifiques, selon le plan suivant:

1. Approches par copules archimédiennes
a) Copules archimédiennes partiellement imbriquées (Chapitre 2)
b) Copules archimédiennes totalement imbriquées (Chapitre 3)

La famille des copules archimédiennes est largement utilisée dans différents domaines
d’application. Cette popularité est notamment due au fait que l’un des plus grands
avantages de l’utilisation de cette famille de copules est la possibilité de travailler avec
des fonctions de densités explicites, définies en terme du générateur unidimensionnel de
la copule archimédienne. Les copules elliptiques n’ont pas cette propriété importante et
n’ont pas de forme explicite. Aussi, la famille des copules archimédiennes est très flexible
et variée en terme de structure de dépendance, alors que les copules elliptiques supposent
une dépendance symétrique, aussi forte dans les deux queues de la distribution. Voir
Genest et MacKay (1986), Joe (1997) et Nelsen (2006).
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La généralisation aux copules archimédiennes multidimensionnelles de dimension d > 2
nécessite d’abord la définition des notions de d-monotonicité et de monotonicité com-
plète.

Définition 1 1. Une fonction g est dite d-monotone si elle est continue, différen-

tiable jusqu’à l’ordre d − 2 vérifiant (−1)k ∂
kg(t)
∂tk

≥ 0, ∀k = 0, 1, ..., d − 2 et telle que

(−1)d−2∂
d−2g(t)
∂td−2 est décroissante et convexe.

Définition 2 1. Une fonction g est dite complètement monotone si elle est continue,

admettant des dérivées de tout ordre vérifiant (−1)k ∂
kg(t)
∂tk

≥ 0, ∀k ≥ 0.

Soit φθ un générateur de copule archimédienne de paramètre de dépendance θ et Cθ,d
la fonction de [0, 1]d → [0, 1] donnée par

Cθ,d (u1, u2, · · · , ud) = φ−1
θ {φθ(u1) + ...+ φθ(un)} , (u1, · · · , ud) ∈ [0, 1]d. (1.5)

McNeil et Nešlehová (2009) ont montré que la fonction Cθ,d est une copule si et seulement
si φ−1 est d-monotone. Elle est alors appelée copule archimédienne de dimension d.
La copule Cd ainsi construite est une fonction de répartition conjointe de d variables
aléatoires uniformément distribuées dans [0, 1] et échangeables.
Dans le contexte des réserves, cette propriété d’échangeabilité peut être parfois vue
comme une restriction. En effet, il est difficile de concevoir une dépendance qui soit
aussi forte partout entre toutes les lignes d’affaires, et aussi à travers tous les effets
exogènes qui peuvent induire une dépendance autant à l’intérieur qu’entre les lignes
d’affaires. Ainsi, les copules archimédiennes hiérarchiques sont une généralisation des
copules archimédiennes multidimensionnelles qui permettent de pallier ce problème et
de contourner cette restriction.

2. Approches par effets aléatoires

a) Distribution Sarmanov et modélisation multivariée des réserves (Chapitre 4)

b) Distribution Sarmanov avec effets aléatoires dynamiques (Chapitre 5)

La famille de distributions bivariées Sarmanov a été introduite par Sarmanov (1966),
et proposée en physique par Cohen (1984) sous une forme plus générale. Lee (1996)
suggère une forme multivariée avec des applications en médecine. Récemment, et grâce
à sa flexibilité, cette famille de distributions devient de plus en plus populaire dans
les domaines appliquées. Par exemple, Schweidel et al. (2008) utilise cette forme de
dépendance pour modéliser l’expérience client, en l’occurrence la rétention. Miravete
(2009) compare les tarifs de deux compétiteurs téléphoniques en ayant recours à la
famille de distributions Sarmanov. Danaher et Smith (2011) discutent des applications
en marketing. Dans le domaine de l’assurance, Hernández-Bastida et al. (2009) et
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Hernández-Bastida et Fernández-Sánchez (2012) évaluent les primes à l’aide de la famille
de distributions bivariées Sarmanov.
À partir de deux fonctions de distributions u(`) et ψ(`) avec ` ∈ {1, 2} tel que

∫∞
−∞ ψ

(`) (t)u(`) (t) dt =
0, la distribution jointe peut être écrite comme suit:

uS
(
θ(1), θ(2)

)
= u(1)

(
θ(1)

)
u(2)

(
θ(2)

) (
1 + ωψ(1)

(
θ(1)

)
ψ(2)

(
θ(2)

))
,

où ω est le paramètre de dépendance qui satisfait la condition suivante:

1 + ωψ(1)
(
θ(1)

)
ψ(2)

(
θ(2)

)
≥ 0 ∀θ(`) , ` ∈ {1, 2}.

La fonction ψ est appelée fonction de mélange et peut-être obtenue de la façon suivante
ψ(`)

(
θ(`)

)
= exp

(
−θ(`)

)
−Lθ(`) (1), où Lθ(`) est la transformée de Laplace de u(`), évaluée

à 1. L’une des propriétés les plus importantes de cette famille de distributions est la
flexibilité d’utilisation d’un large spectre de distributions pour les marginales, ainsi que
la possibilité de d’obtention d’expressions explicites pour les distributions jointes. Les
nombreuses caractéristiques de cette famille de distributions sont notamment présentées
dans Lee (1996).

1.3.2 Approches par copules archimédiennes

Dans les chapitres 2 et 3 de cette thèse, on suggère deux approches différentes, à l’aide de la
famille des copules hiérarchiques (imbriquées), afin de proposer une généralisation au modèle
de Shi et Frees (2011). Il s’agit de deux sous-classes de la famille des copules imbriquées: les
copules partiellement et totalement imbriquées.

Figure 1.4 – Structure de dépendance du modèle PWD

Copules archimédiennes partiellement imbriquées

Dans le chapitre 2, on généralise le modèle de Shi et Frees (2011) en utilisant le même jeu de
données pour lequel, au lieu de considérer une dépendance par paires tel que illustré sur la
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Figure 1.4, nous allons capturer la dépendance (intra et inter) à travers les effets calendaires.
En effet, tel que mentionné plus tôt, plusieurs facteurs exogènes peuvent avoir un impact
simultané sur les triangles de développement à une année de calendrier donnée. En utilisant
des copules archimédiennes hiérarchiques, aussi appelées copules imbriquées ou emboîtées, cela
nous permet d’ajouter un autre niveau de dépendance et par conséquent plus de flexibilité et de
complexité à notre modélisation. Nous allons donc considérer une dépendance à l’intérieur des
lignes d’affaires, reliée à l’effet calendaire, et une autre dépendance entre les lignes d’affaires,
qui capture également la dépendance par année de calendrier.
Pour ce faire, nous considérons un modèle hiérarchique où des copules archimédiennes or-
dinaires C1,1 et C1,2 seront utilisées au premier niveau (année de calendrier) et une copule
hiérarchique C2,1 sera considérée au deuxième niveau de hiérarchie pour capturer la dépen-
dance entre les deux lignes d’affaires.
Cette famille de copules a été introduite dans la littérature par Joe (1997) et a été présentée
plus en détails dans Savu et Trede (2010). Plus récemment, Okhrin et al. (2013) fournissent
une méthode pour estimer les distributions multivariées définies par des copules archimédi-
ennes hiérarchiques.
Plusieurs conditions doivent être remplies pour l’existence des copules hiérarchiques partielle-
ment imbriquées.
Le nombre de copules doit décroître à chaque niveau h, i.e. nh < nh−1, tout comme le degré
de dépendance, i.e. θh+1,k′ < θh,k pour tout h = 0, ...,H et k = 1, ..., nh, k′ = 1, ..., nh+1

tel que Ch,k ∈ Ch+1,k′ où θh,k est le paramètre de dépendance du générateur φh,k. Dans le
contexte des triangles de développement, cela signifie que les éléments appartenant à la même
ligne d’affaire sont plus fortement corrélés entre eux qu’avec ceux d’une autre ligne d’affaire,
ce qui est intuitivement logique. Mathématiquement, les conditions qui doivent être vérifiées
par une copule archimédienne hiérarchique se résument comme suit:

1. Toutes les fonctions inverses du générateur φ−1
h,k sont complètement monotones.

2. Toutes les fonctions composées φh+1,k′ ◦ φ−1
h,k sont convexes pour tout h = 0, ...,H et

k = 1, ..., nh, k′ = 1, ..., nh+1 tel que Ch,k ∈ Ch+1,k′ .
La Figure 1.5 illustre le modèle partiellement imbriqué dans le cas à 4-dimensions. Ce modèle
sera présenté plus en détails au chapitre 2.

Copules archimédiennes totalement imbriquées

Dans le chapitre 3, nous utiliserons une approche alternative et différente de celle utilisée dans
le chapitre 2 pour généraliser le modèle de Shi et Frees (2011) dans un contexte multivarié
(plus que deux lignes d’affaires) et en utilisant un jeu de données d’une compagnie d’assurance
canadienne. Pour ce faire, nous considérons la classe des copules archimédiennes totalement
imbriquées.
Lorsque nous travaillons avec plus de deux lignes d’affaires, cela requiert une connaissance plus
profonde et globale de tout le portefeuille pour pouvoir construire une hiérarchie appropriée à
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Figure 1.5 – Dépendance avec copules archimédiennes partiellement imbriquées

l’aide des copules archimédiennes partiellement imbriquées, étant donné que tous les risques
doivent être regroupés dès le premier niveau de hiérarchie. Nous verrons que cette forte
condition n’est pas requise pour le cas des copules archimédiennes totalement imbriquées.
Cette classe de copules est une simple généralisation de la famille des copules archimédiennes
multivariées donnée par Joe (1997) et également discutée dans Embrechts et al. (2003), et
Whelan (2004). Les notations peuvent parfois paraître complexes, mais il est assez simple de
construire une telle hiérararchie.
Soit ϕ, le générateur d’une copule archimédienne. On définit une copule à 3 dimensions
comme suit

C3(u1, u2, u3) = ϕ−1
2 (ϕ2(u3) + ϕ2 ◦ ϕ−1

1 (ϕ1(u2) + ϕ1(u1))) (1.6)

et on définit récursivement une copule à d dimensions, nécessitant d−1 générateurs distincts:

Cd(u1, . . . , ud) = ϕ−1
d−1(ϕd−1(ud) + ϕd−1(Cd−1(u1, . . . , ud−1))).

Plus concrètement, on couple u1 et u2, puis on couple la paire (u1, u2) avec u3, puis le triplet
(u1, u2, u3) avec u4, et ainsi de suite. La Figure 1.6 illustre la structure en forme d’arbre pour
quatre risques liés par des copules archimédiennes totalement imbriquées.
Comme les copules partiellement imbriquées, il y a quelques conditions pour l’existence des
copules totalement imbriquées. Notamment, le degré de dépendance devrait diminuer en
augmentant dans le niveau de hiérarchie, i.e. θh+1 < θh, où θh est le paramètre de dépendance
au niveau h de la hiérarchie, avec h = 0, . . . , d − 1. Dans le chapitre 3, nous verrons que les
lignes d’affaires géographiquement proches, et du même secteur d’activité, devraient avoir
un plus grand degré de dépendance qu’avec d’autres lignes d’affaires géographiquement plus
éloignées.
Mathématiquement, les conditions qui doivent être vérifiées pour l’existence de copules archimé-
diennes totalement imbriquées sont résumées comme suit:
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Figure 1.6 – Dépendance avec copules archimédiennes totalement imbriquées.

1. Toutes les fonctions inverses du générateur ϕ−1
h sont complètement monotones.

2. Toutes les fonctions composées ϕh+1 ◦ ϕ−1
h sont convexes pour tout h = 0, ..., d− 1.

Cette structure totalement imbriquée est aussi comparée à une autre approche alternative au
chapitre 3. Il s’agit de l’approche par copule avec risques agrégés. On somme les risques d’un
niveau à un autre, au lieu de les imbriquer à l’aide de copules hiérarchiques. Ce modèle est
plus flexible car on ne se limite plus aux conditions d’existence d’une copule archimédienne,
ce qui élargit le spectre pour le choix des copules et des possibilités de dépendance. Cette
méthode qui remonte à Arbenz et al. (2012) et reprise par Côté et Genest (2015) est introduite
à la littérature des réserves dans le papier scientifique présenté au chapitre 3. Dans cet article,
nous introduisons également au contexte des réserves une nouvelle technique d’estimation des
paramètres de dépendance. En effet, l’estimation de la dépendance entre les triangles de
développement se fait indépendamment de celle des marginales, à l’aide des rangs des résidus.
Tous les travaux sur la modélisation de la dépendance entre les triangles de développement qui
ont été cités jusqu’à présent ont réussi à incorporer la dépendance entre les lignes d’affaires.
Toutefois, la plus grande critique qu’on pourrait apporter à ces modèles est que l’inférence
sur les marginales se fait conjointement et simultanément avec celle sur la dépendance, ce qui
fait que les paramètres des marginales, et par conséquent les réserves, deviennent sensibles
à la structure de dépendance utilisée. Ceci contredit la propriété de linéarité de l’espérance,
dans le sens où la somme des espérances doit être égale à l’espérance de la somme. Cela
serait contre-intuitif d’un point de vue pratique aussi, c’est-à-dire qu’un assureur ne voudrait
pas adapter la réserve d’une ligne d’affaire en fonction d’une autre ligne d’affaire. Il voudrait
que cet impact soit plutôt répercuté sur la distribution agrégée et sur les mesures de risque.
Enfin, une autre limitation d’une inférence simultanée est qu’une mauvaise spécification des
marginales pourrait influencer l’estimation de la structure de dépendance.
Au chapitre 3 de cette thèse, on propose ainsi une stratégie alternative où on estime première-
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ment les marginales, puis seuls les résidus des marginales sont liés à travers une structure de
dépendance où l’estimation se fera à l’aide des rangs de ces résidus. Cette approche avec
pseudo-vraisemblance est justifiée par le fait que l’estimation de la dépendance ne devrait pas
être affectée par le comportement individuel de chaque secteur d’activité. Cette méthodolo-
gie qui remonte à Oakes (1994) et qui est apparue plus en détails dans Genest et al. (1995)
puis Shih et Louis (1995), apporte plus de robustesse à l’estimation lorsque l’ajustement des
marginales n’est pas tout à fait parfait. Cela est d’autant plus vrai lorsqu’on travaille avec
des petits échantillons, ce qui est le cas dans le contexte des triangles de développement.

1.3.3 Approches par effets aléatoires

Dans les chapitres 4 et 5 de la thèse, on s’intéresse aux effets aléatoires permettant d’introduire
la dépendance entre les lignes d’affaires.
Dans un contexte bayésien, on voudrait introduire des effets aléatoires qui relieraient les
éléments à l’intérieur et entre les triangles de développement. La flexibilité d’un tel modèle
permet de capturer des dépendances à travers les effets calendaires, années d’accidents ou
encore périodes de développement.
Les méthodes bayésiennes ne sont pas nouvelles dans le domaine des réserves, voir Shi et al.
(2012) pour une revue complète. Dans cette thèse, on utilisera les effets aléatoires pour
capturer la dépendance au sein d’une même ligne d’affaire, alors que la dépendance entre
les lignes d’affaires sera spécifiée par une famille de distributions que nous introduisons au
contexte des réserves, appelée la famille de distributions bivariées Sarmanov.

Distribution Sarmanov et modélisation multivariée des réserves

Dans le chapitre 4 de cette thèse, nous utilisons le même jeu de données que Shi et Frees
(2011) et le chapitre 2, afin de capturer la dépendance entre ces deux lignes d’affaires à l’aide
d’effets aléatoires et de la famille de distributions bivariées Sarmanov.
En effet, contrairement au chapitre 2, la dépendance à l’intérieur d’une même ligne d’affaire
est capturée à l’aide des effets aléatoires au lieu d’une copule archimédienne multivariée, alors
que la dépendance entre les deux lignes d’affaires est capturée par la famille de distributions
bivariées Sarmanov à travers ces effets aléatoires, au lieu d’une copule hiérarchique.
Pour les marginales, nous choisissons des conjuguées naturelles, conduisant ainsi à une distri-
bution a posteriori qui soit une mise à jour de la distribution a priori. Pour ces deux triangles
de développement, une loi normale sera choisie comme loi a priori pour le premier triangle,
alors qu’une loi gamma sera considérée pour le deuxième.
En ce qui concerne le paramètre de localisation µ(`)

i,j , on considère la forme µ(1)
i,j = η

(1)
i,j pour

une loi log-normale et la forme µ(2)
i,j =

exp(η(2)
i,j )

φ
pour une loi gamma, où η

(`)
i,j désigne la

composante systématique du modèle linéaire généralisé s’écrivant sous la forme suivante:
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η
(`)
i.j = ζ(`) + α

(`)
i + β

(`)
j , ` = 1, 2,

où ζ(`) est l’ordonnée à l’origine, alors que pour l’identification des paramètres, on suppose
que α(`)

1 = β
(`)
1 = 0.

Pour la première ligne d’affaire, où une log-normale a été choisie comme distribution marginale,
nous avons

Y
(1)
i,j | Θ

(1)
t ∼ Lognormal

(
µ

(1)
i,j Θ(1), σ2

)
,

E[Y (1)
i,j | Θ

(1)
t ] = expµ

(1)
i.j Θ(1)

t +σ2/2 ,

Var[Y (1)
i,j | Θ

(1)
t ] =

(
expσ2 −1

)(
exp2µ(1)

i.j Θ(1)
t +σ2

)
.

À l’aide du théorème de Bayes, on obtient que la distribution a posteriori de [Θ(1)
t | Y(1)

t ]
est une normale de paramètres, où t désigne l’année de calendrier, d’accident ou période de
développement: 

apost =
∑t

k=1 log(y(1)
k

)µ(1)
k
b2+aσ2∑t

k=1 µ
(1)2
k

b2+σ2
;

b2post = b2σ2∑t

k=1 µ
(1)2
k

b2+σ2
.

De la même façon, nous obtenons ce qui suit lorsque la distribution gamma est considérée
pour la deuxième ligne d’affaire

Y
(2)
i,j | Θ

(2)
t ∼ Gamma

φ, µ(2)
i,j

Θ(2)

 ,

E[Y (2)
i,j | Θ

(2)
t ] = φµ

(2)
i,j

1
Θ(2)
t

,

Var[Y (2)
i,j | Θ

(2)
t ] = φµ

(2)2
i,j

1
Θ(2)2
t

.

À l’aide du théorème de Bayes, on obtient que la distribution a posteriori de [Θ(2)
t | Y

(2)
t ] est

une gamma de paramètres


αpost = tφ+ α;

τpost =
(∑t

k=1
y

(2)
k

µ
(2)
k

+ 1
τ

)−1

.

Une fois que ces effets aléatoires sont incorporés au sein de chaque triangle, ils sont par la
suite couplés à l’aide de la famille de distributions Sarmanov. L’utilisation de cette famille
de distribution nous permet d’avoir des formes fermées de la distribution jointe, ainsi que
la distribution jointe a posteriori, ce qui s’avérera très utile dans le calcul des moments de
la réserve. Nous utilisons la loi a posteriori jointe lorsque la dépendance est considérée par
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année d’accident (ou par période de développement), car contrairement au cas par année de
calendrier, cet effet aléatoire affecte les observations passées, mais aussi futures, appartenant
à la même année d’accident (ou période de développement). Ceci est schématisé à la Figure
1.7.

Figure 1.7 – Modeling dependence with a Sarmanov bivariate distribution

Il est intéressant de pouvoir utiliser cette flexibilité, car selon chaque situation, la dépen-
dance entre les triangles de développement peut être causée autant par des effets d’année de
calendrier, comme expliqué dans le chapitre 2, que par des effets d’années d’accidents ou de
périodes de développement.
En effet, une dépendance par année d’accident pourrait provenir entre autres, d’une des
situations suivantes:

— changement dans les pratiques de réserves, soit la façon dont les réserves sont allouées
à l’ouverture des dossiers pour l’année d’accident en cours;

— changement législatif affectant les pertes non-survenues (pertes futures) ;

— événements majeurs ou catastrophes;

— recours collectifs reliés à un événement particulier, etc.

Les événements suivants pourraient quant à eux mener à une dépendance par période de
développement:

— révision des dossiers ouverts ou inactifs depuis un certain temps;

— révision systématique des dossiers présentant un certain niveau de réserves;

— rythme des paiements qui change (initiative interne ou effet externe), etc.
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Nous démontrons au chapitre 4 que la flexibilité de ce modèle nous permet de détecter la
dépendance par année de calendrier, année d’accident et période de développement. Nous dé-
montrons également que les propriétés intéressantes de cette famille de distributions s’avèrent
très utiles dans le contexte des réserves. Une illustration empirique sera également présentée,
où l’on voit les avantages d’une telle modélisation du point de vue du capital économique.

Distribution Sarmanov avec effets aléatoires dynamiques

Il est intuitivement intéressant et séduisant de penser que ces effets aléatoires pourraient être
évolutifs dans le temps. C’est-à-dire au fur et à mesure du temps, l’information sur la loi a
priori, et sur les effets aléatoires est mise à jour. Nous nous sommes donc intéressés à un tel
modèle dans le contexte des réserves afin de voir si à travers les années de calendrier (année
d’accident ou période de développement) nous avons une meilleure connaissance de la façon
dont les paiements sont réglés. On voudrait aussi attribuer plus de poids aux réclamations
les plus récentes car elles sont supposées être plus prédictives.
En effet, pour prédire les réclamations et paiements futurs, il a été observé et il est bien
connu que les années plus récentes se sont avérées plus prédictives et informatives que les plus
anciennes. Toutefois, les modèles classiques pour données longitudinales ne prennent pas cela
en considération et n’allouent aucun poids à la chronologie des réclamations passées.
Des modèles avancés peuvent être utilisés pour examiner cette propriété, mais la complexité
mathématique et numérique lors de l’estimation des paramètres rend la tâche difficile. De
plus, lorsque nous voulons ajouter la dépendance entre les différentes couvertures et branches
d’activité, la tâche est encore plus ardue. Dans l’article scientifique présenté dans le chapitre 5,
nous utilisons l’information passée de la ligne corrélée, afin de mieux prédire les réclamations
futures. Cette particularité du modèle est obtenue à l’aide de la famille de distributions
bivariées Sarmanov.
Aussi, et contrairement au chapitre 4 où l’effet aléatoire ne dépend pas du temps, maintenant
on considère que cet effet est dépendant du temps où, à chaque temps t, l’effet aléatoire est
mis à jour. Ce modèle est une extension de celui décrit dans Bolancé et al. (2007). Soit =`,T
la filtration des variables aléatoires N`,1, N`,2, ..., N`,T , avec =T = (=1,T ,=2,T ). Formellement,
on écrit:

(Θ`,t | =`,t) ∼ Gamma (α`,t, τ`,t) , ` ∈ {1, 2}. (1.7)

On suppose aussi

(Θ`,t | =`,t−1) ∼ Gamma
(
α`,t|t−1, τ`,t|t−1

)
, ` ∈ {1, 2} , (1.8)

où
{
α`,t|t−1 = ν`α`,t−1

τ`,t|t−1 = ν`τ`,t−1.
(1.9)
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Le paramètre ν` est un coefficient de pondération plus petit ou égal à 1, et =`,t est l’information
disponible jusqu’au temps t, pour la ligne d’affaire `.
De plus, on propose un modèle croisé, où l’on utilise l’information de la ligne corrélée afin
de mieux prédire le risque. Cela implique l’introduction de deux nouveaux paramètres γ1 et
γ2 qui viennent emprunter de l’information des lignes corrélées. Mathématiquement, cela se
traduit de la façon suivante:

{
α1,t|t−1 = ν1 (α1,t−1 + γ1n2,t)
τ1,t|t−1 = ν1 (τ1,t−1 + γ1λ2,t) ,

(1.10)

et
{
α2,t|t−1 = ν2 (α2,t−1 + γ2n1,t)
τ2,t|t−1 = ν2 (τ2,t−1 + γ2λ1,t) .

(1.11)

En outre, afin d’obtenir une distribution jointe dynamique, une approximation de la loi a
posteriori de la Sarmanov est proposée. Enfin, une illustration empirique est aussi présen-
tée, où l’on observe qu’un tel modèle offre un meilleur ajustement aux données, permet des
expressions explicites pour la distribution prédictive, l’espérance et la variance, et alloue des
primes plus flexibles et intuitives. Toutefois, le fait qu’on travaille avec des petits échantil-
lons, une limitation déjà mentionnée plus tôt, fait en sorte qu’il devient difficile de mettre
en valeur et de faire ressortir l’intérêt de cette dynamique, ainsi que la tendance de cet effet
aléatoire. Aussi, un autre défi dans le contexte des réserves, est d’établir l’ordre temporel et
la chronologie des paiements.
Nous avons donc choisi d’adopter cette approche, dans un contexte différent, celui de la
tarification et plus particulièrement les nombres de réclamations en assurance non-vie. En
effet, cette sphère de l’actuariat est plus propice et favorable à une telle méthodologie.
Ainsi, au lieu de modéliser les montants incrémentaux de triangles de développement dans
le cadre des méthodes de provisionnement, nous avons choisi de modéliser le nombre de
réclamations de l’assureur.
Classiquement, la modélisation du nombre de réclamations suppose que tous les contrats
et toutes les garanties sont indépendantes. Depuis quelques années, on remarque que des
généralisations ont été proposées. Principalement, nous pouvons voir que des modèles de
données de panel modélisent l’ensemble des contrats d’un même assuré (voir par exemple
Gouriéroux et Jasiak (2004)), alors que d’autres modèles proposent une dépendance entre les
couvertures (voir par exemple Boucher et Inoussa (2014)).
Récemment, des modèles plus avancés ont considéré l’aspect temporel des réclamations, afin
de donner plus de poids et d’importance aux années les plus récentes, qui sont supposées être
plus prédictives.
L’incorporation d’une dépendance temporelle entre les contrats d’un assuré a déjà été proposée
dans la littérature. Gouriéroux et Jasiak (2004) utilisent des modèles INAR(1), Denuit et
Lang (2004) proposent des modèles additifs généralisés, Bolancé et al. (2007) s’intéressent à
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un modèle de séries temporelles dynamique pour les effets aléatoires, Pinquet et al. (2001) se
servent des résidus d’une régression Poisson, ou plus récemment Shi et Valdez (2014) suggèrent
une méthode utilisant les copules.
Toutefois, peu de modèles proposent de modéliser à la fois une dépendance temporelle dy-
namique, et une dépendance entre les lignes d’affaires. Le modèle que nous présentons au
chapitre 5 de cette thèse propose une telle modélisation. En effet, on s’intéresse à une exten-
sion bivariée du modèle de Bolancé et al. (2007), où l’hétérogénéité jointe de deux couvertures
est modélisée à l’aide de la distribution Sarmanov, ayant une forme dynamique.
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Chapitre 2

Modeling Dependence between Loss
Triangles with Hierarchical
Archimedean Copulas

Résumé

L’une des tâches les plus critiques en assurance de dommages est de déterminer une ré-
serve appropriée pour l’ensemble du portefeuille. La plupart des techniques se basent sur des
segmentations en sous-portefeuilles homogènes en terme de risque où l’on additionne les pro-
visions de chaque segment. Toutefois, une telle démarche suppose une parfaite indépendance
entre les risques d’un portefeuille d’assurés, ce qui est rarement le cas en pratique. Les pro-
visions constituent un élément majeur des états financiers d’une compagnie d’assurance et la
volatilité reliée au montant des provisions totales de l’ensemble des engagements ne peut être
ignorée. Pour modéliser cette dépendance, nous utilisons la classe des copules archimédiennes
hiérarchiques qui généralise la famille des copules archimédiennes en introduisant une plus
riche structure de corrélation. Notre modèle nous permet de capter la dépendance de façon
plus réaliste et flexible en incluant une notion de niveau et de hiérarchie entre les différentes
lignes d’affaires. Une illustration empirique est également présentée, où le modèle est appliqué
à des données réelles.
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Abstract

One of the most critical problems in property/casualty insurance is to determine an appro-
priate reserve for incurred but unpaid losses. These provisions generally comprise most of the
liabilities of a non-life insurance company. The global provisions are often determined under
an assumption of independence between the lines of business. Recently, Shi and Frees (2011)
proposed to put dependence between lines of business with a copula that captures dependence
between two cells of two different runoff triangles. In this paper, we propose to generalize this
model in two steps. First, by using an idea proposed by Barnett and Zehnwirth (1998), we
will suppose a dependence between all the observations that belong to the same calendar year
for each line of business. Thereafter, we will then suppose another dependence structure that
links the calendar years of different lines of business. This model is done by using hierarchical
Archimedean copulas. We show that the model provides more flexibility than existing models,
and offers a better, more realistic and more intuitive interpretation of the dependence between
the lines of business. For illustration, the model is first applied to a dataset from a major US
property-casualty insurer, and then to two lines of business from a large Canadian insurer.

2.1 Introduction

Reserves are a major component of the financial statements of a financial institution. With the
advent of the new regulatory standards (e.g. Solvency II in Europe and the upcoming ORSA ∗

guidelines in North America), insurance companies must better understand and quantify the
risks associated with their activities as a whole, not just by risk classes. Thus, it is now
necessary for an insurance company to not only assess a reserve for each line of business but
also to better estimate the total reserves for all its insurance products. This involves taking
into account dependence between lines of business. In this context, insurance companies must
be particularly able to estimate the amount of provisions for the entire portfolio. For this
purpose, different reserving approaches allowing dependence between lines of business must
be investigated. We will focus on the parametric approach.
Parametric reserving methods have often involved copulas to model the dependence between
lines of business. For example, Brehm (2002) uses a Gaussian copula to model the joint
distribution of unpaid losses, while De Jong (2012) models dependence between lines of
business with a Gaussian copula correlation matrix. Shi et al (2012) and Wüthrich et al
(2013) have also used multivariate Gaussian copula to accommodate the correlation due
to accounting years within and across runoff triangles. Bootstrapping is another popular
parametric approach used to forecast the predictive distribution of unpaid losses for correlated
lines of business. Kirschner et al (2008) use a synchronized bootstrap and Taylor and McGuire
(2007) extend this result to a generalized linear model context.

∗. ORSA: Own Risk and Solvency Assessment
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In this paper, we propose to use a parametric approach with multivariate Archimedean cop-
ulas and hierarchical Archimedean copulas. In the same vein as Frees and Shi’s model, and
following an idea proposed by Barnett and Zehnwirth (1998), we propose a model that allows
a dependence relation between all the observations that belong to the same calendar year for
each line of business using multivariate Archimedean copulas. We use another dependence
structure that links the losses of calendar years of different lines of business. We show that
this complex dependence structure can be constructed using hierarchial Archimedean copu-
las. For illustration, the model is applied to two different datasets from a major US and a
large Canadian property-casualty insurers, where we conclude that the proposed model can
be considered as an interesting alternative of the model proposed by Shi and Frees (2011).
In Section 2.2, we review the modeling of runoff triangles, where notations are set and copulas
briefly introduced. In Section 2.3, the model of Shi and Frees (2011) is implemented (again on
their dataset from a major US property-casualty insurer), but with a different parametrization.
The calendar year and hierarchical dependences are explained and applied to this data and
to a new pair of runoff triangles in Section 2.4. In Section 2.5, we use a parametric bootstrap
to obtain the predictive distribution of unpaid losses. Section 2.6 concludes the paper.

2.2 Preliminary

2.2.1 Modeling and Reserves

Let us consider an insurance portfolio with ` lines of business (` ∈ {1, ..., L}). We define by
X

(`)
i,j , the incremental payments of the ith accident year (i ∈ {1, ..., I}), and the jth develop-

ment period (j ∈ {1, ..., J}). To take into account the volume of each line of business, we will
work with standardized data which we denote by Y (`)

i,j = X
(`)
i,j /ω

(`)
i , where ω(`)

i represents the
exposure variable in the ith accident year for the `th line of business. The exposure variable
can be the number of policies, the number of open claims, or the earned premiums. The latter
option is the one chosen in this paper.
A regression model with two independent explanatory variables, accident year and devel-
opment period, will be used. Assume that α(`)

i (i ∈ {1, 2, ..., I}) and β
(`)
j (j ∈ {1, 2, ..., J})

characterize respectively the accident year effect and the development period effect. In such
a context, a systematic component for the `th line of business can be written as:

η
(`)
i,j = ζ(`) + α

(`)
i + β

(`)
j , ` = 1, ..., L,

where ζ(`) is the intercept, I = J = n, and for parameter identification, the constraint
α

(`)
1 = β

(`)
1 = 0 is supposed.

In our empirical illustration, we first work with the runoff triangles of cumulative paid losses
exhibited in Tables 1 and 2 of Shi and Frees (2011). They correspond to paid losses of
Schedule P of the National Association of Insurance Commissioners (NAIC) database. These
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are data of 1997 for personal auto and commercial auto lines of business, and each triangle
contains losses for accident years 1988-1997 and at most ten development years.
Shi and Frees (2011) show that a lognormal and a gamma distribution provide a good fit
for the Personal Auto and the Commercial Auto line data respectively. To demonstrate the
reasonable model fits for the two triangles, the authors exhibit the qq-plots of marginals for
personal and commercial auto lines. We work with their conclusion and then continue with
the same continuous distributions for each line of business. More specifically, we consider the
form µ

(1)
i,j = η

(1)
i,j for a lognormal distribution with location (log-scale) parameter µ(1)

i,j and
shape parameter σ. However, for the gamma distribution, we change the parametrization and
we do not use the canonical inverse link µ(2)

i,j = 1
η

(2)
i,j φ

with location (scale) parameter µ(2)
i,j and

shape parameter φ. Such a parametrization can lead to undesirable negative values for the
lower right part of the runoff triangle, especially when one uses the bootstrap technique. To

assure positive means of all the cells of the runoff triangle, we use the log link µ(2)
i,j =

exp(η(2)
i,j )

φ
,

which is always positive, even for the prediction values of the runoff triangle.
With both parametrizations, the estimated total reserve is∑2

`=1
∑n
i=2

∑n
j=n−i+2 ŷ

(`)
i,j ω

(`)
i , where

ŷ
(`)
i,j is the projected unpaid loss ratio, and ω

(`)
i represents the net premiums earned in the

corresponding accident year i. For the lognormal distribution, we have ŷ(1)
i,j = expµ̂

(1)
i,j +(γ̂(1))2/2,

and for the gamma distribution, ŷ(2)
i,j = µ̂

(2)
i,j γ̂

(2), where µ̂(`)
i,j and γ̂(`) are respectively the scale

(location) and the shape parameters. Also, γ̂(1) = σ̂ and γ̂(2) = φ̂.

2.2.2 Copulas

Copulas are a useful and flexible tool to model a dependence relation between runoff triangles
of different lines of business. They allow a separate interpretation of the relationship (linear
and non-linear) between linked random variables and their marginals. See Joe (1997) further
details. We briefly recall below definitions and results that will be used later.
A multivariate copula C(u1, u2, ..., un) is an application from [0, 1]n to [0, 1], that has the
same properties as a joint cumulative distribution. In other words, a copula is a function
that links a multidimensional distribution to its one-dimensional margins. Let F be a n-
dimensional cumulative joint function with margins F (1),F (2),...,F (n). Then, if the margins
are all continuous, the joint distribution of n random variables (Y (1), Y (2), ..., Y (n)), can be
represented by a unique copula function:

F (y(1), y(2), ..., y(n)) = C(F (1), F (2), ..., F (n); θ),

where F (i), with i ∈ {1, 2, ..., n}, are the respective distribution functions of Y (i), and θ is the
dependence parameter, also called the association parameter.
In this paper, we choose to use the Archimedean family of copulas, given its several interesting
properties. This family of copulas offers a wide choice of copulas for which many have a closed
form expression in a multivariate setting. This last property will prove to be useful in what
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follows. Finally, Archimedean copulas can be constructed easily with a simple generator.
Formally, we can define multivariate Archimedean copulas as

C(u1, u2, ..., un) = φ−1(φ(u1) + ...+ φ(un)) , labelch2eq1 (2.1)

where the function φ is called the generator of the copula. From (2.2), one can derive the
expression for the multivariate density function of an Archimedean copula. According to
McNeil and Nešlehová (2009), an Archimedean copula C admits a density c if and only if
φ(n−1) exists and is absolutely continuous on (0,∞). In such a case, c is given by

c(u1, u2, ..., un) = φ(n)(φ−1(u1) + ...+ φ−1(un))
n∏
i=1

(φ−1)′(ui),

where functions φ(n) and φ−1 correspond to the nth derivative of the generator function of
the copula and the inverse generator respectively. Hofert et al (2012) derive closed form
expressions for the multivariate density function of a few Archimedean copulas, notably the
Clayton and the Gumbel copula used in this paper.

2.3 Pairwise dependence

Dividing a portfolio into homogeneous sub-portfolios and deriving the total reserve by sum-
ming the reserve for each segment implicitly assumes independence between risks. It is gen-
erally admitted that common social or economic factors may affect several lines of business
simultaneously. Allowing a possible dependence relation between the runoff triangles of differ-
ent lines of business of a portfolio provides a better representation of the portfolio’s behavior
as a whole and hence permits to take better advantage of diversification. It is also helpful to
risk managers in determining the risk capital for an insurance portfolio.
Shi and Frees (2011) propose a model that incorporates a dependence structure between
two runoff triangles in a pairwise manner. More precisely, the dependence between two lines
of business is based on an identical association between cells of a given accident year and
development period, coming from different lines of business. This means that two paid loss
ratios Y (1)

i,j and Y (2)
i,j are correlated for a given couple (i, j). This form of dependence goes back

to Braun (2004). Throughout the paper, we refer to Frees and Shi’s model as the pairwise
dependence model (PWD).

2.3.1 Modeling

The PWD model associates two elements of the same accident year and development period,
(Y (1)
i,j , Y

(2)
i,j ) with a bivariate copula. Mathematically, and following Sklar’s theorem, the joint

distribution of normalized incremental payments (Y (1)
i,j , Y

(2)
i,j ) will be represented by the unique

copula function:
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Fi,j(y(1)
i,j , y

(2)
i,j ) = Pr(Y (1)

i,j ≤ y
(1)
i,j , Y

(2)
i,j ≤ y

(2)
i,j ) = C(F (1)

i,j , F
(2)
i,j ; θ) , (2.2)

where C(., θ) denotes the copula function with parameter θ, that captures the dependence
between two runoff triangles. Also, this model has the flexibility of choosing a different cumu-
lative density function for each line of business. The log-likelihood expression can be easily
derived from equation (2.2):

L =
I∑
i=1

I−i+1∑
j=1

log(f (1)
i,j ) + log(f (2)

i,j ) +
I∑
i=1

I−i+1∑
j=1

log c(F (1)
i,j , F

(2)
i,j ; θ) , (2.3)

where c(.) denotes the probability density function corresponding to the copula distribution
function C(.), f (`)

i,j denotes the density of marginal distribution F
(`)
i,j , for ` = 1, 2. These

marginals are noted as:

F
(`)
i,j = Pr(Y (`)

i,j ≤ y
(`)
i,j ) = F (`)(y(`)

i,j ; η(`)
i,j , γ

(`)),

for i = 1, ..., I, j = 1, ...J and ` = 1, ..., L. Shi and Frees (2011) choose the Gaussian and the
Frank copula to model dependence, as well as the product copula that supposes independence
between the cells. Their model selection is based on a likelihood-based goodness-of-fit measure,
namely Akaike’s Information Criterion (AIC). We will also use this criterion to select our
models.

2.3.2 Empirical Illustration

We provide in Tables 2.1 and 2.2, the fit statistics and the reserves for the PWD model. Note
that even if the results are close to those obtained in Shi and Frees (2011), we do not obtain
the same estimates because we have changed the link function of the mean of the gamma
distribution to avoid inconsistencies, as explained in Section 2.2.1.

Copula
Fit Statistics Independence Frank Gaussian

Dependence parameter . -2.7978 (1.0243) -0.3655 (0.1190)
Log-Likelihood 346.6 350.3 350.5

AIC -613.2 -618.5 -618.9

Table 2.1 – Fit Statistics of PWD model with Shi and Frees (2011) database

On the other hand, even if we have chosen a different parametrization, we obtain the same
conclusion as their and find that the copula that leads to the smallest AIC is the Gaussian
copula. This model generates a reserve of almost 7 million dollars. Interestingly, the depen-
dence parameter obtained for the pairwise model with the Gaussian and the Frank copula
is negative, meaning that the model supposes that the two lines of business are negatively
correlated.
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Copula
Reserves estimation Independence Frank Gaussian

Personal 6,464,090 6,511,363 6,423,180
Commercial 490,657 487,904 495,989

Total 6,954,747 6,999,267 6,919,169

Table 2.2 – Reserves estimation with the PWD model with Shi and Frees (2011) database

2.4 Calendar Year and Hierarchical Dependence

We propose here to further investigate the model of Shi and Frees (2011) to better capture
the interactions within and between the runoff triangles of different lines of business. For that
purpose, we first propose to consider a dependence construction for the different elements of
a diagonal of a given runoff triangle to take into account a calendar year effect. Second, we
add another level of dependence to capture the dependence between the lines of business.

2.4.1 Calendar Year Effect

We propose in this section a model that allows a dependence relation within paid claims
belonging to a diagonal of a runoff triangle. This reflects a calendar year (CY) effect, more
precisely the changes or inflections on paid claims in a calendar year due to jurisprudence
modifications or inflationary trends for example. A CY effect can also highlight the impact
of strategic decisions made in a calendar year such as an incentive to increase payments in a
particular calendar year for all lines of business.
This dependence structure assumes that all cells from the same diagonal are correlated, which
implies that the number of cells in the dependence structure is different for each diagonal.
Indeed, the number of cells in the dependence structure varies from 1 to t for the tth diagonal,
with t ∈ {1, ..., n}, and t = i + j − 1. Evidently, the first cell at the top left of the runoff
triangle is not linked to any other cell within the triangle.
Such a calendar year effect has already been analyzed before, for example by Barnett and
Zehnwirth (1998) who added a covariate to capture the calendar year effect. The systematic
component of such a model can be written as:

η
(`)
i,j = ζ(`) + α

(`)
i + β

(`)
j + Υ(`)

t , ` = 1, ..., L , (2.4)

where ζ(`) is the intercept, α(`)
i (i ∈ {2, ..., I}) and β(`)

j (j ∈ {2, ..., J}) characterize respectively
the accident year effect and the development period effect, while Υ(`)

t (t = i+ j − 1) captures
the calendar year effect.
De Jong (2006) modeled the growth rates in cumulative payments in a calendar year, and
Wüthrich (2010) examined the accounting year effect for a single line of business. Wüthrich
and Salzmann (2012) used a multivariate Bayes Chain-Ladder model that allows the modeling
of dependence along accounting years within runoff triangles. The authors showed that they
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are able to derive closed form solutions for the posterior distribution, the claims reserves
and the corresponding prediction uncertainty. Kuang et al (2008) have also considered a
canonical parametrization with three factors for a single line of business. Each factor represents
time scale, in such way the inflation is taken into account. Also, they added an assumption
ensuring that the forecasts do not depend on these arbitrary linear trends. They extended
this assumption later by combining the canonical parametrization with a non-stationary time
series forecasting model in Kuang et al (2011).
In our proposed model, instead of adding an explanatory variable for the calendar year effect,
the dependence relation between the paid claims of a diagonal will be based on a multivari-
ate Archimedean copula. More specifically, the same Archimedean copula with an identical
dependence parameter is assumed for each diagonal of a runoff triangle. Hence, all random
variables of the same calendar year t = i + j − 1 and `th line of business are included in the
vector Y `t = {Y`i,j : i+ j − 1 = t}. The log-likelihood function of this model can be written
as:

L =
I∑
i=1

I−i+1∑
j=1

log(fi,j) +
n∑
t=2

log c (Ft−j+1,j , ..., F1,t; θ)j=1,...,t , (2.5)

where f denotes the density of marginal distribution F , and c(.) the probability density
function corresponding to the copula distribution function C(.).
The main advantage of the copula approach instead of adding a calendar year covariate in the
mean specification, lies in the fact that the copula approach allows a more general structure
of dependence between the observations of a given calendar year and allows more flexibility.
Also, the use of covariates would lead to a great number of parameters to explain the calendar
year effect instead of only one (dependence copula parameter). For example, for two lines of
business, we would have 20 parameters instead of 2 (see equation (2.4)). This might lead
to over-parametrization. Furthermore, the parameter describing a given calendar year effect,
would not have any predictive power, as we cannot use it to compute the lower triangle.

2.4.2 Line of Business Dependence

A natural extension to the model behind (2.5) is to introduce a dependence structure be-
tween lines of business based on copulas, more precisely here with the Gaussian copula and
hierarchical Archimedean copulas.
Another way to add dependence between lines of business is by modifying equation (2.4) and
use the same calendar year covariate for the two lines of business, i.e. Υt = Υ(1)

t = Υ(2)
t . The

correlation induced by common calendar year effects would then be introduced through the
mean specification. Also, as done in Shi et al (2012), in addition to the common calendar
year covariate, a pair-wise correlation between the two runoff triangles can be added. This
approach has the disadvantage however of adding a new parameter for each diagonal (Υt).
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Multivariate Gaussian Copula

We first propose to use the Gaussian copula to capture the dependence within and between
runoff triangles. The Gaussian copula which arises from the multivariate normal distribution
is the most widely known copula of the elliptical family of copulas. Such a copula allows great
flexibility to model dependences simply by modifying its correlation matrix.
Let us suppose, for a given calendar year t, the following set of observations

ut =
(
u

(1)
t−j+1,j , ..., u

(1)
1,t , u

(2)
t−j+1,j , ..., u

(2)
1,t

)
j=1,...,t

,

with multivariate Gaussian copula density:

c (ut) = |Σt|−1/2 exp
(
−1

2ξ
T
t

(
Σ−1
t − I

)
ξt

)
,

where ξt =
(
Φ−1

(
u

(1)
t−j+1,j

)
, ...,Φ−1

(
u

(1)
1,t

)
,Φ−1

(
u

(2)
t−j+1,j

)
, ...,Φ−1

(
u

(2)
1,t )
))T

j=1,...,t
. The cor-

relation matrix Σt for the calendar year t can be represented as a block matrix as follows,
given the assumptions of the model:

Σt =
(

Σ11 Σ21

Σ21 Σ12

)
. (2.6)

In (2.6), the matrices Σ11 and Σ12 are correlation matrices with unit main diagonal and off-
diagonal parameters θ1,1 and θ1,2 corresponding to the calendar year dependence for the first
and second line of business respectively. Σ21 is a matrix filled with parameter θ2,1 representing
the dependence between the two lines of business.
Numerical results obtained with the Gaussian copula are presented in the empirical illustration
of section 2.4.3.

Hierarchical Archimedean Copulas

Hierarchical Archimedean copulas permit to have different levels of dependence within our
framework. We use them here to add another level of dependence to the one proposed in
section 2.4.1. With this second level of dependence, we capture the dependence between two
different runoff triangles in a pairwise manner between corresponding diagonals, instead of
between cells. Pairing diagonals instead of cells with a copula has the advantage of being
applicable even in a case of missing data in one of the runoff triangles.

The hierarchical approach allows us to visualize the multi-level dependence. Indeed, this
dependence structure is illustrated in Figure 2.1, where a dependence structure between cells
of the same calendar year is supposed as well as a dependence structure between the two lines
of business. In the next section, we will also be interested in comparing the hierarchical copula
approach with the multivariate Gaussian copula approach, as the latter is often considered as
a benchmark model.
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Figure 2.1 – Dependence implied by hierarchical dependence

The CY effect has not been often studied with more than one line of business. Two recent
examples are De Jong (2012), where the calendar year effect was introduced through the cor-
relation matrix and Shi et al (2012), who used random effects to accommodate the correlation
due to accounting year effects within and across runoff triangles. In Shi et al (2012), they
work with a Bayesian perspective, using a multivariate lognormal distribution, along with
a multivariate Gaussian correlation matrix. The predictive distributions of outstanding pay-
ments are generated through Monte Carlo simulations. The calendar year effect is taken into
account through an explanatory variable. A discussion of this paper is suggested in Wüthrich
(2012), and where it is also explained that for the method it does not really matter whether
we consider incremental or cumulative claims, as long as we have a multivariate Gaussian
structure. Also, still with a Bayesian framework, Wüthrich et al (2013) used a multivariate
lognormal Chain-Ladder model and derived predictors and confidence bounds in closed form.
Their analytical solutions are such that they allow for any correlation structure. Their models
allow a dependence between and within runoff triangles, and for any correlation structure. It
has also been shown in this paper that the pair-wise dependence form is a rather weak one
compared to calendar year dependence. More recently, Shi (2014) captures the dependencies
introduced by various sources, including the common calendar year effects via the family of
elliptical copulas, and use a parametric bootstrapping to quantify the associated reserving
variability.
In this paper, to model the complex dependence structure between two runoff triangles, we
introduce models based on hierarchical Archimedean copulas. The idea is to use Archimedean
copulas at each level, from the lowest (calendar years) to the highest (lines of business). Hierar-
chical Archimedean copulas have first been mentioned in the literature by Joe (1997), and ap-
peared in more details in Savu and Trede (2010). More recently, Okhrin et al (2013) provided
a method to estimate multivariate distributions defined through hierarchical Archimedean
copulas.
The main advantage of using Archimedean and hierarchical Archimedean copulas is that they
can be explicitly defined in terms of a one-dimensional function called the generator of the
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Archimedean copula. Elliptical copulas, used in Shi (2014), do not possess this nice property;
they do not have a closed form. Archimedean copulas are also flexible and allow to model many
kinds of dependencies, while Elliptical copulas, have equal lower and upper tail dependence
coefficients. In high dimensions, Archimedean copulas are restricted given the exchangeability
of the components. This assumption is relaxed with hierarchical Archimedean copulas.
At the lowest level, and for the calendar year t, we have 2× t standard uniformly distributed
random variables U (1)

t−j+1,j , ..., U
(1)
1,t , U

(2)
t−j+1,j , ..., U

(2)
1,t where j designates the development pe-

riod (j = 1, ..., t).
The joint distribution function is evaluated at u = (u(1)

t−j+1,j , ..., u
(1)
1,t , u

(2)
t−j+1,j , ..., u

(2)
1,t ) ∈

[0, 1]2t. Let there be H hierarchy levels indexed by h. For example, the set of elements u
is located at level h = 0. At each level h = 0, ...,H we have nh distinct objects with index
k = 1, ..., nh.
At level h = 1, the u(1)

t−j+1,j , ..., u
(1)
1,t , u

(2)
t−j+1,j , ..., u

(2)
1,t are grouped into n1 ordinary multivariate

Archimedean copulas C1,k, k = 1, ..., n1 (in our case with two lines of business, we have
n1 = 2), of the form

C1,k(u1,k) = φ−1
1,k

∑
u1,k

φ1,k(u1,k)

 ,

where φ1,k denotes the generator of the copula C1,k. Let u1,k denote the set of elements of
u

(k)
t−j+1,j , ..., u

(k)
1,t belonging to the copula C1,k for k = 1, ..., n1, which represents the elements

of a given calendar year for a single line of business `. At this level only, k corresponds to `
.In our model, we have three levels, i.e H = 2. At the highest level, we have a single object
(n2 = 1), which is the hierarchical Archimedean copula C2,1, that aggregates the multivariate
Archimedean copulas of the previous level, and can be represented as

C2,k(C2,k) = φ−1
2,k

∑
C2,k

φ2,k(C2,k)

 ,

where φ2,k denotes the generator of the copula C2,k and C2,k represents the set of all copulas
from level h = 1 entering copula C2,k for k = 1, ..., n2.
Obviously, there are numerous conditions to be satisfied for the existence of a hierarchical
Archimedean copula. The number of copulas must decrease at each level, i.e. nh < nh−1,
as well as the degree of dependence, i.e. θh+1,k′ < θh,k for all h = 0, ...,H and k = 1, ..., nh,
k′ = 1, ..., nh+1 such that Ch,k ∈ Ch+1,k′ where θh,k is the parameter belonging to the generator
φh,k. This means that for runoff triangles, elements of a same line of business can have a
higher degree of dependence than elements of different lines of business. Mathematically, the
conditions that have to be verified by a hierarchical Archimedean copula are summarized as
follows:

1. All inverse generator functions φ−1
h,k are completely monotone.
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2. The composite φh+1,k′ ◦ φ−1
h,k are convex functions for all h = 0, ...,H and k = 1, ..., nh,

k′ = 1, ..., nh+1 such that Ch,k ∈ Ch+1,k′ .

In our application, we will limit the number of levels to three, and the number of lines of
business to two. This means that we will have at the highest level (h = 2), one (hierarchi-
cal) bivariate Archimedean copula between lines of business, and for h = 1, two (ordinary)
multivariate Archimedean copula within a runoff triangle.
As an illustration, let us consider a dependence structure between two runoff triangles for
the second calendar year. The resulting hierarchical Archimedean copula has the following
analytical form

C2,1 (u) = C2,1(u(1)
2,1, u

(1)
1,2, u

(2)
2,1, u

(2)
1,2)

= C2,1(C1,1(u(1)
2,1, u

(1)
1,2), C1,2(u(2)

2,1, u
(2)
1,2))

= φ−1
2,1

(
φ2,1 ◦ φ−1

1,1[φ1,1(u(1)
2,1) + φ1,1(u(1)

1,2)] + φ2,1 ◦ φ−1
1,2[φ1,2(u(2)

2,1) + φ1,2(u(2)
1,2)]

)
.

This hierarchical Archimedean copula will be applied to each calendar year, with the dataset
described in Section 2.2.1. The calendar year t takes values from 1 to 10 because the runoff
triangles both have 10 diagonals, i.e. I = J = 10. The resulting hierarchical Archimedean
copula for our model has the following general analytical form:

C2,1 (u) = C2,1(u(1)
t−j+1,j , ..., u

(1)
1,t , u

(2)
t−j+1,j , ..., u

(2)
1,t )

= C2,1(C1,1(u(1)
t−j+1,j , ..., u

(1)
1,t ), C1,2(u(2)

t−j+1,j , ..., u
(2)
1,t ))

= φ−1
2,1

(
φ2,1 ◦ φ−1

1,1[φ1,1(u(1)
t−j+1,j) + ...+ φ1,1(u(1)

1,t )] + φ2,1 ◦ φ−1
1,2[φ1,2(u(2)

t−j+1,j) + ...+ φ1,2(u(2)
1,t )]

)
.

(2.7)

Finally, the log-likelihood function of the hierarchical model can be written as follows:

L =
2∑
`=1

I∑
i=1

I−i+1∑
j=1

log(f (`)
i,j ) +

n∑
t=2

log
(
c2,1

(
F

(1)
t,1 , F

(1)
t−1,1, ..., F

(1)
1,t , F

(2)
t,1 , F

(2)
t−1,1, ..., F

(2)
1,t

))
, (2.8)

where c2,1 denotes the density of a hierarchical Archimedean copula, which is obtained by
differentiating the copula using the chain rule. More precisely, for a given diagonal t, we have
the following expression:

c2,1 (u) = ∂2tC2,1 (u)
∂u

(1)
t−j+1,j · · · ∂u

(1)
1,t∂u

(2)
t−j+1,j · · · ∂u

(2)
1,t
. (2.9)

As we have 10 diagonals, we need to derive up to 20 times. We show an example of a 4-
variables case, corresponding to the second diagonal in Appendix 2.6. However, the density is
computationally intensive in high dimensions when the number of observations in the diagonal
increases, and a closed form expression for the maximum likelihood estimators is no longer
available.
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Copula - Estimates and Standard Errors
Gaussian Clayton Gumbel

θ1,1 0.6091 (0.1366) 2.2695 (0.4463) 2.7267 (0.6762)
θ1,2 0.7634 (0.0983) 2.9759 (0.5743) 2.7103 (0.6045)

Log-Lik. 391.5 403.9 404.3
AIC -699.0 -723.9 -724.6

Table 2.3 – Fit Statistics of ICYD model with Shi and Frees (2011) database

Copula
Reserves estimation Gaussian Clayton Gumbel

Personal 6,175,574 6,425,748 6,965,466
Commercial 751,725 550,179 593,945

Total 6,927,299 6,975,927 7,559,412

Table 2.4 – Reserves estimation of ICYD model with Shi and Frees (2011) database

A numerically efficient way to evaluate the log-density is presented in Hofert and Pham
(2013), where an implementation of the hierarchical Clayton and Gumbel copulas is provided
using the R package copula; see Hofert and Mächler (2011).
The simpler form of hierarchical dependence is to suppose a product copula between the
two runoff triangles, meaning independence between lines of business. In this situation, the
log-likelihood of the model is simply L = L(1) + L(2), where L(`), ` = 1, 2 is simply the log-
likelihood obtained by (2.5). Of course, it is very easy to extend this model to more than two
lines of business.

2.4.3 Empirical Illustration

Hierarchical models based on different copulas have been applied to the runoff triangles used
in Section 2.2.1. For this model, the CY dependence has been modeled with four different
copulas (product, Gumbel, Clayton and Gaussian). In our empirical study, we first use a model
that supposes independence between lines of business, i.e. a product copula between runoff
triangles. We call this model ICYD, for independence calendar year dependence. Fit statistics
as long as dependence parameters of this model are shown in Table 2.3, while the estimated
reserves are presented in Table 2.4. In terms of AIC, we observe that all Archimedean copula
models offer a better fit than the multivariate Gaussian copula. Note that a CY dependence
with a product copula within and between the two lines of business is simply a cell-by-cell
modeling. The empirical results of this simple model have already been given in Section 2.3.2,
for the PWD model with a product copula.
The two available copulas in the R package copula, which are Clayton and Gumbel, have
been considered in a hierarchical model to investigate dependence between the two lines of
business. The same copula is used for each level, meaning for example that if a Gumbel copula
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is chosen within a runoff triangle, then it is also used between the business lines. This is due
to the convexity condition on hierarchical Archimedean copulas. We call this model HCYD,
for hierarchical calendar year dependence. When we apply this model to the dataset used in
Section 2.2.1, the hierarchical model do not improve the independent calendar year model for
the three copulas (Gaussian, Clayton and Gumbel). The values of the dependence parameters
θ2,1 are not statistically significant, meaning that the two lines of business are uncorrelated.
To better emphasize the features of the hierarchical model, we work with two other runoff
triangles that were recently used in Côté et al (2016), which come from a Canadian property-
casualty insurer. The two lines of business comprise personal and commercial auto insurance.
The first triangle contains paid losses of the Accident Benefits (AB) coverage from Ontario,
while the second one constitutes paid losses from Bodily Injuries (BI) coverage from the
Western region. The Accident Benefits (AB) coverage provides compensation, regardless of
fault, if driver, passengers, or pedestrians suffer injury or death in an automobile collision. On
the other hand, the Bodily Injury (BI) coverage provides compensation to the insured if he is
injured or killed through the fault of a motorist who has no insurance, or by an unidentified
vehicle.
Côté et al (2016) demonstrate that a gamma distribution provides a good fit for the two
lines of business. We work with their conclusion and then continue with the same continuous
distribution for each line of business. The cumulative paid losses and earned premiums for
the two lines of business are displayed in Appendix 2.6.
We first apply the PWD model to these two lines of business, the estimation parameters and
the reserves estimation are shown in Table 2.5. Whereas, the fit statistics and the reserves
obtained for the independent and hierarchical calendar year models are shown in Table 2.6.
To compare the degree of dependence between different copulas, we also provide the two
non-linear association measures Spearman’s rho ρS and Kandall’s tau τK for the two copulas,
see Table 2.6. We notice that the Clayton copula captures a smaller dependence than the
Gumbel copula, whose association measures are slightly higher. Indeed, the Clayton family
is characterized by a lower tail dependence. Also, the hierarchical calendar year model offers
a better fit than the independent calendar year model as shown by the values of the log-
likelihood function. This finding leads to a statistically significant dependence between the
two lines of business (θ2,1), captured through the calendar year effects. This is also confirmed
by looking at the value of the AIC, which points to the Gumbel hierarchical copula model as
the one which better adjusts the data.
When we incorporate a calendar year correlation within the lines of business (level 1), the
residual dependence becomes positive. Intuitively, this can be explained by the trends and
common effects that are detected with the introduction of the proposed dependence struc-
ture but not with the Chain-Ladder coefficients. In a given calendar year, exogenous common
factors such as inflation, interest rates, jurisprudence or strategic decisions such as the accel-
eration of the payments for the entire portfolio can have simultaneous impacts on all lines of
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Copula
Fit Statistics Independence Frank Gaussian

Dependence parameter . -0.6649 (0.9430) 0.0149 (0.1362)
Log-Likelihood 423.7 424.0 423.8

AIC -767.4 -766.0 -765.6
Total Reserve 96,954 96,994 96,949

Table 2.5 – Fit Statistics and Reserves of PWD model with Côté et al (2016) database

ICYD model HCYD model
Clayton Gumbel Clayton Gumbel

θ1,1 0.0294 (0.0708) 1.0829 (0.1292) 0.0495 (0.0608) 1.0692 (0.0515)
θ1,2 0.2384 (0.1881) 1.1548 (0.1315) 0.2034 (0.2259) 1.0692 (0.0496)
θ2,1 . . 0.0495 1.0692
ρS . . 0.0362 0.0948
τK . . 0.0241 0.0648

LogLik 424.4 425.8 426.3 427.7
AIC -764.8 -767.6 -766.6 -769.4

Total Reserve 84,172 81,650 96,496 83,202

Table 2.6 – Parameter and Reserves estimation of ICYD and HCYD models with Côté et al
(2016) database

business of a given sector, such as the two lines of business considered in the present paper.
These effects may as well result in trends in the development period parameters.
It is interesting to note that, unlike the slightly negative pairwise association obtained by the
PWD model in Table 2.5 and also displayed for these two lines of business in Table 4 of Côté
et al (2016), hierarchical models generate positive dependence between loss triangles with
the same dataset.
We observe that the positive parameter θ2,1 is statistically significant for the Clayton and
Gumbel copulas. This results highlights the fact that the choice of the dependence structure
can lead to different conclusions for the dependence analysis. This was also well illustrated in
Figure 4 of Shi et al (2012).
Finally, a hierarchical copula model requires a higher degree of dependence for variates linked
at a lower level than those linked at a higher level. In our context, this means that the degree
of dependence within lines of business should be greater than between lines of business, as
illustrated in Figure 2.1. One can observe in Table 2.6 that this condition is respected with a
dependence parameter θ2,1 lower than the dependence parameters θ1,1 and θ1,2. In this sense,
this condition could also be seen as a restriction for the dependence parameter between the
two lines of business. In fact, we observe that the parameters θ2,1 are on the boundary of their
domain in Table 2.6. This actually could constitute a limitation of the hierarchical model.
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2.5 Predictive distribution

In practice, actuaries are interested in knowing the uncertainty of the reserve. A parametric
technique, the bootstrap, not only provides such information but most importantly lets one
determine the entire predictive distribution, rarely obtained for non-Bayesian models. The
predictive distribution notably allows assessment of risk capital for an insurance portfolio.
Bootstrapping is also ideal from a practical point of view, because it avoids the complex
theoretical calculations and can easily be implemented. Moreover, it tackles the potential
model overfitting, typically encountered in loss reserving problems, due to the small sample
size.
The bootstrap technique is increasingly popular in loss reserving, and allows a wide range
of applications. It was first introduced in a loss reserving context with a distribution-free
approach by Lowe (1994). For a multivariate loss reserving analysis, Kirschner et al (2008)
used a synchronized parametric bootstrap to model dependence between correlated lines of
business, and Taylor and McGuire (2007) extended this result to a generalized linear model
context. Shi and Frees (2011) and more recently Shi (2014) have also performed a parametric
bootstrap to incorporate the uncertainty in parameter estimates, while modeling dependence
between loss triangles using copulas.

2.5.1 Parametric Bootstrap

The parametric bootstrap allows us to obtain the whole distribution of the reserves. We follow
the same bootstrap algorithm of Taylor and McGuire (2007), and summarized in Shi and
Frees (2011).

Copula simulation

The first step of the parametric bootstrap is to generate pseudo-responses of normalized
incremental paid losses y∗(`)i,j,r, for i, j such that i + j ≤ I and ` = 1, 2. We know that y∗(`)i,j;r =
F (−1)(`)(u(`)

i,j , µ̂
(`)
i,j , γ̂

(`)), with µ̂(`)
i,j and γ̂(`) already estimated. Therefore, a technique to generate

the realizations of the copula u(`)
i,j , with ` = 1, 2 should be used.

Given that the Gumbel copula generates the best fit for many models in this paper, we have
decided to focus on this copula for the bootstrap. Below, the bootstrap study is performed
with the datasets of Côté et al (2016).
To generate a multivariate Gumbel copula, we follow the method based on the inversion of
the Laplace transform, an idea that can be traced back to Marshall and Olkin (1988).
The above cited algorithm allows us to generate the set of realizations u(1)

1,1 and u(2)
1,2 for

the first level of hierarchy (CY level at h = 1) from the ordinary multivariate Archimedean
copulas C1,1 and C1,2, for a given calendar year t and development period j (j = 1, ..., t),
with u(1)

1,1 = (u(1)
t−j+1,j , ..., u

(1)
1,t ) and u(2)

1,2 = (u(2)
t−j+1,j , ..., u

(2)
1,t ). To generate realizations with a

45



Model Copula reserve Bootstrap reserve Bias Std Error
Gumbel hierarchical model 83,202 81,574 1.95% 8,555

Table 2.7 – Bootstrap bias for the Gumbel HCYD model with Côté et al (2016) database

Gumbel copula at the highest level of the hierarchy (line of business level at h = 2), we used
the sampling algorithm of Nested Archimedean copulas from the R package copula.
Consequently, we have obtained the set of realizations u(1)

2,1 and u(2)
2,1 for the second level of

hierarchy (business line level at h = 2) from the hierarchical Archimedean copula C2,1.

Bias and MLE

The maximum likelihood estimation technique is known to be asymptotically unbiased. In
practice, we work with a finite number of observations, particularly with runoff triangles.
Indeed, in our empirical illustrations, only 55 observations have been used in each triangle.
Consequently, regardless of the number of simulations, our estimation is done each time on
limited datasets of 55 observations.
The impact of the bias on the estimation has been analyzed. Recently, the lognormal MLE bias
has been studied in Johnson et al (2011), along with the gamma and Weibull distributions.
Consequently, inter alia, a bias is necessarily observed in the bootstrapping procedure. In our
empirical illustration, the bootstrap bias obtained for the hierarchical model is exhibited in
Table 2.7.

2.5.2 Reserve indications

We show a histogram of the reserve distribution of the hierarchical model in Figure 2.2, which
is important and useful for actuaries when they want to select a reserve at a desired level of
conservatism.
In Table 2.7, we exhibit the bootstrap results for the Gumbel hierarchical model which mainly
refers to the mean reserve and the prediction uncertainty. The latter may substantially be
increased by the introduction of the accounting year dependence. In contrast, PWD models
can under-estimate the variability because they implicitly assume an independence between
accident years. This was also stated in Wüthrich et al (2013), where it has been shown that
the CY modeling is more performant than the PWD modeling. It is worth mentioning that
to compute the mean squared error of prediction, the process uncertainty must be added to
this prediction error (see England and Verrall (2002)).
Note that to obtain the lower triangle in the Bootstrap procedure, we can either calculate
the projected mean for each cell of the lower triangle, as shown in this paper (projected
mean approach), or generating (by simulation) each cell of the lower triangle starting from
the new estimates obtained for each bootstrap sample. The second approach (the simulation
based approach) offers a wider range of possible reserves, and will consequently have a larger
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standard error. This second approach can be particularly interesting from a capital risk stand-
point where extreme loss events have to be considered. Both bootstrap approaches (projected
mean approach and simulation based approach) are relevant information for property-casualty
insurers.
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Figure 2.2 – Predictive distribution of total unpaid losses - Complete hierarchical model

2.6 Conclusion

In this paper, we have studied different approaches to model the dependence between loss
triangles using multivariate copulas. If losses in different lines of business are correlated,
aggregate reserves must reflect this dependence. To allow a complex dependence relation,
we propose the use of new models using hierarchial Archimedean copulas. To illustrate the
model, an empirical illustration was performed using the same data as the one used by Shi
and Frees (2011). Based on the AIC, we show that the ICYD models provide a better fit than
PWD models. Furthermore, to show the interest of HCYD models and better highlight their
properties, the empirical illustration has also been performed on two other runoff triangles
from a major Canadian insurance company, which also allows us to expose the proposed model
to a wider range of situations. A hierarchical calendar year dependence seemed to be relevant
because the hierarchical Gumbel copula model was one of the best to adjust the data.
With the proposed models, we can derive analytically the value of the reserve. However, to
obtain the distribution of the reserve and to estimate the parameters, numerical evaluation is
necessary. Indeed, estimation and sampling are implemented in the R package copula. Also,
the total reserve estimate in the presence of dependence relies heavily on the choice of the
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dependence structure and the selected copula. This is a limitation of the joint estimation of
the marginal and dependence parameters. This undesirable effect will be addressed in a future
work within a two-stage inference strategy; see Côté et al (2016) for more details.
These new models that use hierarchical copula theory constitute a new way to model the
dependence structures of runoff triangles. Those models are promising tools to better take
into account dependencies within and between business lines. Indeed, this approach can easily
be generalized to more than two lines of business because hierarchical Archimedean copulas are
flexible and allow more refined possible dependence constructions. Because of their flexibility,
hierarchical copula models should also be considered in other areas of actuarial science.
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APPENDIX

Nested Archimedean Copula Density

To lighten the notation, let C(i,j)
θ (u, v) = ∂i+jCθ(u, v)

∂ui∂vj
for i, j ∈ {0, 1, 2}.

Following the equation (2.9), the 4-dimensional density of the hierarchical Archimedean copula
C2,1 for the second diagonal (t = 2) will be written as follows:

c2,1 (u1, u2, u3, u4) = ∂4

∂u1∂u2∂u3∂u4
C2,1 (C1,1 (u1, u2) , C1,2 (u3, u4))

= ∂3

∂u1∂u2∂u3
C

(0,1)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(0,1)

1,2 (u3, u4)

= ∂2

∂u1∂u2

[
C

(0,2)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,0)

1,2 (u3, u4)C(0,1)
1,2 (u3, u4)

+C(0,1)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,1)

1,2 (u3, u4)
]

= ∂

∂u1

[
C

(1,2)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(0,1)

1,1 (u1, u2)C(1,0)
1,2 (u3, u4)C(0,1)

1,2 (u3, u4)

+C(1,1)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(0,1)

1,1 (u1, u2)C(1,1)
1,2 (u3, u4)

]
= C

(2,2)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,0)

1,1 (u1, u2)C(0,1)
1,1 (u1, u2)C(1,0)

1,2 (u3, u4)C(0,1)
1,2 (u3, u4)

+C(1,2)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,1)

1,1 (u1, u2)C(1,0)
1,2 (u3, u4)C(0,1)

1,2 (u3, u4)
+C(2,1)

2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,0)
1,1 (u1, u2)C(0,1)

1,1 (u1, u2)C(1,1)
1,2 (u3, u4)

+C(1,1)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,1)

1,1 (u1, u2)C(1,1)
1,2 (u3, u4)

Data
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Table 2.8 – Cumulative paid losses for Ontario AB.

Accident Development Lag (in months)
Year 12 24 36 48 60 72 84 96 108 120 Premiums
2003 3043 5656 7505 8593 9403 10380 10450 10812 10856 10860 116491
2004 2070 4662 6690 8253 9286 9724 9942 10086 10121 111467
2005 2001 4825 7344 8918 9824 10274 10934 11155 107241
2006 1833 4953 7737 9524 10986 11267 11579 105687
2007 2217 5570 7898 8885 9424 10402 105923
2008 2076 5681 8577 10237 12934 111487
2009 2025 6225 9027 10945 113268
2010 2024 5888 8196 121606
2011 1311 3780 110610
2012 912 104304

Table 2.9 – Cumulative paid losses for West BI.

Accident Development Lag (in months)
Year 12 24 36 48 60 72 84 96 108 120 Premiums
2003 2279 8683 15136 21603 27650 30428 32004 32592 33009 34140 76620
2004 2139 7077 13159 16435 20416 22598 24171 25034 25714 65691
2005 1420 4888 8762 12184 14482 15633 17089 17710 55453
2006 1510 5027 10763 15799 19269 22504 24807 54006
2007 1693 5175 8216 12263 16918 20792 55425
2008 2097 7509 10810 15673 19791 59100
2009 2094 5174 8062 12389 54438
2010 1487 4789 7448 53483
2011 1868 6196 52978
2012 2080 57879
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Chapitre 3

Rank-Based Methods for Modeling
Dependence Between Loss Triangles

Résumé

Un des problèmes centraux en assurance non-vie est de déterminer une structure de dépen-
dance appropriée entre les triangles de développement. Souvent, la réserve totale estimée est
affectée par le choix de cette structure de dépendance.
Dans cet article, nous pallions ce problème en utilisant une procédure d’inférence en deux
étapes, où les distributions marginales sont d’abord estimées, puis un modèle de copule est
estimé en utilisant des procédures basées sur les rangs.
Nous considérons deux modèles de dépendance hiérarchique : le premier utilise les copules
archimédiennes imbriquées et le deuxième est basé sur une méthode d’agrégation des risques
avec des copules.
Nous analysons un portefeuille d’assurance de six lignes d’affaires d’une compagnie d’assurance
générale canadienne afin de supporter cette idée.
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Abstract

In order to determine the risk capital for their aggregate portfolio, property and casualty
insurance companies must fit a multivariate model to the loss triangle data relating to each
of their lines of business. As an inadequate choice of dependence structure may have an un-
desirable effect on reserve estimation, a two-stage inference strategy is proposed in this paper
to assist with model selection and validation. Generalized linear models are first fitted to the
margins. Standardized residuals from these models are then linked through a copula selected
and validated using rank-based methods. The approach is illustrated with data from six lines
of business of a large Canadian insurance company for which two hierarchical dependence
models are considered, i.e., a fully nested Archimedean copula structure and a copula-based
risk aggregation model.

3.1 Introduction

In Canada, the Own Risk and Solvency Assessment (ORSA) guideline from the Office of
the Superintendent of Financial Institutions (OSFI) requires that insurance companies set
internal targets for risk capital that are tailored to their consolidated operations. In order
to relate risk to capital and consider their operations as a whole, insurers are encouraged to
develop internal models for the aggregation of dependent risks. Similar regulations exist in
many countries worldwide.
To comply with regulatory standards, property and casualty insurance companies have to hold
reserves and risk capital relating to losses that are incurred but not yet paid. For each line of
business, payments relating to past claims are usually structured in a run-off triangle arranged
to rows according to the accident years, and to columns according to the development periods,
i.e., the years since the accident occurred. In order to determine a reserve, one must forecast
the payments that these ongoing claims will induce in future years, i.e., one must extend each
triangle to a rectangle by predicting the missing entries.
Several nonparametric approaches are available for developing claims in a run-off triangle,
most notably the chain-ladder method. In order to account for the dependence between tri-
angles, multivariate extensions of this technique have been proposed, e.g., by Braun (2004),
Pröhl and Schmidt (2005), Schmidt (2006), Merz and Wüthrich (2008), and Zhang (2010).
These techniques account for dependence in the computation of reserves and their prediction
errors but they do not provide the predictive distribution needed to obtain risk measures such
as Value-at-Risk (VaR) or Tail Value-at-Risk (TVaR). Their use in the determination of risk
capital is therefore limited.
Parametric approaches leading to the distribution of unpaid losses have been considered,
e.g., by Brehm (2002), Shi and Frees (2011), De Jong (2012), Shi et al (2012), Merz et al
(2013) and Abdallah et al (2015). Models investigated in these articles incorporate dependence
between lines of business and/or within calendar years of a line of business through Gaussian,
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Archimedean or Hierarchical Archimedean copulas. In these papers, the total reserve estimate
in the presence of dependence is not equal to the sum of the marginal reserves estimated
assuming independence. This is a by-product of the joint estimation of the marginal and
dependence parameters, which relies heavily on the choice of multivariate model for the run-
off triangles. An inadequate choice of dependence structure may then have a large, undesirable
effect on the estimation of the reserves. This is particularly worrying given that this choice
is typically based on very few data points (e.g., 55 observations for 10 accident years and 10
development periods). Tools are thus needed for assessing the dependence between run-off
triangles and selecting an appropriate model.
In this paper, we address this inferential issue within the context of a multivariate extension
of the pairwise model of Shi and Frees (2011), where the dependence between corresponding
cells of different run-off triangles is described by a copula. We propose to use an alternative
two-stage inference strategy, in which generalized linear models (GLMs) are first fitted to
the margins, thereby fixing the estimates of the reserves. In the second step, standardized
residuals from those models are linked through a dependence structure estimated using rank-
based methods. This general approach has a long history in the copula modeling literature;
see, e.g., Genest and Favre (2007) or Genest et Nešlehová (2012) for reviews. When dealing
with identically distributed data, rank-based methods are well-established tools for selecting,
estimating and validating copulas. To our knowledge, however, these techniques have never
been applied to run-off triangles.
To illustrate the proposed approach, we consider run-off triangles for six portfolios from a large
Canadian property and casualty insurance company. These data are described in Section 3.2
and appended. In Section 3.2.1, GLMs with log-normal and Gamma distributions are fitted
to the individual portfolios, and the properties of these two parametric families are exploited
in Section 3.2.2 to define residuals that are suitable for a dependence analysis through ranks.
Two different hierarchical approaches are then explored for modeling the dependence between
the lines of business.
In Section 3.3, a nested Archimedean copula model is fitted, along the same lines as Abdallah
et al (2015). As this model imposes many constraints on the dependence structure and the
choice of copulas, a more flexible approach considered by Arbenz et al (2012) and Côté and
Genest (2015) is implemented in Section 3.4. Risk capital calculations and allocations for
the two models are compared in Section 3.5, and Section 3.6 summarizes the pros and cons
of these approaches. Appendix 3.6 contains density calculations for the nested Archimedean
copula model, and the data (up to a multiplicative factor for confidentiality purposes) are
provided in Appendix 3.6, along with parameter estimates of the marginal GLMs.
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3.2 Data

The run-off triangle data considered in this paper are from a large Canadian property and
casualty insurance company. They consist of the cumulative paid losses and net earned premi-
ums for six lines of automobile and home insurance business. Tables 3.13–3.18 in Appendix 3.6
show the paid losses for accident years 2003–12 inclusively for each of the six lines of business
developed over at most ten years. To preserve confidentiality, all figures were multiplied by
a constant. However, this is inconsequential because in order to account for the volume of
business, the analysis focuses on the paid loss ratios, i.e., the payments divided by the net
earned premiums.
Table 3.1 gives a descriptive summary of each line of business (LOB). There are five run-off
triangles of personal and commercial auto lines with Accident Benefits and Bodily Injury
coverages from three regions (Atlantic, Ontario and the West). Atlantic Canada consists of
New Brunswick, Nova Scotia, Prince Edward Island and Newfoundland/Labrador; the West
comprises Manitoba, Saskatchewan, Alberta, British Columbia, Northwest Territories, Yukon,
and Nunavut. Given that Québec has a public plan for this section of auto insurance, business
for that province is included only in the sixth triangle, which comprises the company’s country-
wide Liability personal and commercial home insurance.
Bodily Injury (BI) coverage provides compensation to the insured if the latter is injured or
killed through the fault of a motorist who has no insurance, or by an unidentified vehicle.
The Accident Benefits (AB) coverage provides compensation, regardless of fault, if a driver,
passenger, or pedestrian suffers injury or death in an automobile collision. Disability income
is an insurance product that provides supplementary income when the accident results in a
disability that prevents the insured from working at his/her regular employment. For this rea-
son, AB disability income is considered separately from other AB. Finally, Liability insurance
covers an insured for his/her legal liability for injuries or damage to others.

Table 3.1 – Descriptive summary of six lines of business for a Canadian insurance company.

LOB Region Product Coverage

1 Atlantic Auto Bodily Injury
2 Ontario Auto Bodily Injury
3 West Auto Bodily Injury
4 Ontario Auto Accident Benefits excluding Disability Income
5 Ontario Auto Accident Benefits: Disability Income only
6 Country-wide Home Liability
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Figure 3.1 – Loss ratios for years 2003 (solid line) and 2004 (dashed line) in function of the
development lag for the six lines of business.

3.2.1 Marginal GLMs for Incremental Loss Ratios

For LOB ` ∈ {1, . . . , 6}, denote by Y (`)
i,j the incremental payment for the ith accident year

and the jth development period, where i, j ∈ {1, . . . , 10}. Given that the earned premiums
p

(`)
i vary with accident year i and line of business `, it is convenient to model the loss ratios,

defined by
X

(`)
i,j = Y

(`)
i,j /p

(`)
i .

In Figure 3.1, loss ratios X(`)
i,j for i = 1, 2, j = 1, . . . , 11 − i and ` = 1, . . . , 6 are shown. It is

clear from the graph that the loss ratio depends on the development lag for every portfolio.
By comparing the solid and dashed lines of the same color, one can also see that the accident
year has an impact. In order to capture these patterns, we consider a regression model with
two explanatory variables, i.e., accident year and development period. This is in line with the
classical chain-ladder approach.
For LOB ` ∈ {1, . . . , 6}, let κ(`)

i be the effect of accident year i ∈ {1, . . . , 10} and λ(`)
j be the

effect of development period j ∈ {1, . . . , 10}. The systematic component for the `th line of
business can then be written as

η
(`)
i,j = ζ(`) + κ

(`)
i + λ

(`)
j ,

where ζ(`) is the intercept, and for parameter identification, we set κ(`)
1 = λ

(`)
1 = 0. There is

no interaction term in this model, i.e., it is assumed that the effect of a given development
period does not vary by accident year. While this assumption is hard to check, it is required
to ensure that all parameters can be estimated from the 55 observations available.
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In their analysis of dependent loss triangles using copulas, Shi and Frees (2011) use the log-
normal and Gamma distributions for incremental claims. Their justification applies here as
well. Following these authors, we consider the link

µ
(`)
i,j = η

(`)
i,j

for a log-normal distribution with mean µ(`)
i,j and standard deviation σ(`) on the log scale. For

the Gamma distribution, however, we use the exponential link instead of the canonical inverse
link in order to enforce positive means. When the Gamma distribution is selected, therefore,
its scale and shape parameters are respectively denoted by β(`)

i,j and α(`), and it is assumed
that

β
(`)
i,j = exp(η(`)

i,j )/α(`).

Log-normal and Gamma distributions were fitted to all lines of business by the method of
maximum likelihood. Table 3.2 shows the corresponding values of the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC). These criteria suggest the
choice of the log-normal distribution for the first line of business and the Gamma distribution
for all others. These choices of models are confirmed by the Kolmogorov–Smirnov goodness-
of-fit test, whose p-values are also given in Table 3.2. No model is rejected at the 1% level.
Q-Q plots (not shown) of standardized residuals (defined below) provide visual confirmation
that the selected models are adequate, although the fit for LOB 6 is borderline.
Parameter estimates of the fitted models are given in Appendix 3.6 along with their standard
errors. Using these values, one can estimate the total reserve of the portfolio by

6∑
`=1

10∑
i=2

10∑
j=10−i+2

p
(`)
i E(X(`)

i,j ),

where E(X(`)
i,j ) is the projected unpaid loss ratio, and p

(`)
i is the premiums earned in the

corresponding accident year i. For ` = 1, we have

E(X(1)
i,j ) = exp{µ̂(1)

i,j + (σ̂(1))2/2},

Table 3.2 – Fit statistics and goodness-of-fit test of marginals.

LOB AIC BIC p-value of the
Log-normal Gamma Log-normal Gamma Kolmogorov–Smirnov test

1 −294 −291 −254 −251 0.886
2 −266 −270 −226 −230 0.643
3 −323 −324 −283 −283 0.397
4 −272 −276 −232 −236 0.135
5 −441 −444 −401 −404 0.478
6 −259 −267 −219 −226 0.019
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Figure 3.2 – Loss ratios (left), residuals (middle) and standardized ranks of the latter (right)
for LOBs 3 and 6.

while for ` > 1, E(X(`)
i,j ) = β̂

(`)
i,j α̂

(`). The estimated reserves of the six lines of business are given
at the bottom of Table 3.19 in Appendix 3.6, along with those derived from the chain-ladder
method, which is the industry’s benchmark. The two methods lead to similar results and total
reserve estimates of $438,088 and $453,686, respectively.

3.2.2 Exploratory Dependence Analysis

One would expect intuitively that the AB, BI and Liability claim payments are associated, as
these coverages all involve compensation for injuries or damage to the insured or to others.
One may also wonder whether there exist interactions between portfolios across regions. In
order to account for such dependencies between d ≥ 2 triangles, Shi and Frees (2011) propose
to link the marginal GLMs through a copula. This approach involves expressing the joint
distribution of the loss ratios in the form

Pr(X(1)
i,j ≤ x

(1)
i,j , . . . , X

(d)
i,j ≤ x

(d)
i,j ) = C{Pr(X(1)

i,j ≤ x
(1)
i,j ), . . . ,Pr(X(d)

i,j ≤ x
(d)
i,j )},

where C is a d-variate cumulative distribution function with uniform margins on (0, 1).
In order to select a copula C that appropriately reflects the dependence in the data, it is best
to rely on rank-based techniques as they allow to separate the effect of the marginals from
the dependence structure (Genest and Favre, 2007; Genest et Nešlehová, 2012).
To illustrate this point, consider first the graph displayed in the left panel of Figure 3.2,
which shows a scatter plot of the pairs (X(3)

i,j , X
(6)
i,j ) with i, j ∈ {1, . . . , 10} and j ≤ i. This

graph suggests a strong, positive dependence between BI in Western Canada and country-
wide Liability; in particular, the Pearson correlation is 0.56. However, the pattern of points on
this graph is induced by the systematic effects of the development lags and accident years. For
example, the seven points in the lower left corner of the graph all correspond to development
years 7–10. As these effects are already accounted for by the marginal GLMs, this graph is
uninformative (not to say misleading) for the selection of C.
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To get insight into the dependence structure, it is more relevant to consider the residuals from
the GLMs. For LOB 1, (standardized) residuals of the log-normal regression model can be
defined, for all i, j ∈ {1, . . . , 10} and j ≤ i, as

ε
(1)
i,j = {ln(X(1)

i,j )− µ̂(1)
i,j }/σ̂

(1),

while for LOB ` ∈ {2, . . . , 6}, the fact that Gamma regression models were used leads to set

ε
(`)
i,j = X

(`)
i,j /β̂

(`)
i,j .

In this fashion, the vectors (ε(1)
i,j , . . . , ε

(6)
i,j ) with i, j ∈ {1, . . . , 10} and j ≤ i form a pseudo-

random sample from a distribution with copula C and margins approximately N (0, 1) for
` = 1 and G(α̂(`), 1), for ` ∈ {2, . . . , 6}.
As an illustration, the middle panel of Figure 3.2 shows a scatter plot of the pairs (ε(3)

i,j , ε
(6)
i,j ).

This graph suggests a form of positive dependence (Pearson’s correlation is 0.34), but the
message is blurred by the effect of the Gamma marginals. As the goal is to select the copula
C, which does not depend on the margins, it is preferable to plot the pairs of normalized
ranks, as in the right panel of Figure 3.2. For arbitrary i, j ∈ {1, . . . , 10} and j ≤ i, the
standardized rank of residual ε(`)i,j is defined by

R
(`)
i,j = 1

55 + 1

10∑
i∗=1

11−i∗∑
j∗=1

1(ε(`)i∗j∗ ≤ ε
(`)
i,j ),

where, in general, 1(A) is the indicator function of the set A and the division by 56 rather
than 55 is to ensure that all standardized ranks are strictly comprised between 0 and 1.
Let Cn be the empirical distribution function of the vectors (R(1)

i,j , . . . , R
(d)
i,j ), with i, j ∈

{1, . . . , 10} and j ≤ i. It can be shown, under suitable conditions on the underlying cop-
ula C, that Cn is a consistent estimator thereof. Accordingly, the vectors of standardized
ranks, which form the support of Cn, are a reliable tool for copula selection, fitting and vali-
dation. In particular, all rank-based tests of bivariate or multivariate independence are based
on Cn.
For example, the right panel of Figure 3.2 shows the pairs of standardized ranks associated
with the residuals from the West BI and the country-wide Liability coverages. One can see
from this graph that there is a residual dependence between these two portfolios. In particular,
the correlation between these pairs is 0.40; this rank-based correlation is a consistent estimate
of Spearman’s ρ. Alternative copula-based measures of association between two variables are
Kendall’s τ and van der Waerden’s coefficient Υ. Thus one can test the null hypothesis of
bivariate independence by checking whether the empirical values of these coefficients are
significantly different from 0; see, e.g., Hollander et al (2014). Table 3.3 gives estimates of ρ,
τ and Υ for the pair (ε(3), ε(6)), along with the p-values of the corresponding tests; the null
hypothesis of independence is rejected at the 1% level in all cases.
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Table 3.3 – Nonparametric tests of independence.

Kendall’s test Spearman’s test Van der Waerden test
τ̂ p-value ρ̂ p-value Υ̂ p-value

0.29 0.0021 0.40 0.0023 18.27 0.0055

The null hypothesis of multivariate independence between the six LOBs can also be assessed
globally using rank tests based on d-variate generalizations of ρ, τ or Υ. In particular, the
d-variate version of Kendall’s τ is given, e.g., in Genest et al (2011), by

τd,n = 1
2d−1 − 1

−1 + 2d
n(n− 1)

∑
(i,j)6=(i∗,j∗)

1
(
ε

(1)
i∗j∗ ≤ ε

(1)
i,j , . . . , ε

(6)
i∗j∗ ≤ ε

(6)
i,j

) = 0.035.

Under the hypothesis of multivariate independence, τd,n has mean 0, finite sample variance

var(τd,n) = n(22d+1 + 2d+1 − 4× 3d) + 3d(2d + 6)− 2d+2(2d + 1)
3d(2d−1 − 1)2n(n− 1) = 1.59× 10−4,

and its distribution is asymptotically Gaussian. The approximate p-value of the test is 0.53%,
suggesting that the residuals are dependent. The most dependent pairs of variables can be
identified from Table 3.4, where all values of τ2,n are displayed. Values shown in bold are those
that would be significantly different from 0 at the 5% level in a single pairwise test. Although
this level must be interpreted with care due to the multiple comparison issue, the two largest
values in Table 3.4 are still significantly different from 0 at the global 5% level even when the
very conservative Bonferroni correction is applied.
Given the presence of dependence, the challenge is then to select a copula that best reflects
the association between the variables. Many parametric families of copulas are available; see,
e.g., McNeil et al. (2015) or Nelsen (2006) for the definition and properties of the Clayton,
Frank, Plackett and t copula families used subsequently. Given a class C = {Cθ : θ ∈ Θ} of d-
dimensional copulas, a rank-based estimate θ̂ of the dependence parameter θ can be obtained

Table 3.4 – Empirical values of Kendall’s τ for all pairs in the portfolio.

ε(1) ε(2) ε(3) ε(4) ε(5) ε(6)

ε(1) 1.000 0.115 0.024 −0.061 0.014 0.076
ε(2) 0.115 1.000 −0.331 0.244 0.209 −0.090
ε(3) 0.024 −0.331 1.000 0.040 −0.079 0.285
ε(4) −0.061 0.244 0.040 1.000 0.200 0.030
ε(5) 0.014 0.209 −0.079 0.200 1.000 0.046
ε(6) 0.076 −0.090 0.285 0.030 0.046 1.000
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Table 3.5 – Parameter estimates and goodness-of-fit test p-value.

Copula Parameter Standard Deviation p-value

Clayton 0.584 0.194 0.0804
Frank 2.804 0.836 0.7557
Plackett 3.777 1.426 0.7747
t2 0.375 0.155 0.2323

from loss-triangle data by maximizing the pseudo log-likelihood

L(θ) =
10∑
i=1

11−i∑
j=1

ln{cθ(R(1)
i,j , . . . , R

(d)
i,j )},

where cθ is the density of Cθ. The consistency and asymptotic normality of estimators of this
type was established by Genest et al (1995) under broad regularity conditions. The adequacy
of the class C can then be tested using the Cramér–von Mises statistic defined by

Sn =
∫

[0,1]d
{Cn(u1, . . . , ud)− Cθ̂(u1, . . . , ud)}2u. 1 · · · u. d.

The p-value of a test of the hypothesis H0 : C ∈ C based on the statistic Sn can be computed
via a parametric bootstrap procedure described in Genest et al. (2009). Both the estimation
and the goodness-of-fit procedures are available in the R package copula. For illustration,
Table 3.5 shows the parameter estimates, standard deviation and the p-value of the goodness-
of-fit test for four copula families fitted to the pairs of residuals (ε(3), ε(6)) from the West
BI and country-wide Liability triangles. This suggests that the Clayton copula would be a
poor choice for these data; given the small sample size, however, it does not seem possible to
discriminate between the other three copula families on the basis of Sn.
This model selection, fitting and validation procedure is standard and straightforward to
implement in two dimensions. However, the canonical d-variate generalizations of bivariate
copulas typically lack flexibility: either they are exchangeable and/or their lower-dimensional
margins are all of the same type. With six lines of business, these assumptions may be too
restrictive. As one can see in Figure 3.3, different pairs of residuals exhibit different types of
association; this is also confirmed by the values of Kendall’s τ reported earlier in Table 3.4.
In particular, Ontario LOBs exhibit positive dependence, while the BI coverages for Ontario
and the West are negatively associated.
The fact that many variables are positively dependent is due in part to exogenous common
factors such as inflation and interest rates. Furthermore, strategic decisions can impact several
portfolios, e.g., the acceleration of payments on all lines of the liability insurance sector could
induce some dependence between West BI and country-wide Liability. At a more basic level,
the positive association between Ontario AB and BI can be explained by the fact that the
same accident will often arise in both coverages. Finally, jurisprudence can play a role. For
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Figure 3.3 – Scatter plot of residuals between different LOBs.

example, reforms were engaged in the Atlantic region to control BI costs; this may explain
why LOB 1 is seemingly independent from all other lines of business.

3.3 Nested Archimedean Copula Model

Nesting Archimedean copulas is a popular way of constructing non-exchangeable multivariate
dependence models. This approach, originally proposed by Joe (1997), was further investi-
gated, e.g., by Embrechts et al (2003), Whelan (2004) and Savu and Trede (2010). In the
reserving literature, Abdallah et al (2015) exploited nested Archimedean copulas to model
the dependence between two run-off triangles. In what follows, this approach is extended to
higher dimensions using a specific structure called fully nested Archimedean copulas.
Following Genest and MacKay (1986) or Nelsen (2006), a bivariate copula is said to be
Archimedean with generator ϕ1 : (0, 1]→ [0,∞) if it can be expressed, for all (u1, u2) ∈ (0, 1)2,
in the form

C1(u1, u2) = ϕ−1
1 {ϕ1(u1) + ϕ1(u2)},

where ϕ1 is convex, decreasing and such that ϕ1(1) = 0. More generally, a (d + 1)-variate
copula Cd is said to be a fully nested Archimedean copula with generators ϕ1, . . . , ϕd if it is
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defined recursively for all (u1, . . . , ud+1) ∈ (0, 1)d+1, by

C2(u1, u2, u3) = ϕ−1
2 [ϕ2(u3) + ϕ2{C1(u1, u2)}],

... =
...

Cd(u1, . . . , ud+1) = ϕ−1
d [ϕd(ud+1) + ϕd{Cd−1(u1, . . . , ud)}].

As shown by McNeil (2008), Cd is a copula when the following conditions hold:

(i) ϕ−1
1 , . . . , ϕ−1

d are completely monotone, i.e., Laplace transforms;

(ii) ϕk+1 ◦ ϕ−1
k has completely monotone derivatives for all k ∈ {1, . . . , d− 1}.

This model is such that if (U1, . . . , Ud+1) is distributed as Cd, the copula linking variables Uj
and Uk is Archimedean with generator ϕk−1 for all j < k. Because of condition (ii), one must
also have

τ(Uk, U`) ≤ τ(Ui, Uj), i < j < `, k < `. (3.1)

Algorithms for generating data from Cd were given by McNeil (2008) and Hofert (2011).
Hofert and Mächler (2011) also wrote the R package nacopula (now merged into copula)
that can be used to simulate from fully nested Archimedean copulas in any dimension.
Figure 3.4 depicts the fully nested Archimedean structure used to model the dependence
between the residuals of the six lines of business. In this structure, copula C1 links the two
components of the Ontario AB coverage. Their dependence with Ontario BI coverage is then
incorporated at level 2. The West BI and the country-wide Liability coverages are then in-
cluded at levels 3 and 4, respectively. Anti-ranks (i.e., the ranks of the negative residuals) had
to be used at levels 3 and 4, because of the constraints imposed by (3.1) and the fact that
the residuals for LOB 3 are negatively associated with LOB 2 and positively associated with
LOB 6. Finally, the Atlantic BI coverage was included at the last step given its apparent lack
of dependence with the other lines of business. This overall structure is in accordance with
ratemaking practices, as the rating is typically performed on a territorial basis. One may thus
expect the dependence between lines of business to be larger when they are from the same
region than when they are not.
In what follows, it is assumed that for each k ∈ {1, . . . , 5} and all t ∈ (0, 1),

ϕk(t) = − ln
(
e−tθk − 1
e−θk − 1

)

for some θk ∈ R. In other words, the nested copulas are taken to be from the Frank family,
which spans all degrees of dependence between −1 and 1, as measured by Kendall’s τ . A
rank-based estimate θ̂ of the vector θ = (θ1, . . . , θ5) characterizing the dependence structure
is then obtained by maximizing the pseudo-likelihood function

L(θ) =
10∑
i=1

11−i∑
j=1

ln{c(R(4)
i,j , R

(5)
i,j , R

(2)
i,j , 1−R

(3)
i,j , 1−R

(6)
i,j , R

(1)
i,j ;θ)},
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Figure 3.4 – Tree structure for the fully nested Archimedean copula model.

where c is the density of the fully nested Archimedean copula. As shown in Appendix 3.6, the
evaluation of this density is straightforward but computationally intensive in high dimensions.
Therefore, due to evidence that residuals for LOB 1 are independent from residuals for other
LOBs, θ5 was set equal to 0.
The maximization of the pseudo-likelihood for the model with four levels leads to the pa-
rameter estimate θ̂ = (2.693, 2.354, 1.782, 0.867). However, a 95% confidence interval for θ4

based on 1000 bootstrap replicates includes 0, which corresponds to independence in the
Frank copula family. Accordingly, the dependence is significant only in the first three levels
of the hierarchy. The parameters of the reduced model with θ4 = θ5 = 0 were estimated once
again by the maximum pseudo-likelihood method. This led to θ̂ = (2.577, 2.233, 1.776), whose
components are all significantly different from 0.
Figure 3.5 shows the approximate distribution of θ̂3 (left), θ̂2 (middle), and θ̂1 (right) based
on 10,000 bootstrap replicates. In that figure, the dashed blue lines represent 95% confidence
intervals for the parameters, none of which includes 0. There are hints in the figure that the
distribution of the estimators (especially θ̂1) may not be Normal. This is likely due to the
constraint θ3 ≤ θ2 ≤ θ1. In the bottom row of Figure 3.5, one can observe that parameters
on the boundary of their domain are relatively frequent: θ̂1 = θ̂2 in 14.3% of the replicates,
θ̂3 = θ̂2 in 9.9% of the replicates, and θ̂1 = θ̂2 = θ̂3 in 4.8% of the replicates.
To check for model adequacy, a random sample of size 500 from the fitted model was generated.
A test of the hypothesis that the underlying copula of this sample is the same as that of the
original data was then carried out using the rank-based procedure of Rémillard and Scaillet
(2009). The test statistic was computed with the R package TwoCop and led to an approximate
p-value of 31%, suggesting that the fit is not inadequate.
As an additional informal check, random samples of size 55 were drawn from the fitted 6-
dimensional copula and compared visually to the empirical copula by looking at rank plots of
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Figure 3.5 – Fully nested Archimedean copula model: histograms of bootstrap parameters
with 95% confidence interval (top row) and scatter plots of bootstrap replications (bottom
row).

selected pairs. Figure 3.6 shows one result from such a comparison of pairs (LOB 2, LOB `)
with ` ∈ {3, 4, 5} and (LOB 3, LOB 4). The rank plots derived from the residuals are in the
top row, and those corresponding to the random sample are in the bottom row. The positive
dependence between Ontario risks seems to be accurately captured by the model. Although
the negative association between LOBs 2 and 3 is taken into account, one can see in the second
column of Figure 3.6 that negative dependence is induced between LOBs 3 and 4. This is an
artifact of the dependence structure, which assumes from the start that the pairs (−3, `), with
` ∈ {2, 4, 5} have the same degree of association. Table 3.4 suggests that this is not the case.
This issue could have been avoided by grouping LOBs 2 and 3 earlier in the structure, but
at the expense of the overall fit of the model. A more flexible modeling approach is presented
below.

3.4 Copula-Based Risk Aggregation Model

In this section, a hierarchical approach to loss triangle modeling is considered. It appears to
have been originally proposed by Swiss reinsurance practitioners (Bürgi et al., 2008; SCOR,
2008) but was formalized by Arbenz et al (2012). Estimation and validation procedures for this
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Figure 3.6 – Adequacy check for the fully nested Archimedean copula model: ranks of pairs
of residuals (top row) and pairs of simulations from the model (bottom row).

class of models are described in Côté (2014) and Côté and Genest (2015), where rank-based
clustering techniques are also proposed for selecting an appropriate structure.
The model is defined using a tree comprising d−1 nodes, each of which has two branches. An
example of such a structure is shown in the left panel of Figure 3.7. At each node, a copula
describes the dependence between the two components which are then summed and viewed
as a single risk in higher levels of the hierarchy. For example, C4,5 denotes the copula linking
ε(4) and ε(5) and S4,5 = ε(4) + ε(5), while C2,...,6 is the copula linking aggregated risks S2,3,6

and S4,5.
A joint distribution for the d variables is then defined in terms of d − 1 bivariate copulas
and d marginal distributions under a conditional independence assumption. This assumption,
which is reasonable in the present context, states that conditional on a sum at a given node,
the descendents of that node are independent of the non-descendents. For additional details,
see Arbenz et al (2012) and Côté and Genest (2015).
This strategy is simple to implement, as it builds on tools already available for bivariate
copula selection, inference, and validation. Furthermore, the d − 1 copulas in the model can
be chosen freely, thereby providing great flexibility in the dependence structure. Moreover,
hierarchical clustering techniques can be adapted to obtain an appropriate tree structure.
As explained in Côté and Genest (2015), it is appealing to model first the risks that are the
most dependent in some sense. In this paper, the distance based on Kendall’s τ ,

∆(ε(`), ε(k)) =
√

1− τ2(ε(`), ε(k)),
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Figure 3.7 – Illustration of the tree structure and dendrogram for the copula-based aggregation
model.

is maximized at each step to obtain the dendrogram displayed in the right panel of Figure
3.7. Risks 2 and 3 are grouped in the first step. Given that they are negatively associated, it
was deemed preferable to work with −ε(3) as was done in the previous section.
Before selecting appropriate copulas for each aggregation step, Kendall and van der Waerden
tests of independence were performed to see if the dependence is significant. The resulting
p-values are shown in Table 3.6, where one can see that independence is rejected for the
first four aggregation steps, but not at the last one. This is not surprising as the preliminary
analysis of the data already suggested that the Atlantic BI line of business is not related to
the others. Unlike the nested Archimedean copula model, the risk aggregation model captures
the existing dependence between West BI and country-wide Liability lines, and includes the
latter in the dependence analysis.
Given that the independence hypothesis cannot be rejected at the last node, there are only
four copulas to be fitted, namely C2,3, C2,3,6, C4,5 and C2,...,6. Based on rank plots, tests of
extremeness from Ben Ghorbal et al. (2009) and goodness-of-fit tests based on the Cramér–
von Mises distance Sn, parametric families of bivariate copulas were selected and fitted by
maximum pseudo-likelihood. The final choices are summarized in Table 3.7.
The model validation technique described in Côté and Genest (2015) was used. It relies on a

Table 3.6 – Results of tests of independence at each aggregation step.

Variables τ p-value
Van der Waerden test Kendall test

ε(2) −ε(3) 0.331 0.0004 0.0004
S2,3 ε(6) 0.300 0.0020 0.0012
ε(4) ε(5) 0.200 0.0541 0.0311
S2,3,6 S4,5 0.098 0.0406 0.2925
S2,...,6 ε(1) 0.075 0.3401 0.4204
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Table 3.7 – Copula family and parameter estimates.

Step Copula Parameter SD Kendall’s τ p-value GoF test

C2,3 Plackett 5.349 2.021 0.36 0.523
C2,3,6 Frank 2.864 0.986 0.29 0.714
C4,5 Clayton 0.548 0.215 0.22 0.147
C2,...,6 t2 0.162 0.180 0.10 0.358

simulation algorithm proposed by Arbenz et al (2012) and validated by Mainik (2015). Based
on a random sample of size 500 from the model, the test of Rémillard and Scaillet (2009) led to
an approximate p-value of 52%. Therefore, the null hypothesis that both samples are coming
from the same copula cannot be rejected. This suggests that the selected hierarchical model is
appropriate, and that the conditional independence assumption is reasonable. A visual check
of the latter assumption confirms this finding.
Looking at Figure 3.8, one can see that the pitfalls of the nested Archimedean copula model
have been addressed: there is no negative dependence between LOBs 3 and 4, and the model
induces positive dependence between LOBs 3 and 6. However, the extent of the association
between Ontario AB and BI risks is not portrayed as vividly in the aggregation model as it
was in the nested Archimedean copula model. Over all, the risk aggregation model provides
a faithful description of the data.
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Figure 3.8 – Adequacy check for the copula-based risk aggregation model: ranks of pairs of
residuals (top row) and pairs of simulations from the model (bottom row).
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Note that if desired, a modification of the tree structure would make it possible to account
for the dependence between LOB 2 and the pair (LOB 4, LOB 5). In that case, however, the
negative dependence between LOBs 2 and 3 would be masked.

3.5 Predictive Distribution and Risk Capital

The goal of loss triangle modeling is to forecast the unpaid loss by completing the triangle into
a rectangle. Insurance companies are interested in the expected unpaid loss — the reserve
— but also in its standard deviation, and other risk measures defined in terms of a risk
tolerance κ ∈ (0, 1) such as the Value-at-Risk (VaR) and the Tail Value-at-Risk (TVaR). In
principle, these various measures could all be computed for the nested Archimedean copula
model (Model I) and the risk aggregation model (Model II), given that they both specify a
distribution for the total unpaid claims. As these distributions cannot be obtained explicitly
through a convolution, however, all risk measures must be estimated by simulation. To obtain
one realization of the total unpaid loss, one can proceed as follows.

Simulation Procedure

1. Simulate 45 observations from the dependence model.

2. Transform these observations into loss ratios X(`)
i,j for each LOB ` ∈ {1, . . . , 6}, devel-

opment year j ∈ {2, . . . , 10} and accident year i ∈ {12− j, . . . , 10} by using appropriate
inverse probability transforms.

3. For each LOB ` ∈ {1, . . . , 6}, compute the simulated unpaid loss

X(`) =
10∑
i=2

10∑
j=12−i

p
(`)
i X

(`)
i,j

as well as the total unpaid loss S = X(1) + · · ·+X(6).

Consistent estimates of the risk measures can be derived easily from n independent copies of
the unpaid loss S1, . . . , Sn. Let Fn be the corresponding empirical distribution function. Then

V̂aRκ(S) = inf{s ∈ R|Fn(s) ≥ κ} = sκ

and

T̂V aRκ(S) = 1
1− κ

 1
n

n∑
j=1

Sj1(Sj > sκ) + sκ{Fn(sκ)− κ}

 .
Table 3.8 shows risk measures for the total unpaid loss based on 500,000 simulations for Models
I and II. Given the GLMs fitted to the marginal distributions, one would expect an average
total unpaid loss of $438,088; the small discrepancy between this value and the approximations
is due to simulation. The risk measures are all smaller for Model I than for Model II. This
is slightly surprising because Model II takes into account the negative dependence between
LOBs 2 and 3; intuitively, one would thus expect more risk diversification under Model II than
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under Model I. Nevertheless, Model II is more conservative than Model I in the sense that
it does not assume that LOB 6 is independent from the other lines of business. In addition,
Model II is based in part on Plackett and t2 copulas, which exhibit tail dependence, whereas
members of Frank’s copula family in Model I do not.
Insurance companies also have to determine capital allocations, i.e., the share of the risk cap-
ital to be allocated to each LOB. This exercise helps to identity the most and least profitable
sectors of activities in a company. Capital allocation principles have first been introduced by
Tasche (1999); see Bargès et al. (2009) for a review. Here, TVaR-based capital allocations are
used. If

X(`) =
10∑
i=2

10∑
j=12−i

p
(`)
i X

(`)
i,j

is the unpaid loss for LOB `, the capital allocated to that LOB is

TV aRκ(X(`);S) = E[X(`)1{S > VaRκ(S)}] + βκ E[X(`)1{S = VaRκ(S)}]
1− κ ,

where βκ = [FS{VaRκ(S)}−κ]/Pr{S = VaRκ(S)} if the denominator is strictly positive and
0 otherwise. This quantity can be estimated by

T̂V aRκ(X(`);S) = 1
n(1− κ)


n∑
j=1

X
(`)
j 1(Sj > sκ) + Fn(sκ)− κ

1
n

n∑
k=1

1(Sk = sκ)

n∑
j=1

X
(`)
j 1(Sj = sκ)

 ,

whereX(`)
1 , . . . , X

(`)
n are the n realizations ofX(`) corresponding to the realizations S1, . . . , Sn.

In Table 3.9, TVaR-based capital allocations are shown for both models as well as for the
“Silo” method, which is widespread in industry (Ajne, 1994). It is clear that the Silo method
overestimates the total capital required as it implicitly assumes that risks are comonotonic,

Table 3.8 – Risk measures for 500,000 simulations.

Model Average St. Dev. VaR95% VaR99% TV aR99%

I $438,115 $13,706 $460,938 $470,750 $475,697
II $438,101 $13,808 $461,179 $471,486 $476,763

Table 3.9 – Risk capital allocation for 500,000 simulations.

TV aR99% - based capital allocations
Model LOB 1 LOB 2 LOB 3 LOB 4 LOB 5 LOB 6 Total

Silo $42,510 $157,764 $87,141 $90,237 $22,027 $118,807 $518,485
I $37,006 $151,247 $82,578 $74,320 $18,639 $111,907 $475,697
II $36,891 $147,418 $79,719 $81,928 $19,285 $111,521 $476,763
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thereby preventing any form of diversification. The results for Models I and II are similar.
While the capital allocations for LOBs 4 and 5 are higher in Model II than in Model I, they
are lower for LOBs 2 and 3, outlining the additional risk diversification that is possible in the
presence of negative dependence.
The risk measures in Tables 3.8 and 3.9 could be used to set internal capital targets, but they
do not incorporate parameter uncertainty, as the model is assumed to be correct. However, a
parametric bootstrap can be used in order to quantify estimation error and to tackle potential
model over-fitting; see, e.g., Taylor and McGuire (2007) or Shi and Frees (2011). For the
present purpose, it was assumed that the tree structure, the copula families, and the marginal
distributions are given, except for their parameter values. The following procedure was then
repeated a large number of times (10,000 here) in order to obtain the approximate distribution
of the unpaid loss, including parameter uncertainty.
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Parametric Bootstrap Procedure

1. Simulate 55 observations from the dependence model, and transform them into obser-
vations of the loss ratios for the top triangle, i.e., all accident years i ∈ {1, . . . , 10} and
development years j ∈ {1, . . . , 11− i}, using the inverse marginal distributions.

2. Fit the marginal GLMs (log-normal for LOB 1 and Gamma for LOBs 2–6).

3. Compute the residuals from the GLMs.

4. Fit the copula model to the ranks of the residuals obtained.

5. From this new model, simulate the total unpaid loss using the steps described under
“Simulation Procedure”. The aggregate value is the simulated total unpaid loss.

The results for the nested Archimedean copula model should be interpreted with caution,
however, because the constraints on the dependence parameters in this model, and notably
the fact that θ̂2 is close to θ̂1, may invalidate the parametric bootstrap (Andrews, 2000).
Tables 3.10 and 3.11 show risk measures and capital allocations obtained with 10,000 boot-
strap simulations, while Figure 3.9 shows the predictive distribution obtained for Model I (left)
and Model II (right). The risks measures in Table 3.10 are similar for both models and are
much higher than those reported in Table 3.8; this highlights the importance of incorporating
parameter uncertainty. Unsurprisingly, most of the increase in risk measures when including
parameter uncertainty is due to the 6×20 = 120 marginal GLM parameters. Table 3.12 shows
the risk measures obtained with the parametric bootstrap procedure without Step 4, i.e., the
dependence parameters are fixed to their initial value estimated with the original data. The
resulting risk measures are close to those found in Table 3.10, even though the uncertainty in
the copula parameters is not accounted for when Step 4 is omitted.
Finally, the figures in Table 3.11 are in line with those of Table 3.9. In particular, observe
that Model II allocates less capital to LOB 6 than Model I, reflecting the fact that LOB 6

Table 3.10 – Risk measures for 10,000 bootstrap simulations.

Model Average St. Dev. VaR95% VaR99% TV aR99%

I $443,041 $31,291 $496,780 $521,293 $539,205
II $442,957 $31,038 $496,470 $522,417 $535,536

Table 3.11 – Risk capital allocation for 10,000 bootstrap simulations.

TV aR99% - based capital allocations
Model LOB 1 LOB 2 LOB 3 LOB 4 LOB 5 LOB 6 Total

Silo $60,740 $189,466 $103,465 $111,946 $26,637 $157,345 $649,599
I $40,519 $167,492 $90,228 $75,015 $18,565 $147,386 $539,205
II $41,919 $158,306 $83,978 $88,665 $20,858 $141,810 $535,536
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Figure 3.9 – Predictive distributions based on 10,000 bootstrap replicates.

is related to LOBs 2 and 3 in Model II. In view of these results, the insurer might consider
increasing the volume of LOB 3 to take better advantage of risk diversification.

3.6 Summary and Discussion

In this paper, rank-based procedures were introduced for the selection, estimation and vali-
dation of dependence structures for run-off triangles of property and casualty insurance claim
data. The approach was illustrated using data from six lines of business of a large Canadian
insurance company. Two hierarchical approaches were considered for modeling the pairwise
dependence between different lines of business, i.e., fully nested Archimedean copulas and a
copula-based risk aggregation model.
As simple and convenient as the nested Archimedean copula model may seem, its implementa-
tion raises more issues than one might anticipate initially. The success of this approach hinges
on the choice of hierarchy and Archimedean generators at each of its levels. In principle,
different Archimedean generators could be used throughout the structure, but the conditions
required to ensure that the construction is valid are not always easy to verify. As there is no
selection technique for generators, practitioners typically assume that they are all from the

Table 3.12 – Risk measures for 10,000 bootstrap simulations including uncertainty for marginal
parameters only.

Model Average St. Dev. VaR95% VaR99% TV aR99%

I $443,554 $31,390 $496,781 $522,696 $535,069
II $442,937 $30,928 $495,620 $520,986 $534,703
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same parametric family ϕθ. In the latter case, conditions for the validity of the nested copula
typically boil down to the constraint θ1 ≥ · · · ≥ θd; see, e.g., Hofert (2010).
As illustrated in the present paper, the use of the same generator throughout a fully nested
Archimedean copula model has strong implications on the dependence structure. In particular,
each variable is linked by the same bivariate copula to any variable appearing in a lower level
of the hierarchy and, therefore, shares the same dependence characteristics with all of them
in terms of symmetry, tail dependence, etc. In addition, the conditions stated in Eq. (3.1) are
not only restrictive, but are also problematic for the parametric bootstrap. Indeed, when a
bootstrap sample leads to unconstrained estimates θ̂1, . . . , θ̂d such that θ̂1 ≥ · · · ≥ θ̂d fails, one
or more of the constrained parameter estimates end up being equal to 0. When this happens
repeatedly, the dependence between the LOBs is underestimated. Thus, it is still unclear
that this model can be used in a parametric bootstrap procedure to obtain the predictive
distribution of unpaid losses, due to the optimization problem that is not standard.
Working with the risk aggregation model allows one to avoid most of these issues. The tree
structure can be determined using hierarchical clustering and the copulas can be chosen freely
at each aggregation step. In addition, standard tools for bivariate copula selection, estimation,
and validation are available. Moreover, the application of the parametric bootstrap to this
context is standard, as there are no constraints on the parameters. Overall, the model pro-
vides greater flexibility and the dependence structure can be considerably more complex than
what can be achieved with the nested Archimedean approach. However, the conditional inde-
pendence assumption must be satisfied (at least approximately) and formal tools for checking
this assumption remain to be developed. Another minor irritant is the fact that simulation
from this model relies on the Iman–Conover reordering algorithm, which is efficient but not
yet included in standard software; in contrast, sampling from the fully nested Archimedean
copula is easily done with the R package copula.
Perhaps the most significant limitation of the rank-based approach to risk aggregation mod-
eling described here is that it can only be applied to data or residuals that are (at least
approximately) identically distributed. Another requirement for this approach to make sense
is that the sums that are linked by the copulas have the same number of components. This
means that the risk aggregation model cannot be extended easily to include calendar year
dependence, as Abdallah et al (2015) did using nested Archimedean copulas. Unfortunately,
this approach is not amenable to estimation and validation procedures based on ranks, as
there is then only one observation for each copula in the model.
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APPENDIX
Nested Archimedean Copula Density

The 3-dimensional fully nested Archimedean copula is defined, for all u, v, w ∈ (0, 1), by

C(u, v, w) = Cθ2{w,Cθ1(u, v)},
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where θ1 ≥ θ2 ≥ 0. To ease notation, let C(i,j)
θ (u, v) = ∂i+jCθ(u, v)/∂ui∂vj for i, j ∈ {0, 1, 2}.

The density of the nested Archimedean copula can be derived easily using the chain rule, viz.

c(u, v, w) = ∂3

∂u∂v∂w
Cθ2{w,Cθ1(u, v)} = ∂2

∂u∂v
C

(1,0)
θ2
{w,Cθ1(u, v)}

= ∂

∂u

[
C

(1,1)
θ2
{w,Cθ1(u, v)}C(0,1)

θ1
(u, v)

]
= C

(1,2)
θ2
{w,Cθ1(u, v)}C(1,0)

θ1
(u, v)C(0,1)

θ1
(u, v) + C

(1,1)
θ2
{w,Cθ1(u, v)}C(1,1)

θ1
(u, v).

This expression is explicit, though it involves partial derivatives. In the case of the Frank
family, the expressions required are the copula

Cθ(u, v) = −1
θ

ln
{

1 + (e−θu − 1)(e−θv − 1)
(e−θ − 1)

}
,

its density

C
(1,1)
θ (u, v) = cθ(u, v) = −θe−θ(u+v)(e−θ − 1)

{(e−θ − 1) + (e−θu − 1)(e−θv − 1)}2 ,

and the following partial derivatives:

C
(1,0)
θ (u, v) = ∂Cθ(u, v)

∂u
= e−θu(e−θv − 1)

(e−θ − 1) + (e−θu − 1)(e−θv − 1) = C
(0,1)
θ (v, u),

C
(1,2)
θ (u, v) = ∂cθ(u, v)

∂v
= −θ

2(e−θ − 1)e−θ(u+v){(e−θv + 1)(e−θu − 1)− (e−θ − 1)}
{(e−θ − 1) + (e−θu − 1)(e−θv − 1)}3 .

A similar procedure can be used to obtain the copula density in dimensions 4 and 5. The for-
mulas are available from the authors upon request or can be derived through long but routine
calculations facilitated by resorting to a symbolic calculator such as Maple or Mathematica.
Data and Marginals

Tables 3.13–3.18 provide the net earned premiums and the cumulative paid losses for accident
years 2003–12 inclusively for each of LOBs 1–6 developed over at most ten years. To preserve
confidentiality, all figures were multiplied by a constant.
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Table 3.13 – Cumulative paid losses for LOB 1.

Accident Development Lag (in months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 1404 4445 8037 9885 11272 12465 13892 14433 15127 15580 43028
2004 437 2222 3805 4821 6065 6961 7266 8385 8645 29905
2005 408 2170 4369 6995 7996 9450 11104 11569 31780
2006 372 1785 4757 6368 8377 9470 10122 30381
2007 404 1965 3953 6454 7507 8142 28939
2008 355 2069 3661 5161 6121 27844
2009 1316 2955 4839 5896 25812
2010 298 2595 4582 24188
2011 402 2475 23412
2012 553 23993

Table 3.14 – Cumulative paid losses for LOB 2.

Accident Development Lag (in months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 3488 14559 27249 37979 49561 55957 58406 60862 63280 63864 85421
2004 1169 12781 20550 31547 42808 47385 50251 50978 51272 98579
2005 1478 10788 25499 34279 43057 49360 52329 52544 103062
2006 1186 11852 22913 32537 41824 48005 52542 108412
2007 1737 13881 25521 38037 43684 47755 111176
2008 1571 12153 27329 41832 51779 112050
2009 1199 17077 29876 44149 112577
2010 1263 16073 28249 113707
2011 986 10003 126442
2012 683 130484

Table 3.15 – Cumulative paid losses for LOB 3.

Accident Development Lag (in months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 2279 8683 15136 21603 27650 30428 32004 32592 33009 34140 76620
2004 2139 7077 13159 16435 20416 22598 24171 25034 25714 65691
2005 1420 4888 8762 12184 14482 15633 17089 17710 55453
2006 1510 5027 10763 15799 19269 22504 24807 54006
2007 1693 5175 8216 12263 16918 20792 55425
2008 2097 7509 10810 15673 19791 59100
2009 2094 5174 8062 12389 54438
2010 1487 4789 7448 53483
2011 1868 6196 52978
2012 2080 57879
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Table 3.16 – Cumulative paid losses for LOB 4.

Accident Development Lag (in months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 13714 24996 31253 38352 44185 46258 47019 47894 48334 48902 116491
2004 6883 16525 24796 29263 32619 33383 34815 35569 35612 111467
2005 7933 22067 32801 38028 44274 44948 46507 46665 107241
2006 7052 18166 25589 31976 36092 38720 39914 105687
2007 10463 23982 31621 36039 38070 41260 105923
2008 9697 28878 41678 47135 50788 111487
2009 11387 37333 48452 55757 113268
2010 12150 32250 40677 121606
2011 5348 14357 110610
2012 4612 104304

Table 3.17 – Cumulative paid losses for LOB 5.

Accident Development Lag (in months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 3043 5656 7505 8593 9403 10380 10450 10812 10856 10860 116491
2004 2070 4662 6690 8253 9286 9724 9942 10086 10121 111467
2005 2001 4825 7344 8918 9824 10274 10934 11155 107241
2006 1833 4953 7737 9524 10986 11267 11579 105687
2007 2217 5570 7898 8885 9424 10402 105923
2008 2076 5681 8577 10237 12934 111487
2009 2025 6225 9027 10945 113268
2010 2024 5888 8196 121606
2011 1311 3780 110610
2012 912 104304

Table 3.18 – Cumulative paid losses for LOB 6.

Accident Development Lag (in months)

Year 12 24 36 48 60 72 84 96 108 120 Premiums

2003 4157 9558 13131 17460 19608 21124 21900 23360 23377 23575 55484
2004 4158 9956 14860 18024 20397 22068 23312 24555 25137 65705
2005 3989 10519 15877 20274 23428 26495 30974 31580 73879
2006 4012 10904 16141 19643 21954 26215 28095 91473
2007 4322 10814 16086 20186 24157 27222 87212
2008 6379 14524 19058 24108 28329 89455
2009 5291 14620 20799 25131 90341
2010 4946 12956 18007 89212
2011 5674 15026 91606
2012 5478 99982
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Table 3.19 – Parameter and Reserve Estimations.

LOB ` 1 2 3 4 5 6

GLM Log-normal Gamma Gamma Gamma Gamma Gamma

ζ(`) −4.031 (0.157) −3.628 (0.148) −3.501 (0.098) −2.365 (0.173) −4.064 (0.148) −2.872 (0.167)

Accident
Year

2 −0.226 (0.153) −0.750 (0.151) 0.053 (0.097) −0.413 (0.174) −0.121 (0.151) 0.101 (0.177)
3 0.022 (0.161) −0.729 (0.160) −0.156 (0.100) −0.196 (0.183) 0.171 (0.161) 0.163 (0.177)
4 −0.028 (0.168) −0.651 (0.168) 0.239 (0.105) −0.112 (0.190) 0.129 (0.168) −0.136 (0.184)
5 −0.112 (0.177) −0.741 (0.174) 0.137 (0.110) −0.095 (0.199) 0.092 (0.173) −0.024 (0.191)
6 −0.183 (0.189) −0.574 (0.185) 0.120 (0.117) −0.001 (0.210) 0.396 (0.187) 0.095 (0.203)
7 0.170 (0.205) −0.574 (0.200) 0.003 (0.127) 0.197 (0.227) 0.254 (0.200) 0.069 (0.219)
8 0.032 (0.228) −0.658 (0.220) −0.160 (0.141) −0.012 (0.253) 0.055 (0.222) −0.017 (0.246)
9 0.131 (0.268) −1.147 (0.255) 0.169 (0.167) −0.628 (0.295) −0.259 (0.260) 0.131 (0.289)
10 0.261 (0.362) −1.625 (0.340) 0.175 (0.226) −0.754 (0.393) −0.676 (0.348) −0.032 (0.390)

Dev.
Lag

2 1.311 (0.154) 2.061 (0.145) 0.815 (0.096) 0.450 (0.167) 0.419 (0.149) 0.420 (0.167)
3 1.438 (0.161) 2.065 (0.151) 0.817 (0.101) −0.055 (0.175) 0.114 (0.155) 0.076 (0.174)
4 1.150 (0.168) 2.018 (0.158) 0.849 (0.106) −0.507 (0.183) −0.358 (0.163) −0.095 (0.182)
5 0.874 (0.177) 1.818 (0.166) 0.717 (0.112) −0.759 (0.193) −0.582 (0.173) −0.406 (0.192)
6 0.636 (0.189) 1.297 (0.176) 0.283 (0.120) −1.580 (0.207) −1.154 (0.182) −0.481 (0.206)
7 0.392 (0.205) 0.773 (0.193) −0.115 (0.129) −1.899 (0.223) −1.870 (0.201) −0.757 (0.226)
8 0.137 (0.228) −0.493 (0.216) −1.001 (0.143) −2.670 (0.250) −2.103 (0.219) −1.215 (0.248)
9 −0.291 (0.268) −0.429 (0.255) −1.375 (0.169) −3.762 (0.298) −3.849 (0.257) −2.612 (0.304)
10 −0.522 (0.362) −1.358 (0.340) −0.715 (0.226) −2.960 (0.393) −6.248 (0.348) −2.764 (0.390)

sd or scale 0.326 (0.031) 10.700 (2.009) 24.046 (4.554) 8.038 (1.502) 10.078 (1.891) 8.021 (1.499)

Reserve 36,063 132,919 78,665 73,220 18,290 98,931

C-L Reserve 35,411 146,794 76,500 75,551 18,726 100,704
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Chapitre 4

Sarmanov Family of Bivariate
Distributions for Multivariate Loss
Reserving Analysis

Résumé

Dans ce chapitre, pour modéliser la dépendance entre les triangles de développement, on
propose un modèle bayésien, qui capture la dépendance à l’aide de la famille de distributions
bivariées Sarmanov à travers des effets aléatoires. La flexibilité de notre modèle nous permet
de détecter la dépendance par année calendrier, année d’accident et période de développement.
Nous démontrons que les propriétés intéressantes de cette famille de distributions s’avèrent
très utiles dans le contexte des réserves. Une illustration empirique sera également présentée
avec des implications sur le capital économique.
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Abstract

The correlation among multiple lines of business plays a critical role in aggregating claims and
thus determining loss reserves for an insurance portfolio. We show that the Sarmanov family
of bivariate distributions is a convenient choice to capture the dependencies introduced by
various sources, including the common calendar year, accident year and development period
effects. The density of the bivariate Sarmanov distributions with different marginals can be
expressed as a linear combination of products of independent marginal densities. This pseudo-
conjugate property greatly reduces the complexity of posterior computations. In a case study,
we analyze an insurance portfolio of personal and commercial auto lines from a major US
property-casualty insurer.

4.1 Introduction

Provisions generally represent most of the liabilities of a property/casualty insurance company.
It is therefore crucial for a company to estimate its provisions well. With the advent of the
new regulatory standards (e.g. Solvency II in Europe and the upcoming ORSA ∗ guidelines
in North America), it is now necessary for an insurer to be more accurate and rigorous to
settle the amount of provisions for the entire portfolio. This involves taking into account the
correlation between the lines of business.
To incorporate dependencies among multiple runoff triangles, the literature can be separated
into two different schools of thought.
The first strand of research examines distribution-free methods, where the (conditional) mean
squared prediction error can be derived to measure prediction uncertainty. For example, Braun
(2004) takes into account the correlations between the segments by introducing a correla-
tion between development factors, while Schmidt (2006) adopts a multivariate approach, by
performing a simultaneous study of all segments of the portfolio.
The other approach relies on parametric methods based on distributional families, allowing
predictive distribution of unpaid losses, which is believed to be more informative to actuaries
in setting a reasonable reserve range than a single mean squared prediction error. We will
focus on the parametric approach.
Parametric reserving methods mainly involve copulas to model dependence between lines of
business. For example, Brehm (2002) uses a Gaussian copula to model the joint distribution
of unpaid losses, while De Jong (2012) models dependence between lines of business with
a Gaussian copula correlation matrix. Shi et al (2012) and Wüthrich et al (2013) also use
multivariate Gaussian copula, to accommodate correlation due to accounting years within
and across runoff triangles. Bootstrapping is another popular parametric approach used to
forecast the predictive distribution of unpaid losses for correlated lines of business. Kirschner
et al (2008) use a synchronized bootstrap and Taylor and McGuire (2007) extend this result

∗. ORSA: Own Risk and Solvency Assessment
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to a generalized linear model context. More recently, Abdallah et al (2015) use Hierarchical
Archimedean copulas to accommodate correlation within and between runoff triangles.
We use random effects to accommodate correlation due to calendar year, accident year and
development period effects within and across runoff triangles. Bayesian methods are not new
to the loss reserving literature (see Shi et al (2012) for an excellent review). In this paper, to
capture dependence between the lines of business (through random effects), we introduce the
Sarmanov Family of bivariate distributions to the reserving literature. This family of bivariate
distributions was first presented in Sarmanov (1966) and appeared in more detail in Lee
(1996). The Sarmanov family includes Farlie–Gumbel–Morgenstern (FGM) distributions as
special cases.
The applicability of Sarmanov’s distribution results from its versatile structure that offers us
flexibility in the choice of marginals and allows a closed form for the joint density. We aim to
show the potential of this family of distributions in a loss reserving context.
In Section 4.2, we review the modeling of runoff triangles, where notations are set and random
effects defined. In Section 4.3, we present the Sarmanov Family of Bivariate Distributions
and introduce them to the loss reserving context in Section 4.4. We apply the model to
a casualty insurance portfolio from a U.S. insurer and demonstrates the flexibility of the
proposed approach in Section 4.5. Section 4.6 concludes the paper.

4.2 Modeling

4.2.1 General notations

In this paper, a dependence model within and between lines of business through calendar
year, accident year and development period effects is presented. To simplify the notations,
we will consider the calendar year case. The notations could be easily generalized to accident
year and development period cases.
Let us consider an insurance portfolio with ` lines of business (` ∈ {1, ..., L}). We define by
X

(`)
i,j , the incremental payments of the ith accident year (i ∈ {1, ..., n}), and the jth develop-

ment period (j ∈ {1, ..., n}). To take into account the volume of each line of business, we work
with standardized data which we denote by Y (`)

i,j = X
(`)
i,j /p

(`)
i , where p(`)

i represents the expo-
sure variable in the ith accident year for the `th line of business. The exposure variable can be
the number of policies, the number of open claims, or the earned premiums. The latter option
is the one chosen in this paper. We suppose that the accident year effect is independent of
the development period effect. Hence, a regression model with two independent explanatory
variables, accident year and development period, is used. Assume that α(`)

i (i ∈ {1, 2, ..., n})
and β

(`)
j (j ∈ {1, 2, ..., n}) characterize the accident year effect and the development period

effect respectively. In such a context, a systematic component for the `th line of business can
be written as

η
(`)
i.j = ζ(`) + α

(`)
i + β

(`)
j , ` = 1, ..., L, (4.1)
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where ζ(`) is the intercept, and for parameter identification, the constraint α(`)
1 = β

(`)
1 = 0

is supposed. In our empirical illustration, and in the following, we work with two runoff
triangles (L = 2) of cumulative paid losses exhibited in Tables 1 and 2 of Shi and Frees
(2011). They correspond to paid losses of Schedule P of the National Association of Insurance
Commissioners (NAIC) database. These are 1997 data for personal auto and commercial
auto lines of business, and each triangle contains losses for accident years 1988-1997 and
at most ten development years. Shi and Frees (2011) show that a lognormal distribution
and a gamma distribution provide a good fit for the Personal Auto and the Commercial
Auto line data respectively. To demonstrate the reasonable model fits for the two triangles,
the authors exhibit the qq-plots of marginals for personal and commercial auto lines (see
Figure 3 in Shi and Frees (2011)). We work with their conclusion and continue with the
same continuous distributions for each line of business. More specifically, we consider the
form µ

(1)
i,j = η

(1)
i,j for a lognormal distribution with location (log-scale) parameter µ(1)

i,j and
shape parameter σ. However, for the gamma distribution, as noted by Abdallah et al (2015)
we use the exponential link instead of the canonical inverse link to ensure positive means,

with µ
(2)
i,j =

exp(η(2)
i,j )

φ
, where µ(2)

i,j and φ are the scale (location) and the shape parameters
respectively.

4.2.2 Random effects

The models with random effects can be interpreted as models where hidden characteristics are
captured by this additional random term. Here, we want to detect the effects characterizing
the loss of a given calendar year (accident year or development period) through a random
variable. The latter will capture correlations within the runoff triangles for the L lines of
business.
As mentioned earlier, we keep the same assumptions of Shi and Frees (2011) for the marginals,
i.e. a lognormal distribution for the first line of business and a gamma distribution for the
second line of business. Hence, as an associated conjugate prior, we take normal and gamma
distributions, for the first and second runoff triangle respectively.

Prior distributions

Let the random variable Θ(`)
t characterize the losses of the business line ` (` = 1, 2) for a given

calendar year t with probability density function (pdf) denoted by u(`).
Let Y(`)

t =
(
Y

(`)
t,1 , ..., Y

(`)
1,t

)
be the vector of losses for the tth calendar year of the business line

`. This vector can also be written as Y(`)
t =

(
Y

(`)
1 , ..., Y

(`)
j , ..., Y

(`)
t

)
where j indicates the jth

development period. Also, let µ(`)
j = µ

(`)
t−j+1,j .

Let us assume that, given Θ(`)
t , the random variables Y (`)

1 , ..., Y
(`)
t are conditionally indepen-
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dent. For ` = 1, we suppose that[
Y

(1)
i,j | Θ

(1)
t = θ(1)

]
∼ Logn.

(
µ

(1)
i,j θ

(1), σ2
)
,

and

f
Y

(1)
j |Θ(1)

t

(
y

(1)
j ; θ(1)µ

(1)
j , σ2

)
=

 1
y

(1)
j

√
2πσ

 exp

−(log y(1)
j − µ

(1)
j θ(1))2

2σ2

 ,
with E[Y (1)

i,j | Θ
(1)
t = θ(1)] = eµ

(1)
i.j θ

(1)+σ2/2 and Var[Y (1)
i,j | Θ

(1)
t = θ(1)] =

(
eσ

2 − 1
)(

e2µ(1)
i.j θ

(1)+σ2
)
.

Also, let
Θ(1)
t ∼ Normal

(
a, b2

)
,

with

u(1)
(
θ(1); a, b2

)
= 1
b
√

2π
exp

−
(
θ(1) − a

)2

2b2

 .
Given these assumptions, the law of total probability leads to the following joint density
function for Y(1)

t , denoted by fY(1)
t

(
y(1)

t ; a, b2
)

fY(1)
t

(
y(1)

t ; a, b2
)

=
∫ ∞

0

t∏
j=1

f
Y

(1)
j
|Θ(1)

t

(
y

(1)
j | Θ(1)

t = θ(1)
)
u(1)

(
θ(1); a, b2

)
dθ(1)

=
t∏

j=1

(
1

y
(1)
j

√
2πσ

)
σ√∑t

j=1 µ
2
jb

2 + σ2

× exp

−
(

1
σ2

∑t
j=1 log(y(1)

j )2(b2
∑t
j=1 µ

2
j + σ2) + 1

b2 a
2(b2

∑t
j=1 µ

2
j + σ2)−

(
∑t

j=1
log(y(1)

j
)µjb

2+aσ2)2

b2σ2

)
2(b2

∑t
j=1 µ

2
j + σ2)

 .

(4.2)

For the second line of business ` = 2, we assume that

[
Y

(2)
i,j | Θ

(2)
t = θ(2)

]
∼ Gamma

φ, µ(2)
i,j

θ(2)

 ,

and

f
Y

(2)
j |Θ(2)

t

y(2)
j ;φ,

µ
(2)
j

θ(2)

 =
y

(2)φ−1
j

Γ (φ)

µ(2)
j

θ(2)

φ
exp

− y
(2)
j

µ
(2)
j

θ(2)

 ,
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with E[Y (2)
i,j | Θ(2)

t = θ(2)] = φµ
(2)
i,j

1
θ(2) and Var[Y (2)

i,j | Θ(2)
t = θ(2)] = φµ

(2)2
i,j

1
θ(2)2 . For the

random effect Θ(2)
t , we suppose

Θ(2)
t ∼ Gamma (α, τ) ,

with

u(2)
(
θ(2);α, τ

)
= θ(2)α−1

Γ (α) (τ)α exp
(
−θ

(2)

τ

)
.

The joint density function of Y(2)
t denoted by fY(2)

t

(
y(2)

t ;α, τ
)
is hence given by

fY(2)
t

(
y(2)

t ;α, τ
)

=
∫ ∞

0

t∏
k=1

f
Y

(2)
k
|Θ(2)

t

(
y

(2)
k | Θ(2)

t = θ(2)
)
u(2)

(
θ(2); τ, α

)
dθ(2)

=
t∏

k=1

y
(2)φ−1
k

Γ(φ)(µ(2)
k )φ

Γ(tφ+ α)
Γ(α)(τ)α

1(∑t
k=1

y
(2)
k

µ
(2)
k

+ 1
τ

)tφ+α . (4.3)

For parameter identification, we suppose that a = 1 and τ = 1
α−1 in our empirical illustration.

Posterior distribution

Using Bayes theorem, the posterior distributions for [Θ(1)
t = θ(1) | Y(1)

t ] and [Θ(2)
t = θ(2) | Y(2)

t ]
are given by

u(1)
(
θ(1) | Y(1)

t

)
∝ fY(1)

t |Θ
(1)
t

(
y(1)

t | Θ(1)
t = θ(1)

)
u(1)

(
θ(1); a, b2

)
∝ u(1)

(
θ(1); apost, b2post

)
,

and

u(2)
(
θ(2) | Y(2)

t

)
∝ fY(2)

t |Θ
(2)
t

(
y(2)

t | Θ(2)
t = θ(2)

)
u(2)

(
θ(2);α, τ

)
∝ u(2)

(
θ(2);αpost, τpost

)
.

This shows that the posterior distributions for [Θ(1)
t = θ(1) | Y(1)

t ] and [Θ(2)
t = θ(2) | Y(2)

t ], are
again Normal and gamma distributions with updated parameters

apost =
∑t

k=1 log(y(1)
k

)µ(1)
k
b2+aσ2∑t

k=1 µ
(1)2
k

b2+σ2
and b2post = b2σ2∑t

k=1 µ
(1)2
k

b2+σ2
;

αpost = α+ tφ and τpost =
(

1
τ +∑t

k=1
y

(2)
k

µ
(2)
k

)−1

.

These results of posterior distributions will be very helpful in the calculation of the joint
Sarmanov distribution, and for the moments calculation of the total as well.
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4.3 Sarmanov Family of Bivariate Distributions

Sarmanov’s bivariate distribution was introduced in the literature by Sarmanov (1966), and
was also proposed in physics by Cohen (1984) under a more general form. Lee (1996)
suggests a multivariate version and discusses several applications in medicine. Recently, due
to its flexible structure, Sarmanov’s bivariate distribution gained interest in different applied
studies. For example, Schweidel et al (2008) use a bivariate Sarmanov model to capture the
relationship between a prospective customer’s time until acquisition of a particular service
and the subsequent duration for which the service is retained. Miravete (2009) presents
two models based on Sarmanov distribution and uses them to compare the number of tariff
plans offered by two competing cellular telephone companies. Danaher and Smith (2011)
discuss applications to marketing (see also the references therein). In the insurance field,
Hernández-Bastida et al (2009) and Hernández-Bastida and Fernández-Sánchez (2012) use
the bivariate Sarmanov distribution for premium evaluation. Here, we want to highlight and
show its usefulness in loss reserving modeling.
We suppose a dependence between the calendar years (accident years or development periods)
of the two runoff triangles, i.e the elements of a given calendar year of a line of business
are assumed to be correlated with the corresponding elements of the other line of business
through common random effects. This will create dependence between Θ(1)

t and Θ(2)
t . For this

purpose, we propose to use the Sarmanov Family of bivariate distributions to model the joint
distribution of the random effect Θ(`)

t with ` ∈ {1, 2}.

4.3.1 Definitions

Let ψ(`)(θ(`)), ` = 1, 2 be two bounded non-constant functions such that
∫∞
−∞ ψ

(`) (t)u(`) (t) dt =
0. Let

(
Θ(1),Θ(2)

)
have a bivariate Sarmanov distribution, the joint distribution can then be

expressed as

uS
(
θ(1), θ(2)

)
= u(1)

(
θ(1); a, b2

)
u(2)

(
θ(2);α, τ

) (
1 + ωψ(1)

(
θ(1)

)
ψ(2)

(
θ(2)

))
, (4.4)

provided that ω is a real number that satisfies the condition

1 + ωψ(1)
(
θ(1)

)
ψ(2)

(
θ(2)

)
≥ 0 for all θ(`) , ` ∈ {1, 2}.

One of the main interesting properties of the Sarmanov is that the bivariate distribution
can support a wide range of marginals, such as in this case, the normal and the gamma
distributions. Different methods are proposed in Lee (1996) to construct mixing functions
ψ(`) for different types of marginals. As mentioned in Lee (1996), different types of mix-
ing functions can be used to yield different multivariate distributions with the same set
of marginals. Based on Corollary 2 in Lee (1996), a mixing function can be defined as
ψ(`)

(
θ(`)

)
= exp

(
−θ(`)

)
− L(`) (1), where L(`) is the Laplace transform of u(`), evaluated at

1. Hence, given our choice of distribution for Θ(`), ` = 1, 2, we have
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ψ(1)(θ(1)) = exp
(
−θ(1)

)
− exp

(
−a+ b2

2

)
ψ(2)(θ(2)) = exp

(
−θ(2)

)
− (1 + τ)−α .

As for the dependence parameter ω of the Sarmanov bivariate distribution, in the case of
normal and gamma marginals, it is bounded as follows

− 1
b exp(−a+ b2

2 )
√
ατ (1 + τ)−α−1 ≤ ω ≤

1
b exp(−a+ b2

2 )
√
ατ (1 + τ)−α−1 .

The proof of this result is a direct consequence of Lee’s (1996) Theorem 2.

4.3.2 Joint distribution

A critical problem when modeling dependence between runoff triangles is to obtain a joint
distribution of unpaid losses. The Sarmanov distribution will be a good ally to circumvent
to this problem. With normal and gamma marginals for Θ(1)

t and Θ(2)
t respectively, the prior

joint pdf of
(
Θ(1)
t ,Θ(2)

t

)
is given by

uS
(
θ(1), θ(2)

)
= u(1)

(
θ(1); a, b2

)
u(2)

(
θ(2);α, τ

)(
1 + ω exp

(
−a+ b2

2

)
(1 + τ)−α

)

+u(1)
(
θ(1); a− b2, b2

)
u(2)

(
θ(2);α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

−u(1)
(
θ(1); a− b2, b2

)
u(2)

(
θ(2);α, τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

−u(1)
(
θ(1); a, b2

)
u(2)

(
θ(2);α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α , (4.5)

which corresponds to a linear combination of the product of univariate pdfs. This last expres-
sion highlights an attractive feature of the Sarmanov family of distributions. Its simplicity
and form greatly facilitate many calculations.
The joint distribution fY(1)

t ,Y(2)
t

(
y(1)

t ,y(2)
t

)
in the case of the Sarmanov family of bivariate

distributions with normal and gamma marginals is expressed by

fY(1)
t ,Y(2)

t

(
y(1)

t ,y(2)
t

)
=
∫ +∞

0

∫ ∞
−∞

t∏
k=1

f
Y

(1)
k
|Θ(1)

t

(
y

(1)
k | Θ(1)

t = θ(1)
)
f
Y

(2)
k
|Θ(2)

t

(
y

(2)
k | Θ(2)

t = θ(2)
)
uS
(
θ(1), θ(2)

)
dθ(1)dθ(2).

Following (4.2), (4.3) and (4.5), we obtain a closed-form expression for the density function
of
(
Y(1)

t ,Y(2)
t

)
, namely
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fY(1)
t ,Y(2)

t

(
y(1)

t ,y(2)
t

)
= fY(1)

t

(
y(1)

t ; a, b2
)
fY(2)

t

(
y(2)

t ;α, τ
)(

1 + ω exp
(
−a+ b2

2

)
(1 + τ)−α

)
+fY(1)

t

(
y(1)

t ; a− b2, b2
)
fY(2)

t

(
y(2)

t ;α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

−fY(1)
t

(
y(1)

t ; a− b2, b2
)
fY(2)

t

(
y(2)

t ;α, τ
)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

−fY(1)
t

(
y(1)

t ; a, b2
)
fY(2)

t

(
y(2)

t ;α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α .(4.6)

4.3.3 Posterior Sarmanov distribution

The posterior distribution can be used for the calculation of the moments of the total re-
serve. The posterior bivariate joint density function of the couple

(
Θ(1)
t ,Θ(2)

t

)
conditioned on(

Y(1)
t ,Y(2)

t

)
is given by

uS(θ(1), θ(2) | y(1)
t ,y(2)

t )

= f(y(1)
t ,y(2)

t | θ(1), θ(2))uS(θ(1), θ(2))
fY(1)

t ,Y(2)
t

(y(1)
1 , ..., y

(1)
t , y

(2)
1 , ..., y

(2)
t )

= C1u
(1)
(
θ(1); apost, b2post

)
u(2)

(
θ(2);αpost, τpost

)
+ C2u

(1)
(
θ(1); a’

post, b
2
post

)
u(2)

(
θ(2);αpost, τ ’

post

)
−C3u

(1)
(
θ(1); a’

post, b
2
post

)
u(2)

(
θ(2);αpost, τpost

)
− C4u

(1)
(
θ(1); apost, b2post

)
u(2)

(
θ(2);αpost, τ ’

post

)
,

(4.7)

where

apost =
∑t
k=1 log(y(1)

k )µ(1)
k b2 + aσ2∑t

k=1 µ
(1)2
k b2 + σ2

a’
post =

∑t
k=1 log(y(1)

k )µ(1)
k b2 +

(
a− b2

)
σ2∑t

k=1 µ
(1)2
k b2 + σ2

b2post =
(∑t

k=1 µ
(1)2
k

σ2 + 1
b2

)−1

and

αpost = tφ+ α

τpost =
(

t∑
k=1

y
(2)
k

µ
(2)
k

+ 1
τ

)−1

τ ’
post =

(
t∑

k=1

y
(2)
k

µ
(2)
k

+ 1
τ

+ 1
)−1

,
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with

C1 = 1
fY(1)

t ,Y(2)
t

(
y(1)

t ,y(2)
t

)fY(1)
t

(
y(1)

t ; a, b2
)
fY(2)

t

(
y(2)

t ;α, τ
)(

1 + ω exp
(
−a+ b2

2

)
(1 + τ)−α

)

C2 = 1
fY(1)

t ,Y(2)
t

(
y(1)

t ,y(2)
t

)fY(1)
t

(
y(1)

t ; a− b2, b2
)
fY(2)

t

(
y(2)

t ;α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

C3 = 1
fY(1)

t ,Y(2)
t

(
y(1)

t ,y(2)
t

)fY(1)
t

(
y(1)

t ; a− b2, b2
)
fY(2)

t

(
y(2)

t ;α, τ
)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

C4 = 1
fY(1)

t ,Y(2)
t

(
y(1)

t ,y(2)
t

)fY(1)
t

(
y(1)

t ; a, b2
)
fY(2)

t

(
y(2)

t ;α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α .

This last expression shows that the posterior bivariate density function of
(
Θ(1),Θ(2)

)
, is

again a linear combination of the product of univariate normal and gamma pdfs. The posterior
density is hence a pseudo-conjugate to the prior density in the sense that the posterior density
is a linear combination of products of densities from the univariate natural exponential family
of distributions (normal and gamma in our case). It would be interesting to investigate the
link between the posterior Sarmanov distribution and the linear credibility theory, where the
Bayesian premium is considered linear.

4.4 Claims reserving

4.4.1 Calendar year dependence

To accommodate correlation, most multivariate loss reserving methods focus on a pairwise
association between corresponding cells in multiple runoff triangles. Recently, Shi and Frees
(2011) successfully incorporated dependence between two lines of business with a pairwise
association. However, such a practice usually relies on an independence assumption across
accident years and ignores the calendar year effects that could affect all open claims simul-
taneously and induce dependencies among loss triangles. In fact, most dependencies among
loss triangles could arguably be driven by certain calendar year effects and exogenous com-
mon factors such as inflation, interest rates, jurisprudence or strategic decisions such as the
acceleration of the payments for the entire portfolio can have simultaneous impacts on all
lines of business of a given sector, which could be the case here for the two lines of business
considered in the present paper.
Such a calendar year effect has already been analyzed, for example by Barnett and Zehnwirth
(1998) who add a covariate to capture the calendar year effect. De Jong (2006) models the
growth rates in cumulative payments in a calendar year, and Wüthrich (2010) examines the
accounting year effect for a single line of business. Wüthrich and Salzmann (2012) use a
multivariate Bayes Chain-Ladder model that allows modeling of dependence along account-
ing years within runoff triangles. The authors derive closed form solutions for the posterior
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distribution, claims reserves and corresponding prediction uncertainty. Kuang et al (2008)
also consider a canonical parametrization with three factors for a single line of business.
In our proposed model, instead of adding an explanatory variable for the calendar year effect,
the dependence relation between the paid claims of a diagonal will be based on a random
effect. More specifically, the same random variable Θ(`)

t is assumed for each diagonal of a
runoff triangle. The likelihood function of this model can be easily derived from (4.2) and
(4.3).

4.4.2 Line of Business dependence

Motivations

In the same view of Abdallah et al (2015), we propose a model that allows a dependence
relation between all the observations that belong to the same calendar year for each line
of business using random effects instead of multivariate Archimedean copulas. Additionally,
we use another dependence structure that links the losses of calendar years of different lines
of business with a Sarmanov family of bivariate distributions instead of hierarchical copula.
With this second level of dependence, we capture the dependence between two different runoff
triangles in a pairwise manner between corresponding diagonals, instead of between cells.
Hence, instead of pairing cells with a copula as in Shi and Frees (2011), we will pair diagonals
through random effects using the Sarmanov family of bivariate distributions.
The calendar year effect has rarely been studied with more than one line of business. Two
recent examples are De Jong (2012), where the calendar year effect is introduced through
the correlation matrix and Shi et al (2012), who use random effects to accommodate the
correlation due to accounting year effects within and across runoff triangles. Shi et al (2012)
work with a Bayesian perspective, using a multivariate lognormal distribution, along with
a multivariate Gaussian correlation matrix. The predictive distributions of outstanding pay-
ments are generated through Monte Carlo simulations. The calendar year effect is taken into
account through an explanatory variable. Again with a Bayesian framework, Wüthrich et al
(2013) use a multivariate lognormal Chain-Ladder model and derive predictors and confidence
bounds in closed form. Their analytical solutions are such that they allow for any correlation
structure. Their models permit dependence between and within runoff triangles, along with
any correlation structure. It has also been shown in this paper that the pairwise dependence
form is rather weak compared with calendar year dependence. More recently, Shi (2014) cap-
tures the dependencies introduced by various sources, including the common calendar year
effects via the family of elliptical copulas, and uses parametric bootstrapping to quantify the
associated reserving variability.
In this paper, to model the complex dependence structure between two runoff triangles, we
introduce models based on the Sarmanov family of bivariate distributions. The idea is to use
random effects to capture dependence within lines of business, and then join the two random
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effects through a Sarmanov distribution to capture dependence between lines of business.
Empirical results are shown in the next section. Finally, the log-likelihood function of this
model can be obtained from (4.6).

Mean and Variance

To compute the resulting reserve for this model, the estimated total unpaid losses for i+ j >

n+ 1, can be expressed as follows

E [Rtot] = E
[
R(1) +R(2)

]
= E

 2∑
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n∑
i=2

n∑
j=n−i+2

p
(`)
i Y

(`)
i,j

 =
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i,j ],
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with t = i+ j − 1.
Consequently, the total unpaid losses can be written as

E [Rtot] =
n∑
i=2

n∑
j=n−i+2

p
(1)
i eaµ

(1)
i,j + 1

2 b
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τ(α− 1) . (4.8)

When we model dependence between loss triangles, the global variance can be very informa-
tive. Knowing that the two runoff triangles are correlated, it is interesting to observe how the
two random effects Θ(1)

t and Θ(2)
t change together, i.e whether the two variables tend to show

similar (positive dependence) or opposite behavior (negative dependence). Note that when
Θ(1)
t and Θ(2)

t are assumed unrelated (independent case), we will have Cov(R(1), R(2)) = 0.
The total claims reserve variance can be written as

Var(Rtot) = Var
(
R(1) +R(2)

)
= Var(R(1)) + Var(R(2)) + 2Cov(R(1), R(2))

=
2∑
`=1

Var(R(`)) + 2Cov(R(1), R(2)).

Using the conditional independence of Y (`)
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t = θ(`) (t = i+ j − 1)), we have
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)
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and

Var(R(2)) = E
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For the covariance calculation, we have
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Consequently, the total variance of unpaid losses is expressed as follows
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4.4.3 Accident year and development period dependence

We consider here a dependence structure captured through accident year and development
period effects. In fact, some exogenous factors could result in an accident year trend. Change
in reserving practices for example, in the way case reserves are settled at the opening of the
claim, for current accident year claims. Further, a court judgment, a change in legislation
affecting future losses, major events and disasters can all result in an accident year trend
as well. The development period trend could result from the same exogenous factors cited
for the calendar year case, but also from management decisions. For example, a revision of
inactive claims or a changing pace of payments (internal or external initiative) are widespread
practices in the industry that might affect several lines of business simultaneously.

Credibility loss reserving

As discussed earlier in this paper, the flexibility of the Sarmanov family of bivariate distri-
bution allows us to easily change the dependence structure. Hence, as in extension and in
addition to the calendar year approach, we will consider here two other approaches in which
the random effect characterizes the loss of a given accident year or development period. Such
modeling is well illustrated in Figure 4.1. In fact, we can see that a given accident year or
development period effect will also impact the observations in the lower triangle belonging to
the same accident year or development period. This is a great advantage when working with
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random effects rather than copulas, where the predictive power for the lower triangle might
be limited.
Henceforth, we consider a situation where an insurer has access to claims experience and has
the potential to improve prediction of outstanding liabilities by incorporating past informa-
tion. The link here with linear credibility is pretty straightforward.
The accident year and development period effect has rarely been studied in the literature. It is
interesting to note that depending on the dependence structure we use, we could get different
conclusions from the analysis of dependence between the two business lines. This was also
well illustrated in Figure 4 of Shi et al (2012). This will be discussed in greater detail in the
next section, where an empirical illustration is presented.
The idea here is that future payments will be updated through past experience. In fact, the
random effect characterizing the loss of a given accident year or development period affects
payments in the lower triangle as well. More importantly, it would be interesting here to see
how these random effects impact the two runoff triangles simultaneously.

Figure 4.1 – Modeling dependence with a Sarmanov bivariate distribution
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Expected claim reserve

For the accident year or development period approach, unlike the calendar year case, the
projections in the lower part of the triangle will be now impacted by the values of the upper
part, because they are, henceforth, linked by the random effect Θ(`)

t .
Let Θt =
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t ,Θ(2)

t

)
and =t =
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Given the conditional independence of Y (`)

i,j given Θ(`)
t = θ(`), the total estimated projected

paid loss ratio is given by
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Consequently, the total unpaid losses in this case can be written as
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with parameters apost, a’
post, b2post, αpost, τpost, τ ’

post and Ci, i ∈ {1, 2, 3, 4} as given in (4.7). The
expression of the claims reserve variance is more cumbersome for this approach but can be
handily derived given that the posterior density of the Sarmanov family is a pseudo-conjugate
prior.

4.5 Empirical illustration

4.5.1 Model calibration

We implement the three models proposed in the previous sections with the runoff triangles
described in section 4.2.1. We want to compare the fit of our models with that obtained in
Shi and Frees (2011), where pairwise dependence (PWD) between cells is supposed through
a copula. The Gaussian copula was selected for this model based on Akaike’s Information
Criterion (AIC). In our empirical study, we first use a model that supposes independence
between lines of business, with dependence within runoff triangles captured through random
effects. This model is described in section 4.4.1. Fit statistics are shown in Table 4.1. In terms
of the AIC, we observe that the three models offer a better fit than the PWD model, which is
a promising result for what follows. Now, we suppose pairwise dependence between random
effects that affect a given calendar year, accident year or development period. This dependence
between runoff triangles is captured with the Sarmanov family of bivariate distributions.
The fit statistics and the reserves obtained for this model are shown in Tables 4.2 and 4.3
respectively.
The reserve estimations, for the calendar year approach are based on (4.8), with the system-
atic component described in (4.1). As for the accident year and development period approach,
the calculation is performed following (4.10). However, the accident year (development pe-
riod) parameter is missing in the mean specification for accident year (development period)
approach. Hence, we borrow the information from the calendar year trend to complete the
projection of the lower triangle. We note that a gamma curve, also known as a Hoerl’s curve,
could also have been investigated for this case.
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Dependence
Fit Statistics PWD Dev. period Calendar year Accident year
Log-Likelihood 350.5 376.4 396.4 402.3

AIC -618.9 -669.0 -708.9 -720.8
BIC -508.3 -656.2 -696.2 -708.1

Table 4.1 – Fit Statistics of PWD model vs Independent lines of business with random effects

Dependence
Fit Statistics Dev. period Calendar year Accident year

Dependence parameter 628.76 (194.20) -387.10 (746.77) 12083 (22300)
Log-Likelihood 381.1 396.6 403.1

AIC -676.2 -707.2 -718.8
BIC -663.1 -694.2 -705.8

Table 4.2 – Fit Statistics of Sarmanov model

Dependence
Reserves estimation PWD Dev. period Calendar year Accident year

Personal 6,423,180 6,547,988 6,476,093 6,616,171
Commercial 495,989 504,928 551,478 438,716

Total 6,919,169 7,052,916 7,027,571 7,054,888

Table 4.3 – Reserve estimation with different models

We observe that the model with accident year dependence offers the best fit of all the models.
Indeed, according to the fit statistics, the data seem to favour the model emphasising accident
year effects. However, the model with development period dependence seems to favor depen-
dence between lines of business. Given that the three models nest the independence case as a
special case, we can perform a likelihood ratio test to examine the model fit. Compared with
the independent case, the accident year model gives a χ2 statistics of 0.2, the calendar year
model gives a χ2 statistics of 0.4, whereas the development period model gives a χ2 statistics
of 9.4. Henceforth, the dependence is rejected over the independence model for the calendar
year and accident year cases, because ω is not statistically significant, meanwhile a dependence
model is preferred for the development period case. A Wald test (see Boucher et al (2007)
for a detailed discussion on one-sided statistic tests) based on the estimated values of ω and
its standard errors (see Table 4.2) leads to the same conclusions drawn from the likelihood
ratio test. Interestingly, the model has a better fit when incorporating dependence between
the two lines of business only for the development period approach. This is also confirmed by
the results of the AIC.
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4.5.2 Predictive distribution

In practice, actuaries are interested in knowing the uncertainty of the reserve. A modern
parametric technique, the bootstrap, not only gives such information but most importantly
provides the entire predictive distribution of aggregated reserves for the portfolio. The pre-
dictive distribution notably allows assessment of risk capital for an insurance portfolio. Boot-
strapping is also ideal from a practical point of view, because it avoids complex theoretical
calculations and can easily be implemented. Moreover, it tackles potential model overfitting,
typically encountered in loss reserving problems due to the small sample size. Henceforth, we
implement a parametric bootstrap analysis to quantify predictive uncertainty.
The bootstrap technique is increasingly popular in loss reserving, and allows a wide range
of applications. It was first introduced in a loss reserving context with a distribution-free
approach by Lowe (1994). For a multivariate loss reserving analysis, Kirschner et al (2008)
used a synchronized parametric bootstrap to model dependence between correlated lines of
business, and Taylor and McGuire (2007) extended this result to a generalized linear model
context. Shi and Frees (2011), and more recently Shi (2014), have also performed a parametric
bootstrap to quantify the uncertainty in parameter estimates, while modeling dependence
between loss triangles using copulas.

Sarmanov simulation

The parametric bootstrap allows us to obtain the whole distribution of the reserves. We follow
the same bootstrap algorithm as Taylor and McGuire (2007), also summarized in Shi and
Frees (2011).
The first step of the parametric bootstrap is to generate pseudo-responses of normalized
incremental paid losses y∗(`)i,j , for i, j such that i+ j − 1 ≤ n and ` = 1, 2.
For the first line of business, we generate a realization y∗(1)

i,j of a lognormal distribution with
location (log-scale) parameter µ̂(1)

i,j Θ(1) and shape parameter σ̂. As for the second line of busi-
ness, y∗(2)

i,j is a generated realization of a gamma distribution with location (scale) parameter
µ̂

(2)
i,j

Θ(2) and shape parameter φ̂.
Therefore, a technique to generate realizations of the couple

(
θ(1), θ(2)

)
from a Sarmanov

family of bivariate distributions should be used.
Given that the calendar year dependence is the most widely used for its intuitive and practical
purposes, we focus solely on this approach.
To generate a bivariate Sarmanov distribution we follow the method based on the condi-
tional simulation. Thus, for a given calendar year t, the algorithm for a Sarmanov bivariate
distribution between the lines of business is as follows

1. Generate a realization θ(1), from the random variable Θ(1)
t ∼ Normal

(
â, b̂2

)
.

2. Generate a realization from the conditional cumulative distribution of the random vari-
able

(
Θ(2)
t | Θ

(1)
t = θ(1)

)
.
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Estimated reserve Bootstrap reserve Estimation error Process error
CY Sarmanov 7,027,571 7,047,931 312,331 153,413

Table 4.4 – Bootstrap results for the calendar year Sarmanov model

3. Get a realization θ(2) from the previous stage.
Consequently, we have obtained realizations of the couple

(
θ(1), θ(2)

)
from a Sarmanov family

of bivariate distributions.

MSEP

A common statistic to measure the total variance uncertainty of the portfolio Rtot, is the
mean squared error of prediction (MSEP).
The MSEP is a combination of process error and estimation error. Estimation error is linked
to past observations and process error is due to the variation of future observations. The
definition can be expressed as follows

MSEP [R̂tot] = E[(Rtot − R̂tot)2]

= E[((Rtot − E[Rtot])− (R̂tot − E[Rtot]))2].

Assuming E[(Rtot −E[Rtot])(R̂tot −E[R̂tot])] = 0, i.e. future observations are independent of
past observations, we get

MSEP [R̂tot] ≈ E[(Rtot − E[Rtot])2] + E[(R̂tot − E[R̂tot])2]

= V ar[Rtot]︸ ︷︷ ︸
Process error2

+ V ar[R̂tot]︸ ︷︷ ︸
Estimation error2

.

The main advantage of using the Sarmanov family of bivariate distributions lies in the fact that
we are able to derive a closed-form expression for the process error of the whole portfolio (see
(4.9)), which is not straightforward to obtain analytically with a copula model. We quantify
the estimation error with the parametric bootstrap. In our empirical illustration, the obtained
bootstrap results are exhibited in Table 4.4.
Also, because we can obtain the estimation error and process error for a Sarmanov model,
it would be interesting to compare them with their analytic equivalent from Mack’s model,
which has long been considered as a benchmark model. This comparison is shown in Table
4.5. We note that the two methods provide results in the same order of magnitude.

Risk capital analysis

In addition to the bootstrap results for the calendar year dependence model with a Sarmanov
family of bivariate distributions exhibited in Table 4.4, we provide a histogram of the re-
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Model Reserve
√
MSEP

Sarmanov 7,027,571 347,947
Mack 6.925.951 334,929

Table 4.5 – Comparison between Sarmanov model and Mack model

serve distribution, with the corresponding percentiles in Figure 4.2. The latter information
is important and useful for actuaries when they want to select a reserve at a desired level of
conservatism. We also superimposed kernel density estimates on the histogram of Figure 4.2
in Figure 4.3 with several choices for the bandwidth parameter to determine the smoothness
and closeness of the fit. Smoothing the data distribution with a kernel density estimate can
be more effective than using a histogram to identify features that might be obscured by the
choice of histogram bins.

Figure 4.2 – Percentiles of total unpaid losses (in millions) - Sarmanov calendar year model

The predictive distribution of unpaid losses is very helpful to obtain reserve ranges, but it is
also useful from a risk capital standpoint. Risk capital is the amount that property/casualty
insurers set aside as a buffer against potential losses from extreme and adverse events.
We want to show here the impact of assuming a dependence structure based on the Sarmanov
family of bivariate distribution on the risk capital calculation instead of summing up the risk
capital for each subportoflio. In fact, the most common approach in practice, called the "Silo"
method, is to divide the portfolio into several subportfolios and to evaluate the risk capital for
each silo and then add them up for the portfolio. The main criticism to this method is that it
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Figure 4.3 – Total unpaid losses distribution with density Kernel estimation (in millions) -
Sarmanov calendar model

implicitly assumes a perfect positive linear relationship among subportfolios, which does not
allow any form of diversification. We aim to show, following the parametric bootstrap, that
one can take advantage of this diversification between the two lines of business, allowing risk
capital analysts to be less conservative.
Mathematically, the risk capital is the difference between the risk measure and the expected
unpaid losses of the portfolio, which are 7, 047, 931. For the risk measure, we consider the tail
value-at-risk (TVaR) that has been widely used by actuaries. This measure is more informative
than the value at risk (VaR) in the distribution tail, and the subadditivity of VaR is not
guaranteed in general.
To examine the role of dependencies we calculate the risk measure for each sub-portfolio
(i.e. the personal auto line and the commercial auto line), and then use the simple sum as
the risk measure for the entire portfolio. This is the result reported under the silo method.
The silo method gives the largest estimates of risk measures because it does not account
for any diversification effect in the portfolio. We provide the results for the case where no
random effects are considered within lines of business (Silo - independent), and the case
where random effects within lines of business are assumed (Silo - random effects). Both cases
assume independence between lines of business and are compared with the case that treats
the two lines of business as related through the Sarmanov bivariate distribution. We show in
Table 4.6 that the gain in terms of risk capital is important when we capture the association
between the two triangles, and this difference is even greater in the distribution tail where
most adversed situations are encountered for the two lines of business. This result indicates
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Risk measure TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR (99%)
Silo - random effects 7,671,066 7,755,618 7,862,446 8,041,361 8,441,168
Silo - independent 7,582,963 7,656,635 7,760,671 7,922,635 8,259,798

Sarmanov 7,491,092 7,542,301 7,609,383 7,720,910 7,910,013
Risk capital

Silo - random effects 623,135 707,686 814,515 993,429 1,393,237
Silo - independent 535,032 608,703 712,739 874,704 1,211,866

Sarmanov 443,160 494,369 561,451 672,979 862,082
Gain

vs independent 17.17% 18.78% 21.23% 23.06% 28.86%
vs random effect 28.88% 30.14% 31.07% 32.26% 38.12%

Table 4.6 – Risk capital estimation with different scenarios

that the silo method leads to more conservative risk capital, while the Sarmanov model leads
to more aggressive risk capital.

4.6 Conclusion

In this paper, we have studied different approaches to model dependence between loss tri-
angles. If losses in different lines of business are correlated, aggregate reserves must reflect
this dependence. To allow a flexible dependence relation, we propose the use of the Sarmanov
family of bivariate distributions. To illustrate the model, an empirical illustration was per-
formed using the same data as that used by Shi and Frees (2011). Based on the AIC and on
the BIC, we show that our models provide a better fit than the PWD model does.
With the proposed model, we can derive analytically the expression of total the reserve and the
total process variance with a calendar year, accident year and development period dependence
model, thanks to the pseudo-conjugate properties. Also, we use a parametric bootstrap to
derive a predictive distribution and incorporate parameter uncertainty in our analysis.
By coupling various sources of dependencies with a Sarmanov bivariate distribution through
random effects, we propose a new approach to model dependence structures between runoff
triangles. This model is a promising tool to better take into account dependencies within
and between business lines. Indeed, this approach can easily be generalized to more than two
lines of business because it is possible to extend the Sarmanov’s family of distributions to
the multivariate case. As an extension, one can also consider these random effects dynamic
or evolutionary, i.e. that they evolve over time and are updated through past experience. We
leave the detailed discussion of this complicated case to the future study.
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Chapitre 5

Sarmanov Family of Multivariate
Distributions for Bivariate Dynamic
Claim Counts Model

Résumé

Pour prévoir les futures réclamations, il est connu que les plus récentes réclamations sont
considérées plus prédictives que les plus anciennes.
Cependant, les modèles classiques de données de panel pour les nombres de sinistres tels
que la distribution binomiale négative multivariée ne permettent pas d’allouer des poids aux
réclamations passées.
Des modèles plus avancés peuvent être utilisés pour examiner cette propriété, mais ont souvent
besoin de procédures numériques très complexes pour estimer les paramètres. Lorsque nous
voulons ajouter une dépendance entre les différents types de réclamation, la tâche devient
d’autant plus difficile.
Dans cet article, nous proposons un modèle dynamique bivarié pour les nombres de sinistres,
où l’expérience des réclamations passées d’un type de réclamation donné est utilisée pour
mieux prédire l’autre type de réclamation corrélé. Cette nouvelle distribution dynamique
bivariée pour les nombres de réclamations est basée sur des effets aléatoires provenant de la
famille de distributions multivariées Sarmanov.
Pour obtenir une distribution dynamique appropriée, une approximation de la distribution
a posteriori des effets aléatoires est proposée. Le modèle qui en résulte peut être considéré
comme une extension du modèle de l’hétérogénéité dynamique décrit dans Bolancé et al
(2007).
Nous appliquons ce modèle à deux échantillons de données à partir d’une compagnie d’as-
surance canadienne, où nous montrons que le modèle proposé est l’un des meilleurs modèles
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pour ajuster les données. Nous montrons aussi que qu’une telle modélisation permet plus
de flexibilité dans le calcul des primes prédictives, puisque que des expressions fermées sont
obtenues pour la distribution prédictive, les moments et les moments prédictifs.

Abstract

To predict future claims, it is well-known that the most recent claims are more predictive
than older ones. However, classic panel data models for claim counts, such as the multivariate
negative binomial distribution, do not put any time weight on past claims. More complex
models can be used to consider this property, but often need numerical procedures to estimate
parameters. When we want to add a dependence between different claim count types, the task
would be even more difficult to handle. In this paper, we propose a bivariate dynamic model
for claim counts, where past claims experience of a given claim type is used to better predict
the other type of claims. This new bivariate dynamic distribution for claim counts is based on
random effects that come from the Sarmanov family of multivariate distributions. To obtain
a proper dynamic distribution based on this kind of bivariate priors, an approximation of
the posterior distribution of the random effects is proposed. The resulting model can be seen
as an extension of the dynamic heterogeneity model described in Bolancé et al (2007). We
apply this model to two samples of data from a major Canadian insurance company, where
we show that the proposed model is one of the best models to adjust the data. We also show
that the proposed model allows more flexibility in computing predictive premiums because
closed-form expressions can be easily derived for the predictive distribution, the moments and
the predictive moments.

5.1 Introduction

One of the most critical problems in property and casualty insurance is to determine future
numbers of claims and cost of claims. A related task is the calculation of the premium, i.e
ratemaking. Parametric modeling of these random variables allows to identify the risk level
through explanatory variables and clarifies the behavior of insureds. In this paper, we will
focus only on the frequency part of this task, i.e. the modeling of the number of claims.

Risk classification techniques for claim counts have been the topic of many papers in the ac-
tuarial literature. For example, Denuit et al (2007) provide an exhaustive overview of count
data models for insurance claims. In recent years, dependence between all the contracts of
the same insured has been supposed in actuarial models, leading to what is called panel data
modeling. Panel data modeling allows the premiums to depend on past claims experience,
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where the classic credibility theory can be used. In this paper, panel data models for claim
counts are generalized in two ways: 1) by allowing different claim types to be modeled simul-
taneously, and 2) by allowing a time weight for past claims, because we expect that the most
recent claims are more predictive than the oldest ones. To our knowledge, the proposed model
is the first parametric model with continuous random effects to achieve these generalizations.

In actuarial sciences, the modeling of two different types of claims has already been stud-
ied. For example, Pinquet (1998) uses Poisson residuals to create dependence between at-
fault and not-at-fault claims in automobile insurance, while Boucher and Inoussa (2014)
use Bonus-Malus Systems with specific penalty rules allowing different claim types to affect
the premium. Frees and Valdez (2008) also model various type of claims by decomposing
all possibilities of claim types that may occur for a single accident. Generalizations to time-
dependent heterogeneous models have also often been studied in the actuarial literature. To
obtain a dynamic approach with continuous random effects, a parametric model would nor-
mally need T -dimensional integrals to express the joint distribution of all claims of a single
insured (Xu et al (2007)). Consequently, complex numerical procedures that are not suited
for panel data framework are sometimes needed (see for example Jung and Liesenfeld (2001)).
Other approaches have been proposed to put a dynamic effect into count models: evolutionary
credibility models in Gerber and Jones (1975), Jewell (1975), Poisson residuals in Pinquet
et al (2001), or more recently copulas with the jittering method in Shi and Valdez (2014).

In this paper, to obtain this generalization of panel data models, the bivariate claim count
distribution will be based on two conditional Poisson distributions with two gamma random
effects distributions. Dependence will be supposed between the random effects, based on the
Sarmanov family of multivariate distributions. This family of multivariate distributions has
nice properties. Indeed, we show that this family of distributions offers flexibility in the choice
of marginals and allows a closed-form expression for the joint density function. Additionally,
we show that the posterior density of the bivariate random effects has approximately the same
form as its prior. In particular, we show that the proposed model allows closed-form expres-
sions for the predictive distribution, and a closed-form expression for the predictive premium,
which can be an important insight for the insurer. Note that even if the illustrated model is
used based on Poisson-gamma combinations, the proposed model can be easily used to gen-
eralize models with different conditional distributions or different random effects distributions.

In Section 5.2, we review the modeling of claim counts, where notations are set and random
effects defined. In Section 5.3, we define the Sarmanov family of multivariate distribution.
A multivariate extension of the dynamic model based on Harvey and Fernandes (1989) is
presented in Section 5.4. The proposed model can be seen as an extension of the dynamic
heterogeneity model described in Bolancé et al (2007). To be able to use such a dynamic
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approach, an approximation of the a posteriori Sarmanov distribution of the random effects
is proposed, where it is supposed that this a posteriori distribution has the same form as
the a priori distribution. Using data from a sample of a major Canadian insurance company,
two numerical illustrations are performed in Section 5.5, where different claim types are used.
Predictive premiums as well as the predictive variance are also computed and compared for
various models. Section 5.6 concludes the paper.

5.2 Claim Count Modeling

5.2.1 General notations

We are interested in modeling the number of claims Ni,`,t, for the ith policyholder (i = 1, ..., n)
of an insurance portfolio, of a given type of claim ` (` = 1, 2), at time t (t = 1, ..., T ). To
simplify the notations, subscript i will be removed for the remainder of the paper. To construct
our model, we will suppose a conditional Poisson distribution of mean λ`,tθ`, i.e.

(N`,t | Θ` = θ`) ∼ Poisson (λ`,tθ`) ,

where λ`,t = exp(β′x`,t) and x`,t represents the vector of all the pertinent covariates for claim
type ` during year t. Classically, most of the ratemaking techniques rely on generalized lin-
ear models (GLM) (see McCullagh and Nelder (1989)) to estimate the regression parameters.

For each claim type, hidden characteristics are usually captured by an additional random
term that affects all the contracts of the same insured. Each random effect is denoted by the
random variable Θ`, ` = 1, 2. Even if each claim type shares common hidden characteristics,
we will first suppose that Θ1 and Θ2 are independent. This assumption will be relaxed later.

We assume that each Θ` is gamma distributed with shape parameter α` and scale parameter
τ`. Both parameters α` and τ` are first considered stationary. Hence, we have

Θ` ∼ Gamma (α`, τ`) ,

with probability density function (pdf) denoted by

h(θ`;α`, τ`) = τα`
`

Γ(α`)
θα`−1
` exp(−τ`θ`).

Let us denote by N` = (N`,1, ..., N`,T ) the vector of the number of claims, and fN`,t
(n`,t |

Θ` = θ`) the discrete conditional probability mass function of (N`,t | Θ` = θ`). Consequently,
the joint probability mass function (pmf) of N`, denoted by fN`

(n`;α`, τ`), is given by
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fN`
(n`;α`, τ`) = Pr(N` = n`)

=
∫ ∞

0
fN`

(n`|Θ` = θ`)h(θ`; τ`, α`)dθ`

=
(

T∏
t=1

λ
n`,t

`,t

n`,t!

)
Γ(n`,• + α`)

Γ(α`)

(
τ`

λ`,• + τ`

)α`

(λ`,• + τ`)−n`,• , (5.1)

which corresponds to the joint pdf of a multivariate negative binomial random vector (MVNB),
with n`,• = ∑T

t=1 n`,t and λ`,• = ∑T
t=1 λ`,t. See Boucher et al. (2008) for details. In the

stationary case, for parameter identification, we suppose that α` = τ`. In this case, the
marginal moments of N`,t are given by

E[N`,t] = λ`,t
α`
τ`

= λ`,t and Var(N`,t) = λ`,t
α`
τ`

+ λ2
`,t

α`
τ2
`

= λ`,t +
λ2
`,t

α`
.

For ratemaking purposes, E[N`,t] is often called the a priori premium because it is the pre-
mium charged to new insureds, or insureds without claims experience.

5.2.2 Predictive Distribution

The random effect term models the heterogeneity of the model and incorporates the hidden
characteristics. Consequently, it is reasonable to believe that these hidden characteristics are
partly revealed by the number of claims reported by the policyholders. Indeed, at each in-
sured period, the random effects can be updated given the past claim experience, revealing
some insured-specific information. Henceforth, insightful information can be retrieved from
the claim experience.

The Poisson and gamma distributions are natural conjugates, thus the a posteriori distri-
bution is again a gamma distribution with updated parameters α∗` = α` + ∑T

t=1 n`,t and
τ∗` = τ` +∑T

t=1 λ`,t (see Boucher et al (2008) for details). Thus, the predictive mean can be
expressed as

E[N`,T+1 | N`,1, ..., .N`,T ] = λ`,T+1
α∗`
τ∗`

= λ`,T+1
α` +∑T

t=1 n`,t

α` +∑T
t=1 λ`,t

. (5.2)

In a ratemaking context, this is often called the predictive premium. We clearly observe how
past experience is incorporated in the computation of the predictive mean. Indeed, we can see
that all past claims have equal weight in the predictive premium calculation, meaning that
an old claim increases the premium as much as a newer claim does. A more intuitive model
would suppose that both Θ`, ` = 1, 2, can evolve over time, resulting in a model where the
most recent claims are more predictive than the oldest ones.
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5.3 Sarmanov Family of Bivariate Distributions

Sarmanov’s bivariate distribution was introduced in the literature by Sarmanov (1966), and
was also proposed in physics by Cohen (1984) under a more general form. Lee (1996)
suggests a multivariate version and discusses several applications in medicine. Recently, due
to its flexible structure, Sarmanov’s bivariate distribution gained interest in different applied
studies. For example, Schweidel et al (2008) use a bivariate Sarmanov model to capture the
relationship between a prospective customer’s time until acquisition of a particular service
and the subsequent duration for which the service is retained. Miravete (2009) presents two
models based on the Sarmanov distribution and uses them to compare the number of tariff
plans offered by two competing cellular telephone companies. Danaher and Smith (2011)
discuss applications to marketing (see also the references therein). In the insurance field,
Hernández-Bastida and Fernández-Sánchez (2012) use the bivariate Sarmanov distribution
for premium evaluation, more recently Abdallah et al (2015) use this family of distributions to
show its suitability in a loss reserving context. In this paper, we use the Sarmanov distribution
to accommodate correlation of unknown characteristics of a driver that might impact all types
of claims simultaneously.

5.3.1 Definitions

Let the random couple Θ = (Θ1,Θ2) have a bivariate Sarmanov distribution, with gamma
marginals

uS (θ1, θ2) = h (θ1;α1, τ1)h (θ2;α2, τ2) (1 + ωφ1 (θ1)φ2 (θ2)) , (5.3)

where φ`, ` = 1, 2 are two bounded non-constant functions such that
∫∞
−∞ φ` (t)u` (t) dt = 0

and ω is a real number that satisfies the condition

1 + ωφ1 (θ1)φ2 (θ2) ≥ 0 for all θ` , i ∈ {1, 2}.

One of the main interesting properties of the Sarmanov distribution is that the multivariate
distribution can support a wide range of marginals, such as the gamma distribution. Different
methods are proposed in Lee (1996) to construct mixing functions φ` for different types of
marginals. As mentioned in Lee (1996), different types of mixing functions can be used to
yield different multivariate distributions with the same set of marginals. Based on Corollary
2 in Lee (1996), a mixing function can be defined as φ` (θ`) = exp (−θ`) − L`, where L` is
the Laplace transform of the marginal distribution evaluated at 1. Hence, given our choice of
distribution for Θ`, ` = 1, 2, we have

φ`(θ`) = exp (−θ`)−
(

τ`
1 + τ`

)α`

.
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As for the dependence parameter ω of the bivariate Sarmanov distribution, in the case of
gamma marginals, it is bounded as follows Binf < ω < Bsup with

Binf = −1

max
{(

τ1
1 + τ1

)α1 ( τ2
1 + τ2

)α2

,

(
1−

(
τ1

1 + τ1

)α1)(
1−

(
τ2

1 + τ2

)α2)}

Bsup = 1

max
{(

τ1
1 + τ1

)α1 (
1−

(
τ2

1 + τ2

)α2)
,

(
τ2

1 + τ2

)α2 (
1−

(
τ1

1 + τ1

)α1)} .
This result is given in Corollary 2 of Lee (1996). Consequently, for gamma marginals, and
using the notations of the previous section, the prior joint pdf of (Θ1,Θ2) is given by

uS(θ1, θ2) = (1 + ϑ)h(θ1;α1, τ1)h(θ2;α2, τ2) + ϑh(θ1;α1, τ1 + 1)h(θ2;α2, τ2 + 1)
−ϑh(θ1;α1, τ1)h(θ2;α2, τ2 + 1)− ϑh(θ1;α1, τ1 + 1)h(θ2;α2, τ2), (5.4)

where ϑ = ω
(

τ1
1+τ1

)α1 ( τ2
1+τ2

)α2 . This last expression corresponds to a linear combination of
the product of univariate (gamma) pdf’s and highlights the attractive features of the Sarmanov
family of distributions.

5.3.2 Bivariate Count Distributions

A critical problem when modeling dependence between claim counts is to obtain a closed-
form expression for the joint distribution. The Sarmanov distribution will be a good ally to
circumvent this problem. Let us denote by fN1,N2 the discrete joint probability mass function
of (N1,N2), i.e. fN1,N2(n1,n2) = Pr (N1 = n1,N2 = n2) which can be expressed as

fN1,N2(n1,n2) =
∫ ∞

0

∫ ∞
0

fN1,N2(n1,n2|Θ1 = θ1,Θ2 = θ2)uS(θ1, θ2)dθ1dθ2

= (1 + ϑ) fN1(n1;α1, τ1)fN2(n2;α2, τ2) + ϑfN1(n1;α1, τ1 + 1)fN2(N2;α2, τ2 + 1)
−ϑfN1(N1;α1, τ1)fN2(N2;α2, τ2 + 1)− ϑfN1(N1;α1, τ1 + 1)fN2(N2;α2, τ2).

(5.5)

Note that we obtain a linear combination of products of MVNB distributions. The simplic-
ity and form of the model greatly facilitate many calculations, such as the moments of the
distribution. For the a priori mean, we obtain the following result:

E [N1,t +N2,t] = λ1,t
α1
τ1

+ λ2,t
α2
τ2
,

(5.6)
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Note that the mean of the sum is the same as the one obtained for the sum of two MVNB
distributions. However, a covariance term is added to the sum of the variance, as shown in
the following result:

Var(N1,t +N2,t) = λ1,t
α1
τ1

+ λ2
1,t
α1
τ2
1

+ λ2,t
α2
τ2

+ λ2
2,t
α2
τ2
2

+2λ1,tλ2,t

(
ϑ
α1
τ1

α2
τ2

+ ϑ
α1

τ1 + 1
α2

τ2 + 1 − ϑ
α1

τ1 + 1
α2
τ2
− ϑα1

τ1

α2
τ2 + 1

)
.

(5.7)

Similarly to what Purcaru and Denuit (2002) did for univariate claim count models, it would
be interesting to analyze the dependence induced by this kind of model. Recently, Bolancé
et al (2014) show that the Sarmanov family of distributions has upper tail dependence
equal to zero when the marginal distributions have tail Gumbel type, as Gamma distribution.
However, this impact is mitigated in our context and findings, because the marginals of the
Sarmanov family of multivariate distributions represent the heterogeneity components in our
model. The interpretation of such a finding in our context would mean that the probability
that the couple (Θ1,Θ2) has two extreme heterogeneity components tends to zero.

Predictive Joint Distribution

As done with the univariate analysis of Section 5.2.2, the posterior distribution is also useful
as it reveals insured-specific information. Because of the bivariate structure of the random
effects, past claims experience of a given claim type can be used to update the random effects
distribution of the other type of claims. The posterior bivariate joint density function of the
couple (Θ1,Θ2) conditioned on (N1,N2) is given by

uS(θ1, θ2 | n1,n2) = ψ1h(θ1;α∗1, τ∗1 )h(θ2;α∗2, τ∗2 ) + ψ2h(θ1;α∗1, τ∗1 + 1)h(θ2;α∗2, τ∗2 + 1)

−ψ3h(θ1;α∗1, τ∗1 )h(θ2;α∗2, τ∗2 + 1)− ψ4h(θ1;α∗1, τ∗1 + 1)h(θ2;α∗2, τ∗2 ),

(5.8)

where α∗` = α` + n`,•, τ∗` = τ` + λ`,•, ` = 1, 2, and

ψ1 = 1
fN1,N2(n1,n2) (1 + ϑ) fN1(n1;α1, τ1)fN2(n2;α2, τ2)

ψ2 = 1
fN1,N2(n1,n2)ϑfN1(n1;α1, τ1 + 1)fN2(n2;α2, τ2 + 1)

ψ3 = 1
fN1,N2(n1,n2)ϑfN1(n1;α1, τ1)fN2(n2;α2, τ2 + 1)

ψ4 = 1
fN1,N2(n1,n2)ϑfN1(n1;α1, τ1 + 1)fN2(n2;α2, τ2).
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This last expression shows that the posterior bivariate density function of (Θ1,Θ2), is again
a linear combination of the product of univariate gamma pdfs. The posterior density is hence
called a pseudo-conjugate to the prior density (Lee (1996)) in the sense that the posterior
density is a linear combination of products of densities from the univariate natural exponen-
tial family of distributions (gamma in our case).

The joint predictive distribution of N1 and N2 at time T + 1, given all the past observations
up to time T can also be computed. This will enable us to evaluate notably the expected
annual claim frequency conditionally on past experience. The Sarmanov distribution allows
us to obtain a closed-form expression for this joint prediction. Indeed, using (5.1) and (5.8),
we get

fN1,T +1,N2,T +1|N1,N2 (n1,T+1, n2,T+1) =
ψ1fN1,T +1|N1 (n1,T+1;α1 + n1,•, τ1 + λ1,•) fN2,T +1|N2 (n2,T+1;α2 + n2,•, τ2 + λ2,•)

+ψ2fN1,T +1|N1 (n1,T+1;α1 + n1,•, τ1 + 1 + λ1,•) fN2,T +1|N2 (n2,t+1;α2 + n2,•, τ2 + 1 + λ2,•)
−ψ3fN1,T +1|N1 (n1,T+1;α1 + n1,•, τ1 + λ1,•) fN2,T +1|N2 (n2,T+1;α2 + n2,•, τ2 + 1 + λ2,•)
−ψ4fN1,T +1|N1 (n1,T+1;α1 + n1,•, τ1 + 1 + λ1,•) fN2,T +1|N2 (n2,T+1;α2 + n2,•, τ2 + λ2,•) ,

(5.9)

with ψj , j = 1, 2, 3, 4 as given in (5.8) and n`,• and λ`,• as given in (5.1), where we suppose

fN`,T +1|N`
(n`,t+1;α∗, τ∗) =

(
λ
n`,t+1
`,t+1
n`,t+1!

)
Γ (n`,t+1 + α∗)

Γ(α∗)
τα∗
∗

(λ`,t+1 + τ∗)n`,t+1+α∗

= Γ(α∗ + n`,t+1)
Γ(α∗)Γ(n`,t+1 + 1)

(
τ∗

λ`,t+1 + τ∗

)α∗ ( λ`,t+1
λ`,t+1 + τ∗

)n`,t+1

, (5.10)

which corresponds to a negative binomial distribution with parameters α∗ and
τ∗

λ`,t+1 + τ∗
.

One of the main advantages of using the Sarmanov family of bivariate distributions is the
possibility to derive closed-form expressions for the mean and variance of the total future
number of claims. Let =`,T be the history of claim counts of type ` up to time T . Mathemat-
ically, =`,T is the sigma algebra generated by the random variables N`,1, N`,2, ..., N`,T , with
=T = (=1,T ,=2,T ) and N tot

T+1 = N1,T+1 + N2,T+1. It can be shown that the total expected
annual claim frequency for year T + 1 is

E
[
N tot
T+1 | =T

]
= λ1,T+1

(
(ψ1 − ψ4) α

∗
1
τ∗1

+ (ψ2 − ψ3) α∗1
τ∗1 + 1

)
+ λ2,T+1

(
(ψ1 − ψ3) α

∗
2
τ∗2

+ (ψ2 − ψ4) α∗2
τ∗2 + 1

)
, (5.11)

with α∗` = α` + n`,•, τ∗` = τ` + λ`,•, ` = 1, 2. The total variance of the sum can be expressed
as
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Var(N tot
T +1 | =T ) = λ1,T +1

(
(ψ1 − ψ4) α

∗
1
τ∗1

+ (ψ2 − ψ3) α∗1
τ∗1 + 1

)
+ λ2

1,T +1

(
(ψ1 − ψ4) α

∗
1

τ∗21
+ (ψ2 − ψ3) α∗1

(τ∗1 + 1)2

)
+ λ2,T +1

(
(ψ1 − ψ3) α

∗
2
τ∗2

+ (ψ2 − ψ4) α∗2
τ∗2 + 1

)
+ λ2

2,T +1

(
(ψ1 − ψ3) α

∗
2

τ∗22
+ (ψ2 − ψ4) α∗2

(τ∗2 + 1)2

)
+ 2λ1,T +1λ2,T +1

(
ψ1
α∗1
τ∗1

α∗2
τ∗2

+ ψ2
α∗1

τ∗1 + 1
α∗2

τ∗2 + 1 − ψ3
α∗1

τ∗1 + 1
α∗2
τ∗2
− ψ4

α∗1
τ∗1

α∗2
τ∗2 + 1

)
− 2

(
λ1,T +1

(
(ψ1 − ψ4) α

∗
1
τ∗1

+ (ψ2 − ψ3) α∗1
τ∗1 + 1

))(
λ2,t+1

(
(ψ1 − ψ3) α

∗
2
τ∗2

+ (ψ2 − ψ4) α∗2
τ∗2 + 1

))
,

(5.12)

with α∗` = α` + n`,•, τ∗` = τ` + λ`,•, ` = 1, 2.

It is worth mentioning that, as expected, the model borrows past information from one series
to predict future claim counts of the other series. Indeed, the terms ψj for j = 1, 2, 3, 4
depend on N`,1, N`,2, ..., N`,T , ` = 1, 2, and are used to compute the expected value of each
type of claim. The dependence parameter ω intervenes in the predictive mean and variance
computations through the same terms ψj . Simplified and developed expressions of the terms
ψj ’s are presented later in the paper in another context.

5.4 Multivariate Dynamic Random Effects

5.4.1 Model and motivations

Models where the random effects Θ` evolve over time would normally need T -dimensional
integrals to express the joint distribution of all claims of a single insured. Consequently, com-
plex numerical procedures or approximated inference methods are sometimes needed (see for
example Jung and Liesenfeld (2001) or Xu et al (2007)). Other approaches have been pro-
posed to put a dynamic effect into count models: evolutionary credibility models in Gerber
and Jones (1975), Jewell (1975), Poisson residuals in Pinquet et al (2001), or more recently
copulas with the jittering method in Shi and Valdez (2014).

In our paper, we propose an extension of Bolancé et al (2007), which is based on the idea
of Harvey and Fernandes (1989). We note this model as the H-F model, referring directly to
Harvey-Fernandes. Their model supposes that the risk characteristics are captured through
a dynamic effect Θ`,t, which is considered evolutionary and time-dependent, i.e. that its dis-
tribution evolves over time and is updated through past experience. Formally, the classic
Poisson-gamma model described in Section 5.2.1 is generalized and allows the underlying risk
parameter to vary in successive periods, with the following dynamic:
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(Θ`,t | =`,t) ∼ Gamma (α`,t, τ`,t) , ` ∈ {1, 2}. (5.13)

It is also supposed that

(Θ`,t | =`,t−1) ∼ Gamma
(
α`,t|t−1, τ`,t|t−1

)
, ` ∈ {1, 2}, (5.14)

where
{
α`,t|t−1 = ν`α`,t−1

τ`,t|t−1 = ν`τ`,t−1.
(5.15)

The parameter ν` is a weighting parameter less than or equal to 1. The initial conditions of the
dynamic model, i.e. the distribution of Θ`,1, is supposed Gamma (α`,0, τ`,0), with α`,0 = τ`,0.
This means that the premium for the first year equals λ`,1, because E [Θ`,1] = 1.

Using Bayes’ theorem, the posterior distribution for (Θ`,t | =`,t) is again a gamma distribution
with updated parameters {

α`,t = ν`α`,t−1 + n`,t

τ`,t = ν`τ`,t−1 + λ`,t.

By induction, the above parameters can be expressed recursively as follows:
{
α`,t = (ν`)t α`,0 +∑t−1

k=0 (ν`)k n`,t−k
τ`,t = (ν`)t α`,0 +∑t−1

k=0 (ν`)k λ`,t−k.
(5.16)

Given the past experience, the resulting joint distribution of N` = N`,1, ..., N`,T can then be
expressed as

fN`
(n`;α`,t, τ`,t) =

(
T∏
t=1

λ
n`,t

`,t

n`,t!

)
Γ(n`,• + α`,t|t−1)

Γ(α`,t|t−1)

(
τ`,t|t−1

λ`,• + τ`,t|t−1

)α`,t|t−1

(λ`,• + τ`,t|t−1)−n`,• ,

(5.17)
where α`,t|t−1 and τ`,t|t−1 are as given in (5.15).

We observe that the multivariate joint distribution is similar to equation (5.1), but the random
effects parameters are now time-dependent. Note that unlike the stationary model, where the
sum of claim counts was a sufficient statistic, the dynamic model keeps the time period of
each claim. The a priori moments of the H-F model, are given by

E[N`,t] = λ`,t and Var(N`,t) = λ`,t +
λ2
`,t

α`,0
,

meanwhile the predictive moments can be expressed as

E[N`,T+1 | N`,1, ..., .N`,T ] = λ`,T+1
α`,T
τ`,T

and Var(N`,T+1) = λ`,T+1
α`,T
τ`,T

+ λ2
`,T+1

α`,T
τ2
`,T

,
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where α`,T and τ`,T are obtained following equation (5.16) with ` = 1, 2. We observe that the
a priori and predictive moments of this model have the same expressions as in the MVNB
model, with time-dependent underlying parameters.

5.4.2 Sarmanov distribution and dynamic heterogeneity

One of the main advantages of the Sarmanov family of bivariate distributions is its pseudo-
conjugate property for the posterior distribution (see equation (5.8)). However, this property
might not be sufficient to directly suppose a dynamic structure for the Sarmanov distribu-
tion. Indeed, to be able to assume a dynamic approach with the Sarmanov distribution, like
the one proposed for the Poisson-gamma model (or MVNB) in equation (5.16), the bivariate
a posteriori distribution of the random effects needs to be a conjugate to the prior, where
updated parameters α∗` , τ∗` , ` = 1, 2 can be modified easily using a structure similar to the
equations above. To obtain such a structure, the a posteriori distribution of the correlated
random effects needs to be, once again, a member of the family of Sarmanov multivariate dis-
tribution. As just specified, the Sarmanov family of bivariate distributions does not possess
this conjugate property, but its pseudo-conjugate property might enable us to construct an
interesting alternative.

The posterior distribution of random effects obtained in (5.8) is a weighted sum of posterior
gamma distributions, with α∗` = α` + n`,• , τ∗` = τ` + λ`,•, ` = 1, 2. The difference between
what would have been called a conjugate distribution and the pseudo-conjugate comes from
ψ1, ψ2, ψ3, ψ4 that are not expressed solely in terms of α∗` and τ∗` , but also α` and τ`. We
propose to modify the posterior distribution to obtain a distribution that is only a function
of α∗` and τ∗` . This modification will be the first step to obtain a dynamic bivariate count
distribution. The proposed posterior Sarmanov distribution, now referred to as Approximated
Sarmanov, is then expressed as:

uS
∗

(θ1, θ2 | n1,n2) = (1 + ϑ∗)h(θ1;α∗1, τ∗1 )h(θ2;α∗2, τ∗2 ) + ϑ∗h(θ1;α∗1, τ∗1 + 1)h(θ2;α∗2, τ∗2 + 1)
−ϑ∗h(θ1;α∗1, τ∗1 )h(θ2;α∗2, τ∗2 + 1)− ϑ∗h(θ1;α∗1, τ∗1 + 1)h(θ2;α∗2, τ∗2 ),

(5.18)

where the distribution has the same form as the a priori distribution of (Θ1,Θ2) with updated
parameters ϑ∗ = ω

(
τ∗1

1+τ∗1

)α∗1 ( τ∗2
1+τ∗2

)α∗2 , where α∗` = α` + n`,•, τ∗` = τ` + λ`,•, for ` = 1, 2.

Quality of the Approximation

The Approximated Sarmanov distribution for random effects has the desired properties to
be generalized into a dynamic approach. However, before adding the dynamic structure, we
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need to quantify the approximation of the a posteriori Sarmanov distribution. The difference
between the Sarmanov and Approximated Sarmanov can be expressed as:

uS
∗(θ1, θ2 | n1,n2)− uS(θ1, θ2 | n1,n2) =

δ1h(θ1;α∗1, τ∗1 )h(θ2;α∗2, τ∗2 ) + δ2h(θ1;α∗1, τ∗1 + 1)h(θ2;α∗2, τ∗2 + 1)

−δ3h(θ1;α∗1, τ∗1 )h(θ2;α∗2, τ∗2 + 1)− δ4h(θ1;α∗1, τ∗1 + 1)h(θ2;α∗2, τ∗2 ). (5.19)

Each term δj , j = 1, 2, 3, 4 can be simplified as:

δ1 =
[
1 + ω

(
τ∗1

1 + τ∗1

)α∗1 ( τ∗2
1 + τ∗2

)α∗2]
− ψ1

= ϑ∗
(

1− L1/L
∗
1 + L2/L

∗
2 − 1

1 + ϑ+ ϑ∗(1− L1/L∗1 − L2/L∗2)

)
δ2 = ω

(
τ∗1

1 + τ∗1

)α∗1 ( τ∗2
1 + τ∗2

)α∗2
− ψ2

= ϑ∗
(

1− 1
1 + ϑ+ ϑ∗ (1− L1/L∗1 − L2/L∗2)

)
δ3 = ω

(
τ∗1

1 + τ∗1

)α∗1 ( τ∗2
1 + τ∗2

)α∗2
− ψ3

= ϑ∗
(

1− L2/L
∗
2

1 + ϑ+ ϑ∗ (1− L1/L∗1 − L2/L∗2)

)
δ4 = ω

(
τ∗1

1 + τ∗1

)α∗1 ( τ∗2
1 + τ∗2

)α∗2
− ψ4.

= ϑ∗
(

1− L1/L
∗
1

1 + ϑ+ ϑ∗ (1− L2/L∗2 − L1/L∗1)

)
,

where ϑ∗ = ω
(

τ∗1
1+τ∗1

)α∗1 ( τ∗2
1+τ∗2

)α∗2 , L` =
(

τ`
1 + τ`

)α`

, and L∗` =
(

τ∗`
1 + τ∗`

)α∗`
, for ` = 1, 2. It

is worth-mentioning that the differences δj ’s are complementary and offsetting one another,
resulting in a sum of differences equal to zero. This condition comes from the fact that (5.19)
is a difference between two proper distributions.

We analyzed the approximation for different values of the parameters. The Approximated
Sarmanov is identical to the Sarmanov distribution when ω = 0, which is the particular case
of independent random effects. We also observed that the values of δj , for j = 1, ..., 4 are pro-
portional to ω. The difference caused by the approximation also depends on the parameters
α∗` , τ∗` , and thus depends on the time of each claim and also on sums of past claims, i.e. n`,•
for ` = 1, 2. In Figure 5.1, for a specific choice of parameters, as a function of n`,• for ` = 1, 2,
we illustrate the values of the δj ’s for a large observation period T = 100.
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We see that the approximation is less accurate in the cases where n1,• and n2,• tend to behave
inversely. This represents unusual situations because claims of different types are assumed to
be positively correlated, which means that an insured with a high value of n1,• should also
normally have a high number of past claims of type 2. When the numbers of past claims are
similar for each type, the approximation seems to be more accurate and reasonable.

We also analyze the model for smaller time periods because it is more realistic for insurance
data. Indeed, insurance datasets are usually constructed with T < 10 (see Boucher et al
(2008) for example). We illustrate the values of the δj ’s for T = 5 in Figure 5.2. Our
analysis shows that the differences expressed by the δj ’s are closer to zero (note that the
scales are different than those of Figure 5.1). Henceforth, one observes differences between
the Approximated Sarmanov and the original Sarmanov models, but the highest differences
occur for unusual situations. However, empirically, most insureds are located in the area
nj,t = {0, 1}, for j = 1, 2 where the differences are much smaller. Thus, for small values of T ,
the Approximated Sarmanov distribution is close to the original Sarmanov, but it is important
to understand that they are not the same model.

Figure 5.1 – Graphs of δ1, δ2, δ3 and δ4 respectively, for a time series of T = 100 periods,
with λ1 = λ2 = 0.15, α1 = α2 = 0.7 and ω = 2
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Figure 5.2 – Graphs of δ1, δ2, δ3 and δ4 respectively, for a time series of T = 5 periods, with
λ1 = λ2 = 0.15, α1 = α2 = 0.7 and ω = 2

Dynamic Sarmanov

The closed-form expressions for the moments of the Approximated Sarmanov do not change
from those obtained in (5.7). It can be shown that the Approximated Sarmanov model gen-
erates a predictive annual claim frequency given by

E
[
N tot
T+1 | =T

]
=

(
(1 + ϑ∗ − ϑ∗) α

∗
1
τ∗1

+ (ϑ∗ − ϑ∗) α∗1
τ∗1 + 1

)
+ λ2,T+1

(
(1 + ϑ∗ − ϑ∗) α

∗
2
τ∗2

+ (ϑ∗ − ϑ∗) α∗2
τ∗2 + 1

)
,

= λ1,T+1
α∗1
τ∗1

+ λ2,t+1
α∗2
τ∗2

= λ1,T+1
α1 +

∑T
t=1 n1,t

τ1 +
∑T
t=1 λ1,t

+ λ2,T+1
α2 +

∑T
t=1 n2,t

τ2 +
∑T
t=1 λ2,t

, (5.20)

where α∗` and τ∗` , ` = 1, 2, are given by (5.1). The predictive variance is expressed as follows

Var(N tot
T+1 | =T ) = λ1,T+1

α∗1
τ∗1

+ λ2
1,T+1

α∗1
τ∗21

+ λ2,T+1
α∗2
τ∗2

+ λ2
2,T+1

α∗2
τ∗22

+ 2λ1,T+1λ2,T+1ϑ
∗
(
α∗1
τ∗1

α∗2
τ∗2

+ α∗1
τ∗1 + 1

α∗2
τ∗2 + 1 −

α∗1
τ∗1 + 1

α∗2
τ∗2
− α∗1
τ∗1

α∗2
τ∗2 + 1

)
,

(5.21)
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where α∗` = α` + n`,•, τ∗` = τ` + λ`,•, ` = 1, 2.

We observe that we obtain closed-from expressions for the predictive mean and variance,
which is convenient for premium calculation. However, we can see that the model does not
use the parameter ω in the calculation of the predictive mean. Moreover, the premium for
insurance coverage ` only uses α∗` and τ∗` , which are based on information of the claim type
` only. Consequently, for a specific type of claim, the Approximated Sarmanov model cannot
borrow information from the other types of claims in predictive modeling. This is contradic-
tory to the objective of our model because we expect that past claims experience of a given
claim type should be used to better predict future claims of another correlated claim type.

One way to correct this gap in the model is to consider a dynamic model that extends the one
proposed for the H-F model. Instead of adding only a weighting parameter ν` in the model,
we also introduce other parameters γ1 and γ2 to borrow information from the claim types 2
and 1, respectively. We intuitively believe that this modification allows us to better predict
future claims of each type. Formally, the parameters of such a model can be expressed as
follows:

{
α1,t|t−1 = ν1 (α1,t−1 + γ1n2,t)
τ1,t|t−1 = ν1 (τ1,t−1 + γ1λ2,t) ,

(5.22)

and
{
α2,t|t−1 = ν2 (α2,t−1 + γ2n1,t)
τ2,t|t−1 = ν2 (τ2,t−1 + γ2λ1,t) ,

(5.23)

where ν` is again a weighting parameter less than 1. It can be shown by induction that the
following general recursive relation holds: α1,t = (ν1)t α1,0 +∑t−1

k=0

(
(ν1)kn1,t−k + (ν1)k+1γ1n2,t−k

)
τ1,t = (ν1)t α1,0 +∑t−1

k=0

(
(ν1)kλ1,t−k + (ν1)k+1γ1λ2,t−k

)
,

(5.24)

and  α2,t = (ν2)t α2,0 +∑t−1
k=0

(
(ν2)kn2,t−k + (ν2)k+1γ2n1,t−k

)
τ2,t = (ν2)t α2,0 +∑t−1

k=0

(
(ν2)kλ2,t−k + (ν2)k+1γ2λ1,t−k

)
.

(5.25)

With these proposed parameters, the a posteriori distribution and the predictive analysis in-
corporate information on the correlated type of claims and borrow insightful past experience
of a given claim type to better predict the correlated claim type. As a generalization of the
H-F model, the resulting model also puts time weight on the correlated claim. This is reflected
by (5.24) and (5.25).
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The proposed modification allows us to construct a dynamic structure for the bivariate count
model with Sarmanov random effects. The a posteriori distribution of (Θ1,t,Θ2,t) for the
Dynamic Sarmanov model is assumed to have the same form as the a priori joint pdf of
(Θ1,t,Θ2,t), and can be expressed as

uS (θ1,t, θ2,t | =t) =
(

1 + ω

(
τ1,t

1 + τ1,t

)α1,t
(

τ2,t
1 + τ2,t

)α2,t
)
h(θ1,t;α1,t, τ1,t)h(θ2,t;α2,t, τ2,t)

+ω
(

τ1,t
1 + τ1,t

)α1,t
(

τ2,t
1 + τ2,t

)α2,t

h(θ1,t;α1,t, τ1,t + 1)h(θ2,t;α2,t, τ2,t + 1)

−ω
(

τ1,t
1 + τ1,t

)α1,t
(

τ2,t
1 + τ2,t

)α2,t

h(θ1,t;α1,t, τ1,t)h(θ2,t;α2,t, τ2,t + 1)

−ω
(

τ1,t
1 + τ1,t

)α1,t
(

τ2,t
1 + τ2,t

)α2,t

h(θ1,t;α1,t, τ1,t + 1)h(θ2,t;α2,t, τ2,t), (5.26)

where α`,t and τ`,t are non-stationary parameters given by (5.24) and (5.25).

Note that when ω = 0, the model can be seen as a bivariate version of the H-F model, noted
Bivariate H-F. Hence, given known past experience, the joint distribution of (N1,N2) for the
Dynamic Sarmanov model has the following closed-form expression:

fN1,N2(n1,n2) = (1 + ϑt) fN1(n1;α1,t, τ1,t)fN2(n2;α2,t, τ2,t)
+ϑtfN1(n1;α1,t, τ1,t + 1)fN2(n2;α2,t, τ2,t + 1)
−ϑtfN1(n1;α1,t, τ1,t)fN2(n2;α2,t, τ2,t + 1)
−ϑtfN1(n1;α1,t, τ1,t + 1)fN2(n2;α2,t, τ2,t),

(5.27)

with α`,t and τ`,t given by (5.24) and (5.25) for ` = 1, 2, where ϑt = ω
(

τ1,t

1+τ1,t

)α1,t
(

τ2,t

1+τ2,t

)α2,t .
Note that the dependence parameter ω does not depend on time.

The moments of the model can be expressed in closed-form, and do not change from those
obtained in equation (5.7). For the predictive premium and variance of the Dynamic Sarmanov
model, it can be reduced to the following

E
[
N tot
T+1 | =T

]
= λ1,T+1

α1,T
τ1,T

+ λ2,T+1
α2,T
τ2,T

= λ1,T+1
(ν1)T α1,0 +

∑T−1
k=0

(
νk1n1,T−k + νk+1

1 γ1n2,T−k
)

(ν1)T α1,0 +
∑T−1
k=0

(
νk1λ1,T−k + νk+1

1 γ1λ2,T−k
)

+λ2,T+1
(ν2)T α2,0 +

∑T−1
k=0

(
νk2n2,T−k + νk+1

2 γ2n1,T−k
)

(ν2)T α2,0 +
∑T−1
k=0

(
νk2λ2,T−k + νk+1

2 γ2λ1,T−k
) (5.28)
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and

Var(N tot
T+1 | =T ) = λ1,T+1

α1,T
τ1,T

+ λ2
1,T+1

α1,T
τ2
1,T

+ λ2,T+1
α2,T
τ2,T

+ λ2
2,T+1

α2,T
τ2
2,T

+ 2λ1,T+1λ2,T+1ϑT

(
α1,T
τ1,T

α2,T
τ2,T

+ α1,T
τ1,T + 1

α2,T
τ2,T + 1 −

α1,T
τ1,T + 1

α2,T
τ2,T

− α1,T
τ1,T

α2,T
τ2,T + 1

)
,

(5.29)

where ϑT = ω
(

τ1,T

1+τ1,T

)α1,T
(

τ2,T

1+τ2,T

)α2,T , α`,T and τ`,T are again obtained from equations
(5.24) and (5.25), with ` = 1, 2.

We observe that the mean of a given claim type uses the past information of the correlated
type of claims, through the crossed parameters γ1 and γ2. This link between the claim types
does not directly depend on the dependence parameter ω, as it was the case for the stationary
Sarmanov model. However, the ω intervenes in the calculation of the predictive variance of the
Dynamic Sarmanov model, which can be a crucial additional information for various premium
principles.

5.5 Empirical Illustration

5.5.1 Data used

We implement all the models presented in this paper with a sample of insurance data that
comes from a major Canadian insurance company. Only private used cars have been con-
sidered in this sample. We consider 11 exogenous variables, shown in Table 5.5.1. For every
policy we have the initial information at the beginning of the period to describe the profile
of the driver. The unbalanced panel data contain information from 2003 to 2008. The sample
contains 79,755 insurance contracts, which come from 26,251 policyholders.

The empirical illustration is performed on two pairs of claims types: collision vs comprehensive
(noted pair COL/COM) and at-fault vs non-at-fault collision claims (noted pair AF/NAF).
We decided to work with two different empirical illustrations to better describe the behavior
of our models. We thus expose the models to a wider possibility of situations, which allows
us to better analyze their performance and better highlight their properties.

Comprehensive coverage protects damage to the car that results from covered perils not re-
lated to a collision. Namely, a scenario that could cause damage to the car that has nothing
to do with striking another vehicle. In many cases, this can include theft, vandalism, fire,
natural disasters like a hurricane or a tornado, falling objects, etc. Thus, one would expect
that if the accident is really a pure comprehensive accident, it should not give any indication
of the competence of the driver or better predict future collisions. However, dependence may
come from unobservable risk characteristics. In fact, some insureds tend to claim more than
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Variable Description
X1 equals 1 if the insured is between 16 and 25 years old
X2 equals 1 if the insured is between 26 and 60 years old
X3 equals 1 if the vehicle is 0 years old
X4 equals 1 if the vehicle is 1-3 years old
X5 equals 1 if the vehicle is 4-5 years old
X6 equals 1 if the insured owns a home
X7 equals 1 if there is only one driver
X8 equals 1 if there are two drivers
X9 equals 1 if the insured is single
X10 equals 1 if the insured is divorced
X11 equals 1 if the insured has no minor convictions

Table 5.1 – Binary variables summarizing the information available about each policyholder.

others, regardless of the type of claim. This might be explained by a social context as well, in
the sense that an insured who lives in a riskier area could be exposed to both types of claims.
Moreover, this dependence might also be caused by several factors, such as the driving com-
petence of a driver (collision with a vehicle and collision with an object are often positively
correlated), but this might also be explained by the behavior of the insured. Hence, the use
of a model that allows dependence between coverages is justified.

In the second illustration, the collision coverage is separated into at-fault and non-at-fault
claims. If the non-at-fault claims were really defined as pure bad luck, meaning that they
have nothing to do with the behavior of the insured, then it would be irrational to believe
that non-at-fault claims would be correlated with at-fault claims. However, in Canada, non-
at-fault claims correspond to specific type of accidents, more related to the car’s location in
the accident. This is well known in Canada, and even if insurers cannot increase the premium
for non-at-fault claims, insurers must sometimes find original ways to penalize drivers with
non-at-fault claims (see Boucher and Inoussa (2014)). Consequently, for possibly the same
reasons cited above for collision and comprehensive coverages that might lead to dependence,
it seems logical to believe that dependence can exist between these two types of collision
claims as well.

5.5.2 Model Calibration

Tables 5.2 and 5.3 exhibit the fit statistics along with the estimated parameters for the MVNB
distribution, compared to the most popular count distributions, i.e. the Poisson and Negative
Binomial type-2 (NB2) distributions. When the null hypothesis is on the boundary of the
parameter space, a correction must be done to the likelihood ratio test, namely one-sided
statistic tests (see Boucher et al (2007) for more details). Consequently, a modified likelihood
ratio test has been used to check if the Poisson is rejected against the NB2 or against the
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Poisson NB2 MVNB
COL COM COL COM COL COM

Estim error Estim error Estim error Estim error Estim error Estim error
β0 -2.5517 0.0847 -4.1896 0.1641 -2.5474 0.0913 -4.1889 0.1604 -2.5739 0.0904 -4.1912 0.1709
βX1 0.6349 0.0717 0.4553 0.1388 0.6419 0.0769 0.4562 0.1409 0.6416 0.0774 0.4644 0.1468
βX2 0.2231 0.0470 0.3962 0.0854 0.2229 0.0501 0.3962 0.0858 0.2261 0.0508 0.3990 0.0877
βX3 0.3369 0.0413 0.3927 0.0695 0.3383 0.0436 0.3924 0.0711 0.3207 0.0434 0.3885 0.0719
βX4 0.3298 0.0382 0.3944 0.0643 0.3314 0.0402 0.3948 0.0650 0.3228 0.0400 0.3924 0.0660
βX5 0.2245 0.0408 0.0919 0.0721 0.2250 0.0427 0.0923 0.0738 0.2149 0.0423 0.0907 0.0749
βX6 0.0904 0.0310 0.1392 0.0528 0.0917 0.0331 0.1395 0.0542 0.0929 0.0328 0.1400 0.0541
βX7 -0.4855 0.0564 -0.0731 0.1191 -0.4905 0.0607 -0.0736 0.1198 -0.4780 0.0615 -0.0775 0.1232
βX8 -0.3888 0.0577 -0.0781 0.1195 -0.3917 0.0623 -0.0781 0.1252 -0.3891 0.0629 -0.0830 0.1258
βX9 0.1901 0.0375 0.0940 0.0643 0.1927 0.0393 0.0943 0.0647 0.1932 0.0401 0.0942 0.0663
βX10 0.2097 0.0566 0.2080 0.0929 0.2134 0.0595 0.2085 0.0947 0.2031 0.0611 0.2126 0.0955
βX11 -0.2349 0.0490 -0.1445 0.0884 -0.2356 0.0525 -0.1448 0.0928 -0.2054 0.0529 -0.1377 0.0886
α` 1.3170 0.1331 0.6615 0.3875 0.6855 0.0651 0.6769 0.1722

LogLik -25,635.6 -25,542.26 -25,532.79
AIC 51,319.20 51,136.52 51,117.58

Table 5.2 – Parameter estimation - Stationary models for the pair COL/COM

Poisson NB2 MVNB
AF NAF AF NAF AF NAF

Estim error Estim error Estim error Estim error Estim error Estim error
β0 -3.3021 0.1258 -3.1918 0.1162 -3.3037 0.1282 -3.1893 0.1173 -3.3132 0.1374 -3.1967 0.1200
βX1 0.7298 0.1031 0.5407 0.1003 0.7310 0.1045 0.5409 0.1016 0.7360 0.1103 0.5412 0.1040
βX2 0.1586 0.0705 0.2745 0.0636 0.1586 0.0707 0.2738 0.0648 0.1606 0.0758 0.2747 0.0668
βX3 0.3745 0.0630 0.3085 0.0549 0.3752 0.0633 0.3090 0.0555 0.3696 0.0648 0.3035 0.0560
βX4 0.3960 0.0582 0.2786 0.0513 0.3963 0.0580 0.2792 0.0515 0.3949 0.0594 0.2760 0.0519
βX5 0.3097 0.0608 0.1571 0.0547 0.3104 0.0611 0.1576 0.0554 0.3067 0.0628 0.1544 0.0554
βX6 0.1230 0.0468 0.0648 0.0420 0.1230 0.0473 0.0642 0.0422 0.1242 0.0482 0.0654 0.0428
βX7 -0.5720 0.0811 -0.4153 0.0754 -0.5717 0.0845 -0.4141 0.0766 -0.5726 0.0869 -0.4115 0.0798
βX8 -0.4568 0.0833 -0.3329 0.0769 -0.4567 0.0857 -0.3325 0.0786 -0.4587 0.0880 -0.3322 0.0815
βX9 0.2097 0.0558 0.1749 0.0497 0.2094 0.0567 0.1745 0.0505 0.2130 0.0584 0.1742 0.0511
βX10 0.1536 0.0885 0.2501 0.0737 0.1536 0.0888 0.2502 0.0746 0.1545 0.0896 0.2461 0.0759
βX11 -0.2442 0.0726 -0.2273 0.0659 -0.2433 0.0730 -0.2298 0.0663 -0.2295 0.0759 -0.2208 0.0694
α` 0.1112 0.1620 0.2950 0.1678 0.4943 0.1330 0.3478 0.0939

LogLik -20,919.09 -20,917.05 -20,899.84
AIC 41,886.18 41,886.10 41,851.68

Table 5.3 – Parameter estimation - Stationary models for the pair AF/NAF

MVNB for both datasets. On the other hand, because NB2 and MVNB are non-nested mod-
els, the Akaike Information Criterion (AIC) has to be preferred to compare the models. In
our case, despite the fact that the Poisson cannot always be rejected against the NB2 for all
four coverages, we observe that the MVNB model is preferred over Poisson and NB2 for all
coverages. This conclusion is interesting because unlike the Poisson or the NB2 distributions,
the MVNB distribution allows temporal dependence between all contracts of the insured. This
means that our intuition that a premium should somewhat depend on past claim experience
is confirmed.

We also fit the Sarmanov and the Approximated Sarmanov models for comparison purposes,
to validate the quality of the approximation supposed in the construction of the Approxi-
mated Sarmanov. Results are shown in Tables 5.4 and 5.5. We calculated the loglikelihood
on the Approximated Sarmanov by using the estimated parameters of the Sarmanov model.
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Sarmanov Approximated Sarmanov
COL COM COL COM

Estimates std error Estimates std error Estimates std error Estimates std error
β0 -2.5739 0.0923 -4.1927 0.1655 -2.5736 0.0885 -4.1905 0.1686
βX1 0.6423 0.0773 0.4645 0.1395 0.6415 0.0770 0.4646 0.1434
βX2 0.2263 0.0512 0.3989 0.0889 0.2260 0.0502 0.3988 0.0872
βX3 0.3203 0.0432 0.3864 0.0713 0.3207 0.0436 0.3884 0.0705
βX4 0.3225 0.0398 0.3912 0.0648 0.3228 0.0404 0.3923 0.0651
βX5 0.2148 0.0422 0.0896 0.0743 0.2149 0.0421 0.0906 0.0722
βX6 0.0930 0.0328 0.1402 0.0538 0.0929 0.0328 0.1401 0.0538
βX7 -0.4785 0.0615 -0.0768 0.1104 -0.4781 0.0595 -0.0780 0.1132
βX8 -0.3897 0.0628 -0.0832 0.1149 -0.3892 0.0609 -0.0834 0.1139
βX9 0.1933 0.0393 0.0943 0.0644 0.1932 0.0397 0.0942 0.0656
βX10 0.2037 0.0609 0.2121 0.0966 0.2031 0.0612 0.2129 0.0959
βX11 -0.2048 0.0519 -0.1349 0.0870 -0.2055 0.0529 -0.1378 0.0897
α` 0.6853 0.0648 0.6776 0.1728 0.6853 0.0647 0.6766 0.1626
ω 2.0703 2.0489

LogLik -25,531.98 -25,532.55
AIC 51,117.96 51,119.10

Table 5.4 – Parameter estimation - Sarmanov Approximation for the pair COL/COM

Sarmanov Approximated Sarmanov
AF NAF AF NAF

Estimates std error Estimates std error Estimates std error Estimates std error
β0 -3.3217 0.1662 -3.2043 0.1457 -3.3188 0.1280 -3.2001 0.1191
βX1 0.7385 0.1263 0.5423 0.1118 0.7391 0.1067 0.5414 0.1041
βX2 0.1613 0.0814 0.2754 0.0716 0.1616 0.0718 0.2748 0.0671
βX3 0.3642 0.0642 0.2962 0.0566 0.3669 0.0647 0.2992 0.0563
βX4 0.3927 0.0590 0.2724 0.0524 0.3941 0.0592 0.2738 0.0523
βX5 0.3032 0.0617 0.1504 0.0559 0.3049 0.0624 0.1521 0.0558
βX6 0.1252 0.0487 0.0662 0.0428 0.1249 0.0483 0.0660 0.0426
βX7 -0.5709 0.0903 -0.4073 0.0897 -0.5728 0.0843 -0.4088 0.0786
βX8 -0.4594 0.0932 -0.3316 0.0887 -0.4596 0.0868 -0.3319 0.0810
βX9 0.2146 0.0578 0.1742 0.0514 0.2148 0.0575 0.1737 0.0520
βX10 0.1528 0.0925 0.2425 0.0770 0.1551 0.0908 0.2431 0.0769
βX11 -0.2175 0.0917 -0.2102 0.0722 -0.2220 0.0755 -0.2154 0.0672
α` 0.8176 0.3940 0.7122 0.3092 0.7696 0.1301 0.6539 0.1111
ω 4.4886 5.6594

LogLik -20,878.76 -20,884.45
AIC 41,811.52 41,822.90

Table 5.5 – Parameter estimation - Sarmanov Approximation for the pair AF/NAF

We obtain close loglikelihood values (−25, 531.98 vs. −25, 532.55) for the pair COL/COM,
meaning that models are close. Additionally, expressed with 2 decimals, we observe that the
optimized loglikelihood of the Approximated Sarmanov (−25, 532.55) is approximately the
same as the one calculated with the MLE parameters of the Sarmanov distribution. For the
pair AF/NAF, the loglikelihood obtained by Approximated Sarmanov by using the MLE of
the Sarmanov distribution is equal to −20, 884.63, while the maximum loglikelihood obtained
by the Sarmanov is equal to −20, 878.76, a slightly higher difference. The maximum loglikeli-
hood obtained with the Approximated Sarmanov is also a little bit different, at −20, 884.45.
To summarize, the Approximated Sarmanov is not similar to the Sarmanov model, but the
approximation seems to be reasonable.

Tables 5.6 and 5.7 show the estimated parameters for the dynamic models presented earlier
in the paper: H-F, Bivariate H-F and Dynamic Sarmanov. We observe that the estimated
parameters (the intercept and the eleven covariates from Table 5.5.1) are approximately the
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Harvey-Fernandes Bivariate Harvey-Fernandes Dynamic Sarmanov
COL COM COL COM COL COM

Estim error Estim error Estim error Estim error Estim error Estim error
β0 -2.5749 0.0921 -4.1856 0.1701 -2.5749 0.0915 -4.2021 0.1687 -2.5739 0.1009 -4.1879 0.1771
βX1 0.6466 0.0773 0.4664 0.1400 0.6465 0.0777 0.4706 0.1486 0.6482 0.0811 0.4681 0.1413
βX2 0.2286 0.0514 0.4007 0.0868 0.2286 0.0509 0.4028 0.0901 0.2294 0.0577 0.4006 0.0878
βX3 0.3219 0.0433 0.3854 0.0721 0.3218 0.0433 0.3824 0.0714 0.3209 0.0434 0.3792 0.0711
βX4 0.3236 0.0400 0.3895 0.0658 0.3236 0.0401 0.3860 0.0662 0.3226 0.0407 0.3864 0.0657
βX5 0.2179 0.0423 0.0881 0.0751 0.2179 0.0424 0.0854 0.0745 0.2174 0.0426 0.0866 0.0758
βX6 0.0907 0.0330 0.1400 0.0543 0.0907 0.0329 0.1453 0.0543 0.0911 0.0333 0.1398 0.0551
βX7 -0.4775 0.0621 -0.0811 0.1138 -0.4775 0.0616 -0.0725 0.1115 -0.4798 0.0626 -0.0789 0.1255
βX8 -0.3892 0.0637 -0.0854 0.1197 -0.3892 0.0622 -0.0799 0.1094 -0.3908 0.0640 -0.0847 0.1268
βX9 0.1932 0.0397 0.0947 0.0648 0.1932 0.0401 0.0918 0.0666 0.1941 0.0398 0.0947 0.0679
βX10 0.2022 0.0613 0.2122 0.0960 0.2022 0.0608 0.2094 0.0964 0.2034 0.0610 0.2115 0.0963
βX11 -0.2067 0.0524 -0.1392 0.0905 -0.2067 0.0521 -0.1396 0.0887 -0.2058 0.0521 -0.1336 0.0935
α`,0 0.5021 0.0689 0.4472 0.1807 0.5021 0.0692 0.4273 0.1776 0.5027 0.0709 0.4482 0.1781
ν` 0.7057 0.0539 0.6421 0.1330 0.7057 0.0546 0.6083 0.1155 0.7062 0.0549 0.6240 0.1549
γ` 0 0.1438 0.2996 0.1611 0 0.2106 0.4162 0.2771
ω 0.7417

LogLik -25,521.67 -25,519.06 -25,517.31
AIC 51,099.34 51,098.12 51,096.62

Table 5.6 – Parameter estimation - Dynamic Models for the pair COL/COM

Harvey-Fernandes Bivariate Harvey-Fernandes Dynamic Sarmanov
AF NAF AF NAF AF NAF

Estim error Estim error Estim error Estim error Estim error Estim error
β0 -3.3129 0.1281 -3.1975 0.1184 -3,312953 0.1352 -3.2068 0.1237 -3.3223 0.1289 -3.2097 0.1200
βX1 0.7385 0.1066 0.5413 0.1032 0.7380 0.1067 0.5408 0.1049 0.7420 0.1080 0.5470 0.1046
βX2 0.1618 0.0711 0.2747 0.0651 0.1615 0.0730 0.2779 0.0685 0.1642 0.0743 0.2782 0.0680
βX3 0.3697 0.0638 0.3037 0.0556 0.3660 0.0645 0.2983 0.0564 0.3633 0.0647 0.2962 0.0565
βX4 0.3953 0.0587 0.2760 0.0520 0.3925 0.0593 0.2747 0.0526 0.3925 0.0591 0.2726 0.0525
βX5 0.3072 0.0615 0.1550 0.0554 0.3060 0.0627 0.1514 0.0559 0.3041 0.0627 0.1527 0.0562
βX6 0.1236 0.0478 0.0651 0.0428 0.1238 0.0477 0.0639 0.0428 0.1234 0.0479 0.0647 0.0428
βX7 -0.5739 0.0854 -0.4104 0.0782 -0.5714 0.0892 -0.4072 0.0818 -0.5705 0.0870 -0.4050 0.0818
βX8 -0.4592 0.0883 -0.3318 0.0806 -0.4582 0.0915 -0.3314 0.0828 -0.4595 0.0887 -0.3314 0.0830
βX9 0.2128 0.0579 0.1742 0.0505 0.2115 0.0573 0.1762 0.0513 0.2136 0.0580 0.1754 0.0519
βX10 0.1554 0.0903 0.2451 0.0753 0.1545 0.0905 0.2438 0.0767 0.1508 0.0913 0.2407 0.0771
βX11 -0.2300 0.0738 -0.2207 0.0670 -0.2287 0.0783 -0.2077 0.0701 -0.2182 0.0756 -0.2074 0.0675
α`,0 0.3975 0.1413 0.2901 0.0998 0.3725 0.1472 0.2962 0.1826 0.5453 0.1589 0.4755 0.1598
ν` 0.7827 0.1600 0.8090 0.1616 0.7848 0.1613 0.8329 0.1794 0.6939 0.0832 0.6742 0.1264
γ` 0.7697 0.4015 0.9659 1.1541 0.4296 0.2008 0.4864 0.2118
ω 9.6347

LogLik -20,898.77 -20,890.34 -20,870.36
AIC 41,853.54 41,840.68 41,802.72

Table 5.7 – Parameter estimation - Dynamic Models for the pair AF/NAF

same for all (stationary and dynamic) models, which is a condition that shows consistency
between models (see for example Gourieroux et al (1984)).

Specification Tests

All the models presented in this paper that generalize the MVNB model are somewhat related
given certain linked parameter restrictions. We illustrated the situation in Figure 5.3, where
links between nested models are shown. Note that model DS1 refers to an intermediary model
in the scheme.

This illustration is used to test all the linked models via a likelihood ratio test to check
which model to retain. We perform likelihood ratio tests between all nested models used
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Figure 5.3 – Links between the models

in the empirical illustration. As mentioned, corrections to the likelihood ratio test are used
when the null hypothesis is on the boundary of the parameter space. Because we have to test
many parameters simultaneously, we use the result of Self and Liang (1987), namely that the
distribution of the likelihood ratio statistic under the null hypothesis is:

F (x) =
k∑

df =0
pdf

F (x; df ),

where F (x; df ) is the cumulative distribution function of a Chi-Square distribution with df
degrees of freedom, and pdf

represents the probability of success of a binomial distribution with
parameters n = k and p = 0.5. The parameter k is the difference of parameters between the
null and the alternative hypothesis. For example, for a likelihood ratio test where 4 parameters
are tested simultaneously on the boundary of their parameter space, the null distribution can
be defined as:

1
160 + 4

16χ
2(1) + 6

16χ
2(2) + 4

16χ
2(3) + 1

16χ
2(4).

We summarize the main results of these tests in Table 5.8.

For the pair COM/COL, we can observe that all forms of dependence between comprehensive
and collision claims are rejected. Indeed, compared with the independence case, all alternative
models supposing dependence between the types of claims are rejected. However, following
Table 5.7, we see that in a dynamic setting, collision claims might provide insight into compre-
hensive claims prediction. In fact, we observe that γ2 is significant, meaning that collision loss
experience could enhance comprehensive claim prediction. We also see that γ̂1 = 0, meaning
that no information is brought from the comprehensive claims to collision claims prediction.
This is also confirmed by test (5), where a Bivariate H-F is not rejected against an H-F

∗. Corrected likelihood ratio test: the null hypothesis is on the boundary of the parameter space.
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COL/COM AF/NAF
Test Alternative model Null model DF Test statistic p-value Test statistic p-value
(2)∗ Dynamic Sarma. Approx. Sarma. 4 30.48 < 0.001 28.18 < 0.001
(4) Dynamic Sarma. Biv. H-F 1 3.50 0.061 39.96 < 0.001
(5)∗ Biv. H-F H-F 2 5.22 0.003 16.86 < 0.001
(6)∗ Biv. H-F MVNB 4 27.46 < 0.001 19.00 < 0.001
(7)∗ H-F MVNB 2 22.24 < 0.001 2.14 0.097
(9) Approx. Sarma. MVNB 1 0.48 0.488 30.78 < 0.001

Table 5.8 – Specification Tests

model, meaning that borrowing information from the correlated type of claim could improve
the prediction. However, tests indicate that all stationary models are rejected against dynamic
models. This shows that the data favor a model allowing greater weight to the most recent
claims. Finally, when we compare the p-values between tests (4) and (9), we observe that the
dependence parameter ω is becoming much more significant in a dynamic context.

For the pair AF/NAF, we observe, overall, very significant dependence between AF and
NAF claims. When comparing stationary and dynamic models, we see that the tests reject
stationary models in favor of dynamic models, meanwhile the MVNB is not rejected over the
H-F model. Interestingly, this means that for the pair AF/NAF, a dynamic model is preferred
when the information of the correlated type of claim is incorporated. Thus, the prediction
is improved when additional information of the other type of claims is added to the model,
which justifies and supports the intuition of adding the parameter γ`. Finally, note that by
introducing a dependence parameter ω in the model, the values of γ̂` changed considerably.
Indeed, while γ̂AF was equal to 0.7697 for the Bivariate H-F model, it goes down to 0.4296
for the Dynamic Sarmanov model. This means that NAF loss experience has a greater impact
on the AF premium with a Bivariate H-F model than with a Dynamic Sarmanov model.
We think that this can be explained by the flexibility induced by the ω parameter in the
Dynamic Sarmanov model, where this extra parameter can be used to model the variance
independently from the mean.

5.5.3 Premium Comparison

Each of the models presented in this paper has different properties, and generates different a
priori and predictive premiums. Beside comparisons of the fit of the model to empirical data,
it is useful to compare the premiums. For illustration purposes, we consider three different
profiles classified as good, average and bad drivers, given their risk characteristics. The se-
lected profiles are described in Table 5.9 and their respective a priori premiums are given in
Tables 5.10 and 5.11. These tables show that the values exhibit small differences for the six
most useful models presented in this paper. We observe the same trend for variance, with a
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Profile Number Type of Profile x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
1 Good 0 1 1 0 0 0 1 0 0 0 1
2 Average 0 1 0 1 0 0 0 1 0 0 0
3 Bad 1 0 0 0 0 0 0 1 0 0 0

Table 5.9 – Profiles Analyzed

Good Profile Average Profile Bad Profile
Mean Variance Mean Variance Mean Variance

Models COL COM Total COL COM Total COL COM Total
MVNB 0.0665 0.0268 0.1008 0.0894 0.0307 0.1332 0.0981 0.0222 0.1351

Sarmanov 0.0665 0.0268 0.1015 0.0894 0.0306 0.1342 0.0981 0.0221 0.1358
Approx. Sarma 0.0665 0.0268 0.1015 0.0895 0.0307 0.1344 0.0981 0.0222 0.1359

H-F 0.0666 0.0268 0.1039 0.0896 0.0308 0.1386 0.0985 0.0223 0.1412
Bivariate H-F 0.0666 0.0265 0.1037 0.0896 0.0304 0.1382 0.0985 0.0221 0.1411
Dynamic Sarma 0.0666 0.0268 0.1042 0.0896 0.0306 0.1388 0.0986 0.0223 0.1418

Table 5.10 – A priori premiums for the pair COL/COM

Good Profile Average Profile Bad Profile
Mean Variance Mean Variance Mean Variance

Models AF NAF Total AF NAF Total AF NAF Total
MVNB 0.0277 0.0387 0.0723 0.0401 0.0509 0.1017 0.0480 0.0504 0.1104

Sarmanov 0.0277 0.0388 0.0704 0.0397 0.0504 0.0972 0.0477 0.0501 0.1060
Approx. Sarma 0.0277 0.0388 0.0709 0.0398 0.0506 0.0986 0.0479 0.0503 0.1077

H-F 0.0277 0.0388 0.0736 0.0402 0.0509 0.1040 0.0481 0.0504 0.1131
Bivariate H-F 0.0277 0.0389 0.0739 0.0401 0.0505 0.1035 0.0482 0.0499 0.1127
Dynamic Sarma 0.0278 0.0389 0.0743 0.0398 0.0503 0.1039 0.0478 0.0501 0.1140

Table 5.11 – A priori premiums for the pair AF/NAF

slight increase for the dynamic models compared with the stationary ones. These results are
not surprising because all models have the same form of expected values and, as specified in
the previous section, all estimates of βs are similar.

We expect more differences for the predictive premiums, because some models are dynamic,
others depend only on past claims and still other models also depend on the claim experience
of the other type of claims. For illustration purposes, we use the pair AF/NAF only. We have
kept the estimated parameters of the a priori analysis and projected a loss experience of 10
years for a medium-risk profile. Although other situations can easily be illustrated, because
closed-form formulas have been found to compute the predictive premiums for each model, we
focus here on five specific situations. Table 5.12 provides a detailed description of these loss
experience situations. The first loss experience describes a claim-free situation. The second
loss experience illustrates the situation of an insured with old claims for both coverages. The
third experience is a situation with recent claims for both types of claims. Finally, the fourth
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Exp. #1 Exp. #2 Exp. #3 Exp. #4 Exp. #5
Year AF NAF AF NAF AF NAF AF NAF AF NAF
1 0 0 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 1 0 0
3 0 0 1 1 0 0 0 1 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 1 1 0 0 0 1 0 0
6 0 0 0 0 0 1 0 0 0 1
7 0 0 0 0 1 1 0 0 0 1
8 0 0 0 0 1 0 0 0 0 0
9 0 0 0 0 0 1 0 0 0 1
10 0 0 0 0 1 0 0 0 0 0

Table 5.12 – Various 10-Year Loss Experiences

and fifth loss experiences correspond to claim-free situation for AF coverage, while old claims
(Exp. #4) or recent claims (Exp. #5) are considered for NAF coverage.

The computed predictive premiums are presented in Tables 5.13 and 5.14 . For the claim-free
situation of loss experience #1, the predicted premiums of the dynamic models are much
lower than for the stationary models. We also observe the same trend for the situation where
insured claimed three times in the first five years, but showed a neat progression in the most
recent years. This is expected given that dynamic models have an extra parameter ν that
allows us to weight past claims. For example, to compute next year’s premium using a dy-
namic model with ν approximately equal to 70%, we would assign a claim that happens in
the previous year a weight of 100%, a claim 5 years old a weight of 24%, and a claim 10
years old a weight of only 4% on the predictive premium. Meanwhile, for static models, each
claim weights 100% in the calculation of the premium regardless of the occurrence time. This
highlights an interesting feature of the dynamic models, where an insurer using a dynamic
model in its ratemaking system would reward the positive evolution of its insured’s claim
experience. The insured would therefore be encouraged to improve his profile in the future
even if he had more claims in the past. On the other hand, the dynamic models compensate
the low premiums of those first two situations by offering higher premiums for insureds with
recent claims. We also observe the same trend for predictive variance, with a more significant
difference between stationary and dynamic models.

The dependence between claim types can be studied in a similar way by analyzing predic-
tive premiums of the two types of claims simultaneously. We know that models that suppose
independence between claim types do not consider the claim experience of the other type
of claims in the computation of the predictive premiums. The AF premiums calculated by
the MVNB and the H-F models illustrate this situation. Indeed, the AF premium does not
depend on the NAF loss experience, because the AF premium is the same for loss experiences
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Exp. #1 Exp. #2 Exp. #3
Mean Variance Mean Variance Mean Variance

Models AF NAF Total AF NAF Total AF NAF Total
MVNB 0.0221 0.0206 0.0450 0.1565 0.1988 0.3742 0.1565 0.1988 0.3742
Sarma 0.0230 0.0261 0.0513 0.1308 0.1616 0.3038 0.1308 0.1616 0.3038

Approx. Sarma. 0.0262 0.0285 0.0571 0.1284 0.1594 0.2970 0.1284 0.1594 0.2970
H-F 0.0067 0.0065 0.0159 0.1222 0.1496 0.3243 0.4203 0.3404 0.9082

Bivariate H-F 0.0039 0.0051 0.0102 0.1213 0.1808 0.3366 0.3776 0.4105 0.8785
Dynamic Sarma. 0.0029 0.0023 0.0063 0.0795 0.0831 0.2173 0.4656 0.4463 1.0825

Table 5.13 – Predictive Premiums for the pair AF/NAF (1)

Exp. #4 Exp. #5
Mean Variance Mean Variance

Models AF NAF Total AF NAF Total
MVNB 0.0221 0.1988 0.2338 0.0221 0.1988 0.2338
Sarma 0.0439 0.1501 0.2026 0.0439 0.1501 0.2026

Approx. Sarma. 0.0262 0.1594 0.1914 0.0262 0.1594 0.1914
H-F 0.0067 0.1496 0.1860 0.0067 0.3404 0.4128

Bivariate H-F 0.0495 0.1044 0.1714 0.1241 0.2114 0.3736
Dynamic Sarma. 0.0213 0.0640 0.1097 0.0822 0.3010 0.4672

Table 5.14 – Predictive Premiums for the pair AF/NAF (2)

#1, #4 and #5. In contrast, the AF premium of the Sarmanov model, which allows for de-
pendence between claim types, shows that the loss experience of the NAF coverage has an
impact. Indeed, the AF premium is different between loss experiences #1 and #4. However,
the premium is the same for loss experiences #4 and #5, because the Sarmanov model is
static. It is interesting to see that the AF premiums of the Approximated Sarmanov model
do not behave the same way as in the Sarmanov model. Indeed, we cannot observe differences
between AF premiums for loss experiences #1, #4 and #5. As explained in Section 5.4.2,
this comes from the construction of the Approximated Sarmanov model.

Finally, it is interesting to analyze the premiums of the Bivariate H-F and the Dynamic Sar-
manov models. Both models allow past claims experience of NAF coverage to affect the AF
premium. We see clear differences between the premiums of loss experiences #1, #4 and
#5. Another striking observation is the difference between the computed premiums of each
model. This can be explained straightforwardly by looking at the estimated parameters γ̂AF
of Table 5.7, which we analyzed earlier. Lastly, we observe a difference in variances between
the Dynamic Sarmanov and Bivariate Harvey-Fernandes model, due to the addition of the
dependence parameter ω as discussed above.
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5.6 Concluding Remarks

Panel data models for claims count are used to model the potential dependence between the
number of claims of contracts of the same insured. A generalization into bivariate panel data
models can illustrate dependence between coverages. A dynamic approach allows the most
recent claims to be more predictive than oldest ones in the prediction. In this paper, we pro-
posed a new model that captures all these features of the panel data models for claims count.

The Sarmanov family of multivariate distribution has been used to model the joint den-
sity of the random effects. We show that the form of the posterior density of this family of
distributions is almost the same form as that of the prior density. To be able to use the dy-
namic approach proposed by Bolancé et al (2007), an approximation of the posterior density
has been made. We showed that the approximation is reasonnable, but not identical to the
Sarmanov model. The Approximated Sarmanov model allowed us to construct a Dynamic
Sarmanov model that possesses nice properties: closed-form expressions of the predictive dis-
tribution and closed-form expressions of the predictive premium.

We implemented the model with a sample of insurance data that comes from a major Cana-
dian insurance company. The empirical illustration has been performed on two pairs of claim
types: collision vs comprehensive and at-fault vs non-at-fault collision claims, which allows
us to expose the proposed model to a wider range of situations. For each pair of coverage, a
dynamic structure seemed to be relevant, the Dynamic Sarmanov model was one of the best
models to adjust the data.

The Dynamic Sarmanov has been applied to a Poisson-gamma structure, but other combina-
tions are easily possible (Poisson-Inverse Gaussian, NB2-Beta, etc.), as long as a conjugate
property can be found. Also, the proposed approach can easily be generalized to more than
two lines of business. Indeed, it is possible to extend the Sarmanov family of distributions to
the multivariate case. Based on our data, a triplet of claim types using comprehensive, at-fault
and non-at-fault claims could be interesting for future research. The trivariate Sarmanov joint
density would be expressed as:

uS (θ1, θ2, θ3) = h (θ1, α1, τ1)h (θ2, α2, τ2)h (θ3, α3, τ3)

× (1 + ω12φ1φ2 + ω13φ1φ3 + ω23φ2φ3 + ω123φ1φ2φ3) .

The correlation structure is expensive in terms of parameters: the model supposes four param-
eters to model dependence. It would be interesting to understand how each parameter affects
dependence between claim types. Moreover, a multivariate model could also be performed to
incorporate claim severity analysis.
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Conclusion

Dans cette thèse, nous nous sommes intéressés à des approches novatrices pour la modélisa-
tion de la dépendance en assurance non-vie. Nous avons proposé différentes approches pour
capturer la dépendance entre les triangles de développement dans le contexte des réserves,
mais aussi entre les nombres de réclamations pour des données de comptage.
Le point de départ a été le modèle de Shi et Frees (2011), où la dépendance entre les lignes
d’affaires est capturée par paires. Une généralisation est proposée dans cette thèse sous deux
angles différents.

Dans un premier temps, nous nous sommes penchés sur la théorie des copules hiérarchiques
afin de mieux capturer la dépendance à l’intérieur et entre les lignes d’affaires. Le chapitre
2 a donc introduit le concept de copules hiérarchiques archimédiennes dans le contexte des
réserves, afin de modéliser la dépendance à travers des effets calendaires, pour mieux prendre
en considération les effets communs dus à l’inflation, à des changements de jurisprudence,
ou encore à des décisions stratégiques. Dans le chapitre 3, nous avons utilisé une approche
hiérarchique alternative et avons utilisé deux modèles différents afin de modéliser la dépen-
dance. Également, une contribution importante de ce chapitre a été l’introduction de la no-
tion d’estimation basée sur les rangs au contexte des réserves afin de préserver la linéarité de
l’espérance et d’offrir une estimation plus robuste face au risque de mauvaise spécification des
marges ou de la structure de dépendance.

Le deuxième angle d’étude est celui des effets aléatoires et l’utilisation de la famille de distribu-
tions bivariées Sarmanov. Le chapitre 4 a introduit cette famille de distributions aux méthodes
de provisionnement et a démontré l’intérêt et l’utilité de cette famille de distributions dans le
contexte des réserves. Aussi, nous présentons des formes explicites de la distribution jointe et
capturons la dépendance entre les lignes d’affaires à travers les effets d’années de calendrier,
d’années d’accident et périodes de développement. Cette idée de combiner le contexte bayésien
et la dépendance a donc été appliquée dans le cas des triangles de développement. On suppose
que chaque année de calendrier (année d’accident ou période de développement) est carac-
térisée par un paramètre caractéristique de la sinistralité de l’année, mais inobservable, où les
montants des sinistres déjà réglés permettront d’obtenir un indicateur de ce paramètre. Une
telle méthodologie est connexe à la tarification et le système bonus/malus. Nous avons donc
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proposé au chapitre 5 un nouveau modèle qui utilise l’information de la ligne corrélée pour
mieux prédire les futures réclamations, tout en prenant en considération l’effet temporel. En
effet, nous avons utilisé un modèle bivarié avec des effets aléatoires dynamiques à des données
de comptage dans un cadre de tarification en assurance IARD.

Cela a démontré l’intérêt et le potentiel d’exporter de tels modèles à un contexte autre que
les réserves, en l’occurrence celui de la tarification en assurance non-vie. Ainsi, ces travaux
constituent des avenues de recherche très intéressantes et pourraient être appliqués et utilisés
dans d’autres sphères de l’actuariat et de la finance.
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