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Résumé

Les besoins toujours croissants en terme de transfert de données numériques poussent au
développement de nouvelles technologies pour accroître la capacité des réseaux, notamment en
ce qui concerne les réseaux de fibre optique. Parmi ces nouvelles technologies, le multiplexage
spatial permet de multiplier la capacité des liens optiques actuels. Nous nous intéressons
particulièrement à une forme de multiplexage spatial utilisant le moment cinétique orbital de
la lumière comme base orthogonale pour séparer un certain nombre de canaux.

Nous présentons d’abord les notions d’électromagnétisme et de physique nécessaires à la com-
préhension des développements ultérieurs. Les équations de Maxwell sont dérivées afin d’expli-
quer les modes scalaires et vectoriels de la fibre optique. Nous présentons également d’autres
propriétés modales, soit la coupure des modes, et les indices de groupe et de dispersion. La
notion de moment cinétique orbital est ensuite introduite, avec plus particulièrement ses ap-
plications dans le domaine des télécommunications.

Dans une seconde partie, nous proposons la carte modale comme un outil pour aider au design
des fibres optiques à quelques modes. Nous développons la solution vectorielle des équations
de coupure des modes pour les fibres en anneau, puis nous généralisons ces équations pour
tous les profils de fibres à trois couches. Enfin, nous donnons quelques exemples d’application
de la carte modale.

Dans la troisième partie, nous présentons des designs de fibres pour la transmission des modes
avec un moment cinétique orbital. Les outils développés dans la seconde partie sont utilisés
pour effectuer ces designs. Un premier design de fibre, caractérisé par un centre creux, est
étudié et démontré. Puis un second design, une famille de fibres avec un profil en anneau, est
étudié. Des mesures d’indice effectif et d’indice de groupe sont effectuées sur ces fibres.

Les outils et les fibres développés auront permis une meilleure compréhension de la trans-
mission dans la fibre optique des modes ayant un moment cinétique orbital. Nous espérons
que ces avancements aideront à développer prochainement des systèmes de communications
performants utilisant le multiplexage spatial.
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Abstract

The always increasing need for digital data bandwidth pushes the development of emerging
technologies to increase network capacity, especially for optical fiber infrastructures. Among
those technologies, spatial multiplexing is a promising way to multiply the capacity of current
optical links. In this thesis, we are particularly interested in current spatial multiplexing using
the orbital angular momentum of light as an orthogonal basis to distinguish between a few
optical channels.

We first introduce notions from electromagnetism and physic needed for the understanding
of the later developments. We derive Maxwell’s equations describing scalar and vector modes
of optical fiber. We also present other modal properties like mode cutoff, group index, and
dispersion. Orbital angular momentum is briefly explained, with emphasis on its applications
to optical communications.

In the second part, we propose the modal map as a tool that can help in the design of few
mode fibers. We develop the vectorial solution of the ring-core fiber cutoff equation, then
we extend those equations to all varieties of three-layer fiber profiles. Finally, we give some
examples of the use of the modal map.

In the third part of this thesis, we propose few fiber designs for the transmission of modes
with an orbital angular momentum. The tools that were developed in the second part of this
thesis are now used in the design process of those fibers. A first fiber design, characterized
by a hollow center, is studied and demonstrated. Then a second design, a family of ring-core
fibers, is studied. Effective indexes and group indexes are measured on the fabricated fibers,
and compared to numerical simulations.

The tools and the fibers developed in this thesis allowed a deeper comprehension of the trans-
mission of orbital angular momentum modes in fiber. We hope that those achievements will
help in the development of next generation optical communication systems using spatial mul-
tiplexing.
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Introduction

0.1 The need for new multiplexing schemes

During the last decades, global network traffic increased exponentially, mainly due to the rapid
Internet evolution. For example, [10] plots the American Internet traffic as function of years,
and shows a growth rate of 50% to 60% a year (see Fig. 0.1). With the increasingly use of
voice over IP, video on demand, cloud storage and computing, and the emerging Internet of
things, the trends show no sign of decline.

Most of this data traffic is now supported by optical fiber systems. Fortunately, the capacity
of fiber transmission systems also increased exponentially during the last decades, following
the Internet traffic demand. This capacity increase was caused by successive technology im-
provements: low losses single-mode fibers, fiber amplifiers (EDFAs), wavelength multiplexing
(WDM), and high-efficiency spectral coding (see Fig. 0.2). The trend is for systems capacity
increasing ten times every four years. However, current systems are reaching a capacity limit,
that would lead to a capacity crunch in a few years, if no new technologies are developed [11].

Typically, the capacity of a channel [12] is limited by the noise, usually modeled as additive
white Gaussian noise (AWGN). It is convenient to characterize a channel by its spectral

Figure 0.1: North American Internet traffic (reproduced from [10, Fig. 1]).
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Figure 0.2: Data transmission capacity of fiber transmission systems as a function of year
(reproduced from [11]).

efficiency, defined as the capacity per unit of bandwidth. To increase the spectral efficiency,
one must increase the signal to noise ratio (SNR). For a fixed noise level, higher signal power
will result in higher spectral efficiency. The maximum spectral efficiency we can achieve for a
given SNR is called the Shannon limit.

However, it is not that simple with optical fiber channels, because optical fibers are nonlinear
medium. Therefore, as the signal power increases, nonlinear effects occur that decrease the
spectral efficiency. This becomes especially important as the fiber length increases. A new
theoretical limit appears on spectral efficiency: the nonlinear Shannon limit [10]. This limit
is a function of fiber parameters, such as loss coefficient, and effective area. An example of
capacity curves, for different lengths of standard single-mode fiber, is given in Fig. 0.3. We
can see that, as SNR increases, the nonlinear effects dominate on the fiber capacity limit.

As we can see on Fig. 0.2, we are now reaching system capacities that are very close to this
nonlinear capacity limit. We can fabricate systems with spectral efficiency almost reaching the
theoretical limit. The only way to increase capacity would be to use multiple optical fibers,
or to use a new dimension for multiplexing.

We currently are able to multiplex optical data, not only in wavelength (WDM), but also
in polarization (PDM), in time (TDM), and in phase (quadrature). Those are all orthogo-
nal dimensions, meaning that the number of channels in one dimension is multiplied by the
number of channels in the other dimensions. One dimension remains: space. Space division
multiplexing (SDM) [13–15] can be achieved either by using multicore fibers (MCF), by using
the different modes of few-mode fibers (FMF), or by a combination of both multiple cores and
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Figure 0.3: Nonlinear capacity curves for a range of transmission distances (reproduced from
[10, Fig. 10]).

mode multiplexing. Figure 0.4 shows different approaches for realizing SDM :

(a) Fiber bundles composed of physically independent SMFs with reduced cladding
thickness could provide increased core packing densities relative to current fiber
cables. However, ‘in-fiber’ SDM is required to achieve the higher core densities
and integration levels ultimately desired. (b) MCF containing multiple indepen-
dent cores with sufficiently large spacing to limit crosstalk. Fibers with up to
19 cores have been demonstrated for long-haul transmission – higher core counts
are possible for short-haul applications (for example, data communications) for
which higher levels of crosstalk per unit length can be tolerated. (c) FMF with
a core dimension/numerical aperture set to guide a restricted number of modes
(typically 6–12 distinct modes, including all degeneracies and polarizations). (d)
Coupled-core fibers support supermodes that allow higher spatial mode densities
than isolated-core fibers. MIMO processing is essential to address the inherent
mode coupling. (e) Photonic bandgap fibers guide light in an air core and thus of-
fer ultralow optical nonlinearity and potentially lower losses than solid-core fibers.
Work is currently being conducted to determine whether such fibers can support
MDM. [14, Fig. 2]

Using SDM allows us to surpass the previously encountered capacity limit, as some experiments
already demonstrated. This is illustrated in Fig. 0.5, where we clearly see how SDM is needed
for communication systems to support all Internet data traffic during the following years. In
this figure:

the data points represent the highest capacity transmission numbers (all trans-
mission distances considered) reported at the postdeadline sessions of the annual

3



a b

c ed

Figure 0.4: Different approaches for realizing SDM (reproduced from [14, Fig. 2]).

01020991 20001980
Year

Ca
pa

ci
ty

 (b
it 

s−
1 )

109

108

1010
1011
1012
1013

1014
1015
1016
1017

105
106
107

Capacity limit for
current technology

EDFA

WDM

trend:×10 every 4 years

Improved
transmission
f bers

High spectral
ef ciency coding

Space division
multiplexing

Figure 0.5: The evolution of transmission capacity in optical fibers as evidenced by state-of-
the-art laboratory transmission demonstrations (reproduced from [14, Fig. 1]).

Optical Fiber Communications Conference over the period 1982 to the present.
The transmission capacity of a single fiber increases by a factor of approximately
10 every four years. Key previous technological breakthroughs include the devel-
opment of low-loss SMFs, the EDFA, WDM and high-spectral-efficiency coding
through DSP-enabled coherent transmission. The data points for SDM also in-
clude results from the postdeadline session of the annual European Conference
on Optical Communications in 2011 and 2012. SDM seems poised to provide the
next big jump in transmission capacity. [14, Fig. 1]

This motivates the subject of this thesis, where we will study the design of few-mode fibers
for SDM, using a special kind of modes called OAM modes.
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0.2 Thesis outline

The thesis is divided in three parts, each containing several chapters. The first part, Back-
ground, contains no original contribution, but rather gives an introduction to concepts needed
elsewhere in the thesis. It also acts as a review of the state-of-the-art. The second part, The
modal map: a design tool, is about fiber cutoffs and design techniques for OAM fibers. Finally,
the third part, Fibers designed for OAM transmission, presents different fibers designed for
the transmission of OAM modes, that we fabricated and we tested. The following describes
the chapters within each part of the thesis.

0.2.1 Part I: Background

Chapter 1 is about the modal equations for optical fibers. Starting from Maxwell’s equations,
we derive the wave equation and find the modes for standard step-index fibers, composed
of a central core and a cladding. The goal of this chapter is to introduce the notation we
will use elsewhere in the document, and to introduce some equations we will need in further
developments.

Chapter 2 is about the orbital angular momentum (OAM) of light. It introduces OAM, how
it works, and gives a review of the use of OAM in telecommunications. Finally, it presents the
problematic of OAM in optical fibers.

Chapter 3 gives details about the numerical methods used to solve for fiber modes elsewhere
in this document. It can be considered as the continuation and the application of notions
introduced in Chapter 1.

0.2.2 Part II: The modal map: a design tool

Chapter 4 is about the cutoff equations of ring-core fibers. We give the complete development
of those equations, and prove their accuracy using asymptotic developments and numerical
simulations.

Chapter 5 is about the cutoff equations of three-layers fibers. It is a generalization of what
was developed in the previous chapter.

Chapter 6 is about the modal map, a graphical representation developed to help in the design
of few-modes fibers. We present this tool, and we explain how to use it and why it is useful.

0.2.3 Part III: Fibers designed for OAM transmission

Chapter 7 presents a fiber with a hollow center, designed to support OAM modes. Numerical
simulations are performed to predict the fiber characteristics, and OAM support is confirmed
in the lab.
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Chapter 8 presents a family of ring-core fibers, especially designed to study how OAM is
supported in optical fibers. We compare simulation and measurements of effective index and
group index of the supported modes.

0.2.4 Appendices

Appendix A contains common formulas used throughout this thesis. It first introduces vector
operators notation and definitions, and gives some related identities for these operators. Then
it introduces the Bessel functions, and lists some Bessel function identities. Finally, it presents
the five points stencil method used for the numerical estimation of the derivatives.

Appendix B gives the formulas, the parameters, and the references for the wavelength depen-
dent refractive index calculation of the different materials we used for the design of our OAM
fibers.

0.3 List of contributions

In Chapter 3:

1. I proposed an algorithm to find the roots of the modal characteristic function;

2. I proposed optimizations to increase the speed of the mode solver;

In Chapter 4:

3. I found the cutoff equations for vector modes in ring-core fibers;

4. I found an asymptotic expression for radial order of a ring-core fiber;

5. I proposed a generalized version of the V number for any fiber profile;

In Chapter 5:

6. I found the cutoff equations for vector and scalar modes in an arbitrary three-layer fiber;

7. I qualitatively explained the influence of the refractive index of each layer in three-layer
fibers;

In Chapter 6:

8. I proposed a graphical representation called the modal map;
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In Chapter 7:

9. I proposed a new air-core fiber design for OAM transmission;

10. I confirmed this design supports the highest ever reported number of OAM modes trans-
mitted through an optical fiber;

In Chapter 8:

11. I proposed a set of five ring-core fibers for OAM transmission;

12. I proposed a way to fabricate a family of ring-core fibers from a single preform.
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Background
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Chapter 1

Guided modes of optical fiber

1.1 Derivation of Maxwell’s equations

The development in the current section can be found in many reference books, for instance
[16, chapter 30] or [17, chapter 1]. However, it is useful to repeat it here, as we use slightly
different notation.

Electro-magnetic fields are governed by Maxwell’s equations:

∇×E = −∂B
∂t

(1.1a)

∇×H = J +
∂D

∂t
(1.1b)

∇ ·D = ρf (1.1c)

∇ ·B = 0 (1.1d)

where E andH are respectively electric and magnetic field vectors, D and B are electric and
magnetic flux densities, J is the current density vector, ρf is the charge density, ∇× is the
curl operator, and ∇· is the divergence. See Appendix A.1 for more details about the vector
operators.

The flux densities D and B are related to field vectors E and H through the constitutive
relations:

D = ε0E + P (1.2a)

B = µ0H +M (1.2b)

where ε0 = 8.85× 10−12 F m−1 is the vacuum permittivity, µ0 = 4π × 10−7 H m−1 is the
vacuum permeability, and P and M are the induced electric and magnetic polarizations.

Those equations can be simplified, assuming light is propagating through glass, a non-magnetic,
dielectric material. Therefore, there are no charges (ρf = 0), no currents (J = 0), and no

9



induced magnetic polarization (M = 0). The evaluation of induced polarization P can be
complex. However, in the case of silica fibers, within telecommunication wavelengths, we can
neglect nonlinear effects and material absorption, without lose of accuracy [18]. Therefore, we
assume:

D = ε0n
2E (1.3)

where n is the frequency dependent refractive index of the material. If the material is not
uniform, n is also dependent on the position in space.

The time dependency of the fields is given by:

E = E(r, t) = e(r) exp(−jωt) (1.4a)

H = H(r, t) = h(r) exp(−jωt) (1.4b)

where r is the position in space, t is time, e and h are the envelopes of a rapidly oscillating
signal, and ω is the angular frequency.

We can now rewrite the equations as functions of E and H only. We substitute (1.2b)
into (1.1a), and (1.3) into (1.1b), and we evaluate the partial derivatives. By definition,
µ0ε0 = 1/c2. Free-space impedance is given by η0 =

√
µ0/ε0. We also define the wavenumber

as k0 = ω/c = 2π/λ.

∇×E = jωµ0H = jk0η0H (1.5a)

∇×H = −jωε0n2E = −j k0
η0
n2E (1.5b)

We take the curl of each equation, apply identity (A.1) on the left-hand part, and identity
(A.2) on the right-hand part:

∇(∇ ·E)−∇2E = ∇(jk0η0)×H + jk0η0∇×H (1.6a)

∇(∇ ·H)−∇2H = ∇(−j k0
η0
n2)×E − j k0

η0
n2∇×E (1.6b)

The gradient of jk0η0 is zero since is does not vary over space. However, n can vary in space
(for instance, in a graded index fiber). From (1.1c) and (1.3), we know that ∇ · (ε0n2E) = 0.
Therefore, using identity (A.3), we find: ∇ · E = −E · ∇n2/n2. Similarly, from (1.1d) and
(1.2b), we know that ∇ ·H = 0. Maxwell’s equations reduce to:

∇2E +∇(E · ∇n
2

n2
) = −jk0η0(∇×H) (1.7a)

∇2H = j
k0
η0

(∇n2 ×E + n2(∇×E)) (1.7b)

10



We substitute (1.5a) and (1.5b) into (1.7b) and (1.7a) respectively, and we replace the remain-
ing E in (1.7b) by isolating it in (1.5b). This gives us the wave equations:

∇2E +∇
(
E · ∇n

2

n2

)
+ k20n

2E = 0 (1.8a)

∇2H +
∇n2

n2
×∇×H + k20n

2H = 0 (1.8b)

1.2 Optical fiber modes

When we study propagation of light in optical fiber, we can make further simplifications.
We assume fiber is perfectly circular, infinitely long, and that the cladding is infinitely thick.
Solution under those conditions are called modal solutions.

By convention, the fiber is aligned in length along the z axis. It is convenient to use cylin-
drical coordinates (r, φ, z), because in that case, refractive index is only dependent on the r
coordinate. Vector fields, in cylindrical coordinates, are given by:

E = E(r, φ, z, t) = e(r, φ) exp{j(βz − ωt)} (1.9a)

H = H(r, φ, z, t) = h(r, φ) exp{j(βz − ωt)} (1.9b)

where β is the propagation constant. With that definition of the fields, the ∂/∂z operator is
equivalent to multiplication by jβ.

We can rewrite (1.5) explicitly with the determinant operator as:

E = jη0
1

k0n2

∣∣∣∣∣∣∣
r̂ φ̂ ẑ

∂/∂r 1/r(∂/∂φ) jβ

hr hφ hz

∣∣∣∣∣∣∣ (1.10a)

H = −j 1

η0

1

k0

∣∣∣∣∣∣∣
r̂ φ̂ ẑ

∂/∂r 1/r(∂/∂φ) jβ

er eφ ez

∣∣∣∣∣∣∣ (1.10b)

11



Separating the components, this gives:

er = η0
1

k0n2

(
1

r

∂jhz
∂φ

+ βhφ

)
(1.11a)

eφ = −η0
1

k0n2

(
βhr +

∂jhz
∂r

)
(1.11b)

jez = −η0
1

k0n2r

(
∂(rhφ)

∂r
− ∂hr

∂φ

)
(1.11c)

hr = − 1

η0

1

k0

(
1

r

∂jez
∂φ

+ βeφ

)
(1.11d)

hφ =
1

η0

1

k0

(
βer +

∂jez
∂r

)
(1.11e)

jhz =
1

η0

1

k0r

(
∂(reφ)

∂r
− ∂er
∂φ

)
(1.11f)

It is then possible to rewrite all transverse components as functions of longitudinal components
[16, 17]:

er =
1

n2k20 − β2

[
β
∂jez
∂r

+ η0
k0
r

∂jhz
∂φ

]
(1.12a)

eφ =
1

n2k20 − β2

[
β

r

∂jez
∂φ
− η0k0

∂jhz
∂r

]
(1.12b)

hr =
1

n2k20 − β2

[
β
∂jhz
∂r
− 1

η0

k0n
2

r

∂jez
∂φ

]
(1.12c)

hφ =
1

n2k20 − β2

[
β

r

∂jhz
∂φ

+
1

η0
k0n

2∂jez
∂r

]
(1.12d)

In those equations, we see that longitudinal components ez and hz are purely imaginary,
while transverse components are real. This is a convention that comes from the definition of
the propagation constant in (1.9). It shows that longitudinal and transverse components are
expressed on an orthogonal basis.

Modes are eigensolutions of the optical waveguide. They are parametrized by two quantities:
ν, a non-negative integer that is the mode order, and m, a positive integer that is the radial
order. ν is related to the number of symmetry axes in the azimuthal dependency of the fields,
and m is related to the number of zeros in the radial dependency of the fields. When the mode
is purely radial, or purely azimuthal, ν is zero, and we call the mode either TE (azimuthal E
and radial H field) or TM (radial E and azimuthal H field). In other cases (ν > 0), modes
are called either EH or HE, determined by whether the ez or hz component is dominant.
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1.3 Modes in step-index fibers

If we consider step-index fibers, (1.8) simplifies further, because the refractive index does not
vary as a function of position. Therefore, ∇n2 = 0, and the wave equations take the form of
Helmholtz equations: (

∇2 + k20n
2
)
E = 0 (1.13)

that we can write explicitly as:

∂2E

∂r2
+

1

r

∂E

∂r
+

1

r2
∂2E

∂φ2
+
(
k20n

2 − β2
)
E = 0 (1.14)

Because of (1.12), we only need to solve for longitudinal components ez and hz to get the
complete solution for the E andH fields. e and h, per (1.9), are invariant in z. Furthermore,
because of the circular symmetry, the field must keep the same value after a full 2π azimuthal
rotation. Therefore, it has the following separable form:

ez(r, φ, z) = ez(r) cos(νφ+ φ0) exp(jβz) (1.15)

where ν is a non-negative integer, and φ0 is an arbitrary phase. The second partial derivative
of ez with respect to φ is given by ∂2ez/∂φ2 = −ν2ez. The differential equation for ez is now:

∂2ez
∂r2

+
1

r

∂ez
∂r

+

(
k20n

2 − β2 − ν2

r2

)
ez = 0 (1.16)

which is the Bessel differential equation (see Appendix A.2.1), with u = (k20n
2 − β2)1/2.

Therefore, the solution for ez(r) is formed from the linear combination of ordinary Bessel
functions J and N :

ez(r) = AJν(ur) +BNν(ur) (1.17)

where A and B are appropriate constants. Solution for hz is similar, but takes different values
for the constants.

In a medium of refractive index n, the light travels at speed c/n. However, in a waveguide, the
material index is not uniform, and light does not travel in a straight line. For a given mode
in a given waveguide, the equivalent index of a material where light would travel in a straight
line at the same speed as that mode within the waveguide is called the effective index (neff).
Effective index for each mode is related to the propagation constant by the following relation:

β = k0neff (1.18)

In an optical fiber, each neff is located somewhere between the highest material index of the
fiber (nmax), and the index of the cladding (ncl):

ncl < neff < nmax (1.19)
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Figure 1.1: Standard step-index fiber geometry (top view, and profile).

This implies that, in cladding, and possibly in some other fiber layers, refractive index can be
lower than effective index, thus k0n < β. In that case, (1.16) becomes

∂2ez
∂r2

+
1

r

∂ez
∂r
−
(
β2 − k20n2 +

ν2

r2

)
ez = 0 (1.20)

which is the modified Bessel differential equation, and solutions are given by the linear com-
bination of modified Bessel functions I and K:

ez(r) = AIν(wr) +BKν(wr) (1.21)

where w = (β2 − k20n2)1/2.

1.4 Modes of standard step-index fiber

The simplest optical fiber is illustrated in Fig. 1.1. It is composed of two step-index layers: a
core (I) and the cladding (II). The radius of the core is r1, the refractive index of the core is
nco, and the refractive index of the cladding is ncl. This is what we call standard step-index
fiber (SSIF).

In SSIF, we have u = (k20n
2
co − β2)1/2 and w = (β2 − k20n2cl)1/2. It is also convenient to define

the normalized frequency as:

V = r1(u
2 + w2)1/2 = k0r1(n

2
co − n2cl)1/2 (1.22)
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Longitudinal solutions in the core are formed by ordinary Bessel functions, because nco > neff.
Furthermore, we must reject solutions containing Nν(ur), because this function goes to infinity
when r → 0. Longitudinal solutions in the cladding are formed by modified Bessel functions,
because nco < neff, and we need to reject solutions containing Iν(wr), because this function
increases to infinity when r →∞.

ez = fν(φ)

AJν(ur) r < r1

BKν(wr) r > r1
(1.23a)

hz = gν(φ)

CJν(ur) r < r1

DKν(wr) r > r1
(1.23b)

A, B, C, and D are appropriate constants, and functions fν(φ) and gν(φ) are azimuthal
dependencies of the fields, and are of the form cos(νφ+φ0). To satisfy (1.12), we must ensure
that

dfν(φ)

dφ
= νgν(φ) and

dgν(φ)

dφ
= −νfν(φ) (1.24)

By convention, and for simplicity, we usually choose

fν(φ) = cos(νφ) gν(φ) = − sin(νφ) (1.25)

for modes we call even, and

fν(φ) = sin(νφ) gν(φ) = cos(νφ) (1.26)

for modes we call odd. We now need to ensure continuity of the fields at r = r1. From (1.23),
we evaluate the partial derivatives of ez and hz, at r = r1:

∂ez
∂φ

∣∣∣∣
r=r1

= Aνgν(φ)Jν(ur1) = Bνgν(φ)Kν(wr1) (1.27a)

∂ez
∂r

∣∣∣∣
r=r1

= Aufν(φ)J ′ν(ur1) = Bwfν(φ)K ′ν(wr1) (1.27b)

∂hz
∂φ

∣∣∣∣
r=r1

= −Cνfν(φ)Jν(ur1) = −Dνfν(φ)Kν(wr1) (1.27c)

∂hz
∂r

∣∣∣∣
r=r1

= Cugν(φ)J ′ν(ur1) = Dwgν(φ)K ′ν(wr1) (1.27d)

where the prime denotes the derivative of the Bessel function with respect to the argument.
We substitute (1.27) into (1.12b) and (1.12d), and evaluate the equalities at r = r1 to obtain
continuity of the azimuthal fields:

1

u2

[
β

r1
AνJν(ur1)− η0k0CuJ ′ν(ur1)

]
= − 1

w2

[
β

r1
BνKν(wr1)− η0k0DwK ′ν(wr1)

]
(1.28a)

1

u2

[
− β
r1
CνJν(ur1) +

1

η0
k0n

2
coAuJ

′
ν(ur1)

]
= − 1

w2

[
− β
r1
DνKν(wr1) +

1

η0
k0n

2
clBwK

′
ν(wr1)

]
(1.28b)
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From (1.23), due to the continuity of the longitudinal fields, we have

B = A
Jν(ur1)

Kν(wr1)
D = C

Jν(ur1)

Kν(wr1)
(1.29)

that we can substitute into (1.28). We divide both equations by Jν(ur1), and we write the
system in matrix form:

(
1

u2
+

1

w2

)
β

r1
ν −η0k0

(
J ′ν(ur1)

uJν(ur1)
+

K ′ν(wr1)

wKν(wr1)

)
1

η0
k0

(
n2co

J ′ν(ur1)

uJν(ur1)
+ n2cl

K ′ν(wr1)

wKν(wr1)

)
−
(

1

u2
+

1

w2

)
β

r1
ν


[
A

C

]
= 0

(1.30)

To get a non-trivial solution, the determinant of the matrix must be zero. Therefore:(
1

u2
+

1

w2

)2 β2

r21
ν2 = k20

(
J ′ν(ur1)

uJν(ur1)
+

K ′ν(wr1)

wKν(wr1)

)(
n2co

J ′ν(ur1)

uJν(ur1)
+ n2cl

K ′ν(wr1)

wKν(wr1)

)
(1.31)

This is the eigenvalue (or characteristic) equation of SSIF guided modes. It depends on ν,
on k0 (related to wavelength), and on fiber parameters (r1, nco, and ncl), and gives discrete
solutions for β (u and w parameters being directly related to β).

For TE and TM modes, ν = 0, thus the left-hand part of (1.31) is zero. By definition, ez = 0

for TE modes, therefore the eigenvalue equation for TE modes is(
J1(ur1)

uJ0(ur1)
+

K1(wr1)

wK0(wr1)

)
= 0 (1.32)

Similarly, hz = 0 for TM modes, and eigenvalue equation becomes:(
n2co

J1(ur1)

uJ0(ur1)
+ n2cl

K1(wr1)

wK0(wr1)

)
= 0 (1.33)

For EH and HE modes, we substitute

x =
J ′ν(ur1)

uJν(ur1)
b =

K ′ν(wr1)

wKν(wr1)
and c =

(
1

u2
+

1

w2

)2 n2eff
r21
ν2 (1.34)

into (1.31). We find the quadratic form:

n2cox
2 + (n2co + n2cl)bx+ (n2clb

2 − c) = 0 (1.35)

Solutions are given by
x = −b(1−∆)±

√
b2∆2 + c/n2co (1.36)

where 1 − 2∆ = n2cl/n
2
co. One can show that solutions with a plus sign are EH modes, and

solutions with a minus sign are HE modes.
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1.5 Scalar modes

Frequently, the refractive index difference between core and cladding in optical fiber is very
small. We are then under the weakly guiding condition, and some approximations can be
applied.

From a qualitative point of view, the refractive index is almost uniform over all the space; thus
the waveguide looks like a planar waveguide. Therefore, guided modes become quasi-TEM,
and have negligible ez and hz components.

Having ez = hz = 0, and assuming β = neffk0 ≈ ncok0 ≈ nclk0, we get from (1.11):

er =
η0
n
hφ eφ = −η0

n
hr (1.37)

where n can be assumed to be neff, as suggested in [17]. Equivalently, we get, in Cartesian
coordinates:

ex =
η0
n
hy ey = −η0

n
hx (1.38)

Under the weakly guiding approximation, modes are linearly polarized. Therefore, they only
have one component in the E field, and one component in the H field (by convention, either
ex and hy, or ey and hx). This is why we call them scalar modes.

Under the weakly guiding approximation, the characteristic equation of standard step-index
fiber (1.31) simplifies to:

± ν

r1
=

(
J ′ν(ur1)

uJν(ur1)
+

K ′ν(wr1)

wKν(wr1)

)
(1.39)

The plus sign in (1.39) relates to EH modes, while the minus sign relates to HE modes. Using
Bessel derivative functions (A.14) and (A.17), this simplifies to either

Jν+1(ur1)

uJν(ur1)
+
Kν+1(wr1)

wKν(wr1)
= 0 (1.40a)

or

Jν−1(ur1)

uJν(ur1)
− Kν−1(wr1)

wKν(wr1)
= 0 (1.40b)

It is possible, using Bessel recurrence relationships, to show that (1.40a) and (1.40b) are
equivalent, and can be written as [19]:

uJ`−1(ur1)

J`(ur1)
= −wK`−1(wr1)

K`(wr1)
(1.41)

where

` =


1 for TE and TM modes

ν + 1 for EH modes

ν − 1 for HE modes

(1.42)
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This is the characteristic equation of LP modes.

From this development, we can see that, under the weakly guiding approximation, EH modes
with parameter ` − 1 are similar to HE modes with parameter ` + 1, and lead to LP modes
with parameter `. Similarly, HE modes with parameter ν = 2 are similar to TE and to TM
modes (ν = 0), and lead to LP modes with parameter ` = 1. Finally, HE modes with ν = 1

lead to LP modes with ` = 0.

1.6 Cutoff of standard step-index fibers

In an optical fiber, effective index (neff) of a given mode is a function of the wavelength. The
condition for a fiber mode to be guided is to have its effective index greater than the effective
index of the cladding (neff > ncl). When wavelength increases, effective index decreases.
The fundamental mode (HE1,1) is always guided. For other modes, there exists a critical
wavelength where neff = ncl; beyond this point, the mode is no longer guided. This critical
point is what we call the cutoff of the mode.

For standard step-index fibers, at cutoff, we have u = k0(n
2
co − n2cl)1/2 and w = 0, because

neff = ncl, causing Kν(wr1) → ∞. Substituting Kν(wr1) in (1.31) (or in (1.41) for scalar
modes) by its asymptotic expansion, using V = ur1, and evaluating the limits, we get the
cutoff conditions found in Table 1.1.

Table 1.1: Cutoff conditions for standard step-index fibers

Mode cutoff

LP`,m J`−1(V ) = 0 (1.43)

TE0,m, TM0,m J0(V ) = 0 (1.44)

HE1,m J1(V ) = 0 (1.45)

HEν,m

(
n2co
n2cl

+ 1

)
Jν−1(V ) =

V

ν − 1
Jν(V ) (1.46)

EHν,m Jν(V ) = 0 (1.47)

Because cutoffs of HEν,m modes depends on the refractive index ratio between core and
cladding, we choose nco = 1.474 and ncl = 1.444 as typical values to make cutoff calcula-
tions. The cutoff for the first mode group (V = 2.405) is called the single mode condition. If
the V number of a given fiber is below that value, the fiber will only guide the fundamental
mode (HE1,1 or LP0,1). Table 1.2 gives the cutoffs (expressed as V number) for the first modes
in a standard step-index fiber.
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Table 1.2: Cutoffs of the first modes in standard step-index fiber (nco = 1.474, ncl = 1.444).

m = 1 m = 2 m = 3 m = 4 m = 5

LP0,m, HE1,m 0 3.832 7.016 10.173 13.324

LP1,m, TE0,m, TM0,m 2.405 5.520 8.654 11.792 14.931

HE2,m 2.422 5.528 8.659 11.795 14.934

LP2,m, EH1,m 3.832 7.016 10.173 13.324 16.471

HE3,m 3.853 7.028 10.182 13.330 16.476

LP3,m, EH2,m 5.136 8.417 11.620 14.796 17.960

1.7 Group index and dispersion

The effective index (neff) is related to the phase velocity (vp) of the mode:

vp =
c

neff
=
ω

β
(1.48)

The phase velocity is the speed at which the light – a rapidly oscillating signal – travels in the
propagation direction of the fiber.

However, the effective index varies as a function of the wavelength, for two reasons. First, the
refractive index of a medium is a function of the wavelength (see Appendix B); we call this
effect the material dispersion. Second, the characteristic equation of the modes is a function
of the wavelength (because of the k0 parameter, included in u and w parameters); we call that
the waveguide dispersion. Because of this wavelength dependency, a pulse sent through an
optical fiber – the envelope of a rapidly oscillating signal – travels at a speed that is different
from the phase velocity. We call this the group velocity (vg), and it is related to the first
derivative of the effective index of the mode:

vg = c

(
neff − λ

dneff
dλ

)−1
=
dω

dβ
(1.49)

If neff was not varying with the wavelength, the derivative of neff would be zero, and vg would
be equal to vp.

Similarly to the effective index, we can define a group index, which relates the group velocity
to the speed of light:

ng =
c

vg
(1.50)

A pulse of light never is composed of a single wavelength; it always has a spectral band-
width, that can be more or less narrow, depending on the laser source. Therefore, because of
material and waveguide dispersion, the bluish part of the pulse does not travel at the exact
same velocity as the reddish part of the pulse. This causes the pulse to broaden during the
transmission over a length of fiber. This broadening of the pulse is a linear effect that we
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call the dispersion. It is characterized by what we call the dispersion parameter (D), usually
expressed in ps nm−1 km−1, and related to the second derivative of the effective index:

D = −λ
c

d2neff
dλ2

= − ω2

2πc

d2β

dω2
(1.51)

Since the dispersion is a linear effect, it can easily be compensated. However, on WDM
systems, where signals with many different wavelength travel alongside, the dispersion is not
exactly the same for every wavelength, and it can be necessary to take into account the slope
of the dispersion (S), expressed in ps nm−2 km−1, and related to the third derivative of the
effective index:

S =
dD

dλ
(1.52)

A convenient way to describe the propagation of a mode through an optical fiber is to develop
the propagation constant β as a Taylor series, around the central frequency of the pulse ω0:

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 +
1

6
β3(ω − ω0)

3 + · · · (1.53)

where β0 is the propagation constant at the central frequency, and:

βi =
diβ

dωi

∣∣∣∣
ω0

(1.54)
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Chapter 2

The orbital angular momentum of
light

2.1 Linear and angular momentum

In classical mechanics, linear momentum (p) is defined as the product of the mass (M) and
velocity (v) of an object. Therefore, this is a vector quantity, expressed in kg m s−1 (or in N s):

p = Mv (2.1)

An interesting property of linear momentum is that it is a conserved quantity. A classical
demonstration of this is the Newton’s cradle, where a series of pendulums are aligned, and the
movement of the first sphere is transmitted to the last one, while intermediate spheres remain
stationary. Another illustration is in the game of pool, where all balls included in a collision
will carry a portion of the momentum of the ball that initiated the collision.

A related property exists in a rotating system, which is the angular momentum (L), expressed
in kg m2 s−1 (or in N m s), and defined as:

L = r × p (2.2)

where r is the position vector of the object, relative to the origin, and p is the linear momentum
of that object. Because of the cross product, L is perpendicular to both r and p. There also
is a conservation law of angular momentum, which is typically illustrated with the gyroscope,
whose orientation is maintained, regardless of the orientation of the mounting frame.

2.2 The angular momentum of light

Light, as an electromagnetic wave, carries energy. The energy flux density (in W m−2) is given
by the Poynting vector

S = E ×H (2.3)
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A more surprising property of electromagnetic wave is that it also carries momentum. The
consequence of the linear momentum of light is exertion of a small pressure on a target surface,
that we call the radiation pressure. While effects of this pressure are usually too small to be
observed (the linear momentum of light is equivalent to k0~ per photon, where ~ = h/2π =

1.055× 10−34 J s is the reduced Plank constant), it has major effects on the development of
the cosmos, and can also be observed at the atomic level.

Light also carries an angular momentum, meaning it can rotate around the propagation direc-
tion. In fact, there are two forms of angular momentum: the spin angular momentum (SAM),
and the orbital angular momentum (OAM).

The spin angular momentum occurs when light is circularly or elliptically polarized. In that
case, the direction of the transverse electrical field (the polarization) is rotating around an axis,
and each photon carries a spin angular momentum of σ~, where −1 ≤ σ ≤ +1. For circular
polarization, σ = ±1, depending on whether it is left- or right-handed. When σ = 0, there is
no SAM, and the polarization is linear. Intermediate values denote elliptical polarization.

With orbital angular momentum, the phase front of the light beam rotates around an axis. This
means that OAM is related to the spatial distribution of the field, and not to the polarization.
Mathematically, it means that the phase of an OAM carrying beam, on the transverse plane,
is given by:

ϕ(r, φ) = exp(j`φ) (2.4)

where the ` parameter, an integer, is called the topological charge, or the OAM order. While
the OAM of light was theoretically known, it is only in 1992 that Allen et al. demonstrated
it, showing that any helically phased beam carries an OAM equivalent to `~ per photon [20].
Because ` can be any integer, the value of OAM can be much higher than the value of SAM.

The azimuthal dependency of the phase, given by (2.4), implies that the phase is undefined
at r = 0. Therefore, the intensity always is zero at the center of an OAM beam. This is
why OAM beams often are called vortex beams, and sometime cylindrical vector beams (CVB)
[21, 22]. The most common form of a vortex beam is the Laguerre-Gaussian (LG) beam.
However, not all vortex beams necessarily carry OAM; it depends on the phase front of the
beam.

Under the paraxial approximation, when the beam only varies slowly with respect to the z
axis (as is the case with a collimated beam), it can be shown that SAM and OAM can be
separated [23]. Therefore, OAM is independent of SAM, and vice-versa, and the total angular
momentum of a beam is the sum of the contributions of the SAM and OAM. However, for
a non-paraxial beam, SAM and OAM are not completely separable, and a correction term
must be added when we calculate the total angular momentum [24]. Conry et al. studied the
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Figure 2.1: A spiral phase plate can generate a helically phased beam from a Gaussian. In
this case ` = 0→ ` = 2 (reproduced from [28, Figure 5]).

polarization dependency in OAM-carrying LG beams [25].

The OAM of light rapidly found many applications [26–28], including, but not limited to, the
ability to spin microscopic objects and to drive micromachines, trapping, guiding and rotating
atoms, advanced optical manipulations, microscopy, applications in space physics studies, and
higher-levels quantum information systems.

2.3 Generation of OAM beams

There are a few different techniques to generate OAM beams. The most common techniques
are reported in [28, Section 2].

Probably the most obvious method is to use a spiral phase plate, as illustrated in Fig. 2.1, where
the thickness of the plate is defined as a function of the azimuthal position by: `λφ/2π(n−1),
where ` is the OAM order, λ is the incident beam wavelength, φ is the azimuthal position, and
n is the refractive index of the plate. This device is very efficient, and allows the conversion
of beams with relatively high power. However, it needs extreme precision in manufacturing,
it is wavelength dependent, and you need a different plate for each kind of OAM mode you
want to generate. An adjustable spiral phase plate was proposed in [29].

OAM can be generated using diffractive optical elements. A common technique is to use
a fork grating, generated by the superposition of the OAM phase mask and a linear phase
ramp, modulo 2π. This fork pattern could, for example, be etched in a glass plate, or printed
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Figure 2.2: Some examples of fork grating patterns. (a) pattern for horizontally shifted ` = 1
beam. (b) discretized pattern (to 0 or π) for ` = −1, 0, 1 beams. (c) discretized pattern for
vertically shifted ` = −3,−, 3 beams. (d) sum of the two phase patterns that create a 3 × 3
array of beams. (reproduced from [30, Figure 2]).

on transparent material. When illuminating the center of the grating, most of the light is
transmitted with no alteration, but part of it is diffracted and carries a +` topological charge
to one side of the output, and a −` topological charge to the other side. It is also possible
to superimpose two different fork gratings, for example one horizontally and one vertically,
to generate multiple topological charges simultaneously [30]. This is the main advantage of
this technique. Depending on the material used for supporting the grating, it can also accept
potentially high power. The quality of the generated beam highly depends on the precision of
the grating. The main disadvantage of this technique is its poor efficiency. Some example of
fork grating patterns are illustrated on Fig. 2.2. A variation of this technique was proposed
to improve efficiency, using forked polarization grating [31].

It the original experiment from Allen et al. in 1992 [20], OAM was generated by transforming
Hermite-Gaussian (HG) modes to LG modes using cylindrical lens. The principles of that
conversion are explained in [32].

Multi-plane light conversion, while typically used for the multiplexing of LP modes [33, 34],
could potentially be used for OAM multiplexing, if designed accordingly. At the time of writ-
ing, we are currently testing such a device, designed and fabricated by CAILabs. The principle
is to use a multipass cavity, where the input beams, spatially separated, are transformed and
combined by successive reflections on a specially designed phase plate.

A very convenient way to generate OAM is to use a spatial light modulator (SLM). The
SLM is a device, made of liquid crystals, that is programmable using a computer [35]. It is
composed of a matrix of pixels, just like a computer screen, and each pixel can be programmed
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to generate a given phase (there also exists SLMs that act on amplitude instead of phase). The
programming of the SLM in made by displaying a grayscale image on it, which is automatically
converted to a phase pattern. Most SLMs work in reflection – we send a beam with a given
angle, and the reflected beam has its phase modified per the pattern programmed on the
SLM – but some SLMs work in transmission. To generate the OAM beam, we can either
program the SLM with the OAM phase mask, or program it with a diffractive pattern. The
main advantage of the SLM is its versatility; it can be reconfigured as needed. It is even
possible to send different beams on different sections of the SLM, to modulate several beams
simultaneously. However, the SLM is a polarization dependent device, and it accepts only
limited power.

It is also possible to use optical fiber for the generation of OAM. This can be done using the
fiber as a mode selector [21] or a mode converter [36, 37], by the conversion of acoustic waves
to optical waves [38], using a fiber coupler [39], using a mechanical grating [40, 41], a tilted
optical grating [42], a helical grating [43], multicore fibers [44–47], or using liquid core optical
fiber [48].

The use of thermally tuned q-plates seems a very promising and efficient way of generating
OAM beams [49].

Finally, the recent trend is to use silicon photonic integrated devices for the generation of
OAM. In [50–52], a star coupler is used to generate the phase pattern, and a circular grating
coupler vertically couples the OAM mode to an optical fiber, or in free-space. A similar
approach is described in [53–55], but using a 3D waveguide. A different approach, using a
grated microring resonator, is proposed in [56]. Another proposition is integrating a spiral
phase plate directly on the top of a VCSEL [57].

2.4 Detecting OAM modes

An OAM beam never has intensity at its center, and thus is always doughnut shaped, as we
already explained in Section 2.2. This characteristic, however, is not sufficient to identify
OAM beams and their topological charge, because we need to confirm phase information as
well. But the phase of an optical signal cannot be measured directly; hence we need techniques
to confirm the helical phase front of OAM beams.

A common way to identify OAM is to interfere the incident beam with a Gaussian beam, and
to visualize the resulting interference pattern on a camera. If the incident beam is Gaussian,
the interference pattern will look like a series of concentric circles. However, is the incident
beam has a helical phase front, the interference pattern will be a spiral, where the number of
arms is the topological charge, and the direction of the spiral is linked with the handedness of
the phase rotation (i.e., the sign of `).
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While the interference pattern is useful to validate the presence of an OAM beam, it cannot
really be used for demultiplexing. A better way is to convert the incident beam back to
Gaussian, using a phase pattern or a fork grating, on a glass plate or a SLM, for instance.
It works because the resulting operation is to add (or subtract) to the topological charge.
Therefore, if you send an incident beam with ` = +1 through a fork grating, the output will
be a ` = 0, i.e. Gaussian, beam to the left or right side, and ` = 2 OAM beam to the other
side. Similarly, sending an OAM beam on a spiral phase plate would increase or decrease the
topological charge, depending on the direction of the helical structure. After the conversion,
an iris can be used to remove potential doughnut shape intensity of OAM modes, and to detect
the intensity of the resulting Gaussian beam.

A mode sorter was proposed to identify OAM modes, where the lateral position of the resulting
beam tells the topological charge or the incident beam [58].

2.5 OAM in free-space telecommunications

OAM states are orthogonal to each other in a free-space beam. Thus it is possible to use OAM
states to encode different information channels on a single optical beam. Furthermore, the
OAM state is independent of wavelength, quadrature, and polarization. Therefore, it provides
an additional dimension for encoding information, the spatial dimension, potentially enabling
a dramatic improvement in the capacity of optical links.

This idea was first proposed by Bouchal and Čelechovský in 2004 [59]. Four bits of information
were encoded on four OAM channels, with topological charges of respectively ` = 1, 3, 5, 7.
Soon after, a real data transmission experiment was performed by Gibson et al., where 8 OAM
states (` = ±4,±8,±12,±16) were transmitted over 15 m in free-space [30]. The signal was
encoded using a phase mask on a SLM, and decoded using two superimposed fork grating, on
a second SLM, resulting in nine possible spot positions on the CCD camera, one per channel
(the central Gaussian spot being used for alignment).

In those setups, the OAM signal was dynamically modulated using the SLM. The problem
is that in such setup, the data rate is limited by the slow refresh rate of the SLM. In 2007,
Čelechovský and Bouchal proposed and demonstrated an alternative setup where data was
modulated onto each mode separately, and then the modes were multiplexed for transmission.
The modulation rate was independent of the mode generation technique [60]. They fully
encoded and decoded four information channels using four OAM modes (` = ±4,±8) over
6 m.

In 2010, a system in C-band was demonstrated, carrying 20 Gbit s−1 signal over 2 OAM states
[61]. The year after, a system using 4 OAM channels (` = −8,+10,+12,−14) and 16-QAM
encoding was demonstrated, proving the compatibility of quadrature encoding with OAM [62–
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64]. The same team also demonstrated a setup with 2 OAM states (` = 8, 16) and 25 WDM
channels, using OOK, DPSK, or QPSK coherent encoding, and reaching up to 2 Tbit s−1, show-
ing the compatibility of WDM with OAM [65]. Another team demonstrated the transmission
of 16 different OAM channels (` = ±1,±2, . . . ,±8) [66]. In 2013, another demonstration was
made, using 24 OAM channels and 42 WDM channels, for a total of 1008 channels; adding po-
larization multiplexing and QPSK encoding, a theoretical 100.8 Tbit s−1 was achieved [67, 68].
Finally, we should mention a recent review paper on free-space communications using OAM
links [69].

One motivation for using OAM in free-space is the security advantage it offers, since OAM
states cannot be recovered if the detector is not exactly positioned in the path of the beam [70].
OAM states can be used to perform quantum cryptography. While SAM already permitted
the encoding of (2 levels) qubits, OAM allows the realization of quantum systems with a higher
number of levels [71, 72].

One problem with the free-space transmission of OAM is that atmospheric turbulence ran-
domly affects the phase of the transmitted signal, which can affect the OAM state. This is one
reason why all free-space experiments are on very short distances, or at very low transmission
rates [73]. Effects of turbulences were studied in several papers [74–77]. LDPC codes were
proposed to compensate for those impairments [78].

To complete our review of the use of OAM in telecommunications, we should also mention
some experiments on OAM in radio-communications [79–82].

2.6 OAM fiber modes

We saw in Chapter 1 that, in circular optical fiber, the electrical field can be expressed as:

E(r, φ, z, t) = e(r)


fν(φ)

gν(φ)

fν(φ)

 exp(jβz − jωt) (2.5)

where e(r) is the radial dependency of the field, and fν(φ) and gν(φ), defined in (1.25) and
(1.26), is the azimuthal dependency of the field. The three lines inside the curly braces are
for the r, φ, and z components of the electrical field, respectively. In this expression, ν and β
are given by modal solutions. E(r, φ, z, t) is a complex field; its modulus gives the envelope
of a rapidly oscillating signal, while the angle gives the phase of the signal. The azimuthal
orientation of the field is arbitrary, and defined by fν(φ) and gν(φ) functions. Usually, we
assign them sin and cos functions, and qualify the mode to be even or odd, in relation with
the symmetry of the underlying trigonometric function.

If we take an even and an odd mode, with a π/2 phase difference, and we sum the fields, we
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get, as a resulting field:

E(r, φ, z, t) = e(r)


f evenν (φ) + jfoddν (φ)

gevenν (φ) + jgoddν (φ)

f evenν (φ) + jfoddν (φ)

 exp(jβz − jωt) (2.6)

Because fν(φ) and gν(φ) are trigonometric functions, we have, using the Euler formula (A.35),
this equivalent form:

E(r, φ, z, t) = e(r)


exp(jνφ)

− exp(jνφ)

exp(jνφ)

 exp(jβz − jωt) (2.7)

This is precisely the azimuthal dependency of the phase, defined for OAM modes in (2.4).
Therefore, the addition of even and odd vector modes with a π/2 phase difference leads to an
OAM mode. In other words, guided OAM modes in optical fiber are made of a combination
of vector eigenmodes.

We can rewrite (2.7) as:

E(r, φ, z, t) = e(r)


exp(jσφ) exp(j`φ)

− exp(jσφ) exp(j`φ)

exp(jνφ)

 exp(jβz − jωt) (2.8)

where σ = ±1 and σ+ ` = ν. In this expression, ν is the total angular momentum order, σ is
the spin, and is related to the polarization of the transverse field, and ` is the orbital angular
momentum order. The exp(jσφ) term indicates that the polarization has an azimuthal depen-
dency; therefore, polarization of OAM modes in an optical fiber is circular, i.e., is rotating.

We can summarize the relation between vector and OAM modes by the following relation:

OAM±±`,m = HE even
`+1,m ± j HE odd

`+1,m (2.9a)

OAM∓±`,m = EH even
`−1,m ± j EH odd

`−1,m (2.9b)

where the superscript denotes the direction of the circular polarization, and ` is the topological
charge. It means that OAM modes made from HEν,m modes are rotating in the same direction
as the spin (spin aligned), and OAM modes made from EHν,m modes are rotating in the
opposite direction as the spin (spin anti-aligned) [83, 84].

OAM modes made from HE1,m modes would have a spin, but no topological charge (` = 0).
Therefore, this is not a true OAM mode, but simply a vector mode with circular polarization.
However, we will consider it as OAM0,m, in a more general definition.

In theory, we could also have OAM modes made from TE0,m and TM0,m, like this:

OAM∓±1,m = TE0,m ± j TM0,m (2.10)
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Figure 2.3: The four OAM mode degeneracies.

.

However, this mode is not stable and cannot propagate, because the β propagation constants
of TE0,m and TM0,m modes are different. Therefore, we call this an unstable vortex (IV) [38].

To summarize, for a given topological charge `, there are four possible OAM modes: two
different spin rotation, and two different phase rotation. This is illustrated in Fig. 2.3. The
only exceptions are for OAM±1,m, where spin and topological charge always have the same
sign, and for OAM0,m, where there is no topological charge (only spin).

2.7 OAM modes in optical fibers

2.7.1 Transmission of OAM modes

The first paper we are aware of that mentions the possibility of transmitting OAM modes
through optical fiber is from Alexeyev et al. in 1998 [85]. They showed, from the wave
equations, that the solution for OAM modes can exist in multimode fibers. However, for a
long time, optical fibers were only used for the generation or the transformation of OAM
modes, and not for their transmission [21, 36–39].

The first real demonstration of the transmission of OAM modes through optical fiber is from
Ramachandran et al. in 2009 [40]. They designed a special fiber, they called vortex fiber, which
has a central core able to transmit the fundamental mode, surrounded by a lower trench, and
an outer ring able to transmit the first OAM mode group. In this first paper, they reported
a transmission through more than 20 m fiber. Two years later, transmission of OAM through
a 1 km fiber was reported [86–88].
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Data transmission using OAM through optical fiber begins with a 2011 paper, that describes
theoretically the components of a multidimensional optical fiber communication system using
OAM modes [89]. Then a first data transmission experiment was reported, using the vortex
fiber, with four OAM channels (` = ±1, and fundamental mode with both polarizations) [90].
Other experiments followed, using QPSK encoding and LDPC codes [91], and using 16-QAM
and 10 channels WDM [92]. Finally, all the experiments on the vortex fiber were summarized
in a Science paper [93].

Because having a high index contrast is a desirable feature for an OAM transmitting fiber, a
fiber with a ring core and air in the middle was proposed [94]. The fiber was fabricated, and
12 OAM modes were transmitted through 2 m of that fiber, and 2 OAM modes over 1 km [95].
Using that fiber, they demonstrated that OAM modes with higher ` value are less sensitive to
perturbations like bends and twists [96, 97].

An inverse parabolic graded index fiber, supporting 4 OAM modes, was demonstrated [9, 98].
A dual-guided ring-core fiber, very similar to the original vortex fiber, was proposed and
simulated [99].

We proposed and fabricated a fiber with an air-core, and achieved the world record number
of OAM modes transmitted through an optical fiber [1, 2]. More details about this fiber will
be given in Chapter 7. We also designed a family of five ring core fibers, to study propagation
effects of OAM modes [4, 5]. More details about those fibers are given in Chapter 8.

To increase even further the capacity of the fiber link, OAM based multiplexing can be com-
bined with multi-core fibers. A first demonstration was achieved with 2 OAM modes and 7
cores fiber, on a 80 cm long fiber [100, 101], then on a 500 m fiber [102]. Li and Wang presented
a similar concept, with 7 cores and 22 OAM modes [103, 104], then 19 cores and 22 OAM
modes [105]. It was also proposed to use a multicore structure to propagate OAM modes as
supermodes [106].

2.7.2 SDM using OAM in a different way

A related but different way to use OAM with optical fibers is to launch an OAM mode in a
standard multimode fiber, and to detect the resulting mode at the end of the fiber, even if
it is no longer an OAM mode. This was first proposed by Carpenter [107], to increase the
conversion efficiency between free-space and fiber modes. Similar idea was reintroduced, to
enhance the transmission in short-range MMF [108].

There also are a few papers by Murshid, where different OAM ring sizes are used to multiplex
the information [13, 109–111].
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2.7.3 OAM components and functions

Being able to multiplex, transmit, and demultiplex information using OAM modes is not
sufficient by itself to justify that the use of OAM multiplexing could increase fiber capacity
and reduce costs, compared to the use of a bunch of fibers. Other common functions need to
be performed directly on the OAM modes, like amplification, mode conversion, and add/drop
multiplexing. While a complete review on this topic exceed the scope of this thesis, we can
nevertheless mention some contributions.

Most of the proposed systems work in free-space. It includes multicasting OAM modes [112],
add/drop multiplexers [113, 114], and amplification using light-acoustic interaction [115].

A few fiber-based devices begin to emerge, like fiber based mode converter using mechanical
stresses on the fiber [116], and OAM erbium-doped fiber amplifier [117].
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Chapter 3

Solving for modes using numerical
methods

3.1 The simulation software

While commercial softwares exist to numerically solve for modes in optical fibers, we choose to
develop our own in-house software. The goal was two-fold: first, implementing the algorithms
by ourself is the best way to deeply understand them; second, using our own software, we
have no limitations on the customizations that can be done to solve for particular problems.
Furthermore, this gives to the community a free to use implementation of the algorithms,
that could be used and improved by other researcher∗. We do not pretend to have a faster
or a more accurate simulation software than what is commercially available, but we believe is
accurate, usable, and mostly customizable.

3.2 The transfer matrix method

The transfer matrix method [17, 118] is an algorithm used to solve for effective index of step-
index optical fiber. The advantages of this method, compared to other numerical methods such
as finite element methods (FEM), is that it is faster, it is more accurate, it lessen the chances
failing to identify modes, and it allows an easier identification of modes found. However, it
applies only to step-index fibers, while FEM allows to solve for arbitrary fiber profiles.

The principle is to ensure the continuity of the fields at each layer interface. This gives us
an eigenvalue problem, where only specific combinations of ν and neff allow solutions. Each
combination of ν and neff that allows the fields to be continuous across layers is called a fiber
mode. Algorithm 3.1 gives the generic idea of the algorithm used to find the effective index of
a given mode (defined by ν, m, and the mode family) at a given wavelength (λ), for a given

∗https://github.com/cbrunet/fibermodes
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step index fiber (defined by the vector of refractive indexes n and the vector of layer radii r,
starting from the center of the fiber). This is a simplified version, as it is written for shortness
and explicitness over performance. The FindNeff function finds themth root of CharFunc,
starting from highest possible neff (the highest refractive index of the fiber) to the lowest (the
refractive index of the cladding). The characteristic function CharFunc, that we will detail
in the following sections, returns zero if the given parameters are the parameter of a existing
fiber mode. As we will see later, the simple for loop hides more complex optimizations, needed
to accurately find all the characteristic function roots, in a reasonable time.

Algorithm 3.1 Finding neff of a given mode (simplified version)
1: function FindNeff(ν,m, family, λ,n, r)
2: k0 ← 2π/λ
3: for neff ← maxn, nN do . From highest n to ncladding
4: r ← CharFunc(neff, ν, family, k0,n, r)
5: if r = 0 then . We found a root
6: m← m− 1 . Count the number of roots
7: end if
8: if m = 0 then . This was the mth root
9: return neff
10: end if
11: end for
12: return Mode not found
13: end function

Modes are ordered in a given order (as function of neff) [17]. For vector modes, we have:
HEν,1 > EHν,1 > HEν,2 > EHν,2 > · · · > HEν,m > EHν,m
TE0,1 > TE0,2 > · · · > TE0,m

TM0,1 > TM0,2 > · · · > TM0,m

(3.1)

and for scalar modes:
LP`,1 > LP`,2 > · · · > LP`,m (3.2)

Once we found the mth root of the characteristic function, we can tag the mode. The ν
parameter was already chosen. For LP, TE, and TM modes, the mode family is determined
by the characteristic function we used (that is different for each family of modes), and the
m parameter is the number of roots, from the highest neff. For HE and EH modes, the
characteristic function is the same for both families, hence the family and the m parameter
are determined from the mode order given in (3.1).
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3.2.1 The matrix method

As we saw in Section 1.3, the azimuthal component of the electrical and the magnetic fields,
for layer i, are given by:

ez(r, φ) = fν(φ)

AiJν(uir) +BiNν(uir) neff < ni

AiIν(wir) +BiKν(wir) neff > ni
(3.3a)

hz(r, φ) = gν(φ)

CiJν(uir) +DiNν(uir) neff < ni

CiIν(wir) +DiKν(wir) neff > ni
(3.3b)

where fν(φ) and gν(φ) are trigonometric functions defined in (1.25) and (1.26), ui = k0(n
2
i −

n2eff)1/2, wi = k0(n
2
eff − n2i )1/2, ni is the refractive index of the fiber layer, and Ai, Bi, Ci,

and Di are appropriate constants to be found. From (1.12), we know that the transverse
components of the fields are all dependent of the azimuthal components. Substituting (3.3)
into (1.12), we have:

er(r, φ) = fν(φ)
1

k0r(n2i − n2eff)



k0rneffui [AiJ
′
ν(uir) +BiN

′
ν(uir)]−

η0ν [CiJν(uir) +DiNν(uir)] ni > neff

k0rneffwi [AiIν(wir) +BiKν(wir)]−

η0ν [CiIν(wir) +DiKν(wir)] ni < neff

(3.4a)

eφ(r, φ) = gν(φ)
1

k0r(n2i − n2eff)



k0neffν [AiJν(uir) +BiNν(uir)]−

η0uir [CiJ
′
ν(uir) +DiN

′
ν(uir)] ni > neff

k0neffν [AiIν(wir) +BiKν(wir)]−

η0wir [CiI
′
ν(wir) +DiK

′
ν(wir)] ni < neff

(3.4b)

hr(r, φ) = gν(φ)
1

k0r(n2i − n2eff)



k0rneffui [CiJ
′
ν(uir) +DiN

′
ν(uir)]−

n2i ν/η0 [AiJν(uir) +BiNν(uir)] ni > neff

k0rneffwi [CiI
′
ν(wir) +DiK

′
ν(wir)]−

n2i ν/η0 [AiIν(wir) +BiKν(wir)] ni < neff

(3.4c)

hφ(r, φ) = fν(φ)
1

k0r(n2i − n2eff)



−k0neffν [CiJν(uir) +DiNν(uir)] +

uirn
2
i /η0 [AiJ

′
ν(uir) +BiN

′
ν(uir)] ni > neff

−k0neffν [CiIν(wir) +DiKν(wir)] +

wirn
2
i /η0 [AiI

′
ν(wir) +BiK

′
ν(wir)] ni < neff

(3.4d)

Therefore, for each layer, there are four constants to be determined, thus we need four equa-
tions to solve for this system. Those four equations are given by the continuity of ez(r, φ),
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hz(r, φ), eφ(r, φ), and hφ(r, φ):

ez(r
−
i , φ) = ez(r

+
i , φ) (3.5a)

hz(r
−
i , φ) = hz(r

+
i , φ) (3.5b)

eφ(r−i , φ) = eφ(r+i , φ) (3.5c)

hφ(r−i , φ) = hφ(r+i , φ) (3.5d)

For example, supposing ni > neff and ni+1 > neff, the continuity of ez(r, φ) at r = ri would
be given by:

AiJν(uiri) +BiNν(uiri) = Ai+1Jν(ui+1ri) +Bi+1Nν(ui+1ri) (3.6)

and similarly for the other components, based on (3.3) and (3.4).

In any N layer step-index fiber, B1 = 0 and D1 = 0 because of the discontinuity of the Nν(u1r)

or the Kν(u1r) function when r → 0. Therefore, the radial dependency of the fields in the
center layer is only a function of Jν(u1r1) or Iν(u1r1), determined by the values of n1 and neff.
Similarly, for a guided mode, neff < nN , AN = 0 and CN = 0 because of the discontinuity of
the Iν(uNr) function when r →∞, and the cladding layer radial dependency is a function of
Kν(wrN−1).† Therefore, since there are N − 1 layer interfaces, we have a total of 4(N − 1)

continuity equations, and 2 + 4(N − 2) + 2 constants to be found (for inner, central, and outer
layers, respectively). We can express this as a matrix system:

a11 a13 a14

a22 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a53 a54 a57 a58

a65 a66 a69 · · ·
a73 a74 a75 a76 a77 a78 a79 · · ·
a83 a84 a85 a86 a87 a88 a89 · · ·

a97 a98 · · ·
...

. . .





A1

C1

A2

B2

C2

D2

A3

B3

C3

...



= 0 (3.7)

where aij coefficients are determined by the continuity equations (3.5). To avoid the trivial
solution where all constants are zero, we must solve for the determinant of this matrix equals
to zero. This determinant equals to zero is the transcendent characteristic function.

While it is mathematically accurate, this method quickly becomes numerically unstable, espe-
cially when the number of layers increases. This is why we will usually prefer the layer-by-layer
method, explained in the following section. However, we explained the matrix method, for its
simplicity, and because it introduces the principles used for the layer-by-layer methods.

†Note that for leaky modes, the last layer would be defined as combinations of Jν(uNr) and Nν(uNr) func-
tions, and the current development would still apply; however, this exceed the scope of the current discussion.

35



3.2.2 The layer-by-layer method

For this method, we arbitrarily set A1 = 1 and C1 = α. Using the continuity equations at
r = r1, we then compute the values of A2, B2, C2, and D2, as function of α. Using those four
constants, we calculate ez(r2) and hz(r2). Then, from the continuity equations, we can obtain
the four constants for the next layer, A3, B3, C3, and D3, still as function of α. We propagate
the constants like this up to the layer before the last (the layer before the cladding).

From the continuity equations of ez(r) and hz(r) at r = rN−1 (the last layer interface), we get
the values of the last two constants, BN and DN . From the found constants of the last two
layers, we compute the values of eφ(r) and hφ(r) when r → rN−1:

eφ(r−N−1)− eφ(r+N−1) = c11 + c12α (3.8a)

hφ(r−N−1)− hφ(r+N−1) = c21 + c22α (3.8b)

where c is a 2 × 2 matrix of appropriate coefficients. If the continuity is respected, both
equations should be equal to zero. It is respected when:∣∣∣∣∣ c11 c12

c21 c22

∣∣∣∣∣ = c11c22 − c12c21 = 0 (3.9)

Therefore, neff is a solution to a fiber mode if (3.9) is zero. The algorithm is summarized in
Algorithm 3.2. To simplify code writing, we use α = j, and we perform all the calculations
using complex numbers. The Coefficients function returns a 4 × 4 matrix of coefficients,
such as: 

a11 a12

a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



Ai

Bi

Ci

Di

 =


ez(r)

hz(r)

eφ(r)

hφ(r)

 (3.10)

where Ai, · · · , Di are the constants for the ith layer, and ez, · · · , hφ are the field values at
inner (ri−1) or outer (ri) radius of the layer. At r = ri−1, field values are known, and a linear
solver is used to find constant values. At r = ri, field values are obtained by multiplying
the coefficients by the known constants of the current layer. Please note that the coefficient
matrix is equivalent to the sliding (like a stairway) diagonal of (3.7). Those coefficients are
found using (3.3) and (3.4).

Not only is this function numerically more stable than the matrix method, it is also faster,
especially when the number of layer N grows. 4(N − 1) 4× 4 determinants would need to be
solved, compared to a 4(N−1)×4(N−1) determinant for the matrix method. For TE and TM
modes, the function is similar, but simpler, as ez = 0, hφ = 0 for TE modes, and hz = 0, eφ = 0

for TM modes. Therefore, we only need to ensure continuity on two components instead of
four. We no longer need the α variable, and all the systems become 2× 2 instead of 4× 4.
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Algorithm 3.2 Layer-by-layer method
1: function CharFunc(neff, ν, family, k0,n, r)
2: if family = TE then
3: A1, B1, C1, D1 ← 0, 0, 1, 0
4: else if family = TM then
5: A1, B1, C1, D1 ← 1, 0, 0, 0
6: else . HE and EH modes
7: A1, B1, C1, D1 ← 1, 0, j, 0
8: end if
9: for i = 1, N − 2 do . Inner layers

10: a← Coefficients(neff, ν, family, k0, ni, ri)
11: ez, hz, eφ, hφ ← a · [Ai, Bi, Ci, Di]

T

12: a← Coefficients(neff, ν, family, k0, ni+1, ri)
13: Ai+1, Bi+1, Ci+1, Di+1 ← Solve(a, [ez, hz, eφ, hφ]T ) . 4× 4 determinant
14: end for
15: i← N − 1 . Last layer
16: a← Coefficients(neff, ν, family, k0, ni, ri)
17: ez, hz, eφ, hφ ← a · [Ai, Bi, Ci, Di]

T

18: w ← k0(n
2
eff − n2N )1/2

19: BN , DN ← ez/Kν(wri), hz/Kν(wri)
20: a← Coefficients(neff, ν, family, k0, nN , ri)
21: eNφ , h

N
φ ← a · [0, BN , 0, DN ]T

22: c←
[
<(eφ − eNφ ) =(eφ − eNφ )

<(hφ − hNφ ) =(hφ − hNφ )

]
23: return |c| . Determinant of matrix c
24: end function

3.3 Optimizing the search for neff

The for loop at line 3 of Algorithm 3.1 hides the fact we need to try all possible values of
the real valued parameter neff, from the highest refractive index of the fiber to the refractive
index of the cladding, until we find a value of neff that, passed to CharFunc, returns zero.
Furthermore, as we saw in the previous section, the evaluation of CharFunc requires us to
solve a number of linear systems, proportional to the number of layers in the fiber. Finally, we
have to repeat the whole procedure for all the possible values of ν, and possibly for different
wavelengths or different fiber parameters. Therefore, the quest for fiber modes can be very
computationally intensive, and special cares need to be taken in optimizing the function. In the
following subsections, we will present a few optimization strategies we used for our simulation
software.

3.3.1 Finding the roots

Finding the roots of the characteristic function is not a trivial task, because the function has
discontinuities. While there exists algorithms to find roots of well behaved functions, there is
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Figure 3.1: Example of a characteristic function, for a three layers fiber with r1 = 10 µm,
n1 = 1.474, r2 = 20 µm, n2 = 1.454, and n3 = 1.444. Wavelength is 1550 nm and ν = 1. Scale
is linear between -1 and 1, and logarithmic elsewhere, to clearly see the function.

no known algorithm that guarantee finding all roots of a discontinuous function.

If we want to plot the characteristic function, we should evaluate it at specific intervals. Then
we would see where the function is crossing zero. However, the choice of the interval (or,
in other words, the number of points we evaluate) is critical. Evaluating too many points
would require unnecessary computing power, but if the interval is too large, there is the risk
to fail to identify some zeros. This is especially true for multilayered fibers. In that case, the
characteristic function has many discontinuities, and can suddenly go up and down. As an
example, we plotted on Fig. 3.1, the characteristic function for ν = 2, at 1550 nm, of a three
layer step-index fiber with r1 = 10 µm, n1 = 1.474, r2 = 20 µm, n2 = 1.454, and n3 = 1.444.
Each time the function crosses zero, we have the solution for a guided mode. To clearly see
the zeros, without losing the extrema of the function, we choose a hybrid vertical scale, that
is linear between -1 and 1, and logarithmic elsewhere. In blue, we see the function plotted
using 50 points. As we can see, two sets of roots are missed, near 1.453 and near 1.447. In
we increase the number of points to 200 (in green), we find the two roots near 1.447, but we
still miss the roots near 1.453. It is only when we plotted the function using 5000 points that
the roots near 1.453 were detected. This illustrates how easily a pair of roots can be skipped.
When it occurs, all the following modes are incorrectly tagged.
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The algorithm we chose to find the roots of the characteristic function is inspired by the graph-
ical representation of the function. First, we evaluate the function at specific intervals. When
two successive points are of different sign, it means there is either a zero, or a discontinuity
between the two points. If the function seems continuous between the two points, we use the
Brent algorithm [119] to find the precise value of the zero. That algorithm is guaranteed to
find a zero between two points, if those two points are of opposite sign and the function is
continuous between those points.

The number of discontinuities in the characteristic equation can be greatly reduced by avoiding
divisions by zero as much as possible. For instance, the characteristic function for scalar modes
in weakly guiding fibers could be coded as:

uJ`−1(ur1)K`(wr1) + wK`−1(wr1)J`(ur1) (3.11)

which has the same roots than (1.41), but is continuous over the neff search interval. However,
in the case of multilayered fibers, avoiding discontinuities can be much more difficult.

The root finding algorithm is detailed in Algorithm 3.3. This is a more detailed and more
accurate version of Algorithm 3.1. The FindRoots function takes as parameters the mode
parameters, a wavelength, the fiber parameters, and the number of points to evaluate (np).
It returns all the roots of the characteristic function, sorted by neff.

Algorithm 3.3 Roots of the characteristic function
1: function FindRoots(ν, family, λ,n, r, np)
2: k0 ← 2π/λ
3: δ ← (maxn− nN )/np
4: Ω, k ← ∅, 0 . To store results
5: neff ← maxn
6: r1 ← CharFunc(neff, ν, family, k0,n, r)
7: for i← 2,np do
8: neff ← neff − δ
9: ri ← CharFunc(neff, ν, family, k0,n, r)
10: if sgn ri−1 6= sgn ri then
11: rz, nz ← Brentq(CharFunc, neff, neff + δ)
12: if |ri−1| > |rz| < |ri| then . To avoid discontinuities
13: k ← k + 1
14: Ωk ← nz . kth root of CharFunc
15: end if
16: end if
17: end for
18: return Ω
19: end function
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3.3.2 Restricting the bounds

To find the list of guided modes in a given fiber at a given wavelength, we need to find the
roots of the characteristic function, for each value of ν. For instance, if we find three roots
when ν = 1, it means HE1,1, EH1,1, and HE1,2 modes are supported. If no roots are found
for a given value of ν, it means no modes with that ν parameter are supported. Therefore,
to prove that a mode is not supported, we have to test all possible values of neff, from the
highest refractive index in the fiber, down to the refractive index of the cladding.

When we know the cutoff wavelength of a mode, we can already know whether this mode
is supported or not at a given wavelength, since it will be guided only if the wavelength is
lower than the cutoff wavelength. Therefore, a lot of unnecessary calculations can be avoided,
because we can now search for modes we know are supported. We can stop the iteration in
the root finding algorithm as soon as we found the last supported mode. However, we usually
only know cutoff wavelengths for a few specific fiber profiles (those with N <= 3 for instance).
Without mode cutoff, the only solution is to search for all possible values of neff.

It is usually less computer intensive to solve for the scalar modes. While this approximation
is not accurate outside the weakly guiding approximation, it can serve as a starting point for
finding the vector modes. Indeed, if a scalar solution LP`,m is found, it means that at least
one – and possibly all – of the underlying vector modes are also supported. The effective
index of the vector modes can be more or less diverging from the effective index found from
the scalar solution, depending on the refractive index contrast of the fiber, and depending on
the proximity of the mode with its cutoff wavelength. However, that effective index could be
used as a starting point for the search of vector modes effective indexes.

The mode with the highest refractive index is called the fundamental mode. In most cases,
the fundamental mode is the HE1,1 mode. However, this is not necessarily always the case
[120]. If we know the effective index of the fundamental mode, we can restrict the neff search
interval, because we know that the effective index of the other modes will always be smaller
that the effective index of the fundamental mode.

Similarly, in many fiber designs, modes of the same family and with the same m parameter
can often be sorted by their ν parameter. However, we have not found any evidence that this
is always the case. Therefore, this criteria must be used with extreme caution.

It is often needed to plot the effective index as function of the wavelength. A good strategy
in that case is to start by the lowest wavelength. This is for two reasons. First, we know that
if a mode is not guided at a wavelength λ, it will not be guided at wavelengths higher than λ.
Therefore, after finding the modes for the first wavelength, we can restrict the search at higher
wavelengths for the modes found at the previous wavelength. The second reason is that the
effective index of a mode decreases as the wavelength increases. Therefore, if we already know
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the effective index of a given mode at a lower wavelength, we know that the effective index of
that mode will be lower than that value (but probably close) at a higher wavelength.

Similarly, we know that increasing the index difference between the guiding layer and the
cladding, or increasing the guiding layer radius, will increase the number of supported modes.
Therefore, in the case of a simulation where we vary only one fiber parameter through itera-
tions, we can start from the fiber design with the highest number of supported modes, and use
the results as a starting point for the next iteration, similarly to what with do when simulating
multiple wavelengths.

3.3.3 Parallelizing the algorithm

There are cases where, even after optimizing the fiber mode solver as much as we can, it is still
too slow for our needs. For instance, in the context of a fiber design process, we could want to
run a multidimensional optimizer, based on the fiber parameters. The cost function would be
based on the number of supported modes, on the effective indexes of those modes, or even on
parameters like group index or dispersion, that requires the evaluation of the effective index
for many closed spaced points. In this kind of context, it can be useful to take advantage of
the many processors of today’s computers.

The principle of parallelization is to separate a single process into subprocesses that are as
independent as possible. For instance, if we have to solve for the modes in different fiber
designs, we could launch a different process per design, and each process would perform the
mode solving simultaneously. However, if the different designs are related, as we explained in
previous section, the parallelization would prevent us to take advantage of that optimization.

In the case of a single fiber, but with multiple wavelengths to test, we could solve for a different
wavelength on each process. Again, this would prevent us to take advantage of some possible
optimizations. In the extreme case where many fiber designs and many wavelengths need to be
simulated, we could even separate both wavelengths and fiber designs on different processes,
but still at the price of not taking advantage of all possible computational savings. In theory,
this would be the fastest option, but only in the case we have unlimited computer resources
available.

If we consider that the solutions for each value of ν are independent, we could also assign
a different value of ν on each process. Then we could take advantage of the knowledge of
the solutions for different wavelengths or different fiber profiles. However, there are still some
issues to consider, if we do not know in advance what are the ν values that provide solutions.
Furthermore, the number of solutions for lower values of ν will generally be higher than for
higher values of ν, which could cause an unbalance between the amount of work for each
process. Especially, there would be no performance gain if most simulations lead to single
mode solutions.
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The point is that there is not a single unique solution that will provide the fastest perfor-
mance for all cases. It depends on the nature and the size of the problem, and on the used
computer architecture (number of processors, available memory, etc.) Figure 3.2 compares the
performance of different parallelization and optimization strategies. In this illustration, the
fastest strategy seems to be when we fully parallelize the problem (g). However, this is only
true in the case we have enough processors to run all simulations simultaneously. Suppose we
have eight processors instead of nine: the last simulation would need to wait for an available
processor, and the resulting simulation time would be two times longer. In that case, using
strategy (e) or (f) would be faster. Furthermore, the strategy (g) consumes as much comput-
ing power (represented as the area of the blocks) as the non-optimized sequential algorithm,
illustrated in (a).

3.4 Computing the electromagnetic fields

Once we solved for the mode neff, calculating the electromagnetic fields is straightforward. All
we need is to substitute the right values into (3.3) and (3.4), for a given transverse position
(r, φ). The radial position r tells us in which fiber layer we are, and thus we can choose the
right set of constants Ai, . . . , Di. However, the layer-by-layer method gives us those constants
as function of a parameter α that is still unknown. We get it from (3.8):

α = −c11
c12

= −c21
c22

(3.12)

We can then compute the six components of e(r, φ) and h(r, φ). The obtained values are
arbitrary, based on the choice of A1 = 1 we made in the algorithm. The convention is usually
to normalize the fields to get a unitary power flow [17]. Thus, the normalization constant if
given by:

1

2

∣∣∣∣∫
A∞

e× h∗ · ẑ dA
∣∣∣∣ =

1

2

∣∣∣∣∫ 2π

0

∫ ∞
0

(erhφ − eφhr) r dr dφ
∣∣∣∣ (3.13)

where the asterisk denotes the complex conjugate.

e(r, φ) and h(r, φ) are the envelope of the electromagnetic fields, and up to now were real
values. If we append to them the complex exponential from (1.9), we now get the time and
propagation dependencies of the fields, and the E andH fields now are complex. The modulus
gives the field intensity, while the angle gives the phase of the rapidly oscillating signal.

Using that complete definition of the fields, it becomes possible to build OAM fields. We
know that OAM modes are made of even and odd degeneracies of the vector modes. The
difference between even and odd modes is given by the definition we give to the fν(φ) and
gν(φ) functions, (1.25) for even modes, and (1.26) for odd modes. The radial orientation of
the field is arbitrary – in fact we align the coordinates system to get either min or max value
at φ = 0 – but the relative orientation of even and odd fields is important. Therefore, an
equivalent way to define even and odd modes is to always use the even definition of the fν(φ)
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(a) fiber1, λ1 fiber1, λ2 fiber1, λ3 fiber2, λ1 fiber2, λ2 · · ·

(b) fiber1, λ1 λ2 λ3 fiber2, λ1 λ2 λ3 fiber3, λ1 λ2 λ3

(c) fiber1, λ1 f2 f3 fiber1, λ2 f2 f3 fiber1, λ3 f2 f3

(d) fiber1, λ1 λ2 λ3 f2, λ1 λ2 λ3 f2, λ1 λ2 λ3

fiber1, λ1 λ2 λ3
(e) fiber2, λ1 λ2 λ3

fiber3, λ1 λ2 λ3

fiber1, λ1 f2 f3
(f) fiber1, λ2 f2 f3

fiber1, λ3 f2 f3

(g)

fiber1, λ1
fiber1, λ2
fiber1, λ3
fiber2, λ1
fiber2, λ2
fiber2, λ3
fiber3, λ1
fiber3, λ2
fiber3, λ3

time

Figure 3.2: Optimization and parallelization of the algorithm. As an example, we illustrate
a problem with three wavelengths and three (related) fiber profiles. (a) Unoptimized sequen-
tial execution; (b) Wavelength-optimized sequential execution; (c) Fiber-optimized sequential
execution; (d) Wavelength- and fiber-optimized sequential execution; (e) Optimized parallel
execution (one fiber per process); (f) Optimized parallel execution (one wavelength per pro-
cess); (g) Fully parallelized execution. Cases (a) – (d) are sequential, while (e) – (g) are
parallel. The total width of the boxes represents the execution time. Superposed boxes rep-
resent parallel processes executed simultaneously on different processors. Total area of the
boxes represent used computing power.
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and gν(φ) functions, but to add a π/2 factor of rotation for even modes. The OAM field
definition is then:

E(r, φ, z, t)± jE
(
r, φ± π

2
, z, t

)
(3.14a)

H(r, φ, z, t)± jH
(
r, φ± π

2
, z, t

)
(3.14b)

Using the resulting field, it is easy to verify that the intensity is a perfectly symmetric dough-
nut, and that the phase has an azimuthal dependency. It is also possible, by varying either
the z or the t parameter, to observe the rotation of the polarization and the rotation of the
polarization plane. Furthermore, it becomes possible to simulate the effects of a non-perfect
phase difference or of unbalanced mode components on the resulting fields, similarly to what
was done in [121].

The polarization is the direction of the electric field vectors. While this direction is in 3D
space, we usually can use the projection of the polarization on the transverse plane, as the
longitudinal component is usually negligible. The transverse polarization angle is given by:

arctan

(
eφ(r, φ)

er(r, φ)

)
+ φ (3.15)

It is often useful to get the fields in Cartesian coordinates. The transformation simply is a
rotation of the coordinate system by a factor of φ:[

ex(r, φ)

ey(r, φ)

]
=

[
cos(φ) − sin(φ)

sin(φ) cos(φ)

]
·

[
er(r, φ)

eφ(r, φ)

]
(3.16)
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Part II

The modal map: a design tool
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Chapter 4

Cutoff of ring-core fibers

4.1 Definition of ring-core fiber

Ring-core fiber (RCF), also known as annular core fiber, or M-type fiber, is a kind of step-index
three-layer fiber, where the refractive index of the center is similar to the refractive index of
the cladding (n1 = n3), and where the refractive index of the ring is higher than the refractive
index of the cladding (n2 > n3) (see Figure 4.1).

This kind of fiber is of renewed interest because of applications in SDM [14] and optical sensing
[122]. In particular, it appears well suited for transmitting OAMmodes [1, 40, 95, 121], because
its refractive index profile closely matches that of the annular intensity profile of OAM beams.
RCF is also being investigated for few-mode transmission of LP modes [123–126], as RCF can
be tailored to minimize differential group delay (DGD).

To the best of our knowledge, the analytical description of modal cutoffs in RCF have been
limited to LP modes under the weakly guiding approximation [127–129]. In light of the recent
advances in high-index contrast waveguides and the emerging interest in OAM-guiding fibers,
a full vectorial description of RCF is necessary. Therefore, we derived the solution of the
modal cutoffs for the vector modes of RCFs, without any approximations [6].

Please beware that the notation used here differs form the notation in [6], for consistency
reasons with the next chapter. Particularly, we use r1 and r2 instead of a and b, for the radii,
and the roles of n1 and n2 are inverted.

4.1.1 Normalized notation

In RCF, in contrast to SSIF, we have two fiber geometry parameters, namely r1 and r2. By
defining ρ , r1/r2, we can normalize our parameters in a similar way to that done in SSIF.
In this way, the cutoff condition can be expressed in terms of the normalized frequency V and
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Figure 4.1: Ring-core fiber geometry (top view, and profile).

the ratio ρ using this equivalent notation:

V = k0r2

√
n22 − n21 (4.1a)

ρV = k0r1

√
n22 − n21 (4.1b)

4.2 Derivation of the characteristic equation for vector modes

The modal solutions for RCF are found by solving Maxwell’s equations, as we did in Chapter 1
for standard step-index fiber. Because we deal with step-index fiber, we can express ez(r) and
hz(r) components as function of Bessel functions, as in (1.17) and (1.21):

ez(r) =


C1Iν(wr) r ≤ r1

A1Jν(ur) +A2Nν(ur) r1 < r ≤ r2
C2Kν(wr) r > r2

(4.2a)

hz(r) =


D1Iν(wr) r ≤ r1

B1Jν(ur) +B2Nν(ur) r1 < r ≤ r2
D2Kν(wr) r > r2

(4.2b)

where parameters u and w are defined as:

u2 = n22k
2
0 − β2 (4.3a)

w2 = β2 − n21k20 (4.3b)

and A1, . . . , D2 are constants to be determined.
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Radial and tangential components are found using (1.12):

er(r) =



− 1

w2

[
C1βwI

′
ν(wr)−D1νη0

k0
r
Iν(wr)

]
r ≤ r1

1

u2

[
βu(A1J

′
ν(ur) +A2N

′
ν(ur))− νη0

k0
r

(B1Jν(ur) +B2Nν(ur))

]
r1 < r ≤ r2

− 1

w2

[
C2βwK

′
ν(wr)−D2νη0

k0
r
Kν(wr)

]
r > r2

(4.4)

eφ(r) =



− 1

w2

[
C1
β

r
νIν(wr)−D1wη0k0I

′
ν(wr)

]
r ≤ r1

1

u2

[
β

r
ν(A1Jν(ur) +A2Nν(ur))− uη0k0(B1J

′
ν(ur) +B2N

′
ν(ur))

]
r1 < r ≤ r2

− 1

w2

[
C2
β

r
νKν(wr)−D2wη0k0K

′
ν(wr)

]
r > r2

(4.5)

hr(r) =



− 1

w2

[
D1βwI

′
ν(wr)− C1ν

k0n
2
1

η0r
Iν(wr)

]
r ≤ r1

1

u2

[
βu(B1J

′
ν(ur) +B2N

′
ν(ur))− ν k0n

2
2

η0r
(A1Jν(ur) +A2Nν(ur))

]
r1 < r ≤ r2

− 1

w2

[
D2βwK

′
ν(wr)− C2ν

k0n
2
1

η0r
Kν(wr)

]
r > r2

(4.6)

hφ(r) =



− 1

w2

[
−D1

β

r
νIν(wr) + C1w

k0n
2
1

η0
I ′ν(wr)

]
r ≤ r1

1

u2

[
−β
r
ν(B1Jν(ur) +B2Nν(ur)) + u

k0n
2
2

η0
(A1J

′
ν(ur) +A2N

′
ν(ur))

]
r1 < r ≤ r2

− 1

w2

[
−D2

β

r
νKν(wr) + C2w

k0n
2
1

η0
K ′ν(wr)

]
r > r2

(4.7)

To find the values of the eight constants, we ensure continuity of the ez, hz, eφ, and hφ

components of the fields, at r = r1 and r = r2. First, we isolate constants C1, C2, D1, and
D2 from (4.2). Then, we write the four continuity equations for eφ and hφ. By rearranging
the terms, this leads to:(

1

u2
+

1

w2

)
νβ

r21

[
A1Jν(ur1) +A2Nν(ur1)

]
=

k0

{[
B1
J ′ν(ur1)

ur1
+B2

N ′ν(ur1)

ur1

]
+

I ′ν(wr1)

(wr1)Iν(wr1)

[
B1Jν(ur1) +B2Nν(ur1)

]}
(4.8a)

(
1

u2
+

1

w2

)
νβ

r21

[
B1Jν(ur1) +B2Nν(ur1)

]
=

k0

{
n22

[
A1
J ′ν(ur1)

ur1
+A2

N ′ν(ur1)

ur1

]
+

I ′ν(wr1)

(wr1)Iν(wr1)
n21

[
A1Jν(ur1) +A2Nν(ur1)

]}
(4.8b)
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(
1

u2
+

1

w2

)
νβ

r22

[
A1Jν(ur2) +A2Nν(ur2)

]
=

k0

{[
B1
J ′ν(ur2)

ur2
+B2

N ′ν(ur2)

ur2

]
+

K ′ν(wr2)

(wr2)Kν(wr2)

[
B1Jν(ur2) +B2Nν(ur2)

]}
(4.8c)

(
1

u2
+

1

w2

)
νβ

r22

[
B1Jν(ur2) +B2Nν(ur2)

]
=

k0

{
n22

[
A1
J ′ν(ur2)

ur2
+A2

N ′ν(ur2)

ur2

]
+

K ′ν(wr2)

(wr2)Kν(wr2)
n21

[
A1Jν(ur2) +A2Nν(ur2)

]}
(4.8d)

The modal characteristic equation is obtained by putting those equation in matrix form, and
by ensuring the (4×4) determinant is zero. This operation is straightforward using a computer
and numerical methods. However, the corresponding analytical expression, that we need for
finding the cutoff expression, would be so long and complicated that it would be of little
practical use.

4.3 Cutoffs of RCF

The modal cutoff frequencies are obtained when β → n1k0 and w → 0. However, this cannot
be evaluated directly, because of the discontinuity in the Kν function. Therefore, we need
to use asymptotic expansions (A.26). As we will see, it is very important to use the first
two terms of the series, because the first term will cancel out during the development of the
equations. Otherwise, we would obtain the trivial solution that, at cutoff, E = H = 0.

We need to handle three cases separately: when ν = 0 (TE and TM modes), when ν = 1

(HE1,m modes), and when ν ≥ 2 (HEν,m and EHν,m modes). To simplify the equations, some
observations can be made on the properties of the electromagnetic fields near cutoff. We
know that above cutoff, the electromagnetic wave is guided within the ring layer of the fiber.
Below cutoff, the electromagnetic wave no longer is guided, and the optical fiber can be seen
as an infinite medium for propagation, the ring core being a simple defect running through
this material; the electromagnetic field is like TEM, and ez = hz = 0. Therefore, as a mode
approaches cutoff, its ez and hz components approach zero. We have observed that for HE
modes ez and hz approach zero more quickly at r1 than at r2, while for EH modes the opposite
is true.

Figure 4.2 shows normalized squared ez(r) for a few selected modes, near cutoff. It allows
us to see the different behavior of intensity for EH modes near r1 and HE modes near r2.
For the simulation, we used the following parameters: r1 = 4 µm, r2 = 10 µm, n1 = 1.444,
n2 = 1.474, and we chose the wavelength 4 nm below cutoff. On the figure, we can see that
the longitudinal intensity of HE modes (blue / purple lines) is zero when r = r1 = 4 µm, while
the longitudinal intensity of EH modes (green lines) is zero when r = r2 = 10 µm.
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Figure 4.2: Normalized e2z(r) of some modes, near cutoff. The vertical dashed lines indicate
layer boundaries.

4.3.1 Cutoff of TE and TM modes

TE and TM modes have ν = 0. Therefore the left-hand part in (4.8) is zero. After evaluating
the limits when w → 0 using (A.25) and (A.26), we get:

B1

[
−J1(ur1)

ur1
+
J0(ur1)

2

]
+B2

[
−N1(ur1)

ur1
+
N0(ur1)

2

]
= 0 (4.9a)

A1

[
−n22

J1(ur1)

ur1
+ n21

J0(ur1)

2

]
+A2

[
−n22

N1(ur1)

ur1
+ n21

N0(ur1)

2

]
= 0 (4.9b)

B1J0(ur2) +B2N0(ur2) = 0 (4.9c)

A1J0(ur2) +A2N0(ur2) = 0 (4.9d)

We know that for TE modes, ez = 0. This implies that A1 = A2 = 0, because of (4.2a).
Therefore, only (4.9a) and (4.9c) remain. We set the 2 × 2 determinant to zero, and after
applying Bessel recurrence identities, it gives:

J0(ur2)N2(ur1)−N0(ur2)J2(ur1) = 0 (4.10)

This is the cutoff expression for TE modes in RCF fiber.

The development for TM modes is similar, with hz = 0, B1 = B2 = 0. We set the determinant
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of (4.9b) and (4.9d) to zero, to obtain:[
n21
J0(ur1)

2
− n22

J1(ur1)

ur1

]
N0(ur2)−

[
n21
N0(ur1)

2
− n22

N1(ur1)

ur1

]
J0(ur2) = 0 (4.11)

After multiplying by 2/n22 and applying Bessel recurrence identities, we obtain the cutoff
expression for TM modes:

J0(ur2)N2(ur1)−N0(ur2)J2(ur1) =

(
n21
n22
− 1

)
[J0(ur2)N0(ur1)− J0(ur1)N0(ur2)] (4.12)

As we can see, cutoffs of TE and TM modes are no longer similar to one another in RCF, as
they were with SSIF.

4.3.2 Cutoff of HE1,m modes

For HE1,m modes, we have ν = 1. Furthermore, ez(r1) = hz(r1) = 0 at cutoff, because this is
an HE mode, as we explained before. Therefore, we get, from (4.2):

A2 = −A1
J1(ur1)

N1(ur1)
B2 = −B1

J1(ur1)

N1(ur1)
(4.13)

and from continuity equations, only (4.9c) and (4.9d) remain.

To simplify the notation, we introduce:

Fν(ur2) = Jν(ur2)− γNν(ur2) (4.14)

with:
γ =

Jν(ur1)

Nν(ur1)
(4.15)

Using this notation, (4.9c) and (4.9d) become:(
1

u2
+

1

w2

)
β

r22
A1F1(ur2) = k0

{
B1
F ′1(ur2)
ur2

+
K ′1(wr2)

(wr2)K1(wr2)
B1F1(ur2)

}
(4.16a)(

1

u2
+

1

w2

)
β

r22
B1F1(ur2) = k0

{
n22A1

F ′1(ur2)
ur2

+
K ′1(wr2)

(wr2)K1(wr2)
n21A1F1(ur2)

}
(4.16b)

Using asymptotic expansion from (A.26), and setting the determinant to zero, leads to the
solution:

F1(ur2) = 0 (4.17)

Therefore, the cutoff expression of HE1,m modes in RCF is:

J1(ur2)N1(ur1) = J1(ur1)N1(ur2) (4.18)
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4.3.3 Cutoff of HEν,m modes

The difference between the development for HE1,m and HEν,m modes is the presence of ν in
the left-hand part of the equations, and the asymptotic expansion that is different when ν ≥ 2.
This leads to the following expression for the determinant:(

1

u2r22
+

1

w2r22

)2

β2ν2F2
ν (ur2) =

k20

[
F ′ν(ur2)

ur2
−
(

ν

w2r22
+

1

2(ν − 1)

)
Fν(ur2)

]
[
n22
F ′ν(ur2)

ur2
− n21

(
ν

w2r22
+

1

2(ν − 1)

)
Fν(ur2)

]
(4.19)

The left-hand part of (4.19) can be expanded to the following, using (4.3):(
1

u2r22
+

1

w2r22

)2

β2ν2F2
ν (ur2) =(
β2

u4r42
+

β2 + β2

u2r22w
2r22

+
β2

w4r42

)
ν2F2

ν (ur2) =(
n22k

2
0 − u2

u4r42
+
n22k

2
0 − u2 + w2 + n21k

2
0

u2r22w
2r22

+
w2 + n21k

2
0

w4r42

)
ν2F2

ν (ur2) =(
n22
u4r42

+
n21 + n22
u2r22w

2r22
+

n21
w4r42

)
ν2k20F2

ν (ur2) (4.20)

The right-hand part of (4.19) becomes, after expansion:

n22k
2
0

[
F ′ν(ur2)

ur2

]2
−
(
n21 + n22

)
k20

[
ν

w2r22
+

1

2(ν − 1)

]
F ′ν(ur2)

ur2
Fν(ur2)+

n21k
2
0

[
ν2

w4r42
+

ν

(ν − 1)w2r22
+

1

4(ν − 1)2)

]
F2
ν (ur2) (4.21)

The term n21ν
2k20Fν(ur2)/(w

4r42) is present on both sides of the equation, thus cancels out.
We multiply the equation by w2r22, and we evaluate the limit when w → 0. Remaining terms
are:

n21 + n22
u2r22

ν2F2
ν (ur2) = −(n21 + n22)ν

F ′ν(ur2)

ur2
Fν(ur2) + n21

ν

(ν − 1)
F2
ν (ur2) (4.22)

Derivative of Fν(ur2) can be expanded using (A.14) and (A.15):

F ′ν(ur2) = − ν

ur2
Fν(ur2) + Fν−1(ur2) (4.23)

Recurrence relations (A.8) and (A.9) also apply:

Fν−2(ur2) + Fν(ur2) =
2(ν − 1)

ur2
Fν−1(ur2) (4.24)

52



Applying (4.23) and (4.24) in (4.22), and with some reorganization, we get:

Fν(ur2)

[
Fν−2(ur2) +

n22 − n21
n22 + n21

Fν(ur2)

]
= 0 (4.25)

Fν(ur2) cannot be zero, because ez(r2) 6= 0 and hz(r2) 6= 0. Therefore, the cutoff expression
for HEν,m modes, when ν ≥ 2, is given by:

Fν−2(ur2) = −n
2
2 − n21
n22 + n21

Fν(ur2) (4.26)

that expands to:

Jν−2(ur2)Nν(ur1)−Nν−2(ur2)Jν(ur1) = −n
2
2 − n21
n22 + n21

[Jν(ur2)Nν(ur1)−Nν(ur2)Jν(ur1)]

(4.27)

4.3.4 Cutoff of EHν,m modes

Development of cutoff expressions for EHν,m modes is similar to the development for HEν,m
modes, but with ez(r2) = hz(r2) = 0. Therefore, (4.9c) and (4.9d) are zero, and we take the
determinant of (4.9a) and (4.9b). After applying the asymptotic expansion (A.25), this leads
to:(

1

u2r21
+

1

w2r21

)2

β2ν2F2
ν (ur1) =

k20

[
F ′ν(ur1)

ur1
+

(
ν

w2r21
+

1

2(ν − 1)

)
Fν(ur1)

]
[
n22
F ′ν(ur1)

ur1
+ n21

(
ν

w2r21
+

1

2(ν − 1)

)
Fν(ur1)

]
(4.28)

where Fν(ur1) is defined as previously, with

γ =
Jν(ur2)

Nν(ur2)
(4.29)

In (4.28) the bracketed terms are a sum, while in (4.19) they are a difference. This leads to
expanding the derivative of Fν(ur1) with the opposite sign in (A.14) and (A.15). Finally, we
get the cutoff expression for EHν,m modes:

Fν+2(ur1) = −n
2
2 − n21
n22 + n21

Fν(ur1) (4.30)

that expands to:

Jν+2(ur1)Nν(ur2)−Nν+2(ur1)Jν(ur2) = −n
2
2 − n21
n22 + n21

[Jν(ur1)Nν(ur2)−Nν(ur1)Jν(ur2)]

(4.31)

Table 4.1 summarize cutoff equations for all modes in ring-core fibers, expressed as functions
of normalized parameters ρ and V .
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Table 4.1: Cutoff conditions for ring-core fibers

Mode cutoff

TE0,m J0(V )N2(ρV )−N0(V )J2(ρV ) = 0 (4.10)

TM0,m

J0(V )N2(ρV )−N0(V )J2(ρV ) =(
n21
n22
− 1

)
[J0(V )N0(ρV )− J0(ρV )N0(V )]

(4.12)

HE1,m J1(V )N1(ρV ) = J1(ρV )N1(V ) (4.18)

HEν,m

Jν−2(V )Nν(ρV )− Jν(ρV )Nν−2(V ) =

− n22 − n21
n22 + n21

[Jν(V )Nν(ρV )− Jν(ρV )Nν(V )]
(4.27)

EHν,m

Jν+2(ρV )Nν(V )− Jν(V )Nν+2(ρV ) =

− n22 − n21
n22 + n21

[Jν(ρV )Nν(V )− Jν(V )Nν(ρV )]
(4.31)

LP`,m J`−1(V )N`+1(ρV )−N`−1(V )J`+1(ρV ) = 0 (4.33)

4.4 Numerical validation

To validate the cutoff expressions, we plot normalized propagation constant b (defined below)
versus the normalized frequency V , for a few fiber parameters. Near cutoff, numerical calcula-
tion of the propagation constant requires very high precision, and becomes unstable; however,
the prolongation of the curve of b versus V should reach zero at the cutoff frequency.

The V number for RCF is defined in Section 4.1.1. Normalized propagation constant is given
by:

b =
n2eff − n21
n22 − n21

(4.32)

It is zero at cutoff, and approaches one when neff → n2.

We simulated three different fiber profiles. The first simulation is with a fiber with a large core,
but with a weak index contrast. In that case, the weakly guiding approximation applies, and
modes are very close together within mode groups. The second simulation is with a stronger
contrast; something similar to what we could get with a high-contrast silica fiber. The third
simulation is with a silica tube, where the center and the cladding is air. In that case, the
index contrast is very strong, and we clearly see the separation between the modes.
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Simulation of the propagation constant was performed using the transfer matrix method
[17, 118], one wavelength at a time. Using characteristic equation 4.8, we solved for β values
that lead to a zero determinant. We assumed that the refractive indexes did not vary with
wavelength, as it simplifies the simulation, while still allowing to verify our cutoff expressions.
We computed the cutoff frequencies using the expressions found in the previous section (Ta-
ble 4.1). Cutoffs are given by the zeros of those equations, and are plotted as vertical dashed
lines on the graphs. Hence the asymptotic value of b→ 0 should correspond to our analytical
prediction for validation.

4.4.1 Weakly guiding RCF

For the simulation we used the following parameters: r1 = 2 µm, r2 = 8 µm, n1 = 1.444,
n2 = 1.449. Therefore, ρ = 0.25, the wavelength for V = 1 is 6045.46 nm, and the wavelength
for V = 6 is 1007.58 nm. The index contrast is similar to what is found in SMF28TM, a typical
weakly guiding fiber.

In Fig. 4.3 we plot in vertical lines the solutions for the V at cutoff for each of the modes,
found via (4.10), (4.12), (4.18), (4.27), and (4.31). Curves give numerical solutions of b as
a function of V . The first mode group, modes TE0,1, HE2,1, and TM0,1, have propagation
constants so close that their curves are indistinguishable. The same is true for the second mode
group (EH1,1 and HE3,1), etc. This is not unexpected; for under the weakly guiding condition
we expect the vector modes to group to form the LP modes. We see that the curves (found
numerically) approach the vertical lines at b = 0, validating our equations for cutoff. We zoom
in on two of these areas near b = 0. In Fig. 4.3(b) we can see three separate vertical lines,
solutions for cutoff for each of the vector modes in the first mode group. While the numerical
solutions of b versus V become unstable as b → 0, the cutoff equations can predict even the
small differences between the cutoff frequencies within the first mode group. Fig. 4.3(c) shows
similar behavior for cutoff of the second mode group.

4.4.2 High contrast RCF

For the simulation we used the following parameters: r1 = 1 µm, r2 = 4 µm, n1 = 1.444,
n2 = 1.474. Therefore, ρ = 0.25, the wavelength for V = 1 is 7436.06 nm, and the wavelength
for V = 6 is 1239.34 nm. Chosen indexes for this example are similar to those found in a
typical high contrast silica fiber.

As we can see in Fig. 4.4, the curves for the propagation constant are similar to those of RCF
with weak contrast, but the separation within modes of the same group is larger, as is the
separation between cutoff frequencies. This is the expected behavior for fibers with higher
contrast, as this refractive index contrast violates the weakly guiding condition. Again, the
propagation curves approach the calculated cutoff values at b = 0, confirming the correctness
of our cutoff expressions.
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Figure 4.3: Cutoffs of a ring-core fiber with weak index contrast. Simulation parameters are:
r1 = 2 µm, r2 = 8 µm, n1 = 1.444, n2 = 1.449. Subfigures (b) and (c) are zoom on the
cutoff region of first and second mode groups, respectively, and shown as blue rectangles on
subfigure (a).

56



1 2 3 4 5 6

Normalized frequency (V )

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

pr
op

ag
at
io
n
co
ns
ta
nt

(b
)

HE(3,1)

HE(2,2)

EH(1,1)

EH(2,1)

TM(0,2)

HE(1,2)

HE(4,1)

TE(0,1)

HE(1,1)

TM(0,1)
HE(2,1)

TE(0,2)

(a) Cutoffs of the twelve first modes

2.40 2.42 2.44 2.46 2.48 2.50

V

0.00

0.01

0.02

0.03

0.04

0.05

b

TM(0,1)
HE(2,1)
TE(0,1)

(b) Zoom on first mode group

3.80 3.85 3.90 3.95 4.00

V

0.00

0.01

0.02

0.03

0.04

0.05

b

EH(1,1)
HE(3,1)

(c) Zoom on second mode group

Figure 4.4: Cutoffs of a ring-core fiber with a relatively high index contrast. Simulation
parameters are: r1 = 1 µm, r2 = 4 µm, n1 = 1.444, n2 = 1.474. Subfigures (b) and (c) are
zoom on the cutoff region of first and second mode groups, respectively, and shown as blue
rectangles on subfigure (a).

57



1 2 3 4 5 6

Normalized frequency (V )

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

pr
op

ag
at
io
n
co
ns
ta
nt

(b
)

HE(3,1)

HE(2,2)

EH(1,1)

EH(2,1)
HE(1,2)
HE(4,1)

TE(0,1)

HE(1,1)

TM(0,1)

HE(2,1)

TE(0,2)

Figure 4.5: Cutoffs of a silica tube surrounded by air. Simulation parameters are: r1 =
0.25 µm, r2 = 1 µm, n1 = 1, n2 = 1.444.

4.4.3 Silica tube

For the simulation we used the following parameters: r1 = 0.25 µm, r2 = 1 µm, n1 = 1,
n2 = 1.444. Therefore, ρ = 0.25, the wavelength for V = 1 is 6369.85 nm, and the wavelength
for V = 6 is 1061.64 nm. This fiber could not be fabricated, because it would be too small and
too fragile; it is there for comparison with the two previous examples, to illustrate what would
happen with a very high index contrast. We kept the tube very small to keep wavelengths
and V numbers similar to those in previous examples.

In this case, as we can see in Fig. 4.5, effective indexes clearly diverge from those of LP modes,
but cutoff frequencies, calculated with our expressions, still are in agreement with simulated
propagation constants.

In all three cases, cutoffs found match very well with numerically calculated cutoff frequencies.
This gives us a high degree of confidence in the equations we found.

4.5 Asymptotic limits

Another way to validate expressions is to verify they converge to known solutions when we
tend parameters to their limits. When n2 → n1, we are in the weakly guiding regime. When
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r1 → 0, RCF becomes SSIF. When r1 → ∞ and r2 → ∞, the RCF becomes a planar
waveguide, curved onto itself.

4.5.1 Weakly guiding regime

Under the weakly guiding approximation, (n22 − n21)→ 0. We want to verify that expressions
for all kind of modes reduce to the same form under the weakly guiding approximation.
Furthermore, we want to verify that the expression obtained is the same as that given in
[127, 128].

For TE modes, (4.10) remains the same, because it does not depend on the indexes of the
fiber. For TM modes, the right-hand side of (4.12) becomes zero, and it becomes similar to
(4.10). With ` = 1, we can write:

J`−1(ur2)N`+1(ur1)−N`−1(ur2)J`+1(ur1) = 0 (4.33)

Expression (4.18) for HE1,m modes is similar to (4.33), with ` = 0, because of (A.6). With
` = ν − 1, expression (4.27) for HEν,m modes becomes like (4.33). Finally, with ` = ν + 1,
expression (4.31) for EHν,m modes also becomes like (4.33).

Cutoff condition for scalar modes is given by (8) in [127], and in a very similar form in equation
(13) of [128]. Using our notation, this equation is equivalent to:[

1− `

ur1

J`(ur1)

J ′`(ur1)

] [
`

ur2

N`(ur2)

N ′`(ur1)
+
N ′`(ur2)

N ′`(ur1)

]
=[

1− `

ur1

N`(ur1)

N ′`(ur1)

] [
`

ur2

J`(ur2)

J ′`(ur1)
+
J ′`(ur2)

J ′`(ur1)

]
(4.34)

While this seems rather complex, we will show it is equivalent to (4.33).

We first multiply both sides by J ′`(ur1)N
′
`(ur1):[

J ′`(ur1)−
`

ur1
J`(ur1)

] [
`

ur2
N`(ur2) +N ′`(ur2)

]
=[

N ′`(ur1)−
`

ur1
N`(ur1)

] [
`

ur2
J`(ur2) + J ′`(ur2)

]
(4.35)

Then we use (A.14) and (A.15) to transform all the derivatives:[
`

ur1
J`(ur1)− J`+1(ur1)−

`

ur1
J`(ur1)

]
[
`

ur2
N`(ur2) +N`−1(ur2)−

`

ur2
N`(ur2)

]
=[

`

ur1
N`(ur1)−N`+1(ur1)−

`

ur1
N`(ua)

]
[
`

ur2
J`(ur2) + J`−1(ur2)−

`

ur2
J`(ur2)

]
(4.36)
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This simplifies to (4.33).

4.5.2 Approaching SSIF

When r1 approaches zero, the center of the RCF collapses, and it becomes a SSIF. We already
gave cutoff expression for SSIF in Section 1.6, Table 1.1. We will now show that the same
expressions are obtained from cutoff equations of RCF, when r1 → 0. To evaluate the limits,
(A.18), (A.20), and (A.21) are used.

For TE0,m modes:

J0(ur2)

[
− 4

π(ur1)2

]
= N0(ur2)

[
(ur1)

2

8

]
(4.37)

We multiply both sides by (ur1)
2; J0(ur2) = 0 remains, as in (1.44).

For TM0,m mode:

J0(ur2)

[
− 4

π(ur1)2

]
−N0(ur2)

[
(ur1)

2

8

]
=(
n21
n22
− 1

)[
J0(ur2)

2

π
ln(ur1)− 1 ·N0(ur2)

]
(4.38)

Again, we multiply both sides by (ur1)
2; J0(ur2) = 0 remains, as in (1.44).

For HE1,m modes:

J1(ur2)

[
− 2

π(ur1)

]
= N1(ur2)

(ur1)

2
(4.39)

We multiply both sides by (ur1), to get J1(ur2) = 0, as in (1.45).

For HEν,m modes:

Jν−2(ur2)

[
−(ν − 1)!

π

(
2

ur1

)ν]
−Nν−2(ur2)

[
1

ν!

(ur1
2

)ν]
=

− n22 − n21
n22 + n21

{
Jν(ur2)

[
−(ν − 1)!

π

(
2

ur1

)ν]
−Nν(ur2)

[
1

ν!

(ur1
2

)ν]}
(4.40)

We multiply both sides by (ur1)
ν :

Jν−2(ur2) = −n
2
2 − n21
n22 + n21

Jν(ur2) (4.41)

We apply Bessel recurrence relation (A.8) to the left-hand side:

2(ν − 1)

ur2
Jν−1(ur2)− Jν(ur2) = −n

2
2 − n21
n22 + n21

Jν(ur2) (4.42)

which is equivalent to (1.46).
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Finally, for EHν,m modes:

[
1

(ν + 2)!

(ur1
2

)ν+2
]
Nν(ur2)−

[
−(ν + 1)!

π

(
2

ur1

)ν+2
]
Jν(ur2) =

− n22 − n21
n22 + n21

{[
1

ν!

(ur1
2

)ν]
Nν(ur2)−

[
−(ν − 1)!

π

(
2

ur1

)ν]
Jν(ur2)

}
(4.43)

We multiply both sides by (ur1)
ν+2; Jν(ur2) = 0 remains, as in (1.47).

4.5.3 Approaching planar waveguide

When both r1 and r2 approach infinity, the curvature radius of the ring-core also approaches
infinity, and therefore the ring-core fiber is just like a planar waveguide. In fact, we can see a
ring-core fiber with a very thin ring, and a large radius, as a planar waveguide curved on itself.
We will show that cutoff expressions of RCF lead to cutoff expression for a planar waveguide,
when r1 →∞ and r2 →∞.

In a planar waveguide, only TE0,m and TM0,m modes exist. Cutoff expression is given by [16,
Table 12-2]:

ud = mπ (4.44)

where d = r2−r1. In [16], the expression given is U = jπ/2, because in their notation, j = m,
and U = (d/2)u. We will now replace Bessel functions in cutoff equations by their asymptotic
expansions when the argument approaches infinity, as given by (A.27) and (A.28).

For TE0,m modes:√
2

πur2
cos
{
ur2 −

π

4

}√ 2

πur1
sin

{
ur1 −

5π

4

}
−√

2

πur2
sin
{
ur2 −

π

4

}√ 2

πur1
cos

{
ur1 −

5π

4

}
= 0 (4.45a)

We apply trigonometric addition formula (A.36):

sin

{
ur2 −

π

4
− ur1 +

5π

4

}
= 0 (4.45b)

sin(ud+ π) = 0 (4.45c)

Therefore, ud is a multiple of π, and it leads to (4.44).
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For TM0,m modes:√
2

πur2
cos
{
ur2 −

π

4

}√ 2

πur1
sin

{
ur1 −

5π

4

}
−√

2

πur2
sin
{
ur2 −

π

4

}√ 2

πur1
cos

{
ur1 −

5π

4

}
=(

n21
n22
− 1

)[√
2

πur2
cos
{
ur2 −

π

4

}√ 2

πur1
sin
{
ur1 −

π

4

}
−√

2

πur1
cos
{
ur1 −

π

4

}√ 2

πur2
sin
{
ur2 −

π

4

}]
(4.46a)

sin(ud+ π) =

(
n21
n22
− 1

)
sin(ud) (4.46b)

n21
n22

sin(ud) = 0 (4.46c)

Again, solution exists if ud is a multiple of π, and it leads to (4.44).

For HEν,m and EHν,m modes, development is similar, and still gives the same cutoff expression.
Therefore, it is verified that when radius is large and the ring is thin, cutoff of all modes are
similar to cutoff of a planar waveguide.

4.6 Approximation for cutoff of HE1,m modes

In [130], equations (9.5.27)–(9.5.29) give an asymptotic expansion of the sth zero of the cross-
product function

Jν(z)Nν(λz)− Jν(λz)Nν(z) (4.47)

Using z = ρV0, λ = 1/ρ, ν = 1, and s = m− 1, we can directly use this development to solve
for the cutoff conditions of the HE1,m modes. The first term of the expansion becomes:

V =
z

ρ
≈ γ

ρ
=

sπ

ρ(λ− 1)
=

(m− 1)π

1− ρ
(4.48)

In a similar way, we can develop the other terms of the expansion as

ε =
p

ργ
+
q − p2

ργ3
+
r − 4pq + 2p2

ργ5
+ · · · (4.49)

where

γ =
(m− 1)πρ

1− ρ
p =

3

8
ρ

q = − 21

128

(1− ρ3)
(1− ρ)

ρ r =
1899

5120

(1− ρ5)
(1− ρ)

ρ
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Figure 4.6: Approximated and exact cutoffs for HE1,m modes

Therefore, cutoff of HE1,2 mode is approximated by

V =
π

1− ρ
(4.50)

and cutoff of other HE1,m modes are given by (4.48). This asymptotic expansion becomes
unstable when ρ→ 0. However, this is not a problem, as when ρ is small, the fiber becomes like
a SSIF, and cutoffs are given by the roots of J1(V ) function. Figure 4.6 shows approximated
and exact cutoffs for HE1,m modes, as function of the ρ parameter.

This approximation is useful to quickly determine how many radial orders (i.e., what is the
maximum value for the m parameter) are supported for a given fiber design.
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Chapter 5

Cutoff of three-layer fibers

5.1 The family of three-layer fibers

Three layer step-index fiber (3LSIF) is a simple extension of the extensively deployed single-
core step-index fiber. This family of fibers includes double-clad fiber, W-type fiber [131],
ring- or annular-core fiber [132], pedestal fiber, etc. These structures can be exploited for
chromatic dispersion compensation [132], higher-order mode filtering, fiber amplifiers and
lasers [133, 134], optical sensing, or orbital angular momentum (OAM) transmission [2, 50, 95].

We showed the development for the modal equations for step-index fibers with a single core
and cladding – called standard step-index fiber (SSIF) throughout this thesis – in Chapter 1.
Although adding another layer to the fiber only adds a combination of two Bessel functions
to the expressions of the longitudinal electrical and magnetic fields, no exact equations have
appeared for those fibers. The literature only provides approximations, typically for a specific
kind of fiber profile. For instance, [131] gives approximate formulas for W-type fibers, but
states that no analytical solution seems possible for the 4× 4 determinant.

A more rigorous analysis of three-layer fibers is performed in [135]. While it gives solutions
for the vector modes of those fibers, it does not address the calculation of cutoff frequencies.
Knowledge of exact cutoffs of vector modes is important for numerically solving and identifying
modes, and as a tool for designing fibers tailored for guiding a specific number of modes.

In the previous chapter, we developed the cutoff equations for ring-core fibers. However, RCF
is just one of the five possible three-layer fiber layouts. The difference resides in the relatives
values of n1, n2, and n3. Figure 5.1 illustrates those five fiber profiles. The notation we use is
the same than for RCF, in Fig. 4.1.
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Figure 5.1: The five possible three-layer fiber profiles. (a) fiber with trench (W-fiber), (b)
fiber with n1 > n2 > n3, (c) – (e) ring-core fibers. The red arrow shows the possible range of
neff that allows guided modes.

5.1.1 Normalized notation

We already defined the normalized frequency V for SSIF (1.22). In the case of multilayer fibers,
we can use a similar normalized notation, if we replace nco by nmax, the highest refractive
index of the fiber layers, and r1 by rN−1, the radius of the last fiber layer, N being the total
number of layers. As we can see, this is a generalized version of what we proposed for RCF
(4.1). Defining a normalized frequency V allows all types of three-layer fiber to be easily
compared with standard fiber.

In some cases, as we will see later, it is useful to define the V frequency with other choices of
index and radius. This is acceptable, as it only changes the normalization constant, as long
as the same definition of V is used when comparing two different fibers.

5.2 Derivation of the characteristic equation for vector modes

For RCF, in the previous chapter, it was well defined whether ez(r) and hz(r) were functions
of ordinary Bessel functions Jν(x) and Nν(x), or functions of modified Bessel functions Iν(x)

and Kν(x), depending on the layer to which r belonged. For the solution for 3LSIF, we now
need a more generic way to express the fields, since there are five different configuration of
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layers. We write ez(r) and hz(r) as:

ez(r) =


A1Jν(û1r) r ≤ r1

A2Jν(û2r) +B2Nν(û2r) r1 < r ≤ r2
B3Kν(wr) r > r2

(5.1a)

hz(r) =


C1Jν(û1r) r ≤ r1

C2Jν(û2r) +D2Nν(û2r) r1 < r ≤ r2
D3Kν(wr) r > r2

(5.1b)

where:

û21 = n21k
2
0 − β2 (5.2a)

û22 = n22k
2
0 − β2 (5.2b)

w2 = β2 − n23k20 (5.2c)

The hat over û1 and û2 is a reminder that this value can be either real or imaginary, depending
on whether n1 or n2 is greater or less than neff. We also define:

u21 = |n21k20 − β2| u22 = |n22k20 − β2| (5.3)

without hat, as real values. Because of the relations between Bessel functions of complex
arguments (A.31) and (A.32), we can show that

AJν(ju1) = A′Iν(u1) (5.4a)

BJν(ju2) + CNν(ju2) = B′Iν(u2) + C ′Kν(u2) (5.4b)

where A,B,C are appropriate real constants, and A′, B′, C ′ are appropriate (possibly complex)
constants. Therefore, Jν(ûr) is equivalent to either Jν(ur) or Iν(ur), whether û is real or
imaginary.

The radial dependency of azimuthal components, for each layer, is obtained from (1.12):

eφ(r) =



1
û21

[
β
r (−νA1Jν(û1r))− η0k0 (û1C1J

′
ν(û1r))

]
r ≤ r1

1
û22

[
β
r

(
−ν
[
A2Jν(û2r) +B2Nν(û2r)

])
−

η0k0
(
û2
[
C2J

′
ν(û2r) +D2N

′
ν(û2r)

]) ]
r1 ≤ r ≤ r2

−1
w2

[
β
r (−νB3Kν(wr))− η0k0 (wD3K

′
ν(wr))

]
r ≥ r2

(5.5)

hφ(r) =



1
û21

[
β
r (νC1Jν(û1r)) + 1

η0
k0n

2
1 (û1A1J

′
ν(û1r))

]
r ≤ r1

1
û22

[
β
r

(
ν
[
C2Jν(û2r) +D2Nν(û2r)

])
+

1
η0
k0n

2
2

(
û2
[
A2J

′
ν(û2r) +B2N

′
ν(û2r)

]) ]
r1 ≤ r ≤ r2

−1
w2

[
β
r (νD3Kν(wr)) + 1

η0
k0n

2
3 (wB3K

′
ν(wr))

]
r ≥ r2

(5.6)
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Ensuring continuity of the longitudinal fields at layer interfaces r = r1 and r = r2, we get the
following four equations.

A1Jν(û1r1) =
[
A2Jν(û2r1) +B2Nν(û2r1)

]
(5.7a)

C1Jν(û1r1) =
[
C2Jν(û2r1) +D2Nν(û2r1)

]
(5.7b)

B3Kν(wr2) =
[
A2Jν(û2r2) +B2Nν(û2r2)

]
(5.7c)

D3Kν(wr2) =
[
C2Jν(û2r2) +D2Nν(û2r2)

]
(5.7d)

Similarly, the continuity of the azimuthal fields at layer interfaces r = r1 and r = r2 gives:

1

û21

[
β

r1
(−νA1Jν(û1r1))− η0k0

(
û1C1J

′
ν(û1r1)

)]
=

1

û22

[
β

r1

(
−ν
[
A2Jν(û2r1) +B2Nν(û2r1)

])
− η0k0

(
û2
[
C2J

′
ν(û2r1) +D2N

′
ν(û2r1)

])]
(5.8a)

1

û21

[
β

r1
(νC1Jν(û1r1)) +

1

η0
k0n

2
1

(
û1A1J

′
ν(û1r1)

)]
=

1

û22

[
β

r1

(
ν
[
C2Jν(û2r1) +D2Nν(û2r1)

])
+

1

η0
k0n

2
2

(
û2
[
A2J

′
ν(û2r1) +B2N

′
ν(û2r1)

])]
(5.8b)

− 1

w2

[
β

r2
(−νB3Kν(wr2))− η0k0

(
wD3K

′
ν(wr2)

)]
=

1

û22

[
β

r2

(
−ν
[
A2Jν(û2r2) +B2Nν(û2r2)

])
− η0k0

(
û2
[
C2J

′
ν(û2r2) +D2N

′
ν(û2r2)

])]
(5.8c)

− 1

w2

[
β

r2
(νD3Kν(wr2)) +

1

η0
k0n

2
3

(
wB3K

′
ν(wr2)

)]
=

1

û22

[
β

r2

(
ν
[
C2Jν(û2r2) +D2Nν(û2r2)

])
+

1

η0
k0n

2
2

(
û2
[
A2J

′
ν(û2r2) +B2N

′
ν(û2r2)

])]
(5.8d)

Using (5.7), we can eliminate constants A1, C1, B3, and D3. For simplicity, we also assume
the constant η0 is absorbed by C2, and D2. After some reorganization of the terms, we obtain
the four modal equations for 3LSIF:(

1

û21
− 1

û22

)
νβ

r21

[
A2Jν(û2r1) +B2Nν(û2r1)

]
=

k0

{[
C2
J ′ν(û2r1)

û2r1
+D2

N ′ν(û2r1)

û2r1

]
−

J ′ν(û1r1)

(û1r1)Jν(û1r1)

[
C2Jν(û2r1) +D2Nν(û2r1)

]}
(5.9a)
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(
1

û21
− 1

û22

)
νβ

r21

[
C2Jν(û2r1) +D2Nν(û2r1)

]
=

k0

{
n22

[
A2
J ′ν(û2r1)

û2r1
+B2

N ′ν(û2r1)

û2r1

]
−

J ′ν(û1r1)

(û1r1)Jν(û1r1)
n21

[
A2Jν(û2r1) +B2Nν(û2r1)

]}
(5.9b)

(
1

û22
+

1

w2

)
νβ

r22

[
A2Jν(û2r2) +B2Nν(û2r2)

]
=

− k0
{[

C2
J ′ν(û2r2)

û2r2
+D2

N ′ν(û2r2)

û2r2

]
+

K ′ν(wr2)

(wr2)Kν(wr2)

[
C2Jν(û2r2) +D2Nν(û2r2)

]}
(5.9c)

(
1

û22
+

1

w2

)
νβ

r22

[
C2Jν(û2r2) +D2Nν(û2r2)

]
=

− k0
{
n22

[
A2
J ′ν(û2r2)

û2r2
+B2

N ′ν(û2r2)

û2r2

]
+

K ′ν(wr2)

(wr2)Kν(wr2)
n23

[
A2Jν(û2r2) +B2Nν(û2r2)

]}
(5.9d)

5.3 Cutoffs of 3LSIF

Below the cutoff the propagating wave is a transverse electro-magnetic (TEM) mode, thus at
cutoff the longitudinal component of the electric and magnetic field approaches zero. This
means that the radial component of the electrical field is proportional to the radial component
of the magnetic field. Therefore at cutoff we can further simplify the system of equations using

Bi
Ai

=
Di

Ci
= −γ (5.10)

and putting it in the Fν(ûr) function, that is now defined as:

Fν(ûr) =

Jν(ur)− γNν(ur) (û real)

Iν(ur)− γKν(ur) (û imaginary)
(5.11)

Using Fν(ûr), we can then rewrite (5.9) as:

A2

(
1

û21
− 1

û22

)
νβ

r21

[
Fν(û2r1)

]
− C2k0

{[
F ′ν(û2r1)

û2r1

]
− J ′ν(û1r1)

(û1r1)Jν(û1r1)

[
Fν(û2r1)

]}
= 0 (5.12a)
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−A2k0

{
n22

[
F ′ν(û2r1)

û2r1

]
− J ′ν(û1r1)

(û1r1)Jν(û1r1)
n21

[
Fν(û2r1)

]}
+ C2

(
1

û21
− 1

û22

)
νβ

r21

[
Fν(û2r1)

]
= 0 (5.12b)

A2

(
1

û22
+

1

u23

)
νβ

r22

[
Fν(û2r2)

]
+ C2k0

{[
F ′ν(û2r2)

û2r2

]
+

K ′ν(u3r2)

(u3r2)Kν(u3r2)

[
Fν(û2r2)

]}
= 0 (5.12c)

A2k0

{
n22

[
F ′ν(û2r2)

û2r2

]
+

K ′ν(u3r2)

(u3r2)Kν(u3r2)
n23

[
Fν(û2r2)

]}
+ C2

(
1

û22
+

1

u23

)
νβ

r22

[
Fν(û2r2)

]
= 0 (5.12d)

We can see that (5.12a) and (5.12b) are related to r = r1, while (5.12c) and (5.12d) are related
to r = r2. We need to solve for A2 and C2. Modal solutions exist when the determinant is
zero for both set of equations. This leads to the following two equations:[

1

(û1r1)2
− 1

(û2r1)2

]2
ν2β2F2

ν (û2r1) =

k20

[
F ′ν(û2r1)

(û2r1)
− J ′ν(û1r1)

(û1r1)Jν(û1r1)
Fν(û2r1)

]
[
n22
F ′ν(û2r1)

(û2r1)
− n21

J ′ν(û1r1)

(û1r1)Jν(û1r1)
Fν(û2r1)

]
(5.13a)

[
1

(û2r2)2
+

1

(wr2)2

]2
ν2β2F2

ν (û2r2) =

k20

[
F ′ν(û2r2)

(û2r2)
+

K ′ν(wr2)

(wr2)Kν(wr2)
Fν(û2r2)

]
[
n22
F ′ν(û2r2)

(û2r2)
+ n23

K ′ν(wr2)

(wr2)Kν(wr2)
Fν(û2r2)

]
(5.13b)

Inside those two equations, two unknowns remain: the β propagation constant, and the γ
constant hidden inside the Fν(ûr) function. Recall that (5.13) only is valid at cutoff, because
of the definition of γ.

Substituting the asymptotic expansion (A.26) into (5.13b), it becomes similar to (4.19), and
we perform the same simplifications that we did for RCF equations. After evaluation of the
limit, the remaining terms are:

n22 + n23
(û2r2)2

ν2k20F2
ν (û2r2) = −k20(n22 + n23)ν

F ′ν(û2r2)

(û2r2)
Fν(û2r2) + k20n

2
3

ν

(ν − 1)
F2
ν (û2r2) (5.14)
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After some reorganization, (5.14) becomes

Fν(û2r2)

[
(n22 + n23)

2(ν − 1)

(û2r2)

(
F ′ν(û2r2) +

ν

(û2r2)
Fν(û2r2)

)
− 2n23Fν(û2r2)

]
= 0 (5.15)

It is possible to demonstrate, using Bessel recurrence relations, that:

2(ν − 1)

(û2r2)

(
F ′ν(û2r2) +

ν

(û2r2)
Fν(û2r2)

)
= Fν−2(û2r2) + sgn(û22)Fν(û2r2) (5.16)

where sgn is the sign function. Therefore, (5.15) simplifies to:

Fν(û2r2)

[
sgn(û22)

n22 − n23
n22 + n23

Fν(û2r2) + Fν−2(û2r2)
]

= 0 (5.17)

One possible solution for (5.17) is Fν(û2r2) = 0. It implies that ez(r2) = 0, and it is related
to solutions for TE0,m, TM0,m, EHν,m, and HE1,m modes, as well for LP`,m modes. The other
possible solution for (5.17) is when the expression inside the brackets is zero, and it is related
to solutions for HEν,m modes, when ν ≥ 2.

Using (5.13a) and (5.17), we will now deduce cutoff expressions for each kind of mode, in each
possible three-layer fiber layout.

5.3.1 Cutoff of TE0,m and TM0,m modes

Having Fν(û2r2) = 0 implies that

γ =


Jν(u2r2)

Nν(u2r2)
(û2 real)

Iν(u2r2)

Kν(u2r2)
(û2 imaginary)

(5.18)

With ν = 0, (5.13a) becomes:[
F ′0(û2r1)

(û2r1)
+

sgn(û1)J1(û1r1)

(û1r1)J0(û1r1)
F0(û2r1)

]
[
n22
F ′0(û2r1)

(û2r1)
+ n21

sgn(û1)J1(û1r1)

(û1r1)J0(û1r1)
F0(û2r1)

]
= 0 (5.19)

The expression in the first pair of brackets is zero for TE modes, and the expression in the
second pair of brackets is zero for TM modes. We can now expand (5.19) for each fiber layout
(according to Fig. 5.1).

Fiber profile (a)

With this layout, û1 is real, and û2 is imaginary. Therefore, Jν(û1r1) = Jν(u1r1),

F0(û2r1) = I0(u2r1)−
I0(u2r2)

K0(u2r2)
K0(u2r1) (5.20a)
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and

F ′ν(û2r1)

û2r1
= −I1(u2r1)

u2r1
− I0(u2r2)

K0(u2r2)

K1(u2r1)

u2r1
(5.20b)

Using Bessel recurrence relations, we have:

I1(u2r1)

u2r1
=

1

2
[I0(u2r1)− I2(u2r1)] (5.21a)

K1(u2r1)

u2r1
=

1

2
[K2(u2r1)−K0(u2r1)] (5.21b)

J1(u1r1)

u1r1J0(u1r1)
=

1

2

[
J2(u1r1)

J0(u1r1)
+ 1

]
(5.21c)

The expression for TE0,m modes becomes:

−I1(u2r1)
u2r1

− I0(u2r2)

K0(u2r2)

K1(u2r1)

u2r1
+

J1(û1r1)

(û1r1)J0(û1r1)

[
I0(u2r1)−

I0(u2r2)

K0(u2r2)
K0(u2r1)

]
= 0

− [I0(u2r1)− I2(u2r1)]−
I0(u2r2)

K0(u2r2)
[K2(u2r1)−K0(u2r1)] +[
J2(u1r1)

J0(u1r1)
+ 1

] [
I0(u2r1)−

I0(u2r2)

K0(u2r2)
K0(u2r1)

]
= 0

J0(u1r1) [K2(u2r1)I0(u2r2)− I2(u2r1)K0(u2r2)]−

J2(u1r1) [I0(u2r1)K0(u2r2)−K0(u2r1)I0(u2r2)] = 0 (5.22)

Similarly, for TM0,m modes:

− n22
u2r1

[
I1(u2r1) +

I0(u2r2)

K0(u2r2)
K1(u2r1)

]
+n21

J1(u1r1)

u1r1J0(u1r1)

[
I0(u2r1)−

I0(u2r2)

K0(u2r2)
K0(u2r1)

]
= 0

J0(u1r1)

u2r1
n22 [I1(u2r1)K0(u2r2) +K1(u2r1)I0(u2r2)]−

J1(u1r1)

u1r1
n21 [I0(u2r1)K0(u2r2)−K0(u1r2)I0(u2r2)] = 0 (5.23)

Fiber profiles (b) and (d)

Fiber profile (b) and (d) are similar at cutoff, because in both cases, û1 and û2 are real.
Therefore:

F0(û2r1) = J0(u2r1)−
J0(u2r2)

N0(u2r2)
N0(u2r1) (5.24a)
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and

F ′ν(û2r1)

û2r1
= −J1(u2r1)

u2r1
+
J0(u2r2)

N0(u2r2)

N1(u2r1)

u2r1
(5.24b)

Using Bessel recurrence relations, we have:

J1(u2r1)

u2r1
=

1

2
[J0(u2r1) + J2(u2r1)] (5.25a)

N1(u2r1)

u2r1
=

1

2
[N0(u2r1) +N2(u2r1)] (5.25b)

The expression for TE0,m modes becomes:

−J1(u2r1)
u2r1

+
J0(u2r2)

N0(u2r2)

N1(u2r1)

u2r1
+

J1(û1r1)

(û1r1)J0(û1r1)

[
J0(u2r1)−

J0(u2r2)

N0(u2r2)
N0(u2r1)

]
= 0

− [J0(u2r1) + J2(u2r1)] +
J0(u2r2)

N0(u2r2)
[N0(u2r1) +N2(u2r1)] +[
J2(u1r1)

J0(u1r1)
+ 1

] [
J0(u2r1)−

J0(u2r2)

N0(u2r2)
N0(u2r1)

]
= 0

J0(u1r1) [N2(u2r1)J0(u2r2)− J2(u2r1)N0(u2r2)] +

J2(u1r1) [J0(u2r1)N0(u2r2)−N0(u2r1)J0(u2r2)] = 0 (5.26)

Similarly, for TM0,m modes:

n22
1

u2r1

[
−J1(u2r1) +

J0(u2r2)

N0(u2r2)
N1(u2r1)

]
+

n21
J1(u1r1)

u1r1J0(u1r1)

[
J0(u2r1)−

J0(u2r2)

N0(u2r2)
N0(u2r1)

]
= 0

J0(u1r1)

u2r1
n22 [J1(u2r1)N0(u2r2)−N1(u2r1)J0(u2r2)]−

J1(u1r1)

u1r1
n21 [J0(u2r1)N0(u2r2)−N0(u1r2)J0(u2r2)] = 0 (5.27)

Fiber profile (c)

With this layout, û1 is imaginary, and û2 is real. Therefore, Jν(û1r1) = Iν(u1r1), and F0(û2r1)

and F ′0(û2r1) are given respectively by (5.24a) and (5.24b).

Using Bessel recurrence relations, we have:

I1(u1r1)

u1r1I0(u1r1)
=

1

2

[
−I2(u1r1)
I0(u1r1)

+ 1

]
(5.28)

72



The expression for TE0,m modes becomes:

−J1(u2r1)
u2r1

+
J0(u2r2)

N0(u2r2)

N1(u2r1)

u2r1
+

I1(û1r1)

(û1r1)I0(û1r1)

[
J0(u2r1)−

J0(u2r2)

N0(u2r2)
N0(u2r1)

]
= 0

− [J0(u2r1) + J2(u2r1)] +
J0(u2r2)

N0(u2r2)
[N0(u2r1) +N2(u2r1)] +[
−I2(u1r1)
I0(u1r1)

+ 1

] [
J0(u2r1)−

J0(u2r2)

N0(u2r2)
N0(u2r1)

]
= 0

I0(u1r1) [N2(u2r1)J0(u2r2)− J2(u2r1)N0(u2r2)]−

I2(u1r1) [J0(u2r1)N0(u2r2)−N0(u2r1)J0(u2r2)] = 0 (5.29)

Similarly, for TM0,m modes:

n22
1

u2r1

[
−J1(u2r1) +

J0(u2r2)

N0(u2r2)
N1(u2r1)

]
+

n21
I1(u1r1)

u1r1I0(u1r1)

[
J0(u2r1)−

J0(u2r2)

N0(u2r2)
N0(u2r1)

]
= 0

I0(u1r1)

u2r1
n22 [J1(u2r1)N0(u2r2)−N1(u2r1)J0(u2r2)]−

I1(u1r1)

u1r1
n21 [J0(u2r1)N0(u2r2)−N0(u1r2)J0(u2r2)] = 0 (5.30)

5.3.2 Cutoff of EHν,m and HE1,m modes

We rewrite (5.13a) as a quadratic equation:[
F ′ν(û2r1)

(û2r1)

]2
+ κ1

F ′ν(û2r1)

(û2r1)
Fν(û2r1) + κ2 [Fν(û2r1)]

2 = 0 (5.31)

where

κ1 =− n21 + n22
n22

[
J ′ν(û1r1)

(û1r1)Jν(û1r1)

]
(5.32)

κ2 =
n21
n22

[
J ′ν(û1r1)

(û1r1)Jν(û1r1)

]2
−

ν2
n33
n22

[
1

(û1r1)2
− 1

(û2r1)2

]2
(5.33)

Roots of (5.31) are given by

F ′ν(û2r1)

(û2r1)
=

1

2

[
−κ1 ±

√
κ21 − 4κ2

]
Fν(û2r1) (5.34)
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The sign in (5.34) can be + or −, depending on whether we are looking for EH or for HE
modes, and also depending on the type of fiber profile. We used numerical simulations to
determine whether it should be + or −. Expanding the Fν(û2r1) functions in (5.34) using the
γ value from (5.18), we obtain the cutoff equations for each fiber profile.

When û2 is real, (5.34) expands to:

1

u2r1

[
J ′ν(u2r1)−

Jν(u2r2)

Nν(u2r2)
N ′ν(u2r1)

]
=

1

2

[
−κ1 ±

√
κ21 − 4κ2

] [
Jν(u2r1)−

Jν(u2r2)

Nν(u2r2)
Nν(u2r1)

]

1

u2r1

[
ν

u2r1
Jν(u2r1)− Jν+1(u2r1)−

Jν(u2r2)

Nν(u2r2)

(
ν

u2r1
Nν(u2r1)−Nν+1(u2r1)

)]
=

1

2

[
−κ1 ±

√
κ21 − 4κ2

] [
Jν(u2r1)−

Jν(u2r2)

Nν(u2r2)
Nν(u2r1)

]

Jν+1(u2r1)Nν(u2r2)−Nν+1(u2r1)Jν(u2r2) =

∆± [Jν(u2r1)Nν(u2r2)−Nν(u2r1)Jν(u2r2)] (5.35)

where:

∆± = u2r1

[
ν

(u2r1)2
+
κ1 ±

√
κ21 − 4κ2
2

]
(5.36)

Similarly, when û2 is imaginary, (5.34) expands to:

− 1

u2r1

[
I ′ν(u2r1)−

Iν(u2r2)

Kν(u2r2)
K ′ν(u2r1)

]
=

1

2

[
−κ1 ±

√
κ21 − 4κ2

] [
Iν(u2r1)−

Iν(u2r2)

Kν(u2r2)
Kν(u2r1)

]

− 1

u2r1

[
ν

u2r1
Iν(u2r1) + Iν+1(u2r1)−

Iν(u2r2)

Kν(u2r2)

(
ν

u2r1
Kν(u2r1)−Kν+1(u2r1)

)]
=

1

2

[
−κ1 ±

√
κ21 − 4κ2

] [
Iν(u2r1)−

Iν(u2r2)

Kν(u2r2)
Kν(u2r1)

]

Iν+1(u2r1)Kν(u2r2) +Kν+1(u2r1)Iν(u2r2) =

∆± [−Iν(u2r1)Kν(u2r2) +Kν(u2r1)Iν(u2r2)] (5.37)

Fiber profile (a)

With this layout, û1 is real, and û2 is imaginary. Therefore, (5.34) expands to (5.37). ∆−

is associated with solutions to EHν,m modes, and ∆+ is associated with solutions to HE1,m

modes.
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Fiber profile (b)

With this layout, both û1 and û2 are real. Therefore, (5.34) expands to (5.35). ∆+ is associated
with solutions to EHν,m modes, and ∆− is associated with solutions to HE1,m modes.

Fiber profile (c)

With this layout, û1 is imaginary, and û2 is real. Therefore, (5.34) expands to (5.35). ∆−

is associated with solutions to EHν,m modes, and ∆+ is associated with solutions to HE1,m

modes.

Fiber profile (d)

With this layout, both û1 and û2 are real. Therefore, (5.34) expands to (5.35). ∆+ is associated
with solutions to EHν,m modes, and ∆− is associated with solutions to HE1,m modes.

5.3.3 Cutoff of HEν,m modes

For HE modes (with ν ≥ 2), ez(r1) = 0. We get the value of γ from (5.34):

J ′ν(û2r1)− γN ′ν(û2r1) =
û2r1

2

[
−κ1 ±

√
κ21 − 4κ2

]
[Jν(û2r1)− γNν(û2r1)] (5.38)

We expand the derivatives:

ν

û2r1
Jν(û2r1)− sgn(û22)Jν+1(û2r1)− γ

[
ν

û2r1
Nν(û2r1)−Nν+1(û2r1)

]
=

û2r1
2

[
−κ1 ±

√
κ21 − 4κ2

]
[Jν(û2r1)− γNν(û2r1)] (5.39)

and apply the recurrence relations:

∆±Jν(û2r1)− sgn(û22)Jν+1(û2r1) = γ
[
∆±Nν(û2r1)−Nν+1(û2r1)

]
(5.40)

to obtain:

γ =


Jν(u2r1)∆

± − Jν+1(u2r1)

Nν(u2r1)∆± −Nν+1(u2r1)
(û2 real)

Iν(u2r1)∆
± + Iν+1(u2r1)

Kν(u2r1)∆± −Kν+1(u2r1)
(û2 imaginary)

(5.41)

From (5.17) we know that

sgn(û22)
n22 − n23
n22 + n23

Fν(û2r2) + Fν−2(û2r2) = 0 (5.42)

Putting (5.41) into (5.42), we obtain cutoffs for HEν,m modes when ν ≥ 2. Numerical exper-
iments tell us that sign in ∆± must be + for fiber profiles (a), (b), and (c); it is − for fiber
profile (d).
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5.3.4 Cutoff of LP`,m modes

The weakly guiding approximation implies that n21/n23 ≈ n22/n
2
3 ≈ 1. Under this approxima-

tion, we can simplify (5.13a) to:

±
[

1

(û1r1)2
− 1

(û2r1)2

]
(`− 1)F`−1(û2r1) =

F ′`−1(û2r1)
(û2r1)

−
J ′`−1(û1r1)

(û1r1)J`−1(û1r1)
F`−1(û2r1) (5.43)

where ` = ν + 1, for LP`,m modes.

By choosing the negative sign, the left-hand side of the equation cancels out with terms in the
right hand-side (after expansion of the derivative of the Bessel functions). Remaining terms
are:

J`−1(û1r1)

(û2r1)
F`(û2r1) =

J`(û1r1)

(û1r1)
F`−1(û2r1) (5.44)

We expand F`(û2r1) for each fiber profile, using γ from (5.18), to get cutoffs of LP modes.

Cutoff expressions for all fiber profiles are summarized in Tables 5.1—5.4.

5.4 Numerical validation

To validate our expressions, we use the same methodology as that in Chapter 4. For each pro-
file, we calculate the normalized propagation constant as a function of normalized frequency,
and ensure the value of V given by our analytical expressions is close to the V value obtained
by extrapolating numerically obtained modal solutions near the cutoff of each mode. We also
ensure that the mode order, given by (3.1), is respected. Each test profile is identified by a
letter corresponding to the illustration in Fig. 5.1. Fiber dimensions and refractive indexes
are summarized in Table 5.5. We deliberately choose unrealistic parameters in order to get a
reasonable number of modes; parameters were also chosen to assure a large separation between
the modes, to clearly see the different cutoff frequencies.

For multilayer fibers, the normalized propagation constant is defined as:

b =
n2eff − n2cl
n2max − n2cl

(5.45)

where ncl = n3 in the case of 3LSIF. Simulation results are shown on Fig. 5.2—5.5.

5.5 Continuity between fiber profiles

By varying n1 and n2 parameters, it is possible to go through the different kinds of fiber
profiles. Furthermore, there should be a continuity in the cutoff when we vary the index to go
from one kind of fiber profile to another kind of fiber profile. On way to verify this would be
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Figure 5.2: Cutoffs of first modes for fiber profile (a). Simulation parameters: r1 = 3 µm,
r2 = 4 µm, n1 = 2.0, n2 = 1.3, n3 = 1.45.
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Figure 5.3: Cutoffs of first modes for fiber profile (b). Simulation parameters: r1 = 3 µm,
r2 = 4 µm, n1 = 2.0, n2 = 1.7, n3 = 1.45.
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Figure 5.4: Cutoffs of first modes for fiber profile (c). Simulation parameters: r1 = 3 µm,
r2 = 4 µm, n1 = 1.3, n2 = 2.0, n3 = 1.45.
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Figure 5.5: Cutoffs of first modes for fiber profile (d). Simulation parameters: r1 = 3 µm,
r2 = 4 µm, n1 = 1.7, n2 = 2.0, n3 = 1.45.
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Table 5.1: Cutoff equations for fiber profile (a) (W-type fiber)

TE0,m J0(u1r1) [K2(u2r1)I0(u2r2)− I2(u2r1)K0(u2r2)] =

J2(u1r1) [I0(u2r1)K0(u2r2)−K0(u2r1)I0(u2r2)]

TM0,m

J0(u1r1)

u2r1
n22 [I1(u2r1)K0(u2r2) +K1(u2r1)I0(u2r2)] =

J1(u1r1)

u1r1
n21 [I0(u2r1)K0(u2r2)−K0(u2r1)I0(u2r2)]

EHν,m Iν+1(u2r1)Kν(u2r2) +Kν+1(u2r1)Iν(u2r2) =

[−Iν(u2r1)Kν(u2r2) +Kν(u2r1)Iν(u2r2)] ∆−

HE1,m I2(u2r1)K1(u2r2) +K2(u2r1)I1(u2r2) =

[−I1(u2r1)K1(u2r2) +K1(u2r1)I1(u2r2)] ∆+

HEν,m
Iν−2(u2r2)− γKν−2(u2r2) =

n22 − n23
n23 + n22

[Iν(u2r2)− γKν(u2r2)] γ =
Iν(u2r1)∆

+ + Iν+1(u2r1)

Kν(u2r1)∆+ −Kν+1(u2r1)

LP`,m
J`−1(u1r1)

u2r1
[I`(u2r1)K`−1(u2r2) +K`(u2r1)I`−1(u2r2)] =

J`(u1r1)

u1r1
[I`−1(u2r1)K`−1(u2r2)−K`−1(u2r1)I`−1(u2r2)]

to show that cutoff expressions transform to known forms when we evaluate limits on given
parameters. For example, we could show that expressions for fiber profile (d) transform to
expressions for RCF when n1 → n3.

However, performing such rigorous proofs would be tedious. We will rather prove the continu-
ity of the expressions by fixing two refractive indexes in a fiber profile, and varying the third
to go through the different profiles. By plotting the cutoff frequency as a function of that
varying index, we will show that the obtained cutoff is continuous as we reach limits between
the different profiles.

There are two possible simulation to run: one with n1 fixed and n2 varying, and the other for
n2 fixed and n1 varying. In both cases, we will simulate a fiber with r1 = 4 µm and r2 = 6 µm.
The cladding will be n3 = 1.4, the fixed index will be 1.6, and the other index will vary
between 1.2 and 1.8.
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Table 5.2: Cutoff equations for fiber profile (b)

TE0,m J0(u1r1) [J2(u2r1)N0(u2r2)−N2(u2r1)J0(u2r2)] =

J2(u1r1) [J0(u2r1)N0(u2r2)−N0(u2r1)J0(u2r2)]

TM0,m

J0(u1r1)

u2r1
n22 [J1(u2r1)N0(u2r2)−N1(u2r1)J0(u2r2)] =

J1(u1r1)

u1r1
n21 [J0(u2r1)N0(u2r2)−N0(u2r1)J0(u2r2)]

EHν,m Jν+1(u2r1)Nν(u2r2)−Nν+1(u2r1)Jν(u2r2) =

[Jν(u2r1)Nν(u2r2)−Nν(u2r1)Jν(u2r2)] ∆+

HE1,m J2(u2r1)N1(u2r2)−N2(u2r1)J1(u2r2) =

[J1(u2r1)N1(u2r2)−N1(u2r1)J1(u2r2)] ∆−

HEν,m
Jν−2(u2r2)− γNν−2(u2r2) =

n23 − n22
n23 + n22

[Jν(u2r2)− γNν(u2r2)] γ =
Jν(u2r1)∆

+ − Jν+1(u2r1)

Nν(u2r1)∆+ −Nν+1(u2r1)

LP`,m
J`−1(u1r1)

u2r1
[J`(u2r1)N`−1(u2r2)−N`(u2r1)J`−1(u2r2)] =

J`(u1r1)

u1r1
[J`−1(u2r1)N`−1(u2r2)−N`−1(u2r1)J`−1(u2r2)]

When n2 is fixed

We fix n2, and vary n1 from lower to higher index, we successively go through fiber profiles
(c), (e), (d), SSIF, and (b). Results are shown on Fig. 5.6.

We can divide this graph into five different regions. When n1 < n3, we have a fiber profile of
type (c). At n1 = n3 = 1.4, we have a ring-core fiber profile (type (e)). When n1 is between n3
and n2, we have a fiber profile of type (d). When n1 = n2 = 1.6, we have a simple single-core
step-index profile. Finally, when n1 > n2, we have a fiber profile of type (b). To generate this
plot, we defined V as k0r2

√
n22 − n33. This is needed in order to maintain one definition of V

across the different fiber types.

Many observations can be made from this figure. First, since the cutoff values for each of the
five regions are obtained using different equations, the continuity of each line confirms the
continuity of each function; each fiber profile approaches the next type.

At n1 = n2 = 1.6, we have a standard fiber. As expected, cutoff of the TE0,1 mode is at 2.405

80



Table 5.3: Cutoff equations for fiber profile (c)

TE0,m I0(u1r1) [N2(u2r1)J0(u2r2)− J2(u2r1)N0(u2r2)] =

I2(u1r1) [J0(u2r1)N0(u2r2)−N0(u2r1)J0(u2r2)]

TM0,m

I0(u1r1)

u2r1
n22 [J1(u2r1)N0(u2r2)−N1(u2r1)J0(u2r2)] =

I1(u1r1)

u1r1
n21 [J0(u2r1)N0(u2r2)−N0(u2r1)J0(u2r2)]

EHν,m Jν+1(u2r1)Nν(u2r2)−Nν+1(u2r1)Jν(u2r2) =

[Jν(u2r1)Nν(u2r2)−Nν(u2r1)Jν(u2r2)] ∆−

HE1,m J2(u2r1)N1(u2r2)−N2(u2r1)J1(u2r2) =

[J1(u2r1)N1(u2r2)−N1(u2r1)J1(u2r2)] ∆+

HEν,m
Jν−2(u2r2)− γNν−2(u2r2) =

n23 − n22
n23 + n22

[Jν(u2r2)− γNν(u2r2)] γ =
Jν(u2r1)∆

+ − Jν+1(u2r1)

Nν(u2r1)∆+ −Nν+1(u2r1)

LP`,m
I`−1(u1r1)

u2r1
[J`(u2r1)N`−1(u2r2)−N`(u2r1)J`−1(u2r2)] =

I`(u1r1)

u1r1
[J`−1(u2r1)N`−1(u2r2)−N`−1(u2r1)J`−1(u2r2)]

and cutoff of the EH1,1 is at 3.832, the first roots of J0(x) and J1(x), as given in Table 1.2.
We also see that at this value, TE0,1 and TM0,1 modes have the same cutoff. This crossing
between TE and TM modes is possible, even if both modes are ν = 0, because there is no
ordering condition between TE and TM modes. However, we can conclude that, for fibers of
type (c), (d), and (e), TE0,m > TM0,m (in terms of neff), while TE0,m < TM0,m for fibers of
type (b). Modes EH1,1 and HE1,2 also have the same cutoff as they do in standard fibers (as
it is the case for all EH1,m and HE1,m+1 modes). However, they do not cross, because we need
to maintain the relation HEν,m > EHν,m > HEν,m+1. This is why there are discontinuities of
the first derivative of the cutoff for those modes when we enter the n1 > n2 region.

When n1 is fixed

We fix n1, and vary n2 from lower to higher index, we successively go through fiber profiles
(a), SSIF, (b), SSIF, and (d). Results are shown on Fig. 5.7.

We can separate Fig. 5.7 into five different regions. When n2 < n3, we have a fiber profile of
type (a). At n2 = n3 = 1.4, we have a standard fiber, with the core radius equal to r1. When
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Table 5.4: Cutoff equations for fiber profile (d)

TE0,m J0(u1r1) [J2(u2r1)N0(u2r2)−N2(u2r1)J0(u2r2)] =

J2(u1r1) [J0(u2r1)N0(u2r2)−N0(u2r1)J0(u2r2)]

TM0,m

J0(u1r1)

u2r1
n22 [J1(u2r1)N0(u2r2)−N1(u2r1)J0(u2r2)] =

J1(u1r1)

u1r1
n21 [J0(u2r1)N0(u2r2)−N0(u2r1)J0(u2r2)]

EHν,m Jν+1(u2r1)Nν(u2r2)−Nν+1(u2r1)Jν(u2r2) =

[Jν(u2r1)Nν(u2r2)−Nν(u2r1)Jν(u2r2)] ∆+

HE1,m J2(u2r1)N1(u2r2)−N2(u2r1)J1(u2r2) =

[J1(u2r1)N1(u2r2)−N1(u2r1)J1(u2r2)] ∆−

HEν,m
Jν−2(u2r2)− γNν−2(u2r2) =

n23 − n22
n23 + n22

[Jν(u2r2)− γNν(u2r2)] γ =
Jν(u2r1)∆

− − Jν+1(u2r1)

Nν(u2r1)∆− −Nν+1(u2r1)

LP`,m
J`−1(u1r1)

u2r1
[J`(u2r1)N`−1(u2r2)−N`(u2r1)J`−1(u2r2)] =

J`(u1r1)

u1r1
[J`−1(u2r1)N`−1(u2r2)−N`−1(u2r1)J`−1(u2r2)]

Table 5.5: Dimensions and indexes of test profiles

r1 r2 n1 n2 n3

(a)

3 µm 4 µm

2.0 1.3

1.45(b) 2.0 1.7
(c) 1.3 2.0
(d) 1.7 2.0
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Figure 5.6: V at cutoff as a function of the index of the center layer, in three-layer step-index
fiber. Simulation parameters: r1 = 4 µm, r2 = 5 µm, n2 = 1.6, n3 = 1.4.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Normalized frequency (V )

1.2

1.3

1.4

1.5

1.6

1.7

1.8

In
de
x
of

m
id
dl
e
la
ye
r
(n

2
)

ty
pe

(a
)

SSIF

ty
pe

(b
)

SSIF

ty
pe

(d
)

TE(0,1)
HE(2,1)
TM(0,1)

EH(1,1)
HE(3,1)
HE(1,2)

Figure 5.7: V at cutoff as a function of the index of the intermediate layer, in three-layer
step-index fiber. Simulation parameters: r1 = 4 µm, r2 = 5 µm, n1 = 1.6, n3 = 1.4.
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n2 is between 1.4 and 1.6, we have a fiber profile of type (b). When n1 = n2 = 1.6, we have a
standard fiber, with the core radius equal to r2. Finally, when n2 > n1, we have a fiber profile
of type (d). Here, we defined V as k0r1

√
n21 − n33, for reasons similar to what we explained

before.

Both n2 = 1.4 and n2 = 1.6 correspond to standard fiber, the only difference being the radius
of the core. However, in Fig. 5.7, only at n2 = 1.4 can we see the expected values of V
for standard fiber mode cutoffs. This is an effect of the normalization (because we used r1

value instead of r2 to calculate V ), and this is necessary to see the continuity of the cutoffs.
Multiplying V by r2/r1 brings back the expected value of V at n2 = 1.4.

Here again we see TE0,m and TM0,m modes crossing, and their inversion in type (b) fibers.
We also see EH1,m and HE1,m+1 modes having the same cutoff in standard fiber, and their
particularities in type (b) fibers. Therefore, the properties of mode cutoffs of each fiber type
are consistent, whether we vary n1 or n2.

Asymptotic limit for LP modes

For LP`,m modes, we can easily obtain the cutoff expression for RCF, from the generic cutoff
expression for 3LSIF (5.44). 3LSIF transforms to RCF when û2 is real, and n1 → n3. At
cutoff, it means that û1 → 0.

Using the asymptotic expansion (A.21), we obtain:

2`F`(u2r1)
u2r1

+ F`−1(u2r1) = 0 (5.46)

Using Bessel recurring relations (A.8), this becomes, after simplification and expansion of the
F`+1(u2r1) function

J`+1(u2r1)N`−1(u2r2) = J`−1(u2r2)N`+1(u2r1) (5.47)

because γ =
J`−1(u2r2)
N`−1(u2r2)

. This is exactly the same expression as (4.33) found in Chapter 4.
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Chapter 6

The modal map

6.1 Counting the number of dimensions

The design of SSIF is quite simple. Only three parameters characterize this kind of fiber: the
refractive index of the core (nco), the refractive index of the cladding (ncl), and the radius
of the core (r1). The wavelength of the transmitted light (λ) is important to determine the
supported modes. However, most of those parameters are predetermined. For instance, in
telecommunications, wavelength usually is around 1550 nm, and cladding is made of silica
(ncl ≈ 1.444). Remaining parameters can be included in one normalized parameter, the
normalized frequency V , defined in (1.22). This V number includes both the radius r1, and
the refractive indexes, that we often express as numerical aperture:

NA =
√
n2co − n2cl (6.1)

In the case of RCF, one more dimension is added: the inner radius of the ring-core. As we
saw in Section 4.1.1, we still can use an equivalent V number defined for RCF (4.1), but we
also define the ρ parameter as the ratio between inner and outer ring-core radius. With those
normalized parameters:

ur1 = ρV and ur2 = V (6.2)

where ρ = r1/r2.

In the more generic case of 3LSIF, the refractive index in the center of the fiber is no longer
the same as the refractive index of the cladding; thus an additional parameter is needed to
describe the fiber. We now define the normalized frequency from the equivalent SSIF fiber that
would envelope the 3LSIF, as we saw in Section 5.1.1. We can still use the same ρ parameter
as defined for RCF. Additionally, we need a third normalized parameter, the ratio between u1
and u2 parameters:

υ =

u2/u1 u1 > u2

u1/u2 u1 < u2
(6.3)
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Table 6.1: Normalized fiber parameter equivalences in 3LSIF. (a) W-type fiber (fiber with
trench); (b) Pedestal fiber; (c) ring-core fiber with lower center; (d) ring-core fiber with higher
center; (e) ring-core fiber (RCF). ρ = r1/r2; υ = min(u1, u2)/max(u1, u2).

Profile (a) Profile (b) Profile (c) Profile (d) Profile (e)

u1r1 ρV ρV ρυV ρυV —
u1r2 V V υV υV —
u2r1 ρυV ρυV ρV ρV ρV
u2r2 υV υV V V V

Table 6.2: Fiber parameters, as function of fiber profile. In this table, the generic definition
is used for V and NA, where they are related to the highest index in the fiber.

Fiber profile Scalar Vector
weakly guiding

SSIF V V,NA
RCF V, ρ V, ρ,NA
3LSIF V, ρ, υ V, ρ, υ,NA
N layers u1, r1, u2, . . . , uN−1, rN−1, w

Using those definitions, the V number is equivalent to the parameter u1r2 in fiber profiles (a)
and (b), and to the parameter u2r2 in fiber profiles (c), (d), and (e), u2 being equivalent to the
parameter u of RCF. Relations for other parameters are given in Table 6.1. Parameter u1 does
not exists for fiber profile (e) (RCF), as it would be equivalent to parameter w. Parameter
u1r2 is not used in the modal equations, but is given here for completeness.

For each layer we add to the fiber profile, we need two supplementary parameters: one for
the layer radius, the other for the layer index. Beyond three layers, the use of normalized
parameters becomes unnecessarily complex, and we use uiri parameters directly. Table 6.2
summarizes parameters used to describe each kind of fiber.

6.2 Selecting number of modes

In the design of few-mode fiber (FMF), the first design target is probably the kind and the
number of guided modes to support. The simplest case is to target a given number of LP
modes in a SSIF. In that case, the number of modes only depends on the V number. We
know that V is parametrized by the wavelength, the core radius, and the numerical aperture.
However, as we already stated, wavelength and cladding index usually are fixed. Furthermore,
for LP modes, we need a small index contrast between core and cladding, and thus a small
NA. Therefore, the V number is mostly determined by the core radius.
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Figure 6.1: Mode cutoffs as function of NA, for SSIF. This graph is totally generic, as core
radius is comprised in V , and indexes are comprised in NA.

In the case of vector modes, V number is no longer a sufficient criteria to determine the
number of guided modes, because of the dependency on the refractive indexes that is present
in the cutoff expression for HEν,m modes (1.46). This is illustrated on Fig. 6.1. On the figure,
we see that the cutoff of most modes appears as a vertical line, as it is not affected by NA.
However, cutoff of HEν,m modes vary as NA increases. This graph is totally generic, as core
radius is comprised in V , and indexes are comprised in NA.

This figure introduces what we call a modal map. The cutoff lines define borders between
regions. Each region corresponds to a number of guided modes, varying with the fiber param-
eters. For instance, the region where V < 2.405 is the region where the fiber is monomode.
Between V > 2.405 and V < 3.832, the fiber is guiding HE1,1 (which is guiding for all values of
V ), TE0,1, and TM0,1; it could also guide HE2,1, depending on the numerical aperture. Other
regions are defined similarly.

However, modal maps are of little practical use for SSIF, mainly because in telecommunication
fibers, NA remains relatively small (below 0.3), and thus cutoff of HEν,m modes does not
diverge tremendously from the cutoff of other modes. When V is large, we can estimate the
number of supported vector modes using the simple relation [136]:

M ≈ V 2

2
(6.4)
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Figure 6.2: Modal map of LP modes in RCF. n1 = 1.444; n2 = 1.494; NA = 0.38.

Modal maps become a more interesting tool when we design RCF. Figure 6.2 shows the cutoff
of LP`,m modes as function of ρ in RCF. For the simulation we used a cladding index n1 of
1.444, and a ring index n2 of 1.494; therefore NA = 0.38. The vertical axis can be seen as the
thickness of the ring-core, and (for fixed indexes) the horizontal axis can be seen as the outer
radius of the ring-core. Therefore, the modal map gives the number of supported modes as
a function of the RCF geometry. When ρ = 0, we see the cutoffs of SSIF. The region above
the cutoff of LP1,1 mode is the momomode region. Other regions are labeled with the number
of modes they support. For instance, region II is where both LP0,1 and LP1,1 are supported;
region III supports LP0,1, LP1,1, and LP2,1 modes; and so on. Regions IVa and IVb both
support four modes, but the former supports LP3,1, while the later supports LP0,2. While
SSIF are monomode only for V < 2.405, it is possible to design an RCF with V > 2.405 that
is still single-mode, assuming ρ is high enough. This is one of the differences between SSIF
and RCF.

We call the second index of the modes, the m parameter, the radial order, because it is related
to the number of zeros in the radial dependency of the fields. When m = 1, we have only one
spot or one ring of intensity in the mode. When m = 2, the mode has two concentric rings of
intensity, and so on. The first mode with m > 1 is the LP0,2 mode. From Fig. 6.2, we see that
in a SSIF (i.e., at ρ = 0), the cutoff of LP0,2 is the same as the cutoff of LP2,1. Therefore,
as soon as a SSIF supports more than LP0,1 and LP1,1 modes, it necessary supports LP0,2
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Figure 6.3: Modal map of vector modes in RCF, for fixed indexes. Cladding index n1 = 1.444;
ring index n2 = 2.

mode, i.e., a mode of the second radial order. With RCF, by choosing the right value for the
ρ parameter, it is possible to design a fiber supporting several modes of the first radial order,
without supporting any second radial order mode.

Finding cutoff for the LP modes in RCF and vector modes for SSIF was already possible. With
the cutoff equations developed in Chapter 4, we can now go further, and plot the modal map
for vector modes in RCF. The vector mode map for RCF is a tridimensional map. However,
if we fix one parameter, we can easily plot against the other. For example, Fig. 6.3 shows
the modal map for a RCF with n1 = 1.444 and n2 = 2. The horizontal dashed line is where
ρ = 0.5. Again, we tagged some regions with the number of supported vector modes.

Figure 6.4 shows the modal map for a RCF with ρ = 0.5 and n1 = 1.444, where n2 varies
between 1.5 and 5.0. Therefore, the fiber dimensions are fixed, and the index of the ring-core
is varying. The vertical axis is now n2, and this graph is like the third dimension of the
previous figure, at the position indicated by the dashed line. This clearly shows which modes
are most influenced by the index contrast (e.g. HEν,m), and which modes are not (e.g. HE1,m

and TE0,m). The horizontal dashed lines on Fig. 6.3 and 6.4 represent equivalent parameters
(ρ = 0.5 and n2 = 2).

To see how cutoff varies as function of both ring index and thickness, we plotted on Fig. 6.5,
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Figure 6.4: Modal map of vector modes in RCF, for fixed ρ = 0.5. Cladding index n1 = 1.444.

the contours of the cutoff frequency V as a function of ρ and n2, for HE2,1 mode, in a RCF
with n1 = 1.444. From this graph, we see that when ρ is small (i.e., the ring is thick), the
cutoff is mostly influenced by the index contrast. However, when the ring is thin, it is ρ that
most affects the cutoff value.

6.3 Targeting mode separation

In the design of fibers for the transmission of OAM modes, the number of supported modes
is a necessary, but not a sufficient condition to produce a good fiber. Another criteria is the
separation between the effective indexes of vector modes. While, for LP mode transmission,
we want to minimize this separation to minimize group dispersion, for OAM modes, this is
the opposite. We need to achieve a large effective index separation, to keep the OAM modes
well separated, and to prevent the vector eigenmodes to couple into LP modes. The design of
polarization maintaining fibers suggests a typical effective index separation of 1× 10−4 [40].
To compute this separation, we need to find the effective index of all modes, for a given fiber
at a given wavelength. We define ∆neff as the difference between the effective indexes of two
modes.

Figure 6.6 shows the effective index separation (∆neff) between the indicated mode pairs,
as function of V . Each line has two color, associated with the two involved modes. For
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Figure 6.5: Contour plot of cutoff frequency V of HE2,1 mode in RCF, as function of ρ and
n2. Cladding index n1 = 1.444.

this example, we chose the same parameters as those in the preceding examples (ρ = 0.5,
n1 = 1.444, n2 = 2) and we plotted ∆neff. We know that V is a function of wavelength,
fiber dimensions, and fiber indexes. Therefore, on the graph, if we keep a fixed wavelength,
V increases with core radius, as indexes are fixed. As V evolves, some modes become closer,
while others have effective indexes that grow farther apart. For the design of OAM fibers, we
would target the largest possible separation. In this example, we limited the range of V to
only allow four supported modes, and there are six possible combinations. Adding only a few
more supported modes, the graph would quickly become unreadable.

As considering all combinations of modes becomes too complex, a more practical approach is
to consider the worse case, by considering the closest neighbor for each mode. This way, we
know how separated a given mode is from the others. Figure 6.7 is similar to Fig. 6.6, but only
shows the separation with the closest neighbor. For example, when V is small, only HE1,1

and TE0,1 are guided, with a given separation. When V increases, HE2,1 and TM0,1 begin
to be guided, then EH1,1, HE3,1, and finally EH2,1. The discontinuities we see on some lines
(e.g. TE0,1 and EH1,1) occur when a closer mode suddenly begins to be guided. For instance,
when TM0,1 and HE2,1 begin to be guided, TE0,1 suddenly becomes closer to HE2,1 than it
was from HE1,1; this is why there is a sudden drop in the line for the separation of TE0,1.
Similar behavior occurs for EH1,1 when HE3,1 begins to be guided. When we follow the line
for a given mode, we know the distance to the closest mode. For instance, we know that near
V = 5, HE3,1 and EH1,1 modes are very close. Around V = 3.8, all modes are more that 0.05
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apart.

This brings us to a third way to visualize mode separation. We define a new function that is
the smallest separation between all the modes, for a given set of parameters. We can see this
as a worse case, in the sense that no modes are closer than this value. Figure 6.8 shows the
minimal effective index separation between all mode, for a RCF with n1 = 1.444, n2 = 2, and
for three different values of ρ. For example, the green line (ρ = 0.5) corresponds to the lowest
value among all the line on Fig. 6.7, for each value of V . By maximizing this function, we can
target a fiber design with the best possible modal separation. However, as we can see, the
minimal effective index separation is not a smooth function; it has many steps as the number
of supported modes varies, or the closest modes change.

This minimal separation is closely related to the number of supported modes. As the number
of guided modes increases, the minimal separation decreases. However, we do not clearly see
what is the number of supported modes on Fig. 6.8. A better way is to combine the modal map
and the minimal effective index separation. On top of the modal map, we plot the minimal
effective index separation as a colormap. This is what we call the augmented modal map.
Figure 6.9 shows an example of an augmented modal map, for a RCF with n1 = 1.444 and
n2 = 2. We carefully adjusted the scale and the colors of the colormap to show how separation
evolves within each region. This is why we plotted the colormap on a power scale instead of
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Figure 6.9: Augmented modal map for RCF with n1 = 1.444 and n2 = 2.

a linear scale. It is expected that the region where only two modes are supported exhibits a
larger separation. This is why the two modes region, just below the cutoff of TE0,1, is the
darkest region. On some places, we see white lines. It corresponds to the parameters where
the effective indexes of two modes are crossing. For instance, the white line in the four modes
region, between cutoffs of TM0,1 and EH1,1 modes, is where the HE2,1 and TM0,1 effective
indexes are crossing. This graph can be related to Fig. 6.8. For instance, if we draw an
horizontal line at ρ = 0.5 on the augmented mode map, and if we follow the colormap along
this line, we see it behaves exactly like the green line on Fig. 6.8. The separation is high when
V is between 2.5 and 2.8, then it suddenly drops when HE2,1 and TM0,1 modes appear, then
it progressively increases to reach a local maximum around 3.8; it decreases smoothly, with
a little drop at V = 4.4 when HE3,1 mode appears, to reach zero around V = 5.0; finally, it
raises again. The same observation can be done for other values of ρ.

The augmented modal map is a useful tool, as it gives information about both the number
of supported modes and the modal separation, in the same figure. However, it requires a
lot of computational power to produce, because the effective index of every mode, for all
combinations of parameters, need to be solved. A high resolution augmented modal map can
potentially take hours to compute. Therefore, it is useful to choose well the range of fiber
parameters before computing it. One way to do it to use the simpler modal map first (without
the modal separation colormap) to choose the desired number of modes and to adjust the
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range of parameters consequently. Then, a lower resolution colormap can be computed, to
get a first insight about the modal separation. Finally, the higher resolution map can be
computed, if the preliminary results are positive.

In Chapter 8, we will use the augmented modal map to design OAM fibers.
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Part III

Fibers designed for OAM transmission
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Chapter 7

Air-core annular fiber

7.1 Design of an OAM fiber

To avoid any confusion, we need to define how we count modes, information channels, and
states, in optical fibers. The number of modes counts all polarizations and degeneracies as one
mode, e.g. HE1,1 is one mode. The number of states counts all degeneracies and polarizations,
e.g. LP1,1 has four different states (the symmetry axis of the field can be horizontal of vertical,
and the polarization can be horizontal or vertical). Finally, the number of information bearing
channels is the actual number of states we use to carry information.

Up to now, OAM fibers only supported a limited number of channels. For instance, the
original vortex fiber [93] supports four information channels. The IPGIF support one more
OAM mode, thus eight information channels [98]. And the air-core fiber from Gregg et al. [96]
is multimode, but supports only up to twelve information channels.

Our goal is to design an OAM fiber that supports a higher number of channels. We also want
to use as many states as possible as information channels, i.e., all OAM modes should be usable
as information channels. It was already demonstrated that, to support OAM modes, the fiber
must exhibit 1) good effective index separation between vector modes (the true eigenmodes of
the fiber), to minimize modal coupling and degeneracy into LP modes, and 2) a fiber profile
that matches the doughnut shaped OAM fields [40].

To obtain good mode separation, we must have a high contrast in refractive indexes of the fiber
materials; in this way we violate the weakly guiding approximation under which LP modes
are formulated. In particular, there must be great separation between the effective indexes
of HE`+1,m and EH`−1,m modes, otherwise those modes would couple into LP`,m modes, and
we would lose the OAM states during propagation. Design of polarization-maintaining fibers
suggests that an effective index separation on the order of 1× 10−4 between the modes in a
group will preclude LP mode formation [40]. This is an order of magnitude greater separation
than typically found in conventional fibers. However, this number should be seen as a rule of
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Table 7.1: Index constraints for air-core annular fiber

Layer Material Refractive index Molar concentration

I Air 1.0
II SiO2 + GeO2 1.444 – 1.474 Up to 20%
III SiO2 + P2O5 + F 1.437 – 1.444 Up to 1.5%
IV SiO2 1.444

thumb; this is not a hard limit. In [95], they transmitted OAM modes over 2 m of fiber with
an effective index separation around 0.6× 10−4.

The refractive index contrast is limited by material constraints, and by the fabrication process.
To achieve maximum contrast, a hollow air-core was suggested [94], since air has an index of
approximately 1, which is as far from that of doped silica that we can achieve. In this design,
the modes are traveling inside a doped ring-core, not inside the air core. This is different from
PCF fibers that are also called air-core fibers, but where the light travels inside the air, guided
by a photonic bandgap [137].

The fiber designed in [95] supports a large number of vector modes, but only a few of them are
separated enough (in terms of effective index) to be able to transmit OAM modes. Hence only
three OAM modes, supporting twelve information bearing channels, can effectively be used.
In contrast, we want to design a fiber supporting fewer vector modes in total, but where all
those vector modes can be used as a basis for OAM modes. All modes must have an effective
index that resides between the refractive index of the cladding and the maximum refractive
index of the fiber. A fiber having fewer vector modes allows them to be more separated (in
terms of effective index), as the space of possible effective indexes is exploited by all supported
modes. This is achieved by carefully adjusting the width of the doped region in the fiber to
limit the total number of supported vector modes. We include an external layer of material
having a refractive index lower than the cladding, a trench, to increase the contrast of the
refractive indexes, and to limit the number of higher order modes.

Figure 7.1 shows the targeted design. We call this design air-core annular fiber (ACF), as
the center of the fiber is air, but the fiber really is an annular (or ring-core) fiber, since
this is the second layer that is guiding the modes. In this design, n1 is the refractive index
of air, and n4 is the refractive index of silica. n2, n3, r1, r2, and r3 are parameters to be
determined. We target a fiber with 125 µm cladding diameter, for compatibility with standard
fiber connectors. Indexes for n2 and n3 are limited by material constraints. Table 7.1 gives
what are approximately the possible index ranges at 1550 nm, without facing manufacturing
troubles.
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Figure 7.1: Air-core annular fiber geometry (top view, and profile).

7.2 Modeling and simulation

Finding the right fiber profile is a complex optimization problem. Usually, a higher index
contrast will allow a higher effective index separation. However, a higher number of modes
will decrease the effective index separation, since more modes will be packed in the same
possible range of effective indexes. Therefore, the number of supported modes needs to be
controlled by the thickness of the second layer. To achieve our design goal, a tradeoff must be
performed between the number of supported modes, and the effective index separation.

As we explained in Chapter 6, there are many possible ways to examine the effective index
separation. The simplest optimization is to maximize the minimal effective index separation.
However, for a given fiber design, there could be a pair of modes that are closer than another
pair, and that design would be rejected even if all other modes were well separated. Another
possible optimization would be to maximize the average of the minimal effective index sepa-
ration of each mode. But it is possible that this optimization favors a design with some very
well separated modes, and some other modes that as very close. The point is that the ideal
fiber profile does not exist. Simulation and optimization tools can help us in the choice of the
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Table 7.2: Parameters of designed air-core annular fiber

Radius (µm) Molar concentration (%) Index (1550 nm) Index (657.6 nm)

Layer 1 9.2 — 1.000 1.000
Layer 2 11.6 22.5 1.480 1.493
Layer 3 15.6 1.1 1.439 1.451
Cladding 62.5 — 1.444 1.456

right design, but the final choice is always a compromise.

The simulation themselves were performed using the transfer-matrix method [118]. This
method allows quick and accurate calculation of the effective index of each mode. While
using fixed indexes for each layer would be sufficient to calculate the effective index of each
mode, we rather used wavelength dependent indexes, calculated from the Sellmeier equation
[138]. This allows us to get the effective indexes as function of the wavelength, and to estimate
other modal parameters, such as group index and dispersion. The exact formulas we use are
given in Appendix B.

The optimization itself was performed by sweeping through the range of possible parameters.
The final design was chosen due to the good balance between the number of supported modes
and the separation of the effective indexes, with a good tolerance to imperfections introduced
into the index profile during the fabrication process.

Table 7.2 summarizes chosen parameters. Indexes are calculated from the given molar con-
centration. 1550 nm is the wavelength we intend to use for the experiments, while 657.6 nm is
the wavelength used by the refractometer. This will allow us to compare the values from the
design with the fabricated fiber. As we will see, we overestimated the capacity to dope the
second layer; this is why the concentration of GeO2 is higher in the design that what we now
use as maximum possible concentration.

On Fig. 7.2 we plot the effective index as a function of the wavelength, over the C-band. We
see that 20 vector modes are supported by the fiber, at 1550 nm. Therefore, 18 modes could
serve as a basis for 10 OAM modes (` = 0 to 9), or 36 OAM states. Table 7.3 lists effective
index, as well as minimal effective index separation, for each supported mode, at 1550 nm. As
we can see, all modes are separated by 1× 10−4 or more; the closest modes being TE0,1 and
HE1,1. A special characteristic of this fiber design is that the mode with the highest effective
index is TE0,1, and not HE1,1.

7.3 Fiber fabrication

The optical fiber was fabricated at our laboratory at COPL, equipped with modified chemical
vapor deposition (MCVD) for preform fabrication and two drawing towers for fiber pulling.
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Figure 7.2: Effective index as function of wavelength, for designed ACF. Fiber design param-
eters are given in Table 7.2.

Table 7.3: Effective indexes and effective index separations, at 1550 nm, for designed ACF.

Mode neff ∆neff Mode neff ∆neff

TE0,1 1.459 90 9.956× 10−5 HE6,1 1.454 91 3.078× 10−4

HE1,1 1.459 80 9.956× 10−5 EH4,1 1.454 60 3.078× 10−4

HE2,1 1.459 47 3.364× 10−4 HE7,1 1.452 89 2.475× 10−4

HE3,1 1.458 83 4.595× 10−4 EH5,1 1.452 64 2.475× 10−4

TM0,1 1.458 38 2.633× 10−4 HE8,1 1.450 52 1.985× 10−4

EH1,1 1.458 11 2.382× 10−4 EH6,1 1.450 32 1.985× 10−4

HE4,1 1.457 87 2.382× 10−4 HE9,1 1.447 78 1.549× 10−4

EH2,1 1.457 36 5.139× 10−4 EH7,1 1.447 63 1.549× 10−4

HE5,1 1.456 57 3.897× 10−4 HE10,1 1.444 69 1.131× 10−4

EH3,1 1.456 18 3.897× 10−4 EH8,1 1.444 58 1.131× 10−4
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Figure 7.3: Optical microscope photograph of the end of the air-core annular fiber. [Credit:
Steeve Morency.]

Figure 7.3 shows a photograph of one end of the fiber. The cladding diameter is around
125 µm, as in conventional fiber. The fiber preform was fabricated via MCVD in two steps.
We formed the first layer by incorporating adequate concentrations of SiO2, P2O5 and F. This
was followed by a deposit ring layer of SiO2 and GeO2 to produce a step-index profile. Finally,
the result was partially collapsed to produce the glass preform. The hollow core diameter is
controlled during the fiber drawing process to achieve the target value.

The refractive index profile was measured directly on the fabricated fiber, using a refracted
near-field analyzer (Exfo NR-9200HR), and is shown in Fig. 7.4. We have four measurements,
for both ends of the 2 km fiber, on two different axis. The 1.48 index we see in the center and
exterior of the fiber is the index of the matching oil used for the measurement. However, the
center of the fiber really is a hollow tube, and its index is 1 when the fiber is surrounded by
air. The spatial resolution of the instrument is ≤ 0.4 µm. This is why the steps between the
different refractive indexes are a little rounded. We can observe that refractive index is a little
higher at the start of the fiber than at the end.

Fabricating a silica fiber with a very high refractive index contrast is difficult, because of the
large stress that appears at the core cladding interface during fiber fabrication. Figure 7.5
compares the designed index profile with measured values. On this figure, we clearly see that
the maximum index of the real fiber is lower than what was expected: around 1.487 at the
start of the fiber, and 1.484 at the end. Fiber dimensions are very close to the design at the
fiber start, but a little smaller at fiber end.

Based on the measured refractive index profile, we created a new numerical model for the
fiber. Parameters of this model are summarized on Table 7.4. We used ten small steps to
mimic the gradients of the trench. This new fiber profile is illustrated on Fig. 7.6. We ran
the simulator against this new model, to get the number of supported modes, and associated
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Figure 7.4: Refractive index measurement of the air-core annular fiber, at 657.6 nm. Measure-
ments performed by Stéphane Gagnon.

Table 7.4: Parameters of air-core annular fiber model.

Radius (µm) Molar concentration (%) Index (1550 nm) Index (657.6 nm)

Layer 1 9.1 — 1.000 1.000
Layer 2 11.3 19.2 1.475 1.487
Layer 3 16.2 1.3 1.438 1.450
Cladding 62.5 — 1.444 1.456

effective indexes. Results are summarized on Figure 7.7 and in Table 7.5. From this new
simulation, we expect the ACF to support 16 vector modes, or 8 OAM modes (` = 0 to ` = 7,
for a total of 28 OAM states.

7.4 Exciting OAM modes in ACF

To excite OAM modes in ACF, we use a setup similar to what is described in [93], generating
the OAM beam in free-space using a SLM, before coupling the OAM beam into the fiber.
However, we faced an unexpected problem: lower-order OAM beams are thicker than the thin
2 µm ring where the modes propagate in our fiber, because, in free-space, the ratio between
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Figure 7.6: Comparison between realized fiber profiles and ACF model.
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Figure 7.7: Effective index as function of wavelength, for ACF model. Fiber model parameters
are given in Table 7.4.

Table 7.5: Effective indexes and effective index separations, at 1550 nm, for ACF model.

Mode neff ∆neff Mode neff ∆neff

TE0,1 1.453 91 1.019× 10−4 HE5,1 1.450 50 3.911× 10−4

HE1,1 1.453 81 1.019× 10−4 EH3,1 1.450 11 3.911× 10−4

HE2,1 1.453 47 3.443× 10−4 HE6,1 1.448 80 3.058× 10−4

HE3,1 1.452 82 4.644× 10−4 EH4,1 1.448 50 3.058× 10−4

TM0,1 1.452 36 2.693× 10−4 HE7,1 1.446 74 2.424× 10−4

EH1,1 1.452 09 2.496× 10−4 EH5,1 1.446 50 2.424× 10−4

HE4,1 1.451 84 2.496× 10−4 HE8,1 1.444 32 1.900× 10−4

EH2,1 1.451 32 5.192× 10−4 EH6,1 1.444 13 1.900× 10−4
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Figure 7.8: Experimental setup for the generation and the transmission of OAM through air-
core annular fiber. CL: fiber collimator; BS: non-polarizing beam-splitter; BE: beam expander;
M: mirror; SLM: spatial light modulator; PM: phase mask; L: lens; QWP: quarter wave plate;
FL: focusing lens; ACF: air-core fiber; PBS: polarizing beam splitter; CCD: ccd camera.

inner and outer radius of the doughnut beam is a function of the topological charge ` [139]:

E(x, y) ∝ (x · jy)|`| exp

{
−
(
x2 + y2

w2

)}
(7.1)

where w is the Gaussian beam radius at focus. Dr. Pravin Vaity solved the coupling problem
using what we call a perfect vortex beam, an OAM beam were both inner and outer radius can
be controlled [140].

Figure 7.8 shows the experimental setup for coupling of a perfect OAM beam with different
topological charges into air-core annular fiber. The beam from a semiconductor laser with a
single mode fiber patch cord is collimated by a collimating lens. The beam is split in two parts.
A single perfect OAM mode is generated per the method described in the previous section.
As the SLM requires linearly polarized light, a quarter wave plate converts the beam to right
or left circularly polarized light, before it is coupled into the fiber. At the output of the fiber,
a quarter wave plate and a polarizing beam splitter are used to bring the beam back to linear
polarization. Finally, the beam is interfered with the second part of the incident beam, to get
the characteristic spiral pattern that allows the identification of OAM beams.

In Fig. 7.9 and 7.10, we present experimental results after propagation of OAM modes in
85 cm of our air-core fiber. We excited and observed nine different OAM orders (` = 1 to 9),
as well as the fundamental mode. The presence of OAM in the generated modes is confirmed
through interferometry. The number of spiral arms is equal to the topological charge of the
mode. We also confirmed excitation of both positive and negative order OAM modes, in both
right- and left- circular polarization, confirming that a total of 36 information bearing modes,
with topological charges from ` = 0 to ` = 9, are supported by this ACF. Unfortunately, we
were not able to transmit OAM modes over a longer fiber span, due to the high insertion losses
we faced. Experimental manipulations were performed by Dr. Pravin Vaity.

Experiments demonstrated that the number of supported modes in the air-core annular fiber
is greater than what was expected from simulation (two more OAM modes than expected).
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Figure 7.9: OAM beam interference with Gaussian beam, after transmission in fiber (` =
0 to 5). [Credit: Pravin Vaity.]
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Figure 7.10: OAM beam interference with Gaussian beam, after transmission in fiber (` =
6 to 9). [Credit: Pravin Vaity.]

However, the fiber was very short, and we suspect these higher modes are less stable and
slowly leaking, because we consistently observed heightened sensitivity to fiber perturbations
for modes OAM8,1 and OAM9,1. Therefore, the number of observed modes is consistent with
predictions.

We proposed a fiber profile able to guide a large number of OAM modes. Such fiber could
have applications in short-reach telecommunications, or in any field where the transmission
of different OAM modes through optical fiber could be useful. We proposed a novel way of
shaping OAM beams, to form perfect vortex beams that can match annular fiber profiles. This
kind of beam shaping is necessary because conventional free-space OAM beams usually do not
match the profile of annular-core fibers. Using perfect OAM beam generation, we now have

108



a tool that gives the freedom of being able to couple OAM beams with any desired annular
fiber profile. Finally, we successfully demonstrated the transmission of OAM modes through
a special designed fiber. To the best of our knowledge, this is the highest reported number of
OAM modes transmitted through an optical fiber.
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Chapter 8

A family of ring-core fibers

We know that, to support OAM modes, the fiber must exhibit 1) large effective index sepa-
ration between vector modes to minimize intermodal coupling between OAM modes and to
avoid degeneracy into LP modes, and 2) a fiber profile that is compatible with the doughnut
shaped OAM fields. Those two characteristics lead to the choice of a fiber design with an
annular profile, or a ring-core fiber (RCF), with a high index contrast [84].

The fiber proposed in Chapter 7 had both those characteristics. However, it was designed
using iterative search through numerical simulations, without a theoretical model to justify
the optimality of the chosen parameters. Thus it is difficult to compare experimental results
obtained using this fiber with an analytical model to explain them. To get a deeper under-
standing of the OAM modes in optical fibers, we decided to design a simpler fiber. The goal
is not to propose a better fiber than the one proposed in the preceding chapter, but to obtain
a fiber that will be easier to describe using theoretical models.

For ease of both analysis and fabrication, we target the design, production, and characteriza-
tion of a simple step-index, ring-core profile (RCF). While more complex profiles, e.g., with
graded index [98], with hollow core [95], or with a trench of lower index in the cladding [2],
could potentially improve fiber performance, their design cannot be tackled as easily analyt-
ically. Our interest is twofold: first system performance, but also greater understanding of
parameter impact on performance in the transition from design to fabrication. We have a
theoretical basis to relate step-index parameters to fiber characteristics such as number of
supported modes and their relative effective index separation. By concentrating on step-index
RCF we can relate measured fiber characteristics to design parameters in a straightforward
manner.
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8.1 Choice of fiber parameters

In the design of an optical fiber, many parameters need to be determined. Some parameter
values are imposed by physical constraints, e.g., the use of a silica cladding, or a given fiber
fabrication process. Other parameter values are determined by the characteristics we want to
achieve. We must also take into account the potential impact of fiber imperfections induced
by the fabrication process.

Because fiber preform produced by the modified chemical vapor deposition (MCVD) process
is the costliest part of fiber fabrication, we adopt a novel technique to sweep parameters of a
family of OAM fibers at comparable cost to a single fiber fabrication. The family of fibers could
be created by drawing five different fibers from a single preform. By changing the drawing
speed at several points in the fiber drawing, we will create fibers with different diameters. As
no couplers or definite diameters currently exist for OAM-transmitting fibers, we thought this
would incur no greater experimental difficulty, as a free-space coupling system must be used
in any case. This was a mistake. A better approach would be to etch the fiber preform to
achieve a standard 125 µm fiber diameter, for each drawn fiber.

The ratio between the inner and outer radius of the core will remain constant, but each fiber
will have different modal characteristics. In theory, one fiber will be superior to the other
(the true design target), however variations during the fabrication of the fiber could favor
a neighboring target value. More importantly, we will produce many closely related fiber
specimens, facilitating experimental comparisons and inferences for our design process.

The first design goal to be set is the number of modes we want our fiber to support. The
fundamental mode (HE1,1 or LP0,1) is always present and can be used for multiplexing, how-
ever, it is not really an OAM mode as it cannot carry orbital angular momentum (topological
charge is zero). The first OAM modes are OAM±1,1, based on the HE2,1 vector mode. The
second set of OAM modes is OAM±2,1 composed of HE3,1 or EH1,1 modes. We elected to
target three fibers supporting OAM±1,1 modes and two fibers supporting both OAM±1,1 and
OAM±2,1 modes. The family of fibers we design will then have three fibers supporting four
information channels, and two fibers supporting eight information channels.

The RCF profile was illustrated in Chapter 4, on Fig. 4.1. We target a specific ratio ρ = r1/r2

constant across fibers, a value used for the production of the preform. The external cladding
diameter Φclad must be between 80 µm and 200 µm, otherwise the fiber would be too fragile.
The value of n1 is determined by the refractive index of the silica cladding. The refractive
index of the ring-core can be varied by adjusting the composition of the glass. Finally, to
favor the transmission of OAM modes, we will target a refractive index separation ∆neff only
slightly above a 1× 10−4 threshold. This was demonstrated to reliably support OAM modes
[40, 95]. All these criteria are summarized in Table 8.1.
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Table 8.1: List of design criteria for RCF family.

Parameter Target

#1 Number of information channels (number of OAM modes)
– Fibers 1, 2, 3 4 (2)
– Fibers 4, 5 8 (3)

#2 Inner / outer core radius ratio ρ = r1/r2 fixed
#3 Cladding diameter 80 µm ≤ Φclad ≤ 200 µm

#4 Minimum effective index separation ∆neff ≥ 1× 10−4

Table 8.2: RCF fiber index parameters.

Wavelength λ 657.6 nm 1550 nm

Cladding (silica) n1 1.456 1.444
Ring core (SiO2GeO2) n2 1.487 1.474
Molar fraction of GeO2 in SiO2 X 0.20
Refractive index contrast ∆n 0.030

A high refractive index contrast favors the separation of the effective indexes of the modes
[2, 95, 98]. However, material constraints must be considered, as too high GeO2 doping causes
the glass to break. We therefore fix n2 to the highest possible value we can reach without
compromising the integrity of the preform. This value will be ∆n = n2 − n1 = 0.03 at
λ = 1550 nm. This corresponds to a 20% molar fraction of GeO2 in SiO2. We neglect the
presence of any other materials, such as phosphorus, that might be present in the doped silica.
Material indexes are modelized using formulas presented in Appendix B. The fiber refractive
index parameters used in our simulations are summarized in Table 8.2.

Having fixed refractive indexes n1 and n2, the choice of inner and outer radii r1 and r2

remains, as it will determine the number of guided modes supported by the fiber, and the
minimal distance ∆neff between the effective indexes of the supported modes.

In Chapter 4, we developed cutoff equations for RCF. In Chapter 6, we presented the modal
map, a tool to help in fiber design. We will now use this tool to design our family of fibers.
In Fig. 8.1, we plot an augmented modal map, using the fiber parameters determined so far.
Regions delimited by cutoff curves give us the number of guided modes supported by a given
fiber design.

Consider the four regions delimited by the black cutoff curves. The white region (labeled I) is
where parameters lead to a monomode fiber. This region is separated from the next region by
the cutoffs for TE0,1, TM0,1, and HE2,1 modes (curves are superimposed). In the next region
(II), fiber supports OAM±1,1 mode, and ∆neff is the minimal separation between TE0,1, TM0,1,
and HE2,1 modes. Then we have the cutoffs of EH1,1 and HE3,1 modes (curves tightly spaced).
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Figure 8.1: Augmented modal map, as function of core radius ratio ρ and normalized frequency
V . Horizontal red dashed line is the chosen ρ parameter, while dots indicate chosen fiber
parameters. For the simulation, n1 = 1.444 and n2 = 1.474.

The third region (III) corresponds to fibers supporting both OAM±1,1 and OAM±2,1 modes.
In that region ∆neff refers to the minimum mode separation within both families. Finally, at
bottom right we have the cutoff of HE1,2 mode; the region under that line (IV) also includes
all other modes and HE1,2. We want to avoid that region, because modes with higher radial
order (i.e., with m ≥ 2) are more difficult to multiplex and demultiplex. The m = 1 solution
with a single intensity ring have been the focus of data transmission demonstrations as they
are easier to manipulate, given the paucity of components available today for OAM. There is
the added complication of finding a design that avoids crosstalk between modes of different
radial order, since modes with m > 1 have effective indexes with a different slope, resulting in
effective index curves that cross at some wavelengths, thereby causing ∆neff to become very
small.

The goal is to choose a fixed value of ρ (the ordinant) along which five values of V (the
abscissa), so as to obtain five targeted fibers with large ∆neff, preferably above our threshold
of 1× 10−4, i.e., as dark as possible in the colormap and avoiding lighter colors. We also
want to avoid modes with m parameter greater than one, otherwise the fiber would support
modes having concentric rings of intensity in their fields. Finally, it is desirable to have fiber
parameters that are significantly away from cutoff, as modes near cutoff are less tolerant to fiber
imperfections. The set of five fibers, once fabricated, will allow us to compare the simulated

113



Table 8.3: Geometry of the designed RCF fibers (rounded to the second decimal).

Fiber r1 r2 Φclad V (1550 nm)

1 0.86 µm 2.44 µm 110 µm 2.9318
2 0.97 µm 2.78 µm 125 µm 3.3316
3 1.09 µm 3.11 µm 140 µm 3.7314
4 1.24 µm 3.56 µm 160 µm 4.2644
5 1.40 µm 4.00 µm 180 µm 4.7975

Table 8.4: Effective indexes of the modes in RCFs (at 1550 nm).

Fiber HE1,1 TE0,1 HE2,1 TM0,1 EH1,1 HE3,1

1 1.4584 1.4480 1.4478 1.4477 — —
2 1.4601 1.4515 1.4513 1.4511 — —
3 1.4615 1.4544 1.4543 1.4541 — —
4 1.4630 1.4576 1.4575 1.4573 1.4474 1.4473
5 1.4643 1.4601 1.4600 1.4598 1.4514 1.4513

characteristics with measured fiber properties. The first three should support the LP1,1 mode
group (OAM1,1) and the two last ones should also support the LP2,1 mode group (OAM2,1).
Taking the goals as described, we chose a design illustrated in Fig. 8.1 by a horizontal red
dashed line at the selected value of ρ = 0.35. Five dots for the V values selected correspond to
the five values of r1 and r2 indicated in Table 8.3. Fiber 1 has the smallest cladding diameter,
while fiber 5 has the thickest.

8.2 Simulation of modal properties

Effective indexes of the different modes are numerically calculated using the transfer-matrix
method [118]. Results are summarized in Table 8.4. We also plot, in Fig. 8.2, normalized
propagation constant as a function of normalized frequency for all the guided modes. In this
figure, vertical dotted lines indicate V for the different fibers when λ = 1550 nm. For the
transmission of OAM modes, we are interested in the separation between the effective indexes
within a mode group (∆neff). We target this separation to be as large as possible, and at least
1× 10−4 (criteria #4). The calculated effective index separations are given in Table 8.5, and
plotted on Fig. 8.3. As we can see, our design criteria is respected for three fiber designs, but
not for fiber 1 and fiber 5. This will allow us to test the stability of OAM modes vis-à-vis our
threshold of 1× 10−4.

We saw in Chapter 1, that the group velocity is related to the first derivative of the effective
index (1.49). The derivative of the effective index is calculated, using five-points stencil (see
Section A.4), to obtain the group index (1.50). On Fig. 8.4, we plot the group index as function
of the core radius, for our RCF design (19% GeO2 doping in the ring-core), at 1550 nm. In
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Figure 8.2: Normalized propagation constant as function of normalized frequency, in RCF.
λ = 1550 nm, ρ = 0.35, n1 = 1.444, n2 = 1.474.

Table 8.5: Effective index separation within mode groups (at 1550 nm).

Fiber TE0,1–HE2,1 HE2,1–TM0,1 EH1,1–HE3,1

1 1.9475× 10−4 9.8276× 10−5 —
2 1.8798× 10−4 1.4943× 10−4 —
3 1.6817× 10−4 1.6715× 10−4 —
4 1.4076× 10−4 1.6484× 10−4 1.2135× 10−4

5 1.1757× 10−4 1.5067× 10−4 8.0648× 10−5

this case, we no longer can use the V number for the x-axis, as group index is influenced
differently by wavelength and by core radius. Ploting it as function of the core radius is the
only way to display all five fibers on the same graph. Group index values for the five RCF are
summarized in Table 8.6.

8.3 Fiber fabrication

The optical fibers were fabricated in-house with modified chemical vapor deposition (MCVD)
and fiber drawing facilities. Two steps were used in order to produce the correct preform
geometry. First, adequate concentrations of SiO2 and GeO2 were deposited to produce the
ring core layer, followed by a deposit of SiO2 to match the index profile cladding. Finally, the
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Figure 8.4: Group index of RCF, as function of outer radius of the ring-core (r2). λ = 1550 nm,
ρ = 0.35, n1 = 1.444, n2 = 1.474.
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Table 8.6: Group indexes of the modes in RCFs (at 1550 nm).

Fiber HE1,1 TE0,1 HE2,1 TM0,1 EH1,1 HE3,1

1 1.4897 1.4924 1.4922 1.4915 — —
2 1.4904 1.4959 1.4959 1.4955 — —
3 1.4909 1.4971 1.4971 1.4969 — —
4 1.4914 1.4973 1.4974 1.4974 1.4997 1.4999
5 1.4919 1.4971 1.4971 1.4971 1.5016 1.5019

(a) Fiber 1 (b) Fiber 2

(c) Fiber 3 (d) Fiber 4

Figure 8.5: Optical microscope photographs of RCFs [Credit: Steeve Morency].

tube was collapsed to produce the glass preform. The ring-core diameter was controlled during
the fiber drawing process to achieve the desired geometry of the fiber. Figure 8.5 shows optical
microscope photographs of the fiber ends, for RCF fibers 1 to 4 (we did not took photograph
of fiber 5). Measured diameter is displayed. The ring-core is the bright circle in the middle of
the fiber.
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The fiber refractive index profile (RIP) of fibers 2, 3, and 4 was measured using an EXFO
NR-9200 refractometer, operating at 657.6 nm. On Fig. 8.6, we plotted the measured profiles
(orange), compared the the designed profile (green). We only show the measurement for the
center of the fiber (|r| < 10 µm) to clearly see the profile of the ring-core. As we can see, the
fabricated fiber is a relatively good match to the designed profile, but the step transitions are
smoother than expected. This could be caused by the fabrication process; it is also possible
that the 0.4 µm spatial resolution of the RIP profiler exaggerates this smoothness.

We successfully transmitted OAM modes through the fabricated fibers, generating OAM
modes in free-space using a spatial light modulator (SLM), and coupling the OAM beam
into the fiber. The ring intensity profile was measured, as well as an interference pattern con-
firming the characteristic OAM spiral form. Representative measurements for fiber 2, after
transmission through 2 m, are presented in Fig. 8.7. The intensity profile is not as perfectly
ring-shaped for all fiber samples, especially when transmitting over a longer distance, because
of the coupling between modes. However, in all cases, including transmissions between 1
and 1.5 km, we could visualize the spiral interference pattern, confirming the presence of the
launched OAM modes. Coupling into RCF4 and RCF5 was particularly challenging due to
the size of fiber (poor match with available bare fiber adapters) and, in the case of RCF5, its
brittleness.

8.4 Effective index measurement

To verify calculated values for effective index, we wrote a weak FBG on the fibers, then we
analyzed the reflectogram, using the method described in [141]. The designed grating length
is 40 mm with a tanh shape apodization (coefficient s = 4), and the mask period is ΛPM =

1070 nm. For each fiber design, we measured the Bragg reflection on three different samples,
and we averaged the wavelength positions of the reflection peaks. A sample reflectogram is
given on Fig. 8.8. Figure 8.9 was generated by taking reflectograms for all five fibers (including
that shown in Fig. 8.8), scaling each reflectogram so that the peak values appear similar,
and plotting them along a common x-axis. The y-axis remains roughly in dB and relative
heights within a reflectogram are noteworthy, however absolute heights from reflectogram to
reflectogram convey no information. FBG writing and reflection measurements were performed
by Dr. Lixian Wang.

On fibers 1 and 3, we measured four different peaks on the second mode group, instead of
the three expected peaks. We suspect the two central peaks to be the result of birefringence,
caused by fiber imperfections. Therefore, we considered the average between the wavelengths
of those two peaks as the reflection wavelength of the HE2,1 mode.

We cannot rely on the absolute measured neff values, as many parameters can shift this value,
e.g., fiber stress during FBG writing and temperature when performing the measurement.
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(e) fiber 4, x-scan
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(f) fiber 4, y-scan

Figure 8.6: Refractive index measurement of ring-core fibers, at 657.6 nm. Measurements
performed by Patrick LaRochelle.
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(a) OAM−1,1 intensity (b) OAM+1,1 intensity

(c) OAM−1,1 interference pattern (d) OAM+1,1 interference pattern

Figure 8.7: Output intensity profiles after 2 m transmission of OAM mode in ring-core fiber 2
[Credit: Pravin Vaity].
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Figure 8.8: FBG reflectogram for RCF 2 (sample 2). Measures performed by Lixian Wang.
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Figure 8.9: Superimposed FBG reflectogram for all RCFs. This allows comparison of reflection
wavelengths for the different fibers. All reflectogram were vertically aligned and scaled to fit
the graph, hence absolute heights from reflectogram to reflectogram convey no information.
Measurement performed by Lixian Wang.
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Table 8.7: ∆neff measured values (using FBG), compared to calculated values.

TE0,1 – HE2,1 HE2,1 – TM0,1 EH1,1 – HE3,1

Fiber 1 measured ∆neff 1.83× 10−4 1.62× 10−4

simulated ∆neff 1.89× 10−4 0.94× 10−4

absolute error 0.65× 10−5 6.83× 10−5

relative difference 3.56% 42.13%

Fiber 2 measured ∆neff 1.68× 10−4 1.41× 10−4

simulated ∆neff 1.83× 10−4 1.45× 10−4

absolute error 1.52× 10−5 0.40× 10−5

relative difference 9.09% 2.82%

Fiber 3 measured ∆neff 1.79× 10−4 1.92× 10−4

simulated ∆neff 1.64× 10−4 1.61× 10−4

absolute error 1.54× 10−5 3.07× 10−5

relative difference 8.62% 16.00%

Fiber 4 measured ∆neff 1.66× 10−4 1.85× 10−4 0.95× 10−4

simulated ∆neff 1.38× 10−4 1.60× 10−4 1.18× 10−4

absolute error 2.83× 10−5 2.44× 10−5 2.27× 10−5

relative difference 17.07% 13.21% 23.83%

Fiber 5 measured ∆neff 1.54× 10−4 1.91× 10−4 0.71× 10−4

simulated ∆neff 1.15× 10−4 1.47× 10−4 0.79× 10−4

absolute error 3.86× 10−5 4.45× 10−5 0.74× 10−5

relative difference 25.13% 23.24% 10.42%

However, since we expect the effective indexes of all modes to shift together, we can compare
the measured effective index separation within mode groups (∆neff) with the predicted values.
Results are summarized in Table 8.7. The relative difference is given by the absolute error
divided by the measured ∆neff. As we can see, there is some variation between measured and
simulated values. However, this variation always is at the fifth or the sixth decimal of the
effective index. We compare very small values, and the difference can be attributed to both
non-ideal fabricated fiber – e.g., longitudinal variation of the index profile along the fiber,
core ellipticity (i.e., form birefringence), any bends of the fiber, and environmental variations
(moving air, temperature, etc.) – and measurement errors.

8.5 Group index measurement

The group index (ng) is relative to the propagation speed of a pulse, for a given mode in a
given fiber. It is related to the group velocity (vg), and can be measured from the time it
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Table 8.8: Lengths of ring-core fibers used for time-of-flight experiment.

Fiber RCF1 RCF2 RCF3 RCF4 RCF5
Length (m) 1500 1580 1500 1130 1170

PC

fork grating

λ/4

OSA

Figure 8.10: Experimental setup for TOF using fork-grating.

takes for a pulse (Tg) to be transmitted through a given length of fiber (L).

ng =
c

vg
=
cTg
L

(8.1)

However, directly measuring the velocity of a pulse can be complex. We rather send a train of
pulses trough a length of fiber, and we synchronize the output on an oscilloscope. This way,
we can precisely measure the delay between two pulses (∆Tg), to get the relative group index
(∆ng).

For the experiment, we sent a 40 ps optical pulse that repeats every 51.2 ns, through a fiber
sample. The length of each fiber sample is summarized in Table 8.8, and was determined by
the availability of each fiber. Because the SLM is sensible to high peak power, we used a fork
grating, imprinted in a glass plate, to generate OAM modes that we coupled into the fiber.
This was necessary to get enough power at the end of the fiber. By adjusting the position of
the fiber relatively to the incident beam, it was possible to excite the different modes of the
fiber altogether. Finally, a quarter wave-plate allowed to favor either OAM±1,1 (HE2,1), or
TE0,1 and TM0,1 modes. Experimental setup is illustrated on Fig. 8.10.

Experiment results are plotted on Fig 8.11, for input with linear polarization. The horizontal
axis is the time scale; the zero on this axis is arbitrary as it is related to the synchronization of
the oscilloscope. Vertical axis is in logarithmic scale, and gives the read voltage. We did not
displayed the voltage values, as this is also arbitrary. The important data from those figures
is the relative timing between the peaks.
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Figure 8.11: Time-of-flight experiment results, using linear polarization, for all RCFs.

Table 8.9: Measured values for TOF experiment in RCF1

Peak Tg (ns) ∆Tg (ns) ∆ng · 103 Value (mV)

noise 74.453
Peak 1 114.737 — — 206.225
Peak 2 118.575 3.839 0.728 89.872
Peak 3 122.097 7.360 1.397 121.353
Peak 4 124.378 9.641 1.829 84.453

Changing the polarization from right-circular to left-circular, or to linear, modifies the relative
power of each peak. However, the position of the peaks remains stable. Usually, linear
polarization allows to see peaks for all the vector modes. Tables 8.9–8.13 give measured
values (time and voltage), for each RCF, the voltage being the maximum red value within the
different input polarizations. Noise value is the median value among the data. Finally, given
time delay and group index are relative to the first measured peak.

The values we want to compare with simulations are the values in the fourth column of
Tables 8.9–8.13 (∆ng). From the simulated group indexes of Table 8.4, we compute the relative
group indexes in Table 8.14. On Table 8.15, we compare simulated values with measured ones.
The value is the difference between simulated and measured ∆ng, while the percentage is the
difference relative to simulated value.

As it was for effective index measurements, measured group index values are different than
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Table 8.10: Measured values for TOF experiment in RCF2

Peak Tg (ns) ∆Tg (ns) ∆ng · 103 Value (mV)

noise 15.273
Peak 1 253.581 — — 36.371
Peak 2 276.548 22.967 4.358 38.764
Peak 3 279.442 25.861 4.907 43.580
Peak 4 280.651 27.070 5.136 33.787

Table 8.11: Measured values for TOF experiment in RCF3

Peak Tg (ns) ∆Tg (ns) ∆ng · 103 Value (mV)

noise 23.097
Peak 1 72.765 — — 30.544
Peak 2 99.896 27.131 5.148 46.052
Peak 3 101.703 28.938 5.491 59.975
Peak 4 102.387 29.621 5.620 41.532

Table 8.12: Measured values for TOF experiment in RCF4

Peak Tg (ns) ∆Tg (ns) ∆ng · 103 Value (mV)

noise 87.617
Peak 1 29.956 — — 113.806
Peak 2 49.810 19.853 3.767 186.508
Peak 3 50.579 20.623 3.913 242.673
Peak 4 50.872 20.916 3.969 203.291
Peak 5 57.184 27.228 5.166 110.430
Peak 6 57.954 27.998 5.312 115.208

Table 8.13: Measured values for TOF experiment in RCF5

Peak Tg (ns) ∆Tg (ns) ∆ng · 103 Value (mV)

noise 21.459
Peak 1 123.033 — — 50.010
Peak 2 142.130 19.096 3.623 31.987
Peak 3 142.667 19.634 3.725 40.459
Peak 4 142.936 19.902 3.776 34.975
Peak 5 157.624 34.591 6.563 26.918
Peak 6 158.503 35.470 6.730 27.604
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Table 8.14: Relative group indexes (∆ng · 103) of the modes in RCFs (at 1550 nm).

Fiber TE0,1 HE2,1 TM0,1 EH1,1 HE3,1

1 2.707 2.453 1.835 — —
2 5.567 5.531 5.138 — —
3 6.232 6.276 6.062 — —
4 5.913 5.986 5.918 8.239 8.470
5 5.153 5.229 5.237 9.706 9.938

Table 8.15: Group index difference between simulation and measurement (·103)

Fiber TE0,1 HE2,1 TM0,1 EH1,1 HE3,1

1 0.881 (33%) 1.053 (43%) 1.112 (60%) — —
2 0.434 (8%) 0.623 (11%) 0.782 (15%) — —
3 0.739 (12%) 0.650 (10%) 0.902 (15%) — —
4 2.007 (34%) 2.021 (34%) 2.153 (36%) 3.074 (37%) 3.158 (37%)
5 1.537 (30%) 1.505 (29%) 1.464 (28%) 3.137 (32%) 3.210 (32%)

what we obtained from simulation. We suspect that the difference between the measured
refractive index profile, which is smoother, and the step-index profile we used for simulations
is the main culprit for this difference. However, the time of flight experiment confirms the
expected number of supported modes for each fiber. Comparing Fig. 8.11 with Fig. 8.4, we
can see that measured group indexes follow the same qualitative behavior than what we got
in simulation. For instance, group indexes for the first mode group are getting closer as the
fiber diameter increases; group indexes of the first mode group are closer to group index of
fundamental mode in fiber 1 than they are in the other fibers; first mode group is almost at
the same distance from fundamental mode and second mode group in fiber 5, while it is closer
to second mode group in fiber 4.

8.6 Discussion

Our simulations show that as expected the lower the number of supported modes, the easier it
is to design a fiber with a large effective index separation within mode groups. We can see this
in Fig. 8.1, where the darker area (corresponding to ∆neff ≥ 1× 104) is more extensive for the
region supporting only the first OAM mode (region II), than it is for the region supporting
more OAM modes (region III).

We fabricated one fiber preform which we used to engineer the family of five different fibers in
a single drawing run. The measured RIP shows a relatively good agreement between targeted
and realized profiles. The fact that all fibers but fiber 2 have unusual cladding diameters led
to unexpected challenges.
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Experimental manipulations also highlighted the impact of the core dimensions on OAM
coupling from free-space to fiber. Several lenses were tested via trial and error to achieve good
coupling of the free-space OAM beam with the RCF. The inner / outer core radius ratio ρ
also is important. In free-space OAM beams, this ratio is a function of topological charge; it
is lower for lower order OAM modes [2]. Therefore, the ideal coupling setup on a given fiber
is different for each mode, and a tradeoff is needed when simultaneously coupling all OAM
modes. A commercial OAM system will use multiplexers whose efficiency may ultimately also
vary with ρ, however these technologies are still under research [34, 51, 142].

Measurements on effective index performed using FBG, and measurements on group index
performed using time of flight, confirmed that the fabricated fibers support the expected
number of modes. We also observed high birefringence on fibers 1 and 3, probably caused
by imperfections induced to the fibers during the fabrication process. As the measurement
of effective index difference ∆neff requires very precise values, our conclusions are limited to
confirming that the effective index separation within mode groups is higher that 1× 10−4 for
most of the modes, as expected.

We proposed the design of a family of five ring-core fibers, using the modal map developed
in Chapter 6. We proposed a novel way of producing those five different fibers from a single
preform, to reduce production costs. We took advantage of the similarities and the differences
among those five fibers to better understand how the dimensions of a ring-core with a fixed
ρ parameter influence the modal characteristics of the fiber. Experimental manipulations of
the fabricated fibers allowed us to confirm that the modal behavior of the fabricated fibers is
similar to what was predicted by simulation, and therefore increased our degree of confidence in
simulation results. It confirmed that, considering the expected tolerances on fiber fabrication,
it is possible to fabricate OAM ring-core fibers that are in accordance with the theoretical
models. It also revealed some challenges that were not obvious from simulations, giving us
new design constraints to consider when fabricating RCF. We confirmed that our design targets
were reached, and we have a good knowledge of the modal characteristics of each fabricated
fiber.
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Conclusion

The use of the orbital angular momentum of light to encode data channels is a tangible
solution to increase the capacity of optical fiber links and to address the need for a higher
data bandwidth. This was established by some proof-of-concept systems [93]. However, we
lacked tools and models to easily design optical fibers tailored for the transmission of OAM
modes. The creation of such tools was addressed in this thesis.

In Part I, we summarized the notions of guided optics, physics, and computer science we
needed to design OAM fibers. Bringing together ideas from these various fields allowed us to
to master OAM fiber design presented in the balance of the thesis.

In Part II, we developed cutoff equations for three-layer fibers. Three-layer fibers, especially
ring-core fibers, are the basic building blocks for OAM fibers. By knowing the cutoff equations,
we can more easily predict the number of modes supported by a given fiber design, and it
allows to focus on the design parameters needed to support a given number of modes. Using
this information, we proposed a tool to help in fiber design, the modal map.

Finally, in Part III, we proposed two different OAM fiber designs. The fibers were designed
with the help of numerical simulations. Then they were fabricated, and we performed mea-
surements to confirm the accuracy of our numerical models.

Obviously, there is no perfect OAM fiber design. It is always a tradeoff between the number
of supported modes, their purity, and their stability. There are also many constraints, on fiber
material and geometry, on the fabrication process, and on the coupling with the multiplexer
and the demultiplexer stages. For instance, a larger number of supported modes can lead to
more coupling between the modes. A fiber core that is too small can make the light difficult
to couple. An index contrast that is too large can lead to unwanted elliptical polarization.
Hopefully, the comprehension of the characteristics needed to design a good OAM fiber is
slowly evolving [84]. The tools we proposed help in the process of choosing the right design
parameters, for a given application.

At the end of this thesis, many questions remain open. This is not unexpected, since we
explored only some specific aspects of a new and vast topic. Significant effort is already
underway on related topics, like designing better OAM fibers, designing OAM multiplexers
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and demultiplexers, both using free-space optics and using integrated photonic, and studying
the performance of OAM communication systems. We conclude by raising some open topics
that could be developed by future work.

8.7 Openings for future work

8.7.1 The simulation software

In Chapter 3, we presented the numerical methods needed to solve for fiber modes and other
related properties. We wrote a simulation software based on those numerical methods, and
on the algorithms we developed. We used this software to perform all the simulations in this
thesis. The simulation software is publicly available on GitHub∗, and we hope that other
developers and researchers will continue to use it, and to improve it.

Among the possible improvements for the software, one aspect is the speed of the simulator.
Best simulation enables enable the user to quickly see the effects on the fiber properties when
he modifies fiber parameters, especially when the fiber design is complex. When we profiled
the code, we realized that the bottleneck of our solver is computing the Bessel functions,
and solving for the linear systems. In Algorithm 3.2, each time the Coefficients function
is called, two Bessel functions and two Bessel function derivatives need to be evaluated. In
theory, it could be performed in parallel on different processes. Similarly, the 4 × 4 linear
solver could easily be parallelized to take advantage of multiple processors. However, those
tasks by themselves execute very quickly; it is the number of times those functions are called
that makes them slow down calculation. The overhead required by the parallelization of those
functions would be higher than the resulting gain.

However, there exists a device able to perform thousands of operations simultaneously, the
graphics processing unit (GPU), also know as general purpose GPU (GPGPU) in our case
of interest. To be effectively used, a GPU needs to perform the same operations simultane-
ously, on different data sets. To efficiently use the GPU, we unroll the for loop at line 7 of
Algorithm 3.3. Each cell of the GPU evaluates the CharFunc function for a specific value
of neff, simultaneously. When a change of sign is detected between two consecutive values of
neff, we can repeat the evaluation, but between the two neff values that lead to a sign change.
We repeat the procedure until the interval between consecutive values of neff is small enough
to reach the wanted precision. Since all neff values are evaluated simultaneously, the time
required to find all the roots of the characteristic function is equivalent to only a few calls
to the function. Obviously, the number of points to evaluate needs to be carefully adjusted
to the GPU used, to get optimal performance. Implementing this kind of algorithm could
potentially dramatically increase the performances of the mode solve.

∗https://github.com/cbrunet/fibermodes
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Another possible improvement for the mode solver would be to generalize it for other kinds of
fiber. At Present, we only solve for modes of step-index fibers. However, it could be possible to
also solve for graded-index fibers, by using a fourth order Runge-Kutta to numerically solve the
coupled differential equations of the modes [17]. All we need in that case are the analytical
expressions for the refractive index and its derivative. Therefore, it could be possible to
implement solvers for common gradient functions, as parabolic or as super-Gaussian functions.

8.7.2 The cutoff equations

In Chapters 4 and 5, we found analytical expressions for the cutoff of three-layer fibers. The
generalization of those equations for more than three layers is probably intractable, except
for some very specific fiber geometries. However, the mathematical tricks we used to find the
analytical expressions could be the inspiration for an algorithm, based on the layer-by- layer
method and on the cutoff expressions for ring-core fibers, to numerically solve for the cutoff
of any multi-layer fiber. While success is not certain, it would certainly worth exploring this
avenue.

8.7.3 Improvements in fiber design

The first OAM fiber we designed, the air-core fiber, had modes that were stable over time
(hours). However, they are sensitive to fiber bends, especially for lower order modes (OAM0,1

through OAM3,1). This is consistent with observations from [97]. More simulations and mea-
surements are needed on this fiber to better characterize performance and achieve a deeper
understanding of OAM mode transmission. For instance, effective indexes could be measured
using the reflectogram of a Bragg grating [143]. Bending and twist losses could be investi-
gated more systematically experimentally, and compared to numerical simulations of these
impairments. Our experiments were limited to a short length of fiber as we were not able to
efficiently transmit the light on longer spans of fiber. We observed high loss in of our fiber,
that we estimate to a few dB per meter, and we suspect spin-orbit coupling to be the cause of
those losses [144, 145]. Losses must be reduced to be able to measure channel crosstalk using
the fiber in an optical communications setup.

The spin-orbit coupling theory itself could be simplified and improved. We hope that a simple
relation could be found to relate the parameters of a ring- core fiber with the ellipticity of the
polarization of its supported OAM modes. This would allow to use it as a new parameter to
optimize in the design process of OAM fibers.

A recent paper suggested that the spin-orbit coupling could be reduced by the use of a graded-
index profile [146]. However, the design they proposed exhibits an index contrast that makes
the fabrication of that fiber unpracticable. We think that a more realistic approach would
be to design a ring-core graded-index fiber, similar to [126]. With sufficient effective index
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separation of the modes, this fiber could potentially suffer less from spin-orbit coupling, and
it could be easier to couple the light into the fiber.

When we experimented with the family of ring-core fibers presented in Chapter 8, we realized
that while free-space coupling is used for advanced experimentation, simple characterization of
power, etc. would be greatly facilitated if we could exploit telecom equipment and measurement
systems made for 125 µm fibers. Furthermore, it could be possible to draw fibers with different
core dimensions, but with the same cladding diameter, by etching the preform as needed, before
fiber drawing. Were we to again fabricate a family of fibers from a single preform, this is the
approach we would prefer.

8.8 Closing remarks

The orbital angular momentum is a fantastic property of the light, with a lot of potential
applications. The use of the OAM for spatial-division multiplexing in optical communications
is only a tiny subset of all those applications. We cannot predict yet if commercial commu-
nication systems will use OAM one day or not, neither we can know what form it will take
(optical fibers, free-space optics, integrated circuits). We begin to have some OAM optical
fibers, but we do not have a crystal ball yet.

One thing is certain, it is worth doing this research on OAM modes for telecommunications.
History tells us that a many great discoveries were achieved when searching for something else:
Teflon nonstick coating was discovered when attempting to create a new refrigerant; Fermat’s
last theorem is not really useful in itself, but it allowed the development of a lot of valuable
mathematical tools; and three-layer step-index cutoff equations were discovered when trying
to design and model OAM fibers.
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Appendix A

Formulas

This appendix contains common formulas used throughout the thesis. It first introduces vector
operators notation and definitions, and gives some related identities for these operators. Then
it introduces the Bessel functions, and lists some Bessel function identities. Finally, it presents
the five points stencil method used for the numerical estimation of the derivatives.

A.1 Vector operators and identities

F is a vector field. ϕ is a scalar field.
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A.1.1 Operators

Name Notation Definition Definition
(Cartesian coordinates) (Cylindrical coordinates)

Vector field F Fxx̂ + Fyŷ + Fzẑ Fy r̂ + Fφφ̂+ Fzẑ

Gradient ∇ϕ ∂ϕ

∂x
x̂ +

∂ϕ

∂y
ŷ +

∂ϕ

∂z
ẑ

∂ϕ

∂r
r̂ +

1

r

∂ϕ

∂φ
φ̂+

∂ϕ

∂z
ẑ

Divergence ∇ · F ∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

1

r

∂(rFr)

∂r
+

1

r

∂Fφ
∂φ

+
∂Fz
∂z

Curl ∇× F

(
∂Fz
∂y
− ∂Fy

∂z

)
x̂ +(
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∂z
− ∂Fz

∂x

)
ŷ +(
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)
ẑ

(
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∂z
− ∂Fz

∂r
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ẑ

Laplacian ∇2ϕ
∂2ϕ
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+
∂2ϕ
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∂2ϕ
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∂z2

Vector Laplacian ∇2F ∇2Fxx̂ +∇2Fyŷ +∇2Fxẑ

(
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∂φ

)
r̂ +(

∇2Fφ −
Fφ
r2

+
2

r2
∂Fr
∂φ

)
φ̂ +

∇2Fzẑ

A.1.2 Identities

Curl of curl:
∇× (∇× F ) = ∇(∇ · F )−∇2F (A.1)

Curl product rule:
∇× (ϕF ) = (∇ϕ)× F + ϕ∇× F (A.2)

Divergence product rule:
∇ · (ϕF ) = (∇ϕ) · F + ϕ(∇ · F ) (A.3)

A.2 The Bessel functions

Linear combinations of Bessel functions of the first kind Jν(ux) and of the second kind Nν(ux)

(also known as Yν(ux)) are solutions to the differential equation:

d2y

dx2
+

1

x

dy

dx
+

(
u2 − ν2

x2

)
y = 0 (A.4)
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Figure A.1: Ordinary Bessel functions of first (a) and second (b) kind.
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Figure A.2: Modified Bessel functions of first (a) and second (b) kind.

where ν is an integer, u and x are real numbers. ν is the order of the Bessel function, while
ux is the argument. Those functions are illustrated on Fig. A.1.

Linear combinations of modified Bessel functions of the first kind Iν(ux) and of the second
kind Kν(ux) are solutions to the differential equation:

d2y

dx2
+

1

x

dy

dx
−
(
u2 +

ν2

x2

)
y = 0 (A.5)

Those functions are illustrated on Fig. A.2.

Bessel functions are related to the modal solutions of cylindrical waveguides. Selected identities
are given in the following section. More details and properties can be found in specialized
literature, such as [130, chapter 9].

A.2.1 Selected Bessel function identities

The following identities where we produced from [17, Appendix A].
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Symmetry relations

J−ν(x) = (−1)νJν(x) N−ν(x) = (−1)νNν(x) (A.6)

I−ν(x) = Iν(x) K−ν(x) = Kν(x) (A.7)

Recurrence functions

Jν+1(x) =
2ν

x
Jν(x)− Jν−1 (A.8)

Nν+1(x) =
2ν

x
Nν(x)−Nν−1 (A.9)

Iν+1(x) = −2ν

x
Iν(x) + Iν−1 (A.10)

Kν+1(x) =
2ν

x
Kν(x) +Kν−1 (A.11)

Derivative of Bessel functions

dJ0(x)

dx
= −J1(x)

dN0(x)

dx
= −N1(x) (A.12)

dI0(x)

dx
= I1(x)

dK0(x)

dx
= −K1(x) (A.13)

dJν(x)

dx
= ±ν

x
Jν(x)∓ Jν±1(x) =

1

2
[Jν−1(x)− Jν+1(x)] (A.14)

dNν(x)

dx
= ±ν

x
Nν(x)∓Nν±1(x) =

1

2
[Nν−1(x)−Nν+1(x)] (A.15)

dIν(x)

dx
= ±ν

x
Iν(x) + Iν±1(x) =

1

2
[Iν−1(x) + Iν+1(x)] (A.16)

dKν(x)

dx
= ±ν

x
Kν(x)−Kν±1(x) = −1

2
[Kν−1(x) +Kν+1(x)] (A.17)

Asymptotic expansions

For x→ 0

J0(x) ' 1− x2

4
N0(x) '

(
2

π

)
lnx (A.18)

I0(x) ' 1 +
x2

4
K0(x) ' − lnx (A.19)

J1(x) ' x

2
− x3

16
I1(x) ' x

2
+
x3

16
(A.20)
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Jν(x) ' 1

ν!

(x
2

)ν
Nν(x) ' −(ν − 1)!

π

(
2

x

)ν
(A.21)

Iν(x) ' 1

ν!

(x
2

)ν
Kν(x) ' (ν − 1)!

π

(
2

x

)ν
(A.22)

xJ ′ν(x)

Jν(x)
'


−x

2

2
− x4

16
ν = 0

ν − x2

2(ν + 1)
ν > 0

(A.23)

xN ′ν(x)

Nν(x)
'


1

lnx
ν = 0

−1− x2 lnx ν = 1

−ν +
x2

2(ν − 1)
ν > 1

(A.24)

xI ′ν(x)

Iν(x)
'


x2

2
− x4

16
ν = 0

ν +
x2

2(ν + 1)
ν > 0

(A.25)

xK ′ν(x)

Kν(x)
'


1

lnx
ν = 0

−1 + x2 lnx ν = 1

−ν − x2

2(ν − 1)
ν > 1

(A.26)

For x→∞

Jν(x) '
√

2

πx
cos

{
x− π

2

(
ν +

1

2

)}
(A.27)

Nν(x) '
√

2

πx
sin

{
x− π

2

(
ν +

1

2

)}
(A.28)

Iν(x) ' exp(x)√
2πx

{
1− 4ν2 − 1

8x

}
(A.29)

Kν(x) '
√

π

2x
exp(−x)

{
1 +

4ν2 − 1

8x

}
(A.30)

Complex argument

Jν(jx) = jνIν(x) (A.31)

Nν(jx) = j(ν+1)Iν(x)− 2

π
(−j)νKν(x) (A.32)

Iν(jx) = jνJν(x) (A.33)

Kν(jx) =
π

2
(−j)ν [jJν(x)−Nν(x)] (A.34)
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A.3 Selected trigonometric identities

Euler’s formula:
exp(±jx) = cos(x)± j sin(x) (A.35)

Addition formula:
sin(A±B) = sinA cosB ± cosA sinB (A.36)

A.4 Stencil method for numerical estimation of the derivatives

The differentiation formula is given by [130, Table 25.2]:

dkf(x)

dxk

∣∣∣∣
x=x0

≈ k!

m!hk

m∑
i=0

Aif(x0 + (i−m/2)h) (A.37)

where m+ 1 is the number of points used for the derivation, k is the order of the derivative,
h is the distance between the points, and Ai are the coefficients, given in Table A.1.

Table A.1: Coefficients for five-point stencil (m = 4)

k A0 A1 A2 A3 A4

1 2 -16 0 16 -2
2 -1 16 -30 16 -1
3 -2 4 0 -4 2
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Appendix B

Refractive index calculation

B.1 Refractive index of Air

In most cases, we can assume that the refractive index of Air is 1. However, for more precise
calculations, we use the following formula [147], that is valid for dry air, at 15 ◦C, 101.325 kPa,
and with 450 ppm CO2 content, from 0.23 µm to 1.69 µm:

n− 1 =
0.05792105

238.0185− λ−2
+

0.00167917

57.362− λ−2
(B.1)

where λ is the wavelength, in µm.

B.2 Refractive index of silica

The refractive index of Fused silica (SiO2), also known as Fused quartz, is given by the well
known Sellmeier equation [138]:

n2 − 1 =
0.6961663λ2

λ2 − 0.06840432
+

0.4079426λ2

λ2 − 0.11624142
+

0.8974794λ2

λ2 − 9.8961612
(B.2)

where λ is the wavelength, in µm, and which is valid at 20 ◦C, from 0.21 µm to 3.71 µm.

B.3 Refractive index of doped silica

Refractive index of silica can be modified by the addition of other chemicals. The most
common dopant is germania (GeO2), used to increase the refractive index. The silimarity
between the Si and Ge elements allows to add a large proportion of germania to silica – up to
20%, and sometimes more – without breaking the cristaline structure of the glass. Another
dopand, Fluorine, is used to lower the refractive index of silica.
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Table B.1: Sellmeier coefficients, for silica [138] and germania [148].

Silica Germania

A1 0.696 166 30 0.806 866 42
A2 0.407 942 60 0.718 158 48
A3 0.897 479 40 0.854 168 31
`1 0.068 404 30 0.068 972 606
`2 0.116 241 40 0.153 966 05
`3 9.896 161 0 11.821 931

Table B.2: Coefficients for Claussius-Mossotti interpolation

i = 1 i = 2 i = 3

Silica Asi 0.204 515 457 8 0.064 516 762 58 0.131 158 315 1
zsi (µm) 0.061 308 073 20 0.110 885 984 8 8.964 441 861

Germania Bi −0.101 178 376 9 0.177 893 499 9 −0.106 417 958 1
Fluorine Bi −0.054 139 380 39 −0.178 858 882 4 −0.074 459 313 32

B.3.1 Silica doped with germania

The model we use is based on a simple linear relationship between the Sellmeier coefficients
of silica and germania, proposed by Fleming [148]:

n2 − 1 =

3∑
i=1

[SAi +X(GAi − SAi)]λ2

λ2 − [S`i +X(G`i − S`i)]2
(B.3)

where SAi, GAi, S`i, and G`i are Sellmeier coefficients of silica and Germinia, given in
Table B.1, X is the molar concentration of GeO2, and λ is the wavelength, in µm.

Another model, based on the Claussius-Mossotti interpolation, is given in [149]. However,
that model tends to be less precise when germania concentration is high, as it is the case with
OAM fibers; therefore we prefer Fleming’s model.

B.3.2 Silica doped with Fluorine

For silica doped with Fluorine, [150] gives formulas only for X = 1% and X = 2% concentra-
tions. To get a more generic formula, we use the Claussius-Mossotti interpolation from [149].
The formula is:

n2 − 1

n2 + 2
=

3∑
i=1

(Asi +XBi)λ
2

λ2 − z2si
(B.4)

where X is the molar concentration of the dopant, and λ is the wavelength, in µm. Coefficients
are given in Table B.2.

139



Bibliography

[1] C. Brunet, B. Ung, Y. Messaddeq, S. LaRochelle, E. Bernier, and L. Rusch, “Design
of an optical fiber supporting 16 oam modes,” in Optical Fiber Communication
Conference. Optical Society of America, 2014, p. Th2A.24. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2014-Th2A.24

[2] C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design,
fabrication and validation of an oam fiber supporting 36 states,” Opt. Express,
vol. 22, no. 21, pp. 26 117–26 127, Oct. 2014. [Online]. Available: http:
//www.opticsexpress.org/abstract.cfm?URI=oe-22-21-26117

[3] C. Brunet and L. A. Rusch, “System and method for optical fiber,” U.S. Patent
20 150 104 139, April, 2015. [Online]. Available: http://www.freepatentsonline.com/
y2015/0104139.html

[4] C. Brunet, P. Vaity, B. Ung, Y. Messaddeq, S. LaRochelle, and L. A. Rusch,
“Design of a family of ring-core fiber for oam,” in Optical Fiber Communication
Conference. Optical Society of America, 2015, p. M3D.1. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2015-M3D.1

[5] C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, and L. A.
Rusch, “Design of a family of ring-core fibers for oam transmission studies,”
Opt. Express, vol. 23, no. 8, pp. 10 553–10 563, Apr 2015. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10553

[6] C. Brunet, B. Ung, P.-A. Belanger, Y. Messaddeq, S. LaRochelle, and L. A. Rusch,
“Vector mode analysis of ring-core fibers: Design tools for spatial division multiplexing,”
J. Lightwave Technol., vol. 32, no. 23, pp. 4046–4057, Dec. 2014.

[7] C. Brunet, P.-A. Bélanger, and L. A. Rusch, “Exact expressions for vector mode cutoff in
three-layer step-index fibers,” May 2015, submitted to IEEE Journal of Selected Topics
in Quantum Electronics.

140

http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2014-Th2A.24
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-21-26117
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-21-26117
http://www.freepatentsonline.com/y2015/0104139.html
http://www.freepatentsonline.com/y2015/0104139.html
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2015-M3D.1
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10553


[8] P. Vaity, C. Brunet, Y. Messaddeq, S. LaRochelle, and L. Rusch, “Exciting oam modes
in annular-core fibers via perfect oam beams,” in Optical Communication (ECOC), 2014
European Conference on, Sept 2014, pp. 1–3.

[9] B. Ung, L. Wang, C. Brunet, P. Vaity, C. Jin, L. Rusch, Y. Messaddeq,
and S. LaRochelle, “Inverse-parabolic graded-index profile for transmission of
cylindrical vector modes in optical fibers,” in Optical Fiber Communication
Conference. Optical Society of America, 2014, p. Tu3K.4. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2014-Tu3K.4

[10] R. Essiambre and R. Tkach, “Capacity trends and limits of optical communication net-
works,” Proceedings of the IEEE, vol. 100, no. 5, pp. 1035–1055, May 2012.

[11] D. J. Richardson, “Filling the light pipe,” Science, vol. 330, no. 6002, pp. 327–328,
2010. [Online]. Available: http://www.sciencemag.org/content/330/6002/327.short

[12] C. Shannon, “A mathematical theory of communication,” Bell System Technical Journal,
The, vol. 27, no. 3, pp. 379–423, July 1948.

[13] S. Murshid, B. Grossman, and P. Narakorn, “Spatial domain multiplexing: A new
dimension in fiber optic multiplexing,” Optics & Laser Technology, vol. 40, no. 8, pp.
1030–1036, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S003039920800042X

[14] D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in
optical fibres,” Nat Photon, vol. 7, no. 5, pp. 354–362, May 2013. [Online]. Available:
http://dx.doi.org/10.1038/nphoton.2013.94

[15] G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier
in optical communication,” Adv. Opt. Photon., vol. 6, no. 4, pp. 413–487, Dec. 2014.
[Online]. Available: http://aop.osa.org/abstract.cfm?URI=aop-6-4-413

[16] A. W. Snyder and J. D. Love, Optical waveguide theory. Chapman and Hall, 1983.

[17] J. Bures, Guided Optics, ser. Physics textbook. Wiley, 2009. [Online]. Available:
http://books.google.ca/books?id=8dcJ8L6ICwwC

[18] G. Agrawal, Nonlinear Fiber Optics, 4th ed., ser. Optics and Photonics. Academic
Press, 2007. [Online]. Available: http://books.google.ca/books?id=b5S0JqHMoxAC

[19] G. Keiser, Optical Fiber Communications. McGraw-Hill Education, 2010. [Online].
Available: http://books.google.ca/books?id=9d2jQwAACAAJ

[20] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital
angular momentum of light and the transformation of laguerre-gaussian laser

141

http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2014-Tu3K.4
http://www.sciencemag.org/content/330/6002/327.short
http://www.sciencedirect.com/science/article/pii/S003039920800042X
http://www.sciencedirect.com/science/article/pii/S003039920800042X
http://dx.doi.org/10.1038/nphoton.2013.94
http://aop.osa.org/abstract.cfm?URI=aop-6-4-413
http://books.google.ca/books?id=8dcJ8L6ICwwC
http://books.google.ca/books?id=b5S0JqHMoxAC
http://books.google.ca/books?id=9d2jQwAACAAJ


modes,” Phys. Rev. A, vol. 45, pp. 8185–8189, Jun. 1992. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.45.8185

[21] G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode
fibers excited by laguerre–gaussian beams,” Optics Communications, vol. 237, no. 1–3,
pp. 89–95, 2004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0030401804003669

[22] Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,”
Adv. Opt. Photon., vol. 1, no. 1, pp. 1–57, Jan 2009. [Online]. Available:
http://aop.osa.org/abstract.cfm?URI=aop-1-1-1

[23] M. V. Berry, “Paraxial beams of spinning light,” SPIE Proceedings, vol. 3487, pp. 6–11,
Aug. 1998. [Online]. Available: +http://dx.doi.org/10.1117/12.317704

[24] L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” in
Progress in Optics, E. Wolf, Ed. Elsevier, 1999, vol. 39, ch. IV, pp. 291–372. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0079663808703913

[25] J. Conry, R. Vyas, and S. Singh, “Polarization of orbital angular momentum carrying
laser beams,” J. Opt. Soc. Am. A, vol. 30, no. 5, pp. 821–824, May 2013. [Online].
Available: http://josaa.osa.org/abstract.cfm?URI=josaa-30-5-821

[26] S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,”
Laser and Photonics Reviews, vol. 2, no. 4, pp. 299–313, 2008. [Online]. Available:
http://dx.doi.org/10.1002/lpor.200810007

[27] L. Torres, Juan P. & Torner, Ed., Twisted Photons: Applications of Light with Orbital
Angular Momentum. Wiley, 2011.

[28] A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and
applications,” Adv. Opt. Photon., vol. 3, no. 2, pp. 161–204, Jun. 2011. [Online].
Available: http://aop.osa.org/abstract.cfm?URI=aop-3-2-161

[29] W. Harm, S. Bernet, M. Ritsch-Marte, I. Harder, and N. Lindlein, “Adjustable
diffractive spiral phase plates,” Opt. Express, vol. 23, no. 1, pp. 413–421, Jan 2015.
[Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-1-413

[30] G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and
S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital
angular momentum,” Opt. Express, vol. 12, no. 22, pp. 5448–5456, Nov. 2004. [Online].
Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-12-22-5448

[31] Y. Li, J. Kim, and M. J. Escuti, “Orbital angular momentum generation
and mode transformation with high efficiency using forkedpolarization gratings,”

142

http://link.aps.org/doi/10.1103/PhysRevA.45.8185
http://www.sciencedirect.com/science/article/pii/S0030401804003669
http://www.sciencedirect.com/science/article/pii/S0030401804003669
http://aop.osa.org/abstract.cfm?URI=aop-1-1-1
+ http://dx.doi.org/10.1117/12.317704
http://www.sciencedirect.com/science/article/pii/S0079663808703913
http://josaa.osa.org/abstract.cfm?URI=josaa-30-5-821
http://dx.doi.org/10.1002/lpor.200810007
http://aop.osa.org/abstract.cfm?URI=aop-3-2-161
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-1-413
http://www.opticsexpress.org/abstract.cfm?URI=oe-12-22-5448


Appl. Opt., vol. 51, no. 34, pp. 8236–8245, Dec. 2012. [Online]. Available:
http://ao.osa.org/abstract.cfm?URI=ao-51-34-8236

[32] M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic
laser mode converters and transfer of orbital angular momentum,” Optics
Communications, vol. 96, no. 1-3, pp. 123–132, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/003040189390535D

[33] P. Genevaux, G. Labroille, J.-F. Morizur, C. Simonneau, G. Campbell, P. Lam, N. Treps,
P. Brindel, R. Muller, J. Renaudier, M. Salsi, and G. Charlet, “3 modes transmission
using hybrid separation with high mode selectivity and low losses spatial mode multi-
plexer,” in Optical Communication (ECOC), 2014 European Conference on, Sep. 2014,
pp. 1–3.

[34] G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J.-F. Morizur, “Efficient
and mode selective spatial mode multiplexer based on multi-plane light conversion,”
Opt. Express, vol. 22, no. 13, pp. 15 599–15 607, Jun. 2014. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-13-15599

[35] G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, LCOS Spatial Light
Modulators: Trends and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, 2012,
pp. 1–29. [Online]. Available: http://dx.doi.org/10.1002/9783527648443.ch1

[36] A. Witkowska, S. G. Leon-Saval, A. Pham, and T. A. Birks, “All-fiber lp11 mode
convertors,” Opt. Lett., vol. 33, no. 4, pp. 306–308, Feb 2008. [Online]. Available:
http://ol.osa.org/abstract.cfm?URI=ol-33-4-306

[37] N. K. Viswanathan and V. V. G. Inavalli, “Generation of optical vector beams using
a two-mode fiber,” Opt. Lett., vol. 34, no. 8, pp. 1189–1191, Apr. 2009. [Online].
Available: http://ol.osa.org/abstract.cfm?URI=ol-34-8-1189

[38] P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular
momentum transfer between acoustic and optical vortices in optical fiber,”
Phys. Rev. Lett., vol. 96, p. 043604, Feb. 2006. [Online]. Available: http:
//link.aps.org/doi/10.1103/PhysRevLett.96.043604

[39] R. Kumar, D. S. Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher,
“Generation and detection of optical vortices using all fiber-optic system,” Optics
Communications, vol. 281, no. 13, pp. 3414–3420, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S003040180800240X

[40] S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of
radially polarized beams in optical fibers,” Opt. Lett., vol. 34, no. 16, pp. 2525–2527,
Aug. 2009. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-34-16-2525

143

http://ao.osa.org/abstract.cfm?URI=ao-51-34-8236
http://www.sciencedirect.com/science/article/pii/003040189390535D
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-13-15599
http://dx.doi.org/10.1002/9783527648443.ch1
http://ol.osa.org/abstract.cfm?URI=ol-33-4-306
http://ol.osa.org/abstract.cfm?URI=ol-34-8-1189
http://link.aps.org/doi/10.1103/PhysRevLett.96.043604
http://link.aps.org/doi/10.1103/PhysRevLett.96.043604
http://www.sciencedirect.com/science/article/pii/S003040180800240X
http://ol.osa.org/abstract.cfm?URI=ol-34-16-2525


[41] N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital
angular momentum of light with optical fibers,” Opt. Lett., vol. 37, no. 13, pp. 2451–2453,
Jul. 2012. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-37-13-2451

[42] L. Fang, H. Jia, H. Zhou, and B. Liu, “Generation of cylindrically symmetric
modes and orbital-angular-momentum modes with tilted optical gratings inscribed in
high-numerical-aperture fibers,” J. Opt. Soc. Am. A, vol. 32, no. 1, pp. 150–155, Jan.
2015. [Online]. Available: http://josaa.osa.org/abstract.cfm?URI=josaa-32-1-150

[43] L. Fang and J. Wang, “Flexible generation/conversion/exchange of fiber-guided orbital
angular momentum modes using helical gratings,” Opt. Lett., vol. 40, no. 17, pp. 4010–
4013, Sep 2015. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-40-17-4010

[44] Y. Yan, J. Wang, L. Zhang, J.-Y. Yang, I. Fazal, N. Ahmed, B. Shamee, A. Willner,
K. Birnbaum, J. Choi, B. Erkmen, and S. Dolinar, “New approach for generating and
(de)multiplexing oam modes in a fiber coupler consisting of a central ring and four
external cores,” in Optical Communication (ECOC), 2011 37th European Conference
and Exhibition on, Sep. 2011, pp. 1–3.

[45] Y. Yan, J. Wang, L. Zhang, J.-Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E.
Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular
momentum modes,” Opt. Lett., vol. 36, no. 21, pp. 4269–4271, Nov. 2011. [Online].
Available: http://ol.osa.org/abstract.cfm?URI=ol-36-21-4269

[46] Y. Yan, J.-Y. Yang, Y. Yue, M. R. Chitgarha, H. Huang, N. Ahmed, J. Wang,
M. Tur, S. Dolinar, and A. Willner, “High-purity generation and power-efficient
multiplexing of optical orbital angular momentum (oam) modes in a ring fiber
for spatial-division multiplexing systems,” in Conference on Lasers and Electro-
Optics 2012. Optical Society of America, 2012, p. JTh2A.58. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2012-JTh2A.58

[47] Y. Yan, Y. Yue, H. Huang, J.-Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur,
S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical
orbital angular momentum modes in a ring fiber by using multiple coherent
inputs,” Opt. Lett., vol. 37, no. 17, pp. 3645–3647, Sep. 2012. [Online]. Available:
http://ol.osa.org/abstract.cfm?URI=ol-37-17-3645

[48] W. Gao, X. Hu, C. Mu, and P. Sun, “Generation of vector vortex beams with a
small core multimode liquid core optical fiber,” Opt. Express, vol. 22, no. 9, pp.
11 325–11 330, May 2014. [Online]. Available: http://www.opticsexpress.org/abstract.
cfm?URI=oe-22-9-11325

144

http://ol.osa.org/abstract.cfm?URI=ol-37-13-2451
http://josaa.osa.org/abstract.cfm?URI=josaa-32-1-150
http://ol.osa.org/abstract.cfm?URI=ol-40-17-4010
http://ol.osa.org/abstract.cfm?URI=ol-36-21-4269
http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2012-JTh2A.58
http://ol.osa.org/abstract.cfm?URI=ol-37-17-3645
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-9-11325
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-9-11325


[49] E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation
and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-
plates,” Applied Physics Letters, vol. 94, no. 23, p. 231124, Jun. 2009.

[50] C. R. Doerr, N. Fontaine, M. Hirano, T. Sasaki, L. Buhl, and P. Winzer,
“Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for
space-division multiplexing,” in 37th European Conference and Exposition on Optical
Communications. Optical Society of America, 2011, p. Th.13.A.3. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=ECOC-2011-Th.13.A.3

[51] N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of
free-space orbital angular momentum using photonic integrated circuits,” inOptical Fiber
Communication Conference. Optical Society of America, 2012, p. OTu1I.2. [Online].
Available: http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-OTu1I.2

[52] T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler,
X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical
communication using integrated silicon photonic orbital angular momentum devices,”
Opt. Express, vol. 20, no. 9, pp. 9396–9402, Apr. 2012. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-9-9396

[53] B. Guan, R. P. Scott, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo,
F. Klemens, B. Keller, M. Earnshaw, and S. J. B. Yoo, “Integrated optical orbital
angular momentum multiplexing device using 3-d waveguides and a silica plc,” in
CLEO: 2013. Optical Society of America, 2013, p. CTu1L.4. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CTu1L.4

[54] C. Qin, B. Guan, R. P. Scott, R. Proietti, N. K. Fontaine, T. Su, C. Ferarri,
M. Capuzzo, F. Clemens, B. Keller, M. Earnshaw, and S. Yoo, “Demonstration of
orbital angular momentum state conversion using two hybrid 3d photonic integrated
circuits,” in Optical Fiber Communication Conference. Optical Society of America,
2014, p. Th4A.1. [Online]. Available: http://www.opticsinfobase.org/abstract.cfm?
URI=OFC-2014-Th4A.1

[55] B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo,
F. Klemens, B. Keller, M. Earnshaw, and S. J. B. Yoo, “Free-space coherent
optical communication with orbital angular, momentum multiplexing/demultiplexing
using a hybrid 3d photonic integrated circuit,” Opt. Express, vol. 22, no. 1, pp.
145–156, Jan 2014. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?
URI=oe-22-1-145

[56] X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L.
O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam

145

http://www.opticsinfobase.org/abstract.cfm?URI=ECOC-2011-Th.13.A.3
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-OTu1I.2
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-9-9396
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CTu1L.4
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2014-Th4A.1
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2014-Th4A.1
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-1-145
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-1-145


emitters,” Science, vol. 338, no. 6105, pp. 363–366, 2012. [Online]. Available:
http://www.sciencemag.org/content/338/6105/363.abstract

[57] H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu,
S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting
lasers,” Optica, vol. 2, no. 6, pp. 547–552, Jun 2015. [Online]. Available:
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-6-547

[58] G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and
M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,”
Physical Review Letters, vol. 105, p. 153601, Oct. 2010. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.105.153601

[59] Z. Bouchal and R. Čelechovský, “Mixed vortex states of light as information
carriers,” New Journal of Physics, vol. 6, no. 1, p. 131, 2004. [Online]. Available:
http://stacks.iop.org/1367-2630/6/i=1/a=131

[60] R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information
channel,” New Journal of Physics, vol. 9, no. 9, p. 328, 2007. [Online]. Available:
http://stacks.iop.org/1367-2630/9/i=9/a=328

[61] Y. Awaji, N. Wada, and Y. Toda, “Demonstration of spatial mode division multiplexing
using laguerre-gaussian mode beam in telecom-wavelength,” in IEEE Photonics Society,
2010 23rd Annual Meeting of the, Nov. 2010, pp. 551–552.

[62] J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. Willner, K. Birnbaum,
J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “Demonstration of 12.8-bit/s/hz spectral
efficiency using 16-qam signals over multiple orbital-angular-momentum modes,” in Op-
tical Communication (ECOC), 2011 37th European Conference and Exhibition on, Sep.
2011, pp. 1–3.

[63] ——, “25.6-bit/s/hz spectral efficiency using 16-qam signals over pol-muxed multiple
orbital-angular-momentum modes,” in Photonics Conference (PHO), 2011 IEEE, Oct.
2011, pp. 587–588.

[64] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue,
S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing
orbital angular momentum multiplexing,” Nat. Photon., vol. 6, no. 7, pp. 488–496, Jul.
2012. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2012.138

[65] I. M. Fazal, J. Wang, J.-Y. Yang, N. Ahmed, B. Shamee, Y. Yan, A. Willner,
S. Dolinar, K. Birnbaum, B. Erkmen, and J. Choi, “Demonstration of 2-tbit/s
data link using orthogonal orbital-angular-momentum modes and wdm,” in Frontiers

146

http://www.sciencemag.org/content/338/6105/363.abstract
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-6-547
http://link.aps.org/doi/10.1103/PhysRevLett.105.153601
http://stacks.iop.org/1367-2630/6/i=1/a=131
http://stacks.iop.org/1367-2630/9/i=9/a=328
http://dx.doi.org/10.1038/nphoton.2012.138


in Optics. Optical Society of America, 2011, p. FTuT1. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2011-FTuT1

[66] Z. Wang, N. Zhang, and X.-C. Yuan, “High-volume optical vortex multiplexing and
de-multiplexing for free-space optical communication,” Opt. Express, vol. 19, no. 2, pp.
482–492, Jan. 2011. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?
URI=oe-19-2-482

[67] H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski,
M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and
A. E. Willner, “100 tbit/s free-space data link using orbital angular momentum
mode division multiplexing combined with wavelength division multiplexing,” in
Optical Fiber Communication Conference/National Fiber Optic Engineers Conference
2013. Optical Society of America, 2013, p. OTh4G.5. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh4G.5

[68] H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J.
Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J.
Padgett, M. Tur, and A. E. Willner, “100 tbit/s free-space data link enabled
by three-dimensional multiplexing of orbital angular momentum, polarization, and
wavelength,” Opt. Lett., vol. 39, no. 2, pp. 197–200, Jan. 2014. [Online]. Available:
http://ol.osa.org/abstract.cfm?URI=ol-39-2-197

[69] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li,
Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch,
N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum
beams,” Adv. Opt. Photon., vol. 7, no. 1, pp. 66–106, Mar 2015. [Online]. Available:
http://aop.osa.org/abstract.cfm?URI=aop-7-1-66

[70] J. Wu, H. Li, and Y. Li, “Encoding information as orbital angular momentum states
of light for wireless optical communications,” Optical Engineering, vol. 46, no. 1, pp.
019 701–019 701–5, 2007. [Online]. Available: +http://dx.doi.org/10.1117/1.2431800

[71] S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental
quantum cryptography with qutrits,” New J. Phys., vol. 8, no. 5, p. 75, 2006. [Online].
Available: http://stacks.iop.org/1367-2630/8/i=5/a=075

[72] M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik,
M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional
quantum cryptography with twisted light,” New Journal of Physics, vol. 17, no. 3, p.
033033, 2015. [Online]. Available: http://stacks.iop.org/1367-2630/17/i=3/a=033033

[73] M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and
A. Zeilinger, “Communication with spatially modulated light through turbulent air

147

http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2011-FTuT1
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-2-482
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-2-482
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh4G.5
http://ol.osa.org/abstract.cfm?URI=ol-39-2-197
http://aop.osa.org/abstract.cfm?URI=aop-7-1-66
+ http://dx.doi.org/10.1117/1.2431800
http://stacks.iop.org/1367-2630/8/i=5/a=075
http://stacks.iop.org/1367-2630/17/i=3/a=033033


across vienna,” New Journal of Physics, vol. 16, no. 11, p. 113028, 2014. [Online].
Available: http://stacks.iop.org/1367-2630/16/i=11/a=113028

[74] C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons
for optical communication,” Phys. Rev. Lett., vol. 94, p. 153901, Apr. 2005. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.94.153901

[75] J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel
crosstalk in an orbital angular momentum-multiplexed free-space optical link,”
Appl. Opt., vol. 47, no. 13, pp. 2414–2429, May 2008. [Online]. Available:
http://ao.osa.org/abstract.cfm?URI=ao-47-13-2414

[76] G. A. Tyler and R. W. Boyd, “Influence of atmospheric turbulence on the
propagation of quantum states of light carrying orbital angular momentum,”
Opt. Lett., vol. 34, no. 2, pp. 142–144, Jan. 2009. [Online]. Available: http:
//ol.osa.org/abstract.cfm?URI=ol-34-2-142

[77] V. P. Aksenov, I. V. Izmailov, F. Y. Kanev, and B. N. Poizner, “Optical vortex detector
as a basis for a data transfer system: Operational principle, model, and simulation of
the influence of turbulence and noise,” Optics Communications, vol. 285, no. 6, pp.
905–928, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0030401811011813

[78] I. Djordjevic, “Orbital angular momentum (oam) based ldpc-coded free-space optical
communication,” in IEEE Photonics Society, 2010 23rd Annual Meeting of the, Nov.
2010, pp. 502–503.

[79] B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin,
N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum
in the low-frequency radio domain,” Phys. Rev. Lett., vol. 99, p. 087701, Aug. 2007.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.99.087701

[80] S. Mohammadi, L. Daldorff, J. Bergman, R. Karlsson, B. Thide, K. Forozesh, T. Carozzi,
and B. Isham, “Orbital angular momentum in radio - a system study,” Antennas and
Propagation, IEEE Transactions on, vol. 58, no. 2, pp. 565–572, Feb. 2010.

[81] O. Edfors and A. Johansson, “Is orbital angular momentum (oam) based radio com-
munication an unexploited area?” Antennas and Propagation, IEEE Transactions on,
vol. 60, no. 2, pp. 1126–1131, Feb. 2012.

[82] F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato,
“Encoding many channels on the same frequency through radio vorticity: first
experimental test,” New Journal of Physics, vol. 14, no. 3, p. 033001, 2012. [Online].
Available: http://stacks.iop.org/1367-2630/14/i=3/a=033001

148

http://stacks.iop.org/1367-2630/16/i=11/a=113028
http://link.aps.org/doi/10.1103/PhysRevLett.94.153901
http://ao.osa.org/abstract.cfm?URI=ao-47-13-2414
http://ol.osa.org/abstract.cfm?URI=ol-34-2-142
http://ol.osa.org/abstract.cfm?URI=ol-34-2-142
http://www.sciencedirect.com/science/article/pii/S0030401811011813
http://www.sciencedirect.com/science/article/pii/S0030401811011813
http://link.aps.org/doi/10.1103/PhysRevLett.99.087701
http://stacks.iop.org/1367-2630/14/i=3/a=033001


[83] S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics, vol. 2,
no. 5-6, pp. 455–474, Nov. 2013.

[84] S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability
of ring fiber designs for oam multiplexing,” Opt. Express, vol. 23, no. 3, pp.
3721–3730, Feb. 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?
URI=oe-23-3-3721

[85] A. N. Alexeyev, T. A. Fadeyeva, and A. V. Volyar, “Optical vortices and the flow of their
angular momentum in a multimode fiber,” Semiconductor Physics, Quantum Electronics
& Optoelectronics, vol. 1, no. 1, pp. 82–89, 1998.

[86] N. Bozinovic, P. Kristensen, and S. Ramachandran, “Long-range fiber-transmission
of photons with orbital angular momentum,” in CLEO:2011 - Laser Applications to
Photonic Applications. Optical Society of America, 2011, p. CTuB1. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO:SandI-2011-CTuB1

[87] ——, “Are orbital angular momentum (oam/vortex) states of light long-lived in fibers?”
in Laser Science. Optical Society of America, 2011, p. LWL3. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=LS-2011-LWL3

[88] N. Bozinovic, S. Ramachandran, M. Brodsky, and P. Kristensen, “Record-length
transmission of entangled photons with orbital angular momentum (vortices),” in
Frontiers in Optics. Optical Society of America, 2011, p. PDPB1. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2011-PDPB1

[89] I. B. Djordjevic, M. Arabaci, L. Xu, and T. Wang, “Spatial-domain-based
multidimensional modulation for multi-tb/s serial optical transmission,” Opt.
Express, vol. 19, no. 7, pp. 6845–6857, Mar. 2011. [Online]. Available: http:
//www.opticsexpress.org/abstract.cfm?URI=oe-19-7-6845

[90] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, A. Willner, and S. Ramachandran,
“Orbital angular momentum (oam) based mode division multiplexing (mdm) over a km-
length fiber,” in ECOC Postdeadline Papers, 2012.

[91] Y. Ren, Y. Zhang, Y. Yue, N. Bozinovic, G. Xie, H. Huang, M. Tur, P. Kristensen, I. B.
Djordjevic, S. Ramachandran, and A. E. Willner, “Efficient crosstalk mitigation of oam
based 400-gbit/s qpsk data transmission in 1.1-km vortex fiber by using soft-decision
ldpc codes,” in CLEO: 2013. Optical Society of America, 2013, p. CM2G.5. [Online].
Available: http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CM2G.5

[92] Y. Yue, N. Bozinovic, Y. Ren, H. Huang, M. Tur, P. Kristensen, S. Ramachandran,
and A. E. Willner, “1.6-tbit/s muxing, transmission and demuxing through 1.1-km
of vortex fiber carrying 2 oam beams each with 10 wavelength channels,” in

149

http://www.opticsexpress.org/abstract.cfm?URI=oe-23-3-3721
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-3-3721
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO: S and I-2011-CTuB1
http://www.opticsinfobase.org/abstract.cfm?URI=LS-2011-LWL3
http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2011-PDPB1
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-7-6845
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-7-6845
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CM2G.5


Optical Fiber Communication Conference/National Fiber Optic Engineers Conference
2013. Optical Society of America, 2013, p. OTh4G.2. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh4G.2

[93] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and
S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing
in fibers,” Science, vol. 340, no. 6140, pp. 1545–1548, 2013. [Online]. Available:
http://www.sciencemag.org/content/340/6140/1545.abstract

[94] S. Golowich, P. Kristensen, N. Bozinovic, P. Gregg, and S. Ramachandran,
“Fibers supporting orbital angular momentum states for information capacity
scaling,” in Proc. of FIO. OSA, 2012, p. FW2D.2. [Online]. Available: http:
//www.opticsinfobase.org/abstract.cfm?URI=FiO-2012-FW2D.2

[95] P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran,
“Stable transmission of 12 oam states in air-core fiber,” in CLEO: 2013.
Optical Society of America, 2013, p. CTu2K.2. [Online]. Available: http:
//www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CTu2K.2

[96] P. Gregg, P. Kristensen, and S. Ramachandran, “OAM stability in fiber due to
angular momentum conservation,” in CLEO: 2014. Optical Society of America,
2014, p. SM2N.2. [Online]. Available: http://www.opticsinfobase.org/abstract.cfm?
URI=CLEO_SI-2014-SM2N.2

[97] ——, “Conservation of orbital angular momentum in air-core optical fibers,”
Optica, vol. 2, no. 3, pp. 267–270, Mar 2015. [Online]. Available: http:
//www.opticsinfobase.org/optica/abstract.cfm?URI=optica-2-3-267

[98] B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Few-mode
fiber with inverse-parabolic graded-index profile for transmission of oam-carrying
modes,” Opt. Express, vol. 22, no. 15, pp. 18 044–18 055, Jul. 2014. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-15-18044

[99] M. Zhu, W. Zhang, L. Xi, X. Tang, and X. Zhang, “A new designed dual-guided
ring-core fiber for {OAM} mode transmission,” Optical Fiber Technology, vol. 25, pp.
58 – 63, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1068520015001017

[100] Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “Propagation of laguerre-gaussian mode
light through multi-core fiber at telecom wavelength,” in CLEO:2011 - Laser Applications
to Photonic Applications. Optical Society of America, 2011, p. CThGG2. [Online].
Available: http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2011-CThGG2

150

http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh4G.2
http://www.sciencemag.org/content/340/6140/1545.abstract
http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2012-FW2D.2
http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2012-FW2D.2
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CTu2K.2
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CTu2K.2
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2014-SM2N.2
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2014-SM2N.2
http://www.opticsinfobase.org/optica/abstract.cfm?URI=optica-2-3-267
http://www.opticsinfobase.org/optica/abstract.cfm?URI=optica-2-3-267
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-15-18044
http://www.sciencedirect.com/science/article/pii/S1068520015001017
http://www.sciencedirect.com/science/article/pii/S1068520015001017
http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2011-CThGG2


[101] ——, “World first mode/spatial division multiplexing in multi-core fiber using laguerre-
gaussian mode,” in Optical Communication (ECOC), 2011 37th European Conference
and Exhibition on, Sep. 2011, pp. 1–3.

[102] Y. Awaji, N. Wada, and Y. Toda, “Observation of orbital angular momentum
spectrum in propagating mode through seven-core fibers,” in Conference on Lasers and
Electro-Optics 2012. Optical Society of America, 2012, p. JTu2K.3. [Online]. Available:
http://www.osapublishing.org/abstract.cfm?URI=CLEO_AT-2012-JTu2K.3

[103] S. Li and J. Wang, “A multi-ring multi-oam-mode fiber for high-density space-division
multiplexing (7 rings x 22 oam modes),” in Photonics Conference (IPC), 2013 IEEE,
Sept 2013, pp. 301–302.

[104] ——, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division
multiplexing,” Photonics Journal, IEEE, vol. 5, no. 5, pp. 7 101 007–7 101 007, Oct 2013.

[105] ——, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for
ultrahigh-density space-division multiplexing (19 rings x 22 modes),” Sci. Rep., vol. 4,
pp. –, Jan. 2014. [Online]. Available: http://dx.doi.org/10.1038/srep03853

[106] ——, “Supermode fiber for orbital angular momentum (oam) transmission,”
Opt. Express, vol. 23, no. 14, pp. 18 736–18 745, Jul 2015. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-14-18736

[107] J. A. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Optical vortex
based mode division multiplexing over graded-index multimode fibre,” in Optical
Fiber Communication Conference/National Fiber Optic Engineers Conference 2013.
Optical Society of America, 2013, p. OTh4G.3. [Online]. Available: http:
//www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh4G.3

[108] A. Tatarczak, M. A. Usuga, and I. Tafur Monroy, “Oam-enhanced transmission for
multimode short-range links,” Proc. SPIE, vol. 9390, pp. 93 900E–93 900E–7, 2015.
[Online]. Available: http://dx.doi.org/10.1117/12.2079795

[109] S. Murshid, B. Grossman, and P. Narakom, “Method and apparatus for spatial domain
multiplexing in optical fiber communications,” US Patent 7 174 067 B2, Dec., 2007.
[Online]. Available: http://www.google.com/patents/US7174067

[110] S. Murshid and R. Biswas, “Analysis of spatially multiplexed helically propagating
channels in step index optical waveguides,” in Frontiers in Optics. Optical Society of
America, 2011, p. FTuT7. [Online]. Available: http://www.opticsinfobase.org/abstract.
cfm?URI=FiO-2011-FTuT7

151

http://www.osapublishing.org/abstract.cfm?URI=CLEO_AT-2012-JTu2K.3
http://dx.doi.org/10.1038/srep03853
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-14-18736
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh4G.3
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh4G.3
http://dx.doi.org/10.1117/12.2079795
http://www.google.com/patents/US7174067
http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2011-FTuT7
http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2011-FTuT7


[111] S. H. Murshid, H. P. Muralikrishnan, and S. P. Kozaitis, “Orbital angular momentum
in four channel spatial domain multiplexing system for multi-terabit per second
communication architectures,” Proc. of SPIE, pp. 839 703–839 703–7, 2012. [Online].
Available: http://dx.doi.org/10.1117/12.920812

[112] Y. Yan, Y. Yue, H. Huang, Y. Ren, N. Ahmed, A. Willner, and S. Dolinar,
“Spatial-mode multicasting of a single 100-gbit/s orbital angular momentum (oam)
mode onto multiple oam modes,” in European Conference and Exhibition on Optical
Communication. Optical Society of America, 2012, p. Th.2.D.1. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=ECEOC-2012-Th.2.D.1

[113] H. Huang, Y. Yue, Y. Yan, N. Ahmed, Y. Ren, and A. E. Willner, “Orbital-
angular-momentum-based reconfigurable and "lossless" optical add/drop multiplexing
of multiple 100-gbit/s channels,” in Optical Fiber Communication Conference/National
Fiber Optic Engineers Conference 2013. Optical Society of America, 2013,
p. OTh4G.4. [Online]. Available: http://www.opticsinfobase.org/abstract.cfm?URI=
OFC-2013-OTh4G.4

[114] A. E. Willner, H. Huang, N. Ahmed, Y. Yue, and M. J. Willner, “Data switching in
communication networks using orbital-angular-momentum multiplexing,” in Advanced
Photonics for Communications. Optical Society of America, 2014, p. PT1B.1. [Online].
Available: http://www.opticsinfobase.org/abstract.cfm?URI=PS-2014-PT1B.1

[115] W. Gao, C. Mu, H. Li, Y. Yang, and Z. Zhu, “Parametric amplification of
orbital angular momentum beams based on light-acoustic interaction,” Applied
Physics Letters, vol. 107, no. 4, pp. –, 2015. [Online]. Available: http:
//scitation.aip.org/content/aip/journal/apl/107/4/10.1063/1.4927699

[116] S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular
momentum mode converter,” Opt. Lett., vol. 40, no. 18, pp. 4376–4379, Sep 2015.
[Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-40-18-4376

[117] Q. Kang, P. Gregg, Y. Jung, E. Lim, S.-U. Alam, S. Ramachandran, and D. J.
Richardson, “Amplification of 12 oam states in an air-core edf,” in Optical Fiber
Communication Conference. Optical Society of America, 2015, p. Tu3C.2. [Online].
Available: http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-Tu3C.2

[118] P. Yeh, A. Yariv, and E. Marom, “Theory of bragg fiber,” J. Opt. Soc.
Am., vol. 68, no. 9, pp. 1196–1201, Sep 1978. [Online]. Available: http:
//www.opticsinfobase.org/abstract.cfm?URI=josa-68-9-1196

[119] R. P. Brent, Algorithms for minimization without derivatives, N. Englewood Cliffs, Ed.
Prentice-Hall, 1972.

152

http://dx.doi.org/10.1117/12.920812
http://www.opticsinfobase.org/abstract.cfm?URI=ECEOC-2012-Th.2.D.1
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh4G.4
http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh4G.4
http://www.opticsinfobase.org/abstract.cfm?URI=PS-2014-PT1B.1
http://scitation.aip.org/content/aip/journal/apl/107/4/10.1063/1.4927699
http://scitation.aip.org/content/aip/journal/apl/107/4/10.1063/1.4927699
http://ol.osa.org/abstract.cfm?URI=ol-40-18-4376
http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-Tu3C.2
http://www.opticsinfobase.org/abstract.cfm?URI=josa-68-9-1196
http://www.opticsinfobase.org/abstract.cfm?URI=josa-68-9-1196


[120] J. Bures and X. Daxhelet, “Single-mode te01 fibers,” vol. 7134, 2008, pp.
71 342S–71 342S–8. [Online]. Available: http://dx.doi.org/10.1117/12.803334

[121] Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. Birnbaum,
B. Erkmen, S. Dolinar, M. Tur, and A. Willner, “Mode properties and propagation effects
of optical orbital angular momentum (oam) modes in a ring fiber,” Photonics Journal,
IEEE, vol. 4, no. 2, pp. 535–543, Apr. 2012.

[122] P. Solarik, Z. Burian, I. Kasik, V. Matejec, J. Mrazek, and M. Hayer, “Dielectric
annular core fiber for optical sensing,” Proc. SPIE, vol. 6189, pp. 61 891R–61 891R–10,
2006. [Online]. Available: http://dx.doi.org/10.1117/12.662286

[123] N. Fontaine, R. Ryf, M. Hirano, and T. Sasaki, “Experimental investigation of crosstalk
accumulation in a ring-core fiber,” in Photonics Society Summer Topical Meeting Series,
2013 IEEE, July 2013, pp. 111–112.

[124] X. Jin, R. Li, D. O’Brien, and F. Payne, “Linearly polarized mode division multiplexed
transmission over ring-index multimode fibres,” in Photonics Society Summer Topical
Meeting Series, 2013 IEEE, July 2013, pp. 113–114.

[125] M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa,
and F. Yamamoto, “Design of three-spatial-mode ring-core fiber,” J. Lightwave
Technol., vol. 32, no. 7, pp. 1337–1343, Apr 2014. [Online]. Available: http:
//jlt.osa.org/abstract.cfm?URI=jlt-32-7-1337

[126] F. Feng, G. S. Gordon, X. Jin, D. O’Brien, F. Payne, Y. min Jung, Q. Kang, J. K. Sahu,
S. U. Alam, D. J. Richardson, and T. D. Wilkinson, “Experimental characterization
of a graded-index ring-core fiber supporting 7 lp mode groups,” in Optical Fiber
Communication Conference. Optical Society of America, 2015, p. Tu2D.3. [Online].
Available: http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-Tu2D.3

[127] B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly
guiding doubly clad dielectric optical fiber with an annular core,” Microwave and
Optical Technology Letters, vol. 31, no. 6, pp. 435–439, 2001. [Online]. Available:
http://dx.doi.org/10.1002/mop.10056

[128] J. Marcou and S. Février, “Comments on ’On the analysis of a weakly guiding
doubly clad dielectric optical fiber with an annular core’,” Microwave and
Optical Technology Letters, vol. 38, no. 3, pp. 249–254, 2003. [Online]. Available:
http://dx.doi.org/10.1002/mop.11029

[129] M. Hautakorpi and M. Kaivola, “Modal analysis of m-type-dielectric-profile optical fibers
in the weakly guiding approximation,” J. Opt. Soc. Am. A, vol. 22, no. 6, pp. 1163–1169,
Jun 2005. [Online]. Available: http://josaa.osa.org/abstract.cfm?URI=josaa-22-6-1163

153

http://dx.doi.org/10.1117/12.803334
http://dx.doi.org/10.1117/12.662286
http://jlt.osa.org/abstract.cfm?URI=jlt-32-7-1337
http://jlt.osa.org/abstract.cfm?URI=jlt-32-7-1337
http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-Tu2D.3
http://dx.doi.org/10.1002/mop.10056
http://dx.doi.org/10.1002/mop.11029
http://josaa.osa.org/abstract.cfm?URI=josaa-22-6-1163


[130] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, ser. National Bureau of Standards Applied Mathemat-
ics Series. For sale by the Superintendent of Documents, U.S. Government Printing
Office, Washington, D.C., 1964, vol. 55.

[131] S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a
low-index inner cladding,” Quantum Electronics, IEEE Journal of, vol. 10, no. 12, pp.
879–887, Dec. 1974.

[132] R. S. Romaniuk, “Manufacturing and characterization of ring-index optical fibers,” Op-
tica Applicata, vol. 31, no. 2, pp. 425–444, 2001.

[133] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. McCollum, “Double clad, offset
core nd fiber laser,” in Optical Fiber Sensors. Optical Society of America, 1988, p. PD5.
[Online]. Available: http://www.opticsinfobase.org/abstract.cfm?URI=OFS-1988-PD5

[134] L. Zenteno, “High-power double-clad fiber lasers,” Lightwave Technology, Journal of,
vol. 11, no. 9, pp. 1435–1446, Sep 1993.

[135] C. Y. H. Tsao, D. N. Payne, and W. A. Gambling, “Modal characteristics
of three-layered optical fiber waveguides: a modified approach,” J. Opt. Soc.
Am. A, vol. 6, no. 4, pp. 555–563, Apr 1989. [Online]. Available: http:
//josaa.osa.org/abstract.cfm?URI=josaa-6-4-555

[136] J. Gowar, Optical Communication Systems, ser. Eastern Economy Edition.
Prentice-Hall of India, 1993. [Online]. Available: https://books.google.ca/books?id=
FYpIPgAACAAJ

[137] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell,
P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of
light in air,” Science, vol. 285, no. 5433, pp. 1537–1539, 1999. [Online]. Available:
http://www.sciencemag.org/content/285/5433/1537.abstract

[138] I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,”
J. Opt. Soc. Am., vol. 55, no. 10, pp. 1205–1208, Oct 1965. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-10-1205

[139] J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett., vol. 90, p.
133901, Apr 2003. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.
90.133901

[140] P. Vaity and L. Rusch, “Perfect vortex beam: Fourier transformation of a bessel
beam,” Opt. Lett., vol. 40, no. 4, pp. 597–600, Feb. 2015. [Online]. Available:
http://ol.osa.org/abstract.cfm?URI=ol-40-4-597

154

http://www.opticsinfobase.org/abstract.cfm?URI=OFS-1988-PD5
http://josaa.osa.org/abstract.cfm?URI=josaa-6-4-555
http://josaa.osa.org/abstract.cfm?URI=josaa-6-4-555
https://books.google.ca/books?id=FYpIPgAACAAJ
https://books.google.ca/books?id=FYpIPgAACAAJ
http://www.sciencemag.org/content/285/5433/1537.abstract
http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-10-1205
http://link.aps.org/doi/10.1103/PhysRevLett.90.133901
http://link.aps.org/doi/10.1103/PhysRevLett.90.133901
http://ol.osa.org/abstract.cfm?URI=ol-40-4-597


[141] L. Wang, P. Vaity, B. Ung, Y. Messaddeq, L. A. Rusch, and S. LaRochelle,
“Characterization of oam fibers using fiber bragg gratings,” Opt. Express,
vol. 22, no. 13, pp. 15 653–15 661, Jun. 2014. [Online]. Available: http:
//www.opticsexpress.org/abstract.cfm?URI=oe-22-13-15653

[142] R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens,
B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demon-
stration using a 3d photonic integrated circuit device for orbital angular momentum
multiplexing/demultiplexing,” in Optical Communication (ECOC 2013), 39th European
Conference and Exhibition on, Sept 2013, pp. 1–3.

[143] L. Wang, B. Ung, P. Vaity, L. Rusch, Y. Messaddeq, and S. LaRochelle,
“Characterization of optical fibers supporting oam states using fiber bragg gratings,”
in CLEO: 2014. Optical Society of America, 2014, p. SM2N.4. [Online]. Available:
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2014-SM2N.4

[144] S. E. Golowich, “Asymptotic theory of strong spin-orbit coupling in optical fiber,”
in Frontiers in Optics 2013 Postdeadline. Optical Society of America, 2013,
p. FW6A.1. [Online]. Available: http://www.opticsinfobase.org/abstract.cfm?URI=
FiO-2013-FW6A.1

[145] S. Golowich, “Asymptotic theory of strong spin-orbit coupling in optical fiber,”
Opt. Lett., vol. 39, no. 1, pp. 92–95, Jan. 2014. [Online]. Available: http:
//ol.osa.org/abstract.cfm?URI=ol-39-1-92

[146] Z. Zhang, J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, and Z. Yang,
“Optical fiber design with orbital angular momentum light purity higher than 99.9%,”
Opt. Express, vol. 23, no. 23, pp. 29 331–29 341, Nov 2015. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-23-29331

[147] P. E. Ciddor, “Refractive index of air: new equations for the visible and near
infrared,” Appl. Opt., vol. 35, no. 9, pp. 1566–1573, Mar 1996. [Online]. Available:
http://ao.osa.org/abstract.cfm?URI=ao-35-9-1566

[148] J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt., vol. 23, no. 24, pp. 4486–
4493, Dec 1984. [Online]. Available: http://ao.osa.org/abstract.cfm?URI=ao-23-24-4486

[149] H. Sunak and S. Bastien, “Refractive index and material dispersion interpolation of
doped silica in the 0.6-1.8 µm wavelength region,” Photonics Technology Letters, IEEE,
vol. 1, no. 6, pp. 142–145, June 1989.

[150] J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in
fluorine doped silica,” Appl. Opt., vol. 22, no. 19, pp. 3102–3104, Oct 1983. [Online].
Available: http://ao.osa.org/abstract.cfm?URI=ao-22-19-3102

155

http://www.opticsexpress.org/abstract.cfm?URI=oe-22-13-15653
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-13-15653
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2014-SM2N.4
http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2013-FW6A.1
http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2013-FW6A.1
http://ol.osa.org/abstract.cfm?URI=ol-39-1-92
http://ol.osa.org/abstract.cfm?URI=ol-39-1-92
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-23-29331
http://ao.osa.org/abstract.cfm?URI=ao-35-9-1566
http://ao.osa.org/abstract.cfm?URI=ao-23-24-4486
http://ao.osa.org/abstract.cfm?URI=ao-22-19-3102

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Symbols
	List of Acronyms
	Remerciements
	Foreword
	Introduction
	The need for new multiplexing schemes
	Thesis outline
	List of contributions

	Background
	Guided modes of optical fiber
	Derivation of Maxwell's equations
	Optical fiber modes
	Modes in step-index fibers
	Modes of standard step-index fiber
	Scalar modes
	Cutoff of standard step-index fibers
	Group index and dispersion

	The orbital angular momentum of light
	Linear and angular momentum
	The angular momentum of light
	Generation of OAM beams
	Detecting OAM modes
	OAM in free-space telecommunications
	OAM fiber modes
	OAM modes in optical fibers

	Solving for modes using numerical methods
	The simulation software
	The transfer matrix method
	Optimizing the search for neff
	Computing the electromagnetic fields


	The modal map: a design tool
	Cutoff of ring-core fibers
	Definition of ring-core fiber
	Derivation of the characteristic equation for vector modes
	Cutoffs of RCF
	Numerical validation
	Asymptotic limits
	Approximation for cutoff of HE 1,m modes

	Cutoff of three-layer fibers
	The family of three-layer fibers
	Derivation of the characteristic equation for vector modes
	Cutoffs of 3LSIF
	Numerical validation
	Continuity between fiber profiles

	The modal map
	Counting the number of dimensions
	Selecting number of modes
	Targeting mode separation


	Fibers designed for OAM transmission
	Air-core annular fiber
	Design of an OAM fiber
	Modeling and simulation
	Fiber fabrication
	Exciting OAM modes in ACF

	A family of ring-core fibers
	Choice of fiber parameters
	Simulation of modal properties
	Fiber fabrication
	Effective index measurement
	Group index measurement
	Discussion

	Conclusion
	Openings for future work
	Closing remarks

	Formulas
	Vector operators and identities
	The Bessel functions
	Selected trigonometric identities
	Stencil method for numerical estimation of the derivatives

	Refractive index calculation
	Refractive index of Air
	Refractive index of silica
	Refractive index of doped silica

	Bibliography


