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FACULTÉ DE SCIENCES ET GENIE
UNIVERSITÉ LAVAL
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Résumé

L’apprentissage multiagent est une direction prometteuse de la recherche récente et à

venir dans le contexte des systèmes intelligents. Si le cas mono-agent a été beaucoup

étudié pendant les deux dernières décennies, le cas multiagent a été peu étudié vu sa

complexité. Lorsque plusieurs agents autonomes apprennent et agissent simultanément,

l’environnement devient strictement imprévisible et toutes les suppositions qui sont

faites dans le cas mono-agent, telles que la stationnarité et la propriété markovienne,

s’avèrent souvent inapplicables dans le contexte multiagent. Dans ce travail de mâıtrise

nous étudions ce qui a été fait dans ce domaine de recherches jusqu’ici, et proposons une

approche originale à l’apprentissage multiagent en présence d’agents adaptatifs. Nous

expliquons pourquoi une telle approche donne les résultats prometteurs lorsqu’on la

compare aux différentes autres approches existantes. Il convient de noter que l’un des

problèmes les plus ardus des algorithmes modernes d’apprentissage multiagent réside

dans leur complexité computationnelle qui est fort élevée. Ceci est dû au fait que la taille

de l’espace d’états du problème multiagent est exponentiel en le nombre d’agents qui

agissent dans cet environnement. Dans ce travail, nous proposons une nouvelle approche

de la réduction de la complexité de l’apprentissage par renforcement multiagent. Une

telle approche permet de réduire de manière significative la partie de l’espace d’états

visitée par les agents pour apprendre une solution efficace. Nous évaluons ensuite nos

algorithmes sur un ensemble d’essais empiriques et présentons des résultats théoriques

préliminaires qui ne sont qu’une première étape pour former une base de la validité de

nos approches de l’apprentissage multiagent.



Abstract

Multiagent learning is a promising direction of the modern and future research in the

context of intelligent systems. While the single-agent case has been well studied in the

last two decades, the multiagent case has not been broadly studied due to its complex-

ity. When several autonomous agents learn and act simultaneously, the environment

becomes strictly unpredictable and all assumptions that are made in single-agent case,

such as stationarity and the Markovian property, often do not hold in the multiagent

context. In this Master’s work we study what has been done in this research field,

and propose an original approach to multiagent learning in presence of adaptive agents.

We explain why such an approach gives promising results by comparing it with other

different existing approaches. It is important to note that one of the most challenging

problems of all multiagent learning algorithms is their high computational complexity.

This is due to the fact that the state space size of multiagent problem is exponential

in the number of agents acting in the environment. In this work we propose a novel

approach to the complexity reduction of the multiagent reinforcement learning. Such

an approach permits to significantly reduce the part of the state space needed to be

visited by the agents to learn an efficient solution. Then we evaluate our algorithms on

a set of empirical tests and give a preliminary theoretical result, which is first step in

forming the basis of validity of our approaches to multiagent learning.
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Chapter 1

General Introduction

1.1 Problems

In multiagent systems (MAS) a number of autonomous agents act simultaneously in

a common environment. Generally, the effect of an action of an agent does not only

depend on its action as soon as the other agents’ actions can also have an influence on

the environment’s resulting state. In this case, an agent’s current behavior may be de-

pendent not only on its preferences about the environment, but also on its beliefs about

preferences and/or beliefs of the other agents acting in this environment at the same

time. Thus, if certain agents in a multiagent system do not follow a fixed (stationary,

non-evolving in time) policy, we say that such an environment is non-stationary, and,

therefore, the techniques widely used for single-agent learning and planning are not

generally applicable in this multiagent context. Another major challenge of decision

making in MAS is the dimensionality of the problem’s state space. Indeed, the cardi-

nality of the state space of a multiagent system grows exponentially with the number of

agents as soon as each state is composed of the individual “positions” of all the agents

acting in the environment.

1.2 Environment

Multiple state environments with an agent being able to transit between states by

making actions are usually modeled as Markov Decision Processes (MDPs). This is a

formal model to represent an environment that can have stochastic inter-state transition
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rules and where each action has a reward associated with it. Those features make this

model very attractive to represent complex environments in the sequential decision

making problems.

Game theory notions and concepts (Fudenberg and Tirole, 1991) are widely used in

economics to find different kinds of solutions in the situations where many interested

parties act in a common environment. To obtain a model of economical interactions

between multiple autonomous agents in a multi-state stochastic environment, the game

theory notions have been extended to MDPs. This extension gave birth to the stochas-

tic games framework (Littman, 1994), the rich game theoretical background that was

was first defined by Shapley (1953). In this framework, each state of the system is

considered as a strategic game and there is a transition function that maps each game

and the agents’ joint actions taken in this game to a next game according to some

probability distribution. Two principal challenges that arise in such a framework, (1)

the hard predictability (called non-stationarity) of the environment and (2) the state

space growth, are both a consequence of the presence of more than one agent (Littman,

1994).

1.3 Approaches

In the literature, there are a number of successful attempts to reduce state space of the

problem of single-agent planning in MDPs; a variety of methods has been proposed. One

of them is the so called heuristic search (Barto et al., 1995). Essentially, heuristic search

is a set of methods based on the knowledge of a heuristic function that can estimate

the real utility of any visited state. Generally, if the heuristic function is sufficiently

informative and satisfies certain conditions, then the algorithm using it does not need

to visit the entire state space to find the solution. Unfortunately, in multiagent systems,

in most cases, an explicit search in the state space is practically impossible. Indeed,

the search assumes that the properties of the environment in each state are known to

the agent. This is not the case, however, when there are several, possibly adversarial,

agents affecting the environment and their policies (or, at least, rationality principles)

are not mutually known. Since the centralized planning in this context is not always

possible, agents are usually faced with the learning or adaptation problem.

Classically, the usual approach to the multiagent policy learning assumes that the

agents, by means of interactions and/or by using preliminary knowledge about the

reward functions of all players, would find an interdependent solution called “equilib-

rium”. One of the most widely used concepts of equilibrium is the Nash equilibrium.
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In this kind of equilibrium, each player in the game plays its best response to the other

players’ strategies and a unilateral deviation of a player from the equilibrium strategy

decreases its own utility. There are two basic approaches to find a Nash equilibrium.

The first one is a game theoretic approach which supposes the complete knowledge of

the reward structure of the underlying game by all the agents. In such an approach,

each agent computes an equilibrium, by using mathematical programming, and then all

the agents play on it. But a problem arises when there are several equivalent equilibria

in a game and the agents have computed the different ones. Another problem is that

the agents, when computing an equilibrium, suppose that the other agents are rational

and, thus, will also follow this solution. But what if certain agents are not rational, or

play a fixed strategy, or evolve according to some fixed rules. Moreover, what if some

agents know (or are able to deduct) this and could exploit this knowledge to augment

their utilities? As yet, there is no equilibrium concept which can answer this question.

The second approach to find an equilibrium is the adaptive one. It assumes that the

agents learn by adapting to each other in self-play (i.e., all agents use the same learning

algorithm) and do not know the reward structure of the game. According to this ap-

proach, the agents are only able to make actions and observe their own rewards and, in

some approaches, the actions made by others. It was shown that certain algorithms of

this class converge to a Nash equilibrium (or to a utility that is equivalent to the utility

of a Nash equilibrium) (Singh et al., 1994; Bowling and Veloso, 2002). Among these al-

gorithms the most outstanding are Joint-Action Learning (Claus and Boutilier, 1998),

Infinitesimal Gradient Ascent (IGA)1 (Singh et al., 1994), Policy Hill-Climbing (PHC)

(Bowling and Veloso, 2002) and Adaptive Play Q-learning (APQ) (Gies and Chaib-draa,

2006) (a Q-learning based extension of the Adaptive Play algorithm (Young, 1993)).

The adaptive players2 learn their policies separately from the maintenance of the beliefs

about their counterparts’ future actions and make their decisions based on that policy

and the current belief. These decisions can be in pure (simple actions) or in mixed

(probability distribution over actions) strategies depending on the algorithm in ques-

tion. Recently, certain researchers question the necessity and the validity of the concept

of equilibrium as the most important multiagent solution concept (Shoham et al., 2003).

They rather point out the efficiency of a particular learning algorithm versus a certain

class of counterparts.

1IGA is the only algorithm among those listed which requires a complete knowledge of the reward

structure of the game and the current strategy of the opponent to calculate the gradient.
2To discriminate between adaptive player as a member of a class of learning agents and Young’s

Adaptive Player, we will write “adaptive player” or “adaptive algorithm” (in lower case) to denote the

former and Adaptive Player (with a capital letter) for the latter.
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1.4 Contributions

In this Master’s work we make two contributions in the area of multiagent learning.

First, we propose the Adaptive Dynamics Learner (ADL) algorithm, an effective algo-

rithm for learning in presence of adaptive counterparts. The ADL algorithm is able to

learn an efficient policy over the adaptation dynamics of its opponents’ rather than over

simple actions and beliefs. By so doing, it is able to exploit these dynamics in order

to obtain a higher utility than any equilibrium strategy would provide. We tested this

algorithm on a set of repeated matrix games form GAMUT game theoretic test suite

(Nudelman et al., 2004). The results obtained in these experiments indicate that ADL

agent is highly effective in self-play and against APQ and IGA agents.

Our second contribution is a complexity reduction approach to multiagent learning

in a particular stochastic games context, namely, in goal-directed stochastic games with

action-penalty representation, one of the most important case for practical, cooperative

multi-robot tasks. In this context, all agents have their respective goals and the rewards

of making an action are negative in all the states except the goal state. To reduce

the learning complexity, we use single-agent planning results as a heuristic function to

initialize the agents’ initial preferences in all unknown states of multiagent environment.

The idea is to focus the multiagent learning process on a relatively small relevant region

of the entire state space and, by so doing, to reduce the computation time required

to learn a multiagent solution. We also proved theoretically the correctness of such

an initialization. Section 4.2 of Chapter 4 contains the proofs of admissibility and

monotonicity (consistence) of the proposed heuristic function. These two properties

are important conditions of tractability of Q-learning.

Here we outline the chapters that follow.

In Chapter 2 we give a detailed description of the stochastic game framework, which is

used as a model to represent environments in multiagent learning problems. We

start by introducing agent and multiagent frameworks, MDPs, matrix games and

repeated matrix games, and, finally, stochastic games, as a naturel generalization

of previous models.

In Chapter 3 we observe the most important learning algorithms for stochastic games

and point out their requirements and limitations.

In Chapter 4 we introduce two approaches to multiagent learning. The first one is an

approach to the complexity reduction of reinforcement learning in the multiagent
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context. The second is an approach of effective learning in presence of adaptive

counterparts. We also present here some preliminary theoretical results.

In Chapter 5 we present the test benches we used to empirically test our algorithms.

We then show the results obtained in these tests and discuss them.

In Chapter 6 we conclude by summarizing the contributions we made in this work.

We analyse our approaches in the context of the related work made in similar

research directions in the last several years and give a brief consideration of our

future work.



Chapter 2

The Multiagent Learning

Framework

2.1 Introduction

In this chapter we give a detailed overview of the stochastic game framework, a model

used by most state-of-the-art multiagent learning algorithms to represent the environ-

ment and agent interactions. Despite the fact that the stochastic game framework is

relatively simple to understand, it builds on several distinct notions: agent and multi-

agent frameworks, Markov Decision Processes, matrix games, and repeated games. We

will then show that stochastic games is a natural generalization of these models.

2.2 Agent and Multiagent Frameworks

According to Russell and Norvig (2005), an agent is “anything that can be viewed as

perceiving its environment through sensors and action upon that environment through

actuators” (Figure 2.1).

It is required to note here that environment is a part of external world, which can be

perceived by the agent through its sensors. At each moment of time, the environment

can be in one of the finite or infinite number of states. The state of the environment

is defined by the values of characteristics of the external world that can be observed

(measured) by the agent’s sensors.
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Agent

E
nvironm

ent

Sensors

Actuators

Perceipts

Actions

Figure 2.1: Agent framework

An agent is supposed to be capable of changing the environment’s state by making

actions though its actuators. These actions can trigger a transition between two states.

When there are several agents in one environment and these agents are able to

observe and influence each other by making actions, such a framework is called multi-

agent. In the multiagent framework, the agents can have different nature, rationality

principles, intentions and goals, and the problem of learning, which is the focus of this

work, is to develop a policy of best actions in each environment’s state.

A state in the multiagent framework is defined as a joint state of all agents in the

common environment, i.e., it is a vector, each dimension of which is the environment’s

state from the point of view a particular agent. As soon as we are focused on the

learning problem, we suppose that the set of joint states where the agents are intended

to act is not known in advance to the learning agents. Furthermore, the agents cannot

share any knowledge obtained during learning, i.e., they cannot communicate.

A more precise definition should be given about the observability of the environ-

ment where the agents are learning. We suppose that the environment is completely

observable, i.e., agents exactly know in each joint state they are at each moment of

time. Although partial observability of the environment is a more general setting (i.e.,

agents are always unsure where exactly they are due to the sensors’ noise, for exam-

ple), our main goal is to show how the multiagent setting affects learning principles

and how multiagent algorithms should be designed to cope with the existence of other

learning agents. Making these algorithms work in partial observable context would

make these algorithms too complex or even intractable in the very small environments.

First, because as yet there are no efficient algorithms of learning for partially observ-

able environments, even for the single-agent case. Second, even if there is a model of

the multiagent environment, it is known (Bernstein et al., 2003) that the complexity
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of optimal decision making in a cooperative multiagent partially observable setting is

NEXP-hard. Thus, we will limit ourselves to the case where the agents are able to

unambiguously perceive their states in the environment.

2.3 Markov Decision Processes

2.3.1 Markov Assumption

When we presented the agent framework, we said that the agent can make actions

which trigger transitions between environment’s states. The goal of the agent, thus,

is to find a best action to execute in each state of the environment. We say that the

environment is Markovian (or stationary) if the agent’s decision in a state depends

on that state only and need not depend on the previously visited states or previously

made actions. This assumption about the environment is called Markov assumption in

honor of Russian mathematician, which was first to introduce and to study this kind

of processes in depth.

2.3.2 MDPs

Markov Decision Process (MDP) (Russell and Norvig, 2005) is a single-agent environ-

ment, which has a Markovian inter-state transition model, additive rewards, and the

state where the agent finds itself at each moment of time is fully observable, i.e., in any

time the agent is sure in which state it is. More formally, an MDP is defined as a tuple,

(S,A, T, R), where,

• S is the set of states,

• A is the set of actions,

• T is the transition function, S × A × S 7→ [0, 1], where T (s, a, s′) defines the

probability to finish the transition in the state s′ starting in the state s and by

making the action a,

• R is the reward function, S × A 7→ R, where R(s, a) is the reward the agent

obtains by making action a in state s

• and s0 ∈ S is the initial state.
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Figure 2.2: An example of a transition in Markov Decision Processes.

The transition function in an MPD is depicted in Figure 2.2. Given an action a

played in a state s at time t, the agent transits to one of the states s1 . . . sN , N = |S|,

according to the probability distribution defined by the transition function T .

A solution in MDPs is called policy. A policy π assigns an action to each possible

state. If we let st be the state the agent is in after executing π during t steps, a utility

U(π(s)) of a policy π in a state s is

U(π(s)) = E

[

∞
∑

t=0

γtR(st, π(st))|s0 = s

]

(2.1)

where γ is the discount factor, a number between 0 and 1, which describes the preference

of the agent for current reward over future rewards.

MDPs are well studied from the single-agent reinforcement learning perspective

(Sutton and Barto, 1998). The most important result obtained is that in MDPs there

is always a stationary (Markovian) and deterministic optimal policy, and there are

reinforcement learning algorithms, such as Q-learning (Watkins and Dayan, 1992), that

are guaranteed to find it. Notice that a deterministic policy assigns actions to the states.

A non-deterministic, or stochastic policy assigns to each state a probability distribution

over a set of actions.

2.3.3 Q-learning

Q-learning (Watkins and Dayan, 1992) is a dynamic programming method of learning

in MDPs that consists of calculating the utility of an action in a state by interacting
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with the environment. More formally, the goal of Q-learning is to create a function

Q : S ×A 7→ R assigning to each state-action pair a Q-value, Q(s, a), that corresponds

to the agent’s expected reward of executing an action a in a state s and following

infinitely an optimal policy starting from the next state s′:

Q(s, a) = R(s, a) + γ
∑

s′

T (s, a, s′) max
a

Q(a, s′) (2.2)

where γ ∈ (0, 1] is the discount factor.

Equation (2.2) is often called Bellman equation in honor of mathematician Richard

Bellman, celebrated for his invention of dynamic programming in 1953, and important

contributions in other fields of mathematics.

Since the transition function, T , is not known for the learning agent, Q-learning

consists of estimating the real Q-value Q(s, a) by executing action a in state s of the

environment, observing the reward R(s, a) obtained and the system’s next state s′,

using the following update rule:

Q̂(s, a)← (1− α)Q̂(s, a) + α[R(s, a) + γ max
a

Q̂(s′, a)] (2.3)

where Q̂(s, a) is an estimated value of
⋆

Q(s, a) and α ∈ [0, 1] is the learning rate. All

along the learning process, the agent selects actions to execute in each state by maxi-

mizing the Q-value in that state with some stochastic exploration which decreases over

time. Obviously, in that case the agent is strictly risk-neutral as soon as it tries to max-

imize its expected total reward. The convergence of the estimated Q-values, Q̂(s, a),

to their optimal values, Q(s, a), was proven by Watkins and Dayan (1992) under the

conditions that each state-action pair is updated infinitely often, rewards are bounded

and α tends asymptotically to 0.

2.4 Matrix Games

A one stage matrix game (also called “strategic game” or “normal form game”) is a

tuple (n,A1...n, R1...n), where,

• n is the number of players,

• Aj is the strategy space of player j, j = 1 . . . n, i.e., Aj is the set of actions

{aj
1 . . . a

j
|A

j|} the agent j can do.
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• and the reward function Rj : A 7→ R defines the immediate utility for player j of

a joint action a ∈ A = A1 × . . .×An, represented as a vector1.

Matrix games differ according to the reward structure. There are three major classes

of games that have different properties:

1. strictly collaborative games (or team games), where all players obtain the same

reward when a joint action is played,

2. strictly adversarial (or strictly competitive) two-player zero-sum games, where

there are only two players and, for all joint actions, the payoff of one player is the

negative payoff of the other (i.e., R1 = −R2) and

3. the most wide class of matrix games, so-called general-sum games, which, in fact,

include first two classes as special cases.

A mixed strategy for player j is a distribution πj, where π
j
aj is the probability

for player j to select some action aj. A strategy is pure if π
j
aj = 1 for some aj. A

strategy profile is a collection Π = {πj|j = 1 . . . n} of all players’ strategies. A reduced

profile for player j, Π−j = Π\{πj}, is a strategy profile containing strategies of all

players except j, and Π−j
a−j is the probability for players k 6= j to play a joint action

a−j ∈ A−j = ×−jA
−j where a−j is (ak|k = 1 . . . n, k 6= j). Given a player j and a

reduced profile Π−j, a strategy π̂j is a best response (BR) to Π−j if the expected utility

of the strategy profile Π−j ∪ {π̂j} is maximal for player j. Since a best response may

not to be unique, there is a set of best responses of player j to a reduced profile Π−j

which is denoted as BRj(Π−j). More formally, the expected utility of a strategy profile

Π for a player j is given by:

U j(Π) =
∑

aj∈Aj

π
j
aj

∑

A−j∈A−j

Rj((aj, a−j))Π−j
a−j (2.4)

where Π is Π−j ∪ {πj} and Rj((aj, a−j)) is the value that player j receives if the joint

action a = (aj, a−j) is played by all players. In this case, a best response of player j to

the reduced profile Π−j is a strategy π̂j such that:

U j(Π−j ∪ {π̂j}) ≥ U j(Π−j ∪ {πj}), ∀πj 6= π̂j

A solution from the game theoretic perspective if a strategy profile having some

properties. One game can have different solutions depending on which properties a

1henceforward we will denote vectors using bold characters
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strategy profile has. Adopting a best response from the game theoretic point of view

refers to the notion of equilibrium, which is viewed as a solution concept. In general,

an equilibrium in a game is a strategy profile possessing a certain degree of stability.

There may exist several equilibrium solutions in one game depending on which kind

of equilibrium the players have found. We say that an equilibrium is Pareto optimal if

it maximizes the expected value of all players in the game. Formally, a strategy profile

Π̄ is Pareto optimal if and only if:

∀ Π 6= Π̄ ∃j such that U j(Π) < U j(Π̄)

2.4.1 Nash equilibrium

We say that a strategy profile Π̂ forms a Nash equilibrium if a unilateral deviation of

a player j from Π̂ does not increase its own expected utility, or, in other words, Π̂ is a

Nash equilibrium if and only if for each player j its strategy π̂j ∈ Π̂ is a best response

to the reduced profile Π̂−j, that is:

π̂j ∈ BRj(Π̂−j), ∀j

It is was shown by Nash (1950) that every matrix game has at least one Nash equilibrium

in mixed strategies, but it may have no equilibrium in pure strategies or, to the contrary,

to have several equilibria. An equilibrium strategy Π̂1 is said to be Pareto dominated

by another equilibrium, say Π̂2, if the utility of Π̂2 for all players is not lower than the

utility of Π̂1 and there exists a player for which Π̂2 brings a higher utility than Π̂1. More

formally, if a strategy profile Π̂1 is an equilibrium, then it said to be Pareto dominated

by an equilibrium strategy Π̂2 if and only if:

U j(Π̂2) ≥ U j(Π̂1), ∀j and

∃j U j(Π̂2) > U j(Π̂1)

The examples of games of different reward structures are presented in Figure 2.3

(these games were generated using GAMUT (Nudelman et al., 2004), a test suite for

game theoretic algorithms).

As soon as in the two-player case all rewards may be contained in a two-dimensional

matrix, we often call the first player row player, since it selects its actions from the set of

the rows of matrix. The second player is often called column player, because it usually

selects its actions from the columns of the payoff matrix. In Figure 2.3, RockPaperScis-



Chapter 2. The Multiagent Learning Framework 13

MatchingPennies PrisonersDilemma

Rr, Rc =

[

1,−1 −1, 1

−1, 1 1,−1

]

Rr, Rc =

[

0.37, 0.37 1,−1

−1, 1 −0.9,−0.9

]

BattleOfTheSexes CoordinationGame

Rr, Rc =

[

1, 0.67 −1,−1

−1,−1 0.67, 1

]

Rr, Rc =

[

0.8, 0.8 −0.8,−0.8

−0.5,−0.5 0.7, 0.7

]

ShapleysGame RockPaperScissors

Rr, Rc =







−1,−1 1,−1 −1, 1

−1, 1 −1,−1 1,−1

1,−1 −1, 1 −1,−1






Rr, Rc =







0, 0 1,−1 −1, 1

−1, 1 0, 0 1,−1

1,−1 −1, 1 0, 0







Figure 2.3: A set of games from GAMUT. Rr, Rc is the payoff matrix, the entries of

which contain the payoffs for the row and column players respectively.

sors and MatchingPennies games are strictly adversarial and ShapleysGame is a general-

sum adversarial game with the only mixed strategy equilibria; BattleOfTheSexes and

CoordinationGame are general sum coordination games, with pure and mixed strat-

egy equilibria. PrisonersDilemma is, probably, the most explored general sum game in

Game Theory. In this game, there is a pure equilibrium strategy, (2, 2), which is Pareto

dominated by a non-equilibrium Pareto optimal strategy, (1, 1). We will return to this

game and its properties in the following section.

2.4.2 Minimax

To find an equilibrium in a two-player zero-sum game, a special technique, called min-

imax, can be used. Obviously, in such a game (when a gain of one player is the loss of

the second) one player may be considered as maximizer, i.e., which tends to maximize

its reward, and, thus, the second player is then considered as minimizer in the sense

that it tends to minimize the reward of its adversary. In this case an equilibrium can

be found if maximizer plays the maximin strategy and minimizer plays the minimax

strategy:

πj(s) = argmax
πj∈PD(Aj)

min
a−j

∑

aj

π
j
ajR

j(aj, a−j)

where PD(Aj) denotes the set of probability distributions (possibly infinite) defined

over actions in Aj.
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Von Neumann proved the Minimax theorem (Fudenberg and Tirole, 1991), stating

that such strategies always exist in two-person zero-sum games and can be found by

solving a set of simultaneous equations.

2.5 Repeated Matrix Games

Many new interesting properties appear when a matrix game is repeated finitely or

infinitely often. A repeated matrix game is a matrix game in which the same players

play it iteratively a number of times T , 0 < T <∞.

The fact of having an infinite number of plays affects the notion of equilibrium.

Indeed, in this case, by speaking informally, rational players “know” that after a play

there will necessarily be another play, and, thus, it may be rational to choose a strategy

that maximizes the long-term utility instead of short-term reward. Let us show this

on the example of the repeated PrisonersDilemma game (Poundstone, 1992). We first

describe it informally.

Let’s suppose that two suspects, A and B, are arrested by the police. The police

have insufficient evidence for a conviction, and, having separated both prisoners, visit

each of them to offer the same deal: if one testifies for the prosecution against the

other and the other remains silent, the betrayer receive a minor sentence (three month)

and the silent accomplice receives the full 10-year sentence. If both stay silent, the

police can sentence both prisoners to only one year in jail for a minor charge. If each

betrays the other, each will receive an eight-year sentence. Each prisoner must make

the choice of whether to betray the other or to remain silent (Figure 2.4). However,

neither prisoner knows for sure what choice the other prisoner will make. The payoff

matrix for this game that was already presented in Figure 2.3 corresponds to the same

game but the values in the matrix may be considered as the suspect’s personal utilities

of the corresponding sentences.

Suspect A

Suspect B

Stays Silent Betrays

Stays Silent 1 year, 1 year 10 years, 3 months

Betrays 3 months, 10 years 8 years, 8 years

Figure 2.4: PrisonersDilemma game.

It is easy to see that in the one shot PrisonersDilemma there is the only pure strategy
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Nash equilibrium (Betrays, Betrays) which brings to both players a very undesirable

sentence, 8 years. The only Pareto optimal strategy, namely (Stays Silent, Stays Silent)

brings them much higher utility, but it is not an equilibrium and, thus, each player have

an interest of unilateral deviation from this solution to improve its own situation. But

what if the game was repeated infinitely often and players could see the choice made

(the strategy played) by the other player after each play? Will the equilibrium strategy

of the one shot game be rational in this infinitely repeated game? The answer is no, and

the reason is that the players know that after playing a single stage game they will play

it again, and, thus, the decision made bay a player in the past may affect the decisions

of its opponent in the future.

One of the most known stable strategies that brings the Pareto optimal utility in

the infinitely repeated PrisonersDilemma is Tit-for-Tat (TFT) strategy. It consists in

playing Stays Silent in the first round of the game and continuing by repeating the

most recent action of the opponent in the subsequent rounds. Let us suppose that on

step t = 0 the agents have chosen and played a strategy (Stays Silent, Stays Silent),

which is Pareto optimal and non-equilibrium in the one stage game. On the next

stage t + 1 they have a choice: to deviate from this strategy or to keep it. If one

of the agents decides to deviate (i.e., plays Betrays), it augments its own immedi-

ate utility, but it knows that on the following step t + 2 the other agent will do the

same (i.e., play Betrays) to minimize its loss, and, thus, both will deviate to the sin-

gle stage game equilibrium strategy (Betrays, Betrays) which brings lower reward than

the initial (Stays Silent, Stays Silent) one. Thus, in the infinitely repeated case, if

the other player plays TFT, it is non rational to deviate from cooperation strategy

(Stays Silent, Stays Silent). Therefore, it follows that the strategy (Stays Silent, Stays Silent)

is a Pareto optimal equilibrium strategy for the repeated game.

It is important to note, that the properties of repeated matrix games are very

similar to the following, more general class of games, called stochastic games which are

a generalization of the MDPs to the multiagent case where each state of the system is

considered as a repeated matrix game.

2.6 Stochastic Games

Stochastic games (SGs) combine MDPs and repeated matrix games. A stochastic game

is a tuple (n,S,A1...n, T, R1...n), where,

• n is the number of agents,
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• S is the set of joint states, s ∈ S, which are now represented as vectors,

• Aj is the set of actions, aj ∈ Aj, available to agent j,

• A is the joint action space, A1 × . . .×An,

• T is the transition function: S×A× S 7→ [0, 1],

• Rj is the reward function for agent j: S×A 7→ R

• and s0 ∈ S is the agents’ (or system’s) initial joint state.

Since there are multiple agents selecting actions, the agents’ next state and rewards

depend on the joint actions of all players2. It’s easy to see that if, in an SG, there is

only one player then this SG becomes an MDP. The goal of each agent in an SG is to

maximize its expected utility of being in this game. In the stochastic game framework

the “expected utility” is a combination of two expectations in the sense that the agents

in an SG aim to maximize their expected utilities over other players’ joint strategy in

each stage game (state), and their temporal utility over all future games. Formally, for

an agent j, the discounted utility U j of a state s of an SG is defined as follows:

U j(Π(s)) = E

[

∞
∑

t=0

γtuj(Π(st))|s0 = s

]

(2.5)

= uj(Π(s)) + γ
∑

s′∈S

T (s, Π(s), s′)U j(Π(s′))

where uj(Π(s)) is the “immediate” expected utility of a stage game st for the agent j,

as defined by equation 2.4. Π is the policy of joint strategies of players, which defines

a strategy profile Π(s) for each state s ∈ S.

A transition in a stochastic game is presented in Figure 2.5. Given a joint action

(a1, a2) played in a state game s at time t, the transition of agents is made to one of

the state games s1 . . . sN , N = |S|, according to the probability distribution defined by

the transition function T .

The concept of equilibrium also extends to stochastic games. This is a non-trivial

result, proven by Shapley (1953) for zero-sum stochastic games and by Fink (1964) for

general-sum stochastic games. In SGs a policy Π is a Nash equilibrium if and only if

in each state s ∈ S the strategy profile, Π(s), forms a Nash equilibrium.

2In the SG framework the terms agent and player mean the same.
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Figure 2.5: An example of a transition in a stochastic game.

2.6.1 Examples

Two-Player Grid Soccer

Littman (1994) proposed robotic soccer as an example of a two-player adversarial

stochastic game (Figure 2.6). The game is played on a 4 × 5 grid. The players, A

and B, occupy distinct cells of the grid and can choose between five available actions,

north, south, west, east and do nothing, which, in general case, can have stochastic

effect, i.e., as soon as the players have chosen and executed their actions, the they can

move in the intended direction with certain probability or to stay put. The circle in Fig-

ure 2.6 represents the ball. When the player possessing the ball enter the appropriate

goal cell (left for A and right for B), this player obtain a reward +1, the other player

gain −1, and the game is reset to the initial state. When a player executes an action

that can take it to the cell occupied by the other player, possession of the ball goes to

the stationary player and the first player keeps its position by loosing the ball. Thus a

“good” maneuver to take off the ball is to stand where the other player is supposed to

go on the next time step.

Two-Player Coordination Problem

Hu and Wellman (2003) proposed a coordination problem, also called “grid world”

problem or “two-robot-on-the-grid” problem, as an example of a two-player coordi-

nation stochastic game (Figure 2.7). In their example, there are two robots, 1 and

2, on a grid, each robot has its start position and pursues its own goal. Robots can
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B

A

Figure 2.6: Littman’s robotic soccer.

make transitions between two adjacent cells of the grid by making actions north, south,

west and east which, in general case, have stochastic effect. If the action taken has

success (Pr(success) = 0.99), robot changes its position on the grid to the intended

cell, otherwise (Pr(failure) = 0.01) its position remains unchanged. Each action has

the cost of 0.04 (reward of −0.04) in any cell except the goal cell where the cost of all

actions is 0. In case of collision no transition is made and both robots lose the value

of 0.1 (gain −0.1) which we will call “collision loss”. Thus, robots are interested in

attainment of their respective goals by making minimum number of transitions and

avoiding collisions.

1 2

2 1

Figure 2.7: Hu and Wellman’s grid world.

As it was mentioned above, stochastic games are an extension of MDPs to the

multiple agents case. On the other hand, SGs can be considered as an extension of
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the repeated matrix games to the multi-state context. In each state of an SG, the

agents’ strategies are considered as joint-actions that change the system’s state with

respect to some, possibly stochastic, transition rule. Indeed, if in an SG there is only

one state, i.e., |S| = 1, then this SG becomes a repeated matrix game. On the other

part, if there is only one player in an SG, then this SG becomes a simple MDP. One

more case where an SG may be considered as an MDP is when all the agents but one

follow a fixed, stationary and, possibly, mixed policy3. In that case the problem for the

remaining agent is restricted to an MDP because the strategies of the other agents may

be considered as a part of the transition rule of the environment.

As well as in the case of matrix games, the existence of at least one Nash equilib-

rium was proven for stochastic games (Shapley, 1953). Similarly, stochastic games have

the same classification depending on the reward structure of the problem. There are

strictly collaborative (team games), strictly competitive (zero-sum) games and, obvi-

ously, general-sum games. Evidently, the finding an equilibrium strategy in an SG is a

much complex task than it is for the matrix games.

2.7 Conclusion

In this chapter we presented the stochastic game framework, as a model of environment

that enables us to represent multiagent interactions. Furthermore, as we will show later,

this model will allows us to perform learning in presence of multiple learning agents.

We also gave a survey of previous frameworks, such as the agent framework, Markov

Decision Processes and matrix games, and defined the principles of planning and learn-

ing tasks in agent-oriented and multiagent contexts.

In the next chapter we will present the most interesting, in our opinion, state-of-

the-art algorithms of learning in stochastic games and will point out their advantages

and major limitations.

3A policy in SGs corresponds to a set of strategies to play in each state.
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Learning in Stochastic Games

3.1 Introduction

In this chapter we describe in detail the most widely used state-of-the-art learning

algorithms for stochastic games. There were a number of learning algorithms proposed

for stochastic games in the last years. These algorithms have two common parts, (1) an

MDP solving part and (2) a game theoretic part. A game theoretic part of an algorithm

is used to take into account the existence and the strategies of the other players. A

MDP solving part is typically based on a temporal differences algorithm (Sutton, 1988),

usually Q-learning (Watkins and Dayan, 1992) or its different modifications. The goal

of this MDP solving part is to obtain a multiagent algorithm to solve sequential decision

problems where decisions may have a long term effect.

In this chapter we present the following state-of-the-art multiagent algorithms: Q-

learning (a simple extension of the single-agent learning technique without the game

theoretic part), Minimax-Q, Nash-Q, Friend-or-Foe Q-learning, Infinitesimal Gradient

Ascent (IGA), Policy Hill Climbing (PHC) and (its convergent version WoLF-PHC),

Joint-Action Learners (JALs), Adaptive Play Q-Learning (APQ), and the most re-

cent PHC-Exploiter and Hyper-Q. These algorithms can be divided onto five classes,

depending on their nature:

1. Single-agent techniques (such as single-agent Q-learning),

2. Equilibrium Learning Algorithms,

3. Gradient Based Algorithm,
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4. Opponent Modelling Algorithms,

5. Adaptivity Modelling Algorithms.

All algorithms in these classes have both their merits and drawbacks that we will discuss

in this chapter.

3.2 Q-learning

A single-agent version of Q-learning (Watkins and Dayan, 1992) was presented in chap-

ter 2. A multiagent Q-learning differs from the single-agent one in assigning Q-values

to joint states instead of single-agent states of each agent. The Q-value update in

multi-agent case can be written as follows:

Q̂j(st, a
j)← (1− α)Q̂j(st, a

j) + α

(

Rj(st, a
j) + γ max

aj
Q̂j(st+1, a

j)

)

(3.1)

As was already mentioned above, in presence of stationary opponents, an SG become

an MDP and, thus, may be solved using a single-agent learning technique, such as Q-

learning. However, if all the agents are learning at the same time, Q-learning is not

guaranteed to converge to a “good” solution because the policies of all the leaning agents

are non-stationary and, thus, the stochastic games cannot be represented as an MDP,

as soon as the Markov property does not hold. Despite this fact, there were interesting

attempts to directly apply the single-agent Q-learning to the multiagent context (Tan,

1993; Sen et al., 1994).

Another shortcoming of Q-learning applied to the multiagent learning context is its

incapability to learn mixed (stochastic) policies. For some games, such as zero-sum

matrix games and some other non-cooperative games the only “satisfactory” strategy

is to play stochastically with mixed strategies. However, the Q-learning is unable to

learn such strategies. On contrary, there exist single-agent learning techniques capable

of learning mixed stochastic policies, but this is done to treat the problems of partial

observability or the function approximation problems and cannot be applied directly to

play against intelligent opponents.

To cope with the existence of multiple learning agents in a multi-state environment,

the techniques of game theory, such as equilibrium calculation and the opponent’s

strategy estimation, have been extended to the stochastic game framework.



Chapter 3. Learning in Stochastic Games 22

3.3 Equilibrium Learning Algorithms

In this subsection we present three algorithms that relate to the class of algorithms

called in literature “equilibrium learners”. They focus their learning interest on the

direct convergence to an equilibrium by constructing in each state a matrix game from

the Q-values in this state, and by updating these Q-values as to make them converge

to an equilibrium.

3.3.1 Minimax-Q

One of the very first algorithms having both multiagent learning parts (an MDP solv-

ing part and a game theoretic part) was Littman’s Minimax-Q algorithm for zero-sum

stochastic games. Minimax-Q consists in calculating of the unique Minimax equilib-

rium in all the state-games composed of the estimated Q-values of the joint actions.

Thereupon, all agents play on that equilibrium. Minimax-Q was proven to be conver-

gent in zero-sum stochastic games under the assumption that all the states are visited

infinitely often (Littman and Szepesvári, 1996).

The Minimax-Q algorithm differs from the single-agent Q-learning algorithm (1) by

considering Q-values of joint actions instead of personal actions and (2) by using of the

V aluej(s) function instead of maxaj operator in the Q-value update rule (3.1). The

V aluej(s) is given by the minimax utility for player j in the game composed of the

actual Q-values of the joint actions:

V aluej(s) = max
πj(s)∈PD(Aj)

min
a−j

∑

aj

π
j
aj(s)Q̂

j(s, (aj, a−j))

where PD(Aj) denotes the set of discrete probability distributions over the set Aj

and π
j
aj(s) denotes the probability to play the action aj in state s according to the

probability distribution πj(s).

In this case, the Q-value update rule becomes as follows:

Q̂j(st, at)← (1− α)Q̂j(st, at) + α
(

R
j
t (st, at) + γV aluej(st+1)

)

Littman calculated the V aluej(s) function using linear programming. The formal

definition of the Minimax-Q algorithm is presented in Algorithm 3.1. In the lines 7-10

the learning is initialized. Until the maximum number of learning iterations is reached,
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in each visited state the agent calculates the minimax equilibrium strategy of the game

composed of Q-values (line 12) of this state. Then the agent plays this equilibrium

strategy with some exploration (line 13). Having observed its reward, the joint action

played and the new state, it updates the Q-value in previous state (lines 14-15). Finally,

it updates its internal state and increments the iterations counter (lines 16-17) and goes

on to the next iteration.

1: function Minimax-Q(S,A, s0, tmax)

2: returns: a policy.

3: inputs: S, the set of the multiagent states,

4: A, the set of the joint actions,

5: s0, the initial state, s0 ∈ S,

6: tmax, maximal number of learning iterations,

7: Initialize arbitrarily Q̂j(s, a), ∀s, ∀a.

8: Initialize the learning rate α ∈ (0, 1].

9: Initialize the discount factor γ ∈ (0, 1).

10: Current state st ← s0.

11: while t ≤ tmax do

12: Calculate the minimax equilibrium strategy profile Π(s) for the payoff matrix

[Q̂j(s, a)a∈A].

13: Play πj(s) ∈ Π(s) with some exploration.

14: Observe the new state st+1, the joint action played at, and the reward obtained

R
j
t .

15: Update Q̂j(st, at) using the following rule,

Q̂j(st, at)← (1− α)Q̂j(st, at) + α
[

R
j
t + γV aluej(st+1)

]

.

16: Update current state st ← st+1.

17: Increment the time t← t + 1.

18: return current policy.

Algorithm 3.1: Minimax-Q algorithm for player j, adapted from(Littman, 1994).

Note that [Q̂j(s, a)a∈A] at line 12 denotes the payoff matrix composed of Q-values

because each Q-value is defined over joint actions. These joint actions define particular

elements of the matrix, and the corresponding Q-values themselves can be considered

as the payoffs contained in those elements.

The term “some exploration” used at line 13 refers to the using of any existing

exploration technique for the reinforcement learning algorithms Thrun (1992).
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As it was mentioned above, the Minimax-Q algorithm is guaranteed to converge

to the equilibrium in zero-sum games if it is unique. If equilibrium is not unique, the

Minimax-Q agent “converges to a policy that always achieves at least its optimal value

regardless of its opponent” (Littman, 2001b).

However, the algorithm is not guaranteed to be rational in all cases. For example,

in RockPaperScissors game, presented in Section 2.4, the Minimax equilibrium consists

of playing Rock, Paper and Scissors strategies with probability 1
3

and the Minimax-Q

agent will find this solution even if the opponent is always playing Rock and hence

always playing Paper is the rational strategy. The real applicability of the Minimax-Q

algorithm is hence limited by strictly adversarial cases, such as robotic soccer stochastic

game by Littman (1994).

3.3.2 Nash-Q

Nash-Q learning algorithm is an extension of the Minimax-Q algorithm to general-

sum stochastic game framework, proposed by Hu and Wellman (2003). This algorithm

requires that all players maintain the Q-values for all other players. The algorithm

differs from the Minimax-Q in how the V aluej function is calculated. In the Nash-Q

algorithm, this function returns the utility of player j if a specified Nash equilibrium is

played. Hu and Wellman used quadratic programming to compute Nash equilibria in

all states.

The formal definition of the Nash-Q algorithm is presented in Algorithm 3.2. In the

lines 9-12 the learning is initialized. Until the maximum number of learning iterations

is reached the agent starts each iteration by calculating the Nash equilibrium strategy

of the game composed of Q-values (line 14) and plays this equilibrium strategy with

some exploration (line 15). Having observed its reward, the joint action played and the

new state, it updates the Q-values in previous state (lines 16-17). Finally, it updates

its internal state and increments the iterations counter (lines 18-19) and goes on to the

next iteration.

It has been showed that the Nash-Q learning algorithm in a multi-agent environment

converges to a Nash equilibrium policy under some conditions and assumptions about

the payoff structures. In particular, it is necessary that the Nash equilibrium is unique

or there are several equilibria with the same utilities. These assumptions are very hard

to satisfy when designing a stochastic game of a particular reward structure because it

can contain thousands of states and, thus, the equilibria in such a game will be strongly

dependent on the long-term relations between the states.
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1: function Nash-Q(S,A, n, s0, tmax, j)

2: returns: a policy.

3: inputs: S, the set of the multiagent states,

4: A, the set of the joint actions,

5: s0, the initial state, s0 ∈ S,

6: tmax, maximal number of learning iterations,

7: n, the number of agents,

8: j, the learning player’s number, j = 1 . . . n.

9: Initialize arbitrarily Q̂i(s, a), ∀s, ∀a∀i.

10: Initialize the learning rate α ∈ (0, 1].

11: Initialize the discount factor γ ∈ (0, 1).

12: Current state st ← s0.

13: while t ≤ tmax do

14: Calculate the Nash equilibrium strategy profile Π(s) for the matrix game

[Q̂i(s, a)i=1...n
a∈A

].

15: Play πj(s) ∈ Π(s) with some exploration.

16: Observe the new state st+1, the joint action played at, and the reward obtained

by all the players Ri
t, ∀i.

17: Update Q̂i(st, at) using the following rule,

Q̂i(st, at)← (1− α)Q̂i(st, at) + α
(

Ri
t + γV aluei([Q̂i(st+1, a)a∈A])

)

, ∀i.

18: Update current state st ← st+1.

19: Increment the time t← t + 1.

20: return current policy.

Algorithm 3.2: Nash-Q algorithm for player j, adapted from (Hu and Wellman, 2003).

Friend-or-Foe Q-learning

As soon as the convergence conditions of the Nash-Q learning algorithm were strict

enough and could be hardly satisfied in reality, Littman (2001a) developed a Friend-or-

Foe Q-learning (FFQ) algorithm for the reinforcement learning in general-sum stochas-

tic games that is based on the Nash-Q learning. The idea is that each agent in the

system is identified as either “friend” or “foe” and, in consequence, each equilibrium is

either coordinating or adversarial. The convergence guarantee of FFQ is in fact stronger

than that of Nash-Q. In particular, it is guaranteed to converge if there is a one of these

two types of equilibria regardless of opponent behavior.
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This algorithm still can not be applied directly to the general-sum games because

it requires satisfaction of several strict conditions:

1. the FFQ agent must know how many equilibria there are in the game and

2. an equilibrium should be known in advance to be either coordinating or adver-

sarial.

In addition, FFQ learning does not provide a way to identify or classify a Nash equi-

librium and, like Nash-Q-learning, it is not applicable to the systems where neither

coordination nor adversarial equilibria exist or are known in advance. Thus, due to the

fact that the algorithm has very limited application, we has decided not to describe it

in more detail in our work.

3.4 Gradient Based Algorithm

The algorithms described in this section base their learning strategy on calculating or

estimating the gradient of the utility of the currently playing policy. Thereupon, by

using this gradient these algorithms update the current policy. They also use Q-learning

to calculate the estimation of action utilities in each state of the game.

3.4.1 Infinitesimal Gradient Ascent

Singh et al. (1994) examined the dynamics of using the gradient ascent in two-player,

two-action repeated games. The problem can be represented with two payoff matrices

for the row and column players, r and c, as follows:

Rr =

[

r11 r12

r21 r22

]

, Rc =

[

c11 c12

c21 c22

]

The players r and c select simultaneously an action from the set Ar,c = {1, 2}, the row

player r plays an action i, the column player c selects an action j and the payoffs they

obtain are Rr
ij and Rc

ij respectively.

Since this is two-action game, a mixed strategy of a player can be represented using

a single value. Let α ∈ [0, 1] be a probability the player r selects the action 1 and
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1 − α the probability to play the action 2. Let, similarly, β ∈ [0, 1] and 1 − β be the

probabilities to play the actions 1 and 2 respectively by the player c. The expected

utility of playing a strategy profile Π = {α, β} is then calculated as follows:

U r({α, β}) = r11αβ + r22(1− α)(1− β) + r12α(1− β) + r21(1− α)β

U c({α, β}) = c11αβ + c22(1− α)(1− β) + c12α(1− β) + c21(1− α)β

To estimate the effect of changing its current strategy, a player can calculate a

partial derivative of its expected utility with respect to its mixed strategy:

∂U r({α, β})

∂α
= βu− (r22 − r12)

∂U c({α, β})

∂β
= αu′ − (c22 − c21)

where u = (r11 + r22)− (r21 + r12) and u′ = (c11 + c22)− (c21 + c12).

At each time step IGA player adjusts its current strategy in the direction of the

gradient as to maximize its utility:

αt+1 = αt + η
∂U r({αt, βt})

∂α

βt+1 = βt + η
∂U c({αt, βt})

∂β

where η is a step size, usually 0 < η ≪ 1. Obviously, the opponent’s mixed strategy is

supposed to be known by the players.

Singh and colleagues proved the convergence of IGA to a Nash equilibrium (or to

the equivalent average reward), when played in self-play (i.e, when both players use the

same algorithm), in the case of the infinitesimal step size (limη→0), whence the name of

the algorithm. However, IGA cannot be applied to a big number of real world problems

because of two major factors:

1. It assumes omniscient knowledge by the agents of the opponent’s current policy

and

2. It was designed for the two-agent two-player case; the extension to the many-

agent, many-action case is not straightforward.
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3.4.2 Policy Hill-Climbing

The first practical algorithm capable to play mixed strategies that realized the con-

vergence properties of IGA was the Policy Hill-Climbing (PHC) learning algorithm

proposed by Bowling and Veloso (2002). The PHC algorithm requires neither knowl-

edge of the opponent’s current stochastic policy nor its recently executed actions. The

algorithm, in essence, performs hill-climbing in the space of mixed strategies and is,

in fact, a simple modification of the single-agent Q-learning technique. It is composed

of two parts. The first part is the reinforcement learning part which is based on the

Q-learning technique to maintain the values of the particular actions in the states. The

second part is the game theoretic part, which maintains the current mixed strategy in

each system’s state.

The policy is improved by increasing the probability that it selects the highest valued

action, by using a small step δ called learning rate 1. The Q-values are updated using the

standard Q-learning value update by using the second learning rate, α, called learning

rate 2. If δ is 1 the algorithm is equivalent to the single-agent Q-learning as soon

as the learning agent executes the best action with probability 1 without exploration.

Hence, this technique is rational and converges to the optimal solution if the other

players follow a fixed (stationary) policy. However, if the other players are learning, the

PHC algorithm may not converge to a stationary policy though its average reward will

converge to the reward of a Nash equilibrium, as was shown in (Bowling and Veloso,

2002).

The formal definition of the PHC algorithm is presented in Algorithm 3.3. In the

lines 7-12 the learning is initialized. Until the maximum number of learning iterations

is reached, the agent starts each iteration by playing its current mixed strategy with

some exploration (lines 14-15). Having observed its own reward and the new state, it

updates the Q-values in previous state (lines 16-17). Then it updates its mixed strategy

in previous state by “moving” it in the direction of the estimated gradient of the utility

of its current strategy (line 18). Finally, it updates its internal state and increments

the iterations counter (lines 19-20) and goes on to the next iteration.

WoLF-PHC

Bowling and Veloso (2002) have developed an important extension of the PHC algo-

rithm, called WoLF-PHC (Algorithm 3.4). WoLF (for “Win or Learn Fast”) is a tech-

nique of varying the learning rate δ depending on either the player j is winning or is
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1: function PHC(Aj,S, s0, tmax)

2: returns: a policy.

3: inputs: Aj, the set of the actions of player j,

4: S, the set of the multiagent states,

5: s0, the initial state, s0 ∈ S,

6: tmax, maximal number of learning iterations,

7: Initialize the learning rate α ∈ (0, 1].

8: Initialize the learning rate δ ∈ (0, 1].

9: Initialize the discount factor γ ∈ (0, 1).

10: Initialize the Q-values Q̂j(s, aj)← 0, ∀s ∈ S, ∀aj ∈ Aj.

11: Initialize current policy π
j
aj(s)←

1
|Aj |

, ∀aj ∈ Aj.

12: Current state st ← s0.

13: while t ≤ tmax do

14: From the state st select action a
j
t according to the strategy πj(s).

15: Play aj with some exploration.

16: Observe new state st+1 and the reward obtained R
j
t .

17: Update Q̂j(st, a
j
t) using the following rule,

Q̂j(st, a
j
t)← (1− α)Q̂j(st, a

j
t) + α

(

R
j
t + γ max

aj
t+1

Q̂(st+1, a
j
t+1)

)

.

18: Update current strategy, πj(st), using the following rule,

π
j
aj(st)← π

j
aj(st) + ∆saj ,

where,

∆saj =

{

−δsaj if aj 6= argmaxa′j Q̂(st, a
′j)

∑

a′j 6=aj δsa′j otherwise

δsaj = min

(

π
j
aj(st),

δ

|Aj| − 1

)

,

while constrained to a legal probability distribution.

19: Update current state st ← st+1.

20: Increment the time t← t + 1

21: return current policy.

Algorithm 3.3: Policy Hill-climbing (PHC) learning algorithm for player j.



Chapter 3. Learning in Stochastic Games 30

loosing. If it is winning its learning rate is small, otherwise it is big (line 16). Bowling

has proved that these changes ensure the convergence of the PHC algorithm in self-play

to a Nash equilibrium, which is sometimes a desired property of the learning algorithm.

The same author showed that the WoLF principle aids in convergence by giving more

time for the other players to adapt to changes in the player’s strategy while allow-

ing the player to adapt more quickly to other players’ strategy changes when they are

unfavorable. More formally, the WoLF-PHC algorithm requires two δ-learning rates,

δloosing and δwinning (line 4). Whether the player is loosing or winning is determined

by comparing the expected value of the current policy with the expected value of the

averaged policy, calculated at line 15 of the algorithm. If it is lower, then the player is

considered as loosing and the δloosing is used, otherwise δwinning is used (line 16). The

averaged policy is an online mean of all played policies form the beginning of learning.

The rest of the Wolf-PHC algorithm is the same as in PHC (Algorithm 3.3).

Wolf-PHC exhibits two good properties that permit it to be applied to a wide variety

of stochastic games:

1. Convergence in the limit to a fixed policy (mixed or pure) and

2. Rationality in the sense of the one shot game Nash equilibrium.

However, if the reward structure of a stochastic game is resembling that of Prisoners-

Dilemma, the Wolf-PHC will converge to a Nash equilibrium which is equally disastrous

for all agents, while there can be a solution which, in the limit, maximizes the utility

of all agents (or, at least, a subset of them). Thus, a strategy like Tit-for-Tat would be

desirable to be learnt here, as soon as the stochastic game is analogous to the infinitely

repeated matrix game in the sense that it is assumed to be replayed infinitely by the

agents.

3.5 Opponent Modelling Algorithms

The opponent modeling learning algorithms, such as Joint-Action Learners (JALs)

proposed by Claus and Boutilier (1998) and Adaptive Play Q-learning proposed by

Gies and Chaib-draa (2006), are based on the fictitious play introduced by Brown

(1951) or its modifications.

When played by all players, fictitious play is proven to converge to a Nash equi-

librium in games that are iterated dominance solvable, that is, games such that it is



Chapter 3. Learning in Stochastic Games 31

1: function WoLF-PHC(Aj,S, s0, tmax)

2: returns: a policy

3: inputs: the same as in Figure 3.3.

4: Initialize the learning rates α ∈ (0, 1] and δloosing > δwinning ∈ (0, 1].

5: Initialize the discount factor γ ∈ (0, 1).

6: Initialize the Q-values Q̂j(s, aj)← 0, ∀s ∈ S, ∀aj ∈ Aj.

7: Initialize current policy π
j
aj(s)←

1
|Aj |

, ∀aj ∈ Aj.

8: Initialize counter C(s)← 0, ∀s.

9: Current state st ← s0.

10: while t ≤ tmax do

11: From the state st select action a
j
t according to the strategy πj(s).

12: Play aj with some exploration.

13: Observe new state st+1 and the reward obtained R
j
t .

14: Update Q̂j(st, a
j
t) using the following rule,

Q̂j(st, a
j
t)← (1− α)Q̂j(st, a

j
t) + α

[

R
j
t + γ max

aj
t+1

Q̂(st+1, a
j
t+1)

]

.

15: Update estimate of average policy, π̄(s), as follows,

C(s)← C(s) + 1,

π̄a′j(s)← π̄a′j(s) +
1

C(s)
(πj

a′j(s)− π̄a′j(s)), ∀a′j ∈ Aj.

16: Update current strategy π
j
aj(s)← π

j
aj(s) + ∆saj , where,

∆saj =

{

−δsaj if aj 6= argmaxa′j Q̂(s, a′j)
∑

a′j 6=aj δsa′j otherwise
,

δsaj = min

(

π
j
aj(s),

δ

|Aj| − 1

)

,

δ =

{

δwinning if
∑

a′j π
j
a′j(s)Q̂(s, a′j) >

∑

a′j π̄a′j(s)Q̂(s, a′j)

δloosing otherwise
,

while constrained to a legal probability distribution.

17: Update current state st ← st+1.

18: Increment the time t← t + 1.

19: return current policy.

Algorithm 3.4: WoLF-PHC learning algorithm for player j, adapted from

(Bowling and Veloso, 2002).
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possible to iteratively remove dominated actions to finally obtain one action or a set of

equivalent actions. Once an equilibrium is found, it is relatively easy to verify if it is a

Nash equilibrium, and if it is Pareto-optimal.

3.5.1 Fictitious Play

Fictitious play is a technique that permits to find an equilibrium in pure strategies (if

it exists) in a game by playing it iteratively. Players playing fictitious play maintain

the empiric beliefs about the reduced profile of the other players’ joint strategies. The

idea is to learn an explicit model of other players under assumption that they play

a stationary strategy, even if they actually do not. To do this, the players maintain

a history of past joint actions of other players and calculate the empiric probability

distribution of the reduced profile Π−j using the following rule:

Π−j(a−j) =
Cj(a−j)

m

where Cj(a−j) is the number of times that the joint action a−j was played starting from

the beginning of a play and m is the total number of iterations played.

Having calculated the reduced profile, agent j adopts its best response to it Π−j.

The fact of considering the entire game history to calculate the estimated reduced

profile of the opponents’ joint strategy can provoke an error in these estimates. This

is due to the fact that the opponent’s strategy may not be constant and can evolve

in time, as well as the player j’s own strategy. To overcome this shortcoming, Young

(1993) has proposed the adaptive play, a modification of fictitious play, which explicitly

limits the memory of players available for history.

3.5.2 Adaptive Play

Formally, each player j playing the adaptive play saves in memory a history H
j
t =

{a−j
t−p, . . . , a

−j
t } of last p joint actions played by other players. To select a strategy

to play at time t + 1, player j randomly and irrevocably samples from H
j
t a subset,

Ĥ
j
t = {a−j

k1
, . . . , a−j

kl
}, of examples of length l and calculates the empiric distribution

Π̂−j as an approximation of the real reduced profile, Π−j, of strategies played by other
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players, using the following:

Π̂−j(a−j) =
C(a−j, Ĥ

j
t )

l
(3.2)

where C(a−j, Ĥ
j
t ) is the number of times that the joint action a−j was played by other

players according to the set Ĥ
j
t .

Given the probability distribution over other players’ actions, Π̂−j, the player j

plays its best response to this distribution, BRj(Π̂−j), with probability 1− ǫ, and with

probability ǫ it plays another action to explore the joint action space of the game.

We will decide on two similar opponent modelling algorithms: (1) Joint-Action

Learners (JALs) (Claus and Boutilier, 1998) and (2) Adaptive Play Q-learning (APQ)

(Gies and Chaib-draa, 2006). They differs in how they model the behavior of their

counterparts. While JALs are using fictitious play to do that, the more recent APQ

is using adaptive play which has more relaxed convergence conditions as against the

fictitious play.

3.5.3 Joint-Action Learners

The idea here is to learn explicitly the behavior model of the opponent by using the ficti-

tious play probability distribution estimation technique, as if it was playing a stationary

policy. In each system’s state the learning player is playing its best (deterministic) re-

sponse to this estimated probability distribution. The algorithm, as shown in Algorithm

3.5, has also a Q-learning based part for the optimal sequential (long term dependent)

decision making. In Algorithm 3.5, at lines 7-11 learning is initialized. Until the maxi-

mum number of learning iterations is reached the agent starts each iteration by playing

its best response strategy (line 13). Having observed its own reward and the new state,

it updates the Q-values in previous state (lines 14-15). Next, the agent updates the

counters of the opponent’s actions (lines 17-20). Finally, it updates its internal state

and increments the iterations counter (lines 21-22) and goes on to the next iteration.

The behavior of the Joint-Action Learners algorithm was empirically investigated

for the case of cooperative (team) matrix games. Later, the case of zero-sum games

was also investigated (Uther and Veloso, 2003).
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1: function JALs(S,A−j, n, s0, tmax)

2: returns: a policy.

3: inputs: S, the set of the multiagent states,

4: A−j, the set of joint actions of counterpart players,

5: s0, the initial state, s0 ∈ S,

6: tmax, maximal number of learning iterations.

7: Initialize arbitrarily Q̂j(s, a), ∀s ∈ S, ∀a ∈ A.

8: Initialize the learning rate α ∈ (0, 1].

9: Initialize the discount factor γ ∈ (0, 1).

10: Initialize counters C(s, a−j)← 0 and n(s)← 0.

11: Current state st ← s0.

12: while t ≤ tmax do

13: Select action aj to play by using the following rule,

aj = argmax
aj

∑

a−j

C(s, a−j)

n(s)
Q̂(s, (aj, a−j)).

14: Observe new state st+1, the joint action played at, and the reward obtained R
j
t .

15: Update Q̂j(st, at) using the following rule,

Q̂j(st, at)← (1− α)Q̂j(st, at) + α
(

R
j
t + γV aluej(st+1)

)

,

where V aluej(s) = maxaj

∑

a−j

C(s,a−j)
n(s)

Q̂(s, a)and a = (aj, a−j).

16: Update counters:

17: for all a−j ∈ A−j do

18: if a−j = a−j
t then

19: C(s, a−j)← C(s, a−j) + 1

20: n(s)← n(s) + 1

21: Update current state st ← st+1.

22: Increment the time t← t + 1.

23: return current policy

Algorithm 3.5: Joint-Action Learners (JALs) algorithm for player j, adapted from

(Claus and Boutilier, 1998).

3.5.4 Adaptive Play Q-learning

Adaptive Play Q-learning algorithm was proposed by Gies and Chaib-draa (2006) for

the stochastic robot coordination problems and was empirically tested with good re-

sults. It combines Q-learning with Young’s Adaptive Play (Young, 1993), of which the
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convergence conditions are more relaxed than those of fictitious play. In particular, the

Adaptive Play is proven to converge to a Nash equilibrium in games having a strict

equilibrium, i.e., there is no other equilibrium with the same utility. This condition is

significantly less strict then the condition of the iterated dominance solvability of the

game for the convergence of the fictitious play.

The APQ algorithm is presented in Algorithm 3.6. In the lines 9-15 the learning is

initialized. Until the maximum number of learning iterations is reached the agent starts

each iteration by playing its best response strategy (lines 17-18). Having observed its

own reward and the new state, it updates the Q-values in previous state (lines 19-20).

Then it updates its beliefs about the strategy of its opponent in the previous state by

updating the history in that state (line 21) and by sampling new belief from the history

(lines 22-23). Finally, it updates its internal state and increments the iterations counter

(lines 24-25) and goes on to the next iteration.

The opponent modeling algorithms are unable to learn mixed policies, but their

estimations of the opponents’ strategies converge to a mixed Nash equilibrium in games

where the only equilibrium is in mixed strategies. For example, in RockPaperScissors

game, the only equilibrium is mixed (1
3
,1
3
,1
3
). Thus, after a sufficient number of plays,

the player j will estimate the strategy of its opponent as (1
3
,1
3
,1
3
) even if they both are

using an opponent modelling algorithm and play, in fact, the pure strategies only. In

games where there is a pure Nash equilibrium the players will converge to it if the

corresponding convergence conditions are satisfied, what, in general, can not be known

in advance for all stochastic games.

Thus, among the merits of the adaptive and fictitious play based algorithms are

their (1) faster convergence (Claus and Boutilier, 1998) as compared to the single-agent

Q-learning technique applied in multiagent context and (2) explicit modeling of the op-

ponent’s behavior that converges to the opponent’s real behavior in the limit. However,

these algorithms require that the agents observe the actions of each other and the field

of applicability is limited to the case of team or coordination stochastic games. At

the same time, the type of the game is difficult to predict in advance due to complex

relations between states in multiple state systems with stochastic interstate transitions.

3.6 Adaptivity Modeling Algorithms

In this subsection we present two recent multiagent learning algorithms that differ from

the previous ones in that they model and exploit the adaptive character of learning
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1: function APQ(S,A−j, s0, tmax, p, l)

2: returns: a policy.

3: inputs: S, the set of the multiagent states,

4: A−j, the set of joint actions of counterpart players,

5: s0, the initial state, s0 ∈ S,

6: tmax, maximal number of learning iterations,

7: p, history size,

8: l, sampling size.

9: Initialize arbitrarily Q̂i(s, a−j), ∀s ∈ S, ∀a−j ∈ A−j.

10: Initialize the learning rate α ∈ (0, 1].

11: Initialize the discount factor γ ∈ (0, 1).

12: Initialize the time t← 0.

13: Initialize history H
j
t (s)← EmptySet, ∀s.

14: Initialize reduced profile Π−j
a−j(s) = 1

|A−j |
, ∀s.

15: Current state st ← s0.

16: while t ≤ tmax do

17: Select action aj to play by using the following rule,

aj = argmax
aj

∑

a−j

Π−j
a−j(s)Q̂(s, (aj, a−j)).

18: Play action aj with some exploration.

19: Observe new state st+1, the joint action played at, and the reward obtained R
j
t .

20: Update Q̂j(st, at) using the following rule,

Q̂j(st, at)← (1− α)Q̂j(st, at) + α
[

R
j
t + γV aluej(st+1)

]

,

where V aluej(s) = maxaj

∑

a−j Π−j
a−j(s)Q̂(s, a) and a = (aj, a−j).

21: Update history in st: H
j
t (st) = H

j
t (st) ∪ {a

−j
t } \ {a

−j
t−p}.

22: Sample from H
j
t (st) a subset Ĥ

j
t (st) of size l.

23: Calculate the new opponents’ reduced profile in st using the following rule,

Π−j
a−j(st) =

nĤj
t (st)

(a−j)

l
, ∀a−j,

where nĤj
t (st)

(a−j) is the number of times that the strategy a−j appears in the

sampling Ĥ
j
t (st).

24: Update current state st ← st+1.

25: Increment the time t← t + 1.

26: return current policy.

Algorithm 3.6: Adaptive Play Q-learning algorithm for player j.
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algorithms used by their counterparts.

3.6.1 PHC-Exploiter

The first to exploit the adaptivity of the opponent were Chang and Kaelbling (2001).

Their PHC-Exploiter algorithm was able to outperform the PHC algorithm in an ad-

versarial game by using the knowledge of the opponent’s adaptivity mechanism, i.e., it

played against PHC player in adversarial games, such as MatchingPennies or RockPa-

perScissors, and it knew how its own actions were affecting the beliefs of its opponent

about its own strategy. This knowledge gave it the possibility to play so as to delude

its opponent about its real intentions.

The PHC-Exploiter algorithm is presented in Algorithm 3.7. In the lines 8-14 the

learning is initialized. Until the maximum number of learning iterations is reached, the

agent starts each iteration by playing its current mixed strategy with some exploration

(line 16). Having observed its own reward and the new state, it updates the Q-values

in previous state (line 18). Then it updates its beliefs about the opponent’s policy and

learning rate in previous state by maintaining the history of past plays (lines 19-20).

Then it updates its policy in previous state in a direction, which is defined by whether

it is winning or loosing in that state (lines 21-24). Finally, it updates its internal state

and increments the iterations counter (lines 25-26) and goes on to the next iteration.

Note that whether the PHC-Exploiter is winning or loosing (line 21 of Algorithm

3.7) is decided by using the following inequality:

∑

a′j

π
j
a′j(s)Q̂(s, a′j) > V aluej((

⋆
πj(s), Π−j(s)))

where (
⋆
πj(s), Π−j(s)) is a strategy profile, where player j plays a Nash equilibrium

strategy
⋆
πj(s). V aluej(·) is the function returning the expected utility of a strategy

profile for player j. This function was defined in previous chapter in equation 2.4.

If the above inequality is true, then PHC-Exploiter is winning, if not — it is loosing.

The opponent’s learning rate δ and policy Π−j(s) are derived from estimates using the

observable history of actions (Algorithm 3.7, line 21). If one assumes the game matrix

to be public information, then one can calculate directly the equilibrium strategy
⋆
πj(s),

otherwise one can run PHC for some finite number of plays to obtain an estimate to

this equilibrium strategy.

The applicability of PHC-Exploiter is strictly limited to the case of play against
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1: function PHC-Exploiter(Aj,S, s0, tmax, p)

2: returns: a policy

3: inputs: Aj, the set of the actions of player j,

4: S, the set of the multiagent states,

5: s0, the initial state, s0 ∈ S,

6: tmax, maximal number of learning iterations,

7: p, the size of history.

8: Initialize the learning rates α, δ ∈ (0, 1] and the discount factor γ ∈ (0, 1).

9: Initialize the Q-values Q̂j(s, aj)← 0, ∀s ∈ S, ∀aj ∈ Aj.

10: Initialize current policy π
j
aj(s)←

1
|Aj |

, ∀aj ∈ Aj.

11: Initialize the history H
j
t (s)← EmptySet, ∀s.

12: Initialize reduced profile Π−j
a−j(s) = 1

|A−j |
, ∀s.

13: Current state st ← s0.

14: while t ≤ tmax do

15: From the state st select action a
j
t according to the strategy πj(s).

16: Play aj with some exploration.

17: Observe new state st+1 and the reward obtained R
j
t .

18: Update Q̂j(st, a
j
t) using the following rule,

Q̂j(st, a
j
t)← (1− α)Q̂j(st, a

j
t) + α

(

R
j
t + γ max

aj
t+1

Q̂(st+1, a
j
t+1)

)

.

19: Observe action a−j
t , update history Hj(st) and calculate an estimate of the

opponent’s policy as Π−j
a−j(s)t =

n
H

j
t
(st)

(a−j)

p
, ∀a−j where nHj

t (st)
(a−j) is the

number of times that the strategy a−j appears in the history H
j
t (st).

20: Estimate the PHC player’s learning rate δ ←
|Π−j

a
−j (s)t−Π−j

a
−j (s)t−p|

p
.

21: if we are winning then

22:

π
j
aj(st)←

{

1 if aj = argmaxa′j Q̂(s, a′j)

0 otherwise
.

23: else

24:

π
j
aj(st)← π

j
aj(st) +

{

δ if aj = argmaxa′j Q̂(s, a′j)
−δ

|Aj |−1
otherwise

.

25: Update current state st ← st+1.

26: Increment the time t← t + 1.

27: return current policy.

Algorithm 3.7: PHC-Exploiter learning algorithm for player j, adapted from

(Chang and Kaelbling, 2001).
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PHC agent. Besides, it was not shown to perform well in general sum stochastic games,

neither theoretically nor empirically. However, it suggested a good direction for fu-

ture research in multiagent learning that was borne out by the following algorithms:

Hyper-Q by Tesauro (2004) and Adaptive Dynamics Learner by Burkov and Chaib-draa

(2007a;b).

3.6.2 Hyper-Q

Tesauro (2004) extended the idea of learning the opponents’ adaptivity by introducing

the Hyper-Q algorithm. He supposed that given that the agent may need to learn a

mixed strategy, which may depend on the mixed strategies of other agents, an obvious

idea is to make Q-values evaluate mixed strategies, rather then base actions, i.e., to

include in state description the estimation of the opponents’ mixed strategy. At time t,

the agent j executes an action aj according to its current mixed strategy πj(s), and then

observes a payoff R
j
t , the new state st+1 and, by observing the joint strategy executed by

the opponent players, it updates its estimates of the opponents’ strategy profile Π−j(s).

The Q-value of Hyper-Q is then adjusted as follows:

Q̂j(st, π
j(st), Π

−j(st)) ← (1− α)Q̂j
(

st, π
j(st), Π

−j(st)
)

+α

[

R
j
t + γ max

πj(st+1)
Q̂
(

st+1, π
j(st+1), Π

−j(st+1)
)

]

(3.3)

Given the Q-values, the state and the other players’ mixed strategy, the greedy policy

for agent j is then defined by

π̂j(s, Π−j(st)) = argmax
πj(st)

Q(st, π
j(st), Π

−j(st)) (3.4)

To estimate the strategy of the opponents, Hyper-Q uses one of two distribution esti-

mation techniques: (1) Exponential Moving Average (EMA) and (2) Bayesian strategy

estimation. Notice that EMA is a family of similar statistical techniques used to ana-

lyze time series data, in particular, in finance analysis. Typically, EMA assumes that

the recent observations are more informative than the older ones. Thus, as applied to

our problem, given a new observed joint action a−j
t , agent j updates a reduced profile

Πt−j, represented as a vector Π−j
t , as follows:

Π−j(s)t+1 ← (1− µ)Π−j(s)t + µu(a−j
t )

where u(a−j
t ) is a unit vector representation of the action a−j

t observed at time t. I.e.,

u(a−j
t ) is a vector, containing as many elements as the reduced strategy profile vector
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Π−j
t does. All elements of this vector contain 0 excepting one element containing 1,

position of which corresponds to the action a−j
t . Parameter µ is a small constant,

0 < µ≪ 1.

A more refined alternative to EMA is a Bayesian strategy estimation technique.

Let us assume a finite and discrete set of possible values of Π−j(st) (a finite number of

probability distributions over opponents’ actions). In the original version of Hyper-Q, to

obtain this set, Tesauro (2004) uses a discretization with a uniform grid. A probability

that the opponents play a distribution Π−j(st) given the history of observed actions,

Hj(s), can be computed using Bayes’ rule:

P (Π−j(s)|Hj(s)) =
P (Hj(s)|Π−j(s))P (Π−j(s))

∑

Π′−j(s) P (Hj(s)|Π′−j(s))P (Π′−j(s))

where P (Π−j(s)) is the prior probability that players −j, i.e., all other players except j,

play a strategy profile Π−j(s) and Π′−j(s) iterates over all discrete strategy values. The

conditional probability of a history given a strategy, P (Hj|Π−j(s)), can be calculated

as the following product of individual joint-action probabilities:

P (Hj(s)|Π−j(s)) =

p
∏

k=0

P (a−j(s)k|Π
−j(s))

assuming conditional independence of the individual actions and that the history length

is p. If all actions in the history are considered to be equally informative regardless the

time they were observed in state s, one may write P (a−j(s)k|Π
−j(s)) = Π−j

a−j(s), ∀k.

Given these notions, the equations 3.3 and 3.4 are updated as follows:

Q̂j(st, π
j(st), Π

−j(st)) ← (1− αP (Π−j(st)|H
j(st)))Q̂

j
(

st, π
j(st), Π

−j(st)
)

+αP (Π−j(st)|H
j(st))

(

R
j
t + γ max

πj(st+1)
Q̂
(

st+1, π
j(st+1), Π

−j(st+1)
)

)

π̂j(s, Π−j(st)) = argmax
πj(st)

∑

Π−j(st)

P (Π−j(s)|Hj(s))Q(st, π
j(st), Π

−j(st))

The Hyper-Q algorithm was empirically compared with IGA and PHC algorithms

on the example of the adversarial game RockPaperScissors. Its author has showed that

the Hyper-Q algorithm is capable to outperform these two algorithms due to its ability

to learn the best mixed strategy to play, versus any mixed strategy of its opponent, and

to change these strategies with the object of maximizing its own long term utility. The

main merit of Hyper-Q is that it is able to learn the best long term strategy against the
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adaptive opponents by discovering their adaptivity and by finding an optimal sequence

of the mixed strategy changes to turn this adaptivity to its own advantage. But the

price of this is its higher computational complexity. This is due to the discretization

of the continuous space of reduced strategy profiles and a need of making the Q-value

update and reduced profile estimation for those discreet values at each moment of time.

We will examine this question in the following subsection about the shortcomings of

the presented state-of-the-art multiagent learning algorithms.

3.7 Limitations

Despite the fact that there is now a multitude of learning algorithms for the stochastic

games, they have all or certain of a number of serious shortcomings, which limit their

applicability to real world problems. Among them the most noticeable are the following

three limitations:

1. High computational complexity,

2. Strong game structure requirements and

3. Focus on the convergence to the one shot Nash equilibrium.

3.7.1 High computational complexity

Obviously, the computational complexity of the different multiagent learning algorithms

is different. There has not been much work done in the direction of the complexity

estimation of the multiagent learning algorithms. The main result, on which the esti-

mations of the computational complexity of the particular Q-learning based multiagent

algorithms are made, is that of Koenig and Simmons (1996). In their paper about the

complexity of Q-learning for the goal directed tasks, those authors proved that the time

required for the convergence of single-agent Q-learning to the optimal solution may be

exponential in the number of the states of the environment. As soon as the number of

the states of multiagent system is exponential in the number of acting agents (since the

multiagent system’s states are joint states of all agents in the original environment),

it is straightforward to suppose that the computational complexity of the Q-learning

based multiagent algorithms may be at least double-exponential (in the number of the

original, single-agent, states and in the number of learning agents).
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Some algorithms, such as Nash-Q, perform the calculations of Q-values for the all

agents, which involves additional complexity. Other algorithms, such as Hyper-Q, are

even less computationally tractable because their complexity is highly dependent on

the probability space discretization quality. For example, in the known realizations of

the Hyper-Q algorithm, there was about of 100, 000 discrete values of the opponents

strategies, Π−j(s), for the game with merely three opponent’s base actions (Rock, Paper,

Scissors).

3.7.2 Strong game structure requirements

As it was already mentioned above in this chapter, some learning algorithms require too

much conditions about the structure of stochastic game to be satisfied to make these

algorithms applicable. For example, the single-agent Q-learning requires that the other

agents follow stationary policies, that is some pure or mixed policies that do not evolve

in time. Minimax-Q learning algorithm is applicable in the games with two-players only

and supposes that the other agent follows the same, Minimax-Q, algorithm. The Nash-

Q learning algorithm requires the existence and uniqueness of the Nash equilibrium and

the Friend-or-Foe Q-learning (FFQ) algorithm requires that the agents know in advance

which kind of equilibrium there exists in the game, either adversarial or coordination,

that cannot be easily determined for the real problems. IGA player needs to know

exactly the mixed policy of its opponent and the full game matrix in advance and all

along the learning process, which is not always realizable, in particular in the adversarial

case or in a case with limited communication. The Adaptive Play Q-learning (APQ)

requires the complete observability by the learning agents of the actions made by the

other agents which limits its applicability in some cases with partial observability. In

addition, APQ is not able to learn mixed strategies which does not permit it to converge

in adversarial games.

The PHC and, more particularly, Wolf-PHC algorithms are devoid of many of these

limitations. However they both, as well as all other learning algorithms, excepting

the adaptivity modeling algorithms, have another major drawback: their focus on the

convergence to the one shot Nash equilibrium.
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3.7.3 Focus on the convergence to the one shot Nash equilib-

rium

Probably one of the most major shortcomings of all of the state-of-the-art multiagent

learning algorithms is their strong focus on the convergence to the one shot game Nash

equilibrium. Although Nash equilibrium is a “stable” solution, there exist a variety of

cases where it is undesirable for the agents and they would prefer to play another joint

action. For example, as we noted above, in the iterated PrisonersDilemma the agents

would prefer the utility of the cooperative joint action instead of the Nash equilibrium.

Furthermore, for the agents, such as Adaptive Play or Policy Hill-climbing, adapting

to each other during learning, it would be better to converge to the Pareto optimal

solution, instead of the Nash, as soon as adaptation is a bilateral process.

One more point in this discussion is that the algorithms of reinforcement learning,

such as Q-learning, use discount factor, γ, to plan with infinite horizon, i.e., the policy

they learn is calculated under assumption that it will be executed infinitely often from

any state. In stochastic games each state of the environment is a one shot game. Thus,

if an infinite horizon learning is produced in an SG, then it is also assumed that the

resulting policy is to be executed infinitely often in each game/state. This corresponds

to the case of infinitely repeated games, where there may exist a Pareto optimal Nash

equilibrium strategies like Tit-for-Tat, as we showed on the example of the infinitely

iterated PrisonersDilemma in Section 2.4. Therefore, the adaptive agents learning in

such conditions, should be able to converge to this type of solution instead of a (not

always desirable) one shot Nash equilibrium.

3.8 Conclusion

In this chapter we presented the most widely used state-of-the-art multiagent learning

algorithms for stochastic games. These algorithms can be divided onto five principal

classes:

1. Single-agent techniques adapted to multiagent context (such as Q-learning),

2. Equilibrium Learning Algorithms,

3. Gradient Based Algorithm,

4. Opponent Modelling Algorithms and
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5. Adaptivity Modelling Algorithms.

While we mentioned that single-agent techniques can be applied directly to the multi-

agent environment, we showed also that there are serious limitations of such an appli-

cation, since single-agent learning techniques assume the environment to be stationary

at all time, which is not the case when the other agents are learning as well.

We gave a detailed description for each of the selected algorithms, by pointing out

their merits and demerits and by outlining their applicability to real world problems.

Although nowadays there are a multitude of multiagent learning algorithms, all of

them have major shortcomings related to their computational complexity, strong re-

quirements to the environments or their tendency to converge to the one shot game

Nash equilibrium even if they are learning in the infinitely repeated game context.

In the next chapter we will present two novel approaches, developed in the context

of this work, to overcome some of these shortcomings. These are an algorithm that

is focused on the complexity reduction of the multiagent learning and an algorithm of

effective game playing in presence of adaptive counterparts.



Chapter 4

Adaptive Dynamics Learning and

Q-initialization

4.1 Introduction

As we have seen in the previous chapter, the modern multiagent learning suffers from

three major drawbacks:

1. High computational complexity,

2. Strong game structure requirements and

3. Focus on the convergence to the one shot Nash equilibrium.

Some algorithms, such as Wolf-PHC by Bowling and Veloso (2002) or Hyper-Q by

Tesauro (2004), have only one of these drawbacks. Indeed, as we have explained in the

previous chapter, in self-play, Wolf-PHC converges to the one shot Nash equilibrium.

On the other hand, Hyper-Q in its current version is highly computationally complex

due to the discretization of the continuous space of the other players’ mixed strategies,

while doing better than Nash equilibrium against Wolf-PHC in adversarial game.

However, the most of the modern multiagent learning algorithms have two or even

all these demerits at once. In this chapter we present our contributions to the field

of multiagent learning, which is a step forward to resolve some of the stated draw-

backs. Our algorithms are using two novel approaches to the complexity reduction of
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multiagent learning and to the effective learning in presence of the adaptive learning

opponents, which is not focused on the Nash equilibrium.

The first algorithm, Initialized Adaptive Play Q-learning (Burkov and Chaib-draa,

2007c), permits, as we will show later, to considerably reduce the complexity of multia-

gent learning in a class of stochastic games, called “goal-directed stochastic games with

action-penalty representation”. The second one, called Adaptive Dynamics Learner

(Burkov and Chaib-draa, 2007a;b), will be shown to be very effective in adversarial

games against adaptive opponents, such as IGA and APQ, and to converge to a Pareto

optimal strategy in general-sum games, such as the PrisonersDilemma.

4.2 Reducing the Complexity of Multiagent Learn-

ing

It is known that the complexity of the reinforcement learning algorithms (time of con-

vergence to the optimal solution), such as Q-learning, may be exponential in the number

of environment’s states. As early as ten years ago it was shown by Koenig and Simmons

(1996) that the learning complexity for the goal-directed problems may be substantially

reduced by initializing the Q-values with a “good” approximative function. But there

was no big practical progress done in that direction because hitherto there was no idea

how to find this “good” function that would be equally good for a class of problems.

However, in the multiagent case there exists such a good approximation for a big class

of problems which are goal-directed stochastic games. These games can reflect coor-

dination and common interest for cooperative robots, for example. For these games,

the approximative function is nothing but the single-agent planning solution which can

easily be found by each agent individually. In this article we show that:

1. the single-agent solution is a “good” approximation for the goal-directed stochas-

tic games with action-penalty representation (i.e., it is admissible and monotonic);

2. the complexity is reduced when learning is initialized with this approximative

function as compared to the uninformed case.
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4.2.1 Introduction

In multiagent systems where several autonomous agents act simultaneously, the effect

of an action of an agent does not only depend on that action as soon as the other

agents’ actions can also have an influence on the environment’s resulting state. In this

case, an agent’s current policy may be dependent not only on its preferences about the

environment, but also on its beliefs about preferences and/or beliefs of other agents in

this environment. Thus, if some agents in a multiagent system do not follow a fixed

(stationary) policy, we say that such an environment is non-stationary, and therefore the

techniques widely used for single-agent learning and planning are not generally efficient

in this multiagent context. Another major challenge for both multiagent learning and

planning is the problem of the state space dimensionality. Obviously, the cardinality of

the state space of multiagent system grows exponentially with the number of agents as

soon as in such an environment each state is composed of the individual “positions” of

all the agents acting in that environment.

One can divide the decision problems in MDPs in two categories: learning and

planning. Learning is used when the properties of the model, such as its transition

function, T , and the reward function, R, are not known to the agents. To learn a

policy, the agent must interact with the environment and to construct a policy based

on its experience. Planning is a problem of decision making when the agent knows the

model of the environment where it will be acting and its task is to calculate a policy

before starting to act.

When an agent is learning in an MDP, the transition function, T , of this MDP

is not known to the learning agent. Thus, the agent cannot directly use the Bellman

equation (2.2) to calculate the values of the actions in each state. Q-learning consists

in estimating the real action’s value
⋆

Q(s, a) by executing action a in state s of the

environment, observing the reward R(s, a) obtained and the system’s next state s′,

using the following update rule:

Q̂(s, a)← (1− α)Q̂(s, a) + α
(

R(s, a) + γ max
a

Q̂(s′, a)
)

(4.1)

where Q̂(s, a) is an estimated value of
⋆

Q(s, a) and α ∈ [0, 1] is the learning rate. All

along the learning process the agent selects actions to execute in each state by maxi-

mizing the Q-value in that state with some stochastic exploration which decreases over

time. Any reinforcement learning exploration technique (Thrun, 1992) can be used.

Obviously, in that case the agent is strictly risk-neutral as soon as it tries to maximize

its expected total reward. The risk neutrality of an agent means that by maximizing
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the expectation of the future rewards it is implicitly assumed that the resulting policy

can be executed an infinite number of times. Thus, it is rational to maximize the

expectation of future rewards. On the other hand, if the agent could assume that the

policy can be executed a finite number of times, e.g. one, it could be rational for it to

maximize the immediate rewards instead of the expected future rewards, depending on

the degree of its inclination to risk (see (Russell and Norvig, 2005) for more detail).

The convergence of the estimated Q-values, Q̂(s, a), to their optimal values,
⋆

Q(s, a),

was proven by Watkins and Dayan (1992) under the conditions that each state-action

pair is updated infinitely often, rewards are bounded and α tends asymptotically to 0.

It was then shown in (Koenig and Simmons, 1996) that Q-learning in general case

may have an exponential computational complexity (in terms of the time required to

find an optimal policy). However, they also showed that the computational complexity

of Q-learning may be substantially reduced (to some small polynomial function in the

size of the state space) if,

• an appropriate reward structure is chosen and

• Q-values are initialized with some “good” values.

An appropriate reward structure proposed by Koenig and Simmons (1996) is the so-

called action-penalty representation where the agent is penalized for every executed

action in every state except the goal states. In the goal states, the penalty (or reward)

of any action is 0. More formally, the reward structure they propose:

R(s, a) = −1, ∀s ∈ S − G, ∀a

R(s, a) = 0, ∀s ∈ G, ∀a

where G is the set of goal states of MDP.

In fact, the action-penalty representation is the most frequent reward structure in

MDPs and the problems that are solved in such MDPs are called stochastic shortest

path problems.

In turn, although the Q-learning technique has existed for more that a decade, the

initialization of Q-values has not been explored much in the literature, substantially

because a good heuristic approximation cannot be easily found for the problems where

the environment is not known, as well as the location of the goal states and the reward

function.
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For planning problems, however, a variety of methods have been proposed for re-

ducing the state space relevant to a planning task in an MDP. Most of them use a so

called heuristic search, which is a set of methods based on the knowledge of a heuris-

tic function that can estimate the real utility of any visited state (Bonet and Geffner,

2001). Generally, if that heuristic function is sufficiently informative and satisfies cer-

tain conditions, then the algorithm using it does not need to visit the entire state space

to find the solution.

Unfortunately, in most cases of multiagent systems, an explicit search in the state

space is practically impossible as soon as the search supposes that the properties of the

environment in each state are known to the agent. That is not the case when there are

several, possibly adversarial, agents affecting the environment and their policies and

rationality principles are not known. Thus, since the centralized planning in that con-

text is not always possible the agents are usually faced with the learning or adaptation

problems.

As soon as it is relatively easy to define the reward function of the agents by using the

action-penalty representation, the only remaining possibility to reduce the number of

visited states (and, hence, the learning complexity) is to use a suitable approximation

function to initialize the multiagent Q-values. Although, as it was already noticed,

it is hard to find a general approach to initialization of single-agent Q-values, in the

multiagent context for a big class of problems such initialization is possible if the single-

agent planning solution is used for that purpose, since solving the single-agent optimal

sequential decision problem is a much simpler task.

In this Section, we mainly address the problem of multiagent learning complexity

reduction in goal-directed stochastic games with action-penalty representation. The

problem of non-stationarity is also treated, but it is considered as a necessary condition

of convergence of the algorithm based on our approach rather than an objective. Our

main contribution consists in using single-agent planning results as a heuristic function

to initialize the agents’ multiagent Q-values in all unknown states. The idea is to focus

the learning process on a relatively small relevant region of the entire state space and,

by so doing, to reduce the calculation time required to learn a multiagent solution. We

also show theoretically the correctness of such an initialization. To do that, we provide

the proofs of admissibility and monotonicity (consistence) of such heuristic functions.

The algorithm used as a basis for our approach is Adaptive Play Q-learning (APQ)

proposed by Gies and Chaib-draa (2006). Note that APQ was chosen solely to demon-

strate the reduction of learning complexity, since we needed an algorithm which operates

with Q-values and converges in stochastic games (or at least in a subclass of SGs). APQ
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possesses these properties in particular for coordination and common interest stochas-

tic games as soon as it is based on the Adaptive Play by Young (1993). This choice,

however, is not critical for our approach and any other multiagent learning algorithms

having these properties may be suitable as well.

Having this in mind we are now ready to present our approach to the complex-

ity reduction of Q-learning in the stochastic games context. In the subsections that

follow we give a detailed description of our approach, called “Initialized Multiagent

Q-learning”, which uses an approximation of multiagent Q-values by using single-agent

optimal solution. We then demonstrate the correctness of such an approximation in

goal-directed stochastic games with action-penalty representation and show the behav-

ior of our algorithm on simple test benches: a two- and four-player versions of the grid

world problem.

4.2.2 Q-values Initialization

In our approach we made several important assumptions about the model of the envi-

ronment. The first assumption is that stochastic games, where agents are intended to

act, are goal directed with action-penalty representation, i.e., all agents are penalized

for any executed action in any state except the goal states.

We also assume that the multiagent environment applies additional restrictions on

the reward and transition functions of the underlying MDP. By underlying MDP we

mean an environment obtained by removing all agents from the original multiagent

system while keeping in this environment only one agent. In this case, an MDP is

obtained from the stochastic game. This MDP we call underlying MDP.

More precisely, we assume that in any joint state s = (s1, . . . , sj, . . . , sn) and for

any joint action a = (a1, . . . , aj, . . . , an) a penalty Rj(s, a) agent j obtains cannot be

lower than its penalty Rj(sj, aj) in the underlying MDP. In other words, the multiagent

penalties for all joint state-joint action pairs may be only higher than or equal to the

corresponding single-agent values. These corresponding values agent receives by acting

alone in the environment.

The last assumption is that for any agent j, j = 1 . . . n, in any joint state s =

(s1, . . . , sj, . . . , sn) and for any joint action a = (a1, . . . , aj, . . . , an), the transition func-

tion of the multiagent system, T (s, a, s′) relates to the transition function of the un-

derlying MDP, T j(sj, aj, s′j), in such a way that the expectation of the utility of the

future state U j(Π(s′)) in multiagent system cannot be greater than the expectation of
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the utility of the future state U j(s′j) of the underlying MDP. This must be valid for

any joint policy Π in the multiagent system.

More formally, we assume that

Rj(s, a) ≤ Rj(sj, aj), ∀s = (sj, s−j), ∀a = (aj, a−j) (4.2)

where s is a multiagent state, a is a joint action, sj and aj correspond to j’s personal

state and action in the joint state s and joint action a. Rj(s, a) is the reward of j when

a is played in s. Rj(sj, aj) is the corresponding single-agent reward that agent j obtains

when it executes action aj in the state sj by being along in the underlying MDP. In turn,

given the same rewards in multiagent and single-agent cases the multiagent transition

function, T (s, a, s′), defined for the multiagent problem, is related to the single-agent

transition function, T j(sj, aj, s′j), defined for the underlying MDP, by affecting the

utilities as follows, for each pair (s, a):

E
s′:T (s,a,s′) 6=0

[

U j(Π(s′))
]

≤ E
s′j :T (sj ,aj ,s′j) 6=0

[

U j(
⋆
πj(s′j))

]

∀Π (4.3)

where sj is such that s = (sj, s−j) and aj is such that a = (aj, a−j). The policy
⋆
πj is the

optimal single-agent policy of agent j in the underlying MDP. The utility U j(Π(s)) is

defined using equation (2.5) and U j(
⋆
πj(sj)) is defined using equation (2.1). As is easy

to see, the single-agent problem (the underlying MDP) in that case is an appropriate

relaxation of the multiagent learning problem, by speaking the language of the heuristic

search terminology.

As mentioned in the introduction for this Chapter, in MDPs, it is not evident how to

find an informative heuristic function to initialize Q-values with the purpose of reducing

the time of the single-agent policy learning. But in many cases of SGs, there is such

a function: a single-agent solution of the underlying MDP. An MDP may be solved

with a variety of techniques (Russell and Norvig, 2005) (value iteration, reinforcement

learning, heuristic search, etc). All these techniques are well known and we leave their

description outside this work. Besides, as soon as the single-agent environment model is

much simpler than the multiagent one, we suppose that all agents are able to calculate

an optimal single-agent policy before starting to learn in multiagent context.

In order to ensure the tractability of the (single-agent) Q-learning algorithm the Q-

values of all state-action pairs must be initialized with some monotonic and admissible

function (Koenig and Simmons, 1996). Let’s now define admissibility and monotonicity

of Q-values for goal-directed single-agent Q-learning.

Definition 1 (monotonicity). Let G denote the set of the goal states, G ⊆ S. Q-value

Q̂(s, a) is said to be monotonic for the goal directed Q-learning with action-penalty
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representation if and only if for each pair (s, a)

(1) Q̂(s, a) = 0 if s ∈ G and

(2) R(s, a) + Es′:T (s,a,s′) 6=0 [U(
⋆
π(s′))] ≤ Q̂(s, a) ≤ 0 if s 6∈ G.

Obviously, the monotonicity property of Q-values corresponds to the consistence of

the heuristic function in the heuristic search terminology and means that the triangle

inequality holds. In the heuristic search theory (Barto et al., 1995; Bonet and Geffner,

2001), the triangle inequality stipulates that for any state s and any successor state

s′ of s (according to the transition model) generated by an action a, the estimated

accumulated penalty of reaching a goal from s is not greater than the immediate penalty

of getting to s′ from s plus the estimated (by the heuristic) accumulated penalty of

reaching a goal from s′.

Definition 2 (admissibility). Q-value Q̂(s, a) is said to be admissible for the goal di-

rected Q-learning with action-penalty representation if and only if each pair (s, a)

(1) Q̂(s, a) = 0 if s ∈ G and

(2)
⋆

Q(s, a) ≤ Q̂(s, a) ≤ 0 if s 6∈ G,

where
⋆

Q(s, a) is the real Q-value.

In turn, admissibility means that for all state-action pairs (−Q̂(s, a)) never over-

estimates (−
⋆

Q(s, a)). It may be easily verified that uniformly initialized (e.g., zero-

initialized) Q-values are monotonic and admissible.

According to our approach multiagent Q-values are initialized by using precalculated

single-agent state utilities and single-agent transition function as follows:

Q̂j(s, (aj, a−j))←
⋆

Qj(sj, aj), ∀a−j, ∀s−j (4.4)

where s is a multiagent state, sj is the j’s component of the vector s (in other words,

sj is the agent j’s state in the corresponding single-agent world) and
⋆

Qj(sj, aj) is an

optimal single-agent Q-value that is calculated from the single-agent solution and the

model as follows:

⋆

Qj(sj, aj) = R(sj, aj) + γ
∑

s′j

T
j
s,a,s′U(

⋆
πj(s′j)) (4.5)

where T
j
s,a,s′ denotes T (sj, aj, s′j), the single-agent transition function, and U(

⋆
πj(sj)) is

the utility of the single-agent state sj according to the optimal policy
⋆
πj.
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Let’s now show that in the goal directed stochastic games with action-penalty rep-

resentation, the estimated multiagent Q-values for player j, Q̂j(s, a), initialized with a

single-agent solution are admissible and monotonic. To do that, let’s prove the following

theorem.

Theorem 1. If in a goal directed stochastic game with action-penalty representation,

Q-values Q̂(s, a) are initialized using the utilities of the corresponding single-agent state-

action pairs according to equation (4.4), then these Q-values are admissible and mono-

tonic.

The proof of the above Theorem results from the following two Lemmas.

Lemma 1. If in a goal directed stochastic game with action-penalty representation,

Q-values of agent j, Q̂j(s, a), are initialized according to equation (4.4), then these

Q-values are monotonic.

Proof. Let G be the set of multiagent goal states. Obviously, if s ∈ G hence Q̂j(s, a) =

0, ∀a. Therefore, we must show that if s 6∈ G then 0 ≥ Q̂j(s, a) ≥ Rj(s, a) +

Es′:T (s,a,s′) 6=0 [U j(Π(s′))]. To do that, let us demonstrate that 0 ≥
⋆

Qj(sj, aj) ≥ Rj(s, a)+

Es′:T (s,a,s′) 6=0 [U j(Π(s′))]. In fact, since the rewards are negative in all states except the

goal states, where they are 0, therefore 0 ≥
⋆

Qj(sj, aj). As soon as, according to equation

(4.5),
⋆

Qj(sj, aj) are defined as Rj(sj, aj)+Es′j :T (sj ,aj ,s′j) 6=0 [U j(
⋆
πj(s′j))] and since inequal-

ities (4.2) and (4.3) hold, hence 0 ≥
⋆

Qj(sj, aj) ≥ Rj(s, a) + Es′:T (s,a,s′) 6=0 [U j(Π(s′))]

Lemma 2. If in a goal directed stochastic game with action-penalty representation,

Q-values of agent j, Q̂j(s, a), are initialized according to equation (4.4), then these

Q-values are admissible.

Proof. Let G be the set of multiagent goal states. Evidently, if s ∈ G therefore

Q̂j(s, a) = 0, ∀a. Hence, we must demonstrate that if s 6∈ G then 0 ≥ Q̂(s, a) ≥
⋆

Qj(s, a). To do that let’s demonstrate that 0 ≥
⋆

Qj(sj, aj) ≥
⋆

Qj(s, a). Since the

rewards are negative in all states except the goal states, where they are 0, there-

fore 0 ≥
⋆

Qj(sj, aj). Since, (i) according to equation (4.5), Q-values
⋆

Qj(sj, aj) are

defined as Rj(sj, aj) + Es′j :T (sj ,aj ,s′j) 6=0 [U j(
⋆
πj(s′j))] and as long as (ii) by definition

⋆

Qj(s, a) = Rj(s, a) + Es′:T (s,a,s′) 6=0 [U j(Π(s′))] and since (iii) inequalities (4.2) and (4.3)

hold, hence, it follows that
⋆

Qj(sj, aj) ≥
⋆

Qj(s, a)

The complexity reduction of the single-agent Q-learning, proven by Koenig and Simmons

(1996), suggests that in the multi-agent case, if similar conditions are satisfied, one can

expect a complexity reduction as well.
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More precisely, if in a stochastic game with action-penalty representation (1) the

multiagent Q-learning is performed by a game-theoretic algorithm having a convergence

property for this stochastic game, and (2) if it is initialized using an approximative

function, which has the admissibility and monotonicity properties, one can expect that

the complexity of the learning process may be reduced as compared to zero-initialized

(uninformed) case.

In the next section we provide the results of the tests produced on several examples

of the four-robot version of the grid world problem, which justify the above hypothesis.

The algorithm of Initialized Adaptive Play Q-learning is presented in Algorithm 4.1.

This algorithm is analogous to the APQ algorithm (Algorithm 3.6). The only dif-

ference is that the equation (4.4) is used to initialize the Q-values of unknown states

(i.e., the states that has not been previously visited).

4.2.3 Conclusion

In this Section we presented the Initialized Adaptive Play Q-learning algorithm which

combines Adaptive Play Q-learning with initial heuristic approximation of the multia-

gent Q-values by using a single-agent learning or planning solution.

We defined the admissibility and monotonicity properties of Q-values and showed

that the initialization of multiagent Q-values using a single-agent planning solution

preserves these properties for the case of the stochastic games with action-penalty rep-

resentation. The results of the empirical evaluation of the algorithm, as well as the

discussion about them, will be given in Chapter 5.

In the following section we propose an effective algorithm of learning in stochastic

games. It is able to outperform the Opponent Modelling algorithms and Gradient Based

algorithms in adversarial games as we will show by comparing it with Adaptive Play

Q-learning and Infinitesimal Gradient Ascent algorithms. In two-player self-play, when

possible, our algorithm is able to converge to a Pareto optimal strategy that maximizes

the welfare of both players instead of an equilibrium strategy which can be favorable

to one player only or to nobody at all.
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1: function Initialized-APQ(S, s0, trmax, itmax)

2: returns: a policy.

3: inputs: trmax, maximal number of trials,

4: itmax, maximal number of iterations within one trial,

5: S, the set of the environment’s states,

6: s0 ∈ S, the initial state.

7: Current trial tr ← 0.

8: Current iteration it← 0.

9: Current state st ← s0.

10: Previous state st−1 ← null.

11: while tr < trmax do

12: if st has not been visited then

13: Initialize Q-values in st using equation (4.4).

14: Sample a reduced profile Π̂−j(st) from history using equation (3.2).

15: Select a best response strategy π̂j(st) to the profile Π̂−j(st).

16: Calculate the expected utility U j(Π̂(st)) of the strategy profile Π̂(st) using

equation 2.4.

17: if it < itmax and st is not terminal state then

18: Execute strategy π̂j(st) and observe the joint action played, a−j, and the

reward obtained, Rj.

19: Update the history in st using a−j.

20: if st−1 6= null then

21: Update Q-value in st−1 using the Q-value update rule, the reward Rj and

the utility U j(Π̂(st)).

22: Update the previous internal state st−1 ← st and observe the new state st.

23: Increment iteration it← it + 1.

24: else

25: Randomly sample the new trial’s start state st from the set of visited states.

26: Reset previous internal state st−1 ← null.

27: Reset iteration counter it← 0.

28: Increment trial counter tr ← tr + 1.

29: return π̂j(s) for all visited state s.

Algorithm 4.1: Initialized Adaptive Play Q-learning algorithm for player j.
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4.3 Multiagent Learning in Adaptive Dynamic Sys-

tems

4.3.1 Introduction

Classically, an approach to the multiagent policy learning assumes that the agents,

by means of interactions and/or by using preliminary knowledge about the reward

functions of all players, would find an interdependent solution called “equilibrium”.

One of the most widely used concepts of equilibrium is the Nash equilibrium where

each agent in a multiagent system (MAS) plays its best response to the other players’

strategies and a unilateral deviation of a player from the equilibrium strategy decreases

its own utility.

There are two basic approaches to find a Nash equilibrium. The first one is a game

theoretic approach which supposes the complete knowledge of the reward structure

of the underlying game by all the agents. In such an approach, each agent finds an

equilibrium, by using mathematical programming, and all the agents play on it. But

a problem arises when there are several equivalent equilibria in a game and the agents

have calculated the different ones. Another problem is that the agents, by calculating

an equilibrium, assume that the other agents are rational and, thus, they will also follow

this solution. But what if certain agents are not rational, or play a fixed strategy, or

evolve according to some fixed rules, and what if some agents know (or are able to

deduct) this and could exploit this knowledge to augment their utilities? As yet, there

is no equilibrium concept which can answer those questions.

The second approach to find an equilibrium is the adaptive one, which assumes

that the agents learn by adapting to each other in self-play (i.e., all the agents use the

same learning algorithm) and do not know the reward structure of the game and are

only able to make actions and observe their own rewards and, in some approaches, the

actions made by the others. As we have shown in the previous chapter, certain algo-

rithms of this class converge to a Nash equilibrium (or to a utility that is equivalent

to the utility of a Nash equilibrium). Among these algorithms, the most widely used

ones are Joint-Action Learning (Claus and Boutilier, 1998), Infinitesimal Gradient As-

cent (IGA)1 (Singh et al., 1994), Policy Hill-Climbing (Bowling and Veloso, 2002) and

Adaptive Play Q-learning (Gies and Chaib-draa, 2006) (a Q-learning based extension

of the Adaptive Play algorithm (Young, 1993)).

1IGA is the only algorithm among those listed which requires a complete knowledge of the oppo-

nent’s current strategy and reward structure of the game to calculate the gradient.
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As we have shown, adaptive players2 learn their policies separately from the main-

tenance of the beliefs about their counterparts’ future actions and make their decisions

based on that policy and the current belief. These decisions can be in pure or in mixed

strategies depending on the algorithm in question.

Recently, certain researchers (Shoham et al., 2003) question the necessity and the

validity of the concept of equilibrium as the most important multiagent solution concept.

They rather point out the efficiency of a particular learning algorithm versus a certain

class of counterparts. In this section we propose an efficient algorithm of learning in

presence of the adaptive counterparts called Adaptive Dynamics Learner (ADL). This

algorithm is able to learn an efficient policy over the opponents’ adaptive dynamics

rather than over the simple actions and beliefs. By so doing, ADL exploits these

dynamics to obtain a higher utility than any equilibrium strategy can provide. We

tested our algorithm on a representative set of repeated matrix games from the GAMUT

test suit (Nudelman et al., 2004). The results show that ADL agent is highly efficient

in self-play and against APQ and IGA agents3.

We consider two adaptive learning algorithms only, Infinitesimal Gradient Ascent

and Adaptive Play Q-learning, since they represent two basic subclasses of adaptive

algorithms: those that are able to learn a pure strategy (APQ) and those that are able

to learn a mixed one (IGA).

4.3.2 Adaptive Dynamics Learning

By adaptive dynamics we mean the dynamics of policy improvement, which is ob-

served when the adaptive algorithms, such as PHC (Bowling and Veloso, 2002), IGA

(Singh et al., 1994) and APQ (Gies and Chaib-draa, 2006) are learning in a stochastic

game. These algorithms, as we have shown in Chapter 3, estimate the policy of the

opponent players and improve their policy so as to be making a best response to the

estimated opponents’ policy.

Although the adaptive algorithms demonstrate an efficient behavior in self-play,

Chang and Kaelbling (2001) showed that thay can be exploited by an agent that is in-

2To discriminate between adaptive player as a member of a class of learning agents and Young’s

Adaptive Player, we will write “adaptive player” or “adaptive algorithm” (in lower case) to denote the

former and Adaptive Player (with a capital letter) for the latter.
3This comparison is correct as soon as APQ and IGA agents have the same or a greater quantity

of available information about the world as compared to ADL, and, thus, if they behave poorer in a

game, this is not because they can access less information.
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formed about their properties. For example, they showed that a PHC player (Bowling and Veloso,

2002) can be exploited in adversarial games. Indeed, as we have shown in a previous

section, their PHC-Exploiter agent was able to outperform the PHC player using the

knowledge of the structure of PHC adaptation algorithm.

As was later shown by Tesauro (2004), it is possible to exploit the adaptive dynamics

with a simple knowledge that the opponent is an adaptive player. Recall that the

Hyper-Q learning algorithm (Tesauro, 2004) learned explicitly the Q-values of the mixed

strategy profiles. To do that, the author discretized the probability space with a certain

discretization size and empirically showed that Hyper-Q outperforms PHC and IGA

players in RockPaperScissors game. But there are three major shortcomings that make

this algorithm intractable in the real world. These are,

1. the discretization, which creates about 100 thousands of the virtual states for a

game with merely two players and three actions, such as RockPaperScissors,

2. to obtain better results, Hyper-Q agent uses a computationally hard Bayesian

belief update operation at each time step and

3. the game of total observability becomes partially observable because the beliefs

about other player’s strategies are represented in the form of probability distri-

bution over all possible mixed strategies.

We propose here a much simpler adaptive dynamics learning algorithm called Adap-

tive Dynamics Learner (ADL), which associates a Q-value to each experienced game

history H of fixed length p and a simple action aj ∈ Aj, and then learns these Q-

values using a form of Q-learning. This substantially reduces the space of virtual states

and actions comparatively with the Hyper-Q approach. More formally, ADL player j

maintains in its memory a table Hj of histories of past joint actions, considered by it

as the system’s states. To each history hj ∈ Hj it associates a Q-value of the form

Qj(hj, aj), ∀aj ∈ Aj. Thus we assume that our agent is able to perceive the actions

made by the other players.

Being at time step t in the “state” h
j
t = (aj

t−pa
−j
t−pa

j
t−p+1a

−j
t−p+1 . . . a

j
t−1a

−j
t−1) the agent

j searches in Hj the action a
j
t , which maximizes the Q-values for h

j
t . After that the agent

j plays a
j
t with some exploration decreasing over time4. Having observed the opponents’

joint action and its own reward, it updates its state at time t+1 by concatenating its own

4Although we did not studied our algorithm with different exploration strategies, we believe that

any valid exploration technique (Thrun, 1992) for the reinforcement learning can be suitable here.
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action a
j
t and the opponents’ joint-action a

−j
t played at time t to h

j
t and by eliminating

the first two entries, that is,

h
j
t+1 = (aj

t−p+1a
−j
t−p+1a

j
t−p+2a

−j
t−p+2 . . . a

j
ta

−j
t ) (4.6)

Finally, the player j updates the Q-value in h
j
t corresponding to the action a

j
t by using

following Q-learning update rule:

Qj(hj
t , a

j
t)← (1− α)Qj(hj

t , a
j
t) + α

(

Rj(hj
t , (a

j
t , a

−j
t )) + γU j(hj

t+1)
)

(4.7)

where U j(hj
t+1) = maxaj∈Aj Qj(hj

t+1, a
j) and Rj(hj

t , (a
j
t , a

−j
t )) is the reward obtained by

j after playing a
j
t in the previous state h

j
t .

Notice that in the above Q-value update rule, for simplicity we omitted the joint

states. Thus, we focused our attention on the repeated games only. One can augment

ADL’s internal states by concatenating joint states to the histories to extend its appli-

cability to the multi-state stochastic games. However, due to the time limits this does

not make part of the present work.

The complete formal definition of ADL algorithm is presented in Algorithm 4.2.

The algorithm starts by initializing the current history with an empty sequence and by

selecting a random action to play (lines 6-7). While the maximum number of learning

iteration is not reached, it executes the selected action with some exploration (line 9),

observes the reward obtained and the joint action made by the opponent players (line

10) and obtains the next state by using equation (4.6) (line 11). Then it executes a

search in the table of Q-values for the next state and finds an action which maximizes

the utility (line 12), updates Q-value of the previous state (line 13) and proceeds to the

next iteration (lines 14-16).

4.3.3 Conclusion

In this section we have presented Adaptive Dynamics Learner, an algorithm that uses

Q-learning to learn a best response strategy to the dynamics of its opponent instead

of a best response to simple actions. The previous attempts to exploit the opponent’s

dynamics were limited on focusing on the specific internal structure of the opponent

(PHC-Exploiter by Chang and Kaelbling (2001)) or on a computationally expensive

algorithms (Hyper-Q by Tesauro (2004)).

Our approach is simpler than Hyper-Q and more general (as compared to PHC-

Exploiter). In Chapter 5 we will show that it outperforms two currently best performing
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1: function ADL(p, tmax)

2: returns: a policy.

3: inputs: p, maximum history length,

4: tmax, maximum time.

5: Current time t← 0.

6: Current state h
j
t ← EmptySequence.

7: a
j
t ← RandomAction.

8: while t ≤ tmax do

9: Play a
j
t with some decreasing exploration.

10: Observe the reward R
j
t and the joint-action a

−j
t .

11: Obtain new state h
j
t+1 using (4.6) with h

j
t , a

j
t and a

−j
t .

12: if h
j
t+1 has not been visited then

13: ∀aj, initialize uniformly Q-values in h
j
t+1.

14: Find an action a
j
t+1 maximizing Q-values in h

j
t+1 and calculate the utility

U j(hj
t+1).

15: Update Q(hj
t , a

j
t) using equation (4.7) with R

j
t and U j(hj

t+1).

16: Update current state h
j
t ← h

j
t+1.

17: Save the action to play a
j
t ← a

j
t+1.

18: Increment the time t← t + 1.

19: return current policy.

Algorithm 4.2: Adaptive Dynamics Learner (ADL) algorithm for player j.

multiagent learning algorithms, IGA and APQ, in a set of adversarial games and is

able to converge in self-play to a Pareto optimal strategy in general sum games, such

as PrisonersDilemma.

4.4 Conclusion

To overcome two of three major drawbacks of the modern multiagent learning algo-

rithms, namely, high computational complexity and focus on the convergence to the

one shot Nash equilibrium, we proposed two novel approaches:

1. Q-initialization in multiagent context and

2. Adaptive Dynamics Learning.
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The first algorithm, Initialized Adaptive Play Q-learning (Burkov and Chaib-draa,

2007c), permits, as we will show in the next Chapter, to considerably reduce the com-

plexity of multiagent learning in a class of stochastic games, called “goal-directed

stochastic games with action-penalty representation”. The second algorithm, called

ADL (for Adaptive Dynamics Learner (Burkov and Chaib-draa, 2007a;b)) will be shown

to be very effective against adaptive opponents in adversarial games and to be able con-

verge in self-play to a Pareto optimal solution, when this is possible.

In the next chapter we present the results of the experiments chosen to support

of the proposed approaches. As test benches in our experiments, we use modifica-

tions of a coordination stochastic game by Hu and Wellman (2003) and a GAMUT test

suite (Nudelman et al., 2004), which are commonly used by researchers when evaluating

game-theoretic algorithms.



Chapter 5

Results and Discussion

5.1 Introduction

In this chapter we present the results of experiments taken over the proposed algo-

rithms: Initialized Adaptive Play Q-learning (IAPQ) (Burkov and Chaib-draa, 2007c)

and Adaptive Dynamics Learner (ADL) (Burkov and Chaib-draa, 2007a;b). The IAPQ

algorithm was tested in two similar stochastic games, two- and four-player grid worlds.

These two games are examples of coordination problem, which is frequently used to

test cooperative robotics learning algorithms. Adaptive Dynamics Learner was tested in

about twelve of the most representative repeated games from GAMUT (Nudelman et al.,

2004). They include PrisonersDilemma, RockPaperScissors, MatchingPennies and oth-

ers, against two adaptive learning algorithms, IGA and APQ, as well as against sta-

tionary players.

5.2 Initialized Adaptive Play Q-learning

5.2.1 Implementation Details

We defined the following values of the adjustable parameters of the IAPQ algorithm:

the learning rate, α, is proper for each state-action pair and decreases gradually using

the search-then-converge schedule suggested by Darken and Moody (1991) depending
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on the number of updates of the respective Q-value:

αt(s, a) =
α0τ

τ + nt(s, a)

where t is the current learning time step, α0 is the initial value of the learning rate

and nt(s, a) is the number of times that the Q-value for the joint action a has been

updated in state s to time t. We set α0 = 0.5 and τ = 100. In general, the exact

value of τ is not determinative for the result of the learning, but it can influence the

rapidity of the process, since it determine the length of the exploration period. We

have chosen this value since the structure of the problem we consider is similar to the

problem considered in the paper (Barto et al., 1995), where the search-then-converge

exploration technique was also used. It can be shown that this schedule satisfies the

hypotheses of the theorem about the convergence of Q-learning.

The tests were conducted on a machine equipped with two processors of 2.6 GHz

each and 4 GB of RAM.

5.2.2 Two-Agent Grid World

Let’s first illustrate our algorithm on a simple case, where there are merely two learning

agents in a grid based environment, called two-robots-on-the-grid or two-player grid

world (Hu and Wellman, 2003) (Figure 5.1).

We already presented this environment in Section 2.6 but with a limited number

of cells in the environment. Now we consider an environment that can be arbitrarily

large. It is easy to see that in the single-agent case there are six optimal single-agent

trajectories for each robot. In the multiagent case, however, some of these trajectories

when used simultaneously can produce a collision.

Obviously, a Nash equilibrium in this stochastic game is a pair of trajectories when

both agents make the minimum of transitions, avoid a collision and reach their respec-

tive goals. As was shown in (Gies and Chaib-draa, 2006), in the deterministic case,

when actions of the agents succeed with probability 1, there are ten such equilibria.

Figure 5.2 shows five of them and the other five can by obtained by symmetry. Notice

that all of these Nash equilibria are Pareto optimal.

The stochastic case equilibria are more numerous because of transition failures, but

the principle is the same.

The grid world we used contains 23× 23 = 529 cells and, thus, the two-agent state
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3 4 5

0 1 2
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2 1

Figure 5.1: A fragment of the two-player grid world environment containing the start

and goal positions of agents. The total number of cells in the grid may be arbitrarily

big.

Figure 5.2: Nash equilibria for two-player grid world. Another five are obtained by

symmetry.
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space contains about 5292
⋍ 280, 000 states. The agents were placed in the grid as

shown in Figure 5.1. For the grid 3×3 which contains merely nine cells and two-agents,

a good stable result was obtained after 5, 000 trials1, as shown in (Gies and Chaib-draa,

2006). So, in our case, with a much bigger environment, if we do the basic adaptive play

Q-learning and do not use the initial heuristic initialization, the learning would require

about 17 millions trials, proportionally to the raise of the state space. However, if in

the beginning of the learning the agents used the Q-values calculated using equation

(4.4), our experiments showed that in deterministic case (when there are not action

failures, or Pr(failure) = 0), 10, 000 trials were sufficient to learn an optimal Nash

equilibrium in the 100% of the runs. During learning, the agents visited not more than

1, 500 states.

On the other hand, when the transition function was stochastic, occasionally during

execution the agents got to a state having small probability to be reached starting from

the initial state. Hence, the agents got to a region of the state space that was rarely

visited during learning, and, therefore, contains the Q-values, which are possibly not

optimal. To overcome this shortcoming, the sampling statement at line 25 of Algorithm

4.1 should be modified so as to give higher probability of selection to the states that were

visited less to permit the Q-values in these states to converge to their real values. For

that purpose, the Boltzmann distribution over all visited states can be used. According

to these considerations, the probability that a state s will be selected as a start state

at the beginning of a trial is given as follows:

Pr(st = s) =
e−m(s)/T

∑

s′∈V e−m(s′)/T
(5.1)

where V is the set of visited states, m is the number of times the state s was visited

during learning and T is some positive value.

Our tests showed that if modified according to equation (5.1), Algorithm 4.1 after

100, 000 learning trials in self-play found the optimal equilibrium solution in 95% of the

runs, after 200, 000 learning trials the optimal equilibria were observed in 97% of the

runs, and after 250, 000 learning trials the optimal equilibria were observed in 99% of

runs. Thus, in stochastic case the solution seems to be ǫ− optimal with some value of

ǫ, decreasing with the number of learning trials.

We compared the behavior of our algorithm with and without the initial Q-values

heuristic approximation2. The experiments showed (Figure 5.3) that in the stochastic

environment restricted to 5 × 5 cells zero-initialized agents (Qj
0(s, a) = 0, ∀a, ∀s)

1A trial is a sequence of actions starting from an arbitrary state and finishing in the final state.
2Without Q-values approximation our algorithm behaves as the basic adaptive play Q-learning

algorithm proposed by Gies and Chaib-draa (2006).
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Figure 5.3: The dynamics of learning in the grid 5 × 5. The curves show the average

length of a trial as a function of the number of learning trials. The arrow points to

a trial starting with which the agents initialized with the heuristic found an optimal

solution but the zero-initialized ones did not.

explored all possible 600 states and converged to an equilibrium solution in 99% of tests

after 450, 000 trials, while the agents that were initialized according to our approach,

explored about 570 states and converged to an equilibrium as early as after 250, 000

trials. But more impressive were the results obtained for the full sized environment, 23×

23 cells. After 400, 000 trials, the zero-initialized agents explored almost every possible

state (∼ 250, 000) and had not find any equilibrium solution, while the initialized agents

explored about 10, 000 states (only) and converged to an optimal equilibrium solution

in 99% of tests after the same number of learning trials (400, 000).

To observe the behavior of the algorithm with different initial values of the learning

rate, α0, and to find the optimal one, if it exists, we tested our algorithm with the values

of α0 in the range between 0.1 and 0.9. Interestingly, the number of visited states grows

uniformly with the growth of α0, but the number of trials needed to obtain the optimal

solution decreases to some minimum value up to α0 ≈ 0.6, and then starts to grow

rapidly (Figure 5.4). Hence, there should exist an optimal value of α0, with which the

number of trials required to converge to a solution will be minimal.

To estimate the scalability of the algorithm with the number of the grid cells (the
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Figure 5.4: Number of states explored depending on the initial value of α.

scalability with the number of agents will be discussed in the following section) we tested

its behavior on different configurations of the grid. Particularly, we studied the number

of states explored by the agents as a function of the Manhattan distance between the

start and goal cells3. We discovered, as shown in Figure 5.5, that the number of states

explored by the agents grows almost linearly with the Manhattan distance to the goal.

This is not surprising since the multiagent solutions differs from the corresponding

single-agent trajectories by a restricted set of states used by agents to keep off collisions

and to avoid mistiming.

Further, to discover how much the difference in the single-agent reward structure and

multiagent one influence the learning process, we tested our algorithm on the different

values of the collision loss (which is absent in the single-agent problem). We remarked

in Figure 5.6 that there was slight dependence of the number of explored states during

learning on the value of the collision loss, but after 0.5 the number of explored states

became almost constant. The explanation is that higher values of the collision loss force

the agents to explore more distant states adjacent to the states preceding to the collision.

But after attainment of some “safe” distance (which depends on the dynamic of the

3The Manhattan distance to the goal cell is the minimal number of transitions required to perform

to reach the goal cell starting in the start cell, assuming that the world is deterministic.
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environment and its stochasticity), the agents do not explore more states regardless of

the value of the collision loss.

We also investigated some other interesting phenomena. For example, to show that

the final solution may substantially differ from the single-agent trajectory, we set the

loss of 0.15 for both agents if they reached their respective goals non-synchronously

(notice, that a combination of two single-agent solutions cannot in general be appro-

priate multiagent solution in this case because of the nonzero probability of the action

failure). We observed that if there was no wall near the goal cell (Figure 5.7 (a)), in case

of occasional mistiming the agents did not attempt to synchronize, because it would

require one agent to stop and “wait” another one, but there was no action “wait” in

the set of actions of both agents. However, if there was a wall nearby (Figure 5.7 (b)),

in case of mistiming the agent that was ahead decided to hit the wall once to stay put

and “wait” another agent for one step.

(a) there is no wall

(b) there is a wall

Figure 5.7: Mistiming case equilibria. The left and right images are a cases where the

agents 1 and 2 respectively are late.

Finally, we investigated some other dependencies. In short, we observed that the

function of number of states explored by the agents is close to be linear in the distance
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between the start and goal cells (hence in the size of the relevant subset of the state

space). Furthermore, the value of the collision loss (or, essentially, the difference be-

tween single-agent and multiagent models) influences weakly the number of explored

states, or, in the other words, the initial approximation of Q-values defines substan-

tially the course of the learning process. These features allow us to draw the conclusion

about the efficiency of the initial approximation of Q-values.

However, more impressive were the results obtained in the tests made with four

learning agents in the same environment. As we will show in the following section, the

heuristically initialized case outperformed considerably the zero-initialized one in time

and state space of the learning process.

5.2.3 Four-Agent Grid World

Let us now go further and model a stochastic game with more than two learning agents,

and let’s demonstrate the complexity reduction in this case. To achieve that we have

adopted a four-agent grid world as presented in Figure 5.8.

21

4 3

43

2 1

Figure 5.8: A fragment of the four-robot grid world environment containing the start

and goal positions of agents.
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There are four agents on a grid, each one having its own goal to reach. The dynamics

of the environment and the rewards the agents obtain in similar situations are the same

as they were in two-agent grid world. I.e., in each state, the probability that a transition

action will be performed with success is 0.99. The reward robots obtain by performing

actions is negative (−0.04) in all states except the goal states. In the goal states,

the reward for each action is 0. In the case of collision, all affected robots keep their

positions and receive the collision loss of (−0.1).

As it is easy to see, this is a goal directed coordination stochastic game with action-

penalty representation. Hence, in self-play APQ initialized with monotonic and admis-

sible Q-values must converge to an equilibrium, as it was observed in the two-agent

case.

We tested our algorithm on this example in a zero-initialized (called “uninformed”)

case and in a case (called “informed”) when Q-values were initialized using the single-

agent solution, calculated via a simple value iteration. The grid sizes we considered were

3× 3, 5× 5 and 9× 9 cells, all with the same start and goal positions. The dynamics

of the learning process is presented in Figure 5.9. The first diagram (5.9(a)) illustrates

the average number of actions made by the agents before they reached their goals with

respect to learning trials. The second diagram (5.9(b)) represents the evolution of the

root-mean-square (RMS) error of the Q-values as a function of learning trials. (Recall

that in statistics the root-mean-square (RMS) error is determined by calculating the

deviations of points from their true position, summing up the measurements, and then

taking the square root of the sum.) The utilities and errors were averaged over 20 runs

of 250, 000 trials each. In the uninformed case the results are presented for 3 × 3 grid

only since the uninformed algorithm became intractable on our machine starting from

the 5 × 5 cells due to the fact that it explored almost the entire state space, which is

exponential in the number of agents, while the informed algorithm visited a very small

relevant subset of the states.

As one can see in Figure 5.9, while the heuristically initialized Q-learning converged

to an optimal solution after merely 250, 000 trials in all grids, the uninformed algorithm

was still far from convergence even in a very small grid. Notice that the convergence

of the informed (heuristically initialized) learning depends weakly on the dimensions of

the grid, while in the uninformed case the size of the grid is critical for the tractability

of the algorithm. This means that the heuristic function permits to effectively “focus”

the learning process on a small subset of the total problem’s state space, which is

the main reason for such considerable learning complexity reduction. Additional test

results are presented in Table 5.1. In this table, the infinity sign means that we did

not succeed in obtaining a converged result due to intractability of the uninformed
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Figure 5.9: The dynamics of the learning process.

algorithm, ISF means “Iteration Solution Found”, SE is for “States Explored” and

MAIL is for “Maximal Average Iteration Length”.
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Table 5.1: Test results for various problem settings.
3× 3 5× 5 9× 9

Uninformed Informed Uninformed Informed Uninformed Informed

ISF 1, 150, 000 150, 000 ∞ 155, 000 ∞ 160,000

SE 5, 640 3, 700 > 350, 000 7, 000 > 40, 000, 000 11,000

MAIL 28.6 6.5 165.8 6.8 2645.5 7.1

5.3 Adaptive Dynamics Learner

5.3.1 Implementation Details

To compare our algorithm with adaptive ones, we programmed two adaptive learning

algorithms, IGA and APQ. In the following subsections we will provide the implemen-

tation details for each of the programmed algorithms.

Adaptive Play Q-learning Agent (Gies and Chaib-draa, 2006)

The APQ agent we used has the following characteristics. The length of the history, p,

is 16, the size of sampling, l, is 8, the discount factor, γ, is 0.9, the learning rate, α, is

proper for each state-action pair and decreases gradually using the search-then-converge

schedule depending on the number of updates of the respective Q-value:

αt(h
j, aj) =

α0τ

τ + nt(hj, aj)

where t is the current time step, α0 is the initial value of the learning rate and nt(h
j, aj)

is the number of times that Q-value for the action aj was updated in state hj to time t.

We set α0 = 0.5 and τ = 10, 000 (the same values for all programmed algorithms). We

let τ be equal to 10, 000 (which is greater than the value used in the APQ algorithm),

because we remarked that smaller values of τ made the convergence process slower.

We observed that some histories were visited by ADL much more often than others.

This can make the Q-values in these states to converge too fast, i.e. before than the

agent will learn good values in the other states. We believe that a more appropriate

exploration strategy could fix this problem. We will consider this in our future research.
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Infinitesimal Gradient Ascent Agent (Singh et al., 1994)

IGA algorithm assumes omniscient knowledge by the agents of the mixed strategies

of their opponents. However, neither ADL nor APQ agent explicitly play a mixed

strategy. Their strategies, being pure for them are perceived as mixed by the IGA

player as soon as they do not act in the same internal state space. Indeed, the current

internal states of each agent (counterparts’ actions history of APQ, concatenated joint

actions of ADL and opponents’ current mixed strategy of IGA) are different, though

the current external state (the game played) is the same.

Thus, to make the IGA agent able to estimate the strategy of its opponents, we

implemented the following well known techniques:

• Adaptive Play’s technique,

• Exponential Moving Average (EMA)

We have described these techniques in Sections 3.5 and 3.6.

Adaptive Dynamics Learner (Burkov and Chaib-draa, 2007a;b)

The only interesting parameter of our ADL algorithm is p, the maximal history length.

What is the length that will permit the ADL agent to learn well the dynamics of

an opponent? Is there a universal value or should it be adjusted for each opponent

individually? Our experiment showed that, in most cases, the history of the length 2

(that is, the only most recent joint action!) was sufficient to outperform the adaptive

agents in adversarial games, but the value of 6 (three most recent actions) was sufficient

to perform well regardless of the game played. Thus, in our experiments we set p = 6,

but the question of how to determine the best value of p, if such exists, is still open.

5.3.2 Results

Let us now describe the results of experiments done with the use of our Adaptive Dy-

namics Learner approach. We tested the ADL algorithm in play versus IGA and APQ

algorithms and in self-play on a set of games from GAMUT test suite (Nudelman et al.,

2004). All the games we used were randomly generated by GAMUT with normalization
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of the rewards to the values between 0 and 1. Figure 5.10 represents game matrices for

the three adversarial games that are of the most interest.

MatchingPennies RockPaperScissors

Rr, Rc =

[

1,−1 −1, 1

−1, 1 1,−1

]

Rr, Rc =







0, 0 1,−1 −1, 1

−1, 1 0, 0 1,−1

1,−1 −1, 1 0, 0







ShapleysGame

Rr, Rc =







−1,−1 1,−1 −1, 1

−1, 1 −1,−1 1,−1

1,−1 −1, 1 −1,−1







Figure 5.10: Three adversarial games from GAMUT. Rr, Rc is the payoff matrix each

entry of which contains the payoffs for the row and column players respectively.

First, we examined the behavior of ADL against APQ player (Figure 5.11). To do

this, we observed the evolution of average Bellman error, i.e., the difference between

two successive updates of Q-values, and the changes in the average reward of ADL per

play4. The rewards were averaged over each of the 10, 000 plays. It is easy to see that

the process exhibited good progress toward the convergence, as suggested by progressive

reducing of average Bellman error (Figure 5.11, top) and substantial positive average

reward of ADL per time step (Figure 5.11, bottom).

Note that in adversarial games, the positive values gained by the ADL player mean

the negative values gained by its opponent. Thus, it is unnecessary to provide the

results of the other player.

Further, we examined ADL versus IGA player (Figure 5.12). ADL showed better

performance against this opponent, as is seen from the average reward diagram where

the converged values are higher than the corresponding values obtained in play vs.

APQ agent. The average Bellman error decreased slower in that case (Figure 5.12,

top), which is explained by the stochastic strategies used by IGA unlike the APQ

player, which converged directly to a policy in pure strategies. Notice that we observed

that in almost all runs the IGA agent that used the Adaptive Play’s technique of

the opponent’s strategy estimation was more efficient than the one that used EMA.

Therefore, in our figures, we only presented the results for the IGA agent using the

Adaptive Play’s strategy estimation technique.

As it is seen from the curves in Figure 5.11 and 5.12, the advantage that ADL

4Here plays and time steps are equivalent.
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Figure 5.11: ADL vs. APQ in the adversarial games: average Bellman error and average

reward of ADL per time step.
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Figure 5.12: ADL vs. IGA in the adversarial games: average Bellman error and average
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gains versus different opponents in different games is not the same. In particular,

the advantage of ADL against APQ is much better in ShapleysGame than in the other

games, but in play versus IGA it performs better in MatchingPennies. This particularity

is still under investigations.

Finally, we verified whether ADL, by being efficient against adaptive opponents,

remains rational in play against itself (so called self-play) and versus other types of

opponents which do not evolve in time and follow a stationary policy, such as a mixed

strategy (Figure 5.13). It was important to verify the case of stationary opponents in

order to make sure that the effectiveness of our algorithm is not an effect of a particular

structure of its opponents, such as adaptivity.
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Figure 5.13: Average reward of ADL vs. stationary opponents playing a different mixed

strategies in RockPaperScissors.

As for the stationary opponents, we tested the behavior of ALD against a player,

which played random (mixed) strategies on the example of the RockPaperScissors game.

Let Random(x, y, z) denote a player playing a mixed strategy. Let x ≥ 0, y ≥ 0 and

z ≥ 0, such that x + y + z = 1, be the probabilities that the actions 1, 2 and 3

respectively will be played by that player. As expected, the ADL player had a positive

average reward close to 0 against the Random(0.33, 0.33, 0.34) opponent which played a

strategy close to the Nash equilibrium (1
3
, 1

3
, 1

3
), but it performed better as the random
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players were more distant from the equilibrium, thus, it converged to average reward of

0.02 against Random(0.3, 0.4, 0.4), to the reward of 0.25 against Random(0.25, 0.25, 0.5)

and to the reward of 0.4 versus Random(0.2, 0.2, 0.6). Thus, an important conclusion

is that ADL algorithm remained rational in that case.

As we already noticed above, we presented the dynamics of the learning process for

three games only (RockPaperScissors, MatchingPennies and ShapleysGame) because,

in our opinion, the adversarial case is the most interesting one. In fact, the curves of

the learning dynamics in the other games are trivial: in most cases, almost from the

beginning they become straight lines with some minor fluctuations. The minimum of

the converged values of average reward of the row player over all runs for all games

are presented in Figure 5.14. The bar graphs “ADL vs. IGA” and “ADL vs. APQ”

show the reward of ADL, as the row player, in play versus these opponents. The “Max

Nash” and “Min Nash” bar graphs reflect respectively the maximal and minimal average

rewards per play, which the row player can gain if a Nash equilibrium is played.

It is important to note that in games having a Pareto optimal strategy, which is not

a an equilibrium (such as PrisonersDilemma), the solution to which ADL converges in

self-play is Pareto optimal (while the adaptive algorithms converge to an equilibrium

that is not favorable for both players). Recall that a strategy is said to be Pareto

optimal if its utility is maximal for all players. Furthermore, if there are two equilibrium

outcomes, one of which is more favorable to one agent than to another one, and vice

versa (such as in GrabTheDollar), then the average rewards obtained by both ADL

players in self-play are a mean of these two equilibrium rewards, i.e., the welfare of

both is maximized. The adaptive players are only able to find one of these equilibria,

thus, as soon as an equilibrium is found, one of the agents will always have a lower

utility. The dynamics of the self-play in adversarial games are not interesting enough

to include in the report; as expected, the agents, by being rational, converged to a Nash

equilibrium, which brings zero average reward to both players.

5.4 Conclusion

In this chapter we tested two proposed algorithms, Initialized Adaptive Play Q-learning

(IAPQ) and Adaptive Dynamics Learner (ADL). The main criteria of success for the

IAPQ algorithm were the scalability and the convergence speed. We have seen that it

can converges much faster to a solution then the uniformly initialized Adaptive Play

Q-learning agent. We also showed that it can scale better in terms of the number of

system’s states and in the number of learning agents.



Chapter 5. Results and Discussion 80

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

BattleO
fTheSexes

C
hicken

C
ollaborationG

am
e

C
oordinationG

am
e

C
ovariantG

am
e

D
ispersionG

am
e

G
rabTheD

ollar

H
aw

kAndD
ove

M
ajorityVoting

M
atchingPennies

M
inim

um
Effort

PrisonersD
ilem

m
a

R
andom

C
om

pound

R
andom

G
am

e

R
ockPaperScissors

ShapleysG
am

e

TravelersD
ilem

m
a

Tw
oByTw

oG
am

e

A
v
e

ra
g

e
 R

e
w

a
rd

 o
f 

th
e

 R
o

w
 P

la
y
e

r

ADL in Self-play
Max Nash Value

ADL vs. APQ
ADL vs. IGA

IGA in self-play, APQ in self-play, Min Nash Value

Figure 5.14: ADL, APQ and IGA players over the games from GAMUT.

As for the ADL algorithm, the principal measurement criteria were performance in

terms of utility against other types of opponents in adversarial games and the utility

of self-play, i.e, in the case when two or several ADL players learn simultaneously in a

common environment.

As we have seen on different test examples, our approaches were very promising with

respect to these criteria. In this work, however, we did not test our algorithms on the

other interesting test examples, such as adversarial stochastic games (like predator-pray

or robotic soccer Littman (1994)). To do that, ADL should be extended by integrating

the joint state information into the Q-values, as we already mentioned in the previous

chapter.

Also, we did not try to combine two our approaches into one algorithm and observe

its behavior on the extended set of test benches. We keep this for future work in the

field of multiagent learning.
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General Conclusion

Multiagent learning is a dynamically growing research domain in intelligent systems.

Although much of work has been done in the last ten years, a lot of work is still remain-

ing to do due to the complexity and non-obvious character of the problem. Indeed,

in a multiagent learning environment, this latter may be stochastic, continuous and

dynamic. Furthermore, there may be several learning agents, each one with its own

learning algorithm, intentions, goals and rationality principles. Finally, the relations

between agents may be either pure competition, either pure cooperation or it may be

non-obvious how to determine these relations in advance.

From the point of view of the learning algorithm conception, there are two major

challenges that any multiagent learning algorithm should overcome to be applicable in

the reality. First, it should be able to learn a “good” policy in conditions of the non-

stationarity (permanent and non-predictable changes of the environment), because the

other agents can be learning too at the same time. Second, this algorithm would have

the least possible computational complexity to be scalable to the real world domains

containing thousands of states, especially when in each of these states agent may have

hundreds available actions. This computational complexity problem is known as curse

of dimensionality.

The expression “curse of dimensionality” is due to Bellman (1961) and it relates to

the fact that the convergence of any estimator to the true value of a smooth function

defined on a space of high dimension is very slow. In the case of the learning in MAS

the Q-function is defined on a very high dimensional space. Indeed, as was shown by

Koenig and Simmons (1996), a time required to learn an optimal strategy in the single-

agent Q-learning is exponential in the number of the environment’s states. Additionally,

as we have shown in this work, in MAS, the state space of the multiagent problem is
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itself exponential in the number of agents. Hence, this double exponentiality is a great

challenge for the applicability of the current multiagent learning algorithms in the real

life problems.

6.1 Contributions

In this work, we have shown that the initialization of multiagent Q-values using a

precalculated single-agent solution permits significantly reducing the complexity (in

terms of the convergence time) of the learning process. Also, we have shown that

this initialization is admissible and monotonic for the problems that can be modeled

as a goal-directed stochastic game with action-penalty representation. By producing

a set of empirical tests on the multiagent coordination problem, we have shown that

uninformed multiagent learning quickly becomes intractable. On the other hand, the

informed, heuristically initialized, algorithm remains tractable with growth of the state

space while being weakly sensible to that growth, due to the strict focusing on the

relevant states only.

Notice that the heuristic initialization in the multiagent reinforcement learning has

not been widely explored in the literature. More frequently, the researchers proposed

different heuristic modifications of the Q-learning technique for the particular game

structures. Three typical modifications have been considered in this context:

1. a modification of the Q-value update rule (Lauer and Riedmiller, 2000),

2. a modification of the action selection rule (Kapetanakis and Kudenko, 2002) and

3. a modification of the exploration strategy, like in (Chalkiadakis and Boutilier,

2003).

However, the emphasis of the modern research was put on the development of strate-

gies to reach an equilibrium in the games of different reward structures (e.g., see

Claus and Boutilier, 1998; Gies and Chaib-draa, 2006; Hu and Wellman, 1998). In fact,

virtually all these methods suffer from a low scalability, as well as other multiagent

learning techniques that restrict neither joint state space nor joint-action space of the

problem during learning. To our knowledge, an explicit Q-value initialization of the

type proposed in this work is a completely new approach to the complexity reduc-

tion in multiagent learning. And this approach permits reducing the computational

complexity of learning in a considerably higher degree.



Chapter 6. General Conclusion 83

The second novel approach to the multiagent learning proposed in this work is

called Adaptive Dynamics Learner (ADL). ADL is an algorithm of effective learning

in adaptive dynamic multiagent systems. An adaptive dynamic system may be viewed

as a two-player game where a goal of a player is to maximize its own long-term utility

given that the other agents (considered as one whole agent) may follow an adaptive

learning strategy, such as Adaptive Play (Young, 1993) or Gradient Ascent Singh et al.

(1994). Our algorithm, ADL, by interacting with the opponent player, learns the Q-

values of the states that are formed as an ordered set of joint actions of the past plays

of limited-length history. We have empirically shown that our algorithm outperforms

IGA (Singh et al., 1994) and APQ (Gies and Chaib-draa, 2006) algorithms even if a

very short history length is used to form the states.

While being more general than a PHC-Exploiter by Wang and Sandholm (2002),

our approach is much simpler (in terms of the amount of computations per time step)

than the analogical Hyper-Q algorithm (Tesauro, 2004). Thus, it is possibly better

scalable. Also, in certain games, it is able to maximize the welfare of both players in self-

play. Several untested adaptive dynamic opponents, such as No-Regret (Jafari et al.,

2001) and PHC (Bowling and Veloso, 2002), and certain stationary and non-stationary

opponents still remain to be compared with ADL and we will give attention to that.

Considerably more research is needed, however, to develop a theoretical analysis of our

approach.

Also, although in this work we have shown that in order to make the ADL agent

able to outperform adaptive players in adversarial context, the length of the history

can have very small value, in our future work, however, we plan to study in detail the

impact of the history length on the effectiveness of the learnt policy.

6.2 Future Work

We intend to extend the applicability of our complexity reduction approach to the

general form stochastic games. For that, a suitable relaxation should be derived from

the general multiagent model in such a way, that a solution of this relaxed model was (1)

an admissible and monotonic approximation of the original model and (2) was easier to

be calculated as compared to the solution of the original problem. Also, the advantages

and limitations of practical applications of this approach to the real life problems should

be investigated.

As for the adaptive dynamics learning, we studied how our approach to multiagent
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learning is situated among the other recent algorithms. There have been many new

algorithms proposed in the last five years, but there is still no common idea to which

direction multiagent learning would progress. Three years ago, Shoham et al. (2003)

published their critical survey of the modern multiagent learning trend, where the

authors asked about the question the researchers should aim at when talking about

multiagent learning. However, there is still no such a question.

We would emphasize two common directions of the modern research:

1. heuristic agent composition (Powers and Shoham, 2005b;a) and

2. direct dynamics learning and exploiting (Chang and Kaelbling, 2001; Tesauro,

2004).

The first direction consists in creating the agent, which “can” play several game the-

oretic techniques, such as Tit-for-Tat described in Section 2.5. Also, this agent must

have a heuristic mechanism of switching between these techniques depending on the

estimation of the opponent’s strategy or the belief about what game-playing algorithm

is used by the opponent. In our opinion, there should be a more general approach. The

problem of finding this approach we consider as a major issue for further investigation.

The second direction of the modern research in the multiagent learning is one pre-

sented in this work as Adaptivity Modeling Algorithms (Section 3.6). The algorithms

of this type are using the reinforcement learning as a base of their learning strategy.

These algorithms are trying to “learn” (i.e., not to select from a predefined set) a best

response strategy to the real behavior of their opponents. We believe that this direction

is one of the most promising for future research in the multiagent learning.

In our future work, we will investigate a possibilities of combining the both proposed

approaches, Q-initialization and Adaptive Dynamics Learning, into one algorithm. Be-

sides, we plan to combine these approaches with the value function approximation

techniques (Sutton and Barto, 1998) that appear to be very efficient in single-agent

context. For example, they are able to speedup the reinforcement learning by factoriz-

ing the value or policy function.

In general, an approach to the function approximation in multiagent algorithms

should be found. In our opinion, this direction along with the opponent’s adaptivity

learning and exploiting are two of the most promising canvas of multiagent learning for

the next few years.



Bibliography

Barto, A., Bradtke, S., and Singh, S. (1995). Learning to act using real-time dynamic

programming. Artificial Intelligence, 72:81–138.

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University

Press, New Jersey.

Bernstein, D., Givan, R., Immerman, N., and Zilberstein, S. (2003). The Complexity

Of Decentralized Control Of Markov Decision Processes. Mathematics of Operations

Research, 27(4):819–840.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,

129(1-2):5–33.

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning rate.

Artificial Intelligence, 136(2):215–250.

Brown, G. (1951). Iterative Solution of Games by Fictitious Play. Wiley, New York.

Burkov, A. and Chaib-draa, B. (2007a). Effective learning in adaptive dynamic systems.

In Proceedings of the AAAI 2007 Spring Symposium on Decision Theoretic and Game

Theoretic Agents (GTDT’07), Stanford, California. To appear.

Burkov, A. and Chaib-draa, B. (2007b). Multiagent learning in adaptive dynamic sys-

tems. Submitted for publication to the 2007 International Conference on Autonomous

Agents and Multiagent Systems (AAMAS’07).

Burkov, A. and Chaib-draa, B. (2007c). Reducing the complexity of multiagent learning.

Accepted as short paper in the 2007 International Conference on Autonomous Agents

and Multiagent Systems (AAMAS’07).

Chalkiadakis, G. and Boutilier, C. (2003). Coordination in multiagent reinforcement

learning: A bayesian approach. In Proceedings of the Second International Joint Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS’03), Melbourne,

Australia.



BIBLIOGRAPHY 86

Chang, Y. and Kaelbling, L. (2001). Playing is believing: The role of beliefs in multi-

agent learning. In Proceedings of the Advances in Neural Information Processing

Systems (NIPS’01), Canada.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in coop-

erative multiagent systems. In Proceedings of the Fifteenth National Conference on

Artificial Intelligence (AAAI’98), Menlo Park, CA. AAAI Press.

Darken, C. and Moody, J. (1991). Note On Learning Rate Schedule For Stochastic

Optimisation, volume 3, pages 832–838. Morgan Kaufmann, San Mateo, CA.

Fink, A. (1964). Equilibrium in a stochastic N-person game. Journal of Science in

Hiroshima University, 28:89–93.

Fudenberg, D. and Tirole, J. (1991). Game Theory. MIT Press, Cambridge, Mas-

sachusetts.

Gies, O. and Chaib-draa, B. (2006). Apprentissage de la coordination multiagent : une
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