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Abstract: We present the design and characterization of a cladding-pumped amplifier with 

erbium doping located in an annular region near the core. This erbium-doped fiber is 

proposed to reduce gain saturation, leading to smaller gain compression when compared to 

uniform core doping. Through numerical simulations, we first compare the performance of 

three fibers with different erbium doping profiles in the core or the cladding. When the doped 

fibers are operated at the optimum length, results show that the smaller overlap of the signal 

mode field with the annular erbium doping region leads to higher gain and lower saturation of 

the amplifier. A single-core erbium-doped fiber with an annular doping and a D-shaped 

cladding was fabricated. Measurements demonstrate less than 4 dB of gain compression over 

the C-band for input power ranging from -40 dBm to 3 dBm. Small gain compression EDFAs 

are of interest for applications that require input channel reconfiguration. Higher gain and 

saturation output power are also key issues in cladding-pumped multi-core amplifiers. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Fueled by cloud-based applications, video streaming and supercomputing, data traffic carried 

by communication networks has grown considerably in the last few decades. Optical fibers 

are deployed worldwide to form the backbone of high capacity networks that must deliver an 

ever increasing bandwidth with reduced cost and complexity. In this context, space-division-

multiplexing (SDM) is currently being investigated as a possible means to scale optical fiber 

capacity beyond the fundamental limit of single-mode single-core optical fibers [1-4]. Recent 

demonstrations of transmissions over few-mode multi-core fibers show that the number of 

channels could be increased by two orders of magnitude, allowing in excess of 10 Pb/s 

transmission per optical fiber link [5-6]. A key technology to the deployment of SDM links is 
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a compatible in-line optical fiber amplifier [7-8], which should ideally avoid the 

demultiplexing of spatial channels often done before amplification in laboratory experiments 

of SDM transmission. A spatially integrated optical amplifier sharing the same pump is also 

of interest for applications requiring a compact solution for switching and routing [9].  

Although initial work on multi-core erbium-doped fiber amplifiers (MC-EDFAs) used in-core 

pumping, there is a growing interest in cladding-pumped MC-EDFAs [10-18]. Erbium-doped 

fiber amplifiers (EDFAs) with in-core pumping are well-known for their high performance in 

terms of gain, noise, optical bandwidth and power efficiency. However, in multi-core SDM 

links, these advantages are offset by the need to introduce demultiplexing and multiplexing 

stages at the amplifier input in order to insert the pump in each core. In-core pumping 

therefore leads to a high component count while cladding pumping can decrease system 

complexity and cost by eliminating the need for components such as pump-signal 

multiplexers. An additional advantage of cladding pumping that is of particular interest is the 

use of a single high-power pump source that can be side-coupled to the double-clad fiber. In 

this configuration, a low cost multimode pump can be used as the pump does not need to be 

coupled to a single-mode fiber to be injected in the amplifier. Another advantage of cladding 

pumping arises in SDM links with mode-multiplexing. When simultaneously amplifying 

multiple modes, the more uniform pump power distribution over the optical fiber cross-

section can reduce differential modal gain [19]. Numerous cladding-pumped MC-EDFAs 

have thus been fabricated and characterized with several designs proposing solutions to 

address the low pumping efficiency. A few examples are a six-core EDFA with more than 20 

dB gain over the 1542 nm – 1576 nm wavelength range [10], a 32-core co-doped Er/Yb fiber 

amplifier with >17 dB gain over the 1544 nm – 1564 nm wavelength range [12] and an EDFA 

with six cores, each delivering >18 dBm output power with >17 dB gain over the C-band 

[13]. Few-mode MC-EDFAs were also demonstrated using an annular cladding [14-15] or 

slightly coupled cores [16] to increase pump intensity and pumping efficiency.  

Cladding pumping presents new opportunities for engineering the erbium doping profile 

in order to improve the amplifier performance. For instance, ring doping, which consists of 

including erbium ions in an annular region rather than doping the core uniformly, or a 

structured erbium concentration profile can be used to reduce differential modal gain [20-22] 

or to increase output power [23-24]. More generally, assuming uniform distribution of the 

pump in the cladding, annular doping allows to control the signal overlap with the erbium-

doped region without modifying the pump overlap. This is illustrated in Fig. 1 that compares 

the mode intensity profiles of an EDFA with in-core pumping and uniform doping in the core 

[Fig. 1(a)], to the mode intensity profiles of an EDFA with cladding pumping having an 

annular-doped region in the core [Fig. 1(b)]. In this particular case, the optical fiber supports 

two mode groups, LP01 and LP11, and the relative gain of the two modes is controlled through 

the erbium doping profile (see for example [20]). In this work, we consider a double-clad 

optical fiber with an annular erbium-doped region located in the cladding for amplification of 

a single mode [Fig. 1(c)]. The purpose of this design is to reduce signal overlap with the 

doped region in order to reduce saturation and minimize gain compression [23-24], which is 

an important advantage for EDFAs used in dynamic and reconfigurable networks. To our 

knowledge this is the first direct detailed comparison of simulation and measurement of a 

cladding-pumped EDFA, with erbium-ion doping located in the cladding, that is designed 

specifically to lower gain compression. 
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Fig. 1. Normalized LP01 (orange) and LP11 (yellow) mode intensity profiles, and normalized 

pump intensity distribution (purple, dashed) of: a) a core-pumped single-mode fiber, b) a 

cladding-pumped multi-mode fiber with erbium doping in an annular region of the core, and c) 
a cladding-pumped single-mode fiber with erbium doping in the cladding close to the core. 

The blue line indicates the refractive index profile and the shaded green area is the erbium-

doped region. 

In this paper, we expand on our initial report in [25] and present here in detail the 

optimization of the doped fiber design and compare simulation results to experimental 

measurements.  The paper is focused on optimizing the erbium doping profile to reduce gain 

compression in a single-mode fiber amplifier. While we investigate the simulation and 

fabrication of a single-core fiber, the results could be straightforwardly extended to MC-

EDFA. In section 2, we simulate different doped fiber designs and compare their minimum 

gain over the C-band for a maximum of 4 dB of gain compression. The ideal gain 

compression of an EDFA used in dynamic and reconfigurable network would be 0 dB to 

avoid gain excursions when channels are rerouted. However, the lower the gain compression, 

the harder it is to achieve a high minimum gain over a significant input power range. These 

simulations are performed using standard values found in the literature for erbium-doped 

alumino-silicate glass. In section 3, we first characterize the parameters of a fabricated fiber 

with annular-doping in the cladding. We then use a tapered fiber to inject the pump in the 

cladding and measure the amplifier gain and NF. Using the experimentally determined 

parameters, we compare simulation results to validate the approach. Finally, we conclude, in 

section 4, by a discussion and recommendations for further MC-EDFAs designs. 

 

2. Design of the erbium-doped fiber 

As optical channels are routed through reconfigurable networks, the input power to an EDFA 

can vary leading to transients for the remaining channels. A useful measure to quantify the 

impact of changing the number of input channels is the static gain compression. Gain 

compression at a given signal wavelength is defined as the gain difference for two values of 

total input power. Operation of EDFAs in saturation will therefore lead to high gain 

compression as the gain changes more rapidly with input power when the amplifier input 

power is above its saturation power. In this paper, we propose to modify the erbium doping 

profile of a cladding-pumped fiber to investigate how to achieve sufficient gain and output 

power, while maintaining low gain compression. By placing the erbium ions (Er
3+

) in the 

evanescent tail of the signal mode field, i.e. in an annular region located in the cladding but 

close to the core, the local signal intensity overlapping with the doped region remains low 

even as the amplifier gain increases. In this section, we compare three fiber designs to 

illustrate this behavior. We perform numerical simulations using a standard rate equation 

model with fiber parameters compatible with common fabrication processes such as modified 

chemical vapor deposition (MCVD) with solution doping. We examine fiber designs meeting 

a target of <4 dB of gain compression and contrast their minimum achievable gain and fiber 

length.    
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2.1 Erbium doping profiles 

To minimize the number of fabrication steps, we simulate radially dependent erbium doping 

profiles that have only one erbium ion (Er
3+

) concentration level, namely ρ0=1x10
25

 ions/m
3
. 

The three fibers under study are a fiber with uniform doping across the core (Fiber A), a fiber 

with a uniformly doped annular region in the cladding (Fiber B) and a fiber in which both the 

core and a portion of the cladding are doped with the same concentration of Er
3+

 (Fiber C). 

The refractive index profiles and the Er
3+

 concentration profiles of the three fibers are 

illustrated in Fig. 2. All three fibers have a silica cladding with an index of 1.4440 at 1550 

nm. Fiber A is a step-index fiber with core radius of 4.5 µm and refractive index of 1.4502. 

The numerical aperture is 0.134 and the V number is 2.44 at 1550 nm, which mean that the 

LP11 mode is very close to cutoff. In cladding-pumped amplifiers, enlarging the cores to 

reduce signal intensity helps to reduce saturation [13]. In Fiber B and C, because some Er
3+

 

are incorporated in the cladding, silica is replaced by alumino-silicate to increase the 

solubility of the Er
3+

 in this region. Therefore, the region between r=4.5 µm and r=9.5 µm has 

a refractive index of 1.4460, which is a reasonable value for alumino-silicate to accept an Er
3+

 

concentration of 1x10
25

 ions/m
3
. For Fiber B, the erbium doping is only found between r=6 

µm and r=9.5 µm while, for comparison purposes, Fiber C is doped with erbium from r=0 µm 

to r=9.5 µm.  

 

Fig. 2. Refractive index (blue line) and erbium concentration (green shaded area) profiles of 

fibers A, B and C.  

2.2 Model and simulations 

Simulations were performed using the standard EDFA two-level model with the usual set of 

power propagation and population rate equations in which we introduce radial resolution as 

described in [10]. Since we aim to design single-mode cores, only the LP01 mode is 

considered in the simulations for the signal (we assume that no higher-order modes are 

present). The pump power is assumed to be uniformly distributed in the cladding that has a 

diameter of 140 m. Consequently, there is not azimuthal dependence and we divide the fiber 

cross-section in K rings, each with uniform Er
3+

 concentration, and we calculate the average 

inversion of each ring to calculate transition rates and gain. We write 
  

{
  
 

  
 

𝑑𝑃𝑝(𝑧)

𝑑𝑧
= −𝜎𝑎𝑝(∑ 𝑛1,𝑘(z) Γ𝑝,𝑘

𝐾
𝑘=1 )𝑃𝑝(𝑧) − α𝑝𝑃𝑝(𝑧)

𝑑𝑃𝑠,𝜆(𝑧)

𝑑𝑧
= (𝜎𝑒,𝜆 ∑ 𝑛2,𝑘(𝑧) Γ𝜆,𝑘

𝐾
𝑘=1 − 𝜎𝑎,𝜆 ∑ 𝑛1,𝑘(𝑧) Γ𝜆,𝑘

𝐾
𝑘=1 )𝑃𝑠,𝜆(𝑧) − α𝑠𝑃𝑠,𝜆(𝑧)

𝑑𝑃±𝐴𝑆𝐸,𝜆(𝑧)

𝑑𝑧
= (𝜎𝑒,𝜆 ∑ 𝑛2,𝑘(𝑧) Γ𝜆,𝑘

𝐾
𝑘=1 − 𝜎𝑎,𝜆 ∑ 𝑛1,𝑘(𝑧) Γ𝜆,𝑘

𝐾
𝑘=1 )𝑃±𝐴𝑆𝐸,𝜆(𝑧)

+𝜎𝑒,𝜆(∑ 𝑛2,𝑘(𝑧) Γ𝜆,𝑘
𝐾
𝑘=1 )2ℎν𝜆Δν𝜆 − α𝑠𝑃

±
𝐴𝑆𝐸,𝜆(𝑧)

 (1) 

  

{
 
 

 
 𝑛1,𝑘(𝑧) =

𝐴𝑘
τ
+W3,𝑘(𝑧) 

𝑊1,𝑘(𝑧) +𝑊2,𝑘(𝑧) +𝑊3,𝑘(𝑧) +
𝐴𝑘
τ

ρ𝑘(𝑧)

𝑛2,𝑘(𝑧) =
W1,𝑘(𝑧) +W2,𝑘(𝑧) 

𝑊1,𝑘(𝑧) +𝑊2,𝑘(𝑧) +𝑊3,𝑘(𝑧) +
𝐴𝑘
τ

ρ𝑘(𝑧)

ρ𝑘(𝑧) = 𝑛1,𝑘(𝑧) + 𝑛2,𝑘(𝑧)

 (2) 
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{
 
 

 
 𝑊1,𝑘(𝑧)  =

σ𝑎𝑝Γ𝑝,𝑘𝑃𝑝(𝑧)

ℎν𝑝
 

𝑊2,𝑘(𝑧)  = ∑
σ𝑎,λΓλ,k𝑃𝑠,λ(𝑧) 

ℎνλ
λ,s +∑

σ𝑎,λΓλ,k𝑃𝐴𝑆𝐸,λ(𝑧) 

ℎνλ
λ,ASE

𝑊3,𝑘(𝑧)  = ∑
σ𝑒,λΓλ,k𝑃𝑠,λ(𝑧) 

ℎνλ
λ,s +∑

σ𝑒,λΓλ,k𝑃𝐴𝑆𝐸,λ(𝑧) 

ℎνλ
λ,ASE

  (3) 

 

where λ stands for the wavelength channels of the signal or the amplified spontaneous 

emission (ASE), and k refers to the different rings with area Ak. Eq. (1) describes the 

propagation of the pump power, Pp, the signal, Ps, and the ASE, P
±

ASE, in the forward (+) and 

backward (-) direction. The pump is co-propagating with the signal and the respective 

background loss of the pump and the signal are αp and αs. Also, σap is the absorption cross-

section at 980 nm, σe, and σa are the emission and absorption cross-sections at the signal or 

ASE wavelengths. The pump and signal (or ASE) overlaps with each ring are Γp,k, and Γk 

respectively. Eq. (2) describes the radially resolved population inversion along the fiber. The 

lower and upper population level densities of a given ring are n1,k and n2,k , while ρk is the 

erbium concentration of a given doped ring. For the design, ρk is either 0 or ρ0. When 

simulating experimental results, ρk will vary from ring to ring. Eq. (3) represents the transition 

rates associated with pump absorption (W1), signal and ASE absorption (W2), and signal and 

ASE stimulated emission (W3). As usual, h is the Planck constant, νp and νλ are the pump 

frequency and signal (or ASE) frequency, and τ is the lifetime of the Er
3+

 upper metastable 

level. 

For the simulations, we consider 31 signal channels uniformly distributed over the C-

band (1530 nm to 1560 nm) and 201 ASE channels between 1420 nm and 1620 nm. The 

spectral resolution of the simulations is therefore 1 nm. At first, we neglect background 

propagation loss (αs and αp are set to 0 dB/m). We use absorption and emission cross-sections 

measured on an erbium-doped alumino-silicate fiber previously fabricated in our laboratory 

[26], which are illustrated in Fig. 3. The fiber cross-section between radius r=0 to r=10 m is 

divided into 100 rings. The signal and ASE confinement for each ring, over the whole 

spectrum of interest (i.e. 1420 nm to 1620 nm with 1 nm resolution), were found by 

simulating the LP01 mode profile with COMSOL. Although not necessary for step-index 

fibers, this numerical technique is useful when considering variations of the index profile in 

the cladding and necessary when doing the simulations of the experimentally measured 

profile in section 3 below. The pump overlap for each ring was straightforwardly found by 

considering that the pump power is uniformly distributed over the fiber cross-section.  

 

Fig. 3. Absorption (blue) and emission (orange) cross-sections used in simulations (from [25]). 

Our target is to achieve a maximum of 4 dB of gain compression over the C-band when 

the total input power is varied from -40 dBm (unsaturated amplifier) to 3 dBm (fully loaded 

amplifier). This total input power is uniformly distributed over the 31 channels. Considering 

that 3 dBm corresponds to a fully loaded amplifier (all 31 channels present at its input), the 

calculated gain compression represents a worst case scenario. If a sub-band is absent from the 

EDFA input, the amplifier will be less saturated and the gain compression will be lower for 
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the remaining channels, whatever the specific wavelengths of the sub-band channels that are 

absent. The simulations parameters are summarized in Table 1 where Pp,in is the input pump 

power, Ps,in,unsat and Ps,in,sat are the limits of the total input signal power range used to calculate 

the gain compression, rclad is the radius of the cladding, ncore is the refractive index of the core, 

ndoped is the refractive index of the erbium-doped alumino-silicate region around the core, nclad 

is the refractive index of the cladding.  

Table 1. Parameters used in initial simulations, common to all fibers. 

Parameter Value Unit  

Pp,in 14.5 W  

ρ 1×10
25

 ions/m
3
  

Ps,in,sat 3 (-11.91 dBm/ch)
 

dBm  

Ps,in,unsat -40 (-54.91 dBm/ch) dBm  

σap 2.297×10
-25

 m
-2

  

αp  0
 

m
-1  

αs 0 m
-1

  

rclad 70 µm
  

ncore 1.4502 -  

ndoped 1.4460 -  

nclad 1.4440 -  

 

For each fiber, we simulated different lengths in order to maximize the minimum gain 

over the C-band with less than 4 dB of gain compression over the total input power range. 

The resulting lengths were 0.87 m, 18.2 m and 0.84 m respectively for fibers A, B and C. Fig. 

4 shows the spectral gain of each fiber calculated with these lengths for the minimum and 

maximum total input signal power. For each fiber, the maximum gain compression (4 dB) 

occurs around 1532 nm. The minimum gain, among the 31 channels, for an input power of 3 

dBm for fibers A, B and C was respectively 6.8 dB, 17.7 dB and 8.1 dB. With the optimized 

length, the saturated output power is found by calculating the total signal output power at the 

3-dB saturation point of the average amplifier gain. For fibers A, B and C, we find 

respectively 10.7 dBm, 22.3 dBm and 12.1 dBm. Thus, according to the simulations, Fiber B, 

with the Er
3+

 located in an annular region of the cladding, is far superior in terms of minimum 

gain when limiting the gain compression to 4 dB. 

 

Fig. 4. Gain as a function of wavelength for total input power of -40 dBm (black) and 3 dBm 

(red) distributed over 31 channels at the optimum length for each fiber. 

 

3. Fiber fabrication and characterization 

In order to validate the approach, we fabricated Fiber B using MCVD and solution doping 

technique. We first deposited a layer of silica sooth using the solution doping technique with 
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Al2O3 and Er2O3 to dissolve the Er
3+

 ions in the porous glass [27]. This layer corresponds to 

the region r=6.0–9.5 m of the design. This was followed by a second step of MCVD 

deposition for the fiber core that was made of GeO2 doped SiO2 since there was no Er
3+ 

doping in this region. Firstly a buffer layer was deposited between r=4.5–6.0 m with a GeO2 

concentration to match the index of the alumino-silicate glass, then the GeO2 concentration is 

increased for the core. In order to break the symmetry of higher-order pump modes, a flat 

surface was polished on the preform resulting in an optical fiber having a “D”-shaped cross-

section [28]. The fiber diameter was 140 µm and a low-index (1.37) polymer with a 205 µm 

diameter was used to confine the pump power in the cladding.   

3.1 Fiber parameters measurements 

We measured the resulting refractive index profile of the fiber, at the center of the preform, 

using a refracted near-field analyzer (Exfo NR-9200HR) at 657.6 nm. The measured 

refractive profile, neglecting dispersion of the refractive index step, was scaled down to the 

fiber dimension to compare it to the design in Fig. 5(a). We imported this profile into 

COMSOL in order to calculate the LP01 mode confinement in each ring more accurately in 

subsequent numerical simulations of experimental measurements. The COMSOL simulations 

also indicated that, although close to cut-off, the LP11 mode is guided (at 1530 nm, 

neff,LP01=nclad+ 25.0x10
-4

, neff,LP11=nclad+4.67x10
-4

). Fig. 6 shows the signal overlap in each ring 

calculated from the measured refractive index profile and compares the result to the ones of 

the design at 1550 nm. The fabricated fiber has 53% more signal overlap than the designed 

one in the 6 µm < r < 9.5 µm region (Γ = 0.1345 compared to Γ = 0.0877). Using the signal 

overlap that was calculated from this measurement, numerical simulations were repeated with 

all other parameters corresponding to the design ones. This leads to an optimal fiber length of 

11.1 m and a minimum gain of 16.5 dB for 4 dB of gain compression. 

The erbium concentration was measured on the preform as a function of the radial 

position, using an electron micro-probe analyzer (CAMECA) with a measurement sensitivity 

of ∆ρ=5x10
24

 ions/m
3
 , which is close to the doping level of the fiber thereby resulting in a 

noisy measurement. We performed a fit using a half-Lambertian (r<7.4m) and half-Gaussian 

(r>7.4m) profile and used it for the simulations. The asymmetry of this fit allow to consider, 

in the simulations, the small amount of erbium that was measured above the detection 

threshold of the CAMECA (2x10
24

 ions/m
3
) in the r < 6 µm region. Note that the electron 

micro-probe analysis showed that a small amount of germanium was present in the erbium-

doped region. Both the measured and fitted erbium concentration profiles are compared to the 

design in Fig. 5(b).  Note that the obtained erbium ion content is significantly lower than the 

design with an average concentration of ρ=3.7x10
24

 ions/m
3
 in the 6 µm < r < 9.5 µm region. 

Using this averaged concentration in all the doped rings, numerical simulations results in an 

optimal length of 49.1 m and a minimum gain of 17.6 dB. Using the measured erbium 

concentration profile directly in the initial simulations leads to an optimal fiber length of 25.5 

m and a minimum gain of 14.2 dB. In both cases, all other parameters correspond to the 

design ones, including the overlap.  
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Fig. 5. For the fabricated Fiber B: a) Designed (blue) and measured (orange) refractive index 

profile. b) Designed (blue), measured (orange), and fitted (black, dotted) erbium concentration 
profile. 

 

 

Fig. 6. Signal overlap of each ring in the designed (blue) and fabricated (orange) fiber. 

The pump absorption, when injected in the cladding, was measured using the setup and 

the procedure shown in Fig. 7. The setup consists of an incoherent white-light source 

followed by a free-space tunable bandpass filter before being injected into a 2.15 m coreless 

optical fiber. First, a reference measurement is done at the output of the coreless fiber [Fig. 

7(a)] to ensure that the power at the output of the coreless fiber is below -40 dBm at each 

wavelength so that we can assume that the fiber has a very low level of population inversion. 

The filter has a passband of 1 nm and was tuned with steps of 1 nm from 920 nm to 1020 nm. 

Afterwards, 9.96 m of the fiber under test (FUT), Fiber B, was added between the coreless 

fiber and the OSA. The insertion loss in dB/m is determined by dividing the total loss of the 

FUT by its length. The result is shown on Fig. 8.  

 

Fig. 7. Characterization setup used to do spectral measurement of the insertion loss when the 

light is injected in the cladding a) calibration path and b) measurement of the FUT.  

To determine background propagation loss, we use the insertion loss values outside the 

absorption band of Er
3+

 to interpolate the propagation loss value at 980 nm. The background 

loss was 0.23 dB/m or 0.053 m
-1

. Such a high background loss can be caused by either 

impurities at the outer region of the fiber and scattering of pump light out of the fiber. The 

absorption of the pump is determined by subtracting the background loss (0.23 dB/m) to the 

absorption in dB/m at 977 nm (0.294 dB/m). The absorption cross-section of the pump is then 
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calculated with Eq. (4), using the pump overlap with the erbium doping, we find σap=2.3x10
-

25
 m

2
. 

 

Fig. 8. Spectral measurement of insertion loss when the light is injected in the cladding of the 

fabricated Fiber B normalized to fiber length. 

The absorption and emission cross-sections at the signal wavelengths were determined 

using a similar setup as shown in Fig. 9. The measurement uses a cut-back technique to 

determine signal absorption in the fundamental mode. Absorption and emission cross-sections 

are then calculated from the spectral absorption result. Once again, a wide-band source with a 

very low output power is used to ensure a negligible level of population inversion. At first, 

SMFs are spliced at both ends of the 10.00 m FUT with an active alignment procedure. In 

order to filter higher-order modes, three loops of 2.2 cm of diameter were made after the first 

splice. Then, the band pass filter was tuned in steps of 1 nm from 1420 nm to 1620 nm. 

Finally, a length of 7.90 m of the FUT is cut and the two remaining portions of the FUT are 

spliced back together resulting in a remaining FUT length of 2.1 m in Fig. 9b. This allows to 

keep the same splices between the SMF and the FUT. The absorption in dB/m is then found 

by dividing insertion loss difference by 7.90 m. The result is shown in Fig. 10 where it can be 

observed that the signal propagation background loss is negligible. Also, small oscillations 

are present on the spectrum, most probably caused by the presence of residual higher-order 

modes.  

 

Fig. 9. Characterization setup used to do spectral measurement of the insertion loss when the 
light is injected in the core a) calibration path and b) measurement of the FUT. 

 

 

Fig. 10. Absorption spectrum when light is injected in the core of the fabricated Fiber B. 
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Then, considering the experimentally determined signal overlap and Er
3+

 doping 

concentration in each ring, we use the McCumber relation [29] to determine the absorption 

and emission cross-sections. 

𝜎𝑎(ν)[𝑚
2] =

𝛼[𝑑𝐵/𝑚]

(10 𝑙𝑜𝑔10𝑒)∑ ρ𝑖[𝑖𝑜𝑛𝑠/𝑚
3]Γ𝑖𝑖

  (4) 

𝜎𝑒(ν) = 𝜎𝑎(ν)𝑒
(ɛ−ℎν)/𝑘𝑇   (5) 

where ɛ =
ℎ𝑐

1535 𝑛𝑚
 

The resulting cross-section curves, displayed in Fig. 11, slightly differ from the curves 

used for the fiber design. The maximum emission occurs at 1533 nm instead of 1532 nm and 

a shallow hole appears in the emission cross-section spectrum between 1540 nm and 1546 

nm. Those differences could be caused by the presence of germanium in the erbium-doped 

region [30]. Using these cross-sections in the numerical simulations (with all other parameters 

fixed corresponding to the design values) leads to an optimal fiber length of 19.6 m and a 

minimum gain of 14.8 dB. 

 

Fig. 11. Absorption (blue) and emission (orange) cross-sections as a function of wavelength 

when the signal is injected in the core of the fabricated Fiber B (solid) compared with the 

cross-sections used for the simulations of the designed fiber (dashed). 

 

3.2 Amplifier characterization and validation of the approach 

Aiming for a maximum of 4 dB of gain compression when total input signal power varies 

between -40 dBm and 3 dBm, we used 15 m of the erbium-doped fiber under test (EDFUT), 

i.e. the fabricated Fiber B with erbium doping in an annular region of the cladding. The gain 

and noise figure (NF) were measured as a function of wavelength for three different input 

power values: -40 dBm, -7 dBm and 3 dBm. In the setup shown in Fig. 12, the tunable laser 

#1 is used as a saturating tone at 1550 nm while the tunable laser #2 is used as a low power 

tunable wavelength signal (1530 nm – 1560 nm, at least 12 dB weaker than Pin). For 

measurements with Pin= -40 dBm, no saturating tone is used. Input and output powers were 

measured on an OSA at the output of the respective input and output isolators. The 25 W 980-

nm pump laser is injected in the cladding of the EDFUT. To achieve the injection, a tapered 

coreless fiber is spliced at the pigtail of the laser source while its tapered section is rolled 

around the EDFUT [13]. To filter the remaining pump in the cladding at the output of the 

fiber, a pump dump, consisting of etching cream applied over 5 cm of the EDFUT, is used. 

The polarization-dependent effects in the EDF were suppressed by using a polarization 

scrambler. In order to suppress weakly guided higher-order modes, three fiber loops of 2.2 cm 

diameter were rolled at 0.5 m and 14.5 m of the EDFUT length as shown on Fig. 12. 
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Fig. 12. Setup used to measure the gain and noise figure of the EDF. 

Measured and simulated spectral gain and NF are compared in Fig. 13 for the three Pin 

values. The simulations assume that 14.5 W of pump power is coupled in the EDFUT 

cladding (considering loss in the coreless fiber of 3.6 dB/m this translates into a coupling 

efficiency of 70%).  

 

Fig. 13. Gain (top) and NF (bottom), simulations (dashed) and measurements (solid), as a 

function of wavelength for different total input power. 

Simulations and experiments are in good agreement with a maximum gain difference of 

2.0 dB. Also, in the experiment, the gain compression when Pin changes from -40 dBm to 3 

dBm, was 4.1 dB and occurred at 1532 nm in the experiment, while it was 2.1 dB in the 

simulations and occurred at 1533 nm with the experimentally measured parameter. According 

to the simulations with all experimentally determined parameters, the gain compression of 4 

dB should occur with a fiber length of 19.9 m and lead to a minimum gain of 10.9 dB with 

Pin=3 dBm. Among the factors that could be responsible for this difference between the 

measured and calculated spectral gain are the presence of residual higher-order modes that are 

neglected in the model and, also, the fact that the refractive index and erbium doping profiles 

were measured on a section of the preform but not on the fiber itself. There is a larger 

difference between the measured and simulated NF, particularly at the shortest wavelengths. 

Factors that could contribute to this discrepancy include the presence of un-pumped EDFUT 

sections (before pump coupling and after the pump dump) and the presence of residual 

higher-order modes, particularly at the shortest wavelengths. Therefore, we believe that the 

NF peak should be suppressed in future design of annular doped EDF with singlemode core. 

It should be noted that the 4 dB of gain compression, for total input power variations from -40 

dBm to 3 dBm, was achieved with a minimum gain of 9.7 dB. Although this result is very far 

from the 17.7 dB expected from the design, it is still superior to the simulation results of Fiber 

A (6.8 dB) and C (8.1 dB). This significant difference can be explained by a thinner erbium-

doped region, a significantly higher signal overlap and power intensity in the doped region 

and differences in cross-sections compared to initial expectations. Higher signal overlap in 
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this annular-doped region means higher signal intensity that will lead to saturation and more 

gain compression. Nevertheless, the good agreement between measurements and simulations 

using the experimentally determined parameters indicate that refinement of the fiber 

fabrication technique should lead to the expected performance. It is also important to note that 

a flat gain spectrum cannot be achieved with unsaturated amplifiers. Thus, this amplifier with 

low gain compression is designed to be operated with a gain equalization filter. 

 

4. Conclusion 

Through numerical simulations we compared various erbium doping profiles of cladding-

pumped single-core fiber amplifiers to maximize its minimum gain while limiting gain 

compression to less than 4 dB. The results show that inserting the Er
+3

 in an annular region of 

the cladding near the core leads to better performance. Compared to designs with uniform 

erbium doping in the core, the proposed design saturates at higher input signal power due to 

the small overlap of the signal mode with the annular-doped region. A longer erbium-doped 

fiber length is required but the minimum gain is significantly increased compared to uniform 

doping in the core. The approach was validated by fabricating and characterizing a single-

core double-cladding fiber with erbium doping in an annular region of the cladding. A low 

gain compression was achieved but the targeted minimum gain could not be demonstrated 

with this fiber. Nonetheless, the measured minimum gain was still better than the simulated 

values for erbium-doped fibers with uniform doping in the core. Simulations performed with 

experimentally determined parameters were compared to measurements showing an 

agreement within 2 dB for the spectral gain, which gives confidence that performance 

matching more closely the target will be obtained with improvements in fiber fabrication. 

Some aspects to be refined include the index profile that will have to be modified to ensure 

single-mode operation over the whole spectral band and the pump background loss that 

should be reduced. Our results confirm that this type of design would be of interest for 

multicore EDFAs with reduced gain variations for different input channel reconfigurations. 
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