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RÉSUMÉ

Les équations de Saint-Venant sont un système aux dérivées partielles jouant un rôle

central dans la modélisation des écoulements océaniques. La méthode des éléments

finis est particulièrement adaptée pour résoudre les équations de Saint-Venant car elle

offre une grande flexibilité sur les domaines irréguliers ainsi qu’une variété d’espaces

pour l’approximation de la solution. Or, la qualité de la solution numérique dépend de

l’interaction entre ces espaces. Pour certaines combinaisons ou paires d’élément finis

la solution numérique peut présenter des oscillations articiellement introduites par la

discrétisation. Cette thèse porte sur le comportement numérique des solutions aux équa-

tions de Saint-Venant obtenues par différentes paires d’éléments finis. Tout d’abord,

une étude sur la dispersion des ondes d’inertie-gravité est présentée pour une sélection

de neuf paires d’éléments finis. Un ensemble de trois propriétés est ensuite mis en év-

idence afin que la discrétisation respecte le comportement des équations analytiques.

Une méthode basée sur le calcul des noyaux est utilisée pour caractériser les modes

stationnaires correspondant aux écoulements géostrophiques. Finalement, les espaces

vectoriels de Raviart-Thomas et Brezzi-Douglas-Marini sont analysés.



ABSTRACT

The shallow-water equations system plays a central role in numerical oceanic models.

The finite element method is particularly well suited to solve the shallow-water equa-

tions as it works on irregular meshes with a variety of approximation spaces. However,

the behavior of the numerical solution highly depends on the interaction between these

approximation spaces. For specific finite element pairs the solution may exhibit spuri-

ous oscillations induced by the discretization scheme. In this thesis, we analyze these

oscillations for a wide selection of finite element pairs. The numerical dispersion of

inertia-gravity waves is quantified with dispersion analyses. A constructive linear al-

gebra approach is developed to compute the kernels of the discretized operators. The

results are used to characterize the smallest representable vortices on both structured

and unstructured meshes. A special attention is given to the Raviart-Thomas and

Brezzi-Douglas-Marini approximation spaces.
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Le FQRNT pour son soutient financier.

Mes amis, ma famille et ma conjointe Karine.

UN BIEN GROS MERCI :-)



CONTENTS
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0. INTRODUCTION

The World Ocean is a body of saline water covering approximately 70% of the Earth

surface and constituting 96.5% of the hydrosphere. The ocean holds powerful currents

carrying a huge amount of heat all over the globe [46]. These currents influence the

global climate and a small change in their behavior can have dreadful consequences on

the weather, sea level, and marine ecosystems. Experimental data about the oceanic

currents is generally limited due to the vastness and deepness of the ocean and so a

numerical model is needed to analyse and simulate the oceanic circulation.

The ocean circulation is driven by the water temperature and salinity, the gravity force,

the surface winds, and the Coriolis force (trajectory deflection induced by the Earth

rotation). The direction and amplitude of the flow vary with the depth. The vertical

motion of the water is mainly induced by its density. Cold and salty water is heavier

than fresh and warm water and so differences in the water temperature and salinity

trigger mixing and upwelling. On the other hand, horizontal flows are mainly affected

by the gravity and Coriolis forces. The water flow is said to be in geostrophic equilibrium

when the circular motion balances with the surface elevation, e. g. in the Northern

Atlantic the water flows in a clockwise circular motion that pushes the water toward

the center making the surface elevation higher in the center of the ocean than on the

coastline. Most of the flow in the ocean is in geostrophic equilibrium.

The average oceanic depth is approximately 3,790 meters but the oceanic reach is in

thousand of kilometers. So the ocean is in proportion a relatively thin fluid laying on a

rotating sphere. Consequently, a simplified 2D model of the flow can be obtained under

reasonable approximations based on this specific shape of the fluid. The resulting model

leads to the shallow-water equations (SWE).
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0.1 Shallow-water equations

The SWE are usually derived from the 3D Navier-Stokes equations under general phys-

ical approximations. Two particularly important approximations are the Boussinesq

and the hydrostatic approximations. The first one restricts the effects of the density to

terms where the gravitational force is involved. The second one states that the pressure

should vary linearly with the depth. The simplified equations are integrated in the

vertical direction and the resulting system yields to the 2D SWE. The physical intu-

ition along with the mathematical details behind this procedure can be found in several

textbooks [37, 43, 21, 63, 30].

Although the SWE are a 2D system, they are playing a central role in several 3D oceanic

circulation models (for example in QUODDY [40], FEOM [22], and SLIM [69]). These

models are made up of layers corresponding to SWE systems with extra terms for the

flow in the vertical direction. The computational cost of 3D models is generally high

and therefore these models will benefit from an efficient numerical scheme to solve the

SWE.

The solutions to the SWE equations can be separated into two distinct categories. The

first one is constituted of inertia-gravity waves. These solutions are fast propagating

waves and they are mainly driven by the gravity force, e. g. tsunamis are inertia-gravity

waves. The second category contains vortex flows where the Coriolis force balances with

the gravity force. These flows are in geostrophic equilibrium and correspond to Rossby

waves. The behavior of the waves belonging to these two distinct groups largely differs.

Therefore different techniques and approaches have to be set to study both inertia-

gravity waves and Rossby waves.

0.2 Finite element method

The finite element method [49, 18] is an attractive numerical method to compute the

solution to the SWE. Finite elements are generally triangular or quadrangular, but trian-

gles are particularly well suited to approach irregular domains boundary like coastlines.

The theoretical framework around the finite element method is well established and it

provides error estimates that can be used to locally refine the mesh in order to increase

the precision of the solution at a reasonable computational cost. The approximation

spaces can be chosen in various ways and they offer a great flexibility to compute the

solution.
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Usually, the finite element spaces contain low order polynomials defined piecewise by

element. The piecewise continuous polynomials of the first and second order are typical

spaces and denoted by P1 and P2, respectively. The continuity restrictions between

elements can also be weaken to obtain semi-continuous or discontinuous spaces like the

PNC
1 and P0 spaces. The discretization of the SWE with the finite element method

involves choosing two finite element spaces; one for the velocity field and another one

for the surface-elevation. The coupling between these two spaces constitutes a finite

element pair. We use the notation Pn − Pm to designate the pair whose velocity field

and surface-elevation belong to the Pn and Pm spaces, respectively.

The numerical behavior of finite element pairs highly depends on the coupling between

the velocity and surface-elevation spaces. The SWE are of hyperbolic type (opposed to

elliptic) and so the famous inf-sup stability criterion from Ladyzhenskaya, Brezzi and

Babuska (LBB) [14] does not apply for SWE. So different tools are required to analyze

the finite element pairs used to solve these equations. In this thesis, we use a variety of

methods to characterize and quantify the numerical behavior of twelve finite element

pairs.

0.3 Overview

Chapter 1: We present a quantitative analysis of numerically induced dispersion on

inertia-gravity waves for a selection of nine finite element pairs. We consider a regular

mesh made up of right biased triangles and we assemble the stencils for the discrete

SWE. The stencils are then used to compute the dispersion relations and the discrete

frequencies of inertia-gravity waves. The results are compared analytically and graphi-

cally.

Chapter 2: A linear algebra approach is developed to characterize the kernel of the

discrete SWE. Three kernel relations are identified as necessary conditions for the dis-

cretized system to share the same properties as the continuous system. This matrix

kernel scheme is implemented using MATLAB and applied to ascertain the presence,

number, and structure of spurious modes arising in typical finite difference and finite

element schemes. The kernel concept is then used to characterize the smallest repre-

sentable vortices. Both uniform and unstructured mesh situations are considered and

compared. Issues such as modal decoupling in vortex modes are also examined.
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Chapter 3: An analysis of the discrete SWE using the Raviart-Thomas and Brezzi-

Douglas-Marini finite elements is presented. For inertia-gravity waves, the discretiza-

tion schemes are developed in details to quantify the level of numerical dispersion. Two

meshes made up of equilateral and right biased triangles are considered. A linear algebra

approach is used to ascertain the presence and the form of spurious modes arising from

the discretization. The geostrophic balance is examined and the smallest representable

vortices are characterised on both structured and unstructured meshes. Relevant nu-

merical tests are presented.



1. ANALYSIS OF NUMERICALLY INDUCED

OSCILLATIONS IN 2D FINITE ELEMENT

SHALLOW-WATER MODELS PART I:

INERTIA-GRAVITY WAVES

D. Y. Le Roux, V. Rostand, and B. Pouliot.

Published in SIAM Journal on Scientific Computing 29, 331 (2007).

Keywords: shallow-water equations, finite-element method, dispersion analysis, surface

waves.

1.1 Résumé

L’approximation numérique des solutions aux équations de Saint-Veant est un problème

délicat. Pour un bon nombre de schémas de discrétisation numérique, le couplage entre

l’équation des moments et l’équation de continuité produit des oscillations non physiques

dans la solution. Cet article présente une analyse de dispersion utilisée pour déterminer

la présence et la forme de ces oscillations se produisant dans les schémas numériques

basés sur la méthode de Galerkin et des éléments finis mixtes. Neuf paires d’éléments fi-

nis bien connues sont considérées dans le calcul des relations de dispersion. Ces relations

sont ensuite comparées avec la solution exacte analytiquement et graphiquement. Pour

certaines paires d’élément finis, il est montré que l’erreur numérique sur le calcul de la

vitesse de phase ainsi que la vitesse de groupe pour les ondes rapides est significative et

parfois même non physique. Les paires PNC
1 − P1 et RT0 sont identifiées comme étant

des choix intéressants pourvu que le la résolution de la grille soit grande lorsque com-

parée au rayon de déformation de Rossby pour la paire RT0. Finalement, les solutions

de deux simulations numériques sont présentées et corroborent les résultats analytiques.
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1.2 Abstract

The numerical approximation of shallow-water models is a delicate problem. For most

of the discretization schemes, the coupling between the momentum and the continuity

equations usually leads to anomalous dispersion in the representation of fast waves.

A dispersion relation analysis is employed here to ascertain the presence and deter-

mine the form of spurious modes as well as the dispersive nature of the finite-element

Galerkin mixed formulation of the two-dimensional linearized shallow-water equations.

Nine popular finite-element pairs are considered using a variety of mixed interpolation

schemes. For each pair the frequency or dispersion relation is obtained and analyzed,

and the dispersion properties are compared analytically and graphically with the con-

tinuous case. It is shown that certain choices of mixed interpolation schemes may lead

to significant phase and group velocity errors and spurious solutions in the calculation

of fast waves. The PNC
1 − P1 and RT0 pairs are identified as a promising compromise,

provided the grid resolution is high relative to the Rossby radius of deformation for the

RT0 element. The numerical solutions of two test problems to simulate fast waves are

in good agreement with the analytical results.

1.3 Introduction

The shallow-water (SW) equations describe the behavior of a shallow homogeneous

incompressible and inviscid fluid layer. They are derived from the depth-averaged

Navier–Stokes equations under Boussinesq and hydrostatic pressure assumptions. The

SW system is extensively used in environmental studies to model hydrodynamics in

lakes, estuaries, coastal regions, and other applications.

Galerkin techniques have gradually evolved to become a popular method for this prob-

lem class including the finite-element (FE) [15, 22, 34, 45, 58, 39, 68], the spectral-

element [35, 61], the finite-volume (FV) [4, 16, 17, 23, 33], and the discontinuous

Galerkin [3, 7, 19, 24, 59] methods. Indeed, unstructured elements offer the enhanced

flexibility of using grids of variable sizes, shapes, and orientation for representing the

boundaries of complex domains and a natural treatment of boundary conditions. Cal-

culations on graded meshes of unstructured grids are hence standard practice [5, 22, 23,

24, 54, 64, 67].

For most numerical methods, including the finite-difference (FD), FV, and FE schemes,

the coupling between the momentum and continuity equations is a delicate problem.
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One of the issues associated with mixed formulations is the possibility of spurious modes

that may arise for certain choices of grids and bases. For example, the piecewise linear

Galerkin discretization of the SW equations (for velocity and elevation variables) is

usually plagued by spurious oscillations [35, 65]. The appearance of such oscillations

is mainly due to an inappropriate placement of variables on the grid and/or a bad

choice of approximation function spaces. Improvements have been achieved through

the use of suitable FD grids [6, 47], a variety of mixed-order FE interpolation schemes

[2, 35, 34, 58, 54, 70], and a wave equation formulation [36, 39].

This difficulty with mixed methods is not specific to the SW problem alone but is well

known also in other contexts such as primitive variable viscous flows where it has been

extensively investigated for the Galerkin FE method [14, 28]. However, the situation

in the mixed SW problem is different and, as noted initially in [65] and in subsequent

studies [34, 58, 67], an analysis of the dispersion relation for a given formulation will

explicitly ascertain the presence and determine the form of spurious modes as well as

the dissipative/dispersive nature of a given formulation.

The dispersion relation analysis assumes that the solution of the differential equations

can be separated and formulated as periodic in space and time. It differs from the

Fourier analysis in that the time variable remains continuous by using the harmonic

form of the equations. Consequently, a Fourier expansion is performed only for the nodal

unknowns that appear in the discrete equations. The analysis results in a dispersion

relation where the magnitude of the temporal frequency is expressed in terms of wave

numbers. Such a technique was applied early on to the SW model in [44].

Two-dimensional dispersion analysis of FE SW discretizations using the same linear

basis functions for all variables was examined first. One grid configuration is consid-

ered in [65], while the influence of grid configuration on the dispersion properties is

analyzed in [9, 10, 25] for the mixed primitive variable form and in [42] in the case

of the wave equation formulation. Phase behavior of FV SW discretizations has been

studied in [29, 60]. To our knowledge, the two-dimensional dispersion relation analysis

of the SW equations using the PNC
1 −P1 FE pair [52] was the first study analyzing the

dispersion relation of a FE scheme using different approximation spaces for the velocity

and surface-elevation fields on meshes made up of triangles. The aim of the present

study is to extend the two-dimensional dispersion relation analysis of the FE SW equa-

tions to a variety of mixed-order interpolation schemes. Because all the aforementioned

problems occur primarily in the context of linear formulations, solving linear equations

is sufficient for our purpose.

The paper is developed as follows: The linear SW equations and the Galerkin FE dis-
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cretization schemes are presented in section 1.4. The discrete operators are computed in

section 1.5 and the dispersion relations are obtained. The latter are compared analyti-

cally and graphically with the continuous case in section 1.6. This dispersion analysis

is followed by numerical tests in section 1.7. Some concluding remarks complete the

study.

1.4 Discretization of the linear SW equations

1.4.1 Governing equations

Let Ω be the model domain with boundary Γ. The inviscid linear SW equations are

expressed in Cartesian coordinates [37] as

ūt + f k × ū + g∇η̄ = 0 , (1.1)

η̄t +H∇ · ū = 0 , (1.2)

where ū = (ū, v̄) is the velocity field, η̄ is the surface elevation with respect to the

reference level z = 0, g is the gravitational acceleration, k is a unit vector in the

vertical direction, and the mean depth H and the Coriolis parameter f are assumed

constant. Note that η̄ would be the pressure in the Navier–Stokes equations. For

a contained flow, (1.1) and (1.2) are solved subject to the no-normal flow boundary

condition ū · n = 0 on Γ, where n is the outward pointing normal at the boundary.

For this analysis we seek periodic solutions of (1.1)–(1.2) of the form

ū(x, y, t) = u(x, y)eiωt, η̄(x, y, t) = η(x, y)eiωt, (1.3)

where u = (u, v), η are amplitudes, and ω is the angular frequency, and we obtain

iω u + f k × u + g∇η = 0, (1.4)

iω η +H∇ · u = 0. (1.5)
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1.4.2 Spatial discretization

The weak formulation

We assume u and η belong to the spaces V and Q, respectively, with Q and V being

either the square-integrable space L2 (Ω) or the Sobolev space H1 (Ω), i.e., the space

of functions in L2 (Ω) whose first derivatives belong to L2 (Ω). The weak formulation

of (1.4) and (1.5) requires the test functions ϕ (whose x- or y-component is formally

denoted by ϕ) and ψ to be sufficiently regular and to belong, respectively, to the same

function space as u and η, such that

iω

∫

Ω

u · ϕ dΩ +

∫

Ω

f(k × u) · ϕ dΩ + g

∫

Ω

∇η · ϕ dΩ = 0, (1.6)

iω

∫

Ω

η ψ dΩ +H

∫

Ω

∇ · uψ dΩ = 0, (1.7)

where dΩ is the area element.

Depending on the regularity of functions u and η, the terms containing derivatives

in (1.6) and (1.7) may be integrated by parts using Green’s theorem. In this way, (1.6)

is rewritten if needed as

iω

∫

Ω

u · ϕ dΩ +

∫

Ω

f(k × u) · ϕ dΩ − g

∫

Ω

η∇ · ϕ dΩ = 0, (1.8)

and for (1.7) we obtain

iω

∫

Ω

η ψ dΩ −H

∫

Ω

u · ∇ψ dΩ = 0, (1.9)

by letting u · n = 0 on Γ for all u belonging to V. Hence, we also have ϕ · n = 0 on Γ.

Galerkin FE discretization

The Galerkin method approximates the solution of (1.6) and (1.7), and eventually (1.8)

and (1.9) if integration by parts needs to be performed, in finite-dimensional subspaces.

Consider a FE triangulation Th, of the polygonal domain Ω, where h is a representative

meshlength parameter that measures resolution. For triangle K ∈ Th, let Pn(K) denote

the space of polynomials of degree n on K.
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The discrete solutions uh and ηh sought belong to finite-dimensional spaces Vh and Qh,

respectively, whose restrictions on K belong to Pk(K)×Pk(K) for uh and to Pl(K) for

ηh. The components of uh and ηh are represented over a triangle Ki by interpolating

functions ϕ(x, y) of degree k and ψ(x, y) of degree l (in the x- and y-components),

respectively, with ϕ(x, y) belonging to Vh and ψ(x, y) belonging to Qh. We thus have

uh =
∑

j∈Su

Ki

uj ϕj , ηh =
∑

j∈Sη
Ki

= ηj ψj , (1.10)

where j represents a node of Ki and Su

Ki
and Sη

Ki
denote the set of nodes of Ki.

The expansions of uh and ηh over the whole domain Ω are then obtained by sum-

ming (1.10) over all triangles Ki of the triangulation Th. Introducing the FE basis leads

to a FE statement as in (1.6) and (1.7), and eventually in (1.8) and (1.9), but with

u, η replaced by the FE trial functions uh, ηh and ϕ, ψ replaced by the corresponding

FE test functions. We then decompose the integrals in (1.6) and (1.7) into triangle

contributions.

For the purposes of the following analysis we consider a uniform mesh made up of biased

right triangles as in the figures of section 1.5, and h is thus taken as a constant in the

x- and y-directions.

The FE pairs

We now introduce the schemes that are used for the spatial discretization. Nine candi-

date FE pairs for representing velocity and surface elevation are described and evaluated

in the remainder of this paper. Conventional FE terminology is adopted to describe

the FE pairs. The nomenclature Pm − Pn means that velocity components and surface

elevation are represented, respectively, as piecewise-defined polynomials of degree m

and n. Enhancements of this basic terminology are introduced as needed.

Common to the first six FE velocity/surface-elevation pairs (as shown in Figures

1.7(d) and 1.8) is a piecewise-linear continuous representation of surface elevation, and

they differ from one another in their representation of velocity. The P1 − P1 pair

has velocity colocated at triangle vertices, and the corresponding basis functions are

piecewise-linear. The MINI element [8] also has continuous piecewise-linear basis func-

tions at the vertices, but bubble functions are added at the barycenters for velocity in

order to stabilize the pair. The PNC
1 − P1 pair [34, 52] has velocity nodes at triangle

edge midpoints, and linear basis functions are used to approximate the two velocity

components on the element’s two-triangle support. Since this particular representa-
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tion of velocity is continuous only across triangle boundaries at midpoint nodes, and

discontinuous everywhere else around a triangle boundary, this element is termed non-

conforming (NC) in the FE literature. The P1 isoP2−P1 element pair [12] has piecewise

linear basis functions for velocity on a refined triangulation obtained by dividing each

triangle into four subtriangles using the midpoints of triangle sides. There are thus six

velocity nodes over each unrefined triangle, the same as for a quadratic approximation

of velocity, termed P2. The designation P1 in P1 isoP2 denotes linear velocity elements

on subtriangles, whereas isoP2 indicates that the nodal placement is that associated

with quadratic elements on unrefined triangles. The P2−P1 pair [32], also known in the

literature as the Taylor–Hood element, has quadratic velocity basis functions. Finally,

the P0 − P1 pair, shown in Figure 1.7(d), has a piecewise-constant representation of

velocity.

Common to the last three pairs (shown in Figures 1.7(a)–(c)) is a discontinuous piecewise-

constant representation of surface elevation. The RT0 element, also called low-order

Raviart–Thomas element [48], is based on flux conservation on element edges and has

normal velocity components at triangle midedge points. Finally, the PNC
1 − P0 and

P2 − P0 pairs have, respectively, PNC
1 and P2 representations of velocity.

1.5 Computation of the dispersion relations

1.5.1 Matrix computations

For all FE pairs having a piecewise-constant representation of surface-elevation an in-

tegration by parts of ∇η in the left-hand side of (1.6) is performed, and hence (1.8) is

employed. For the PNC
1 − P1 and P0 − P1 pairs, the term ∇ · u appearing in (1.7) is

integrated by parts to avoid computing u and v derivatives, and (1.9) is used instead.

After substitution of uh and ηh from (1.10) into (1.6) and (1.7), the discrete formulation

is obtained. We then need to compute

Mi,j =

∫

ϕ
i
·ϕ

j
dΩ, Gi,j =

∫

∇ψi ·ϕj
dΩ, Di,j =

∫

∇·ϕ
i
ψj dΩ, (1.11)

where Mi,j, Gi,j, and Di,j represent the mass, gradient, and divergence elementary FE

matrices, respectively. When (1.8) is employed instead of (1.6) the elementary gradient

matrix is then −Dj,i, and if (1.9) is used, the elementary divergence matrix becomes

−Gj,i. Assembling the elementary matrices leads to the stencils of Figures 1.1, 1.2, 1.3,

1.4, and 1.5 for the pairs examined here. The symbols • and black arrows indicate
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the location of velocity and normal velocity nodes, respectively. The arrow points in

the direction of the chosen normal. When these symbols are represented in grey this

means that velocity and normal velocities have zero values at the corresponding nodes.

The symbol © indicates nodes for surface elevation and dotted circles mean that the

elevation is zero at those nodes.

For the subsequent dispersion analysis we consider two possible types of barycenters,

corresponding to lower left and upper right triangles, and three types of faces: horizon-

tal, vertical, and diagonal. Note that for the PNC
1 −P0 and P2 −P0 pairs in Figure 1.2,

the x- (resp., y-) component of the surface elevation gradient is zero on horizontal (resp.,

vertical) faces. Further, in Figure 1.4 for the P2−P1 pair, the surface-elevation gradient

is zero at vertex nodes.

1.5.2 The continuous case

The free modes of (1.4)–(1.5) are examined by perturbing about the basic state u =

v = η = 0. Because the governing equations are linear, the solution may be examined

by considering the behavior of one Fourier mode. We then seek solutions of (1.4)–(1.5)

of the form (u, v, η) = (ũ, ṽ, η̃) ei(kx+ly), where k and l are the wave numbers in the x-

and y-directions, respectively. Substitution into (1.4)–(1.5) leads to a square matrix

system for the amplitudes ũ, ṽ, η̃. For a nontrivial solution to exist, the determinant of

the matrix must equal zero, and this constraint leads to a relationship between the two

wave numbers k and l and the frequency ω. The so-called dispersion relation is then

obtained for the frequency

ω (ω2 − f 2 − g H ( k2 + l2 ) ) = 0 . (1.12)

The first solution ω = 0 is the geostrophic mode, and it would correspond to the slow

Rossby mode on a β-plane, while the other two solutions

ωAN = ±
√

f 2 + g H ( k2 + l2 ) (1.13)

correspond to the free-surface gravitational modes with rotational correction. Since ω

is purely real, all modes are neutrally stable and neither amplify nor decay.

1.5.3 The discrete case

For each FE pair, the discrete momentum and continuity equations are obtained from

the stencils of Figures 1.1, 1.2, 1.3, 1.4, and 1.5. As previously mentioned, the following
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Figure 1.1: Mass stencils for several FE discretizations. The symbols • and black

arrows indicate the location of velocity and normal velocity nodes, respectively. The

arrow points in the direction of the chosen normal. Grey symbols mean that velocity

and normal velocities have zero values at the corresponding nodes.
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elevation and dotted circles mean that the elevation is zero at those nodes.
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Figure 1.3: As for Figure 1.2 but for the P0 − P1 pair.

analysis will consider a uniform mesh made up of biased right triangles as in the figures

of section 1.5, and h is thus taken as a constant in the x- and y-directions. Because

nodal unknowns may be located on different types of nodes, i.e., vertices, faces, and

barycenters, selected discrete equations for each type of node are retained. For example,

the P2−P1 pair leads to considering four discrete momentum equations, one at a typical

vertex node and three on the three possible types of faces, i.e., horizontal, vertical, and

diagonal (written as H , V , and D, respectively, in the following), and only one discrete

continuity equation at a typical vertex node (written as S in the following). For the

P0 − P1 pair, two discrete momentum equations are retained at the two possible types

of barycenters (corresponding to lower left and upper right triangles, written as C1 and

C2, respectively, in the following). More details are given in [10, 25] for the P1 − P1

pair, and in [52] for the PNC
1 − P1 one, to compute their dispersion relations. For all

pairs, the typical nodes belonging to the same set (vertices, faces, midedge points, or

barycenters) are hence distributed on a regular grid of size h.

As for the continuum case, the dispersion relation for the discrete scheme is found

through a Fourier expansion. The discrete solutions corresponding to (uj, vj, ηj) =

(ũ, ṽ, η̃) ei(kxj+lyj) are sought at node j (j = 1, 2, 3 . . . ), where (uj, vj, ηj) are the nodal

unknowns that appear in the selected discrete equations and (ũ, ṽ, η̃) are amplitudes.

The (xj, yj) coordinates are expressed in terms of a distance to a reference node. Sub-

stitution into the discrete equations leads to a square matrix system for the Fourier

amplitudes. The dispersion relation is then obtained by setting the determinant of the

matrix system to zero.

We let In be the n× n identity matrix, M an m× n matrix with m and n two positive

integers, and M∗ = M
T

the conjugate transpose of M , and we define

a =
1

3
( 3 + cos kh+ cos lh+ cos(k − l)h ), A =

(

iω −f
f iω

)

,
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Figure 1.4: As for Figure 1.2 but for the P1 − P1, MINI and P2 − P1 pairs. For the

P1 − P1 and P2 − P1 pairs, the x- and y-components are on the left and right sides,

respectively, and they are at the top and bottom, respectively, for MINI.
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PNC
1 − P1 (×h

6
)

11

1
1−1

−1

2

−1 −1
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1

−1

1
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2

1−1

P1 isoP2 − P1 (× h
24

)
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Figure 1.5: Divergence stencils for the PNC
1 −P1 and P1 isoP2−P1 pairs. For each pair,

the x- and y-components are on the left and right sides, respectively.

with a ≥ 1
2

for all k and l.

We now examine the dispersion relations corresponding to the nine pairs that are con-

sidered in this study.

1.5.4 The PNC
1 − P0 pair

The selected discrete equations are written in the matrix form











A 0 0

0 A 0 −g B∗

0 0 A

HB 3
2
iωI2





















ũH

ũV

ũD

η̃











= 0, (1.14)

where η̃ = (η̃C
1

, η̃C
2

), and

B =
3

h

(

0 −b1 −b3 0 b2 b2

0 b1 b3 0 −b2 −b2

)

,

with

b1 = ei(k−2l)h
6 , b2 = ei(k+l)h

6 , b3 = ei(2k−l)h
6 .

Vanishing the above 8 × 8 determinant leads to

ω1,2 = 0, ω3,4 = ±f, ω5,6 = ±
√

f 2 + 6
gH

h2
(4 − α), ω7,8 = ±

√

f 2 + 6
gH

h2
(4 + α),
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with α =
√

2(3a+ cos kh + cos lh). For infinitesimal mesh spacing we obtain

ω5,6 = ±
√

f 2 + gH

(

9

4
(k2 + l2) − 3

2
kl

)

+O(h2), (1.15)

ω7,8 = ±4
√

3

√
gH

h
+O(h). (1.16)

Note that neither ω5,6 nor ω7,8 coincide with the continuous solution obtained from

(1.12) in the limit as mesh spacing h → 0. The roots ω7,8 correspond to a spurious

mode from the PNC
1 −P0 discretization scheme. Such a mode of type O( 1

h
) has already

been observed in [53], where the one-dimensional SW equations are discretized using

the discontinuous Galerkin method. Finally, the roots ω3,4 represent spurious inertial

oscillations. It has been shown in [1] for the FD CD-grid and in [52] for the PNC
1 −P1 pair

that such spurious modes take the form of propagating inertial oscillations and have no

particular spatial characteristics. They are a consequence of using more velocity nodes

than surface-elevation nodes.

1.5.5 The P2 − P0 pair

The selected discrete equations lead to




















a1A a3A a4A a2A

a3A a8A a7A a6A −gB∗

a4A a7A a8A a5A

a2A a6A a5A a8A

HB iω
2
I2







































ũS

ũH

ũV

ũD

η̃



















= 0, (1.17)

where η̃ = (η̃C
1

, η̃C
2

),

B =
1

6h





−b1 + b2 −b1 + b5 0 −4b6 −4b4 0 4b3 4b3

b1 − b2 b1 − b5 0 4b6 4b4 0 −4b3 −4b3



 ,

with a1 = 1
30

(4 − a), a8 = 8
45

, and

a2 = − 1
45

cos (k+l)h
2

, a5 = 4
45

cos kh
2
, b1 = ei(k+l)h

3 , b4 = ei(2k−l)h
6 ,

a3 = − 1
45

cos (k−2l)h
2

, a6 = 4
45

cos lh
2
, b2 = e−i(2k−l)h

3 , b5 = ei(k−2l)h
3 ,

a4 = − 1
45

cos (2k−l)h
2

, a7 = 4
45

cos (k−l)h
2

, b3 = e−i(k+l)h
6 , b6 = e−i(k−2l)h

6 .
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Vanishing the above 10 × 10 determinant leads to a polynomial in ω of the form

(ω2 − f 2)2
(

c6 ω
6 + c4 ω

4 + c2 ω
2 + c0

)

= 0,

where c0, c2, c4, and c6 are functions of k and l. We then obtain

ω1,2 = ±O(h), ω3,4,5,6 = ±f (double root), ω7,8 = ±O(1), ω9,10 = ±O
(

1

h

)

.

We have found that c0 6= 0, and hence ω = 0 is no longer a solution to the dispersion

relation, and the possibility of damped or growing slow modes occurs. However, we

note the appearance of modes ω1,2 = ±O(h) which are expected to be close to zero in

the limit as mesh spacing h→ 0. As for the PNC
1 − P0 pair, the roots ω3,4,5,6 represent

spurious inertial oscillations. They are again due to an imbalance in the number of

degrees of freedom between velocity and surface-elevation nodes. We have also found,

as for the PNC
1 − P0 pair, that the frequencies corresponding to inertia-gravity modes,

here ω7,8, do not coincide with the continuous solution obtained from (1.12) in the limit

as mesh spacing h → 0. Finally, the frequencies ω9,10 again correspond to a spurious

mode from the P2 − P0 discretization scheme, as for the PNC
1 − P0 pair.

1.5.6 The RT0 pair

The discrete equations lead to the following system:
(

A
RT0

−g B∗

HB iω h2

2
I2

)(

J̃

η̃

)

= 0, (1.18)

where J̃ = (J̃H , J̃D, J̃V ) and Jp is the velocity flux through the edge containing node p

(here H,D, or V ), with Jp = J̃p e
i(kxp+lyp). We also have η̃ = (η̃C

1

, η̃C
2

),

A
RT0

=
1

3







2iω a2f −a3(iω − f)

−a2f iω a1f

−a3(iω + f) −a1f 2iω






, B =

(

−b1 b2 −b3
b1 −b2 b3

)

,

and

a1 = cos kh
2
, a2 = cos lh

2
, a3 = cos (k−l)h

2
,

b1 = ei(k−2l)h
6 , b2 = ei(k+l)h

6 , b3 = e−i(2k−l)h
6 .

For the 5 × 5 determinant to vanish we obtain ω = 0 and four additional roots corre-

sponding to gravity modes. For infinitesimal mesh spacing we have

ω1 = 0, ω2,3 = ωAN +O(h2), ω4,5 = ±6

√
gH

h
+O(h).
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Note that only ω2,3 coincide with the continuous solution obtained from (1.12) in the

limit as mesh spacing h→ 0, while ω4,5 presumably correspond to spurious modes from

the RT0 discretization scheme.

1.5.7 The P0 − P1 pair

The selected discrete equations are written in the matrix form






A 0

0 A
−gB∗

HB iaω













ũC
1

ũC
2

η̃S






= 0, (1.19)

where B = 1
h

(

b1 b2 −b1 −b2
)

, with

b1 = ei(k+l)h
3 (1 − e−ikh), b2 = ei(k+l)h

3 (1 − e−ilh).

Vanishing the above 5 × 5 determinant leads to

ω1 = 0, ω2,3 = ±f, ω4,5 = ±
√

f 2 + 4
gH

h2

(

2 − cos kh− cos lh

a

)

.

For infinitesimal mesh spacing the frequencies ω4,5 coincide with the continuous solution

obtained from (1.12) in the limit as mesh spacing h → 0, and we have ω4,5 = ωAN +

O(h2). Again, the roots ω2,3 represent spurious inertial oscillations.

1.5.8 The P1 − P1 pair

The selected discrete equations lead to
(

aA −g B∗

H B iaω

)(

ũS

η̃S

)

= 0, (1.20)

where B = 2i
3h

(

b1 b2

)

, with

b1 = 2 sin kh+ sin lh+ sin(k − l)h, b2 = sin kh + 2 sin lh− sin(k − l)h.

For a nontrivial solution to exist, the 3× 3 determinant of the coefficient matrix above

must vanish. This condition implies

ω1 = 0, ω2,3 = ±
√

f 2 +
4

9

gH

h2

(b21 + b22)

a2
.
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For infinitesimal mesh spacing we obtain ω2,3 = ωAN + O(h4). In the case f = 0,

corresponding to the propagation of pure gravity waves, we may have ω2,3 = 0 if b1 =

b2 = 0. This occurs, in particular, when kh = lh = π (wavelength 2h) or when

kh = −lh = 2π
3

(wavelength 3h). The waves of length 2h and 3h hence lead to ω2,3 = 0

and do not propagate, but they are trapped within the model grid. They are numerical

artifacts introduced by the spatial discretization scheme and describe oscillations of

wavelength 2h and 3h. Such waves are identified as spurious surface-elevation modes

corresponding to physical eigenmodes which have their phase speed reduced to zero by

the numerical scheme and appear as stationary oscillations [65, 25]. They can cause an

accumulation of energy in the smallest-resolvable scale, leading to noisy solutions.

1.5.9 The MINI pair

If a cubic bubble is employed, the discrete equations lead to the following system:











aA a1A a1A

a1A a2A 0 −g B∗

a1A 0 a2A

HB iaω





















ũS

ũC
1

ũC
2

η̃S











= 0, (1.21)

where B = 1
h

(

b1 b2 b3 b4 −b3 −b4
)

, with

a1 = 3
20
ei(k+l)h

6

(

2 cos (k−l)h
2

+ e
−i
2

(k+l)h
)

, a2 = 81
280
,

b1 = 2i
3
(2 sin kh+ sin lh+ sin(k − l)h), b3 = 9

20
ei(k+l)h

3 (1 − e−ikh),

b2 = 2i
3
(2 sin lh+ sin kh+ sin(l − k)h), b4 = 9

20
ei(k+l)h

3 (1 − e−ilh).

For the 7 × 7 determinant to vanish we obtain

ω1 = 0, ω2,3,4,5 = ±f (double root), ω6,7 = O(1).

For infinitesimal mesh spacing we have ω6,7 = ωAN + O(h2), and the roots ω2,3,4,5

represent spurious inertial oscillations.

The MINI discretization offers the particularity that equations associated with bubble

nodes on an element depend only on the values of the solution on that element. This

permits us to eliminate the bubble unknowns at the element level through a procedure

called static condensation [27]. The linear system (1.21) reduces to a 3×3 one after static

condensation, and for the corresponding 3× 3 determinant to vanish we exactly obtain
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the solutions ω1 and ω6,7. Because the factor (ω2 − f 2)−2 arises during the procedure,

the solutions ω2,3,4,5 also need to be considered. Finally, we have also performed the

calculations and numerical experiments with a linear bubble, instead of a cubic one,

and insignificant differences have been observed.

1.5.10 The PNC
1 − P1 pair

The selected discrete equations are written in the matrix form










A 0 0

0 A 0 −g B∗

0 0 A

HB 3
2
iaω





















ũH

ũV

ũD

η̃S











= 0, (1.22)

where B = 1
h

(

b1 b2 b3 b4 b5 b6

)

, with

b1 = 2i sin kh
2
, b2 = 2i sin lh

2
cos (k−l)h

2
, b3 = 2i sin kh

2
cos (k−l)h

2
,

b4 = 2i sin lh
2
, b5 = 2i sin kh

2
cos lh

2
, b6 = 2i sin lh

2
cos kh

2
.

Vanishing the above 7 × 7 determinant leads to

ω1 = 0, ω2,3,4,5 = ±f (double root), ω6,7 = ±
√

f 2 + 4
gH

h2
α,

with

α = sin2 kh

2
+ sin2 lh

2
+

2

3a

[

sin4 kh

2
+ sin4 lh

2

]

.

The above frequencies coincide with those found in [52], where temporally discretized

SW equations are considered, in the limit as time step ∆t → 0. For infinitesimal mesh

spacing we obtain ω6,7 = ωAN +O(h4).

1.5.11 The P1 isoP2 − P1 pair

The selected discrete equations lead to




















3A a1A a2A a3A

a1A 3A a3A a2A −gB∗

a2A a3A 3A a1A

a3A a2A a1A 3A

HB 12iaω







































ũS

ũH

ũV

ũD

η̃S



















= 0, (1.23)
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where B = 1
h

(

b1 b2 b3 b4 b5 b6 b7 b8

)

, with

a1 = cos kh
2
, a2 = cos lh

2
, a3 = cos (k−l)h

2
, b4 = 6i(sin kh

2
− sin (k−2l)h

2
),

b1 = 2i(2 sin kh+ sin lh+ sin(k − l)h), b5 = 6i(sin lh
2

+ sin (2k−l)h
2

),

b2 = 2i(2 sin lh+ sin kh− sin(k − l)h), b7 = 6i(sin (k−l)h
2

+ sin (k+l)h
2

),

b3 = 12i sin kh
2
, b6 = 12i sin lh

2
, b8 = 6i(sin (k+l)h

2
− sin (k−l)h

2
).

For the 9 × 9 determinant to vanish we obtain

ω1 = 0, ω2,3,4,5,6,7 = ±f (triple root), ω8,9 = O(1).

For infinitesimal mesh spacing we have ω8,9 = ωAN +O(h2).

1.5.12 The P2 − P1 pair

The discrete equations lead to the following system:





















a1A a4A a5A a3A

a4A a2A a8A a7A −gB∗

a5A a8A a2A a6A

a3A a7A a6A a2A

HB 1
2
iaω







































ũS

ũH

ũV

ũD

η̃S



















= 0, (1.24)

where B = 1
h

(

0 0 b1 b2 b3 b4 b5 b6

)

, with a1 = 1
30

(4 − a), a2 = 8
45

, and

a3 = −1
45

cos (k+l)h
2

, a4 = −1
45

cos (k−2l)h
2

, a5 = −1
45

cos (2k−l)h
2

,

a6 = 4
45

cos kh
2
, a7 = 4

45
cos lh

2
, a8 = 4

45
cos (k−l)h

2
,

b1 = 2i
3

sin kh
2
, b2 = 2i

3
sin lh

2
cos (k−l)h

2
, b3 = 2i

3
sin kh

2
cos (k−l)h

2
,

b4 = 2i
3

sin lh
2
, b5 = 2i

3
sin kh

2
cos lh

2
, b6 = 2i

3
sin lh

2
cos kh

2
.

Vanishing the above 9 × 9 determinant leads to

ω1 = 0, ω2,3,4,5,6,7 = ±f (triple root), ω8,9 = O(1).

For infinitesimal mesh spacing we obtain ω8,9 = ωAN +O(h2).
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Table 1.1: Number of frequencies of type ω = 0, O(1), O( 1
h
), O(h), ±f , solutions of the

dispersion relation of degree n for the nine FE schemes examined in section 1.5.

FE pair n ω = 0 O(1)
O(1) → ω

AN O( 1

h
) O(h) f −f

when h → 0

PNC
1

− P
0

8 2 2 no 2 0 1 1

P
2
− P

0
10 0 2 no 2 2 2 2

RT
0

5 1 2 yes 2 0 0 0

P
0
− P

1
5 1 2 yes 0 0 1 1

P
1
− P

1
3 1 2 yes 0 0 0 0

MINI 7 1 2 yes 0 0 2 2

PNC
1

− P
1

7 1 2 yes 0 0 2 2

P
1
isoP

2
− P

1
9 1 2 yes 0 0 3 3

P
2
− P

1
9 1 2 yes 0 0 3 3

1.5.13 Summary of discrete frequencies

The previous results are summarized in Table 1.1, where n is the degree of the dispersion

relation, and hence the total number of discrete frequencies, for the nine FE schemes

examined in section 1.5.

We mention whether frequencies of type O(1), corresponding to inertia-gravity modes,

coincide with the analytical solution ωAN in the limit as mesh parameter h → 0. This

is the case for all FE pairs, except for the PNC
1 − P0 and P2 − P0 schemes, i.e., when

n is even. We also notice the presence of spurious frequencies of type O( 1
h
) for the

PNC
1 −P0, P2 −P0, and RT0 pairs, i.e., when a piecewise-constant representation of the

surface elevation is employed. Such solutions have already been observed in [53], where

the one-dimensional SW equations are discretized using the discontinuous Galerkin

method. The slow mode corresponding to ω = 0 is not present for the P2 − P0 pair;

however, a mode of type O(h) appears instead, while ω = 0 is a double root for the

PNC
1 − P0 pair. Finally, the solutions ±f are propagating spurious inertial oscillations

that have no particular spatial characteristics. They are a consequence of using more

velocity nodes than surface-elevation nodes [52] and are present for all schemes except

for the P1 − P1 and RT0 pairs.
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1.6 Analysis of the dispersion relations

We now analyze the computed frequencies obtained from the dispersion relations for

the nine FE pairs examined in section 1.5. We first consider the gravity wave limit,

where f = 0, and will then comment on the cases f 6= 0 and other modes.

1.6.1 Gravity wave limit

We let f = 0, and examine the computed frequencies, denoted by ωCP , corresponding

to pure gravity modes of type O(1), as functions of kh and lh. From (1.13) and the

results of section 1.5, we determine the analytical and computed phase speeds, denoted

by cAN and cCP , respectively,

cAN ≡ ωAN√
k2 + l2

= ±
√

gH, cCP ≡ ωCP√
k2 + l2

.

We then obtain the phase speed ratio of the computed phase speed to the analytical

one, denoted by rPH, with

rPH ≡ |cCP |
|cAN |

=
|ωCP |
|ωAN |

=
|ωCP |

√

gH(k2 + l2)
. (1.25)

Note that we should have rPH = 1 in the absence of numerical dispersion. We show

rPH as a surface function depending on kh and lh, and along the selected axes OX,

OY, OD1, and OD2 (vertical section), in Figures 1.7 and 1.8, respectively, for the

FE schemes previously examined. As in [25], the values of kh and lh vary over their

complete domain [−π, π]. However, the phase speed ratio along selected axes is plotted

only on [0, π], and the solution is then deduced on [−π, 0] by symmetry through the

origin. The directions OX, OY, OD1, and OD2 are shown in Figure 1.6.

The directions OX and OY correspond to waves travelling in the x- and y-directions,

for lh = 0 and kh = 0, respectively, while the directions OD1 and OD2 correspond to

waves travelling along the diagonal axes, for kh = lh and lh = −kh, respectively.

For the PNC
1 − P0 and P2 − P0 pairs in Figure 1.7, rPH is unexpectedly greater than 1

for small values of |kh| and |lh|. Indeed, depending on the direction the wave numbers

tend to zero, the phase speed ratio ranges from 1.2 to 1.7 for the PNC
1 − P0 pair and

from 1.8 to 2.5 for the P2 − P0 one. We notice that for both pairs rPH decreases for

increasing values of |kh| and |lh|, implying that gravity modes propagate more rapidly

for small wave numbers. Consequently, both pairs poorly represent the propagation of

pure gravity waves.
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OD1OY

OX

OD2

Figure 1.6: Definition of the directions OX, OY, OD1, and OD2 on a uniform mesh

made up of biased right triangles.

For the P1−P1 pair in Figure 1.8, we obtain rPH ≤ 1 for all values of kh and lh. Hence,

the waves are travelling slower than expected, and this is particularly true for large

values of |kh| and |lh|. We have rPH = 0 in the OX, OY, and OD1 directions at the

following values of (kh, lh), (0,±π), (±π, 0), (±π,±π) (waves of length 2h), and also in

the OD2 direction for |kh| = |lh| = 2π
3

(waves of length 3h). This is a consequence of

having zero frequency for waves of length 2h and 3h, as shown previously in section 3.8.

Such waves do not propagate and describe oscillations of wavelengths 2h and 3h. They

are spurious surface-elevation modes introduced by the spatial discretization scheme.

Hence, the P1 − P1 pair is usually not used to solve the SW system, unless a wave

equation formulation or a stabilization procedure is employed [22, 39].

For the remaining FE pairs in Figures 1.7 and 1.8, we have rPH close to 1 for small

values of |kh| and |lh| in all directions. However, for increasing values of |kh| and |lh|,
corresponding to wavelengths ranging from 2h to 4h, rPH departs moderately from 1

in the OX, OY, and OD1 directions for the RT0 element (waves decelerate) and the

P0 − P1 pair (waves accelerate). In the OD2 direction, except for wavelengths ranging

from 2h to 3h, rPH strongly departs from 1 for the P0 − P1, MINI, P1 isoP2 − P1, and

P2 −P1 pairs, and moderately for the RT0 and PNC
1 −P1 pairs, for increasing values of

|kh| and |lh|, and the waves will accelerate.

From (1.13) and the results of section 1.5, we now determine the analytical and com-

puted group velocities, cg,AN and cg,CP , respectively, i.e., the velocity at which the

energy is carried by the waves, with

cg,AN =

(

∂ωAN

∂k
,
∂ωAN

∂l

)

, cg,CP =

(

∂ωCP

∂k
,
∂ωCP

∂l

)

.

We also calculate the directional derivatives cg,AN · d and cg,CP · d, where d is a unit

vector in the OX, OY, OD1, or OD2 directions. For the continuous case and the nine

FE pairs of section 1.5, the group velocities (left panels) and the directional derivatives
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FE pair phase speed ratio (rPH) rPH along selected axes

(a)

PNC
1 − P0

0 lh

0
kh

1.1

1.74

−π

π
−π

π 0 π0.5

1

1.5

OX and OY
OD1
OD2

(b)

P2 − P0

0 lh

0
kh

1.12

2.44

−π

π
−π

π 0 π0.5

1

1.5

2

2.5
OX and OY
OD1
OD2

(c)

RT0

0 lh

0
kh

0.78

1.18

−π

π
−π

π 0 π0.5

1

1.5

OX, OY and OD1
OD2

(d)

P0 − P1

0 lh

0
kh

1

1.7

−π

π
−π

π 0 π0.5

1

1.5

OX, OY and OD1
OD2

Figure 1.7: The phase speed ratio is plotted as a surface function and along selected

axes (OX, OY, OD1, and OD2) for the (a) PNC
1 − P0, (b) P2 − P0, (c) RT0, and (d)

P0 − P1 pairs.
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FE pair phase speed ratio (rPH) rPH along selected axes
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Figure 1.8: As for Figure 1.7 but for the (a) P1 − P1, (b) MINI, (c) PNC
1 − P1, (d)

P1 isoP2 − P1, and (e) P2 − P1 pairs.
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Figure 1.9: The group velocity vector (left panels) where the Cartesian coordinate axes

are kh and lh, and the normalized directional derivative 1√
gH

cg ·d (right panels), where

d is a unit vector in the OX, OY, OD1, or OD2 direction, for (a) the continuous case

and the (b) PNC
1 − P0, (c) P2 − P0, and (d) P1 − P1 pairs.
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Figure 1.10: As for Figure 1.9 but for the (a) P0 − P1, (b) RT0, and (c) MINI pairs.
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normalized by the factor
√
gH (right panels) are shown in Figures 1.9, 1.10, and 1.11.

For the PNC
1 −P0 and P2−P0 pairs in Figure 1.9, the normalized directional derivatives

cg,CP · d unexpectedly depart from 1 in all directions for small values of |kh| and |lh|.
Hence, cg,CP is not consistent with the analytic solution for both pairs as kh and lh

tend to zero, and large inaccuracies can be expected in the speed of energy propagation.

For the P1 − P1 pair in Figure 1.9, the group velocity is zero for waves of length 3h in

the OX, OY, and OD1 directions, and for wavelengths ranging from 2h to 3h the group

velocity has the wrong sign. In the OD2 direction, because the group velocity is zero

three times for waves longer than 2h, it has alternatively right and wrong signs. This

is a consequence of having zero frequency for waves of length 2h and 3h, as shown in

section 3.8.

For the remaining pairs of Figures 1.10 and 1.11, the group velocity is consistent with

the analytic solution as kh and lh are small. However, at the following values of (kh, lh),

(0,±π), (±π, 0), (±π,±π) (waves of length 2h), we have cg,CP = 0 contrarily to the

analytic case, and hence although waves of length 2h are propagating, the associated

energy is not. For the RT0, P0 −P1, and MINI pairs in Figure 1.10 and for the P2 −P1

pair in Figure 1.11, we observe that cg,CP · d has a negative (wrong) sign in the OD2

direction for wavelengths greater than 2h and smaller than 3h. Finally, for all pairs in

the OD2 direction, the magnitude of the group velocity reaches a peak ranging from

1.5 (for the PNC
1 − P1 and RT0 pairs) to 2.5 (for the P0 − P1 pair) times the analytical

value for wavelengths close to 4h, leading to inaccuracies if such waves are generated

and sustained in a numerical model.

1.6.2 Inertia-gravity waves and other modes

We now assume f 6= 0 and note λ ≡ √
gH/f , the Rossby radius of deformation. Within

a numerical factor, it is the distance covered by a wave travelling at the speed
√
gH

during one inertial period (2π/f). Using (1.13) and the results of section 1.5 we now

obtain the phase speed ratio

rf
PH ≡ |cCP |

|cAN |
=

|ωCP |
|ωAN |

=
f
√

1 +
(

λ
h

)2
t(kh, lh)

f
√

1 +
(

λ
h

)2
(k2h2 + l2h2)

, (1.26)

where ωCP corresponds to an inertia-gravity mode of type O(1), as in (1.25) but now

with f 6= 0, and t(kh, lh) is a trigonometric expression depending on kh and lh.

For the P1 −P1, P0 −P1, P
NC
1 −P1, P1 isoP2 −P1, MINI, and P2 −P1 pairs, a realistic



Analysis of oscillations in shallow-water models part I: Inertia-gravity waves 33

(a) λ/h = 1/10 (b) λ/h = 2

C
on

ti
n
u
ou

s

0 π0

0.5

1

1.5

O(1)

 

 

OX and OY
OD1 and OD2

0 π0

5

10

O(1)

 

 

OX and OY
OD1 and OD2

P
N

C
1

−
P

0

0 π0

0.5

1

1.5

O(1)
O(1/h)

OX and OY
OD1
OD2

0 π0

5

10

15

O(1)

O(1/h)

OX and OY
OD1
OD2

P
2
−
P

0

0 π0

0.5

1

1.5

O(h)

O(1)
O(1/h)

OX and OY
OD1
OD2

0 π0

5

10

15

20

O(h)

O(1)

O(1/h)OX and OY
OD1
OD2

Figure 1.12: The nondimensional frequency ωCP/f , corresponding to modes in O(1),

O( 1
h
), and O(h) along selected axes (OX, OY, OD1, and OD2), for the continuous case

and the PNC
1 − P0 and P2 − P0 pairs. We note λ ≡

√
gH/f , the radius of deformation

(Rossby radius), and two cases are considered, namely, λ/h = 1/10 (coarse resolution)

and λ/h = 2 (high resolution).
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Figure 1.13: As for Figure 1.12 but for the RT0 element in the cases λ/h = 0, 1/10,

1/6, and 2.
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positive value for f would have little effect on the plots of Figures 1.7 to 1.11 when

λ/h ≫ 1 (high resolution), as t(kh, lh) is bounded in (1.26) for 0 ≤ kh ≤ π and

0 ≤ lh ≤ π. Hence, we have rf
PH ≃ rPH for λ/h ≫ 1. In the case λ/h ≪ 1 (coarse

resolution), we deduce from (1.26) that rf
PH ≃ 1. However, the results obtained for rPH

in Figures 1.7 to 1.11 are roughly preserved but at smaller scales.

The remaining PNC
1 − P0, P2 − P0, and RT0 pairs, as mentioned in Table 1.1, lead to

discrete frequencies of type O( 1
h
), and additionally in O(h) for the P2 − P0 pair. The

nondimensional frequency ωCP/f , corresponding to modes in O(1), O( 1
h
), and O(h)

along selected axes (OX, OY, OD1, and OD2), is plotted for these pairs in Figures 1.12

and 1.13 and is compared with the continuous case. We consider λ/h ranging from 1/10

(coarse resolution) to 2 (high resolution).

For the PNC
1 −P0 and P2 −P0 pairs in Figure 1.12, the mode of type O( 1

h
) is a spurious

mode appearing as an approximate mirror image of the mode in O(1). For the P2 −P0

pair, the mode in O(h) is trapped close to zero, and this is especially true when the

Rossby radius is resolved (high resolution). Because the P2 − P0 pair is the only one

in Table 1.1 to have a mode in O(h) and no mode corresponding to the geostrophic

mode ω = 0 in (1.12), we suggest considering the mode in O(h) as a spurious one

which coincides with the geostrophic mode as mesh spacing h → 0. Recall that the

geostrophic mode would correspond to the slow Rossby mode on a β-plane.

For the RT0 pair in Figure 1.13 the mode in O( 1
h
) behaves quite differently from the

corresponding ones for the PNC
1 − P0 and P2 − P0 pairs in Figure 1.12. Indeed, for

values of λ/h below 0.2 (obtained numerically), the mode in O( 1
h
) is much closer to

the continuous solution in Figure 1.13 than the O(1) one. Moreover, the mode in O(1)

is uniformly zero for all kh and lh in the inertial limit (g = 0, i.e., λ/h = 0), but

it tends to draw closer to the continuous solution as the values of λ/h progressively

increase. However, in order for the mode in O(1) to be monotonic in kh and lh, as

for the continuous one, λ/h has to be chosen greater than 0.45 (obtained numerically).

The modes in O( 1
h
) and in O(1) have no common intersection except locally, when

λ/h = 1/6 and kh = lh = 0, as shown in Figure 1.13(c). Note the mode in O( 1
h
) is

uniformly one for all kh and lh in the case λ/h = 1/6, and as λ/h progressively increases

(above 1/6), it appears as an approximate mirror image of the mode in O(1), i.e., as a

spurious mode. Finally, in the OD2 direction both the O( 1
h
) and O(1) modes exhibit

nonmonotonic curves for a wide range of λ/h.
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(a) Mesh 1 (b) Mesh 2

Figure 1.14: A window of (a) Mesh 1, made up of biased right isosceles triangles, and

(b) Mesh 2, obtained from Mesh 1 by rotation.

0 0.1- 0.1

(a)

0 0.1- 0.1

(b)

0 0.1- 0.1

(c)

Figure 1.15: Window of the surface-elevation field around the point mass source (0.1

m) for the RT0 pair; after 1 day of simulation and (a) λ/h = 1/6 (coarse resolution),

(b) λ/h = 2 (high resolution); (c) after 10 days of simulation and λ/h = 1/12 (coarse

resolution).

1.7 Numerical results

The results of two tests using (1.1) and (1.2) are now presented. The first test is

performed in [11] for FD grids. It is reproduced here to examine the consequences of

the distortion observed in Figure 1.13 in the dispersion relation of the RT0 element for

small values of λ/h (coarse resolution).

The main point of interest is to verify whether or not the RT0 discretization properly

simulates the geostrophic adjustment process, in which the dispersion of the inertia-

gravity waves leads to the establishment of a geostrophic balance.

The square domain extent is 5500 km × 5500 km, and it is discretized using biased

right isosceles triangles (as in Figure 1.14(a)) with a uniform node spacing h = 220 km,

leading to a 25 × 25 mesh. The fluid is initially at rest, and zero normal velocity is

specified at the lateral boundaries. A point mass source and a point mass sink of 0.1 m

and −0.1 m, respectively, are prescribed at fixed locations 12 h apart at each time step;

otherwise the initial surface elevation field is uniform. The Coriolis parameter is held

constant and evaluated close to 45◦ N, with f = 10−4 s−1, and the time step is 450 s.
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Figure 1.16: Vertical cross-sections (top) and isolines (bottom, over 2550 km) of the

elevation field at times 2000 s and 10000 s of the propagation, respectively, for the

PNC
1 − P0, P2 − P0, RT0, and P0 − P1 pairs. For the isolines, the minimum and

maximum values are specified in each panel.



Analysis of oscillations in shallow-water models part I: Inertia-gravity waves 38

FE Mesh 1 Mesh 2

P
1
−
P

1

0 km 200 400 600
−0.3

0

1

1.3

0 km 200 400 600
−0.3

0

1

1.3

- 0.02, 1.21 - 0.02, 1.21

M
IN

I

0 km 200 400 600
−0.3

0

1

1.3

0 km 200 400 600
−0.3

0

1

1.3

- 0.49, 1.07 - 0.29, 1.03

P
N

C
1

−
P

1

0 km 200 400 600
−0.3

0

1

1.3

0 km 200 400 600
−0.3

0

1

1.3

- 0.32, 1.15 - 0.19, 1.03

P
1
is

o
P

2
−
P

1

0 km 200 400 600
−0.3

0

1

1.3

0 km 200 400 600
−0.3

0

1

1.3

- 0.34, 1.06 - 0.21, 1.04

P
2
−
P

1

0 km 200 400 600
−0.3

0

1

1.3

0 km 200 400 600
−0.3

0

1

1.3

- 0.29, 1.05 - 0.20, 1.03

Figure 1.17: As for Figure 1.16 for the P1 − P1, MINI, PNC
1 − P1, P1 isoP2 − P1, and

P2 − P1 pairs.
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Figure 1.18: Isolines of the surface elevation on a window of Mesh 2 for the P1 − P1

pair at time 10000 s by using a linear bathymetry. As expected, a spurious mode of

wavelength 3h is observed.

The surface-elevation field is shown after one day of simulation, which is approximately

the time required for geostrophic adjustment to occur, in Figures 1.15(a) and (b). In

Figure 1.15(a), for λ/h = 1/6 (coarse resolution) with
√
gH = 11/3 m s−1, and also

for λ/h ≤ 1/2, the RT0 scheme exhibits a checkerboard-like pattern of noise in the

elevation field around the mass source and sink points, shown by an irregular alternation

of positive and negative height areas (that are constant per triangle). Note that such

a pattern is not observed for the other pairs. Due to the symmetry, only the result

around the point mass source is shown. We believe the checkerboard-like appearance

is probably due to the distortion observed in Figure 1.13 in the dispersion relation for

small values of λ/h (coarse resolution). In Figure 1.15(b) for λ/h = 2 (high resolution)

with
√
gH = 44 ms−1, the surface-elevation distribution exhibits a regular and expected

pattern as for the other pairs, except for the P1 − P1 one (due to the spurious surface-

elevation mode). We also conducted the experiment over 10 days, and the result is

shown in Figure 1.15(c) for λ/h = 1/12 (coarse resolution) with
√
gH = 11/6 m s−1.

The checkerboard-like pattern is more apparent than in Figure 1.15(a), particularly

when considering the alternation of blue and yellow triangles surrounding the four

centered ones (red and orange) in the OX, OY, and OD2 directions. Note that in all

cases the gravitational Courant number is small (≤ 0.1) and the use of a forward Euler

and a Crank–Nicolson time stepping schemes yields essentially the same results.

In the second test, (1.1) and (1.2) are solved using f = 0. The purpose of the experiment

is to validate the analytical results obtained in section 4.1 on two meshes, Mesh 1 and

Mesh 2, shown in Figure 1.14. Mesh 1 is made up of biased right triangles and Mesh

2 is obtained from Mesh 1 by a rotation of π/4. Such meshes are used in order to

simulate gravity-wave propagation: along the OX and OY directions for Mesh 1 and

along the OD2 direction for Mesh 2. The domain extent is 7000 km × 280 km for Mesh

1 and 5000
√

2 km × 200
√

2 km for Mesh 2. In both cases the resolution is h = 10

km, along the x- or y-axis for Mesh 1 and along the diagonal for Mesh 2. The fluid is

initially at rest and zero normal velocity is specified at the lateral boundaries, except

at the western one. The conditions η = 1 m and u = 0.1 m s−1 (i.e., u =
√

g
H

× 1

m) are prescribed at each time step at the western boundary, with H = 1000 m and

g = 10 ms−2, i.e.,
√
gH = 100 ms−1. Note that the velocity has been imposed weakly

at the western boundary for the P0 − P1 pair. The time step is set to 10 s, and the

gravitational Courant number is thus 0.1.
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In Figures 1.16 and 1.17 the vertical cross-sections (on the x, z-plane) and the isolines

of the wave propagation are displayed for graphical convenience, after 2000 s and 10000

s, respectively, on the two meshes. For all pairs, except the PNC
1 − P0 and P2 − P0

ones, the wave front propagates at the analytical speed 100 ms−1. This is because rPH

is close to 1 for small values of |kh| and |lh| in all directions as shown in Figures 1.7

and 1.8. However, the maximum values observed for rPH in the OX and OD2 directions

are 1.5 and 1.73, respectively, for the PNC
1 − P0 pair, and 2.18 and 2.45, respectively,

for the P2 − P0 one. For the PNC
1 − P0 and P2 − P0 pairs, the wave front speeds are

thus expected to be 150 m s−1 and 218 m s−1, respectively, in the OX direction, and

173 m s−1 and 245 m s−1, respectively, in the OD2 direction. These analytical values are

in good agreement with the computed ones, observed in Figures 1.16 and 1.17. Indeed,

for the PNC
1 −P0 and P2 −P0 pairs, the computed wave front speeds are 141 m s−1 and

209 m s−1, respectively, on Mesh 1, and 172 m s−1 and 242 m s−1, respectively, on Mesh

2, with a mesurement error of about 2 m s−1. The loss of symmetry observed in the

front propagation for the PNC
1 −P0 and P2−P0 pairs on Mesh 1 is likely due to a faster

propagation in the OD2 direction. This explains the observed southeast orientation of

the front and hence its partial propagation in the OD1 direction. Consequently, due

to the results of Figure 1.7 in the OD1 direction, the computed wave speed is slightly

smaller than the analytic one on Mesh 1. On Mesh 2, because the faster (dominant)

propagation is along the OD2 direction, the front is not tilted and the analytical and

computed values nearly coincide.

There is also a good agreement between the numerical dispersion observed in Figures 1.7

and 1.8 and the simulation results shown in Figures 1.16 and 1.17, except for the PNC
1 −

P0 and P2 −P0 pairs due to the incorrect position of the front. Indeed, in the OX, OY,

and OD1 directions we have rPH ≃ 1 for the PNC
1 −P1 pair in Figure 1.8(c), and a small

amount of numerical dispersion is observed in Figure 1.17 on Mesh 1. For the MINI,

P1 isoP2 − P1, P2 − P1, and P0 − P1 pairs in the previous directions, rPH progressively

increases from 1.03 (MINI) up to 1.2 (P0 − P1) as observed in Figures 1.7 and 1.8.

Hence, we have |cCP | ≥ |cAN | and increasing dispersion is noticeable upstream the front

in Figures 1.16 and 1.17 for these pairs on Mesh 1. For the RT0 and P1−P1 pairs in the

previous directions, we have rPH ≤ 1 in Figures 1.7 and 1.8, and hence |cCP | ≤ |cAN |,
leading to dispersion effects downstream the front as shown in Figures 1.16 and 1.17 on

Mesh 1. In the OD2 direction, we still have rPH ≤ 1 for the P1−P1 pair, and oscillations

are again present downstream the front on Mesh 2 as shown in Figure 1.17. For the

RT0 pair we now have rPH ≥ 1 in the OD2 direction (except for small wavelengths),

and the dispersion effects are noticeable upstream the front in Figure 1.16 on Mesh 2.

For the PNC
1 −P1, P1 isoP2−P1, MINI, P2−P1, and P0−P1 pairs in the OD2 direction,

rPH progressively increases from 1.15 (PNC
1 − P1) up to 1.7 (P0 − P1) as observed in

Figures 1.7 and 1.8. We thus have |cCP | ≥ |cAN |, and increasing dispersion is noticeable
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for these pairs upstream the front in Figures 1.16 and 1.17 on Mesh 2.

Spurious elevation modes are not observed in Figure 1.17 for the P1 − P1 pair. This is

because a constant value of H is used. However, when H = 1000 m if x ≤ 400 km,

when H = 800 m if x ≥ 600 km, and by assuming H is linear if 400 km ≤ x ≤ 600 km,

a spurious surface elevation mode of wavelength 3h is triggered, as shown in Figure 1.18

on Mesh 2. This agrees well with the result predicted by theory in Figure 1.8(a) in the

OD2 direction.

Finally, the second test has also been performed on unstructured meshes. Two main

features are observed for all pairs: the numerical dispersion upstream the front is more

significant than on Mesh 1 but less than on Mesh 2, and additional noise is generated

downstream the front. Further, the loss of symmetry observed in the front propagation

in Figure 1.16 for the PNC
1 − P0 and P2 − P0 is only marginally present.

1.8 Conclusion

This appears to be the first study of the dispersion relation and spurious mode be-

havior for FE solutions of the two-dimensional linearized SW equations based on the

examination of a variety of mixed FE pairs. For each pair the frequency wave num-

ber or dispersion relation is obtained and analyzed, and the dispersion properties are

compared analytically and graphically with the continuous case to illustrate the main

points of interest. Two numerical tests, concerning the propagation of gravity waves,

are performed. In the first experiment, the simulation of the geostrophic adjustment

process, the RT0 element exhibits a checkerboard-like pattern of noise in the elevation

field when the grid resolution is low relative to the Rossby radius of deformation. Such

a pattern has not been observed for the other pairs. The second test illustrates the an-

alytical dispersion results by simulating the propagation of pure gravity waves in a long

channel. In particular, for the PNC
1 − P0 and P2 − P0 pairs, the wave front propagates

much faster than the analytical speed. These results can be compared with those in

[58] for the geostrophic balance. We also notice the presence of spurious frequencies of

type O( 1
h
) for the FE pairs having a piecewise-constant representation of the surface

elevation. Such solutions have already been observed in [53], where the one-dimensional

SW equations are discretized using the discontinuous Galerkin method, and they will

be analyzed in a further study.

The preceding analysis illustrates how phase and group velocity accuracy can help in the

selection of a spatial discretization scheme. In particular, the PNC
1 − P1 and RT0 pairs

have been identified as a promising compromise for the discretization of the inviscid
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linear SW equations, provided the grid resolution is high relative to the Rossby radius

of deformation for the RT0 element. However, because of its restrictive nature, due to

the use of constant values for h and H , such an analysis should be only one step of

the selection process. The use of nonconstant h and H will be analyzed in subsequent

studies. Further, the implementation of a time stepping technique can change the

relative accuracy and merits of two spatial discretization schemes.
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2.1 Résumé

Une approche constructive basée sur l’algèbre linéaire est utilisée pour caractériser les

noyaux des opérateurs discrets des équations de Saint-Venant. Trois conditions néces-

saires sont identifiées afin que les modes stationnaires du système discret partagent les

propriétés du système continu. Les noyaux sont calculés avec le logiciel MATLAB et

sont utilisés pour déduire la présence, le nombre et la structure des modes parasitaires

résultant des principaux schémas de discrétisation aux différences finies et d’éléments

finis. Les noyaux sont également utilisés pour caractériser la forme des plus petis vortex

discrets. Pour les éléments finis, les cas des maillages structurés et non-structuré sont

analysés et comparés. Le problème du découplage des amplitudes est mis en évidence

dans le problème de l’approximation de la balance géostrophique.

2.2 Abstract

A constructive linear algebra approach is developed to characterize the kernels of the

discretized shallow-water equations. Three kernel relations are identified as necessary

conditions for the discretized system to share the same stationary properties as the con-

tinuous system. This matrix kernel scheme is implemented symbolically using MATLAB

and applied to investigate the presence, number, and structure of spurious modes aris-
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ing in typical finite difference and finite element schemes. The kernel concept is then

used to characterize the smallest representable vortices for several representative dis-

crete finite difference and finite element schemes. Both uniform and unstructured mesh

situations are considered and compared. Issues such as decoupling of vortex modes are

also examined.

2.3 Introduction

Numerical oscillations associated with spurious solution modes are a familiar occurrence

in computer simulations of shallow-water (SW) and Navier Stokes problems. These

oscillatory modes are usually associated with the choice of discretization model. In

coupled mixed formulations, the modes arise out of inconsistencies in the discrete model

relative to the continuous problem. Some familiar examples, for both the finite difference

(FD) and finite element (FE) discretizations, are pressure oscillations in viscous flow

calculations and elevation or velocity oscillations in the shallow-water problem [14, 34,

35, 58, 65]. There are several means for investigating the consistency of the discrete

schemes. A familiar strategy for shallow-water schemes is to apply dispersion analysis

[6, 56, 47, 65]. In the present work, we develop a related kernel analysis and constructive

computational approach for the shallow-water system in which the properties of the

kernel of the associated discretized problem are used to determine the presence and

number of different types of spurious modes. The kernel characterization may also be

used to determine the form of the smallest representative velocity vortex structures that

can be represented in a given discretization. This, in turn, enables one to examine the

nature of different modes and also sheds light on modal decoupling and related issues.

The treatment is developed as follows: The model equations and stationary solutions

are presented in Section 2.4. The discretization of the stationary solutions is performed

in Section 2.5 and the kernels of the discretized equations are characterized and analysed

in Section 2.6 . Numerical experiments to validate the analytic results are performed

in Section 2.7 . Some concluding remarks complete the study.
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2.4 Governing equations and stationary solutions

The inviscid linear SW equations in a 2D domain Ω may be expressed as [37]

∂u

∂t
+ fk × u + g∇η = 0, (2.1)

∂η

∂t
+H∇ · u = 0. (2.2)

where u(x, t) = (u, v) is the horizontal velocity field with x = (x, y), η is the surface

elevation with respect to the reference level z = 0, g is the gravitational acceleration,

and k is a unit vector in the vertical direction. The Coriolis parameter f and the mean

depth H are assumed constant. Note that η plays a role similar to that of pressure in

the Navier–Stokes equations. The governing equations (2.1) and (2.2) describe a first

order hyperbolic system. Initial conditions at t = t0 and boundary conditions complete

the mathematical statement of the problem. Here we consider periodic and contained

flows. For instance, in a contained flow, the no-normal flow condition on boundary Γ

is simply

u(x, t) · n = 0, on Γ, ∀t ≥ t0, (2.3)

where n is the outward pointing normal to the boundary.

The stationary solutions of (2.1) and (2.2) satisfy

fk × u + g∇η = 0, (2.4)

∇ · u = 0, (2.5)

and are of central importance for large scale models, particularly in atmospheric and

ocean modelling. For instance, equation (2.4) represents geostrophic equilibrium, a

balance between the Coriolis and the pressure gradient terms. Such a balance is very

important for both atmospheric and oceanic flows. When this near-equilibrium is dis-

turbed, oceanic and atmospheric flows adjust to a near-geostrophic state. This takes

place as a rapid adjustment process via inertia-gravity waves accompanied by a much

slower adjustment through the propagation of planetary (Rossby) waves whose existence

is due to the variation of the Coriolis parameter with latitude. With respect to cyclone-

scale motions in extra-tropical latitudes, the free atmosphere frequently approaches a

state of geostrophic equilibrium. Oceanic flows are also largely geostrophic.
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We deduce from (2.4) that

u =
g

f
k ×∇η =

g

f
rot η, (2.6)

with rot η ≡ (−ηy, ηx), and it follows that (2.5) is automatically satisfied. Equa-

tion (2.6) permits us to associate a stationary solution to a given elevation field.

On the other hand, if (u, η) is a stationary solution then, u satisfies (2.5) and, applying

the fundamental theorem of vector calculus, can be expressed as

u = rot ζ, (2.7)

where ζ is a scalar field. Substitution of (2.7) in (2.4) leads to

∇η = −f
g
k × rot ζ =

f

g
∇ζ, (2.8)

and hence

η =
f

g
ζ + c, (2.9)

where c is a constant. That is, η is determinable within an arbitrary constant c. It

follows that for every such elevation field η, there is one and only one stationary solution

u such that (2.4) and (2.5) are satisfied. The constant c corresponds to the physical

hydrostatic mode. This also implies that a specified admissible elevation field η can be

used to construct the associated velocity field and hence a stationary solution pair for

the shallow-water equations.

Finally, the boundary condition (2.3) implies that such elevation fields η have to satisfy

rot η · n = ∇η · t = 0 on Γ, (2.10)

where t is the tangent vector to Γ.

2.5 Discretization of the stationary SW equations

Equations (2.4) - (2.5) are now spatially discretized. The finite-difference approxima-

tion on a regular mesh is obtained by approximating derivatives as difference quotients

using Taylor series expansions at the grid points in the standard manner. The finite-

element discretization on structured or unstructured grids is obtained by introducing

finite element approximations in a weak integral formulation. We describe the finite

element formulation in more detail below since it will be utilised later for different

formulations with various velocity and elevation fields.
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2.5.1 Weak formulation

Weak formulations of (2.4) and (2.5) may be constructed by projecting the associated

residuals against admissible test functions φ and θ:

∫

Ω

f(k × u) · φ dx + g

∫

Ω

∇η · φ dx = 0, (2.11)
∫

Ω

∇ · u θ dx = 0. (2.12)

Depending on the regularity of functions u and η, the terms containing derivatives

in (2.11) and (2.12) may be integrated by parts to obtain

∫

Ω

f(k × u) · φ dx − g

∫

Ω

η∇ · φ dx = 0, (2.13)

and
∫

Ω

u · ∇θ dx = 0, (2.14)

where the boundary integral contributions arising from the integration by parts proce-

dure have been set to zero to accommodate either periodic boundary conditions (with

respect to opposite sides) or the natural boundary conditions u · n = 0 on Γ. Ap-

proximation of both integral forms will be considered later. Let V and W , denote the

velocity and elevation spaces for a given weak formulation with the test functions cho-

sen accordingly; e.g. the square-integrable space L2 (Ω) or the Hilbert space H1 (Ω) of

functions in L2 (Ω) whose first derivatives belong to L2 (Ω).

2.5.2 Finite-element discretization

Consider a standard finite-element partition (e.g. a triangulation ) Th, of the polygonal

domain Ω, where h denotes a representative meshlength parameter. For element (

triangle or quadrilateral) K ∈ Th, let Pr(K) denote the space of polynomials of degree

r on K.

Then the approximate solutions uh and ηh sought belong to finite-dimensional spaces

Vh and Wh, respectively, whose restrictions on K belong to Pr(K)× Pr(K) for uh and
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to Ps(K) for ηh. The components of uh and ηh are represented over an element K by

interpolating polynomials of degree r and degree s, respectively:

uh =
∑

i∈Su

K

ui φi, ηh =
∑

i∈Sη
K

= ηi θi, (2.15)

where i represents a node of K and Su

K and Sη
K denote the set of nodes of K.

The global piecewise polynomial expansions of uh and ηh over the whole domain Ω

follow in the standard way from (2.15) applied over the union of all triangles K of

the triangulation Th. Setting the previous two forms of integral statements on the

finite element subspaces leads to corresponding finite element approximate formulations

with u, η replaced by the finite element trial functions uh, ηh and φ, θ replaced by the

corresponding finite-element test functions.

For FE pairs having a discontinuous representation of velocity, the term ∇·u appearing

in (2.12) is integrated by parts to avoid computing u and v derivatives, and (2.14) is used

instead. For FE pairs having a discontinuous representation of pressure, an integration

by parts of ∇η in the left hand side of (2.11) is performed and hence (2.13) is employed.

In the discrete formulation arising from (2.11) and (2.12), the element matrix entries

are

ci,j =

∫

(k×φ
i
)·φ

j
dΩ, gi,j =

∫

∇θi·φj
dΩ, di,j =

∫

∇·φ
i
θj dΩ, (2.16)

for the respective the Coriolis, gradient and divergence terms. When (2.13) is employed

instead of (2.11) the element gradient matrix is then −dj,i, and if (2.14) is used the

element divergence matrix becomes −gj,i.

Assembling the element matrices leads to a global linear system of the form





C G

D O









ui

ηj



 =





0

0



 , (2.17)

where we have written the solution vector in the form (ui, ηj)
T , with i = 1, ..., p and

j = 1, ..., q to indicate the order of nodal variables. The integers p and q represent

the number of velocity and surface-elevation nodes, respectively. C,G,D are the global

Coriolis, gradient and divergence submatrices and are of dimension p × p, p × q and

q× p, respectively; O denotes the null matrix of dimension q× q. Note that periodic or

no-normal flow boundary conditions are assumed in (2.17).
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2.5.3 Kernel properties

The global matrix on the left hand side of (2.17) is termed CDG in the remaining part

of this paper. Let

CD ≡
(

C

D

)

, CG ≡
(

C G
)

, DO ≡
(

D O
)

. (2.18)

The discrete stationary modes belong to the kernel of CDG as they are the solutions

of (2.17). Further, the kernel of CDG includes the kernel of CD and G in the following

sense: if u belongs to ker(CD) and if η belongs to ker(G) then
(

u

0

)

∈ ker(CDG) and

(

0

η

)

∈ ker(CDG). (2.19)

The solutions of (2.19) are named CD-modes and G-modes, respectively. Note that the

G-modes always include the physical hydrostatic mode which corresponds to the mode

with constant elevation and zero velocity. Additional G-modes would be spurious and

analogous to spurious pressure modes arising from inconsistent choice of bases in the

Stokes and Navier-Stokes discretized systems.

The kernel of CDG can also be written as

ker(CDG) = ker(CG) ∩ ker(DO), (2.20)

where

ker(DO) = { (u, η)t | u ∈ ker(D) , η ∈ R
q }. (2.21)

In the previous section it was shown that an analytical solution (u, η) of (2.4) was a

solution of (2.5). We would like to verify if such a property also holds for the discrete

solution (ui, ηj) of (2.17); that is, if

ker(CG) ⊂ ker(DO). (2.22)

On the other hand, it was shown that a solution of (2.5) also satisfies (2.4). Again, it

is important to verify that the discrete analogue holds. That is,

ker(D) ⊂ {u| ∃η such that (u, η) ∈ ker(CG)}, (2.23)

is true. Further, it was demonstrated by construction that the SW equations admit a

stationary solution for every given admissible elevation field. At the discrete level, this

would imply:

∀η, ∃u such that (u, η) ∈ ker(CDG). (2.24)

Verifying (2.22), (2.23) and (2.24) is crucial in order to determine if the discretization

schemes share the stationary properties of the continuous system. We investigate this

question in the following section.



Kernel analysis of discrete shallow-water models 50

2.5.4 The FD grids and FE pairs

In subsequent tests we consider several popular choices of finite difference stencils and

finite element pairs proposed in shallow-water simulations. Note, however, that our

matrix kernel approach applies more generally to other element choices and to similar

difference schemes.

FD grids

The three candidate finite-difference grids, shown in Figure 2.1, are the classical B and

C grids [41] and the C-D grid [1]. The symbols • and black arrows indicate the location

of velocity and normal velocity nodes, respectively. The arrow points in the direction of

the chosen normal. The symbol © indicates nodes for surface-elevation. For all schemes

the elevation field is carried at the center of the computational cells, and the elevation

and velocity variables are staggered in space. For the B grid the two components of the

velocity field are located at the cell corners, while the normal velocities are carried at

cell edge midpoints for the C grid. To circumvent the Coriolis modes of the C grid in the

inertial limit, due to the spatial averaging of the Coriolis terms, the C-D grid employs

a combination of the C and D grids such that the two components of the velocity field

are located at cell edge midpoints.

B C C-D

Figure 2.1: The three FD grids employed in this study. The symbols • and black arrows

indicate the location of velocity and normal velocity nodes, respectively. The symbol ©

indicates nodes for surface-elevation.

FE pairs

Seven FE velocity / surface-elevation pairs are considered here for the spatial discretiza-

tion and are shown in Figure 2.2. Conventional finite-element terminology is used to

describe the FE pairs. The nomenclature Pr − Ps means that velocity components and
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RT0 P0 − P1 PNC
1 − P1

P1 − P1 MINI P1 isoP2 − P1 P2 − P1

Figure 2.2: As for Figure 2.1 but for the seven FE pairs employed in this study.

surface elevation are respectively represented as piecewise-defined polynomials of degree

r and s. Common to the last six FE pairs is a piecewise-linear continuous represen-

tation of surface elevation and they differ from one another in their representation of

velocity. The P0 − P1, P1 − P1 and P2 − P1 pairs have constant, linear and quadratic

velocities, respectively. The P1 isoP2 − P1 pair [12] has piecewise-linear basis func-

tions for velocity on a refined triangulation obtained by dividing each triangle into four

similar subtriangles using the midpoints of triangle sides. There are thus 6 velocity

nodes over each unrefined triangle, the same as for a quadratic approximation of ve-

locity, termed P2. The designation P1 in P1 isoP2 denotes linear velocity elements on

subtriangles, whereas isoP2 indicates that the nodal placement is that associated with

quadratic elements on unrefined triangles. The MINI element [8] also has continuous

piecewise-linear basis functions at the vertices but bubble functions are added at the

barycenters for velocity in order to stabilize the pair. The PNC
1 −P1 pair [34, 52, 56], has

velocity nodes at triangle edge midpoints and linear basis functions are used to approx-

imate the two velocity components on the pair of elements adjacent to the associated

edge. Since this particular representation of velocity is only continuous across trian-

gle boundaries at midpoint nodes, and discontinuous everywhere else around a triangle

boundary, this element is termed non-conforming (NC) in the finite-element literature.

Finally, RT0 corresponds to the low order Raviart-Thomas element [48]. It has normal

velocity components at triangle midedge points and a discontinuous piecewise-constant

representation of surface-elevation.
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Table 2.1: Dimension of the discrete operator kernels on an m × n grid made up of

biased triangles for the FD grids and FE pairs with periodic boundary conditions.

p q C G D CD CG CDG

B-grid 2mn nm 0 β nm+ β 0 nm nm

C-grid 2mn nm 2α 1 nm+ 1 α nm+ α nm

C-D-grid 4mn nm 0 1 3nm+ 1 0 nm nm

RT0 3nm 2nm nm 1 nm+ 1 δ 2nm+ δ nm

P0 − P1 4nm nm 0 1 3nm+ 1 0 nm nm

PNC
1 − P1 6nm nm 0 1 5nm+ 1 0 nm nm

P1 − P1 2nm nm 0 γ nm+ γ 0 nm nm

MINI 6nm nm 0 1 5nm+ 1 0 nm nm

P1 isoP2 − P1 8nm nm 0 1 7nm+ 1 0 nm nm

P2 − P1 8nm nm 0 1 7nm+ 1 0 nm nm

2.6 Numerical stationary solutions

In this set of analytical studies of local kernel structure for various basis choices, we

consider a rectangular mesh bisected consistently to form biased right triangle pairs.

The underlying cartesian mesh resolution is m by n, where m and n are the number

of segments in the x and y directions, respectively, so the total number of triangles is

2nm.

2.6.1 Kernel dimension for periodic boundary conditions

First consider the case of periodic boundary conditions. The SW equations are dis-

cretized using physical parameters that represent classical oceanic parameters at mid-

latitudes. However, the precise choice of these parameters does not affect the following

results as long as the parameters do not degenerate to zero. The grid resolution is set

such that m and n range between 2 and 12 and the computations were performed under

the MATLAB environment. On each grid, with m,n = 2, 3, ..., 12 the dimension of the

discrete operator kernels C, G, D, CD, CG and CDG are obtained and the extrapo-

lated results for any m and n are given in Table 2.1. For the B and C-D grids and the

last six FE pairs in Table 2.1 dim(ker(C)) is always zero. This is because both com-

ponents of the velocity field are computed at velocity nodes for these schemes. Indeed,

by ordering the x-components first and then the y-components, the Coriolis matrix has
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the form

C =

(

0 −M
M 0

)

, (2.25)

where M is the velocity mass matrix. Since M is full-rank we deduce from (2.25) that C

is also full-rank. This implies that dim(ker(C)) = 0. However, the same reasoning does

not apply for the C grid and the RT0 element because only one component of the velocity

field (the normal component) is computed at velocity nodes for these schemes. Hence,

a spatial averaging of the Coriolis terms is needed to evaluate the second component of

the velocity field (the tangential one) and this leads to a spurious Coriolis mode, that

is also termed an f -mode in [66]. The results of Table 2.1 for the C grid show that

dim(ker(C)) = 2α, with

α =



























n+m− 1 if 2 | n and 2 | m.

m if 2 | n and 2 ∤ m,

n if 2 ∤ n and 2 | m,

0 if 2 ∤ n and 2 ∤ m,

(2.26)

where the symbols | and ∤ imply the integers are divisible by 2 (even) or not divisible

(odd), respectively. For the RT0 element, we have dim(ker(C)) = mn, i.e. exactly p/3.

As expected, the dimension of the gradient matrix G is always equal to or greater than

one. One mode is the hydrostatic mode, which can be simply considered as a constant of

integration associated with the solution of the governing equations. For the continuous

mathematical problem the hydrostatic mode is the only one present but this may not

be the case in the discretized problem. For example, in the case of the B grid and the

P1 − P1 pair, as shown in Table 2.1, additional modes may occur. The number of such

modes for the B grid is

β =

{

2 if 2 | n and 2 | m,

1 otherwise.
(2.27)

and is given in Table 2.2 for the P1 − P1 scheme. The structure of the latter modes

is periodic with a periodicity of 2h or 3h [56]. These modes are small-scale artifacts

introduced by the spatial discretization scheme. They do not propagate but are trapped

within the grid, and associated with zero frequency. If these spurious solutions are

left undamped, they can cause an accumulation of energy in the smallest-resolvable

scale, leading to noisy approximations. The occurrence of such spurious modes has

been observed in a variety of finite-difference [66] and finite-element [58, 51, 57, 65]

approximations to the SW equations.
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Table 2.2: Dimension γ of the gradient operator kernel on an m × n grid made up of

biased triangles with periodic boundary conditions for the P1 − P1 pair.

2 ∤ n

3 ∤ n

2 | n
3 ∤ n

2 ∤ n

3 | n
2 | n
3 | n

2 ∤ m and 3 ∤ m 1 2 1 2

2 | m and 3 ∤ m 2 4 2 4

2 ∤ m and 3 | m 1 2 3 4

2 | m and 3 | m 2 4 4 6

The discrete gradient and divergence operators are linked by the following relation

D = −Gt, (2.28)

and using the rank theorem we deduce

dim(ker(D)) = p− q + dim(ker(G)). (2.29)

The value dim(ker(D)) only depends on p and q if spurious pressure modes are not

present. In this case, those discretization schemes having identical p and q numbers

also have the same value for dim(ker(D)), as seen for the PNC
1 − P1 and MINI pairs in

Table 2.1, for example.

Further, since the Coriolis matrix is skew-symmetric, equation (2.28) leads to

CG = −(CD)t, (2.30)

and applying the rank theorem we obtain

dim(ker(CG)) = q + dim(ker(CD)). (2.31)

The kernel of the CD matrix is the intersection of the C and D matrix kernels. Hence,

there is no CD-mode for any of the six last finite-element pairs in Table 2.1 because

the C matrix is full rank for these pairs. We then deduce that

dim(ker(CG)) = q. (2.32)

For the RT0 element, the situation is different as shown in Table 2.1. Indeed, the kernel

of the C matrix has a non-trivial intersection with the kernel of D on particular grids

and

δ =

{

2 if 3 | n and 3 | m,

0 otherwise.
(2.33)
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Table 2.1 shows that dim(ker(CG)) is precisely mn for all schemes that are considered

here, except for the C grid (when α 6= 0) and the RT0 element, which have Coriolis

modes. This number mn exactly coincides with dim(ker(CG)) = q; i.e. the CG matrix

is full rank and hence, the inclusion (2.22) holds. However, for the C grid (when

α 6= 0) and the RT0 element we have dim(ker(D)) smaller than dim(ker(CG)), which

immediately negates the desired inclusion (2.22).

The stationary modes of (2.17) correspond to the kernel of the CDG matrix which is the

intersection of the CG and DO matrix kernels. Table 2.1 shows that dim(ker(CDG)) =

mn = p for all schemes, and hence (2.24) holds, except for the RT0 pair since mn = p/2.

At this stage of the argument it can be concluded that only the B and C grids (if

α = 0) and the P1 − P1 FE pair satisfy the three properties (2.22), (2.23) and (2.24).

For those schemes, p = 2q and hence there are the same number of equations for the

discrete variables u, v and η, as for the continuous system.

2.6.2 Kernel dimension using no-normal flow boundary condition

The no-normal flow boundary condition (2.3) implies that η has to satisfy (2.10). Here,

we investigate the numerical influence of this boundary condition at the discrete level

and its impact on the stationary modes. As previously, biased right triangles are again

used and the dimension of the discrete operators is computed on grids of size m × n,

with m,n = 2, 3, ..., 14. The extrapolated results for any m and n are given in Tables 2.3

and 2.4. Note that for the B and C-D grids, no slip boundary conditions are enforced to

avoid the appearance of spurious boundary modes that result from the use of no normal

flow conditions alone. Further, for the finite element pairs where both component of the

velocity are computed at boundary nodes the condition (2.3) is enforced and solved on

both parts of the momentum equation (2.11) such that only the tangential component

of the flow remains. In Table 2.3 we observe that the C grid and RT0 element are still

subject to Coriolis modes while dim(ker(C)) = 0 for the other schemes and hence the C

matrix is full rank. The B grid now exhibits the classical spurious pressure mode when

no slip boundary conditions are used. In Table 2.1, with periodic boundary conditions,

the B grid was found free of spurious modes for m or n odd integers. We also notice

that P1 − P1 has no spurious pressure mode when no-normal flow boundary conditions

are employed. For all other FD and FE schemes ker(G) only contains the hydrostatic

mode. Finally, the values of dim(ker(D)) in Table 2.3 verify (2.29) for all FD and FE

schemes.

Contrary to what has been observed in Table 2.1 for periodic boundary conditions, we



Kernel analysis of discrete shallow-water models 56

Table 2.3: Dimension of discrete operator kernels on a m × n grid made up of biased

triangles for the B and C-D grids with no slip boundary condition and for the C grid

and the FE pairs with no normal flow boundary condition.

p q C G D

B grid 2(m− 1)(n− 1) mn 0 2 p− q + 2

C grid 2mn− (m+ n) mn 2q − p− 2 1 p− q + 1

C-D grid 4mn− 2(m+ n) mn 0 1 p− q + 1

RT0 3mn−m− n 2mn p− q + 2 1 p− q + 1

P0 − P1 4mn (m+ 1)(n+ 1) 0 1 p− q + 1

PNC
1 − P1 6mn (m+ 1)(n+ 1) 0 1 p− q + 1

P1 − P1 2mn− 2 (m+ 1)(n+ 1) 0 1 p− q + 1

MINI 6mn− 2 (m+ 1)(n+ 1) 0 1 p− q + 1

P1 isoP2 − P1 8mn− 2 (m+ 1)(n+ 1) 0 1 p− q + 1

P2 − P1 8mn− 2 (m+ 1)(n+ 1) 0 1 p− q + 1

now have dim(ker(CDG)) < dim(ker(CG)) in Table 2.4 for all FD and FE schemes

considered, due to the use of the no-normal flow condition (and no slip for the B and

C-D grids). Consequently, equation (2.24) is no longer valid. For the RT0 element,

dim(ker(CDG)) = dim(ker(D)) + 1 . Thus, equation (2.23) holds and all numerically

divergence free velocity fields can be associated with a stationary solution.

In Table 2.4 the CDG stationary modes are split into the smallest representable vor-

tices (SRV), i.e. the elements of the CDG kernel with minimum support, and other

additional modes (others). The properties of such SRV modes are investigated in the

next section. The other modes do not appear to have any specific local structure and

their representation varies with the grid dimension and element type. The number of

such modes is specified by the positive integer σi(m,n) ranging from 1 to i, and de-

pends on the values of m and n with i = 1, 2, 3, .... Note that in Table 2.1 we have

dim(ker(CDG)) = mn for all the FD and FE schemes.

For the C grid and the RT0 element, with P0 − P1 and PNC
1 − P1 pairs as in Table 2.4

the number of SRV is (m − 1)(n − 1) and thus exactly coincides with the number of

surface-elevation nodes, excluding nodes lying on the domain boundary. This result is

consistent with the observation that stationary modes must have a constant elevation

on boundary pressure nodes. For the remaining schemes in Table 2.4 the number of

SRV is only (m − i)(n − i), with i = 2, 3, 5. Further comments are given in the next

section.
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Table 2.4: As for Table 2.3. The CDG stationary modes are split into the smallest

representable vortices (SRV) and other additional modes (others). The integer σi(m,n)

ranges from 1 to i, depending on the values of m and n with i = 1, 2, 3, ..., and β is

defined in (2.27).

CD CG CDG

SRV others

B-grid 0 q (m− 2)(n− 2) + 2

C-grid β − 1 q + β − 1 (m− 1)(n− 1) + 1

C-D-grid 0 q (m− 2)(n− 2) + 1

RT0 0 q (m− 1)(n− 1) + 1

P0 − P1 0 q (m− 1)(n− 1) + σ2(m,n)

PNC
1 − P1 0 q (m− 1)(n− 1) + 1

P1 − P1 0 q (m− 3)(n− 3) + σ5(m,n)

MINI 0 q (m− 3)(n− 3) + σ4(m,n)

P1 isoP2 − P1 0 q (m− 5)(n− 5) + σ8(m,n)

P2 − P1 0 q (m− 5)(n− 5) + σ8(m,n)

2.6.3 Smallest representable vortices

The purpose of this section is to find a simple linear basis for the stationary solu-

tions of (2.17). The results of the preceding section indicate a strong link between

the number of triangle vertices and the dimension of the stationary SRV basis. Hence,

it seems natural to associate each vertex with one element of the basis. We define

η[i] = (0, ..., 0, 1, 0, ..., 0) the elevation field with zero components except at node i

where the elevation is one. Then, if the Coriolis matrix is full rank we have

u ≡ −C−1Gη[i], (2.34)

and we need to verify that the velocity field is divergence free; i.e.

Du = 0. (2.35)

For example, with the PNC
1 − P1 pair, the orthogonality of the velocity basis functions

[62], implies that the mass and Coriolis matrices are diagonal. Hence the SRV, from u

in (2.34) is obtained by applying the discrete operator C−1; i.e. a rotation of −π/2, to

−Gη[i]. Since column i of −G corresponds to row i of D, the SRV for the PNC
1 − P1

pair follows as in Figure 2.3 by a rotation of −π/2 from the divergence stencil. This

procedure only works for the B and C-D grids and for the six last finite-element pairs

in Table 2.1 with periodic boundary conditions. For the C grid and RT0 element the C
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C−1

−→

Figure 2.3: For the PNC
1 − P1 pair, the SRV (right) is obtained from the divergence

stencil (left) by a rotation of −π/2 corresponding to the C−1 operator.

matrix is not invertible and hence Cu = −Gη[i] cannot be solved. When the no-normal

flow boundary condition is used, we have Du 6= 0 in the vicinity of boundary nodes

for the FD and FE schemes of Table 2.3 so (2.35) is not satisfied at boundary nodes

for such schemes. Further, if the C matrix is not diagonal which is the case for the C

grid and all the FE pairs, except P0 − P1 and PNC
1 − P1 pairs, the solution of (2.34)

and (2.35) has a very large support covering the whole domain. This is why a second

and improved procedure is used in the following. It consists of computing a matrix K

such that the range R(K) of K satisfies

ker(CDG) = R(K), (2.36)

and where the matrix KT is in a row reduced echelon form. This procedure allows

us to find members of the searched basis, i.e. the columns of K, with a maximum

number of zero components. Such members have a minimal support and their corre-

sponding velocity fields take the form of local vortices centered around mesh nodes.

These smallest representable vortices (SRV) are illustrated in Figures 2.4 and 2.5 for

the FD and FE schemes, respectively. The support of the elevation field is shaded.

The velocity, normal velocity and elevation nodes are identified using the symbols of

Figure 2.1 and 2.2. When the velocity and elevation node symbols are represented in

grey and dotted circles, respectively, this means that velocity and elevation are zero at

those nodes.

The SRV diagram and x-component of the velocity field are shown in Figure 2.4 for the

B, C and C-D grids. For the B grid, the SRV is centered around a pressure node and

flows clockwise in a circular motion. This diagram is close to the smallest vortex in [26,

Figure 5] for the Q1 − P0 pair. This is because both schemes lead to similar G and D

discrete operators on a regular and uniform grid. Note that in [26] the SRV is defined as

the solution of Du = 0 only. However, from (2.23) it coincides with the definition given

above in (2.34) and (2.35). The number of SRV is hence (m−2)(n−2), which coincides
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Grid B Grid C Grid C-D

Figure 2.4: SRV diagram (above) and x-component of the SRV normalized velocity field

using linear interpolation (bottom) for the B, C and C-D grids.

with the number of pressure nodes not adjacent to the boundary, when the no-normal

flow boundary condition is used. The dimension of CDG in Table 2.4 is obtained by

adding the two other modes corresponding to the hydrostatic and the spurious pressure

modes when no slip boundary conditions are used. For the C grid the SRV is centered in

a 2× 2 patch where the four surface-elevation nodes have the same positve values, and

thus (m− 1)(n− 1) SRV are present as indicated in Table 2.4. Further, if m and n are

even, the domain can be tiled (partitioned) by 2× 2 patches (colored here in white and

grey for graphical purpose) as shown in Figure 2.6, and a spurious mode corresponding

to constant surface-elevation and non zero velocity is obtained. This spurious mode is

a solution of Cu = 0 and Du = 0, and accordingly is termed a CD-mode in (2.19).

The other mode in Table 2.4 is the hydrostatic mode. The SRV diagram for the C-D

grid is centered around a pressure node, as in the B grid, and flows clockwise as shown

in Figure 2.4. The number of SRV also corresponds to the B grid case, except for the

spurious pressure mode which is not present here. In Figure 2.4 the x-component of

the SRV normalized velocity field using linear interpolation is given for all grids. The

x- and y-components are symmetric and thus the latter is not shown.
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RT0 P0 − P1 PNC
1 − P1

P1 − P1 MINI P2 − P1

Figure 2.5: As in Figure 2.4 for the FE pairs.
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Figure 2.6: CD-Mode of the C grid (left) and RT0 element (right).

Figure 2.5 shows the SRV diagrams and the x-component of the SRV normalized velocity

field for the seven FE pairs considered here. For the RT0 element, the elevation field

is constant over a patch of six elements adjacent to a central vertex node. This patch

corresponds to the hexagonal shaded area in Figure 2.5. The support of the SRV velocity

field is made up of the six interior edges of the shaded patch. Because the elevation is

constant over the hexagonal patch, one can tile the domain with SRV having the same

elevation field if the domain is periodic and m and n are both divisible by three. In

this case we obtain a non zero velocity mode with constant elevation, which has been

defined above as a CD mode and is shown in Figure 2.6. As for the C grid, white and

grey colored areas are introduced to graphically highlight SRV support. When the no-

normal flow boundary condition is employed, the total number of SRV is (m−1)(n−1)

as shown in Table 2.4 because each SRV lies on a 2×2 patch. The P0−P1 and PNC
1 −P1

pairs have SRV similar to the RT0 scheme, except that the elevation is now non zero

at the vortex center node only, as shown in Figure 2.5. The number of SRV is again

(m− 1)(n− 1) as for the RT0 element when the no-normal flow boundary condition is

used (Table 2.4), because the SRV patch size is still 2 × 2.

The SRV patch for the P1 − P1 pair is larger than for the three previous pairs. The

elevation field is again centered around a central vertex node but it is now non-zero at

that node and also at the six adjacent vertices. The support of the elevation field is

shaded in Figure 2.5. The SRV lies on a 4× 4 patch and hence we have (m− 3)(n− 3)

SRV modes when no-normal flow boundary conditions are used as shown in Table 2.4.

For the MINI pair, the SRV also lies on a 4 × 4 patch, leading to (m − 3)(n − 3)

SRV in Table 2.4, as for the P1 − P1 pair. However the velocity field is different and

now includes bubble nodes which affect the vortex structure. The vortex amplitude is
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essentially located at the bubble nodes of the six triangles sharing the vertex center and

the circulation is clockwise, as shown in Figure 2.5. A much weaker counter-clockwise

circulation is also present on the remaining vertex and bubble nodes of the 4× 4 patch.

Indeed, the arrow length has been increased for the counter clockwise circulation for

graphical purposes.

The P1 isoP2−P1 and P2−P1 pairs behave similarly for both the number and structure

of SRV and hence only the results for the P2 − P1 pair are shown in Figure 2.5. The

SRV lies on a 6 × 6 patch, leading to (m− 5)(n− 5) SRV modes when no-normal flow

boundary conditions are used as shown in Table 2.4. The vortex structure is mainly

located at the mid-side nodes of the six triangles sharing the vertex center and the

circulation is clockwise, as shown in Figure 2.5. As was the case above for MINI, an

additional counter-clockwise and much weaker circulation again is present in the near

vicinity of the clockwise circulation. The absence of arrows at the velocity nodes of the

shaded area implies the velocity amplitude is very small.

The x-component of the normalized SRV velocity field is given for all the FE pairs in

Figure 2.5. The solutions are plotted according to the nature of the FE interpolation

basis. This is why discontinuities appear in the representation of the first component

of the velocity field in Figure 2.5 for the RT0, P0 − P1 and PNC
1 − P1 pairs. Such a

discontinuous representation naturally leads to 2×2 SRV supports and this advantage is

illustrated in the next section. Note that the SRV velocity field for the PNC
1 −P1 pair lies

outside the 2×2 patch due to the presence of non zero velocities on the boundary edges

of the grey area. However, such velocities only have tangential components (contrary

to the B grid in Figure 2.4) and consequently, the PNC
1 −P1 SRV behavior is similar to

that of the RT0 and P0 − P1 SRV, as shown later.

Finally, there are mn SRV on periodic domains for all FD and FE formulations, as

shown in Table 2.1. This is because there are mn triangle vertices and each of them

is the center of a SRV. Note that if we sum all SRV of a periodic domain, the velocity

arrows add up to zero by symmetry on the whole domain and the elevation field is

constant. We then obtain the hydrostatic mode as a linear combination of all SRV.

This is why in Table 2.1 the hydrostatic mode is not counted separately, in contrast to

Table 2.4.

2.6.4 Kernel dimension for an unstructured mesh

A key advantage of the FE method over FD schemes is the ease with which unstructured

meshes may be used for discretizing complex domains, to promote mesh grading and
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for local adaptive mesh refinement. Consequently, we now investigate the impact on

the stationary modes of the FE schemes and unstructured meshes.

Table 2.5: Dimension of discrete operators kernels on Mesh 2 with periodic boundary

condition.

FE Pair p q C G D CD CG CDG

SRV others

RT0 342 228 102 1 115 0 228 114 + 0

P0 − P1 456 114 0 1 343 0 114 114 + 0

PNC
1 − P1 684 114 0 1 571 0 114 114 + 0

P1 − P1 228 114 0 1 115 0 114 0 + 2

MINI 684 114 0 1 571 0 114 0 + 2

P1 isoP2 − P1 912 114 0 1 799 0 114 0 + 2

P2 − P1 912 114 0 1 799 0 114 0 + 2

Table 2.6: As for Table 2.5 but with the no-normal flow boundary condition.

FE Pair p q C G D CD CG CDG

SRV others

RT0 322 228 84 1 95 0 228 95 + 1

P0 − P1 456 135 0 1 322 0 135 95 + 2

PNC
1 − P1 684 135 0 1 550 0 135 95 + 1

P1 − P1 226 135 0 1 92 0 135 0 + 1

MINI 682 135 0 1 548 0 135 0 + 1

P1 isoP2 − P1 910 135 0 1 776 0 135 0 + 1

P2 − P1 910 135 0 1 776 0 135 0 + 1

In the following, an unstructured Mesh 2 has been generated for kernel comparison

studies with the previous structured 10×10 Mesh 1 shown in Figure 2.8. The respective

meshes are approximately of the same nodal density and the same equi-spaced nodes

are used on the boundary of Mesh 2 to easily impose periodic boundary conditions.

Tables 2.5 and 2.6 show the dimension of the discrete operator kernels on Mesh 2 for

the seven FE pairs examined here, in the case of periodic and no-normal flow boundary

conditions, respectively. For the RT0, P0 − P1 and PNC
1 − P1 pairs in Table 2.5 the

number of SRV correspond to the number of mesh vertices, i.e. 114. This is still the

case for Table 2.6 since there are 40 boundary nodes and 95 mesh vertices inside the
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RT0 P0 − P1 PNC
1 − P1

Figure 2.7: As for Figure 2.5 for the SRV diagrams of the RT0, P0 − P1 and PNC
1 − P1

pairs but on unstructured meshes.

domain. Note that the hydrostatic mode is included in the SRV space for these pairs in

the case of periodic conditions as shown in Table 2.5. This is not true in Table 2.6 when

the no-normal flow condition is used. The SRV structures for these pairs are shown in

Figure 2.7 and they behave similarly to the corresponding SRV on structured meshes.

We note that (2.23) is still satisfied on unstructured meshes for the RT0 element with

the no-normal flow boundary condition. For periodic boundary conditions, equations

(2.22) and (2.24) hold for the P0 − P1 and PNC
1 − P1 pairs, as previously observed for

structured meshes. For the P1 − P1, MINI, P1 isoP2 − P1 and P2 − P1 pairs, the SRV

are dramatically absent from ker(CDG). Indeed, ker(CDG) only contains other modes

and no longer SRV. Since the hydrostatic mode always belongs to the other mode set,

whatever the choice of boundary conditions for those pairs, we deduce that (2.22) is no

longer satisfied on unstructured meshes.

In order to better understand the behaviour of the stationary modes on unstructured

meshes, we compute the spectrum of the CDG matrix for the P1 − P1 and P2 − P1

pairs on Meshes 1 and 2. The results, shown in Figure 2.8, represent the eigenvalues

of the CDG operator in the complex plane. On Mesh 1, the eigenvalues are mostly

concentrated near the origin for both pairs, and correspond to SRV solutions. However,

on Mesh 2 the eigenvalues extend along the imaginary axis and hence the corresponding

modes are no longer stationary.

2.7 Numerical representation of vortices

In the previous section we determined the kernel SRV structure for the FD and FE

schemes of Section 3.3. Here, our purpose is to conduct two numerical experiments in
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Figure 2.8: Regular Mesh 1 and unstructured Mesh 2 (left) and eigenvalues of the CGD

matrix for the P1 − P1 and P2 − P1 pairs on Mesh 1 and Mesh 2 (right).

order to examine how those stationary SRV combine together to represent realistic and

larger scale vortices. In the first test, a large stationary vortex is computed in a similar

manner to that in Section 4.3 using the no-normal flow boundary condition. In the

second test, the time-dependent SRV are approximated for the case of a non-constant

Coriolis parameter.

2.7.1 Representation of large stationary vortices

On the structured FD grids and FE Mesh 1, the square domain extent is 600 km ×600

km. A 25 × 25 regular cartesian grid is used for the FD schemes to filter the spurious

CD-mode of the C grid; i.e. β = 1 in Table 2.4 and hence m or n are odd in (2.27).

To exhibit the CD mode on a C grid a 24 × 24 regular grid is employed. For the FE

element pairs two meshes are used: the regular 24 × 24 Mesh 1 and the unstructured

Mesh 3 (on a larger square domain of dimension 1 200× 1 200 km) shown in Figure 2.9.
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At the center of Mesh 3 the high resolution area has approximately the same resolution

as the 24 × 24 Mesh 1.

Figure 2.9: The unstructured Mesh 3

A Gaussian distribution of the surface elevation, centered in the domain, is prescribed

η(x, y) = Ae−(x2+y2)/r2

, (2.37)

where r = 1.3 × 105 m. The gravity and Coriolis parameters are g = 9.81 m s−2

and f = 6.16 × 10−5 s−1, with a resolution h = 2.5 × 104 m. The e-folding radius

of the Gaussian (the distance from the center for which η(x, y) == Ae−1) is 130 km

and it is resolved by 5 mesh nodes. By setting A = 0.95 m, the initial maximum

surface azimuthal velocity is 1 m s−1. These values are chosen to match observations of

the eddies in the Gulf of Mexico [38] and they are also representative of the oceanic

circulation at mid-latitude. The elevation field is mainly concentrated in the refined

area of Mesh 3 and it is numerically zero at the boundaries, avoiding boundary effects

for the SRV.

The velocity field is obtained by solving (2.17) rewriten as

C u = −G η, (2.38)

D u = 0. (2.39)

The C matrix in (2.38) is invertible for the FE schemes examined earlier, except for

the RT0 element and (2.24) does not hold. In order to solve (2.38) for the RT0 scheme
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B Grid 25 × 25 C Grid 25 × 25

-0.99 0.990 -1.02 1.020

C-D Grid 25 × 25 C Grid 24 × 24

-0.99 0.990 -1.35 1.350

Figure 2.10: x-components of the large stationary vortex for the FD grids. The scale

legend shows the minimum and maximum values in m s−1.

we ensure that G η belongs to the range of C by setting the elevation on each element

to be the mean value of η at the element mesh vertices obtained from (2.37). Such a

procedure is used in the following and (2.38) and (2.39) then admit a solution in the

SRV basis for the RT0 element.

We define the relative residual norm of (2.17) as

R ≡ ‖CDG (u, η)t‖
‖CDG‖ ‖(u, η)t‖ . (2.40)

The values of R are shown in Table 2.7 for all FE pairs on Meshes 1 and 3. These results

demonstrate that (2.38) and (2.39) are satisfied on the regular Mesh 1 for all pairs, and

only for the RT0, P0 − P1 and PNC
1 − P1 pairs on the unstructured Mesh 3. For the

RT0, P0 − P1 and PNC
1 − P1, the computation of (2.38) - (2.39) is straightforward due

to the presence of SRV on both regular and unstructured meshes. This is also the case

for the P1 − P1, MINI, P1 isoP2 − P1 and P2 − P1 pairs on regular meshes. However,
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Table 2.7: Values of R on Meshes 1 and 3 for the FE schemes.

FE Mesh 1 Mesh 3

RT0 3.31 × 10−15 5.09 × 10−16

P0 − P1 3.26 × 10−15 2.29 × 10−16

PNC
1 − P1 3.11 × 10−15 4.37 × 10−16

P1 − P1 1.42 × 10−15 7.62 × 10−5

MINI 2.06 × 10−15 3.56 × 10−6

P1 isoP2 − P1 2.53 × 10−15 8.73 × 10−6

P2 − P1 4.82 × 10−15 9.72 × 10−6

for the last four pairs no SRV are present on unstructured meshes, as shown previously

in Section 4.4 and the system (2.38) - (2.39) is over-constrained. In order to compute

u, we proceed as follows: first (2.39) is solved and (2.38) is then approximated in the

least-square sense. Consequently, we obtain a divergence-free velocity field where the

solution (u, η) is not numerically stationary as shown in Table 2.7.

In Figure 2.10 the x-components of the computed velocity field for the finite difference

schemes are shown. The C-grid result exhibits strong oscillations on the 24 × 24 grid

due to the presence of the periodic CD-mode (Figure 2.6). However, this mode does

not exist on the 25×25 grid of Figure 2.10 and the behaviour of the solution is smooth.

Similar results are obtained for the B-Grid and the C-D-Grid.

The x-components of the computed velocity field for the RT0, P0 − P1 and PNC
1 − P1

pairs are shown in Figure 2.11 on Meshes 1 and 3. The results are displayed in a similar

manner to those in Figure 2.5; i.e. according to the nature of the FE basis (constant

for the P0 − P1 pair and discontinuous for the RT0 and PNC
1 − P1 pairs). For those

three pairs, the results are consistent with the analytical solution.

Finally, the x-components of the computed velocity field are shown in Figure 2.12 for

the remaining FE pairs. Smooth results are obtained for the P1 − P1 pair on both

meshes. However, for MINI, strong oscillations appear on meshes 1 and 3, due to a

much higher amplitude of the solution at bubble nodes compared to vertex nodes. For

the P1isoP2−P1 and P2−P1 pairs oscillations are again present for both pairs on Mesh 1

and they are amplified on the unstructured Mesh 3.
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FE pair Mesh 1 Mesh 3
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Figure 2.11: As in Figure 2.10 for the RT0, P0 − P1 and PNC
1 − P1 pairs on Meshes 1

and 3.



Kernel analysis of discrete shallow-water models 70

FE pair Mesh 1 Mesh 3
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Figure 2.12: As in Figure 2.11 for the P1 − P1,MINI, P1isoP2 − P1 and P2 − P1 pairs.
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Figure 2.13: Analytic (solid line) and computed (circles) dispersion relations for the

PNC
1 − P1, MINI and P2 − P1 pairs on Mesh 1 and Mesh 2. The domain is a 4800 km

× 280 km rectangular basin.
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Figure 2.14: As for Figure 2.13 but the domain is now a 4800 km × 840 km rectangular

basin.
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2.7.2 Representation of time-dependent vortices

The domain is an idealized Lx ×Ly rectangular basin discretized using the vertex node

spacing h = 40 km. We let Lx = 4 800 km and hence the mesh has 120 elements in the

x−direction. The initial solution

η̄ = cos(kx) sin

(

πy

Ly

)

, (2.41)

ū = − πg

fLy

cos(kx) cos

(

πy

Ly

)

, (2.42)

v̄ = −gk
f

sin(kx) sin

(

πy

Ly

)

, (2.43)

is in geostrophic balance and satisfies the no-normal flow boundary condition on the

horizontal boundaries. Periodic conditions are applied along the eastern and western

boundaries. The β-plane approximation, f = f0 + β y, is used where f0 = 10−4 s−1,

β = 10−11 m−1 s−1 and the choice H = 1.631m results in a phase speed for gravity

waves of 10 m s−1. The radius of deformation at midbasin is thus Rd = 100 km.

The wave number k considered in the following study (the wave moves in the x−direction)

is such that k = 2πn/Lx, for n = 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60. At each time

step the elevation and velocity approximations are computed. The time evolution of

the computed elevation at the center of the domain (Lx/2, Ly/2) is used to deduce the

period T and the frequency ω = 2π/T for each value of k. The timestep is 2×104 s and

the duration of the simulation is 1×104 time steps. A Crank-Nicolson time integration

scheme is used for the Coriolis, gradient and divergence operators. A smoothing proce-

dure is applied here in order to filter the small scale noise induced by the inertia-gravity

waves.

In Figure 2.13 the analytic (solid line) and computed (circles) dispersion relations are

shown for the PNC
1 −P1, MINI and P2−P1 pairs on Mesh 1 and Mesh 2. The domain is

a 4800 km × 280 km rectangular basin. For the PNC
1 −P1 pair the agreement between

the two curves is quite good on both meshes, but for the other pairs the match is poor

even on Mesh 1. This is probably due to a larger SRV for the two last pairs and a larger

Ly is needed.

In Figure 2.14 the domain is now a 4800 km × 840 km rectangular basin. The results

are unchanged for the PNC
1 −P1 pair but for the MINI and P2 −P1 pairs the results are

considerably improved on Mesh 1. This is likely because Ly has increased. However,
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on Mesh 2 significant errors are still observed for the two last pairs. This is probably

because no SRV are present for the MINI and P2 − P1 pairs on unstructured meshes.

Finally, we note that the RT0 and P0 −P1 pairs lead to results that are similar to those

for the PNC
1 −P1 pair. Likewise, the P1−P1 and P1 isoP2−P1 pairs give similar results

to the P2 − P1 pair [55].

2.8 Conclusion

An algebraic kernel approach has been developed for analysis of spurious modes arising

in shallow-water simulation and several finite difference and finite element discretization

schemes have been investigated to demonstrate the approach and key ideas. Three key

properties of the continuous formulation lead to corresponding tests on the associated

kernel representations for the discrete form. Of particular interest is the use of the

kernel to characterize the “smallest representable vortices” (SRV) of the discrete models

as in Table 2.4, to compare variations in their size and structure on local mesh patches,

and to interpret results concerning modal decoupling. The effects of “no-normal flow”

and periodic boundary conditions on the dimension of the discrete operator kernels are

also investigated and compared in Tables 2.1, 2.3 and 2.4. The numerical studies with,

for instance, different element pairs for approximating elevation reveal some unexpected

and interesting features. For example, as seen in the studies with the P2−P1 and MINI

pairs (see Tables 2.4, 2.5, 2.6, 2.7 and Figure 2.12) the use of high order approximation

is not necessarily better since this may lead to larger SRV diameters or to more oscil-

latory and noisy approximations. Moreover, for the unstructured mesh tests SRV are

not evident. This suggests that low order schemes may be preferable since they are less

computationally costly for the same cell scale and can characterize smaller SRV struc-

tures efficiently and with less oscillatory behavior. For instance, based on the numerical

evidence from the present kernel characterization and supporting tests, the PNC
1 − P1,

RT0 and P0 − P1 pairs are appealing choices since they all yield SRV on unstructured

meshes as seen in Tables 2.5, 2.6, 2.7 and Figure 2.7, 2.11 and are computationally

inexpensive. Since unstructured meshes do not appear to pose the same difficulty in

characterizing SRV, these three low-order schemes are more amenable to practical sim-

ulations that ideally utilize mesh grading or adaptive unstructured mesh refinement.

This latter point is a topic of study in our ongoing research collaboration.
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3.1 Résumé

Une étude des équations de Saint-Venant discrétisées par la méthode des éléments finis

utilisant les espaces de type Raviart-Thomas et Brezzi-Douglas-Marini est présentée.

Les équations discrètes sont utilisées pour calculer les relations de dispersion afin de

quantifier la dispersion causée par la discrétisation sur les ondes d’inertie-gravité. Deux

maillages sont considérés; le premier est constitué de triangles équilatéraux et le sec-

ond de triangles biaisés. Une approche basée sur l’algèbre linéaire est aussi utilisée

pour déterminer la présence possible de modes numériques parasitaires. La balance

géostrophique est examinée par le calcul des plus petits vortex discrets. Les résultats

de deux tests numériques reproduisant les ondes de gravité et de Rossby corroborent

l’étude.

3.2 Abstract

An analysis of the discrete shallow-water equations using the Raviart-Thomas and

Brezzi-Douglas-Marini finite elements is presented. For inertia-gravity waves, the dis-

crete formulations are obtained and the dispersion relations are computed in order to

quantify the dispersive nature of the schemes on two meshes made up of equilateral
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and biased triangles. A linear algebra approach is also used to ascertain the possible

presence of spurious modes arising from the discretization. The geostrophic balance is

examined and the smallest representable vortices are characterised on both structured

and unstructured meshes. Numerical solutions of two test problems to simulate gravity

and Rossby modes are in good agreement with the analytical results.

3.3 Introduction

The finite-element (FE) method is attractive for problems of environmental engineering

due to the flexibility of triangulation for the representation of irregular boundaries and

for local mesh refinement [15, 22, 34, 45, 58, 31, 39]. The method is widely applied

to shallow-water (SW) simulation for a variety of environmental problems including

groundwater, coastal regions, atmospheric, and oceanic flows [15, 34, 20, 54, 68]. The

SW equations describe the behavior of a shallow homogeneous incompressible and in-

viscid fluid layer. They are derived from the Navier-Stokes equations under Boussinesq

and hydrostatic pressure assumptions.

One of the key issues that arises with mixed formulations is the possible presence of spu-

rious modes, i.e. small scale artifacts, introduced by the spatial discretization scheme.

This difficulty with mixed methods is encountered in both the SW and Navier-Stokes

formulations. The appearance of spurious solutions is mainly due to an inappropri-

ate choice of approximation function spaces for the FE method. The spurious modes

usually take the form of pressure or surface-elevation, velocity and/or Coriolis modes.

They do not propagate but are trapped within the model grid. The spurious solutions

usually cause aliasing and an accumulation of energy in the smallest-resolvable scale,

leading to noisy solutions. Improvements have been achieved through the use of a vari-

ety of mixed-order FE interpolation schemes [34, 58, 54, 2, 35, 70], and a wave equation

formulation [39, 36].

Dispersion analysis of the discretized form of the linear SW equations is a useful tool

to define the relationships between frequency and wave number. It also permits to

explicitly ascertain the presence and determine the form of spurious solutions as well

as the dispersive/dissipative nature of a FE formulation [53, 52, 56, 55, 65]. However,

such an approach is restricted to uniform meshes and periodic solutions. In order to

study the existence and the behaviour of stationary spurious modes associated with

zero frequency on both uniform and unstructured meshes, a linear algebra approach

may be employed [57, 50]. It consists in determining the properties of the kernel of
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the associated discretized problem. The kernel characterization may also be used to

determine the form of the smallest representative velocity vortex structures that can be

represented in a given discretization.

The dispersion analyses and linear algebra approach performed in [56, 55, 50] suggest

that three FE schemes, the PNC
1 − P1 and P0 − P1 pairs and the low order Raviart-

Thomas element RT0 can been identified as promising schemes in terms of dispersion

properties for the discretization of the SW equations. The aim of this paper is to conduct

such analyses for higher order Raviart-Thomas and Brezzi-Douglas-Marini (BDM1)

FE approximation spaces. The BDM1 element has been introduced in [13] for solving

elliptic problems and to our knowledge it is analysed here for the first time in the

context of inviscid SW flows. Two formulations are considered: the BDM1 − P0 and

the BDM1 − P1 pairs.

The paper is organized as follows. We first present the governing equations and the spa-

tial discretization in Sections 2 and 3, respectively. A dispersion analysis is performed

in Section 4 for the inertia-gravity waves. In Section 5, a linear algebra approach based

on the kernel properties of the discretized problem is used for Rossby waves. The ana-

lytical computations are followed by numerical simulations. Some concluding remarks

complete the study.

3.4 Governing equations

Let Ω be a 2D domain with boundary Γ. The inviscid linear equations are expressed in

Cartesian coordinates [37] as

∂u

∂t
+ fk × u + g∇η = 0, (3.1)

∂η

∂t
+H∇ · u = 0, (3.2)

where u = (u, v) is the velocity field, η is the surface elevation with respect to the

reference level z = 0, k is the unit vector pointing in the vertical direction, g denotes

the gravitational acceleration, and the mean depth H and the Coriolis parameter f are

assumed constant, unless stated otherwise. The velocity is subject to the no-normal

flow boundary condition u · n = 0 on Γ, where n is the outward pointing vector at the

boundary.
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For the analyses performed in this paper, time is assumed continuous and we seek

periodical solutions of (3.1)-(3.2) of the from

u(x, y, t) = u(x, y) exp(iωt), η(x, y, t) = η(x, y) exp(iωt), (3.3)

where ω is the angular frequency.

By substituting (3.3) in (3.1) and (3.2) we obtain

iω u + fk × u + g∇η = 0, (3.4)

iω η +H∇ · u = 0. (3.5)

Equations (3.4) and (3.5) are now discretized in space.

3.5 Spatial discretization

3.5.1 The weak formulation

We assume u and η belong to the spaces V and W , with V and W are in the square-

integrable space L2 (Ω). The weak formulation is obtained by multiplying (3.4) and (3.5)

by test functions ϕ and ψ belonging to V and W , respectively, and by integrating over

the whole domain

∫

Ω

iω u · ϕ dx +

∫

Ω

f (k × u) · ϕ dx +

∫

Ω

g∇η · ϕ dx = 0, (3.6)
∫

Ω

iω η ψ dx +

∫

Ω

H∇ · uψ dx = 0, (3.7)

where dx is the area element with x = (x, y). The terms containing gradient and

divergence operators in (3.6) and (3.7) may be integrated by parts using the Green’s

theorem, depending on the regularity of spaces V and W .

3.5.2 Galerkin finite-element discretization

The Galerkin method approximates the solution of (3.6) and (3.7) in finite-dimensional

subspaces. Consider a representative meshlength parameter h that measures resolution
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and a FE triangulation Th of the polygonal domain Ω.

The discrete solutions uh and ηh sought belong to finite-dimensional spaces Vh and Wh,

respectively, with dim(Vh) = p and dim(Wh) = q. The spaces Vh and Wh are defined

as a set of piecewise polynomial functions over the triangulation Th. The degree and

continuity order of these polynomial functions are specified in the sequel for the FE

schemes investigated in this paper.

The components of uh and ηh are represented over a triangle K by interpolating func-

tions ϕ(x, y) and ψ(x, y), belonging to Vh and Wh, respectively. We thus have

uh =

p
∑

j=1

ujϕj, ηh =

q
∑

k=1

ηkψk. (3.8)

Note that for the RT0 and BDM1 elements, the normal velocites are expressed in terms

of the vector interpolating function ϕ(x, y).

Let M and N be the velocity and elevation mass matrices, respectively, C the Coriolis

matrix, and G and D the gradient and divergence matrices, which are obtained from

the elementary matrices

M j1,j2
= iω

∫

Ω

ϕj1 · ϕj2, Nk1,k2
= iω

∫

Ω

ψk1
ψk2

,

Cj1,j2 =

∫

Ω

f(k × ϕj1) · ϕj2, Dk1,j1 =

∫

Ω

H(∇ · ϕj1)ψk1
,

Gj1,k1
=

∫

Ω

g∇ψk1
· ϕj1,

(3.9)

where j1, j2 = {1, · · · , p} and k1, k2 = {1, · · · , q}. By using (3.8) and (3.9), equa-

tions (3.6) and (3.7) are rewritten in matrix form as

(

M + C G

D N

)(

u

η

)

= 0, (3.10)

where u = (u1, · · · , up)
t and η = (η1, · · · , ηq)

t.

3.5.3 The BDM1 element

The BDM1 element has been introduced by F. Brezzi, J. Douglas and L.D. Marini

[13, 14] in 1986 to solve elliptic problems. It can be seen as an enriched version of the

lowest order Raviart-Thomas element denoted by RT0. The RT0 element is based on
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Figure 3.1: Elementary basis functions for the BDM1 space.

flux conservation on element edges and it has continuous normal components at triangle

midedge points. For the BDM1 element, the normal component is continuous through

triangle edges, as for the RT0 element, but the corresponding basis functions are linear

instead of being constant. Consequently, the BDM1 element has two degrees of freedom

over each triangle side instead of one for the RT0 element.

Consider a triangle K of Th, and let xi = (xi, yi), i = 1, 2, 3, the coordinates of the

three vertices of K. At each side of K the tangential and normal vectors are defined as

t1 := x3 − x2, n1 := −k × t1,

t2 := x1 − x3, n2 := −k × t2,

t3 := x2 − x1, n3 := −k × t3.

(3.11)

Let λi, i = 1, 2, 3 be the barycentric functions of K and define for each permutation

(ijk) of (123) the basis functions ϕ associated with the BDM1 element

ϕ(ijk) :=
λjtk

tk · ni
=

λjtk

2Area(K)
(−1)sgn(ijk), (3.12)

where Area(K) denotes the area of triangle K. By using (3.12), one can verify that the

normal component ϕ(ijk) · n is linear on edge i and zero on edges j and k. Further, on

edge i the normal component takes the value 1 at vertex j and 0 at vertex k. In order

to simplify the notation, the functions ϕ are numbered from 1 to 6

ϕ1 := ϕ(123), ϕ2 := ϕ(132), ϕ3 := ϕ(231),

ϕ4 := ϕ(213), ϕ5 := ϕ(312), ϕ6 := ϕ(321),
(3.13)

in terms of the permutations, as shown in Figure 3.1. Note that on each triangle edge

of K the sum of the two basis functions ϕ exactly corresponds to the basis function

associated with the RT0 element on that edge.
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3.5.4 Finite-element pairs

As previously mentioned, one of the issues associated with mixed methods is the possi-

bility of spurious modes and anomalous dispersion in the representation of waves. The

choice of FE pairs to approximate the velocity field u and the surface elevation η is thus

delicate. In [56, 55, 50] three FE pairs, namely the PNC
1 −P1 and P0 −P1 pairs and the

low order Raviart-Thomas element RT0 have been identified as promising schemes in

terms of dispersion properties for the discretization of the SW equations. Common to

the first two FE velocity/surface-elevation pairs is a piecewise-linear continuous repre-

sentation of surface elevation, and they differ from one another in their representation

of velocity. The PNC
1 − P1 pair [34, 52] has velocity nodes at triangle edge midpoints,

and linear basis functions are used to approximate the two velocity components on the

element’s two-triangle support. Since this particular representation of velocity is contin-

uous only across triangle boundaries at midpoint nodes, and discontinuous everywhere

else around a triangle boundary, this element is termed nonconforming (NC) in the

FE literature. The P0 − P1 pair has a piecewise-constant representation of velocity. In

[56, 55, 50] the RT0 element has a discontinuous piecewise-constant representation of

surface elevation and such a FE pair is thus named RT0 − P0 in the sequel.

The purpose of this paper is to study the dispervive properties and eventually to detect

the presence of spurious modes of three other FE pairs. Those are the RT0 − P1,

BDM1 − P0 and BDM1 − P1 pairs. The RT0 − P1 pair has RT0 basis functions for

velocity and a piecewise-linear continuous representation of surface elevation. Common

to the last two pairs is a BDM1 representation of velocity and the corresponding basis

functions for elevation are piecewise-constant and piecewise-linear, respectively.

3.6 Inertia-gravity waves

3.6.1 Analytical frequencies

In the continuum case the free modes of (3.4) and (3.5) are examined by perturbing

about the basic state u = v = η = 0. We seek periodic solutions of the form

(u(x, y), η(x, y)) = (ũ, η̃) exp ( i(kx+ ly) ) , (3.14)

where k and l are the wave numbers in the x- and y-directions, respectively. Substitution

into (3.4) and (3.5) leads to a square matrix system for the amplitudes ũ and η̃. For a
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Figure 3.2: Elementary displacements are represented on the reference triangle on

Meshes 1 and 2.
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Figure 3.3: Discrete amplitude numbering for the PNC
1 , RT0, BDM1 and P0 elements.

nontrivial solution to exist, the 3 × 3 determinant of the matrix must equal zero, and

this constraint leads to the following dispersion relation for the frequency

ω (ω2 − f 2 − gH
√
k2 + l2 ) = 0. (3.15)

The first solution ω = 0 is the geostrophic mode and would correspond to the slow

Rossby mode on a β-plane, while the other two solutions

ωAN = ±
√

f 2 + gH(k2 + l2), (3.16)

correspond to the free-surface gravitational modes with rotational correction. Since ω

is purely real, all modes are neutrally stable and neither amplify nor decay.

3.6.2 Discrete frequencies

The dispersion analysis is performed on two types of regular meshes: Mesh 1 and Mesh

2. Mesh 1 corresponds to equilateral triangles and Mesh 2 is made up of biased right

isosceles triangles as shown in Figure 3.10. The mesh spacing, denoted by h, is defined

as the triangle side length for Mesh 1 and the shortest triangle side length for Mesh 2.
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Nodal unknowns are located on typical nodal sets, e. g. faces, vertices, and barycenters.

In this analysis only selected discrete equations are retained and they correspond to each

type of nodes. For example, three discrete momentum equations are considered for the

RT0−P0 pair on the three possible types of faces, and two discrete continuity equations

are considered at the two possible types of barycenters, e. g. upward and downward

pointing triangles as shown in Figure 3.3 for Mesh 1. Consequently, selected discrete

amplitudes ũj and η̃j are considered for each nodal set. Assembling the elementary

matrices defined in (3.9) leads to the stencils of Figures 3.4, 3.5, 3.6, and 3.7 for the

PNC
1 − P1, RT0 − P0, RT0 − P1, BDM1 − P0, and BDM1 − P1 pairs. Substitution of

(3.14) in these reference stencils leads to the linear system
(

M + C G

D N

)(

ũ

η̃

)

= 0, (3.17)

where ũ and η̃ are the amplitude vectors. Matrices M, N, C, D, and G are the con-

tributions of velocity mass, surface-elevation mass, Coriolis, divergence, and gradient

stencils, respectively, for the selected equations. As for the continuous case, the deter-

minant of the matrix in the left hand side of (3.17) must vanish to admit non-trivial

amplitude solutions, and this leads to the dispersion relation. Note that we have

G = − g

H
Dt, (3.18)

where Dt is the complex conjugate transpose of D. Consequently, only divergence

stencils are displayed in the following. To simplify the notation we define the quantities

J,K, and L as elementary displacements as shown in Figure 3.2 on Meshes 1 and 2.

Note that J,K, and L are different on both meshes. Further we let In be the n × n

identity matrix and α =
√

3/2.

We now examine the dispersion relations corresponding to the FE pairs considered in

this study.

The PNC
1 − P1 pair

The discrete velocity amplitudes are considered on three typical faces (see Figure 3.3)

and ordered as

ũ = (ũ1, ũ2, ũ3, ṽ1, ṽ2, ṽ3)
t. (3.19)

Because the PNC
1 basis functions are orthogonal in L2, the velocity mass and Coriolis

matrices are block diagonal. For Mesh 1, we obtain from (3.9)

M = iω
αh2

3
I6, C = f

αh2

3
N

(

0 −I3
I3 0

)

. (3.20)
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Figure 3.4: PNC
1 − P1 divergence and P1 mass stencils.

For the surface elevation, only one discrete amplitude is required for η̃ at mesh vertices.

The stencils of the divergence operator in −x and −y directions are shown in Figure

3.4 and the corresponding matrix is

D = H
h

6

(

D1 D2 D3 D4 D5 D6

)

, (3.21)

where

D1 = 2iα
(

sin
(

J−L
2

)

+ sin
(−K

2

))

, D4 = i
(

sin
(

J−L
2

)

+ 3 sin
(

K
2

))

,

D2 = 2iα
(

sin
(

J−K
2

)

+ sin
(−L

2

))

, D5 = i
(

sin
(

J−K
2

)

+ 3 sin
(

L
2

))

,

D3 = 4iα sin
(

J
2

)

, D6 = 2i sin
(

K−L
2

)

.

(3.22)

The mass stencil for the P1 elevation is shown in Figure 3.4 and the corresponding

matrix is

N = iω
αh2

12

(

6 + eiJ + eiL + eiK + e−iJ + e−iL + e−iK
)

= iω
αh2

6

(

3 + cos(J) + cos(K) + cos(L)
)

. (3.23)

Vanishing the 7 × 7 determinant vanishes leads to

ω1,2 = ±ωAN +O(h4), ω3 = 0, ω4,5,6,7 = ±f (double root).

The first two roots ω1,2 correspond to inertia-gravity waves and they coincide with the

analytical solution (3.16) in the limit as mesh spacing h → 0. The third root ω3 cor-

responds to the geostrophic mode and ω4,5,6,7 represent spurious propagating inertial

oscillations that have no particular spatial characteristics [52, 56]. The dispersion rela-

tion on Mesh 2 is given in [52, 56], and the frequency corresponding to inertia-gravity

waves is found to be the same order O(h4).
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Figure 3.5: Stencils for the RT0 − P0 and RT0 − P1 pairs.

The RT0 − P0 pair

The dispersion relation for the RT0−P0 pair on Mesh 2 is given in [56] and the results on

Mesh 1 are computed here. By using the notations of Figure 3.3 the following discrete

amplitudes are considered

ũ = (ũ1, ũ2, ũ3)
t, η̃ = (η̃A, η̃B)t, (3.24)

where A and B represent typical barycenters of upward and downward pointing trian-

gles. The velocity mass, Coriolis, and divergence stencils are shown in Figure 3.5, and
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the corresponding matrices are

M = iω
α

9







5 − cos
(

J
2

)

− cos
(

L
2

)

− cos
(

J
2

)

5 − cos
(

K
2

)

− cos
(

L
2

)

− cos
(

K
2

)

5






, (3.25)

C = f
1

3







0 − cos
(

J
2

)

cos
(

L
2

)

cos
(

J
2

)

0 − cos
(

K
2

)

− cos
(

L
2

)

cos
(

K
2

)

0






, (3.26)

D = H

(

E
(

J−L
6

)

E
(

K−J
6

)

E
(

L−K
6

)

−E
(

L−J
6

)

−E
(

J−K
6

)

−E
(

K−L
6

)

)

, (3.27)

N = iω
αh2

2
I2, (3.28)

where E(X) = exp(iX). For example, the mass stencil for the RT0 element is shown in

Figure 3.5 and at node 1 (see Figure 3.3) we obtain

α

18

(

10ũ1 −
(

eiJ/2 + e−iJ/2
)

ũ2 −
(

eiL/2 + e−iL/2
)

ũ3

)

,

which corresponds to the first line of M in (3.25).

For the 5 × 5 determinant to vanish we obtain

ω1,2 = ±ωAN +O(h2), ω3 = 0, ω4,5 = O(h−1),

for infinitesimal mesh spacing.

The RT0 − P1 pair

Common to the RT0 − P0 and RT0 − P1 is a RT0 representation of the velocity and

they differ from one another in their representation of elevation. Consequently, the M

and C matrices are given by (3.25) and (3.26), respectively. As for the PNC
1 − P1 pair

only one discrete amplitude is required for η̃ at mesh vertices and hence N is given by

(3.23). The divergence stencil on Mesh 1 is shown in Figure (3.5) and the D matrix is

obtained as

D = H
2i

3

(

sin
(

J−L
2

)

sin
(

K−J
2

)

sin
(

L−K
2

)

)

. (3.29)

Vanishing the 4 × 4 determinant leads to

ω1,2 = ±ωAN +O(h2), ω3,4 = 0 (double root),
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for infinitesimal mesh spacing. For Mesh 2, M and N are found in [56] and C and D

are deduced from (3.26) and (3.29) by using J = kh, K = −kh + lh, and L = −lh,
as written in Figure 3.2. We obtain ω3,4 = 0 and ω1,2 again coincide with ωAN for

infinitesimal mesh spacing.

The BDM1 − P0 pair

By using the notations of Figure 3.3 the following discrete amplitudes are considered

ũ = (ũ1, · · · , ũ6)
t, η̃ = (ηA, ηB)t. (3.30)

After long and tedious algebra, we obtain from stencils of Figures (3.6) and (3.7) on

Meshes 1 and 2

M = iω
α

36







M1(K) M2(J,K, L) M2(L,K, J)

M2(J, L,K) M1(L) M2(K,L, J)

M2(L, J,K) M2(K, J, L) M1(J)






, (3.31)

C = f
1

24







0 −C1(K,L) C1(K, J)

C1(L,K) 0 −C1(L, J)

−C1(J,K) C1(J, L) 0






, (3.32)

D = H
1

2

(

D1(J,K, L) D1(K,L, J) D1(L, J,K)
)

, (3.33)

where

M1(J) =

(

8 2E(J)

2E(−J) 8

)

,

M2(J,K, L) =

(

−E(K) − E(−L) 2 − 2E(−J)

2 − 2E(J) −E(−K) −E(L)

)

,

C1(K,L) =

(

E(K) + E(−L) 2

2 E(−K) + E(L)

)

,

D1(J,K, L) =

(

−E
(

L−K
3

)

−E
(

K−J
3

)

E
(

J−K
3

)

E
(

K−L
3

)

)

.

For example, the mass stencil for the BDM1 element is shown in Figure 3.6 and at

node 1 (see Figure 3.3) we obtain

α
36

(

8ũ1 + 2eiK ũ2 +
(

−eiK − e−iL
)

ũ3 +
(

2 − 2e−iJ
)

ũ4

+
(

−e−iJ − eiK
)

ũ5 +
(

2 − 2e−iL
)

ũ6

)
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Figure 3.6: Stencils for the BDM1 − P0 and BDM1 − P1 pairs on Mesh 1.
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Figure 3.7: As for Figure 3.6 but on Mesh 2.
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which corresponds to the first line of M in (3.31).

As for the RT0 − P0 the matrix N is given by (3.28). On Mesh 2 we obtain

M = iω
1

24







M3 M5(K, J) M5(K,L)

M5(−K, J) M4(L) M6(J,K, L)

M5(−K,L) M6(L,K, J) M4(J)






, (3.34)

where

M3 = 4I2,

M4(L) =

(

6 2E(L)

2E(−L) 6

)

,

M5(K, J) =

(

−E(K) 2 −E(−J)

2 − E(J) −E(−K)

)

,

M6(J,K, L) =

(

−E(L) − E(−J) −2E(−K)

−2E(K) −E(−L) −E(J)

)

.

For Mesh 2, C and D are deduced from (3.32) and (3.33) by using the values of J,K,

and L as in Figure 3.2. For the 8 × 8 determinant to vanish we obtain

ω1,2 = ±ωAN+O(h2), ω3,4,5,6 = 0 (quadruple root), ω7,8 = O(h−1),

for both meshes and infinitesimal mesh spacing.

The BDM1 − P1 pair

Common to the BDM1 −P0 and BDM1 −P1 is a BDM1 representation of the velocity

and they differ from one another in their representation of elevation. Consequently, the

M and C matrices are given by (3.31), (3.34), and (3.32). As for the PNC
1 − P1 pair

only one discrete amplitude is required for η̃ at mesh vertices and hence N is given by

(3.23). The divergence stencils on Mesh 1 and Mesh 2 are found in Figures 3.6 and 3.7

and the D matrix is written as

D =
1

6h

(

D1(J, L) D1(K, J) D1(L,K)
)

, (3.35)

where

D1(J, L) =
(

E(J) −E(L) E(−L) −E(−J)
)

.

For both meshes, vanishing the 7 × 7 determinant leads to

ω1,2 = ±ωAN +O(h4), ω3,4,5 = 0 (triple root), ω6,7 = O(h2).

We note that similarly to the PNC
1 −P1 pair the discrete inertia-gravity wave frequency

are computed very accurately (O(h4)) for infinitesimal mesh spacing.
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3.6.3 Summary of discrete frequencies

The previous results are summarized in Table 3.1, where n is the dimension of the

linear system (3.17), and hence the degree of the dispersion relation for the five FE

pairs examined here. We mention the multiplicity of the discrete frequency types and

the order of accuracy for inertia-gravity waves. For infinitesimal mesh spacing (h→ 0)

we have ω1,2 → ωAN for all schemes and hence discrete inertia-gravity frequencies

are consistent with the continuous case. The slow mode corresponding to ω = 0 is

present for all pairs. However for the RT0 − P1, BDM1 − P0, and BDM1 − P1 pairs

the multiplicity of this mode is greater than 1. Further, a O (h2) mode exists for the

BDM1 − P1 pair. We also observe the presence of solutions of the form ω = ±f for

the PNC
1 − P1 pair. These modes usually arise when the discrete scheme involves more

velocity nodes than surface elevation nodes [52, 56]. They are propagating spurious

inertial oscillations that have no particular spatial characteristics. Finally, the FE pairs

having a discontinuous representation of surface elevation have spurious frequencies of

type O (h−1) as in [53, 56].

Table 3.1: Multiplicity of the discrete frequencies obtained from the dispersion relations

for the five FE pairs examined in Section 3.6.2.

FE pair n ω = ±ωAN ω = 0 ω = ±f ω = O(h−1) ω = O(h2)

PNC
1 − P1 7 2 : O(h4) 1 4 0 0

RT0 − P0 5 2 : O(h2) 1 0 2 0

RT0 − P1 4 2 : O(h2) 2 0 0 0

BDM1 − P0 8 2 : O(h2) 4 0 2 0

BDM1 − P1 7 2 : O(h4) 3 0 0 2

3.6.4 Gravity wave limit of discrete frequencies

We now analyze the computed frequencies ωCP ≡ ω1,2 for the five FE pairs examined

in section 3.6.2. Because the Coriolis factor does not have a significant impact on the

propagation of gravity waves we let f = 0 to obtain the gravity wave limit. From

(3.16) and the results of section 3.6.2, we determine the analytical and computed phase

speeds, denoted by cAN and cCP , respectively,

cAN ≡ ωAN√
k2 + l2

= ±
√

gH, cCP ≡ ωCP√
k2 + l2

.
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The phase speed ratio, denoted by rPH, is then computed as the ratio of the computed

phase speed to the analytical one, with

rPH ≡
∣

∣

∣

∣

cCP

cAN

∣

∣

∣

∣

=

∣

∣

∣

∣

ωCP

ωAN

∣

∣

∣

∣

=
|ωCP |

√

gH(k2 + l2)
. (3.36)

Note that we should have rPH = 1 in the absence of numerical dispersion. We show

rPH as a surface function depending on the normalized wave numbers kh and lh for

Meshes 1 and 2 in Figure 3.8. The values of kh and lh for Mesh 1 vary between ± 4π / 3

and ±π / α, respectively, in order to include the six points defined later in (3.37). For

Mesh 2, kh and lh vary between ±π as in [56, 25]. The phase advance (rPH) is also

plotted in Figure 3.9 along the selected axes OE and OT for Mesh 1 and OX, OD1, and

OD2 for Mesh 2. The directions of these axes are defined in Figure 3.8 and Table 3.2.

For symmetrical reasons the phase advance surfaces are only shown for positive wave

numbers in Figure 3.9.

Table 3.2: Normalized wave numbers relations for the selected axes defined in Figure

3.8.
Mesh 1 Mesh 2

OE : lh = 0 or kh = ± 2α
3
lh OX : lh = 0 or kh = 0

OT : kh = 0 or kh = ± 2α lh OD1: kh = lh

OD2: kh = −lh

For the RT0 − P0 pair we obtain rPH ≤ 1 on Mesh 1 for all values of kh and lh and

the waves do not accelerate on Mesh 1. On Mesh 2, we have rPH ≤ 1 in the OX

and OD1 directions but this is not the case in the OD2 direction since the maximum

value observed for rPH is 1.18. The PNC
1 − P1 pair behaves similarly although a weak

acceleration (rPH = 1.02) is noticeable in the OT, OX, and OD1 directions. For larger

wave numbers the RT0 −P0 and PNC
1 −P1 pairs present less dispersion effects than the

three other ones examined in Section 3.6.2 because rPH is closer to 1 for those pairs.

For the RT0 −P1 and BDM1 −P1 pairs we have rPH ≤ 1 for all values of kh and lh on

both meshes. Further we have rPH = 0 for

(kh, lh) =

(

±4π

3
, 0

)

,

(

±2π

3
,±π

α

)

, on Mesh 1, (3.37)

(kh, lh) = ±
(

2π

3
,−2π

3

)

, on Mesh 2. (3.38)

The wave numbers in (3.37) and (3.38) correspond to spurious surface-elevation modes

introduced by the spatial discretization scheme and they are represented in Figure 3.10.
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Figure 3.8: Definition of selected axes and the phase speed ratio (rPH) as a surface

function on Meshes 1 and 2 for the RT0 − P0, RT0 − P1, P
NC
1 − P1, BDM1 − P0, and

BDM1 − P1 pairs.
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Figure 3.9: The phase speed ratio (rPH) along selected axes in function of the normalized

wave number.

These modes do not propagate but are trapped within the model grid which usually

leads to noisy solutions. For the BDM1 − P0 we observed that rPH ≥ 1 on Mesh 1

for values of kh and lh inside the hexagonal area defined by the six points in (3.37).

On Mesh 2 we have rPH ≥ 1 for all kh and lh values. Consequently, the gravity waves

always accelerate with such a discretization scheme.

3.6.5 Canal simulation

In this test, equations (3.1) and (3.2) are solved using f = 0. The purpose of the

experiment is to validate the analytical results obtained in Section 3.6.4 on Mesh 2 in

the OX and OD2 directions. For the OX direction, Mesh 2 is considered while in the

OD2 direction we employ a mesh obtained from Mesh 2 by a rotation of π/4 as in [56,

Figure 5.1]. The domain extent is 2 000 km × 280 km. The resolution is set to h = 10

km. The fluid is initially at rest and zero normal velocity is specified at the boundaries,

except at the western one. On the western side, the fluid velocity is set to 0.1 m s−1

inbound and η = 1 m, with H = 1 000 m and g = 10 ms−2, i.e. the phase speed of

gravity waves is
√
gH = 100 ms−1. The Crank-Nicolson scheme is used for the time

discretization. The time step is set to 10 s and the gravitational Courant number is
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Mesh 1 Mesh 2

Figure 3.10: Zero frequency surface-elevation modes for the RT0 − P1 and BDM1 − P1

pair s: Mesh 1 (left) and Mesh 2 (right).

thus 0.1, such that the time step has no significant impact on the wave dispersion. The

duration of the simulation is 1 000 time steps and the wave front should be located at

midbasin, i.e. at 1 000 km from the western boundary, at the end of the simulation.

In Figure 3.11 the numerical solutions obtained for all FE pairs are shown for both the

OX and OD2 directions. The results for the PNC
1 −P1 and RT0 −P0 pairs are identical

to those displayed in [56] and they are reproduced here for comparison purposes with

the other pairs. The RT0 − P1 pair exhibits the strongest oscillations trailing behind

the front in both directions, while the region ahead of the front is free of oscillations.

This result is in good agreement with the analysis conducted in Section 3.6.4 where

rPH ≤ 1. Small oscillations appearing at the beginning of the simulation travel about

two times as fast as the front and they are observed at the eastern part of the domain

in Figure 3.11. The presence of these oscillations is beyond the scope of our analysis.

The results for the BDM1 − P1 and RT0 − P1 pairs are similar but the amplitude of

the oscillations behind the front is slightly smaller for the BDM1−P1 pair. The results

for the BDM1 −P0 pair show oscillations travelling faster than the wavefront while the

region behind the front is noise free. Again these results are in good agreement with

those of Section 3.6.4 because rPH ≥ 1 in the OX and OD2 directions for all kh and lh.

The experiment has also been performed on Mesh 1 in the OE and OT directions but

the results are not presented here as they are very similar to those obtained on Mesh 2.
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Figure 3.11: Surface elevation for the canal test after 10 000 s of simulation on Mesh 2.
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Table 3.3: Dimension of the discrete operator kernels and Λ on a n× n regular Mesh 2

with no normal flow boundary condition.

PNC
1 − P1 RT0 − P0 RT0 − P1 BDM1 − P0 BDM1 − P1

p 6 n2 3(n− 1
3
)2 − 1

3
3(n− 1

3
)2 − 1

3
6(n− 1

3
)2 − 2

3
6(n− 1

3
)2 − 2

3

q (n+ 1)2 2 n2 (n+ 1)2 2 n2 (n+ 1)2

C 0 (n− 1)2 + 1 (n− 1)2 + 1 2(n− 1)2 + 2 2(n− 1)2 + 2

G 1 1 3 1 3

D 5(n− 1
5
)2 − 1

5
(n− 1)2 2(n− 1)2 4(n− 1

2
)2 5(n− 3

5
)2 + 1

5

CD 0 0 (n− 1)2 2(n− 1)2 + 1 2(n− 1)2 + 1

CG (n+ 1)2 2 n2 2 n2 + 2 4(n− 1
2
)2 + 2 3(n− 1

3
)2 + 11

3

CDG (n− 1)2 + 1 (n− 1)2 + 1 2(n− 1)2 + 3 4(n− 1
2
)2 + 1 3(n− 1

3
)2 + 8

3

Λ (n− 1)2 (n− 1)2 (n− 1)2 2 n2 − 2 (n+ 1)2 − 4

3.7 Geostrophic balance

3.7.1 Kernel analysis

In this analysis we seek stationary solutions to the SW system (3.4) and (3.5) as done

in [50] for the P0−P1, P
NC
1 −P1, P1−P1, MINI, P1isoP2−P1, and P2−P1 pairs. Here,

we examine the RT0 −P1, BDM1 −P0, and BDM1 −P1 pairs. Stationary solutions are

obtained by substituting ω = 0 in (3.9) and (3.10) and this leads to

(

C G

D 0

)(

u

η

)

= 0. (3.39)

The stationary solutions thus belong to the kernel of the matrix in the left hand side of

(3.39) denoted by CDG. We also define

CD ≡
(

C

D

)

, CG ≡
(

C G
)

. (3.40)

We consider a square domain with no-normal flow boundary condition and the regular

n × n Mesh 2. The dimension of the C,D,G,CD,CG, and CDG matrix kernels are

computed numerically using MATLAB for n = 3, · · · , 14, and the results are extrap-

olated for any integer n and given in Table 3.3. We observe that the C matrix has

a non-trival kernel for the RT0 and the BDM1 elements. For the latter the kernel

dimension is twice bigger than the RT0 one. The rank deficiency for the C matrix is

a consequence of using only one velocity component at the velocity nodes as for the
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Arakawa C-grid [1, 41]. For the PNC
1 − P1 pair both velocity components are used at

velocity nodes and the C matrix is thus full rank.

We note that the dimension of the G matrix kernel is equal to one for the PNC
1 − P1,

RT0 −P0, and BDM1 −P0 pairs. This solution corresponds to the hydrostatic surface-

elevation mode, i.e. the solution with constant elevation and zero velocity. It can

be simply considered as a constant of integration associated with the solution of the

governing equations. However, for the RT0 − P1 and BDM1 − P1 pairs the dimension

of the G matrix kernel is equal to 3 and hence 2 spurious surface-elevation modes are

present.

The dimension of the D matrix kernel can be deduced from (3.18) and by using the

rank theorem we obtain

dim(ker(D)) = p− q + dim(ker(G)). (3.41)

The CD matrix kernel is the intersection of the C and D matrix kernels. For the

PNC
1 − P1 and RT0 − P0 pairs this intersection is empty. The dimension of the CD

matrix kernel is (n−1)2 for the RT0−P1 pair while it is twice greater for the BDM1−P0

and BDM1 − P1 pairs as shown in Table 3.3.

The modes lying in the CD matrix kernel, and named here CD-modes, behave similarly

to the spurious surface-elevation modes but they belong to the velocity space instead.

The fact that the number of CD-modes is O(n2) compared to O(1) for the spurious

surface-elevation modes, suggests that the CD-modes may appear locally on the mesh

which is usually not the case for the elevation modes.

The C matrix is skew-symmetric and by using (3.18) and the rank theorem we deduce

dim(ker(CG)) = q + dim(ker(CD)). (3.42)

The CDG matrix kernel contains all stationary modes by definition, including the

hydrostatic mode, possible spurious surface-elevation and CD-modes. It also contains

other modes that are solution of the discrete geostrophic balance, i.e. the balance

between the Coriolis and pressure gradient operators. The number of such modes is

given by

Λ ≡ dim(ker(CDG)) − dim(ker(G)) − dim(ker(CD)), (3.43)

and it is mentioned in the last line of Table 3.3 for all pairs. For the three first pairs

in Table 3.3 we obtain Λ = (n− 1)2 which corresponds to the number of mesh vertices

that dot not lie on the boundary. For the two last pairs we have Λ = 2n2 − 2 and
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Figure 3.12: x-component of the velocity for a typical RT0 − P1, BDM1 − P0, and

BDM1 − P1 smallest representable vortex.

(n+1)2 −4, respectively. For the three first pairs, each vertex can be associated with a

smallest representable vortex (SRV) defined in [50] as the stationary solution of (3.39)

with minimal support. As in [50], the SRV form a basis for the discrete geostrophic

balance. A typical SRV is presented in Figure 3.12 for the RT0 − P1, BDM1 − P0 and

BDM1 − P1 pairs on Mesh 2 and Mesh 3, an unstructured mesh with smoothing. We

see that the SRV structure is larger for these three pairs than for the PNC
1 − P1 and

RT0 − P0 pairs examined in [50] on both meshes. Note that SRV with more complex

structures also exist near the boundary for the BDM1 − P0 and BDM1 − P1 pairs.

3.7.2 Propagating eddy simulation

In this experiment our purpose is to validate the results obtained in Table 3.3. The

slowly propagating Rossby modes are simulated in the case of the evolution of a typical

anticyclonic eddy at midlatitudes. The domain is a 2 000 km × 1 200 km rectangular

basin and the triangulation as a resolution of 20 km. The β-plane approximation,

f = f0 + βy, is used where f0 = 6.1634 × 10−5 s−1, β = 2.0746 × 10−11 m−1 s−1
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and the choice g = 9.81 m s−2, H = 1.6309 m results in a phase speed for gravity

waves of
√
gH = 4 m s−1. The radius of deformation at midbasin is

√
gH/f0 = 65

km. A Gaussian distribution centered in the domain is prescribed at initial time for the

elevation and the initial velocity is in geostrophic balance

u = −2
g

f

A

r2
exp

(

−|x|2
r2

)

k × x, (3.44)

η = A exp

(

−|x|2
r2

)

, (3.45)

where r = 1.3× 105 m and A = 0.95 m. The Crank-Nicolson scheme is again used and

the time step is set to 1 800 s. The vortex moves slowly westward as predicted by the

Rossby wave dynamics. Figures 3.13 and 3.14 show the surface-elevation and flow speed

field after 5 weeks of simulation on Mesh 2 and the unstructured Mesh 3, respectively.

Note that the solutions have been linearly interpolated to represent continuous isolines.

On Mesh 2, the solution is very smooth for both the elevation and flow speed field.

The solutions are nearly identical for the five FE pairs and minor differences are barely

observed. On Mesh 3, the surface elevation and flow speed field are very similar to those

obtained on Mesh 2 in Figure 3.13 for the PNC
1 − P1, RT0 − P0 and RT0 − P1 pairs.

However, for the BDM1 − P0 and BDM1 − P1 pairs the situation is very different.

Indeed, the flow speed field exhibits severe oscillations that lead to unstable results.

The observed oscillations appear early in the simulation after only few time steps and

gradually grow in time. Although the oscillations in the flow speed field rapidly increase,

the surface elevation remains coherent with the presence of mild oscillations. We suspect

that the presence of CD-modes in Table 3.3 might be responsible for the oscillations

observed in Figure 3.14 for the BDM1 − P0 and BDM1 − P1 pairs. In that case the

CD-modes, although present, are not triggered by the use of an unstructured mesh for

the RT0 − P1 pair.

3.8 Conclusion

An analysis of the Raviart-Thomas and Brezzi-Douglas-Marini FE pairs is presented

to determine the ability of these pairs in solving the SW equations. An inertia-gravity

wave dispersion analysis is performed on meshes made up of equilateral and right biased

triangles. Spurious surface elevation modes are observed for the RT0−P1 and BDM1−
P1 pairs. The analysis also permits to show that the RT0 −P0 and PNC

1 −P1 pairs have
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Figure 3.13: Surface elevation and flow speed field after 5 weeks of simulation on

Mesh 2.
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Figure 3.14: As for figure 3.13, but on Mesh 3.
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the lowest amount of dispersion on both meshes compared to the RT0 − P1, BDM1 −
P0, and BDM1 − P1 ones. We note that solutions on equilateral meshes present less

dispersion than on meshes made up of right biased triangles. The simulation results

of a gravity wave propagating in a canal are in good agreement with the analytical

computations. The geostrophic equilibrium is investigated through a linear algebra

kernel computation approach. Such an analysis shows the presence of spurious CD-

modes in the velocity space for theRT0−P1, BDM1−P0, andBDM1−P1 pairs. Smallest

representable vortex structures have been computed for all pairs and compared with the

RT0 − P0 and PNC
1 − P1 ones on both structured and unstructured meshes. Numerical

solutions of a propagating eddy at midlatitudes give smooth elevation and flow speed

field on the uniform mesh for all pairs. Those results still hold for the PNC
1 − P1,

RT0 − P0, and RT0 − P1 pairs on the unstructured triangulation while unstable results

are obtained for the BDM1 − P0, and BDM1 − P1 pairs in the representation of the

flow speed field only. We suspect the CD-modes to be responsible for this behavior.



4. CONCLUSION

In Chapter 1, we presented the dispersion analyses of nine finite element pairs on the

regular mesh made up of right biased triangles. We observed that the PNC
1 − P1 and

RT0 − P0 pairs are significantly less dispersive for inertia-gravity waves, provided that

the deformation radius of Rossby is well resolved for the RT0 − P0 pair. We noted the

presence of spurious O(h−1) modes for the pairs with discontinuous surface elevation

representation.

In Chapter 2, a linear algebra approach was developed to characterize the kernels of

the discrete operators. Three kernel relations were identified as necessary conditions

for the discretized system to share the same stationary properties as the continuous

system. The discrete kernels were investigated to ascertain the presence, number and

structure of spurious modes. We introduced the concept of the smallest representable

vortex (SRV) to characterize the set of stationary modes. On a structured mesh, we

observed that the SRV of the PNC
1 − P1, RT0 − P0, and P0 − P1 pairs are smaller

than those of the P1 − P1, MINI, P2 − P1, and P1isoP2 − P1 pairs. Surprisingly, on a

unstructured mesh the SRV were only observed for the PNC
1 −P1, RT0−P0, and P0−P1

pairs. A simulation showed that the absence of SRV on unstructured grids could lead to

numerical instabilities for time dependent vortex flows. Another numerical test showed

that strong modal oscillations are present in the geostrophic balance approximation for

the MINI, P2 − P1, and P1isoP2 − P1 pairs. This phenomenon is also observed for the

PNC
1 −P1 and RT0−P0 pairs but with lesser amplitude. No modal decoupling is present

for the P0 − P1 and P1 − P1 pairs.

In Chapter 3, we analysed the Raviart-Thomas and Brezzi-Douglas-Marini finite ele-

ment spaces. Dispersion analyses were performed on meshes made up of equilateral

and right biased triangles. We noted the presence of spurious surface elevation modes

for the BDM1 − P1 and RT0 − P1 pairs. The discrete frequencies for inertia-gravity

waves of the BDM1 − P1, BDM1 − P0, and RT0 − P1 pairs are consistent with the

continuous frequencies. However, we observed that the PNC
1 − P1 and RT0 − P0 pairs

are less dispersive. The presence of SRV was noted on both structured and unstruc-

tured meshes. We also observed a large number of spurious CD-velocity modes for the
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BDM1 − P1, BDM1 − P0, and RT0 − P1 pairs. On the uniform mesh, the numerical

solutions of a propagating eddy at midlatitudes gave smooth elevation and flow speed

field for all pairs. On the unstructured mesh, those results still hold for the PNC
1 − P1,

RT0−P0, and RT0−P1 pairs while unstable results are obtained for the BDM1−P1 and

BDM1 −P0 pairs in the representation of the velocity field. We suspect the CD-modes

to be responsible of this behavior.

In conclusion to this study, we highly recommend the PNC
1 − P1 and RT0 − P0 finite

element pairs for solving the SWE. The numerical dispersion of inertia-gravity waves

for these pairs is minimal when compared to the other pairs. The PNC
1 − P1 pair also

presents the advantage of a diagonal velocity mass matrix due to the orthogonality of

PNC
1 base functions. This feature can be used to greatly reduce the numerical workload

required to solve the system. Note that similar results can be achieved for the RT0−P0

pair with a mass lumping procedure. On unstructured meshes, the presence of SRV

structures for the PNC
1 − P1 and RT0 − P0 pairs gives them the upper hand in the

approximation of geostrophic flows although some oscillations due to modal decoupling

may be visible. To avoid the modal decoupling problem one may consider the P0 − P1

pair. The approximation of the geostrophic flows is better with this pair but this scheme

is more disperse for inertia-gravity waves.
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J. Peraire, and O.C. Zienkiewicz, eds., Pineridge Press, Barcelona, Spain, 1993,

pp. 1001–1009.

[3] V. Aizinger and C.N. Dawson, A discontinuous Galerkin method for two-

dimensional flow and transport in shallow water, Adv. in Water Res., 25 (2002),

pp. 67–84.

[4] F. Alcrudo and P. Garcia-Navarro, A high-resolution Godunov-type scheme

in finite volumes for the 2D shallow water equations, Int. J. Numer. Methods Flu-

ids, 16 (1993), pp. 489–505.

[5] K. Anastasiou and C.T. Chan, Solution of the 2D shallow water equations

using the finite volume method on unstructured triangular meshes, Int. J. Numer.

Methods Fluids, 24 (1997), pp. 1225–1245.

[6] A. Arakawa and V.R. Lamb, Computational design of the basic dynamical

processes of the UCLA general circulation model, Methods Comput. Phys., 17

(1977), pp. 173–265.

[7] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis

of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39

(2002), pp. 1749–1779.

[8] D.N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the

Stokes equations, Calcolo, 21 (1984), pp. 337–344.



Bibliography 106

[9] J.H. Atkinson, J.J. Westerink, and J.M. Hervouet, Similarities between

the wave equation and the quasi-bubble solutions to the shallow water equations,

Int. J. Numer. Methods Fluids, 45 (2004), pp. 689–714.

[10] J.H. Atkinson, J.J. Westerink, and Jr. R.A. Luettich, Two dimensional

dispersion analyses of finite element approximations to the shallow water equations,

Int. J. Numer. Methods Fluids, 45 (2004), pp. 715–749.

[11] M.L. Batteen and Y.J. Han, On the computational noise of finite-difference

schemes used in ocean models, Tellus, 33 (1981), pp. 387–396.

[12] M. Bercovier and O. Pironneau, Error estimates for the finite element

method solution of the Stokes problem in the primitive variables, Numer. Math., 33

(1979), pp. 211–224.

[13] F. Brezzi, J. Douglas, and L.D. Marini, Recent results on mixed finite ele-

ment methods for second order elliptic problems, in Vistas in Applied Math., Nu-

merical Analysis, Atmospheric Sciences, Immunology, Balakrishanan, Dorodnitsyn,

and Lions, eds., Optimization Software Publications, 1986.

[14] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-

Verlag, Berlin, 1991.

[15] G.F. Carey, ed., Finite Element Modeling of Environmental Problems, John Wi-

ley and Sons, Chichester, UK, 1995.

[16] S. Chippada, C.N. Dawson, M.L. Martinez, and M.F. Wheeler, A

Godunov-type finite volume method for the system of shallow water equations, Com-

put. Methods Appl. Mech. Engrg., 151 (1998), pp. 105–129.

[17] B. Choi, M. Iskandarani, J.C. Levin, and D.B. Haidvogel, A spectral

finite-volume method for the shallow-water equations, Mon. Wea. Rev., 132 (2004),

pp. 1777–1791.

[18] P.G. Ciarlet, The finite element method for elliptic problems, North-Holland,

Amsterdam, 1978.

[19] B. Cockburn, E. Karniadakis, and C.W. Shu, eds., Discontinuous Galerkin

Methods-Theory, Computation, and Applications, Lect. Notes Comput. Sci. En-

grg. 11, Springer-Verlag, Berlin, 2000.
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