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Résumé

Cette thèse vise l’étude des écoulement de déplacement de fluides miscibles à l’intérieur d’un
long tuyau stationnaire vertical et d’un tuyau en mouvement. Concernant la géométrie des
mouvements, le tuyau oscille comme un pendule inversé avec une fréquence maximale faible,
c’est-à-dire, f̂ = 0.2 (Hz) et une oscillation maximale de faible amplitude, soit 15 (◦) par
rapport à l’axe du tuyau. Les écoulement de déplacement se produisent à un nombre de Péclet
élevé et aux petits nombres d’Atwood. L’accent est mis sur les types de fluides et de géométries
(tuyau fixe ou en mouvement). Les approches expérimentales détaillées sont utilisées de ma-
nière intégrée. Dans cette thèse, la configuration de densité est la densité instable. La majeure
partie des travaux en cours se concentre sur les écoulements de déplacement de fluides New-
toniens isovisqueux, mais nous étudions également l’écoulement de déplacement à contrainte
au seuil de plasticité dans un long tuyau vertical.

Pour un écoulement de déplacement Newtonien isovisqueux dans un tuyau stationnaire, nous
remarquons un effet stabilisant imposé au débit principal et signalant l’existence de deux
régimes d’écoulement principaux à long moment introduits par un écoulement de déplacement
stable et un écoulement de déplacement instable. La transition entre ces deux régimes se
produit à un nombre critique de Reynolds modifié (Ret|Critical), en fonction du nombre de
Froude (Fr). En étudiant en détail le régime d’écoulement stable : nous constatons que,
premièrement, le modèle de lubrification, associé à une simple formule d’accélération initiale,
suggère une prédiction de la vitesse frontale de déplacement pénétrante dépendante du temps
et que, deuxièmement, deux sous-régimes sont remarqués pour l’écoulement de déplacement
stable, à savoir les écoulement à reécoulement prolongé et les écoulement à reécoulement
non prolongé. La transition entre les deux sous-régimes est un état d’écoulement d’interface
stationnaire marginal, qui est également bien prédit par le modèle de lubrification.

Pour l’écoulement de déplacement newtonien isovisqueux dans le tuyau en mouvement, trois
régimes d’écoulement différents sont introduits : un écoulement stable non diffusif (à Re/Ro <
70 & Ret/Fr < 35), un écoulement stable diffusif (à Re/Ro > 70 & Ret/Fr < 35) et un
écoulement instable diffusif (à Ret/Fr > 35) où Re, Ret et Ro représentent le nombre de
Reynolds, le nombre de Reynolds modifié et le nombre de Rossby, respectivement. De plus,
les vitesses frontales pénétrantes ainsi que les coefficients de diffusion macroscopiques sont
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mesurés. Les résultats indiquent clairement qu’en fonction de la valeur de la différence de
densité et de la vitesse moyenne d’écoulement imposée, les mouvements géométries peuvent
avoir des effets différents et même opposés, par exemple, une augmentation ou une diminution
légère de la vitesse frontale. Le mouvement du tuyau semble également augmenter légèrement
le coefficient de diffusion macroscopique.

Enfin, pour le rendement des écoulement de déplacement à contrainte au seuil de plasticité
dans la conduite fixe, deux régimes principaux sont observés en fonction du nombre de Bin-
gham Newtonien (BN ) : un régime de couches résiduelles en mouvement (pour BN < 100) et
un régime de couches résiduelles stationnaires (pour BN > 100). En outre, cinq sous-régimes
sont identifiés. Les transitions entre ces sous-régimes sont des fonctions de nombre de Rey-
nolds effectif (Re∗N ), nombre de flottabilité (χ) et ReN/Fr. En fonction des valeurs de la limite
de contrainte au seuil de plasticité, les résultats montrent que la force de flottabilité indique
des effets différents sur le comportement d’écoulement de déplacement. De plus, nous pour-
rions prédire certains comportements d’écoulement en utilisant un modèle de lubrification,
par exemple la transition entre des couches résiduelles stationnaires et en mouvement. Enfin,
nous utilisons des simulations numériques de la dynamique des fluides dans une géométrie 2D,
permettant de prédire certains des comportements d’écoulement clés.
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Abstract

This thesis aims to investigate buoyant displacement flows of miscible fluids in a long, vertical
stationary pipe or a moving pipe. For the case of the moving geometry, the pipe oscillates
like an inverted pendulum with a small maximum frequency, i.e. f̂ = 0.2 (Hz) and a small
maximum oscillation amplitude, i.e. 15 (◦) with respect to the pipe axis. The displacement
flows occur at the high Péclet number and small Atwood numbers. The focus is on the type
of fluids and geometries (stationary or moving pipe). Detailed experimental approaches are
employed in an integrated fashion. The density configuration in this thesis is the density
unstable. The main part of the current work is concentrated on displacement flows of iso-
viscous Newtonian fluids. We also study the yield stress displacement flow in a long vertical
pipe.

For iso-viscous Newtonian displacement flow in a stationary pipe, we uncover the stabilizing
effect of the mean imposed flow and report the existence of two main flow regimes at long times
introduced as a stable displacement flow and an unstable displacement flow. The transition
between these two regimes occurs at a critical modified Reynolds number (Ret|Critical), as
a function of Froude number (Fr). We investigate deeply the stable flow regime: first, a
lubrication model combined with a simple initial acceleration formulation suggests a prediction
of the time-dependent penetrating displacing front velocity. Second, we find two sub-regimes
for the stable displacement flow, namely sustained-back-flows and no-sustained-back-flows.
The transition between the two sub-regimes is a marginal stationary interface flow state,
which is also well predicted by the lubrication model.

For the iso-viscous Newtonian displacement flow in the moving pipe, three different flow
regimes are introduced: a stable flow that is non-diffusive (at Re/Ro < 70 & Ret/Fr < 35),
a stable-diffusive flow (at Re/Ro > 70 & Ret/Fr < 35) and an unstable-diffusive flow (at
Ret/Fr > 35) where Re, Ret and Ro represent the Reynolds number, the modified Reynolds
number, and the Rossby number, respectively. In addition, penetrating front velocities as well
as macroscopic diffusion coefficients are measured. The results indicate that depending on the
value of the density difference and the mean imposed flow velocity, the geometrical movements
can have different and even opposite effects, e.g. slightly increase or decrease the front velocity.
The pipe motion seems to also slightly increase the macroscopic diffusion coefficient.
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Finally, for the yield stress displacement flow in the stationary pipe, two main flow regimes
are observed as a function of the Newtonian Bingham number (BN ): a moving residual layer
regime (for BN < 100) and a stationary residual layer regime (for BN > 100). In addition,
five sub-regimes are identified. The transitions between these sub-regimes are functions of
effective Reynolds number (Re∗N ), Buoyancy number (χ), and ReN/Fr. Depending on yield
stress values, the results show that the buoyancy force has different effects on the displacement
flow behaviour. Moreover, we could predict some of the flow behaviours using a lubrication
model, e.g. the transition between stationary and moving residual layers. Finally, we use
computational fluid dynamics simulations in a 2D geometry, predicting some of the key flow
behaviours.
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Introduction

I Synopsis

I.I Problem of study

This thesis aims to investigate buoyant displacement flows of miscible fluids in stationary or
moving geometries. The density configuration is the density unstable configuration (a light
fluid is displaced by a heavy fluid). Although a significant driving force in this study is the
buoyancy force, a mean flow is imposed in the downward direction. The effects of the mean
imposed flow velocity (V̂0), the density difference, defined by the Atwood number (At = ρ̂H−ρ̂L

ρ̂H+ρ̂L
,

ρ̂H and ρ̂L are the densities of heavy and light fluids, respectively) 1, rheology of fluids and
geometry (stationary or moving) are studied. The imposed flow is generally laminar. The pipe
aspect ratio is large enough and satisfies δ−1 = L̂

D̂
� 1 in which L̂ and D̂ are the pipe length

and the pipe diameter, respectively. The initial interface is placed far away from both ends of
the pipe and it is transverse to the pipe axis. Fluids employed in this work are Newtonian and
yield stress fluids. Fig. I indicates a schematic view of the problem.

Displacement flows of one fluid by another one are common in the oil and gas industries such
as well cementing, in order to remove gelled drilling fluid from the walls of a well (1; 2; 3), food
industries (4; 5), nature (6), plastic manufacturing (7), and other applications (8; 9; 10; 11).
Our focus is on the displacement flows in the oil and gas industries. These processes are
either related to well construction (e.g. primary cementing process in which cement slurry
displaces drilling fluid) or production (e.g. pipelining), as well as in other parts of the oil and
gas industries (e.g. Floating Production Storage and Offloading (FPSO)). In this thesis, we
attempt to understand the principal mechanisms of displacement flows. It helps us to design a
displacement flow process as effective as possible. From a fluid mechanics perspective, in the
primary cementing process, it would be desirable to displace as much drilling fluid as possible
by pumping as little cement slurry as required. Let us note that in all these processes, the flow
is often laminar and the fluids are mostly non-Newtonian.

Understanding the physical and parametric complexity of the displacement flow is the main

1. Throughout the thesis we shall adopt the convention of denoting dimensional quantities with hat (e.g.
ρ̂H) and dimensionless quantities without.

1



Gate valve (open)

𝛽

Dyed light fluid

(Displaced fluid)

Transparent heavy fluid

(Displacing fluid)

Drain 

 𝜌H,  𝜇H

 𝜌L,  𝜇L

 𝑉0

Figure I – Schematic view of the problem geometry. A dyed light fluid is displaced by a
transparent heavy fluid. The pipe has the transverse diameter D̂. The direction of the mean
imposed flow with velocity V̂0 is along the pipe axis. ρ̂ and µ̂ show the density and viscosity
of fluids, respectively.

challenge involved in the primary cementing process. Type of geometry (pipe, annulus, etc.),
geometry inclination, gravitational acceleration, physical properties of fluids, and considering
two fluids of the displacement are the parameters which can be gathered in the form of 10-12
dimensionless groups to describe the fluid behavior (12). Moreover, external forces that are
used to maximize the efficiency of the displacement flow and rheological properties of fluids
(13; 14) are so wide and complex that it would be elusive to provide a comprehensive study of
the displacement flow. Therefore, it would be necessary to simplify these complex phenomena
to more clearly understand the displacement flow.

To date, many investigations have been done to understand the different features of displace-
ment flows. Exchange flows and miscible displacement flows of Newtonian fluids in different
geometries with different inclinations have been investigated in details. However, investigation
of non-Newtonian displacement flows has been less developed due to the complex rheological
behaviour of non-Newtonian fluids. Furthermore, there are only a few investigations in the
literature which can be directly relevant to displacement flows with moving geometries. The-
refore, our aim is to investigate how the mean imposed flow velocity, the Atwood number,
and adding external force (e.g. geometry motion) affect the displacement flow efficiency. In
addition, we study the effects of the yield stress value on the formation of new regimes.
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I.II Fundamental interests and applications

As we mentioned earlier, the displacement flow of one fluid by another one (with different
properties in a confined flow geometry) is one of the widespread phenomena, known in a di-
verse range of physical and engineering applications. The density difference and the rheology
of fluids are two main parameters in all industrial displacement flows. Many investigations
have reported experimentally and computationally the effects of the density difference on dis-
placement flows in various geometries including near horizontal geometry (15; 16; 17), inclined
geometry (18; 19; 20), vertical geometry (21) and non-uniform geometry (22; 23), but in this
work we focus specifically on strictly vertical or moving geometries. In addition, displace-
ment flows of non-Newtonian fluids have also been studied experimentally and numerically
(1; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33). The motivation of our work stems from different
operations presented in the oil and gas industries (e.g. the primary cementing process) which
often involves the displacement of one fluid by another one in a pipe, annulus or duct-like with
large aspect ratios. There are two types of displacement flows: laminar and turbulent displa-
cement regimes. The latter is typically more effective, but it is not always possible owing to
process constraints. Therefore, our flows are laminar.

On the one hand, we know that different types of displacement flows and various flow re-
gimes can occur depending on the contribution of different parameters and balances between
participating forces (buoyancy, inertial and viscous, etc.). Therefore, many aspects of displa-
cement flows, e.g. the fluid properties are really hard to predict. On the other hand, failure to
achieve an effective displacement flow leads to contamination of fluids and increases the envi-
ronmental pollution in primary cementing applications. In addition, the productivity decreases
and the related costs strongly increase. Therefore, a better understanding of these flows is a
strong industrial motivation. The application of this knowledge to improve the process design
leads to the reduction of the environmental impacts and the related costs and increasing the
productivity.

I.III Outline

The outline of this thesis is as follows: In the introduction, we study the industrial background
and the related fundamental investigations and finally, the conclusions and research objectives
are presented. Chapter 1 is devoted to the investigation of buoyant miscible displacement flows
in a vertical pipe. Chapter 2 looks into displacement flows of two miscible, Newtonian fluids
in a long, moving pipe while comparing the results with the corresponding displacement flows
in a stationary vertical pipe. In Chapter 3, we observe the effect of increasing the yield stress
of the displaced fluid on displacement flow behaviours. The thesis is concluded in general
conclusions and future perspectives by highlighting the novel contributions of the research,
some concluding, and future perspectives.
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II Background

In 2013, a study was performed by Energy Information Administration (EIA) that was pu-
blished in the International Energy Outlook 2013 (IEO2013) indicating a significant growth
of world energy consumption by 56% between 2010 and 2040 from 553 to 865 quadrillion 2

kilojoules (kJ). Most of this demand for energy will come from non-OECD countries (non-
Organization for Economic Cooperation and Development). While the energy consumption is
ceaselessly increasing in the world (see Fig. II), the crude oil and the natural gas will remain
the main sources of energy at least for the next few decades (34). Since 1850, the analysis in-
dicates that the usage of fossil fuels (oil, gas, and coal) has increased globally and dominated
the world energy consumption. Due to a sharp rise in fossil fuel combustion, CO2 emissions
(which cover 80% of greenhouse gas emissions) have increased rapidly. Subsequently, the most
important environmental concern in these decades can be global warming (35).

The growth in worldwide energy consumption is forced primarily by China, India, Africa, the
Middle East, and Southeast Asia. Investigations indicate that Canada consistently has been
selected among the top 10 energy providers in the world (36). Canada energy productions are
more than domestic consumption. Canada is rich in oil, petroleum, and natural gas. According
to the U.S. EIA and Market Realist, Canada is the fifth-largest oil producer in the world, the
third in natural gas production, and the third in crude oil reserves (see Fig. III). Therefore, it
is vital to study the various aspects of improving oil and gas production to reduce the related
costs.

One of the main processes that frequently occur in oil and gas industries is the displacement of
one fluid by another one. This phenomenon is observed in many parts of oil and gas industries
including constructing and completing of an oil well (e.g. primary cementing (2)), Floating
Production Storage and Offloading (FPSO) (e.g. conditions like a start-up or shut-down of
an operation), etc. In all the cases, geometries can be stationary or moving. The fluids in
displacement flows in oil and gas industries often exhibit rheological properties and density
difference. Geometries are generally pipe or annulus with large aspect ratios. In this chapter,
we introduce the associated fundamental investigations that help us better understand the
displacement flow problem.

This chapter is organized into three main sections. First, we describe the main related engi-
neering background of our problem. The primary cementing process is our principal example.
Second, we explain the associated fundamental investigations of our problem. Finally, we
conclude this chapter with a brief summary of the main findings.

2. In the USA, a quadrillion is a mere 1015.
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Figure II – World energy consumption (34).
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Figure III – Global reserved oil by country (36).

III Primary cementing process

In the oil and gas industries, one of the main operations performed at least once in every
well is the primary cementing, which is a technique to place cement slurries in the annular
gap between the casing and the well. The cement then becomes hard to hydraulically seal the
oil and gas wells, which prevents the migration of formation fluids in the annular gap and
increases the well productivity.

5



Table I – Rheological properties and flow parameters in the primary cementing. κ̂ , n, τ̂y,
Q̂, ρ̂ indicate consistency, power-law index, yield stress, flow rate, and density, respectively
(2; 37).

κ̂ (Pa.sn) n τ̂y (Pa) Q̂ (1/min) ρ̂ (kg/m3)
(3 – 3000)×10−3 (1 – 10)×10−1 0 – 20 (3 – 30)×102 (9 – 22)×102

III.I Physical description of the primary cementing

As we mentioned previously, the hydraulic seal of the annular gap is the primary cementing
aim in all oil and gas wells. To achieve this objective, the drilling fluid must be fully removed
from the annulus, and then the annular gap must be completely filled with the cement slurry.
Usually, during the primary cementing operation, the fluids are pumped down the casing and
then up the annulus.

A schematic geometry of the problem study is given in Fig. IV, which indicates a vertical
casing filled with a series of fluids with different properties. Fig. IV indicates that the drilling
fluid is being displaced by pumping spacer and cement slurry in the casing and then in the
annulus. Ideally, when the cementing job is completed, there should be only a cement slurry
in the annular gap to hydraulically seal the well.

Depending on the depth and location of the oil wells, the inclination angle of the pipe varies
from horizontal to vertical. Due to large volumes of the fluids pumped, the fluids may be
considered separated. A wide range of fluids is available for use in the primary cementing
process. The displacing fluids (e.g. cement slurries) are typically 100-600 (kg/m3) heavier
than the displaced fluids (e.g. drilling mud). The properties of the spacer and cement slurries
are designed in order to improve the displacement of the drilling mud in the annulus, all within
the constraints of maintaining well security (1). Typical ranges of flow parameters and fluid
properties are presented in Table I (2; 37).

Using Table I, typical ranges of dimensionless parameters can be provided for iso-viscous
Newtonian displacement flows in the pipe as indicated in Table II (37). We can increase the
Atwood number (At), up to 500×10−3. The Reynolds number (Re), varies between 40 and
40000 which covers laminar and turbulent flows. The ratio of inertial forces to buoyant forces
is represented by the Froude number (0.1 < Fr < 50). The pipe inclination (β), varies from
nearly horizontal to strictly vertical. Moreover, there are other dimensionless groups involved
such as the Péclet number (Pe), which is the ratio of advective to diffusive transport rate and
rheological parameters e.g. the power-law index (n).

As mentioned previously, the complexity of the fluid displacement is the main challenge of un-
derstanding the cementing process. There are many parameters such as the fluid properties,
the geometry, the inclination angle, gravitational acceleration, and the flow (38) that affect
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Table II – Typical ranges of dimensionless parameters for displacement flow in a pipe. ρ̂H ,
ρ̂L, and ρ̂ indicate the heavy, light, and mean densities of fluids, respectively. V̂0, D̂ and ĝ are
the mean imposed flow velocity, pipe diameter, and gravitational acceleration. µ̂ and β°denote
the viscosity and the pipe inclination angle (37).

At = ρ̂H−ρ̂L
ρ̂H+ρ̂L

Re = ρ̂V̂0D̂
µ̂ Fr = V̂0√

AtĝD̂
β°

(1 – 500)×10−3 (4 – 4000)×101 (1 – 500)×10−1 0 – 90

(a) (b)

Drilling mud

Cement slurry

Spacer fluid

Figure IV – Schematic of the primary cementing operation indicating different stages of mud
removal in which the drilling fluid in the system is being displaced by spacer and cement slurry
fluids (a) in the casing (b) in the annulus.

the fluid behaviours. Using a dimensional analysis, we will have more than ten dimensionless
groups (38). In addition, there are other aspects that reinforce the difficulty of the investi-
gation of the primary cementing process. Therefore, a precise and comprehensive study of
the displacement flow is really hard. The main aim of this work is to investigate the primary
cementing process inside a pipe.

III.II Primary cementing challenges

Cementing is a complex and crucial step of the well construction in the oil and gas indus-
tries. However, failure of the cementing process leads to the occurrence of disasters such as
the one observed at the Deepwater Horizon site in the Gulf of Mexico (39) (see Fig. V). The
well-integrity failure and the hydrostatic control loss were two causes of the explosion in this
site (39). Of course, there are a large number of problems associated with failures in the pri-
mary cementing process. Two main problems that stem from a clear fluid mechanics origin are:
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Figure V – Deepwater Horizon accident site (39).
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Figure VI – Failure distributions, affecting the performance and well integrity (39).

• The displacement is not efficient in the annulus and the mud is not completely removed.

• Contamination of the cement slurry by other fluids.

Both cases compromise the hydraulic seal of the well, which leads to a significant decrease
in productivity, and a remarkable increase of the environmental and safety hazards. As we
mentioned, there are many parameters that affect the primary cementing process. It is not
clear how these parameters can impact the cementing process. Some examples of these para-
meters are the properties of cement and mud fluids, flow rate, and geometry of the well. Fig.
VI indicates the failure distributions, affecting the performance and well integrity (39).
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IV Associated fundamental investigations

Until now, many investigations have been devoted to different aspects of fluid displacement
flows, which can help to understand the primary cementing process. Exchange flows and
miscible displacement flows of Newtonian fluids have been studied deeply. In the case of
exchange flows, the only driving force is the buoyancy, which is dissipated by either the viscous
force or the inertial force. Debacq et al. (40; 41), Séon et al. (42; 43; 44; 45; 46), and Znaien
et al. (47) have experimentally studied buoyant miscible exchange flows in a vertical or an
inclined pipe. They have classified various flow regimes that may exist in the exchange flow
configuration, e.g. inertial, viscous and diffusive. Two phenomena have been focused in their
works: the interpenetrating front velocity (V̂f ) and the macroscopic diffusion coefficient (D̂M ).
Debacq et al. (40; 41) showed that the latter characterizes the diffusive flow in which the extent
of the axial diffusion is much larger than the molecular diffusivity. The former was found helpful
to recognize whether the exchange flow is viscous or inertial. In addition, they found that V̂f
and D̂M are functions of the density ratio, the fluid viscosity, and pipe diameters.

The miscible and immiscible displacement flows were investigated experimentally, theoretically
and computationally in various geometries, including a strictly vertical geometry (21; 23), an
inclined geometry (18; 19; 20; 48; 49), a near horizontal geometry (15; 16; 17), and a non-
uniform geometry (22; 23). In comparison with an exchange flow, in the displacement flow,
a mean imposed flow was imposed to the system. Thus, the focus of their studies was on
quantifying the effects of V̂0 on the displacement flow behavior. In addition, we have found
only very few studies in the open literature which can be directly relevant to displacement
flows with moving geometries (50; 51; 52; 53; 54; 55; 56).

In comparison with the Newtonian displacement flows, the study of the non-Newtonian dis-
placement flows has been less developed due to the complex rheological behaviour of the
non-Newtonian fluids. To date, non-Newtonian displacement flows have been investigated
experimentally and computationally in the Hele-Shaw cell (1; 33; 57), uniform geometries
(25; 26; 30; 31; 32; 58; 59; 60) and complex geometries (27; 28; 61). In addition, several studies
have been directed to understand the effects of non-Newtonian parameters such as the shear-
thinning (62; 63), the shear-thickening (62), and the yield stress (12; 21; 58; 64; 65; 66; 67; 68)
on the displacement flow. In the following subsections, we describe in details the studies related
to the primary cementing.

IV.I Exchange flow

The exchange flow occurs in the absence of an imposed flow, e.g. when the end of the pipe is
closed. Debacq et al. (40) studied the buoyant mixing of two miscible fluids in a long vertical
tube in the absence of the mean imposed flow velocity. They found that depending on At,
the diffusive behavior of the system is different. For a large At, they demonstrated that the
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effective diffusivity is 105 times higher than the molecular diffusion. At lower Atwood number,
a sharp front limits the diffusive domain. The diffusive behavior disappears at Atwood numbers
below the threshold. The series of experiments performed by Debacq et al. (41) indicated that
the gravity-induced mixing in long vertical tubes is diffusive over a wide range of Atwood
numbers, viscosities, and tube diameters.

Following a procedure similar to (41), Séon et al. (42) investigated experimentally the mixing
of two fluids with different properties in a long tube that could be tilted at different angles, 0°<
θ < 90°. An important finding was that by increasing θ, the macroscopic diffusion coefficient
increases strongly. On the other hand, it was found that the dependency of the macroscopic
diffusion coefficient on the Atwood number is not strong: for example, if the Atwood number
increases from At = 4 × 10−3 to At = 3.5 × 10−2, the macroscopic diffusion coefficient only
increases by 30%. In addition, Séon et al. (43) studied the buoyancy driven miscible front
dynamics in tilted tubes as a function of the Atwood number, pipe inclination, and fluid
viscosity. They found that by increasing θ and keeping all the other parameters fixed, three
different flow regimes are observed. As θ increases the front velocity increases sharply (θ
changes between 10° to 65°). It is due to the Boycott effect (the heavy fluid is locally separated
from the light fluid and therefore sedimentation velocity increases (69)). Close to the front
tip, the flow is turbulent and the transverse mixing is strong (regime 1). By increasing θ,
65°< θ < 82°, the front velocity reaches a plateau and remains at a maximum value (regime
2). In this regime, the segregation of the displacing and the displaced fluids is strong and the
transverse mixing is not observed. In addition, the mean concentration profile is not diffusive.
In the third regime, θ > 82°, the fluid layers are separated into two counter currents, which are
almost parallel. The control parameter is the viscosity and therefore this regime is called the
viscous regime. In this regime, by increasing the pipe inclination, the front velocity decreases.

Owing to the interesting features of the plateau regime, Séon et al. (44) studied the buoyancy
driven mixing in tilted tubes using Laser Induced Fluorescence (LIF) technique. They looked
more precisely at the point-wise concentration field and studied the penetrating front inside the
pipe. Fig. VII illustrates the images of the concentration field for the exchange flow obtained
at different pipe inclinations using LIF. This figure proves the segregation induced by tilting
the tube. The front velocity (V̂f ), and the macroscopic diffusion coefficient (D̂M ), in the strong
mixing regime in a tilted tube were studied experimentally as a function of the Atwood number,
the viscosity, and the tube diameter by Séon et al. (46). They found that the normalized front
velocity, (V̂f/V̂t), and the normalized macroscopic diffusion coefficient, D̂M/(V̂tD̂), are scaled
respectively as Re−3/4

t and Re−3/2
t when Ret = V̂tD̂/ν̂ ≤ 1000 where V̂t and D̂ and ν̂ are the

characteristic inertial velocity, the pipe diameter, and the kinematic viscosity, respectively. In
addition, they showed that the front velocity increases linearly with tan θ and D̂M/V̂

2
f and

changes in the order of (35± 10)D̂/V̂t in a wide range of control parameters. Moreover, they
investigated the transient buoyancy-driven front dynamics in a long tube with small inclination
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Figure VII – Images of the concentration field for the exchange flow along the pipe at different
pipe inclinations using Laser Induced Fluorescence (LIF). The field of view that is covered by
the camera is ≈ 20× 300 (mm2). The colour bar for the normalized concentration is indicated
at the top right of the figure (44).

angles close to the horizontal (45). They considered for pipe inclinations greater than the
critical values, the front velocity is controlled by the inertial force. But at lower inclinations,
the inertial force initially controls the front velocity which is later controlled by viscous effects.
The flow structure and the momentum transport for the buoyancy driven mixing flows were
investigated by Znaien et al. (47). The velocity and the relative concentration profile were
measured using Particle Image Velocimetry (PIV), and Laser Induced Fluorescence (LIF)
methods as functions of θ and At. They indicated that by increasing At and decreasing θ, the
regime changes from laminar to turbulent by passing from intermittent destabilizations. For a
small At and a large pipe inclination (θ = 60°), a stable flow was observed. In contrast, for a
large Atwood number and pipe inclination close to the vertical, a turbulent flow was observed.

More recently, Varges et al. (70) looked experimentally at exchange flows between yield stress
materials and less dense Newtonian oils in a vertical tube. They considered three different flow
regimes namely the stable (no flow), the quasi-stable and the unstable regimes. The latter is
a wavy core-annular flow with the denser fluid in the core region. In the quasi-stable regime,
due to thixotropic and elastic effects, a slow plug flow starts after a time delay. In the stable
regime, the exchange speed is low. Fig. VIII indicates a mapping of flow regimes for the range
of experimental parameters.

There are other papers that studied numerically the exchange flow in different geometries
(71; 72). Hallez et al. (71) investigated the effects of the channel geometry on the exchange
flow. They observed that there are significant differences between 2D and 3D geometries during
a long-time evolution of the flow due to differences between the dynamics of the vorticity in
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Figure VIII – Flow morphology as a function of dimensionless numbers and stability regimes.
The dimensionless density difference, the dimensionless terminal velocity, the reduced gravity,

and the viscosity ratio are introduced by ∆ρ∗ = ∆ρ̂/ρ̂1, V ∗ = V̂ /

√
ĝ′D̂, ĝ′ ≡ ∆ρ̂/ρ̂1ĝ and µ∗

where ∆ρ̂, ρ̂1, ρ̂2, ĝ, V̂ and D̂ are the density difference, the density of fluid 1, the density of
fluid 2, the acceleration due to gravity, the terminal velocity and pipe diameter, respectively.
(70).

those geometries. In the 2D geometry, vortices periodically cut the channel of pure fluid that
feeds the penetrating front. In contrast, 3D geometries allow for the segregation effect to
preserve a fluid channel near the front of each current. In their next study, Hallez et al. (72)
studied numerically horizontal viscous gravity currents of immiscible fluids in the exchange
flow configuration. They found a criterion that predicts which kind of viscous regime instantly
succeeds the slumping phase. Their finding also showed the successive appearance of two
different viscous regimes during the life of given flows.

IV.II Displacement flow in near horizontal to strictly vertical geometries

Well cementing process involves displacing of a cement slurry down a casing. Usually, drilling
fluids are lighter than cement slurries, so the displacement flow mechanism is density unstable.
Therefore, it is of interest to study density unstable displacement flows in pipes. It is worth
again noting that by imposing a mean imposed flow velocity to the exchange flow, displa-
cement flows in nearly-horizontal, inclined and strictly vertical ducts have been investigated
profoundly. This problem is complex and therefore researchers have studied it under several
and different conditions and assumptions: for example, the displacement flow can be miscible
or immiscible with stable or unstable density differences and different viscosity ratios and other
conditions. This problem originally investigated by Taylor (73). After, it was generalized by
considering the Newtonian displacement flows (74; 75; 76; 77), Newtonian-non-Newtonian dis-

12



placement flows (58; 78) and non-Newtonian displacement flows (25; 30; 79). In addition,
Petitjeans and Maxworthy (80) experimentally investigated miscible displacement flows in ca-
pillary tubes at high Péclet number flows and low to moderate Reynolds numbers. They found
a very good agreement with the numerical results (81). Scoffoni et al. (82) studied the effects
of viscosity ratio and flow rate in vertical displacement flows. They determined a stable finger.
In addition, they identified two other modes: axisymmetric mode and a corkscrew one. There
are other investigations of displacement flows in vertical geometries which studied the effects
of viscosity and density on instabilities (83; 84). These studies are more structured than flows
observed in the primary cementing process. Therefore, investigation of the displacement flow
found in the cementing process must be extended systematically.

Focusing initially on Newtonian displacement flows, the effects of a mean imposed flow on
the stability of gravity currents in a pipe close to horizontal was investigated by Taghavi
et al. (85). The buoyancy is the driving force in the gravity currents, but these flows may
be limited by physical mechanisms such as inertial or viscosity depending on the different
parameters, including geometry, type of fluids, and the mean imposed flow velocity (45).
Taghavi et al. (85) found that the front velocity and physical mechanisms can be affected
significantly in the presence of the mean imposed flow velocity. In addition, they identified
three different flow regimes by increasing V̂0 from zero. In the first regime, when V̂0 → 0,
they considered the exchange flow dominated, in which the effect of the mean imposed flow
on the dynamics of the exchange flow is negligible. In the second regime, there is a balance
between dissipative forces and the pressure gradient, but the buoyancy driven flow is weaker
than the mean imposed flow. In this regime, the relation between the front velocity and the
mean imposed flow velocity is linear (V̂f/V̂0 ≈ 1.3). An interesting behavior of this regime
is that although the buoyancy force plays an important role to govern the dynamics of the
flow, the slope V̂f/V̂0 does not change remarkably with the Atwood number. In the third
regime, the mean imposed velocity value is large, V̂0 > 150− 200 (mm/s), and a second linear
regime is observed (V̂f/V̂0 ≈ 1). In this regime, the effect of the buoyancy force is negligible
in comparison with the mean imposed flow velocity. In addition, they studied the effect of
the mean imposed flow velocity on the stability of the flow (see Fig. IX). They found that
at small velocities, the Kelvin–Helmholtz instability is observed (Fig. IXa) and the instability
develops the mixing at the interface between two fluids. Fig. IXb shows that by increasing the
mean imposed flow velocity, a stable flow is observed. Therefore, there is no Kelvin–Helmholtz
instability and no mixing at the interface between two fluids. Finally, in Fig. IXc by further
increase of the mean imposed flow velocity, a third flow regime is considered. In this regime, the
buoyancy force is negligible and the interface between two fluids is combined due to transverse
mixing induced by the turbulent mean imposed flow. In this case, the displacement is complete.
Therefore, the two fluids are separated by a mixing zone.

Taghavi et al. (86) studied in depth the physics of the transition between an exchange flow
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Figure IX – Snapshots of video images taken for different mean imposed flows are obtained
at θ = 83°, µ̂ = 10−3 (Pa.s), At = 10−2 and different mean imposed flow velocities (a) V̂0 = 8.6
(mm/s) (b) V̂0 = 71 (mm/s) (c) V̂0 = 343 (mm/s) (85).

dominated regime and a laminarised viscous displacement regime. By increasing the mean
imposed flow velocity from zero, the regime is changed from an exchange flow dominated regime
to another regime in which there is a linear relationship between V̂0 and V̂f . An interesting
phenomenon was uncovered during the transition. This phenomenon can be explained as a
static layer of the displaced fluid stayed at the top of the pipe during the entire duration of
displacement flows. In other words, this study indicates a transition between back-flow and
instantaneous displacement flows. The instantaneous displacement means that the displaced
fluid does not go upstream of the gate valve. By analysing the results, Taghavi et al. (86)
found that stationary interfaces can be observed for each pipe inclination only at a critical
balance in equation 1,

V̂ν cosβ ≈ 58.16V̂0, (1)

where V̂ν is the viscous velocity and is defined by V̂ν = AtĝD̂2/ν̂.

Later, Taghavi et al. (16) confirmed the previous results obtained in Taghavi et al. (85; 86)
with a wider range of experimental parameters. In addition, the dynamics of all regimes were
investigated in more details. Finally, they focused on the issue of finding a way to model
inertial effects. After modeling the problem, there was a comparable agreement between the
front velocity calculated by the lubrication model and the experimental front velocity.

Next, Redapangu et al. (87) investigated the pressure-driven displacement flow of two immis-
cible fluids in an inclined channel in the presence of viscosity and density gradients. They used
a multiphase lattice Boltzmann approach. Their results showed that increasing the viscosity
ratio leads to a decrease of the displacement rate, and has a non-monotonic impact on the
velocity of the leading front. However, they observed that by increasing the viscosity ratio, the
velocity of the trailing edge decreases. In addition, they found that the displacement rate of
the thin-layers increases with increasing the inclination angle which is due to the increase of
the interfacial instabilities when the inclination angle increases. This leads to a better cleaning
of the channel. This also includes the finding of (16).

The main focus of Taghavi et al. (31; 88) was on the investigation of the buoyant miscible
displacement flow of two fluids with different viscosities in near-horizontal ducts. The viscosity
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ratio is introduced by m = µ̂1
µ̂2

in which µ̂1 and µ̂2 are the viscosity of heavy and light fluids,
respectively. It is expected that when m < 1 the displacement is more efficient and for m > 1

the efficiency of the displacement flow decreases. They showed that as m decreases (m < 1),
the ratio of V̂f

V̂0
decreases and the efficiency of the displacement flow increases. In addition, the

variation of V̂f with V̂0 is almost linear. However, for m > 1, as m increases, the value of the
front velocity does not change significantly. In other words, by increasing m the efficiency of
the displacement flow remains approximately unchanged.

By increasing the pipe inclination angle from the near horizontal position, Alba et al. (18;
19; 78; 89; 90) investigated miscible displacement flows of Newtonian and non-Newtonian
fluids in a long tube. They found that there is a non-monotonic relation of the displacement
flow efficiency with the Atwood number when there is a transition from positive (density
unstable) to negative (density stable) Atwood numbers. Highly efficient displacement flows
can be observed at the density stable configuration. In this case, the interface between the
displaced and the displacing fluids moves steadily with the same velocity of the mean imposed
flow. In addition, the stream-wise distance between the leading and trailing fronts, introduced
by the stretch length and presented by L, was found and measured in inclined geometries.
They found a correlation between the stretch length and the other experimental parameters
(see equation 2):

L− tanβ = −3680/χ, (2)

where χ is the ratio of the buoyancy force to the viscous stress and β is the pipe angle from
the vertical position (89).

For the density unstable configuration, various flow regimes were observed by Alba et al. (18),
including the well mixed fully diffusive, the instantaneous, the inertial and the viscous regimes,
all with the variation of the stability degree. They found that each regime can be explained in
the dimensionless planes of Fr and Re cosβ/Fr. In addition, they considered that when the
regime is viscous, the lubrication model is an effective method to predict the front velocity when
there is no bulk diffusion. On the other hands, in the fully diffusive regime, the displacement
efficiency increases strongly and V̂f ≈ V̂0.

As we discussed before, the investigations of non-Newtonian displacement flows have been
less developed due to the complex rheological behavior of non-Newtonian fluids. Taghavi et
al. (31) studied the buoyant miscible displacement flows of yield stress fluids in long near-
horizontal pipe. They obtained two different flow regimes: a central-type and a slump-type
displacement flow regimes. In the latter case, the displacing fluid moves along the bottom
of the pipe. They observed two propagating displacement fronts: the fast front which moves
near the bottom of the pipe and the slow front which displaces a thicker layer of the yield
stress fluid. They found that the transition between these two regimes is a function of the
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ratio of the Reynolds number to the densimetric Froude number and is independent of other
dimensionless numbers. In addition, Alba et al. (90) investigated the effect of the yield stress
on the displacement flow for a wide range of pipe inclinations from 0 to 85°. They found that
the slump and the center-type displacement flows can be obtained over a wide range of the
pipe inclinations. An interesting pattern here is that these flow regimes occur approximately
at the same ratio of Re/Fr as in the near-horizontal case.

It is worth noting that in Chapter 3, the displacement flow of yield stress fluids in a vertical pipe
is investigated experimentally. Particularly, we are interested in studying the displacement of
a yield stress fluid by a less viscous Newtonian fluid. There are studies in the literature which
can be directly related to this work. For example, Cole et al. (59) investigated the cleaning
of a yield stress fluid from surfaces at two length scales: the laboratory scale and the pilot
scale. They considered that the cleaning time is affected by the temperature and the velocity
of the displacing fluid. In addition, they showed that the pipe length does not seem to have a
significant effect on the cleaning time. Dimakopoulos and Tsamopoulos (26) investigated the
displacement flow of a yield stress fluid by a Newtonian fluid in a straight tube and suddenly
constricted tube. They found that unyielded regions arise in front of the displacing fluid in
the straight tube. In addition, unyielded regions are considered near the recirculation corners
for the constricted tube. More recently, Moisés et al. (58) experimentally investigated the
isodense displacement of yield stress fluids by a Newtonian fluid in a horizontal pipe. They
considered three different flow regimes named as the smooth, the wavy and the corrugated.
The variation of the residual layer level along the pipe is a key factor to make the difference
between various regimes. Based on dimensionless numbers, they found that the transition
between these regimes is a function of the Reynolds number.

The formation of the stationary residual layer of the displaced fluid on the wall is a serious
aspect related to yield stress displacement flows. The difficulty in removing these layers, espe-
cially from the interior sections of flow geometries needs more attention. Allouche et al. (25)
showed that the residual layer usually remains on the wall when the yield stress of the displa-
ced fluid is larger than that of the displacing fluid. They found that due to the yield stress
effect, the residual wall layer for viscoplastic fluids can be completely stationary. Poslinski et
al. (91) experimentally investigated the displacement of a viscoplastic fluid by air in a tube.
They found that the thickness of the residual layers is much larger compared to Newtonian
fluids. Recently, Zare et al. (21; 92) studied miscible displacement flows when a Newtonian
fluid displaces a Bingham fluid for both the density stable and the density unstable configu-
rations in a plane channel. They measured the residual wall layer thickness (h), close to the
end of their channel. By comparing the value of h with the maximal static wall layer thickness
(hmax), they found that the residual layer is classified into moving or static regimes. It should
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be mentioned that they calculated hmax using the following equations:

4χ∗y4
i,min − (2χ∗ − 4BN )y3

i,min − 3 = 0, (3)

hmax = 1/2− yi,min, (4)

where χ∗ = 2Re/Fr is the buoyancy parameter and BN is the Newtonian Bingham number. It
is worth mentioning that the flow in (−yi, yi) is a Newtonian Poiseuille flow. If hmax = 0, the
wall layer is moving. If hmax > 0, there are two different situations: h < hmax means that the
wall layers are static; otherwise the wall layers are moving. In the case of the density unstable
flow (21), the displaced fluid was heavier than the displacing fluid and the flow direction was
upwards. They showed that in the density unstable situation the static residual wall layers
can be observed for yield stresses below the minimum value for the density stable regime. In
addition, by comparing the results with the density stable flow, they considered that the layers
may be thicker in the density unstable situation.

There are few published investigations related to displacement flows in moving geometry.
Savery et al. (93) studied multiple aspects of the mud displacement during the cementing
process using computational fluid dynamics (CFD). Two and three dimensional computational
approaches were used to investigate how the casing motion can affect the displacement flows
in oil well completion applications. They discovered that the rotation of the inner casing
during the cementing job increases the efficiency of the primary cementing and decreases the
possibility of supplementary works such as liner top and zonal isolation squeezes (94).

Carrasco-Tejaand and Frigaard (52; 53) studied analytically the displacement flows of Newto-
nian and non-Newtonian fluids in a horizontal, eccentric annulus with a moving inner cylin-
der. The focus of Carrasco-Tejaand and Frigaard (52) was on the displacement flows between
two Newtonian fluids with different densities and viscosities. Similar to static walls (95; 96),
they found analytically that the steady traveling wave displacement can be observed in small
buoyancy numbers. They found that the inner cylinder rotation decreases the expansion of
the interface between fluids in the axial direction. On the other side, using computational
simulations, they observed that at large buoyancy numbers and when the axial extension is
enough large, there is a local buoyancy-driving fingering instability. It is worth noting that
the local fingering is controlled by the rotation of the casing and the annular eccentricity. The
local fingering can be replaced by the steady extension of the diffusive interfacial region that
propagates gradually due to dispersion. In the case of non-Newtonian fluid displacements,
Carrasco-Tejaand and Frigaard (53) derived a lubrication-style model and found that the lea-
ding order interface is symmetric. They indicated that the inner cylinder rotation changes
the length of the leading-order interface only for non-Newtonian fluids with shear-thinning
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properties. Recently, Bu et al. (97) studied the effect of casing rotation to improve the ce-
menting quality. In the case of non-rotation, they found that the displacement flow efficiency
increases as the density difference increases. In addition, they considered that increasing the
casing eccentricity results in the decreasing of the displacement flow efficiency. Under the same
conditions, they showed that the casing rotation can improve the displacement flow efficiency.
Most recently, Lyu et al. (56) studied experimentally the effects of a pipe axial rotation on the
stratified displacement flow in the presence of two Newtonian fluids. They found that the trans-
verse mixing is induced by increasing the pipe rotation speed. Consequently, complete removal
of the displaced fluid occurs at a critical transition number introduced by Ro ≈ 5Fr(1−Fr)−1

where Ro is the Rossby number, indicating the ratio of inertial to Coriolis forces.

In the other investigations, the authors reported the effect of pulsating flows on the displace-
ment flow efficiency. Oscillating flows of yield stress fluids have been investigated mathemati-
cally and analytically (98; 99; 100). For pulsating displacement flow rates, Wielage et al. (30)
found that the layer thickness is significantly decreased by the pulsation.

V Conclusions and research objectives

Through a literature review, we have seen that the buoyant miscible displacement flow problem
is attractive from both fundamental and industrial points of views. In this chapter, a summary
of the most relevant works is wrapped up and the research objectives are outlined.

Gravity currents and exchange flows are two areas which have been investigated analytically,
numerically and experimentally. These flows have been studied deeply for the Newtonian fluids
for different inclination angles and different Atwood numbers. Of course, they are still open
subjects to study, especially for non-Newtonian fluids.

Adding a mean imposed flow to the exchange flow leads to the appearance of another area
introduced by the displacement flow. Displacement flows have been investigated as a function
of different parameters in details in nearly-horizontal, inclined, and strictly vertical geometries.
Combination of these parameters, i.e. inclination angles (β), the density difference (At) and
the mean imposed flow velocity (V̂0) helps to better understand the behavior of these flows,
uncovering new phenomena and presenting new flow regime maps. In this thesis, producing
reliable data to understand the flow characteristics is of major importance. Another contribu-
tion of this research is studying the effect of moving geometry and rheological measurements
on the displacement flow behavior.

By increasing the mean imposed flow velocity, the turbulent flow is observed. This flow is a
limit in our research. In this condition, the mixing is strongly efficient and the dispersion of
fluids occurs along the pipe. Therefore, there is not much potential to improve the efficiency
of the displacement flow. In addition, the Taylor dispersion theory well explains this turbulent
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regime (101). Therefore, there is no strong motivation to investigate this regime. Consequently,
in this work, we prefer to investigate the displacement with a laminar imposed flow.

The effects of the viscosity ratio in buoyant miscible displacement flows have been investigated
in many previous studies. Of course, due to the importance of the related applications, there are
still motivations to study this field more deeply. Industrial buoyant miscible displacement flows
often include the viscosity ratio. Therefore, studying the effects of increasing or decreasing the
fluid viscosities is extremely important. Moreover, considering industrial applications of the
displacement flow, the investigation of yield stress flows needs even more attention. Here, when
the displaced fluid has a yield stress, it is of more interest due to the appearance of residual
wall layers. The appearance of these layers of the displaced fluid is common for yield stress
displacement flows. The static or moving form of residual wall layers and their thicknesses
should be studied in more depth.

The technical and scientific goals of the current research are to provide reliable knowledge
to be employed in the primary cementing process by investigating buoyant miscible displace-
ment flows of Newtonian and non-Newtonian fluids in a pipe. The physical and parametric
complexity of the fluid displacement are the main challenges of understanding the cementing
process. A key objective is to understand the effect of each parameter individually on the dis-
placement flow and its efficiency. This starts by investigating the effects of the mean imposed
flow velocity, the density difference, rheological parameters, and the flow geometry motion.

The literature review shows that despite some developments in understanding basic mecha-
nisms in displacement flows, our understanding of the different effects of controlling parameters
is not comprehensive. This requires an in-depth analysis of the effects of various flow parame-
ters, such as the mean imposed flow velocity, the rheological parameters, the geometry motion,
etc., on displacement flows.

In this thesis, we attempt to advance our knowledge of the displacement flow in the statio-
nary and the moving geometries. To do this, scaled laboratory displacement flow experiments
are conducted in a long vertical pipe. In addition, to produce desirable motion, our setup is
placed on a hexapod robot, which has six degrees of freedom. We consider a realistic range
of flow parameters and fluid properties. The displacement flow efficiency is investigated by
determining the effect of each parameter. In addition, we provide flow regime maps to identify
the principal flow types. We have considered the following parts:

• First, we investigate the buoyant miscible displacement flow of Newtonian fluids by chan-
ging the main parameters at a wide range of fluid properties to consider the effect of each
parameter on the behavior of flows and determine the main flow regimes. Then, we provide
the most relevant flow regime maps.
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• Second, the effect of a flow geometry motion on the displacement flow of Newtonian fluids
is studied by imposing an inverted pendulum motion. Compared to the stationary case, we
investigate the displacement flow mechanisms of the moving geometry and study the effect of
each parameter on the displacement flow. Then, we provide a flow regime map to identify the
main flow features.

• Finally, experiments are performed using yield stress fluids as the displaced fluid in a sta-
tionary pipe. The behavior of fluids is explained by investigating the effects of the rheological
properties on displacement flows. The fluid behaviours are explained simply by introducing
the yield stress (τ̂y), the power-law index (n), and the consistency (κ̂).

The aim of this research is to deliver a significant amount of reliable experimental data to
address the knowledge gap in the literature about buoyant miscible displacement flows, by
providing leading order predictions of the flow behaviours using the dimensionless numbers
that govern the flow.
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Chapitre 1

Buoyant miscible displacement flows
in vertical pipe

Résumé

Le écoulement de déplacement de deux fluides Newtoniens miscibles est étudié expérimenta-
lement dans un tuyau vertical de grand allongement (δ−1 ≈ 210). Les fluides ont une faible
différence de densité et ils ont la même viscosité. Le fluide de déplacement lourd est initiale-
ment placé au dessus du fluide de déplacement léger. Le écoulement de déplacement est dirigé
vers le bas. Les expériences couvrent un large éventail de deux paramètres sans dimension
décrivant en grande partie le écoulement : le nombre de Reynolds modifié (0 ≤ Ret ≤ 800)
et le nombre densimétrique de Froude (0 ≤ Fr ≤ 24). Nous rapportons l’effet stabilisant du
écoulement imposé et découvrons l’existence de deux régimes d’écoulement principaux à long
moment : un écoulement de déplacement stable et un écoulement de déplacement instable.
La transition entre les deux régimes se produit à un nombre critique de Reynolds modifié
Ret|Critical, en fonction de Fr. Nous étudions en détail le régime d’écoulement stable. Premiè-
rement, un modèle de lubrification, associé à une simple formulation d’accélération initiale,
permet de prédire de manière raisonnable la vitesse frontale de déplacement pénétrante dé-
pendante du temps, deuxièmement, nous trouvons deux sous-régimes pour les déplacements
stables, à savoir les écoulement à reécoulement prolongé et les écoulement à reécoulement
non prolongé. La transition entre les deux sous régimes est un état d’écoulement d’interface
stationnaire marginal, qui est également bien prédit par le modèle de lubrification. Le régime
instable est associé aux instabilités et aux caractéristiques diffusives du écoulement. En outre,
des schémas particuliers tels que le phénomène de détachement frontal apparaissent dans le
régime d’écoulement instable, pour lequel nous quantifions les régions d’existence par rapport
aux groupes sans dimension.
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Abstract

The displacement flow of two miscible Newtonian fluids is investigated experimentally in a
vertical pipe of long aspect ratio (δ−1 ≈ 210). The fluids have a small density difference and
they have the same viscosity. The heavy displacing fluid is initially placed above the light
displaced fluid. The displacement flow is downwards. The experiments cover a wide range
of the two dimensionless parameters that largely describe the flow: the modified Reynolds
number (0 ≤ Ret ≤ 800) and the densimetric Froude number (0 ≤ Fr ≤ 24). We report
on the stabilizing effect of the imposed flow and uncover the existence of two main flow
regimes at long times: a stable displacement flow and an unstable displacement flow. The
transition between the two regimes occurs at a critical modified Reynolds number Ret|Critical,
as a function of Fr. We study in depth the stable flow regime: first, a lubrication model
combined with a simple initial acceleration formulation delivers a reasonable prediction to
the time-dependent penetrating displacing front velocity. Second, we find two sub-regimes for
stable displacements, namely sustained back-flows and no-sustained back-flows. The transition
between the two sub-regimes is a marginal stationary interface flow state, which is also well
predicted by the lubrication model. The unstable regime is associated with instabilities and
diffusive features of the flow. In addition, particular patterns such as a front detachment
phenomenon appear in the unstable flow regime, for which we quantify the regions of existence
versus the dimensionless groups.

1.1 Introduction

Displacement flows frequently occur in nature (e.g. in lung airways (102)) as well as in industry,
e.g. the petroleum industry (2) (e.g. in the processes such as primary cementing and top kill),
manufacturing (103) and food processing (5). In this work, we experimentally study high-
Péclet-number miscible displacement flows of Newtonian fluids in a long, vertical pipe. Our
scenario considers two fluids that have a small density difference (in the Boussinesq limit) and
nearly identical viscosities. Buoyancy is a significant driving force but there is also a mean
imposed flow in the downwards direction. The flow configuration is mechanically unstable and
the flow is extremely susceptible to instabilities. Therefore, from the fluid mechanic’s point of
view, a fundamental question is where stable displacement flows may be found. This is the
focus of the current study.

Our work extends from the exchange flow limit (i.e. buoyancy-driven flows with a zero mean
imposed flow velocity). Miscible exchange flows in vertical pipe have been studied by Debacq et
al. (40; 41), who experimentally observed stable and unstable counterflows. While the former
was found to be associated with completely segregated streams of interpenetrating light/heavy
fluids, the latter was related to inertial and diffusive flows with coarse (convective diffusive)
or fine (turbulent diffusive) mixing at small and large buoyancy forces, respectively. Debacq
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et al. (41) characterized the velocity of the interpenetrating exchange flow fronts (V̂f 1) for
which the relevant velocity scales were the characteristic viscous and inertial velocities (V̂ν
& V̂t) for stable and unstable flow regimes, respectively. These are defined as V̂ν = AtĝD̂2/ν̂

and V̂t =

√
AtĝD̂, where ν̂ is the kinematic viscosity, At is Atwood number (i.e. the relevant

dimensionless density ratio), ĝ is gravitational acceleration, and D̂ is the pipe diameter. They
also showed that the transition between stable and unstable exchange flows occurs at a critical
modified Reynolds number Ret|Critical ≈

√
48× 130 ≈ 79, where Ret = V̂ν/V̂t. In a series of

detailed studies, Seon et al. (42; 43; 44; 45; 46) extended the work of Debacq et al. (40; 41)
to various pipe inclinations from horizontal (β ≈ 90◦) to vertical (β ≈ 0◦). Among their
interesting findings, they discovered that the boundary between stable and unstable flows was
also a function of pipe inclination angle, β, which they successfully incorporated into the same
dimensionless group proposed by Debacq et al. (41) to furnish Ret cosβ|Critical ≈ 50 for highly
inclined pipes.

It is appropriate to also mention a few relevant computational works. Hallez et al. found stable
and unstable exchange flows while quantifying the effects of the flow geometry in channels
(71; 72) and pipes (71; 104). Many flow features were studied in details. For example, they
found that vortices in 2D geometries are strongly present, coherent and long persistent, leading
to a periodic cut of the channels of pure fluid feeding the front; see (71). Sahu et al. (105) also
computationally studied displacement flows of miscible fluids in 2D channels. They explored
stable and unstable displacement flow regimes at various inclinations.

Miscible displacement flows in inclined and highly inclined pipes/channels have been stu-
died extensively. Taghavi et al. (15; 16; 85; 86) studied stable and unstable displacement
flows at nearly-horizontal inclinations in both 2D channels and pipes. They developed a thin-
film/lubrication type model to predict front velocities for stable displacement flow regimes;
see (15). The departure from the exchange flow configuration was studied in (85), where they
found three flow stages as the mean imposed flow velocity (V̂0) was added to the exchange
flow. The flow behaviours at small V̂0 were similar to their exchange flow counterparts at
V̂0 = 0 (e.g. in (43)), where a sustained-back-flow against the direction of the mean impo-
sed flow was observed. Increasing the mean imposed flow velocity resulted in the penetrating
front velocity of displacing fluid V̂f to vary linearly with V̂0. Another important effect of the
mean imposed flow was that the amount of back-flow was progressively reduced. In addition,
the mean imposed flow counter-intuitively stabilized the displacement flow. They suggested
that the latter was due to the effect of increasing the local gradient Richardson number, Ri.
For higher imposed flows, a turbulent flow regime was found, where V̂f ≈ V̂0 (85). For a
highly inclined geometry, Taghavi et al. (86) quantified the transition between the flows with
a sustained back-flow and the ones without (no-sustained-back-flow) through a critical ratio:

1. In this paper we adopt the convention of denoting dimensional quantities with the ˆ symbol and dimen-
sionless quantities without.
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Ret cosβ/Fr, where Fr is the densimetric Froude number. This critical parameter evaluates
the ratio of buoyancy stresses in the axial direction and viscous stresses induced by the mean
imposed flow velocity. A complete picture of displacement flows in near-horizontal channels
and pipes was presented in Taghavi et al. (16). This approach was extended by Alba et al. (18)
to provide a flow regime classification over a wider range of inclination angles. They also quan-
tified stable and unstable flow regimes (including inertial and diffusive flows) for displacement
flows in inclined pipes.

Compared to the other studies in the field, buoyancy was significant in the exchange flow
and displacement flow studies mentioned above. Due to the presence of large viscosity, stable
density differences or slow flows, these other studies are structured flows in usually vertical
geometries. Chen and Meiburg (81) and Petitjeans and Maxworthy (80) studied miscible dis-
placement flows at high Péclet number computationally and experimentally, respectively. In
a combined theoretical-experimental study, Lajeunesse et al. (106; 107; 108) studied miscible
displacement flows in a vertical Hele-Shaw cell, and they looked into quantifying flow stability
as a function of viscosity ratio and imposed flow rate. Interfacial instabilities in displacement
flows have been studied, e.g. in Balasubramaniam et al. (84) and Scoffioni et al. (82) at various
viscosity ratios. Other studies, e.g. Kuang et al. (83), have investigated the velocity distribution
and finger tip shape in displacement flows. Jiao and Maxworthy (109) have investigated finge-
ring patterns for displacement flows with density and viscosity contrasts. Hele-Shaw exchange
flows have been also studied experimentally and computationally (110; 111; 112; 113).

The novelty of our current study can be summarized as follows. First, we show for the first
time that stable displacement flows may exist in a highly mechanically-unstable configuration,
i.e. a vertical pipe, despite hydrodynamic effects. We also quantify some of the leading order
behaviours of stable and unstable displacement flows and delineate the boundary of their tran-
sition. Second, although displacement flows in inclined geometries have been studied in depth,
our work fills an evident gap in the literature through studying these flows in a strictly vertical
pipe. It should be highlighted that the results of these previous studies, e.g. (16; 18), cannot
be directly interpreted to describe displacement flows in a vertical geometry configuration.
Dimensionless groups in the previous works include Ret cosβ/Fr, which for example implies
that a flow with a certain Ret in a pipe inclined at β = 30◦ is identical to another flow with
Ret/2 in a vertical pipe. However, these flows cannot be the same as at least some degree of
symmetry is naturally present in the vertical case and it is quickly broken in inclined geome-
tries. Thus, although the leading order predictions of the previous studies are acceptable for
displacement flows at inclinations, these are inevitably achieved at the expense of hiding the
effect of inclination as a separate parameter. In the current work, the pipe inclination is fixed
to vertical; thus, our regime classification does not involve any unnecessary simplifications
and reduction of the dimensionless groups. Third, our study delivers a wide range of valuable
experimental results. For example, the range of the Atwood number studied here covers almost
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Table 1.1 – Range of the dimensionless parameters used in our experiments. The dimensional
parameters used to define the dimensionless parameters are introduced in Table 1.2. Note that
in our experiments the minimum values of Re, Fr and Pe based on the minimum non-zero
imposed flow velocity (V̂0 6= 0) were 7, 0.15 and 3283, respectively.

Parameter Name Definition Range or value

At Atwood number ρ̂H−ρ̂L
ρ̂H+ρ̂L

(1− 700)× 10−4

Re Reynolds number V̂0D̂
ν̂ 0− 1940

Fr Densimetric Froude number V̂0√
AtĝD̂

0− 24

Pe Péclet number V̂0D̂

D̂m
0− 970× 103

δ−1 Pipe aspect ratio L̂
D̂

210

three orders of magnitude. Finally, further understanding of our stable displacement flows is
gained through the development of a lubrication model. The model delivers predictions to
a marginal state called the stationary interface flow to characterize the transition between
sustained-back-flows and no-sustained-back-flows in a vertical pipe. In addition, the outcome
of the lubrication model predictions for front velocities is combined with an initial acceleration
formulation to furnish time-dependent displacing fluid front velocities.

1.1.1 Problem setting

The situation that we consider in this paper is that a heavy fluid (fluid H) displaces a light
fluid (fluid L) along a long, vertical pipe. The pipe has a diameter D̂ and the mean imposed
displacement velocity is V̂0, in the downward direction. The fluids have the same viscosity µ̂,
they are miscible and they have slightly different densities. Let us denote the density of the
heavy displacing fluid by ρ̂H and that of the light displaced fluid by ρ̂L. In general, we study
laminar imposed flows. The length of the pipe satisfies δ−1 = L̂

D̂
� 1. The initial interface is

horizontal, which is transverse to the pipe axis, and it is located away from both ends of the
pipe. See Fig. 1.1 for a schematic view of the flow geometry.

From a modelling perspective, a natural formulation involves a concentration–diffusion equa-
tion coupled to the Navier–Stokes equations, in Cartesian (x̂, ŷ, ẑ) or cylindrical coordinates
(r̂, θ, ẑ). The change between pure heavy and light fluids can be modelled via a scalar concen-
tration, c. We make the Navier–Stokes equations dimensionless using D̂ as length scale, V̂0

as velocity scale, and subtracting a mean static pressure gradient before scaling the reduced
pressure, we arrive at

(1−φAt) (ut + u.∇u) = −∇p+
1

Re
∇2u− φeg

Fr2
, (1.1)

∇.u = 0, (1.2)

ct + u.∇c =
1

Pe
∇2c. (1.3)
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Here, eg = (0, 0, 1). The function φ(c) = 1 − 2c interpolates linearly between 1 and -1 for
c ∈ [0, 1], for displaced and displacing fluids, respectively. The three dimensionless parame-
ters appearing in equation (1.1) are the Atwood number, At, representing a dimensionless
density difference, the Reynolds number, Re, and the densimetric Froude number, Fr. The
dimensionless parameters of the current paper are defined in Table 1.1. A fourth dimensionless
group also appears in equation (1.3), i.e. the Péclet number. In lab/industrial scale flows, the
Péclet number is usually very large, implying that for initially-separated fluids, the diffusive
effects remain initially limited to thin interfacial layers of size ∼ 1/Pe1/2. Over experimental
timescales in the absence of instability, mixing and dispersion, the interface remains sharp.
Experimentally, we are dealing with fluids with large Pe so that we may set Pe → ∞ and
ignore the right-hand-side of equation (1.3). By this, we imply that molecular diffusivity does
not affect in a major way the flows studied in the timescale of interest. We also restrict our
attention to small density differences between the two fluids in the order of 0.02−15% (which
is the case in our experiments), i.e. At < 0.075. For such small density differences, the solution
for At→ 0 would provide a reasonable approximation. This assumption of negligible At is also
required for the incompressibility condition (1.2) to be valid for intermediate c (Boussinesq
approximation). Therefore, in general, the effects of the density difference on the acceleration
of individual fluids are ignored. However, it should be noted that for such situation, a signifi-
cant buoyancy effect can still exist. Finally, the pipe aspect ratio (δ−1) is large and fixed in our
study. Therefore, the overall aim of the work is to build a quantitative description of various
flow regimes, in terms of only two dimensionless parameters (or their combinations), i.e. Re
and Fr, assuming δ−1 � 1, Pe→∞ and At→ 0. Table 1.1 shows that our experiments cover
a wide range of Re and Fr.

There are two important combinations of the dimensionless parameters:

χ =
2Ret
Fr

, Ret =
Re

Fr
, (1.4)

which arise naturally in the context of thin-film flows and exchange flows, respectively. The
former represents a balance of buoyancy stresses and viscous stresses due to the imposed
flow while the latter evaluates a balance of buoyancy stresses and viscous stresses driven by
buoyancy.

1.1.2 Outline

The paper proceeds as follows. Section 1.2 describes the experimental setup and procedures.
Various flow regimes are discussed qualitatively and quantitatively in §1.3 and §1.4, respecti-
vely. The latter also includes discussions on the stabilizing effect of the imposed flow and a
regime classification, demonstrating stable and unstable flow regimes. Section 1.5 concludes
the paper with a brief summary of the main findings.
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ẑ
ẑ
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Figure 1.1 – Schematic view of (a) the experimental set-up, (b) the geometry with both Carte-
sian coordinates (appropriate for experimental analyses) and cylindrical coordinates (suitable
for modelling) and (c) the stable displacement flow problem considered for the lubrication
model (in §1.4.2). Note that the position of the camera for taking experimental images would
be in the x̂-direction, normalized to the (ŷ, ẑ)-plane (in the middle subfigure).

1.2 Experimental setup, procedures, and details

Our experimental study was performed in a 202 (cm) long, 0.96 (cm) diameter, transparent
vertical pipe (acrylic with 0.3 (cm) thickness). An automated mini gate valve (VAT Inc.)
located 39 (cm) from the top end was included in the system. This gate valve initially separated
the two parts of the pipe but it was quickly opened in a smooth way at the beginning of each
experiment. Figure 1.1a shows a schematic of our experimental apparatus. All the experiments
were performed at an ambient temperature kept at 24± 1 (◦C).

Initially, the lower part of the pipe was filled using a Masterflex pump with a less dense
fluid coloured with a small amount of ink (Fountain Pen India black ink) for visualization
purposes. The small amount of the dye used does not change the fluid properties. Light
absorption calibrations were performed in usual fashion, for which the amount of 0.6 g of
ink per one liter of liquid was found to be a reasonable trade-off. The upper part of the
pipe, above the gate valve, was filled by the denser salt-water solution (NaCl). In ambient
temperature, the maximum amount of salt that can be dissolved into water (114) determines
the possible range of At, which in our case was up to ∼ 0.07 − 0.08. The densities of our
experimental fluids were measured by a high-precision density meter (Anton Paar DMA 35).
The viscosities of the solutions were measured in usual fashion, using AR-G2 TA Instrument
digital controlled shear stress-shear rate rheometer. The maximum error in measurement of
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viscosity was 5%. The measurements revealed that the viscosity of the salt-water solutions
remains close to that of water in our experiments: the kinematic viscosity was found to be
10−6 ≤ ν̂ ≤ 1.5×10−6 (m2/s). For simplicity, in this work, we neglect the small viscosity ratio
between the two fluids and consider a common, constant kinematic viscosity for displacing
and displaced fluids, i.e. 10−6 (m2/s).

To avoid pump disturbances and ensure smooth steady inflow, the displacing upper fluid was
fed by gravity from a large elevated tank. This tank was initially filled with the denser fluid
using a gear pump. After filling the upper and lower parts of the pipe by displacing and
displaced fluids, air bubbles (if any) stuck in the pipe were released using a two-way straight
stainless steel miniature ball valve, installed near the gate valve. The flow rate (Q̂ = πD̂2V̂0/4)
was controlled by a needle valve and it was measured by two rotameters, located downstream
of the pipe. Each experiment was performed at a fixed density difference and a fixed imposed
flow rate. A typical experimental sequence consisted of running a number of experiments at
increasing flow rates (note that for each experiment the flow rate was fixed). At the start of the
experiment, the gate valve was opened. Images of the displacement fluid were recorded using a
high-speed camera (Basler acA2040, with 4096 gray-scale levels) covering ∼ 80 (cm) below the
gate valve, and they were subsequently post-processed using in-house Matlab codes, to quantify
different aspects of the flow. To enhance the quality of the images, the pipe was back-lit using
Light-Emitting Diode (LED) strips. In addition, to improve light homogeneity, a diffusive layer
was placed between the pipe and the LED strips. Table 1.2 shows the ranges/values of the
dimensional parameters in our experiments.

Before proceeding, we would like to clarify a point about molecular diffusion, the value of which
does not affect the overall flow as long as it is small. In this work, we assume that molecular
diffusivity between water and salt-water solutions in our experiment remains small, taken to
be D̂m ≈ 2× 10−9 (m2/s). This assumption is supported by the following argument. The self-
diffusion coefficient for pure liquid water at an ambient temperature is 2.3×10−9 (m2/s) (115).
It is also known that for “structure-making” salts (like NaCl), by increasing salt concentration
from 0 to 5.9 molalities (which roughly corresponds to the range of the salt concentration
used in our experiments), self-diffusion coefficient of the water molecules decreases from 2.17×
10−9 to 1.43 × 10−9 (m2/s) (116; 117). Therefore, it seems that considering small D̂m is a
valid assumption.

In order to ensure about the performance and reliability of the experimental apparatus as
well as validate our experimental results, various comparisons were made with the available
data in the literature (18; 41; 46). In particular, the front velocities of the penetrating fronts
were compared with those of displacement flows (18), exchange flows in vertical pipe (41)
and exchange flows in inclined pipes (46). Reasonable agreement with the previous reports
was found. For example, the comparison between our front velocities and those of (46) at
At = 10−2 in a pipe with a slightly different diameter showed a difference of ∼ 7% (on
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Table 1.2 – Range of the dimensional parameters used in our experiments.

Parameter Name SI Unit Range or value

V̂0 Mean imposed flow velocity m/s 0− 202× 10−3

ρ̂H Heavy fluid’s density kg/m3 998.2− 1148.2

ρ̂L Light fluid’s density kg/m3 998
¯̂ρ = ρ̂H+ρ̂L

2 Mean fluid’s density kg/m3 998.1− 1073.1

D̂ Pipe diameter m 9.6× 10−3

L̂ Total pipe length m 2.02
L̂u Pipe length (upstream) above the gate valve m 0.39
L̂d Pipe length (downstream) below the gate valve m 1.63

ν̂ = µ̂
¯̂ρ

Kinematic viscosity m2/s ∼ 10−6

D̂m Molecular diffusivity m2/s ∼ 2× 10−9

average), for various inclinations up to 15◦ from vertical. This difference is within the order of
the accuracy of the front velocities measured. Even a number of experiments were performed for
a density-stable configuration, for which a reasonable agreement was found with the available
data in the open literature (i.e. V̂f ≈ V̂0 at longer times) (89).

1.3 Qualitative description of various flows

We begin with a qualitative description of the main flow features observed in our displacement
flow experiments. One of the novel aspects of the current work is studying displacement flows
at a wide range of At, covering almost three orders of magnitude. For exchange flows (V̂0 = 0),
almost the same range of At has been studied in details by Debacq et al. (40; 41). Therefore, as
a first step, it is natural to examine how global qualitative behaviours observed for exchange
flows in (40; 41) are affected by gradually introducing the mean imposed flow (V̂0 > 0). As
a second step, it would be interesting to see various qualitative flow behaviours for a fixed
non-zero mean imposed flow velocity at different values of At.

Fig. 1.2 shows a sequence of experimental images for a fixed small At. The experimental
snapshots shown here are calibrated so that the colours vary between 0 (dark displaced fluid)
and 1 (transparent displacing fluid). At V̂0 = 0, there exists a countercurrent flow (note
that only the downstream is shown). In this case, at short times there are some instabilities
between the finger of the heavy fluid and the surrounding displaced fluid; however, these
instabilities are unable to mix the two fluids. In fact, the helical instability of the wave decays
after a few pipe diameters particularly at much longer times; see also (41). The flow at long
times demonstrates a stable countercurrent flow. By introducing a small mean imposed flow
velocity, i.e. V̂0 = 3 (mm/s), the flow is significantly affected: two effects are clearly observed.
First, it seems that at V̂0 = 3 (mm/s), we have transitioned from a countercurrent flow to
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(a) V0=0, t=40. (b) V0=3.4,t=16. (c) V0=8.37, t=16. (d) V0=11.5, t=8.

Figure 34: Image sequences for B=0 and At=0.0001 mm/s.
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Figure 1.2 – Sequence of experimental images for a fixed Atwood number (At = 10−4),
showing that the inertial tip (i.e. bubble shape front) observed initially for V̂0 = 0 is
progressively spread out by increasing the mean imposed flow velocity (V̂0 6= 0). From
left to right, V̂0 = 0, 3, 8, 12 (mm/s) in each panel. The experimental times in each
panel are t̂ = [25, 100, 200, 300, 400, 500, 600] (s), t̂ = [16, 32, 48, 64, 80, 96, 112] (s), t̂ =
[8, 16, 24, 32, 40, 48, 56] (s), and t̂ = [4, 8, 12, 16, 20, 24, 28] (s), from left to right. The field
of view in each snapshot is 8× 805 (mm2), located 24 (mm) below the gate valve. In this and
the other figures, the camera images shown have an offset of a few pixels with respect to the
pipe center-line.

a displacement flow, where no upward motion of the displaced fluid is observed. Second, the
mean imposed flow seems to have reduced the initial interfacial waves and the inertial tip
is significantly smaller. At higher mean imposed flow velocities (V̂0 = 8 & 12 (mm/s)), the
inertial tip disappears completely. The flow at longer times resembles a Poiseuille-like flow,
although the shape of the interface is affected by the presence of the density difference. This
is a stable buoyant displacement flow. Throughout this paper, unstable flows are consistently
defined as those displacement flows where the interfacial instabilities significantly grow at long
times and result in a complete mixing between the two fluids. Otherwise, the displacement
flow is defined as stable.

Although in Fig. 1.2, we have observed the general stabilizing effect of the imposed flow, it
should be noted that for higher imposed flows, the initial mixing at very short times is more
pronounced for displacement flows. For V̂0 6= 0, by looking at the concentration field, it is
interesting to note the transition from a nearly uniform profile at short times to a Poiseuille-
like profile at longer times.

Compared to the previous figure, Fig. 1.3 shows a sequence of experimental images for a fixed
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(a) At=0.0001. (b) At=0.001. (c) At=0.0035.

(d) At=0.01. (e) At=0.07.

Figure 2: Image sequences for B=0 and V0=0 mm/s.

3

(a) At=0.0001. (b) At=0.001. (c) At=0.0035.

(d) At=0.07, V0=17
mm/s.

Figure 6: Image sequences for B=0 and V0=15 mm/s.7

(a) At=0.0001. (b) At=0.001. (c) At=0.0035.

(d) At=0.01. (e) At=0.07, v0=25.

Figure 10: Image sequences for B=0 and V0=22 mm/s.

11

(a) At=0.0001. (b) At=0.001. (c) At=0.0035.

(d) At=0.01. (e) At=0.07, v0=33.

Figure 14: Image sequences for B=0 and V0=34 mm/s.

15

(a) At=0.0001. (b) At=0.001. (c) At=0.0035.

(d) At=0.01. (e) At=0.07.

Figure 18: Image sequences for B=0 and V0=44 mm/s.

19

(a) At=0.0001. (b) At=0.001. (c) At=0.0035.

(d) At=0.01. (e) At=0.07, v0=53.

Figure 22: Image sequences for B=0 and V0=55 mm/s.

23

(a) At=0.0001. (b) At=0.001. (c) At=0.0035.

(d) At=0.01, V0=64. (e) At=0.07, v0=61.

Figure 26: Image sequences for B=0 and V0=64 mm/s.
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(a) At=0.0001. (b) At=0.001. (c) At=0.0035.

(d) At=0.01, V0=73. (e) At=0.07, v0=73.

Figure 30: Image sequences for B=0 and V0=75 mm/s.
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Figure 1.3 – Sequence of experimental images for At = 10−3, showing that the inertial flow
at small V̂0 transitions to a stable flow at larger V̂0. From left to right, V̂0 = 0, 15, 22, 34,
44, 55, 64, 75 (mm/s) in each panel. From left to right, the experimental times in each panel
are t̂ = [15, 30, 45, 60, 75, 90, 105] (s), t̂ = [4, 8, 12, 16, 20, 24, 28] (s), t̂ = [2, 4, 6, 8, 10,
12, 14] (s) (the 3rd & 4th panels form the left), t̂ =[1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75] (s) (the
5th, 6th, 7th & 8th panels from the left). The field of view in each snapshot is 8× 805 (mm2),
located 24 (mm) below the gate valve.

but higher Atwood number, i.e. At = 10−3. This figure shows more clearly the stabilizing effect
of the imposed flow at a higher Atwood number. At V̂0 = 0, the flow is evidently unstable
and the fluids are mixed through a convective-diffusive mechanism (41), where the internal
structure of the flow is visible. As the mean imposed flow velocity increases, the overall mixing
seems to be reduced and finally, at a certain imposed flow velocity (here V̂0 = 44 (mm/s)), the
flow is completely stabilized. Compared to Fig. 1.2, due to strong buoyancy, we need a much
larger mean imposed flow velocity to completely stabilize the flow.

For very large values of Atwood number (At ≥ 0.01), we never observed a complete stabi-
lization of the flow at any values of V̂0. This might be expected as the mean imposed flow
velocities necessary for stabilizing the displacement flow at higher imposed flow rates are per-
haps so large that they fall into a regime characterized by a turbulent imposed flow, which
itself would promote instability and mixing.

It is worth noting that Figs. 1.2 and 1.3 showed that at short times when the heavy fluid
starts to penetrate into the light fluid, the fluids are accelerated initially. In fact, in all of
our experiments we have observed that, regardless of the long time behaviour of the flow, the
displacement flow at short times is inertial.

In a nutshell, Figs. 1.2 and 1.3 showed that by introducing the imposed flow to an exchange
flow, the displacement flow in a vertical pipe could be stabilized. For nearly horizontal incli-
nations, it has also been found that an imposed flow can counter-intuitively stabilize the flow
through increasing the local gradient Richardson number (85). Loosely speaking, increasing
the local gradient Richardson number may be interpreted as increasing the densimetric Froude
number, which is preferred as a model parameter. Therefore, the stabilizing effect of the im-
posed flow in our case can be related to the increase in the densimetric Froude number as V̂0
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Figure 1.4 – Experimental image sequence for V̂0 = 54±1 (mm/s) and At = 10−4, 10−3, 3.5×
10−3, 10−2, 7×10−2 from left to right in each panel. The experimental times in each panel are
t̂ = [1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75] (s). The field of view in each snapshot is 8 × 805 (mm2),
located 24 (mm) below the gate valve.

increases. Alba et al. (18) have also studied displacement flows at various pipe inclinations,
including a few experiments for the vertical case. They have reported mostly destabilizing ef-
fects due to the imposed flow along with some limited stabilizing effects observed for inclined
pipes; however, they could not observe a completely stabilized flow in their vertical pipe. This
is perhaps due to the fact that their study was limited to relatively larger Atwood numbers
compared to our case and their experiments were performed in a pipe with a diameter larger
than ours.

We mentioned in the introduction that the transition between stable and unstable exchange
flows is governed by a single dimensionless number and it occurs at a critical Ret|Critical ≈ 79.
For displacement flows, Fr is added as another dimensionless parameter of the flow. Therefore,
one can argue that, as the imposed flow is gradually added to the exchange flow, the critical
transition between stable and unstable flows must depend on the value of Fr. As will be shown
later, this proves to be true. We will further analyse this when discussing the overall regime
classification.

Fig. 1.4 shows the difference between the displacement flows at various At, for a fixed value
of the mean imposed flow velocity. As can be seen, for the flows at higher At, the level of
disorder increases, the flows are more inertial, and the degree of transverse & axial mixing
seems higher.
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1.4 Quantitative results

We will start this section with semi-quantitative descriptions of the stabilizing effect of the
imposed flow on our displacement flows. We will then take an extended look into stable and
unstable flow regimes. We end this section by providing the overall regime classifications versus
the dimensionless groups.

1.4.1 Stabilizing effect of the imposed flow

In the previous section, we observed that introducing or increasing the mean imposed flow
velocity can stabilize some of the buoyant flows studied. In this section, we attempt to provide
a further understanding of this interesting flow feature.

The normalized experimental images of the displacement flow captured by the camera provide a
digital concentration map with a two-dimensional mesh of normally around N×M = 20×2018

pixels in the transverse and longitudinal directions of the pipe, respectively. This usually covers
a field of view of ∼ 0.8×80 (cm2) below the gate valve. Considering the location of the camera
with respect to the pipe, each image shows the pipe side view in the ŷ, ẑ-plane (see Fig. 1.1b).
Thus, through the images captured we do not have access to the real concentration field, i.e.
C(x, y, z, t), since the concentrations are already averaged over the x̂ direction when an image
is taken. Consequently, within the limits of the camera resolution, each normalized image
provides us instead with a digital approximation to C̄x (y, z, t) =

∫ +1/2
−1/2 C (x, y, z, t)dx. For

example, for a given t, each picture is a matrix delivering C̄x (yj , zk, t) where j ∈ [1, N ] and
k ∈ [1,M ].

One approach to quantify the amount of dispersion in the data sets of C̄x (yj , zk, t) is to use

the standard deviation, defined as σy (z, t) =

√
1
N

N∑
j=1

(
C̄x (yj , z, t)− ς (z, t)

)2, where ς (z, t) =

1
N

N∑
j=1

C̄x (yj , z, t). Fig. 1.5 shows the variation of σy along the pipe length for various values

of density difference and mean imposed flow velocity. For a given z, the value of σy provides a
measure of the transverse mixing. For At = 10−4, two observations can be made. First, large
values of σy indicate a clear segregation between the displacing and displaced fluids. Second,
by increasing V̂0 (from top to bottom), the differences between the graphs on the left are
minor. This implies that after the initial stabilizing effect when an imposed flow is added to
an exchange flow, a further increase in V̂0 does not modify the overall form of the displacement
flow. For At = 10−3, at lower V̂0, the curve of σy versus z is oscillatory. At larger mean imposed
flow velocities, the curve is smooth. In addition, the maximum values of σy are slightly larger
confirming that increasing the mean imposed flow velocity stabilizes the flow. As At increases,
the differences between the graphs showing a sequence of increasing the imposed flow velocity
become minor, for the range of V̂0 studied. In fact at At = 0.07× 10−2, σy → 0 for all values
of z, implying a nearly complete transverse mixing throughout the pipe for all the values of
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Figure 1.5 – Standard deviation σy versus z when the displacing front is at zf ≈ 84 and
t = 49±4 for At = 10−4, 10−3, 3.5×10−3, 10−2, 7×10−2 (from left to right) and V̂0 = 23±2,
34± 1, 43± 1, 54± 1, 63± 2, 74± 1 (mm/s) (from top to bottom).

V̂0.

1.4.2 Stable flow regime

Displacement flows in the configuration that we study are highly susceptible to the growth
of instabilities. However, we interestingly observe that for certain ranges of the dimensionless
parameters, the flow is completely stable. Therefore, it is natural to attempt to develop a
lubrication/thin-film type model for these stables flows to furnish predictions about the flow
behaviours of interest.

Lubrication model

For small At and small imposed flow rates, within the initial few seconds after the beginning
of each experiment, the fluids are highly accelerated so the flow is initially inertial. Due to this
flow feature, the fluids are initially slightly mixed. However, after this period has passed, the
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two fluids are completely segregated and a relatively sharp displacement interface separates
the two fluids. The flow away from the displacing front seems quite viscous and stable. At
long times, as the interface is sufficiently stretched, the displacing fluid advances through the
displaced fluid in a form that may resemble an axisymmetric core-annular shape flow. It is,
therefore, useful to develop a standard thin-film/lubrication style model for such a flow. We
use a cylindrical coordinate system, which is more appropriate for modelling, with (r, θ, z) and
u = (ur, uθ, uz). Due to the axisymmetric condition of the flow, the problem reduces to (r, z)

and (ur, uz). The leading order equations are the momentum balances:

0 = −∂P
∂r

, (1.5)

0 = −∂P
∂Z

+
1

r

∂

∂r

(
r
∂uz
∂r

)
± χ

2
, (1.6)

and the incompressibility condition for each layer

1

r

∂ (rUr)

∂r
+
∂uz
∂Z

= 0, (1.7)

where ± present the heavy and light fluids, respectively. We have rescaled the system using
δz = Z, δt = T , δp = P , and ur = δUr, following standard methods (see, e.g. (118)).

At the walls u = 0 and at the interface both velocity and traction vectors are continuous. In
the middle we apply the symmetric condition for the velocity profile. For the flows considered,
in our experiments V̂0 is imposed by an elevated tank in the positive ẑ-direction. Thus, the
additional flow constraint

1

4
=

∫ h

0
2ruz,Hdr+

∫ 1/2

h
2ruz,Ldr (1.8)

has to be satisfied by the solution. We eliminate pressure in usual fashion and derive the
evolution equation

∂α

∂T
+
∂q

∂Z
= 0, (1.9)

where h ∈ [0, 1/2] and α = h2 is the area fraction occupied by the heavier fluid. The solution
is simplified to finding the flux, which is scaled with πD̂2

0V̂0, as

q = −2χh8 + 2h6χ−
(

4 +
1

2
χ ln (h) +

3

8
χ+

1

2
χ ln (2)

)
h4 + 2h2 (1.10)

The interface advances with a shock speed Vi(h) given by

Vi (h) =
1

2h

∂q (h, χ)

∂h
. (1.11)
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The total volume of fluid behind the interface must conserve mass; therefore, introducing V Lub
f

and hf , respectively, as the displacing front speed and height (radius) at long times, we can
write

V Lub
f =

q (hf , χ)

h2
f

, (1.12)

where hf must be found through the use of the conventional equal areas rule:

hf
2

∂q (hf , χ)

∂h
= q (hf , χ) . (1.13)

Using truncated series expansion and after some algebra, the front velocity can be obtained
as

V Lub
f = 2− (8 + χ (ln (2hf ) + 1))h2

f +O(h4
f ), (1.14)

where
hf = exp

(
−χ (4 ln (2) + 5) + 32

4χ

)
+O(h2

f ). (1.15)

We have so far found the penetrating interface front height and front velocity versus the
governing parameter of the lubrication problem, i.e. χ. In addition, the lubrication model can
be exploited to extract more information about the stable flows. In particular, we are able to
quantify a marginal state called the stationary interface flow for displacement flows in a vertical
pipe. Taghavi et al. (86) were perhaps first to discover the existence of a stationary interface
propagation in Newtonian displacement flows. Their cases of study were the displacement flows
in near-horizontal pipes and 2D channels. In these flows, a displaced fluid layer is apparently
stationary with a constant flow rate of displacing heavy fluid. Mathematically speaking, in
our case, this implies that the interfacial speed is zero while the dimensionless flux is 1/4 at
the interface. In fact, we observe that in our experiments, the interface remains stationary for
the duration of the experiment while the flow rate of displacing heavy fluid is constant. The
calculations result in finding the critical buoyancy number (χs) and a critical interface height
(hs) for stationary interface flows:

hs ≈ 0.377 (1.16)

χs ≈ 230 (1.17)

As we will see in §1.4.4, the marginal state of stationary interface flow (which occurs at
χs ≈ 230) provides a prediction of the transition between two sub-regimes in stables flow, i.e.
sustained-back-flow and no-sustained-back-flow regimes.
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Table 1.3 – Values of the critical buoyancy number (χs), the total stationary layer width
(Ws) and the ratio of the stationary layer volume to the tube volume (−Vs) for displacement
flows in various 3D pipe and 2D channel flow configurations. The length scale used is either
the pipe diameter or the channel thickness. (1) See the main text for the development de-
tails. (2) See Appendix A for development details. (3) This value is taken from Taghavi et
al. (86). For consistency with the previous works, the buoyancy number can be defined as
χ = 2Ret cosβ/Fr, where β is the geometry inclination angle with respect to the vertical.

Flow configuration χs Ws −Vs
Displacement flow in a strictly vertical pipe 230(1) 0.25 0.44

Displacement flow in a strictly vertical channel 118(2) 0.34 0.34
Two-layer displacement flow in a near-horizontal pipe 116(3) 0.28 0.23

Two-layer displacement flow in a near-horizontal channel 70(3) 0.29 0.29

Note on the effect of geometry & flow configuration on the stationary interface
state

Before proceeding, it is interesting to compare the value of the critical buoyancy number χs for
our displacement flow in a vertical pipe with those in the literature for other geometries & flow
configurations. Table 1.3 shows such comparison. In this table, the critical buoyancy number
(χs), the total stationary layer width (Ws), and the ratio of the stationary layer fluid volume
left behind (−Vs) are given for each flow configuration & geometry. The lubrication model
for a symmetric displacement flow in a vertical channel is also developed in the appendix
A, to complete the picture. The values of χs for the two other geometries are taken from
the literature. The first trend that can be seen is that χs is the largest for the vertical pipe
geometry and it is the smallest for the near-horizontal 2D channel. In addition, while the
thickness of the static layer is the smallest for the vertical pipe flow, the volume of the fluid
behind the interface at the stationary interface flow condition is the largest (which is just a
geometrical effect).

Front velocity in the stable regime

For the stable flows, we may expect the lubrication model to deliver a good approximation
to the penetrating front velocity at longer times. However, as mentioned before, we have
experimentally seen that the flow undergoes an initial acceleration and the front velocity
rapidly increases to attain its nearly steady-state value. For a single purely viscous liquid,
the solution of the startup Poiseuille flow reveals that the characteristic time required for
such acceleration through a viscous balance would scale with D̂2

ν̂ , for example, ∼ 92 (s) for
a typical flow. However, our experimental observations reveal that the initial acceleration
time, which we may define as the time when V̂f (t) reaches 99% of its final value, is much
shorter. Therefore, the flow has to accelerate through a different mechanism, which includes
a significant contribution from inertial effects. We have already seen that the initial inertial
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ẑ (mm)

¯̄ C
x
y
(z
,t
)

(b)

0 5 10 15 20
0

10

20

30

40

50

t̂ (s)

V̂
f
(m

m
/
s)

Figure 1.6 – Experimental results for At = 10−4 and V̂0 = 22 (mm/s): (a) Evolu-
tion of the depth-averaged concentration field, ¯̄Cxy(z, t) =

∫ +1/2
−1/2 C̄x (y, z, t) dy with time,

t̂ = [2, 3.875, 5.875, 7.75, 9.75, 11.625, 16.625, 15.5, 17, 19.375] (s), and streamwise location, ẑ,
measured from the gate valve. The horizontal dashed lines show ¯̄Cxy(z, t) = 0.07, just above
the noise level, which is used for measuring the displacing front velocity, V̂f , consistently for
all the experiments. (b) Evolution of the front velocity value, V̂f , with time for the same ex-
periment (solid line). The dashed line shows the prediction of the model, as explained in the
text.

acceleration also induces slight mixing between the two fluids, which we ignore for simplicity
in our analysis in this section.

Fig. 1.6a shows an example of the evolution of the average concentration field with time and
streamwise location. The figure shows that the interface evolves stably and smoothly. The
front velocity of the penetrating heavy displacing fluid can be approximated by following the
ẑ-location of a small ¯̄Cxy above the noise, e.g. ¯̄Cxy ≈ 0.07 to give V̂f ≈ ẑ

t̂

∣∣∣ ¯̄Cxy=0.07
. Ideally, since

the fastest penetration is expectedly at the pipe center-line, the front should be defined and
quantified at ¯̄Cxy = 0, which is not possible due to experimental noise. Instead, ¯̄Cxy ≈ 0.07 has
been found as the minimum value of ¯̄Cxy which always remains above the experimental noise
for all of our experiments. Thus, it may be expected that the front velocities measured slightly
underestimate the largest penetration velocity at the pipe center-line. The line in Fig. 1.6b
shows the front velocity that corresponds to the same parameters of the subfigure on the left.
The dashed line shows the prediction of our model that will be described below.

For a comparable system to ours where a purely inviscid fluid flows from a large tank into

a long pipe, it can be easily shown that the flow velocity is
√

2ĝĤ tanh
(
t̂
τ̂

)
, where

√
2ĝĤ

corresponds to the final velocity in the inviscid flow, Ĥ is the tank height, and τ̂ is the time
constant of the dynamic system. Using an analogy to the system described, we can postulate
a time-dependent form for the displacing front velocity as V̂f (t) = V̂∞f tanh

(
t̂
τ̂

)
, where V̂∞f is
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Figure 1.7 – (a) Variation of the time constant of the dynamic system τ̂ versus V̂0 for
At = 10−3 (green filled pointed-down triangle) and At = 10−4 (magenta filled pointed-right
triangle), which both belong to stable flows. (b) Variation of the dimensionless time constant
of the dynamic system τ with Fr. (c) Variation of the dimensionless time constant of the
dynamic system τ with Re. In all the subfigures, the line illustrates τ = 4.34, which is simply
an average of the dimensionless time constants, with a standard deviation of 0.64.

the final front velocity at long times. Our experimental results have shown that V̂∞f ≈ V̂ Lub
f

(results are not shown). In a given experiment, the values of V̂f versus t̂ and V̂∞f are available;
therefore, τ̂ can be directly calculated for each experiment.

Fig. 1.7a shows the variation of the time constant of the dynamic system τ̂ extracted for a
number of experiments versus V̂0. Figs. 1.7b and 1.7c show that the dimensionless form of the
time constant is not so much dependent on Fr and Re for a wide range of these parameters.
This allows us to use the average time constant (from all the experiments shown) to propose
the following relation for the time-dependent front velocity:

Vf = V Lub
f tanh

(
t

τ

)
, (1.18)

where τ = 4.34.

Fig. 1.8 compares time-dependent front velocities from our experiments and those from equa-
tion (1.18) for many data sets. The agreement between the model and the experiments is
reasonable. However, at long times, the values of Vf from experiments are generally slightly
smaller than their model counterparts. This may be at least due to two factors: First, the
experimental front velocities are measured at ¯̄Cxy ≈ 0.07, not exactly in the middle of the
channel (where the flow is expectedly faster); second, the fluids initially slightly mix, which
reduces the density difference near the front (thus buoyancy becomes weaker) and this may
contribute to smaller front velocities measured from our experiments.

1.4.3 Unstable flow regime

We now turn to describe some of the features of the unstable flow regime.

39



0 10 20 30 40 50
−2

−1

0

1

2

V
f
,e
x
p
−

V
f
,m

o
d
e
l

t

Figure 1.8 – Vf,exp − Vf,model against t: comparison between the dimensionless experimental
front velocity (Vf,exp) and the predicted model front velocity (Vf,model) from equation (1.18)
versus time, for many sets of experiments in the stable flow regime.

Front detachment

Using direct numerical simulation (DNS) in tilted channels, Hallez et al. (71) studied buoyant
mixing of miscible fluids for an exchange flow configuration. They reported striking diffe-
rences between the flow dynamics in 2D channels and 3D pipes, which they attributed to
strong, coherent and persistent vortices, over long times in 2D. This resulted in discovering
the phenomena of cutting front in 2D geometries. Later, again through numerical simulations
of flow in 2D channels, Alba et al. (19) observed similar phenomena for miscible displacement
flows, which they termed front detachment. However, front cutting or detachment has not been
seen before in 3D pipe geometries so that previous reports have concluded that this feature
might be only relevant to 2D displacements (which are not essentially physical or relevant to
realistic fluid flows). Interestingly, even fluid flows featuring instability, interfacial waves and
mixing have not been previously found to be prone to cutting of the stream between the front
and the bulk heavy fluid. For example, Hallez et al. (71) found that 3D pipe allows for the
penetrating buoyant front to always remain connected to the bulk of the heavy fluid following
from behind. Here, we report for the first time the occurrence of front detachment for 3D pipe
flow experiments. In the following section, we will also characterize this phenomenon versus
the relevant dimensionless parameters.

The top subfigure in Fig. 1.9 is the image sequence showing the concentration field at different
times for an unstable flow experiment. The front, for which the streamwise location is defined
as ẑ| ¯̄Cxy=0.07, is initially attached to the displacing layer. However, at longer times the front is
cut off from the rest of the bulk flow of the displacing fluid. When this piece of the fluid is cut,
a new front is formed behind. This piece of fluid falls down faster than the rest of the fluid
but due to instabilities, it is quickly mixed with the surrounding displaced liquid and finally
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Figure 1.9 – Experimental results for At = 3.5 × 10−3 and V̂0 = 65 (mm/s): (Top)
Image sequence showing the detachment of the front: from left to right t̂ = [0.75, 1.5, 2.125,
2.875, 3.625, 4.375, 5.125, 5.75, 6.5, 7.25] (s). The horizontal line is the position of the defined
front. The field of view in each snapshot is 7 × 805 (mm2), located 24 (mm) below the gate
valve. (a) Evolution of the depth-averaged concentration field ¯̄Cxy(z, t) =

∫ +1/2
−1/2 C̄x (y, z, t) dy

with times t̂ = [0.75, 2.125, 3.625, 5.125, 6.5] (s), and streamwise location, ẑ, measured from the
gate valve. The arrows show the position where the front is detached from the bulk displacing
flow. (b) Evolution of the front velocity value, V̂f , with time for the same experiment. The
arrows show the time when the front is detached from the bulk flow.

diminishes. Fig. 1.9a shows the depth-averaged concentration field versus t̂ and ẑ, where the
formation and diminishing processes are more visible. The change in concentration near the
frontal region is evident. Fig. 1.9b shows the variation of the front velocity with time, where
a significant drop in the value of the front velocity measured is also evident.

For a 2D channel geometry, simulations of Alba et al. (19) looked into the vorticity field,
which is generated close to the front, and which decays behind the front. They showed that for
inclined channel displacement flows, there exist both negative and positive values of vorticity
on the upper and lower sides of the front. This implies that there are tiny rotational regions
of current creating local back-flow and mixing, for which the cause is instability close to the
interface and within the two fluid regions. Although our configuration and more importantly
our geometry are different, the same mechanism may also be present and be the cause of the
front detachment in our case. However, it should be noted that our 3D geometry allows for
azimuthal secondary flows, which can modify the vorticity field. It seems that more research
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Figure 1.10 – Experimental results for At = 10−2 and V̂0 = 34 (mm/s): (Top) Image sequence
showing the detachment of the front: from left to right t̂ =[1.25, 2.625, 3.875, 5.25, 6.5,
7.75, 9.125, 10.375, 11, 13] (s). The horizontal line is the position of the defined front. The
field of view in each snapshot is 7 × 805 (mm2), located 24 (mm) below the gate valve. (a)
Evolution of the depth-averaged concentration field, ¯̄Cxy(z, t) =

∫ +1/2
−1/2 C̄x (y, z, t) dy with time,

t̂ =[1.25, 3.875, 6.5, 9.125, 11] (s), and streamwise location, ẑ, measured from the gate valve.
(b) Evolution of the front velocity value, V̂f , with time for the same experiment.

must be conducted for the 3D geometry pipe displacement flow to shed light on the exact
mechanism for the front detachment. High quality numerical simulations in 3D and particle
image velocimetry (PIV) or Ultrasonic Doppler Velocimetry (UDV) experiments are among
the possible options for future research.

Within the unstable flows, the front detachment phenomena occur at relatively smaller density
differences and higher imposed velocities. Both of these imply that for the front to be cut, the
relative buoyancy stress must be smaller. For higher buoyancy forces, the density contrast at
the front is small due to efficient mixing; in fact, the front is formed within a highly diffusive
layer where it seems to be continuously mixed with the displaced fluid and therefore it is
continuously consumed by the displaced layer. In this case, there would be no opportunity
for the front to keep a significant density difference and then be cut and fall down separately.
Hence, displacement flows with front detachment and those without are phenomenologically
different. The top image sequence in Fig. 1.10 illustrates a case where the density difference is
larger and the front is not cut. Fig. 1.10a shows the depth-averaged concentration field versus
t̂ and ẑ, where the concentration field is oscillatory but there is no significant cut at the front.
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Figure 1.11 – Average front velocity Vf at long times, plotted against Fr and Ret, for the
unstable flows. The dashed lines are illustrative to suggest possible contour lines over which
the normalized velocities are nearly constant.

Fig. 1.10b shows the variation of the front velocity with time.

Front velocity in the unstable regime

Front velocities in the unstable regime cannot be predicted by the lubrication model. Although
buoyancy is strong, mixing and diffusion dominate the flow and the front velocities are much
smaller than those predicted by the lubrication model. Fig. 1.11 shows the values of some of
the experimental front velocities for unstable flows plotted in the plane of Ret and Fr. This
figure helps to understand two aspects of the flow. First, there is a clear trend in terms of
the dimensionless parameters. For a given Ret, increasing Fr leads to a decrease in the front
velocity. Similarly, for a given Fr, increasing Ret leads to the same effect. It is also evident
from the figure that the flows with different Vf are clearly scattered but illustrative contour
lines can be superposed on the figure to suggest a possible form for the variation of Vf over
some range of the dimensionless parameters. Obviously, more research must be conducted to
understand the front dynamics in these flows.

1.4.4 Overall regime classification

In this section, we aim to assemble our quantitative findings of the two main flow regimes
at long times in our experiments: the unstable flow, for which the two fluids mix due to the
presence of instabilities and the stable flow, for which the two fluids remain segregated over
the timescale of our interest. It might be a priori expected that the two flow regimes must be
described by two dimensionless parameters of the flow, namely the modified Reynolds number
and the densimetric Froude number.

To provide an overall perspective of the various flow regimes and where they occur, Fig. 1.12a
presents the classification of our flows for the full range of experiments. We observe that the
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Figure 1.12 – Classification of our results for the full range of experiments: (a) Data points
indicated by + are stable and by × are inertial. The dashed-dotted line curve is only illustra-
tive and shows an estimate for the turbulent shear flow transition, roughly based on Re ≈ 2000
(119). (b) The same as subfigure a (zoomed in). The thick line shows the leading order approxi-
mation for the transition from stable to unstable flow regimes (Ret|Critical = 79+Fr+2Fr2).
The flows with decaying helical waves are marked by superposed triangles. (c) The same as
subfigure a (zoomed in). Stable, sustained-back-flows are marked by the superposed circles.
The oblique dashed line shows χ = 2Ret/Fr ≈ 230. The thick line is the same as in subfigure
b. (d) The same as subfigure a (zoomed in) but showing unstable flows only. Here the flows
with a front detachment are marked by squares.

data points belonging to stable and unstable flows are clearly separated. The data points are
more concentrated close to the transition region between stable and unstable flows, where
more experiments were purposefully performed to delineate the transition boundary. In this
figure, three regions are distinguishable in the plane of Ret and Fr. First, for smaller Fr and
larger Ret, the displacement flow is unstable due to the presence of strong buoyancy. On the
other hand, for smaller Ret and larger Fr, the displacement flow is stable. The third region
is the one above the dashed-dotted line curve, for which the imposed flow itself is assumed
turbulent: Re > 2000.

Let us now discuss the transition between stable and unstable flows in Fig. 1.12b. For Fr = 0,
Debacq et al. (41) have quantified that Ret|Critical ≈ 79 marks the transition from stable to
unstable flows. As also mentioned earlier, we argue that for Fr 6= 0, this transition should
be a function of Fr. Indeed, a coarse analysis can estimate Ret|Critical = f(Fr) ≈ f(0) +
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f ′(0)Fr + f ′′(0)Fr2/2 + ..., where we experimentally find f ′(0) = f ′′(0)/4 = 1 and we take
f(0) = 79 from (41), as a leading order approximation to the stable–unstable transition. This
has been superposed on as a thick line on Fig. 1.12b.

Within the stable flows in Fig. 1.12b, there are flows (marked by superposed triangles) where
helical waves are observed at the interface. These waves are usually observed at shorter times.
However, they are unable to completely mix the fluids and they decay progressively. As most
of the experimental data with wavy interfaces are located close to the boundary to unstable
flows, they may be also appropriately called transitionary displacement flows. Fig. 1.12b shows
that this feature of the flow disappears at higher imposed flows (i.e. larger Fr), which may be
justified by considering the general stabilizing effect of the imposed flow.

Fig. 1.12c shows the same data points as the ones in Fig. 1.12a, but the figure has been zoomed
in for clearer visualization. Let us focus on the stable flows. These flows can be divided into
two sub-regions (sub-regimes): the no-sustained-back-flow regime where there is no sustained
upward motion of the light fluid above the gate valve against the mean imposed flow direction
and the sustained-back-flow regime which is related to the buoyancy driven upward flow of the
lighter fluid, i.e. against the mean imposed flow direction. These two regimes are different in
that sustained-back-flows will be never completely displaced by the imposed flow. In Fig. 1.12c,
the oblique dashed line shows the critical χs, obtained through the lubrication model, for the
stationary interface flow state which identifies the transition between the two sub-regimes
mentioned. As can be seen, the prediction of the lubrication model for the transition point is
good.

Finally, Fig. 1.12d illustrates a secondary feature within the unstable flow regime, i.e. the flows
with a front detachment, marked by squares. It is seen that the front detachment is generally
absent in zero and small imposed flow velocities and in very large density differences.

1.5 Conclusions

We have experimentally investigated miscible displacement flows in a vertical pipe. The fluids
were Newtonian, with a small density difference and nearly-identical viscosities. The problem
analysis was reduced to two dimensionless parameters, i.e. the modified Reynolds number
(Ret) and the densimetric Froude number (Fr), for which our experiments covered a wide
range.

We have identified two main flow regimes as stable and unstable displacement flows. The tran-
sition between these two regimes is quantified by Ret|Critical as a function of Fr. Displacement
flows that satisfy the condition of Ret|Critical < 79 +Fr+ 2Fr2 are stable and otherwise they
are unstable. This implies that increasing the mean imposed flow (or increasing Fr) stabilizes
the displacement flow for certain ranges of the dimensionless groups. Most of the focus of
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the paper has been on the stable flow regime, which is, of course, easier to analyse. The two
fluids in the stable regime are segregated and there is a visible interface between them. In this
regime, the displacing fluid invades the displaced one in a locally axisymmetric way in the
middle of the pipe. The unstable displacement flows, on the other hand, are associated with
instabilities, mixing, and diffusion.

Within the stable flow regime, the flows can be phenomenologically divided into sustained-
back-flows and no-sustained-back-flows. In the former sub-regime, found at higher ratios of
buoyancy to viscous stresses, the displaced fluid is able to continuously move upward above
the gate valve and against the direction of the mean imposed flow. In the latter sub-regime,
the buoyancy is not sufficiently strong to induce a sustained movement of the displaced fluid
above the gate valve. The transition between these two regimes occurs at a marginal statio-
nary interface flow state, which corresponds to the critical buoyancy number χs ≈ 230, well
predicted by the lubrication model.

There exist interesting patterns within the unstable flow regime, one of which is the front
detachment phenomena associated with the cutting of the front from the bulk displacing
layer. This pattern had been observed computationally before, but never experimentally in
3D. We have delineated the region of the existence of the phenomena in the plane of Ret
versus Fr.

Finally, front velocities of the penetrating displacing fluid have been also analysed. For the
stable flow regime, the lubrication model developed also delivers the front velocity at longer
times V Lub

f , when viscous forces dominate inertial forces in balancing buoyancy. A combina-
tion of a velocity scale formulation for the initial inertial acceleration and V Lub

f provides a
predictive model for Vf (t), which agrees reasonably with the experimental data (although at
long times the values of Vf from experiments are generally slightly smaller than their model
counterparts). For the unstable regime, it seems that the front velocities at longer times are
scattered in the plane of Ret and Fr, where reasonable trends versus these two parameters may
be distinguished. However, due to the complexity of the flow problem, we leave the modelling
of the front velocities of these flows for a future work.
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Chapitre 2

Displacement flows in periodically
moving pipe: understanding
multiphase flows hosted in oscillating
geometry

Résumé

Dans le présent travail, nous étudions expérimentalement les écoulements de déplacement de
deux fluides miscibles Newtoniens à l’intérieur d’un long tuyau mobile vertical tout en com-
parant les résultats avec les écoulements de déplacement correspondants d’un tuyau fixe. En
mouvement, le tuyau oscille lentement comme un pendule inversé. Les deux fluides ont une
faible différence de densité et une viscosité presque identique. Le fluide de déplacement le
plus dense est placé au-dessus du fluide déplacé. Globalement, le flux de déplacement dans la
conduite en mouvement est au moins contrôlé par trois groupes sans dimension, à savoir le
nombre de Reynolds, le nombre de Froude densimétrique et le nombre de Rossby. Des images
expérimentales du front pénétrant du fluide lourd qui se déplace dans le fluide léger ont été
analysées pour une large gamme de ces groupes sans dimension. On observe en particulier
trois régimes d’écoulement différents pour les écoulements de déplacement dans une conduite
en mouvement : un flux stable non diffusif (pour Re/Ro . O

(
102
)
& Re/Fr2 < 35), un

flux stable-diffusif (pour Re/Ro & O
(
102
)
& Re/Fr2 < 35) et un flux instable diffusif (pour

Re/Fr2 > 35). De plus, les vitesses avant de pénétration ainsi que les coefficients de diffusion
macroscopiques ont été quantifiés. Les résultats montrent clairement qu’en fonction de la va-
leur de la différence de densité et de la vitesse moyenne d’écoulement de déplacement imposé,
le mouvement géométrique peut avoir des effets différents et même opposés, par exemple une
augmentation ou une diminution légère de la vitesse avant. Le mouvement du tuyau semble
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également augmenter légèrement le coefficient de diffusion macroscopique. Bien que les résul-
tats de cette étude puissent aider à comprendre les principaux effets associés à un mouvement
de géométrie d’écoulement sur les écoulements de déplacement, ils peuvent être d’une grande
importance pour les applications industrielles et pour le développement de théories pertinentes
de la mécanique des fluides.

Abstract

In the present work, we experimentally study displacement flows of two Newtonian, miscible
fluids in a long, vertical moving pipe while comparing the results with the corresponding
displacement flows in a stationary pipe. When in motion, the pipe slowly oscillates like an
inverted pendulum. The two fluids have a small density difference and a nearly-identical vis-
cosity. The denser displacing fluid is placed above the displaced fluid. Overall, the buoyant
displacement flows in the moving pipe is at least controlled by three dimensionless groups,
namely the Reynolds number, the densimetric Froude number, and the Rossby number. Expe-
rimental images of the penetrating front of the heavy displacing fluid into the light displaced
one have been analysed for a wide range of these dimensionless groups. In particular, three
different flow regimes are observed for displacement flows in a moving pipe: a stable flow
that is non-diffusive (for Re/Ro . O

(
102
)
& Re/Fr2 < 35), a stable-diffusive flow (for

Re/Ro & O
(
102
)
& Re/Fr2 < 35) and an unstable-diffusive flow (for Re/Fr2 > 35). In

addition, penetration front velocities, as well as macroscopic diffusion coefficients, have been
quantified. The results show in details that depending on the value of density difference and
the mean imposed displacement flow velocity, the geometrical movement can have different
and even opposite effects, e.g. slightly increase or decrease the front velocity. The pipe motion
seems to also slightly increase the macroscopic diffusion coefficient. While the findings of this
study can help to understand the leading order effects associated with a flow geometry move-
ment on displacement flows, they can be of great importance for industrial applications and
for development of relevant fluid mechanics theories.

2.1 Introduction

In simple words, displacement flows occur when a fluid is imposed to push another fluid of
different properties in a flow geometry that is usually confined. Displacement fluid flows are
among the most widespread phenomena in nature (6; 102), as well as in industry, e.g. in oil
and gas industry (2; 120) and other applications (103). In the present work, we experimentally
study high-Péclet-number miscible displacement flows of Newtonian fluids in a long, vertical,
moving pipe. The two fluids have the same viscosity. The density difference between the two
fluids is small so that the Boussinesq approximation is applicable. However, as the heavy
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fluid is placed on the top of the light fluid, buoyancy is still significant in driving fluid flow
motion. At the same time, there is a downward laminar imposed flow, with a mean velocity,
V̂0

1. In addition, during the displacement flow process, the test pipe slowly oscillates like
an inverted pendulum (see Fig. 2.1). Buoyant displacement flows in stationary geometries
have been studied in depth recently (see e.g. (16; 18; 121)) but the literature on buoyant
displacement flows in moving geometries is almost non-existent. The focus of our study is to
draw a comparison between buoyant miscible displacement flows in moving and stationary
pipes, through studying a number of key and leading order features of these flows.

The literature of exchange flows is very relevant to work. Our displacement flows approach
their exchange flow limit when the imposed displacement flow velocity becomes zero. In that
case, the only driving force in the flow is buoyancy, which is dissipated by either viscosity or
inertia. Debacq et al. (40; 41), Seon et al. (42; 43; 44; 45; 46), and Znaien et al. (47) have
experimentally studied buoyant miscible exchange flows in vertical and inclined pipes and they
have found/classified various flow regimes that may exist in an exchange flow configuration,
e.g. inertial, viscous, diffusive, etc. Two fluid flow features have been of focus and interest in
their works: the interpenetrating front velocity (V̂f ) and the macroscopic diffusion coefficient
(D̂M ). Debacq et al. (40; 41) have shown that the latter can characterize diffusive flows, for
which the extent of the axial diffusion is much larger than the molecular diffusivity. The former
has been found helpful in recognizing whether the exchange flow is viscous or inertial, while
they have found that V̂f and D̂M are functions of density ratios, fluid viscosities, and pipe
diameter. Extending the same approach, Seon et al. (42; 43; 44; 45; 46) have studied buoyant
miscible exchange flows in various pipe inclinations from horizontal to vertical and they have
quantified the dependency of V̂f and D̂M on the flow parameters, including the inclination
angle. Seon et al. (42) and Debacq et al. (41) have also looked into the transition between
diffusive and non-diffusive flows as a function of the flow governing parameters.

Taghavi et al. (16; 15; 85; 86), Alba et al. (18) and more recently Amiri et al. (121) stu-
died buoyant miscible displacement flows in nearly-horizontal, inclined and strictly vertical
ducts, respectively. In comparison with an exchange flow, a mean flow velocity was imposed
to the system; thus, the focus of their studies was on quantifying the effect of V̂0 on the flow.
Using a combination of detailed experimental, computational and analytical approaches, Ta-
ghavi et al. (16) classified viscous and inertial regimes in near-horizontal inclinations. Their
work enabled predictions to the penetrating displacement front velocity in the viscous regime
using lubrication-type analytical models. For the inertial regime, they proposed experimental
correlations to relate V̂f to the flow governing parameters. Experimental study of Alba et
al. (18) in inclined pipes showed the existence of a diffusive regime, in addition to viscous
and inertial regimes, which they quantified and for which they proposed correlations to pre-

1. In this paper we adopt the convention of denoting dimensional quantities with the ˆ symbol and dimen-
sionless quantities without.
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dict D̂M . Relevant to our work, there is also a large body of computational works studying
buoyancy driven and displacement flows, e.g. (19; 71; 72; 105; 122). Buoyant displacement
flows with a moderate viscosity ratio have been also studied (88). More structured (viscous-
like) miscible displacement flows have been also studied in depth for uniform geometry flows,
e.g. (81; 80; 106; 107; 108) and more recently for non-uniform geometry flows (22). Displace-
ment flow instabilities in Hele-Shaw cells have been also the subject of numerous studies, e.g.
(123; 124). The interested reader is also referred to a recent relevant review on instabilities of
viscosity-stratified flows (125).

At zero density difference, axial diffusive spreading of displacement flows may be compa-
red with Taylor dispersion for turbulent flows (101). Through modifying the Taylor’s analy-
sis, Tichacek et al. (126) demonstrated that as the flow approaches the laminar regime, the
axial diffusive spreading significantly improves. Alba et al. (18) showed that the presence of
buoyancy significantly modifies the axial diffusive spreading and D̂M interestingly exceeds the
corresponding Taylor dispersion coefficient, by up to an order of magnitude.

We have found only very few studies in the open literature which can be directly relevant to
displacement flows with moving geometry. These are more application-oriented works, relevant
to processes in oil and gas well cementing or floating production storage and offloading (FPSO)
applications. For example, Savery et al. (93) used a mixed 2D and 3D computational approach
to study the effect of a casing motion in displacement flows in oil well completion applications.
Carrasco-Tejaand and Frigaard (52; 53) relied on a lubrication type-model to analytically study
Newtonian and non-Newtonian fluid displacements. Their focus was on a horizontal narrow
eccentric annuli geometry where the inner cylinder moves. Their scenario of consideration
was a viscous flow at the limit of large buoyancy. Assima et al. (54) studied the emulation
of gas-liquid flow in moving packed beds, relevant to offshore floating applications, where it
has been shown that flow patterns, scalar transport in the liquid and maldistribution of the
liquid across the cylindrical porous-medium vessel were sensitive in different manners to the
type of perturbing degree of freedom. While our study can provide fundamental understanding
about the displacement flows that occur in the industrial applications mentioned, it adds a
new dimension to the body of the sparse previous works.

The novelty of the current investigation is that we study experimentally buoyant displacement
flows in a moving pipe for the first time, and we quantify some of the leading order behaviours
of the flow when the motion is imposed. The term “inverted pendulum-like motion” implies
that the center of mass of the pipe lies above its pivot point. This flow geometry motion has
been chosen due to its importance and simplicity as a classic problem in dynamics, which
involves a single degree of freedom by affixing the pipe to an axis of rotation. Throughout this
paper, unless otherwise stated, by motion we mean the inverted pendulum-like motion of the
experimental pipe.
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Figure 2.1 – Schematic view of the experimental displacement flow setup: (a) The pipe in
motion and (b) Coordinates, dimensions, and other details.

The paper proceeds as follows. Section 2.2 discusses our displacement flows from a modeling
perspective. Section 2.3 describes the experimental setup and procedures. Experimental results
are presented in §2.4 where various flow regimes are discussed qualitatively and quantitatively.
The focus will be on providing understanding about the effect of the pipe motion on buoyant
displacement flows. Section 2.5 concludes the paper with a brief summary of the main findings.

2.2 Problem setting

We consider a situation where a heavy fluid (fluid H) displaces a light fluid (fluid L) along
a long, vertical pipe which is in motion like an inverted pendulum, as illustrated in Fig. 2.1.
We focus on small oscillatory motion frequencies, f̂ = 0.2 (Hz) 2, and a small maximum
oscillation amplitude (Â ), i.e. 15 (◦) with respect to vertical. The pipe has a diameter D̂. The
mean imposed displacement flow velocity (V̂0) is in the downhill direction. This imposed flow
is laminar. The fluids have nearly the same dynamic (µ̂) or kinematic (ν̂ = µ̂/ ˆ̄ρ) viscosity,
and they are miscible. The fluids also have slightly different densities. The length of the pipe
is much larger than its diameter so that the aspect ratio satisfies δ−1 = L̂

D̂
� 1. As Fig. 2.1

shows, the two fluids are initially separated by a gate valve so that when it is opened the
initial interface is transverse to the pipe axis and it is located away from both pipe ends.

2. We have also carried out a wide range of experiments at f̂ = 0.02, 0.05 and 0.1 (Hz) to provide a detailed
regime classification presented in Fig. 2.4.

51



Table 2.1 – Range of some of the dimensionless parameters used in our experiments for
non-zero values of V̂0. Dm is taken to be ∼ 2× 10−9 (m2/s).

Parameter Name Definition Range
At Atwood number ρ̂H−ρ̂L

ρ̂H+ρ̂L
10−4 − 7× 10−2

Re Reynolds number V̂0D̂
ν̂ 20− 756

Fr Densimetric Froude number V̂0√
AtĝD̂

0.1− 24

Ro Rossby number V̂0
ω̂0D̂

0.17− 65

Pe Péclet number V̂0D̂

D̂m
10.1× 103 − 378.2× 103

Although this paper is exclusively about experimental results, it seems necessary to describe
the equations of motion from a modelling perspective. A natural formulation of our miscible
displacement flows involves a concentration–diffusion equation which must be coupled to the
Navier–Stokes equations in a pipe-attached moving frame of reference. The change between
pure heavy and light fluids can be modelled via a scalar concentration, c. We render the
Navier–Stokes equations dimensionless using D̂ as length scale, V̂0 as velocity scale, ω̂0 = 2πf̂

as angular velocity scale. Subtracting a mean static pressure gradient before scaling the reduced
pressure, we arrive at

(1-φAt) (ut + u.∇u) = −∇p+
1

Re
∇2u− φeg

Fr2
− 1

δRo2
(1-φAt) Ω×(Ω×<)− 2

Ro
(1-φAt) Ω×u,

(2.1)

∇.u = 0, (2.2)

ct + u.∇c =
1

Pe
∇2c. (2.3)

Here, the left-hand-side (LHS) shows the inertial acceleration terms, and on the right-hand-
side (RHS), the first term is the pressure gradient, the second term is the viscous dissipative
stress, the third term is buoyancy stress, the fourth term is centrifugal body stress, and the
fifth term is the Coriolis stress. Also, in Cartesian coordinates, eg = (0,− sinβ, cosβ), where
β is the time-dependent pipe inclination angle (with respect to vertical), with a complicated
functionality on A , Ro and t, Ω is a function of Ro and t, and < = (δx, δy, Z0 − δz) with a
fixed Z0 = ẑ0/L̂ ≈ 0.44. The function φ(c) = 1− 2c interpolates linearly between 1 and -1 for
c ∈ [0, 1], for displaced and displacing fluids, respectively. The five dimensionless parameters
appearing in equation (2.1) are the angle of inclination from vertical (depending on time, Ro
and A ), the Atwood number, At, the Reynolds number, Re, the densimetric Froude number,
Fr, and the Rossby number, Ro. A sixth dimensionless group also appears in equation (2.3),
the Péclet number. Five of the most relevant dimensionless parameters of our displacement
flows are defined in Table 2.1.
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There are a few assumptions that can simplify the complex problem. First, the Péclet number
in our displacement flows is very large, implying that the fluids mix only due to hydrodynamic
effects. Second, considering our interest in small density differences, for which max(At) =

7×10−2, At→ 0 on the LHS of equation (2.1) provides a reasonable approximation. However,
it must be noted that the force of buoyancy is still significant on the RHS. Finally, considering
that δ, A , and Z0 are constant parameters, possible flow regimes in the simplified displacement
problem may be described by three dimensionless groups only, i.e. Re, Fr & Ro, assuming
Pe→∞ & At→ 0. Note that Re, Fr & Ro are constant parameters during each experiment.
Table 2.1 shows that our experiments cover a wide range of these three parameters.

2.3 Experimental setup

Our experimental study was performed using a 202 (cm) long, vertical pipe, with an inner
diameter of 0.96 (cm). The pipe was transparent so the visualization of the displacement flow
process was possible. A gate valve located at 39 (cm), from the top end, was included in
the system. The displacement flow setup was mounted on a hexapod robot, which is a motion
simulator that has six degrees of freedom (see the schematic of the hexapod in Fig. 2.1). Based
on the principle of the Stewart platform, the hexapod includes a fixed platform and a mobile
platform, which are linked together by six actuators (hydraulic jacks). The actuators are
mounted in pairs on the fixed platform and cross over to three mounting points on the mobile
platform. A software was used to slowly move the mobile platform. The displacement setup
placed on the platform could be moved to experience movement similar to a large inverted
pendulum. Initially, the lower part of the pipe was filled with a less dense fluid coloured with
a small amount of ink for visualization. The upper part of the pipe, above the gate valve,
was filled with a slightly denser fluid. Salt was used as the weighting agent. To avoid pump
disturbances, the displacing upper fluid was fed by gravity from a large elevated tank. The
flow rate was controlled by a needle valve and it was measured by two rotameters, located
downstream of the pipe. For extremely small mean imposed flow velocities, the flow rate was
calculated by a graduated cylinder that measured the amount of the fluid exiting the pipe. In a
typical experiment, the gate valve was opened and, at the same, the hexapod started to move
the pipe from its completely vertical position. The displacement flow images were recorded
using a high-speed camera (Blaser acA2040 model), covering 80 (cm) below the gate valve.
Since the camera was mounted on the setup to move with it, reasonably clear images were
obtained in a moving frame of reference. Note that the plane (ŷ, ẑ) where the images were
obtained is perpendicular to the (virtual) axis of rotation of the pipe. To increase the quality
of images, the pipe was back-lit using Light-Emitting Diode (LED) strips. In addition, to
improve light homogeneity, a diffusive layer was placed between the pipe and the LED strips.
Light absorption calibrations were performed in a usual fashion. The experimental images
were then analysed to characterize different aspects of displacement flows.
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Before running displacement flow experiments in a moving pipe, a number of experiments were
performed in a stationary pipe and the results were compared with the available data in the
literature (18; 41; 46). In the case of exchange flows, front velocities and macroscopic diffusions
were successfully compared with the studies of (41; 46). For displacement flows, comparisons
were made and reasonable agreement was found with the study of (18). Even a number of
exchange flow tests (at At = 10−2) were conducted in an inclined pipe and the results were
compared with those of (46) in a pipe with a slightly different diameter, showing a difference
of ∼ 7% (on average), for various inclinations up to 15 (◦) from vertical. Some experiments
were also performed for density-stable displacement configurations and reasonable agreement
was seen with the literature data (89). To the best of our knowledge, there is no literature on
buoyant displacement flows in moving pipes; thus, no validation/benchmarking was possible
in that case.

2.4 Results

In this section, we present our experimental results. We first begin with explaining the main
features of our displacement flows. We then describe a method to approximate the real concen-
tration profile to better analyse displacement flows. Afterward, we discuss two important pa-
rameters which characterize the flow, namely the displacing front velocity and the macroscopic
diffusion coefficient.

2.4.1 Displacement flow main features

Fig. 2.2 compares displacement flows at a small density difference in moving and stationary
pipes. Since the experimental snapshots are calibrated, the colours in this figure vary between
0 (dark displaced fluid) and 1 (transparent displacing fluid). The mean imposed flow velocities
are relatively small for the cases shown here. Note that the field of view is only below the
gate valve and that the images are in a moving frame of reference. Various observations can
be made. First of all, with the exception of the two panels for V̂0 = 0, the displacement flows
seem more or less stable. In the stationary and moving pipes, a finger of the displacing fluid
seems to advance in the displaced fluid. In the stationary case, a clean interface between the
two fluids is formed. However, for displacements in the moving pipe, although the overall flow
is not unstable, the displacing front seems to diffuse; the interface, especially at the front, is
not sharp anymore. Let us call these flows stable and stable-diffusive flows for stationary and
moving pipe flows, respectively.

The case of V̂0 = 0 in Fig. 2.2 may deserve a separate attention. Firstly, when the pipe is
stationary, the heavy fluid forms a finger into the light fluid and helical waves appear at
the interface. As the penetration deepens further, these waves progressively decay and they
eventually disappear. However, for the moving pipe flow, the heavy fluid does not significantly

54



FIG. 1: Sequence of experimental images for a fixed Atwood number (At = 10�4) for

displacement flows in a stationary pipe (top row) and a moving pipe (bottom row). From

left to right V̂0 = 0, 2, 8, 12 (mm/s). The experimental times in terms of second ,(s), in each

panel are shown directly below it. The field of view in each snapshot is 8 ⇥ 805 (mm2),

located 24 (mm) below the gate valve

1

Figure 2.2 – Sequence of experimental images for a fixed Atwood number (At = 10−4) for
displacement flows in a stationary pipe (top row) and a moving pipe (bottom row). From
left to right, V̂0 = 0, 2, 8, 12 (mm/s) in each panel. The experimental times (in seconds) are
indicated below each snapshot. The field of view in each snapshot is 8 × 805 (mm2), located
24 (mm) below the gate valve. In this and the other figures, the camera images shown have
an offset of a few pixels with respect to the pipe center-line.

penetrate into the light fluid. In fact, the flow is far from stable and the interpenetration is due
to the convective diffusive-like expansion of the mixed zone close to the gate valve. Therefore,
the front velocity of the penetrating heavy fluid in a moving pipe is much lower than that in
a stationary one. It seems that the pipe movement can more significantly affect the flow of
small density difference when the mean imposed flow is zero (i.e. the exchange flow limit).

Fig. 2.3 shows the experimental image sequences for a fixed mean imposed flow velocity, i.e.

55



FIG. 2: Experimental image sequences for V̂0 = 21 ± 2 (mm/s) and At = 10�4, 10�3, 3.5 ⇥
10�3, 10�2, 7 ⇥ 10�2 from left to right, for a stationary pipe (top row) and a moving pipe

(bottom row). The experimental times in terms of second ,(s), in each panel are shown

directly below it. The field of view in each snapshot is 8 ⇥ 805 (mm2), located 24 (mm)

below the gate valve.

2

Figure 2.3 – Experimental image sequences for V̂0 = 21±2 (mm/s) andAt = 10−4, 10−3, 3.5×
10−3, 10−2, 7 × 10−2 from left to right, for a stationary pipe (top row) and a moving pipe
(bottom row). The experimental times (in seconds) are indicated below each snapshot. The
field of view in each snapshot is 8× 805 (mm2), located 24 (mm) below the gate valve.

V̂0 = 21± 2 (mm/s), and different density differences. The top row in this figure corresponds
to displacement flows in a stationary pipe. By increasing the Atwood number of each panel
from left to right, it can be observed that the flow transitions from a stable flow regime to
an unstable flow regime with instabilities and diffusive mixing. In addition, by increasing the
Atwood number, the quality of the transverse mixing is increased. In the bottom row, more
or less the same qualitative behaviour is observed, although the quality of mixing seems to
be at least visually different. Displacements at higher imposed flows show more or less the
same behaviour as observed in Fig. 2.3 (the results are not shown for brevity). In order to
quantify the effect of the geometry motion on the displacement flows, it seems necessary to
further analyse the experimental images and proceed beyond qualitative comparisons of these
images.

In terms of regime classification, so far, three main regimes can be distinguished for displace-
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ment flows in a moving pipe: stable, stable-diffusive and unstable-diffusive flow regimes. The
latter is related to displacement flows which are unstable, mainly due to buoyancy. The stable
flow regime is associated with a nearly-stable, non-diffusive finger of the displacing fluid into
the displaced one. The stable-diffusive flow regime is associated with displacement flows where
the overall flow is stable or does not seem unstable but the displacing front becomes mixed
with the displaced fluid as time progresses, mainly due to the pipe movement. As the bottom
row in Fig. 2.2 illustrates, in stable-diffusive flows, there exist multiple, diffusive fingers of the
displacing fluid as opposed to a single, non-diffusive finger in stable flows (e.g. compare bottom
and top rows in Fig. 2.2). Fig. 2.4 classifies these three flow regimes in the plane of Re/Ro
and Re/Fr2, which we have obtained after several attempts of various combinations of the di-
mensionless groups. While Re/Ro can be simplified as the ratio of Coriolis to viscous stresses,
Re/Fr2 shows the ratio of buoyancy to viscous stresses. Interestingly, these two dimensionless
groups appear explicitly in equation (2.1) if the two sides are multiplied by Re. The transition
boundaries are crudely marked on this figure using a horizontal dash line (Re/Ro = 70) and
a vertical dashed line (Re/Fr2 = 35). Independent of the fast or slow motion of the pipe,
unstable-diffusive flows are observed when Re/Fr2 > 35, where the flow is dominated by
buoyancy. On the other hand, stable flows are observed at Re/Fr2 < 35 & Re/Ro < 70, when
the flow is mainly dominated by viscous forces. Finally, stable-diffusive flows are observed
when Re/Fr2 < 35 & Re/Ro > 70, where buoyancy stresses are weak compared to viscous
stresses but the pipe motion affects the flow, leading to diffusive effects near the displacing
front. Two points must be noted here. First, although we show that Coriolis stresses induced
by the movement have significant effects on the flow, centrifugal stresses also induced by the
movement (quantified through 1/Ro2) may be expected to affect the flow as well. However,
in order to uncover these details more research must be conducted on our displacement flows.
Second, the value of Re/Ro = 70, is a rough estimate for the transition boundary. In fact,
based on our available experimental data we can be only certain that the transition is somew-
here between Re/Ro = 28 and Re/Ro = 116, for which we have proposed the mean value,
approximately. In other words Re/Ro ≈ O

(
102
)
marks the transition boundary.

It is worth mentioning that the important dimensionless groups for our regime classification,
i.e. Re/Ro and Re/Fr2, can be simplified as ω̂0D̂2

ν̂ and AtĝD̂2

ν̂V̂0
, respectively. The former ratio

shows the ratio between Coriolis and shear stresses, which can be as well written as the
inverse of the Ekman number (Ek), which is a relevant dimensionless parameter in rotating
flows. On the other hand, AtĝD̂

2

ν̂V̂0
is the ratio between the characteristic viscous velocity driven

by buoyancy (AtĝD̂2/ν̂) and the characteristic imposed velocity (V̂0).

Let us finish this section with an example of another important effect of the pipe motion on
displacement flows. Our experiments for displacements in a stationary pipe reveal that the
displacing front advances in the middle of the pipe so the frontal interface is more or less
perpendicular to the pipe longitudinal axis. When the pipe is in motion, such depiction no
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Figure 2.4 – Overall regime classification: stable flows (N), stable-diffusive flows (•) and
unstable-diffusive flows (�) for displacement flows in a moving pipe. The vertical dashed line
shows Re/Fr2 = 35 and the horizontal dashed line shows Re/Ro = 70.

longer holds. In this case, the pipe inclination slowly and continuously varies between β = −15

(◦) and β = 15 (◦). Thus, at least momentarily there are transverse buoyancy forces that may
cause local segregation between the two fluids. The frontal region, in this case, has briefly the
opportunity to slump so that the front interface is not anymore perpendicular to the pipe
longitudinal axis. To show this feature clearly, Fig. 2.5 divulges a typical angle path generated
by the hexapod as well as the corresponding displacement flow snapshots for a period of 30
seconds. The eye-guide lines superposed on the snapshots show the tendency of the frontal
region to break the symmetry and slump locally. When the pipe is tilted, analogous to the
Boycott effect, the heavy fluid is locally separated from the light fluid so that the sedimentation
velocity increases (69) and the symmetry is broken for a short period of time. Fig. 2.5 shows
another very interesting phenomenon, i.e. the break in the symmetry does not exactly follow
the pipe angle generated a path with time; instead, it seems that the slumping effect has a
delay with respect to the time when the pipe is at maximum inclination. We leave the in-depth
study of this effect to future works.

2.4.2 Approximating 3D concentration profile

To understand our experimental displacement flows in details, one would need to have access
to the spatial and temporal forms of pressure, velocity and concentration fields for the 3D
pipe flow. This is of course not always possible due to technical/experimental measurement
limitations as well as the difficulty of analysing a large amount of the associated data. Ap-
proximations to the concentration field are the most accessible and easy-to-treat forms of data
that can be extracted by taking digital images and processing them. Table 2.2 shows a list of
concentration profiles, providing useful information about the flow. In Cartesian coordinates,
C(x, y, z, t) is the real concentration profile, to which we do not have access through the 2D
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Figure 2.5 – The graph on the left is the path, in terms of the pipe angle, generated by the
hexapod. The images are the sequence of experimental snapshots for displacement flows in a
pipe in motion for the same experiments as shown in the graph on the left. The experimental
parameters are At = 10−2 and V̂0 = 22 (mm/s). From numbers 1 to 10, the experimental
times are t̂ = [1.5, 2.75, 3.5, 4.25, 5.5, 6.25, 8.75, 11.25, 17.75, 19] (s), respectively. The field
of view in each snapshot is 8× 805 (mm2), located 24 (mm) below the gate valve. The dashed
lines are to guide eye on the position and elongation of the displacement interface with respect
to the pipe.

Table 2.2 – Different useful concentration profiles and their expressions in Cartesian coordi-
nates.

Profile Function of Expressions in Cartesian coordinates
Real concentration C(x, y, z, t) -

Experimental concentration C̄x(y, z, t) 1

2
√

( 1
2)

2−y2
∫ +

√
( 1
2)

2−y2

−
√

( 1
2)

2−y2
C(x, y, z, t)dx

Depth-averaged concentration ¯̄Cxy(z, t)
∫ +1/2
−1/2 C̄x (y, z, t)dy

Length-averaged concentration ¯̄̄
Cxyz (t) 1

L

∫ L
0

¯̄Cxy (z, t)dz

images that our high-speed camera takes. C̄x(y, z, t) is the experimental concentration profile,
which is already averaged with respect to x when an image is taken. Using C̄x(y, z, t), different
concentration profiles can be constructed, the most useful forms of which are the approximated
depth-average profile (used in the following sections) and the approximated length-averaged
profile. Note that for a given time, the measured concentration fields consist of 2D matrices.

In this section, we aim to provide a simple method to construct a reasonable approximation of
the concentration profile using the experimental concentration profile. This in return enables
drawing comparisons between various concentration profiles in the 3D pipe and help extract
more information about the effect of changing the flow parameters on displacement flows. To do
so, we aim to establish a “pragmatic” analytical form of the concentration field in a cylindrical
coordinate system using the experimental concentration profiles which are averaged profiles
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in a Cartesian coordinate system. Our effort involves some assumptions. Although there is
certainly some asymmetry in the displacement flows when the pipe is in motion, we may assume
that displacement flow asymmetry is not the dominant feature of the flow over a long period of
time when the interface or the mixing zone is significantly elongated. This is mainly because
the pipe moves in a symmetric way. Let us, therefore, assume that the concentration field
is axisymmetric and neglect the dependence of the concentration on the angle in cylindrical
coordinates. Therefore, we would like to find C (r, z, t) that approximates C(x, y, z, t) using
the available experimental concentration profiles C̄x(y, z, t). Furthermore, let us assume that
a special polynomial form can approximate the estimated analytical concentration profiles as

C(x, y, z, t) ≈ C (r, z, t) ≈
K∑
i=0

ai (z, t) ri where r =
√
x2 + y2 (relating the cylindrical radial

distance to x and y in Cartesian coordinates), ai (z, t) are the unknown polynomial coefficients,
and K is the degree of the polynomial. Replacing the proposed relation into the analytical
expression of C̄x(y, z, t) (given in Table 2.2) leads to

C̄x(y, z, t) ≈ 1

2

√(
1
2

)2 − y2

∫ +
√

( 1
2)

2−y2

−
√

( 1
2)

2−y2

K∑
i=0

ai (z, t)
(√

x2 + y2
)i
dx (2.4)

After the integration of the relation above, C̄x(y, z, t) can be simplified in the following form:

C̄x(y, z, t) ≈
K∑
i=0

fi(y)ai (z, t), (2.5)

where functions fi(y) can be calculated for a given K. An approximation to the LHS of
equation (2.5) is available experimentally while the form of the RHS can be analytically
calculated with ai (z, t) still being unknown. Thus, the equality of the RHS and the LHS can
be used to estimate ai (z, t). Experimentally, for a given t, C̄x(y, z, t) is a matrix of normalized
concentrations with a usual dimension of 20 × 2018, corresponding to the number of image
pixels in the transverse and longitudinal directions (for an image covering a field of view of
∼ 0.8 × 80 (cm2)). Thus, the coefficients of a polynomial of up to degree 19 can be found
using experimental images. However, we found that K = 4 was sufficient to approximate 3D
concentration profiles and including the higher terms did not result in any significant effects.
For example, for a wide range of parameters, our results show that 3D concentration profiles
constructed using K = 4 and K = 8 were nearly identical. All the analytical calculations were
performed using MAPLE and f0, f1, f2, f3 & f4 are given in appendix B.

Now that the RHS side of relation (2.5) is calculated and the LHS is available experimentally, in
order to find ai (z, t), for given t and z, we use a quasi-Newton algorithm to find the minimum

of
∥∥∥∥C̄x (y, z, t)−

4∑
i=0

fi(y)ai (z, t)

∥∥∥∥ in the pipe cross section. This allows the construction of

C (r, z, t) ≈
4∑
i=0

ai (z, t) ri, (2.6)
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Figure 2.6 – The graph shows examples of the experimental concentration profiles in a mo-
ving pipe versus y for t = 44, at two z-locations: z = 0.5 (�) and z = 0.74 (•). The other
experimental parameters are At = 10−2 and V̂0 = 22 (mm/s). The lines are the results of

4∑
i=0

fi(y)ai (z, t), where ai (z, t) have been found through the minimization approach explained

in the text. The image in the middle shows the real experimental snapshot for a pipe dimen-
sionless length of 84 at t ≈ 44 and the image on the right is the computer reconstructed image
using the method explained in the text.

where ai (z, t) are found for given z and t.

The graph in Fig. 2.6 shows an example where ai (z, t) have been found for two z-locations,
through the minimization approach explained. This experiment was performed in a moving
pipe. The comparison between equation (2.6) plotted as lines and the experimental data plot-
ted as discrete points in the pipe transverse direction is reasonable (showing that the minimi-
zation approach works reasonably), although small differences are also observed mainly due to
the asymmetry in experimental results. To test the capability of relation (2.6) to approximate
the concentration field, two images are also given in Fig. 2.6. The image in the middle shows
the experimental image when the displacement front reaches the end of the long pipe and the
image on the right shows the reconstructed 2D image using the method explained. The contour
plots are strikingly similar, confirming that the method explained is capable of reconstructing
the leading order behaviours of the real concentration field. However, there exists a weak de-
pendency of the concentration field on azimuthal coordinate (θ), which is not captured in the
reconstructed concentration field and this is a drawback of our method. It should be mentio-
ned that, of course, exchange or displacement flow experiments realized in a stationary pipe
at a fixed tilt angle display significant segregation and azimuthal asymmetries, for which the
approach presented is not appropriate to reconstruct 3D concentration profiles. However, for
flows in a moving pipe that symmetrically oscillates at small inclination angles with respect to
a virtual vertical line, after very long times and penetration distances azimuthal asymmetries
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Figure 2.7 – Reconstructed 3D concentration iso-surfaces at C (x, y, z, t) = 0.5 for displa-
cement flows in a stationary pipe (top row) and in moving pipe (bottom row). The value of
C = 0.5 is chosen as a representative of the interface position between the two miscible fluids.
The experimental parameters are At = 10−4, 10−3, 3.5×10−3, 10−2, 7×10−2 form left to right
and V̂0 = 22±3 (mm/s). The length of the pipe shown is 80 (cm) and the results are for when
the displacement front reaches the end of pipe.

are not significant features of the flow. In fact, we may expect that the symmetrical motion
of the geometry (with respect to a virtual vertical line) relaxes asymmetries within the pipe
transverse direction, which justifies the use of the approach presented for the particular mo-
tion of our interest. Finally, for displacement flows in a stationary, strictly vertical pipe, the
approach is also appropriate thanks to the inherent symmetry of the system with respect to
the pipe center line.

Now let us apply the method just explained to reconstruct 3D images of the concentration
field, as presented in Fig. 2.7. We can see that for a stationary pipe at the smallest At, the
extent of the concentration iso-surface is a long finger that is extended between the displacing
and displaced fluids. This represents a nearly stable flow. As the Atwood number increases the
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concentration iso-surface of C = 0.5 shrinks meaning that fluid mixing increases. In addition,
the radial mixing also increases for larger At. When the pipe is at motion the concentration
iso-surface changes. The change is more obvious for a low Atwood number flow: the fluids start
to mix as the pipe moves. From the figure, it can be also concluded that the displacement is
more efficient when the pipe is at motion. Fig. 2.7 also shows that while the concentration
iso-surfaces are more concentrated in terms of their longitudinal extension, they have more
variations and oscillations when the pipe is at motion. Many other observations can be also
made, which we leave for brevity. We merely mention that the method presented in this section
may pave the way to analyse, at low cost, interesting features of displacement flows for various
flow parameters, including various geometrical movements.

2.4.3 Displacement front velocity

One of the most important features of displacement flows is the displacement front velocity
(V̂f ), which must be measured in a consistent way for displacement flows with & without
mixing as well as with & without pipe motion. To achieve this, we estimate the velocity of the
displacement front through the velocity of the depth-averaged concentration level at 0.1, which
seems to be a good trade-off in terms of concentration signal-to-noise ratio, consistently found
for all experiments in moving and stationary pipes. In order to explain this better, Fig. 2.8a
shows an example of the evolution of the average concentration field with time and streamwise
location. The front velocity of the penetrating heavy displacing fluid can be approximated by
following the ẑ-location of a small ¯̄Cxy above the noise, e.g. ¯̄Cxy ≈ 0.1 to give Vf ≈ ẑ

t̂

∣∣∣ ¯̄Cxy=0.1
.

In fact ¯̄Cxy ≈ 0.1 provides an approximation to the real front pipe center-line velocity but it
obviously underestimates it since ¯̄Cxy moves more slowly at 0.1 than at the center-line.

There is interesting information delivered by Fig. 2.8. Compared to the moving case, the
depth-averaged concentration profiles at longer times have a sharper variation closer to the
front in the stationary pipe. In other words, in the moving pipe case the mixing zone between
the displacing and displaced fluids elongates further along the pipe. In fact, for a wide range
of imposed flow velocities at At = 10−2, we consistently observe this behaviour (results are
not shown for brevity). The front velocity is accordingly also more oscillatory in a moving
pipe (see Figs. 2.8c & d). In addition, it is seen that the front velocity for both displacement
flow cases increases relatively quickly at short times and it reaches a mean final value, around
which V̂f oscillates irregularly with time.

To give a global vision of the front velocity variation for a wide range of density differences,
Fig. 2.9 shows Vf versus time for 5 different At for a typical value of V̂0. Similar results were
obtained for 5 different At and 6 different V̂0 (i.e., 23± 2 , 34± 1, 43± 1, 53± 2, 63± 2, 74±
1 (mm/s)). Both the front velocities and times have been made dimensionless. It can be seen
that, first of all, by increasing At, Vf (i.e., the ratio of V̂f to V̂0) slightly decreases in general, for
both stationary and moving pipes. This effect is perhaps due to the establishment of stronger
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Figure 2.8 – Experimental results for At = 10−2 and V̂0 = 43 ± 1 (mm/s): (a) Stationary
pipe flow results showing the evolution of the depth-averaged concentration field, ¯̄Cxy(z, t),
with time for t̂ = [1.25, 2.375, 3.625, 4.875, 6.125, 7.25, 8.5, 8.75] (s), and streamwise location,
ẑ, measured from the gate valve. The horizontal dashed lines show ¯̄Cxy(z, t) = 0.1, just
above the noise level, which is used for measuring the displacing front velocity, V̂f , consis-
tently for all experiments. (b) The same as subfigure a but for a moving pipe flow, with
t̂ = [1, 2.125, 3.125, 4.125, 5.25, 6.25, 7.25, 8.25] (s). (c) Stationary pipe flow results showing
the evolution of the front velocity value (V̂f ), with time for the same experiment as in sub-
figure a. (d) Moving pipe flow results showing the evolution of the front velocity value (V̂f ),
with time for the same experiment as in subfigure b.

mixing in flows with a higher Atwood number, despite stronger driving force (buoyancy) when
At increases. Regarding the effect of geometry motion, one observation can be readily made:
the difference between long time dimensionless front velocities in stationary and moving pipes
is not huge. A more subtle observation is that at smaller At, Vf for displacement flows in a
moving pipe usually lies below the one in a stationary pipe. This effect is usually reversed
at higher At. More quantitatively, the order of the difference between the mean values of
dimensionless front velocities averaged over all times for 6 different value V̂0 in moving and
stationary pipes are −0.16, −0.17, 0, 0.02 & 0.25 respectively for At = 10−4, 10−3, 3.5×10−3,
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Figure 2.9 – Variation of the dimensionless front velocity, Vf , versus the dimensionless time,
t, for a stationary pipe (black dashed line) and a moving pipe (blue line) for At = 10−4, 10−3,
3.5× 10−3, 10−2, 7× 10−2 (from left to right) and V̂0 = 53± 2 (mm/s).

10−2 & 7× 10−2.

2.4.4 Macroscopic diffusion coefficient

This section focuses on the displacement flows for which the degree of transverse mixing is
relatively high. For these flows, it is therefore expected that the diffusive spreading along the
pipe to be an important feature of these flows. As discussed in the introduction section, these
diffusive flows have been analysed for exchange flows in vertical (40; 41) and inclined pipes
(42; 44; 46) as well as for displacement flows in inclined pipes (18). Our results in this section
extend the previous works to the flows in a moving pipe, while also delivering a large amount
of data for displacements in a stationary, strictly vertical pipe (as these are also missing in the
literature). Debacq et al. (40; 41) relied on a similarity scaling for exchange flows in vertical
pipes to collapse profiles of the depth-averaged concentration, measured at each time t̂ and
location ẑ, onto a master curve which was defined with reference to ẑ/

√
t̂. An error function

form was then fitted on the master curve to deliver the macroscopic diffusion coefficient of the
mean concentration in the pipe. The same approach was used by Seon et al. (46) for exchange
flows in inclined pipes. For displacement flows, a non-zero mean imposed flow velocity (V̂0)
is added to the exchange flow configuration. When the flow is fully mixed transversely, Alba
et al. (18) assumed that the mixture core travels with the speed V̂0 so that they proposed
(ẑ− V̂0t̂)/

√
t̂ as a similarity scaling to successfully collapse the depth-averaged concentrations

at different times. Here, we adopt an analogous approach.

Fig. 2.10 depicts an example of the attempt to find a collapse of concentration profiles using
the similarity scaling mentioned. It is observed that all the concentration evolution profiles

are nearly-collapsed onto a single curve, which is shown by a curve fit of 1
2erfc

(
ẑ−V̂0 t̂

2
√
D̂M t̂

)
,

inspired by the analytical solution of the linear diffusion equation. It is seen that the collapses
of data for stationary and moving pipe flows are reasonable. It must be noted that there are
assumptions in using the error-function form fit which is not exactly representatives of the flow
reality. For example, it is assumed there is a sort of symmetry in the mixing zone meaning that
the area ahead and behind the mixed core, assumed to move with speed of V̂0, is symmetric.
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Figure 2.10 – Collapse of depth-averaged concentration profiles (at longer times of the flow)
with

(
ẑ − V̂0t̂

)
/
√
t̂ for V̂0 = 22 (mm/s) & At = 10−2 in (a) a stationary pipe and (b) a

moving pipe. The dashed line shows the fitted function of 1
2erfc

(
ẑ−V̂0 t̂
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√
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)
, through which the

obtained values of D̂M are 1090 ± 372 (mm2/s) and 1420 ± 337 (mm2/s) for stationary and
moving pipes.
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Figure 2.11 – Variation of the pseudo macroscopic diffusion coefficient, D̂s
M , versus time at

V̂0 = 33 (mm/s) and At = 7× 10−2 for a stationary pipe (line) and a moving pipe (dots). The
horizontal dashed lines depict the long time nearly-steady values, i.e., D̂M .

Almost certainly the symmetry in our system is broken due to the mean imposed flow as
well geometrical motion so that the quality of mixing is at least slightly different ahead and
behind the mixed core. However, due to the complexity of the flow, this approach seems to be
a reasonable attempt as a first step to extract essential leading order information about the
flow at the expense of losing information about some physical phenomena.

As discussed, a macroscopic diffusion coefficient can be obtained by fitting the error function
form on depth-averaged concentrations at long times over long lengths of the pipe. However,
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our analysis shows that it is equally possible to attempt to fit the error function form (on a
depth-averaged concentration profile for a given time) even from the early stages of the displa-
cement process. This delivers firstly a pseudo time-dependent macroscopic diffusion coefficient,
as a coarse measurement of the extent of mixing zone at short times. Secondly, it provides
understanding of the time scale when the pseudo macroscopic diffusion coefficient attains its
nearly-steady value (D̂M ), independent of time. To illustrate this, Fig. 2.11 shows the pseudo
macroscopic diffusion coefficient, D̂s

M , versus time, for moving and stationary pipes. It can
be seen that D̂s

M is very small initially, implying that the mixed zone is very small. However,
very quickly (over a few seconds), D̂s

M increases rapidly and reaches a nearly-steady value
(i.e., D̂M ), marked by the dashed lines on this figure. Fig. 2.11 also shows that the initial
increase in D̂s

M are similar for moving and stationary cases but the final macroscopic diffusion
coefficient is slightly larger when the pipe is at motion, for the same flow parameter set.

It should be noted that our 2-meter long experimental pipe may not be sufficiently long for
the pseudo macroscopic diffusion coefficient to reach its completely steady value. In fact,
although performing controlled displacement flow experiments in an extremely long moving
pipe may not be technically possible, it should be noted that the values reported for D̂M may
be overestimated due to the shortness of the pipe.

Fig. 2.12 shows the variation of the limiting (nearly-steady) values of the macroscopic diffusion
coefficient, D̂M , versus the mean imposed flow velocity for the two largest Atwood numbers of
our work. First of all, it can be seen that D̂M increases significantly with increasing the mean
imposed velocity for moving and stationary pipe flows. In both cases, it is also seen that the
values of D̂M for displacements in a pipe moving like an inverted pendulum systematically
lie above those of the stationary pipe flow. It also seems that the difference between D̂M

of stationary and moving pipe flows increases by increasing At. Finally, we have superposed
the results of a correlation proposed by Alba et al. (18) to predict the macroscopic diffusion
coefficient in a stationary inclined pipe, where we have replaced the pipe angle with β = 0.
It can be seen that the correlation provides a lower limit for D̂M in stationary and moving
pipes.

Fig. 2.12 showed the increase in D̂M by moving the geometry in an inverted pendulum-like
motion. One may wonder whether or not this feature is independent of the geometry motion.
In other words, as the geometry moves, energy is put into the system and one might won-
der that this energy has to somehow extend the diffusion length (i.e., increase D̂M ). To test
this hypothesis, onto Fig. 2.12b, we have also superposed D̂M found in a pipe slowly moving
in vertical reciprocation, with the same frequency as the inverted pendulum oscillation. The
vertical reciprocation was over 10 (cm), i.e., ∼ 0.05 in terms of the aspect ratio. Fig. 2.12b
shows that the values of D̂M for a pipe in vertical reciprocation are even smaller than the
ones for a stationary pipe. This observation provides a counterexample for the hypothesis: the
geometrical motion does not always lead to an increase in D̂M . In fact the characteristics of
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Figure 2.12 – Variation of the macroscopic diffusion coefficient, D̂M , versus the mean imposed
flow velocity for (a) At = 7× 10−2 and (b) At = 10−2. The hollow symbols are for the statio-
nary pipe and the filled symbols are for pipe moving like an inverted pendulum. There are also
additional experimental data from displacements in a pipe moving in vertical reciprocation (∗).
The lines in both graphs show the correlation proposed by Alba et al. (18) to predict the macro-
scopic diffusion coefficient in an inclined pipe D̂M = 5× 103

(
At1/2ĝ1/2D̂3/2

)
(1 + 3.6 tanβ)2(

ν̂3/2At−3/4ĝ−3/4D̂−9/4
)

+

D̂V̂0

(
0.6618 +

(
At.ĝD̂

)1/4
V̂
−1/2

0 [0.9054− 1.838 tanβ]

)
, in which β is the pipe inclination

angle with respect to vertical, where we have used β = 0. The experimental error bars are es-
timates through the standard deviation of D̂M . Note that the macroscopic diffusion coefficient
is a relevant parameter for higher Atwood number flows.

flow geometry motion play an important role to increase or decrease the macroscopic diffu-
sion coefficient. This may be another motivation to continue our research to study buoyant
displacement flows using other geometrical movements.

2.5 Conclusions

We experimentally studied miscible displacement flows in a long, vertical pipe moving slowly
like an inverted pendulum. The experimental fluids were Newtonian and they had the same
viscosity but small different densities. The experiments were performed at the high-Péclet-
number limit so that the main parameters that governed the time-dependent flow were the
Reynolds number (Re), the densimetric Froude number (Fr), and the Rossby number (Ro),
for which our experiments covered a wide range.

The main findings are as follows. First, the most obvious change that the pipe movement
causes on the displacement flows of our study is the appearance of the stable-diffusive regime,
in which the fluids slightly mix not so much due to buoyancy but primarily due to the pipe
movement. These flows appear at smaller Atwood numbers while the pipe motion dominates.
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Accordingly, the regime map classification shows that these flows occur when Re/Fr2 < 35

and Re/Ro > 70. In addition, when the pipe moves at relatively small frequencies, a stable
flow regime that is non-diffusive is observed at Re/Fr2 < 35 and Re/Ro < 70 (crudely).
An unstable-diffusive flow regime is observed roughly when Re/Fr2 > 35 for the range of
frequencies tested. Second, we have studied the extent of the penetration of the displacing
fluid (by studying the front velocity, V̂f ) and the extent of the axial mixing (through quantify
the macroscopic diffusion coefficient, D̂M ). We have shown that both of these quickly increase
with time to attain their final nearly-steady values. We have observed that at smaller density
differences, V̂f decreases when the pipe moves while the opposite effect is seen at larger density
differences. Studying D̂M , which is relevant for largeAt flows, reveals that D̂M is systematically
larger for displacement flows in a moving pipe.

The observed behaviours for V̂f and D̂M may be explained qualitatively. For low At flows, the
pipe motion creates certain “disorder” in the displacement flows compared to stationary pipe
displacement flows, where the flow has separate phases and certain macroscopic finger-like
structure. This leads to a general decrease in the front velocity of the moving pipe flows. On
the other hand, for higher At flows, the geometry motion overall creates certain “order” in
the flow (i.e., momentary and local), compared to the stationary case. This is perhaps due to
momentary slumping effects that occur as a result of the pipe inclination, causing short-lived
segregation between the fluid phases. This furnishes two effects in return. First, the displacing
front is able to penetrate relatively faster when the pipe moves so that V̂f slightly increases.
Second, the reduced transverse mixing and the created order in the longitudinal direction
lead to a relatively faster expansion of the diffusive region between the two fluids; thus, D̂M

increases when the pipe is in motion.

There exist also other contributions of the current work. First of all, we have developed a
simple method to approximate a leading order form of real concentration profiles using 2D
experimental images in which contraction profiles are already averaged. Our method may
provide a low cost way to study the evolution of 3D concentration profiles in displacement flows.
Second, we also have found that the pipe motion includes local and momentary segregation
in terms of the frontal interface, which at the same time has a significant delay with respect
to the pipe motion time.

The current work may also suggest a number of paths for future research. First, stable-diffusive
flows exhibit interesting fingering features close to the displacing front, which can be further
investigated, experimentally or numerically. The amount of the near-front dispersion and its
relation to Re, Fr, and Ro can be quantified. Second, particle image velocimetry (PIV) or
ultrasonic doppler velocimetry (UDV) techniques can be performed to shed further light on
the details of the three flow regimes discovered in this work.
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Chapitre 3

Removal of a yield stress fluid by a
heavier Newtonian fluid in a vertical
pipe

Résumé

Le présent travail a pour objectif d’étudier, de manières expérimentale, analytique et nume-
rique, l’élimination d’un fluide de contrainte de plasticité légère déplacé par un fluide New-
tonien légèrement plus lourd, à l’intérieur d’un long tuyau vertical. Les fluides d’intérêt sont
miscibles et l’écoulement de déplacement est dirigé vers le bas. En général, l’écoulement est
contrôlé par au moins qatre nombres sans dimension et leurs combinaisons, à savoir le nombre
de Bingham, 0 ≤ BN ≤ 18600, le rapport de viscosité, 1 < m < 9723, le nombre de Reynolds
Newtonien, 13 ≤ ReN ≤ 2480 et le nombre densimétrique de Froude, 0.15 ≤ Fr ≤ ∞. Dans les
définitions de BN , m et ReN , la viscosité constante du fluide de déplacement est utilisé comme
échelle de viscosité. Les expériences présentent une variété de modèles d’écoulement différents,
pour lesquels plusieurs classifications de régimes peuvent être effectuées. Tout d’abord, des
couches de paroi résiduelles entièrement statiques sont observées à BN & 100 et des couches
résiduelles mobiles se trouvent en dessous de cette valeur de transition, ce qui peut être prédit
par un modèle analytique simple (type de lubrification). Deuxièmement, pour les écoulement
de déplacement avec BN < 100, les déplacements peuvent être divisés en régimes d’écoulement
quasi stables et instables, pour lesquels la transition a lieu à un nombre de flottabilité critique,
χ = 2ReN/Fr

2 ≈ 120. Troisièmement, pour les écoulements de fluides avec BN & 100, les
modèles de couches résiduelles peuvent être classés en trois sous-régimes distincts, notamment
les régimes ondulé, ondulé et lisse, en fonction de la valeur de ReN/ (BN +m) et ReN/Fr.
Quatrièmement, pour analyser les caractéristiques du front de déplacement secondaire, les
expériences sont classées en déplacements centraux et périphériques, pour lesquels la transi-
tion peut être raisonnablement prédite par un modèle analytique approprié. Cependant, le
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modèle analytique ne permet pas d’estimer les vitesses de déplacement avant de longue durée.
Enfin, des simulations numériques de la dynamique des fluides dans une géométrie de canal
plus simple démontrent que certaines des caractéristiques complexes du flux de déplacement
peuvent être prédites par calcul.

Abstract

The present work aims to investigate, experimentally, analytically and computationally, the
removal of a light yield stress fluid displaced by a slightly heavier Newtonian fluid, in a long
vertical pipe. The fluids of interest are miscible and the displacement flow is downward. In
general, the flow is controlled by at least four dimensionless numbers, and their combinations,
namely the Newtonian Bingham number, 0 ≤ BN ≤ 18600, the viscosity ratio, 1 < m < 9723,
the Newtonian Reynolds number, 13 ≤ ReN ≤ 2480, and the densimetric Froude number,
0.15 ≤ Fr ≤ ∞. In the definitions of BN , m and ReN , the displacing fluid’s constant viscosity
is used as the viscosity scale. The experiments present a variety of different flow patterns, for
which a number of regime classifications can be made. First, fully static residual wall layers are
observed at BN & 100 and moving residual layers are found below this transition value, which
can be predicted by a simple analytical (lubrication type) model. Second, for displacement
flows with BN < 100, the displacements can be divided into nearly-stable and unstable flow
regimes, for which the transition occurs at a critical buoyancy number, χ = 2ReN/Fr

2 ≈
120. Third, for fluid flows with BN & 100, the residual layer patterns can be classified into
three distinct sub-regimes, including corrugated, wavy and smooth regimes, as a function of
ReN/ (BN +m) and ReN/Fr. Fourth, to analyse secondary displacement front features, the
experiments are phenomenologically classified into central and periphery displacements, for
which the transition can be reasonably predicted by an appropriate analytical model. However,
the long time displacing front velocities cannot be estimated by the analytical model. Finally,
computational fluid dynamics simulations in a simpler channel geometry demonstrate that
some of the complex displacement flow features may be predicted computationally.

3.1 Introduction

Displacement flows appear in a diverse range of physical and engineering phenomena, perhaps
with the most prominent applications in oil and gas industries (1; 2; 97), food industries (4; 5),
plastic manufacturing (7), and numerous other applications (8; 9; 10; 11). Laminar miscible
flows with density ratios in circular vertical pipes are quite common in many processes. The
displaced fluid in many applications exhibits yield stress behaviours, making it hard to remove
out of the flow geometry. In the present work, we aim to fundamentally study the removal
of a yield stress fluid from a long, vertical pipe, through displacing it by a slightly heavier
Newtonian fluid.
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Our motivation for this research comes from cementing processes of oil and gas wells, in which
cement (heavier) is pumped into the oil well to remove in-situ gelled-like drilling mud (lighter).
The displacement process initially involves a downward removal of drilling mud by cement
along a casing (i.e. a circular pipe) and then an upward removal along the annular section of the
well. This process plays a crucial role in mechanically supporting the well, protecting the casing
against corrosive materials, preventing water penetration into the well, and perhaps most
importantly, providing a zonal isolation. The failure to achieve these objectives significantly
limits the ability of the well to reach its full production potential (2). The success in primary
cement is strongly linked to the efficiency of the removal of the in-situ fluid, which has a yield
stress, through a buoyant displacement process (12).

Understanding miscible displacement flows may begin with analysing their exchange flow
counters, in which there is no imposed displacement flow velocity. Miscible buoyant exchange
flows of Newtonian fluids in different geometries have been investigated in detail. For instance,
Debacq et al. (40; 41) have experimentally studied miscible exchange flows in a vertical pipe,
finding stable and unstable flow regimes versus the Atwood number (At), i.e. the ratio between
the density difference and the sum of densities, and a parameter that can be described as
the ratio between the Newtonian Reynolds number and the densimetric Froude number, i.e.
ReN/Fr (see Table 3.2 for the definitions of these dimensionless numbers). Seon et al. (43;
44; 45) and Hallez et al. (71; 72) respectively have studied similar buoyant exchange flows
at different pipe inclinations, experimentally and computationally, and they have analysed
the effects of ReN/Fr on the flow stability. By imposing a pressure gradient (resulting in an
imposed mean velocity), these works have been extended to displacement flows in a series
of papers for near horizontal (15; 16; 17), inclined (18; 105), strictly vertical (121) and non-
uniform (22) flow geometries. Various flow regimes, including stable, unstable and diffusive
regimes, and several flow features, such as heavy and light fluid front velocities, have been
extensively studied.

Yield stress fluid displacement flows are being increasingly studied in the literature, in Hele-
Shaw cells (33; 57; 64; 127; 128; 129), capillary tubes (130; 131; 132), porous media (133; 134),
2D channels (21; 25; 67; 135; 79), and pipes (31; 32; 58; 70; 136). Transient displacements
(26), start-up flows (66) and pulsating displacements (30) have been investigated. Many of
the previous works in the literature of yield stress displacements have looked into the residual
layers of the displaced fluid left on the flow geometry walls, as its formation is an intriguing flow
feature with crucial practical consequences. The difficulty of removing these layers, especially
from the interior sections of flow geometries, is currently receiving attention. Poslinski et
al. (91) have experimentally investigated the displacement of a yield stress fluid by air in
a tube, revealing that the thickness of the residual layers of yield stress displaced fluids is
much larger than that of their Newtonian counterparts. Allouche et al. (25) have shown that
the displaced fluid residual layers may remain completely static on the walls when the yield
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stress of the displaced fluid is larger than that of the displacing fluid. Dimakopoulos and
Tsamopoulos (26) have studied the displacement flow of a yield stress fluid by a Newtonian
fluid in straight and suddenly constricted tubes, finding that unyielded regions arise in front
of the displacing fluid in straight tubes and unyielded regions appear near the recirculation
corners for constricted ones. Gabard and Hulin et al. (136) have experimentally evaluated the
effects of the presence of a yield stress on miscible displacement flows in a vertical tube. They
have found that the transient residual film thickness for yield stress fluids is smaller than that
for shear-thinning fluids. Cole et al. (59) have studied the removal of residual layers of a yield
stress fluid from surfaces at two length scales: laboratory and pilot scales. Their work has
revealed that the time required for the removal of the residual layers of a yield stress fluid
from a pipe can be affected by the velocity and temperature of the displacing fluid, but not
much by the pipe length.

Buoyant and iso-dense displacement flows of yield fluids have been studied for specific situa-
tions. For example, Taghavi et al. (31) and Alba et al. (32) have experimentally discovered
centre-type and slump-type regimes in buoyant displacements in inclined pipes, depending
on the value of ReN/Fr and independent of the yield stress value (as long as it is large).
They have found that in centre-type displacements, the displacing fluid moving in the pipe
centre leaves behind a nearly uniform layer of the yield stress fluid on the walls and that
the displacing fluid in slump-type displacements advances underneath the yield stress fluid.
Moisés et al. (58) have experimentally analysed iso-dense displacements of a yield stress fluid
by a Newtonian fluid in a horizontal pipe. They have identified three different flow regimes
associated with the appearance of static residual wall layers, namely smooth, wavy and corru-
gated regimes, for which an effective Reynolds number governs the transition. More recently,
Zare and Frigaard (21) have numerically analysed the effects of buoyancy on micro-annulus
formation in a vertical 2D channel, by considering the displacement of a yield stress fluid by a
Newtonian one. They have found that in the density-unstable situations, static residual wall
layers can exist for yield stress values below the minimum for density-stable regimes.

The current chapter considers experimentally, analytically and computationally the flow of a
light yield stress fluid displaced by a slightly heavier Newtonian fluid, in a long vertical pipe,
for which the novelty arises mainly from considering the framework of gradually increasing the
yield stress of the displaced fluid, the imposed mean velocity, as well as the density difference
between the two fluids. Therefore, to analyse the effects of these parameters, a wide range
of flow dimensionless groups are considered. Our work attempts to furnish an understanding
about these complex displacement flows by providing flow regime maps, which are of significant
value, and by studying various flow regimes using a combined methodology.

The outline of the chapter is as follows. In Section 3.2 the problem setting is explained. In
Section 3.3 the experimental setup and procedures are described. Sections 3.4, 3.5 and 3.6
present the experimental, analytical and computational results. Finally, Section 3.7 concludes
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the paper with a brief summary of the main findings.

3.2 Problem setting

In this paper, we deal with a displacement flow configuration in which a light yield stress fluid
is displaced by a heavier Newtonian fluid (at small density differences), along a vertical pipe
(with length L̂). The pipe diameter and the imposed mean velocity are D̂ and V̂0, respectively.
The imposed flow is laminar, the displacement is downward, and the fluids are miscible. The
light fluid has a yield stress (τ̂y). Also, the viscosity of the heavy fluid (µ̂H) and the plastic
viscosity of the light fluid (µ̂L) are different. The pipe aspect ratio is large, satisfying D̂/L̂� 1.
The initial interface is located far away from both ends of the pipe, transverse to the pipe
axis. Fig. 3.1 illustrates a schematic view of our displacement system.

Considering the Cartesian coordinates (x̂, ŷ, ẑ) or the cylindrical coordinates (r̂, θ, ẑ), a flow
model can be formulated through the equations of motion coupled to a concentration-diffusion
equation:

[1− φAt]ReN [ut + (u.∇)u] = −∇p+∇.τ − φχ

2
eg, (3.1)

∇.u = 0, (3.2)

ct + u.∇c =
1

Pe
∇2c, (3.3)

where u = (w, v, u) denotes the velocity, p the pressure and τ the stress. The function φ (c) =

1 − 2c changes between 1 and -1 for concentrations in the range of c ∈ [0, 1], with c =

0 representing the pure displaced fluid and c = 1 the pure displacing fluid. We also have
eg = (0, 0, 1). The above equations are made dimensionless with D̂ as length scale and V̂0

as velocity scale. The pressure and stresses are also scaled with µ̂H V̂0/D̂. The dimensionless
groups appearing in the above equations, such as ReN , At, χ, Pe, etc., are defined in Table 3.2
(also see Table 3.1 for the dimensional parameters).

Regarding the constitutive equations, for the Newtonian displacing fluid we simply have

τH,ij = γ̇ij . (3.4)

For viscoplastic fluids, it is common to consider a Herschel-Bulkley fluid model, which in-
corporates also the simpler Bingham, power-law and Newtonian models, described by three
(dimensional) parameters: a fluid consistency (κ̂), a yield stress (τ̂y) and a power-law index
(n):

γ̇(u) = 0⇐⇒ τL(u) ≤ BN , (3.5)

τL,ij(u) =

[
mγ̇n−1(u) +

BN
γ̇(u)

]
γ̇ij(u)⇐⇒ τL(u) > BN , (3.6)
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where the strain rate tensor has components:

γ̇ij(u) =
∂ui
∂xj

+
∂uj
∂xi

, (3.7)

and the second invariants, γ̇(u) and τk(u), are defined by:

γ̇(u) =

1

2

3∑
i,j=1

[γ̇ij(u)]2

1/2

, τL(u) =

1

2

3∑
i,j=1

[τk,ij(u)]2

1/2

. (3.8)

So far, we observe that in general seven dimensionless parameters govern our flow. These are
the Atwood number (At), the Newtonian Bingham number (BN ), a buoyancy number (χ):

χ =
2ReN
Fr2

,

the shear-thinning power-law index (n), the viscosity ratio (m), the Péclet number (Pe), and
the Newtonian Reynolds number (ReN ). We consider small density differences and hence small
Atwood numbers, implying that

[1− φAt]ReN ≈ ReN .

However, note that the buoyancy force can be still significant on the right-hand-side of equa-
tion (2.1). We also assume that Pe is large, implying that diffusive effects are limited to an
interfacial layer which is thin and sharp in the absence of instability, dispersion, and mixing.
This results in ignoring the right-hand-side of equation (2.3). In order to simplify our analysis,
we will not focus on the effects of n, but instead attempt to explain the main flow features
concentrating on BN , Fr, ReN , m or their combinations.

It could be informative to present the ratio of the Newtonian Reynolds number and the
densimetric Froude number as

ReN
Fr

≡ ρ̂V̂0D̂/µ̂H

V̂0/

√
AtĝD̂

≡

√
AtĝD̂D̂

ν̂
,

in which
√
AtĝD̂ can be considered as a characteristic inertial velocity found via a balance

of inertial and buoyant stresses. It is interesting to note that, for small density differences,
ReN/Fr is equivalent to the square root of the Archimedes number, which represents the
strength of buoyancy.

Table 3.2 summarizes the definitions and the ranges of the main dimensionless numbers
throughout this work. Note that some of the definitions are non-traditional; therefore, it
is worth mentioning how these dimensionless numbers can be simply converted to perhaps
more “meaningful” dimensionless numbers in the context of displacement flows, which we
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denote using the superscript ∗. First, m is not the usual effective viscosity ratio (m∗); the
latter is commonly defined as the ratio between the effective viscosity of the yield stress fluid

(τ̂y
[
V̂0/D̂

]−1
+ κ̂

[
V̂0/D̂

]n−1
) to that of the Newtonian fluid (µ̂H). Following (132; 137) the

conversion between m and m∗ is simply:

m∗ =
κ̂
[
V̂0
D̂

]n−1
+ τ̂y

[
V̂0
D̂

]−1

µ̂H
= m+BN

Second, BN is a Newtonian Bingham number and it is defined based the Newtonian fluid’s
viscosity. Thus, it is not the common Bingham number (i.e. typically based on the yield

stress fluid’s plastic viscosity: µ̂L = κ̂
[
V̂0/D̂

]n−1
); however, in place of the common Bingham

number, in the context of displacement flows, an “effective” Bingham number (B∗N ) can be
suggested (137) by taking into account the effective viscosity of the yield stress fluid. Therefore,
the conversion between the Newtonian Bingham number and the effective Bingham number
can be written as

B∗N =
τ̂y

τ̂y + κ̂
[
V̂0
D̂

]n =
BN

BN +m

Finally, in a similar manner as discussed above and using the effective viscosity of the displaced
fluid, an effective Reynolds number can be defined as

Re∗N =
ρ̂V̂0D̂

τ̂y

[
V̂0
D̂

]−1
+ κ̂
[
V̂0
D̂

]n−1 =
ReN

BN +m
.

3.3 Experimental setup and procedures

Our experiments are carried out in a vertical transparent pipe, with the length of 202 (cm) and
the inner diameter of 0.96 (cm) (see Fig. 3.1). The setup consists of a gate valve, situated at
39 (cm) from the top end. At the beginning (as an initial condition), the two parts of the pipe
(below and above the gate valve) are completely separated. A peristaltic pump is used to fill
the lower part by a yield stress fluid (Carbopol solution (Carbomer 940)). A small amount of
ink (Fountain Pen India black ink) is added to the yield stress fluid for visualization purposes.
The upper part of the pipe is filled by a heavy Newtonian fluid (water-salt solution). A large
elevated tank is employed to feed the upper part of the pipe, to generate a constant and
smooth flow rate fed by gravity. The flow rate is adjusted by a needle valve and measured by
a flow meter (Omega FTB 421, low flow plastic turbine), which are both located downstream
of the pipe.

An experiment starts with an instant opening of the gate valve. Meanwhile, a high speed
camera (Blaser acA2040 model) records the images of the displacement flow. The field of view
that is covered by the camera is typically 8 × 800 (mm2), located 24 (mm) below the gate
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Figure 3.1 – Schematic views of the experimental setup.

valve. The recorded images are in the ẑŷ-plane. The pipe is back lit by Light-Emitting Diode
(LED) strips employed to increase the quality of images. A diffuser layer is placed between
the LED strips and the pipe to enhance light homogeneity. Light absorption calibrations are
done in the usual fashion.

3.3.1 Fluid preparation and characterisation

Salts are widely used as a weighting agent in fluid mechanics experiments. In our experiments,
sodium chloride (NaCl) plays the weighting agent role. In ambient temperature, NaCl is dissol-
ved into water to provide our desirable heavy fluid (displacing fluid). A high precision density
meter (Anton Paar DMA 35) is used to measure the density of fluids.

Carbopol is used as the main component to produce our yield stress fluids. Carbopol (a water-
based, transparent gel) is widely used in a vast range of applications as a stabiliser, thickener,
and suspending agent (138; 139). The rheology of Carbopol solutions is significantly controlled
by two main parameters: pH and the Carbopol concentration. Initially, Carbopol is gradually
mixed with water using a mixer with a constant rotational speed (350 (rpm)). The mixing
time is around 30 minutes. In this stage, the solution is acidic (with a pH in the range of 3.7
to 4.7), with no yield stress. To have a yield stress solution, a neutralizing agent, which in our
work is NaOH (dissolved in deionized water), is added to the mixture of Carbopol and water.
The ratio of Carbopol to NaOH is 3.44, keeping the pH in the range of 6-8. A calibrated pH
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meter (Fisher Scientific accumet AB15 pH meter) is used to measure the pH of the Carbopol
solutions. The density of the neutralized solutions is fairly close to the density of water.

To measure the rheological parameters of the Carbopol solutions, a Discovery Hybrid Rheo-
meter (DHR) is used with a cone-and-plate geometry. The diameter of the cone-and-plate, the
gap at the cone tip and the cone angle are 40 (mm), 54 (µm) and 2.04 (°), respectively. To
eliminate wall slip, fine sandpapers are attached to the surfaces of the parallel plates (140).
Assuming viscoplastic properties and neglecting elastic effects for our solutions, the behaviour
of our Carbopol gel can be described by the Herschel-Bulkley model, as described earlier.
Eleven different Carbopol solutions (with Carbopol concentration of 0, 0.01, 0.02, ... 0.09, 0.1
% (wt/wt)) are made and employed as the displaced fluid in our experiments. Fig. 3.2 shows
the shear rate-shear stress diagram for these Carbopol solutions fitted by the Herschel-Bulkley
model curves (dashed lines). Based on these results, the compositions and the rheological para-
meters (yield stress (τ̂y), fluid consistency index (κ̂) and power-law index (n)) of our Carbopol
gels are given in Table 3.3.

It is worth noting that Fig. 3.2 reveals that for some Carbopol solutions the behaviour of the
flow curve does not seem asymptotic in the limit of very small shear rates, a feature that is
sometimes associated with wall slip effects when yield stress fluids are subjected to very low
shear rates. To avoid wall slip during rheometry, sometimes hatched or sandblasted surfaces are
employed (132). An alternative is to use sandpapers attached to the parallel plates’ surfaces in
the rheometer (140) as it is the case in our measurements. Therefore, in our case, it is unlikely
that the deviation from the asymptotic behaviours is due to wall slip effects. In fact, it is
perhaps more likely that the deviation is because of the characteristics of our Carbopol-based
solutions, which are incompatible with the Herschel-Bulkley model in the limit of very small
shear rates. It is known that the underlying assumption of an infinite viscosity in the Herschel-
Bulkley model at the limit of zero shear rate results in poor curve fittings to data pertaining
to some yield stress fluids, e.g. Carbopol-based solutions (141). To deal with this issue, several
methods have been proposed in the literature, which are mainly based on modifying the yield
stress fluid’s constitutive equation (see, e.g. (132) and (141)). However, when the very small
shear rate range is not of interest, it is also common to discard the deviation in the flow curve
at this range, as carried out in our work.

3.3.2 Validations

Many comparisons were made with the available data in the literature for similar buoyant
flows (18; 32; 41; 58), to make sure about the performance of the experimental apparatus
as well as verify our experimental results. More specifically, the heavy fluid interpenetration
velocity (front velocity) for several Newtonian exchange flows in a vertical pipe was successfully
compared with the literature results (41). For iso-density displacement flows of yield stress
fluids, our results were compared with those of Moisés et al. (58). For these flows, these

78



Table 3.1 – Range of the dimensional parameters used in our experiments.

Parameter Name SI Unit Range or value

ĈCarbopol Carbopol concentration % (wt/wt) (0− 10)× 10−2

D̂ Pipe diameter m 9.6× 10−3

L̂ Total pipe length m 2.02
V̂0 Imposed mean velocity m/s 1.5− 230× 10−3

κ̂ Fluid consistency index Pa.sn (1.3− 3670)× 10−3

ρ̂H Heavy fluid’s density kg/m3 (9.984− 10.183)× 102

ρ̂L Light fluid’s density kg/m3 9.982× 102

ρ̂ = ρ̂H+ρ̂L
2 Mean fluid’s density kg/m3 (9.983− 10.082)× 102

τ̂y Yield stress Pa 0− 5.6

Table 3.2 – Range of the dimensionless parameters used in our experiments for non-zero
values of V̂0. The molecular diffusivity, D̂m, of pure liquid water at an ambient temperature
is 2.3×10−9 (m2/s) (121). The relevant dimensional parameters are given in Table 3.1. Note
that some of the dimensionless groups are non-traditional: BN is defined using the Newtonian
fluid’s viscosity and it is not the usual Bingham number (i.e. typically based on the yield stress
fluid’s plastic viscosity); ReN is also defined using the Newtonian fluid’s viscosity; m shows
the ratio of the yield stress fluid’s plastic viscosity to the Newtonian fluid’s viscosity.

Parameter Name Definition Range
At Atwood number ρ̂H−ρ̂L

ρ̂H+ρ̂L
(0− 5)× 10−2

BN Newtonian Bingham number τ̂yD̂

µ̂H V̂0
(0− 18.6)× 103

Fr Densimetric Froude number V̂0√
AtĝD̂

(1.5− 600)× 10−1

n Power-law index − (3− 9.9)× 10−1

m Viscosity ratio µ̂L
µ̂H

=
κ̂[V̂0/D̂]

n−1

µ̂H
1− 9723

Pe Péclet number V̂0D̂

D̂m
(7.2− 1104)× 103

ReN Newtonian Reynolds number ρ̂V̂0D̂
µ̂H

(1.3− 248)× 101

Re∗N Effective Reynolds number ReN
BN+m 0.0007− 106

χ Buoyancy number 2ReN
Fr2

1.193× 10−4 − 3.348× 103
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Table 3.3 – Rheological measurements for Carbopol composition and determined parameters,
using the Herschel-Bulkley model at 23± 0.05 (◦C).

# Carbopol % (wt/wt) NaOH % (wt/wt) κ̂ (Pa.sn) n τ̂y (Pa)
Nulla 0 0 0.001 1 0

I 0.01 0.0029 0.0013±0.0005 0.99±0.01 0
II 0.02 0.0058 0.0031±0.001 0.98±0.01 0
III 0.03 0.0087 0.0077±0.002 0.91±0.06 0.045±0.005
IV 0.04 0.0116 0.06 ±0.01 0.73±0.04 0.1±0.03
V 0.05 0.0145 0.077±0.02 0.72±0.08 0.34±0.05
VI 0.06 0.0174 1±0.10 0.47±0.05 0.37±0.08
VII 0.07 0.0203 1.34±0.20 0.45±0.04 1.4±0.22
VIII 0.08 0.0232 1.29±0.10 0.51±0.03 1.78±0.18
IX 0.09 0.0262 3.47±0.40 0.35±0.03 3.55±0.60
X 0.10 0.0290 3.67±0.50 0.43±0.04 5.05±0.55

0.001 0.1 10 1000
0.0001

0.01

1

100

Figure 3.2 – Rheological curves (symbols) and their related Herschel-Bulkley model fits
(dashed lines) for the different Carbopol solutions presented in Table 3.3, according to which
the concentration of Carbopol gradually increases: Nulla (?), I (×), II (J), III (�), IV (I), V
(∗), VI (�), VII (H), VIII (+), IX(•), and X (N).
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authors found three different flow regimes based on the appearance of static residual wall layers
(with different levels of residual layers), called smooth, wavy and corrugated regimes; they
quantified the transitions between these regimes using a Reynolds number defined as 8ρ̂V̂ 2

0

τ̂y+κ̂ˆ̇γnc
,

where ˆ̇γc = 8V̂0(3n + 1)/4nD̂. This Reynolds number in (58) is similar to Re∗N in our work
(in fact for n = 1, they are identical). For their configuration (i.e. an iso-dense displacement
flow in a horizontal pipe), they identified two critical transitions: The smooth-wavy transition
occurring at 8ρ̂V̂ 2

0

τ̂y+κ̂ˆ̇γnc
≈ 1 and the wavy-corrugated transition occurring at 8ρ̂V̂ 2

0

τ̂y+κ̂ˆ̇γnc
≈ 0.2. For

our vertical iso-dense configuration (At = 0), we have found these transitions to occur roughly
at Re∗N ≈ 0.894 and Re∗N ≈ 0.062, respectively, which order-wise agree with the findings of
(58).

3.4 Experimental results

This section is divided into three parts. First, our experimental results and various flow regimes
are qualitatively described. Next, a complete regime classification is provided. Finally, the
displacing fluid front velocities are analysed.

3.4.1 Qualitative description of different flow regimes and patterns

Let us first qualitatively describe the main features of the displacement flows observed in our
experiments. One of the original aspects of the current work is the consideration of a wide
range of yield stresses (0 ≤ BN ≤ 18600), imposed mean velocities (13 ≤ ReN ≤ 2480),
and density differences (0.15 ≤ Fr ≤ ∞). For Newtonian fluids (i.e. at zero yield stress),
Amiri et al. (121) have studied buoyant displacement flows in a vertical pipe for a wide range
of imposed mean velocities and density differences. It is therefore insightful to analyse how
qualitative displacement behaviours in (121) are progressively affected by gradually increasing
the Carbopol concentration, which in return results in increasing the yield stresses and the
viscosity of the displaced fluid. In a dimensionless form, these effects can be captured by
increasing Re∗N , as depicted in Fig. 3.3. This figure shows experimental snapshots in which
the displacement flow at long times is considered. The experimental snapshots show calibrated
concentration values between 0 and 1 (the displaced fluid rheology is labeled according to
Table 3.3). In each row, from left to right, the concentration of Carbopol in the displaced fluid
increases. The top and bottom rows show experimental snapshots with the same parameters,
albeit with different Fr (i.e. a small and a slightly larger density difference are considered
in the top and bottom rows, respectively). For the displacements with the smaller density
difference (top row), i.e. larger Fr, when the Carbopol concentration is zero, we observe a
nearly Poiseuille-like flow. By increasing the Carbopol concentration, we see that the flow
undergoes significant changes, with the flow morphology showing a strong dependence on the
displaced fluid’s yield stress. When the yield stress is small (up to case #IV), by increasing
the Carbopol concentration certain interfacial instabilities appear, which are nevertheless weak
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and unable to mix the two fluid instabilities. These are nearly-stable flows. In addition, as the
displacing front moves downward, there appear to be residual wall layers of the displaced
fluid behind the front, but these layers move downward as time proceeds (not shown) and
therefore they are not static. When the yield stress is large (cases #V to #X), there exist
static residual wall layers of the dark displaced fluid, with exotic patterns. Our experiments
(not shown) reveal these layers remain unchanged along the pipe, for a reasonably long time
after the displacing front has moved out the flow geometry. As the yield stress increases, the
“waviness” of the interface and the amplitude of the static wall residual layer increase. For the
displacements at a slightly larger density difference (bottom row), i.e. smaller Fr, the flow
patterns change. First of all, at small yield stresses (up to case #IV), the flow is quite unstable
and there is a strong mixing between two fluids due to the buoyancy force. The residual layers
of the displacement are not static, and they will eventually move downward (not shown for
brevity). On the other hand, at large yield stresses (cases #V to #X), the flow transitions to a
regime for which smooth static residual layers of the Carbopol gel are observed. Similar to the
larger Fr flows, these layers remain unchanged with respect to the time and position. However,
in contrast to the larger Fr flows, these static layers show very low amplitude variations (e.g.
compare cases #VIII-X in the top and bottom rows). The results of Fig. 3.3 reveal that the
displacement flow patterns are highly sensitive to the variations in the yield stress and density
difference when they gradually increase from small values.

We have so far observed that the flow morphology and patterns, as well as wall residual layers
highly, depend on the experimental flow conditions. In general, there exist two main flow
regimes in our yield stress fluid displacements: One flow regime with moving residual layers
and one flow regime with nearly static residual wall layers. While the former is associated with
the continuous and rapid decrease in the residual layers of the displaced fluid over time, the
latter implies that the residual layers are stationary over a long period.

In addition to the main classification with respect to moving and static residual layers, there
are also sub-regimes within each of these main regimes. Our experiments show that in terms of
the flow dynamics, moving residual layer flows can present nearly-stable and unstable flows, as
depicted in Fig. 3.4. In the nearly-stable sub-regime, there are either no interfacial instabilities
or these instabilities are quite weak so that they are unable to induce mixing between two fluids
(see also the corresponding spatiotemporal diagram in Fig. 3.4). The unstable flows, contrarily,
exhibit strong mixing between the fluids (see also the corresponding spatiotemporal diagram
in Fig. 3.4).

Stationary residual layer flows can present sub-regimes with smooth, wavy and corrugated
residual layers, as studied in detail for iso-density displacements of yield stress fluid flows
in (58). Our experiments show that smooth, wavy and corrugated residual regimes can also
appear in weakly buoyant displacement flows. For clarity, let us briefly explain these regimes
using Fig. 3.5, wherein the relevant image sequences and the corresponding spatiotemporal
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   Nulla          I            II III    IV      V        VI         VII       VIII        IX           X 

 

Figure 3.3 – Experimental snapshot images showing a Newtonian fluid (salt water) dis-
placing a yield stress fluid (Carbopol solution at different concentrations). In the top and
bottom rows, Fr = 1.95 and Fr = 0.66, respectively. ReN ≈ 115 for all cases. From left to
right, Re∗N = [115, 88.61, 37.16, 2.71, 0.84, 0.33, 0.097, 0.053, 0.044, 0.019, 0.015]. From left to
right, the Carbopol concentration gradually increases according to Table 3.3 as marked on the
top of each image. The field of view in each snapshot is 8×800 (mm2) located 24 (mm) below
the gate valve.
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FIG. 4: (a to f) Sequence of experimental images , illustrating all sub-regimes in our

experiments. The depth averaged concentration profile diagrams, (g and h), showing

moving and stationary residual layer regimes (from top to bottom) when a Newtonian fluid

displaces a yield stress fluid in a vertical pipe. The experimental times are shown below

each snapshot (in seconds). The field of view in each snapshot is 8 ⇥ 800 (mm2) located 24

(mm) below the gate valve. The color bar shows the variation of concentration along the

pipe.

Fig. 3 indicates the post processed images of experiments at di↵erent Carbopol concen-

trations and two di↵erent Atwood numbers when the front reaches to the end of the pipe.

This figure indicates that by adding di↵erent amounts of the Carbopol powder to water and

neutralizing the solution, the displacement flow in the pipe is strongly a↵ected.
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the displacement can still leave behind a a wall residual layers that are typically uniform

and thin. Therefore, it may be reasonable to classify this periphery displacement flows as a
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ẑ (mm)
300 400 500 600 700

t̂
(s
)

10

20

30

40
0.2

0.4

0.6

0.8

1(c)

FIG. 4: (a to f) Sequence of experimental images, illustrating all sub-regimes in our

experiments. The depth averaged concentration profile diagrams, (g and h), showing

moving and stationary residual layer regimes (from top to bottom) when a Newtonian fluid

displaces a yield stress fluid in a vertical pipe. The experimental times are shown below

each snapshot (in seconds). The field of view in each snapshot is 8 ⇥ 800 (mm2) located 24

(mm) below the gate valve. The color bar shows the variation of concentration along the

pipe. The flow parameters are XXXX

Fig. 6b). The periphery displacing fluid front pushes around the displaced fluid towards

and advances downward faster than the bulk of the flow. The flow pattern is local and

the displacement can still leave behind a a wall residual layers that are typically uniform

and thin. Therefore, it may be reasonable to classify this periphery displacement flows as a

14

FIG. 4: (a to f) Sequence of experimental images , illustrating all sub-regimes in our

experiments. The depth averaged concentration profile diagrams, (g and h), showing

moving and stationary residual layer regimes (from top to bottom) when a Newtonian fluid

displaces a yield stress fluid in a vertical pipe. The experimental times are shown below

each snapshot (in seconds). The field of view in each snapshot is 8 ⇥ 800 (mm2) located 24

(mm) below the gate valve. The color bar shows the variation of concentration along the

pipe.

Fig. 3 indicates the post processed images of experiments at di↵erent Carbopol concen-

trations and two di↵erent Atwood numbers when the front reaches to the end of the pipe.

This figure indicates that by adding di↵erent amounts of the Carbopol powder to water and

neutralizing the solution, the displacement flow in the pipe is strongly a↵ected.

14
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ẑ (mm)
300 400 500 600 700

t̂
(s
)

10

20

30

40
0.2

0.4

0.6

0.8

1(c)

FIG. 4: (a to f) Sequence of experimental images, illustrating all sub-regimes in our

experiments. The depth averaged concentration profile diagrams, (g and h), showing

moving and stationary residual layer regimes (from top to bottom) when a Newtonian fluid

displaces a yield stress fluid in a vertical pipe. The experimental times are shown below

each snapshot (in seconds). The field of view in each snapshot is 8 ⇥ 800 (mm2) located 24

(mm) below the gate valve. The color bar shows the variation of concentration along the

pipe. The flow parameters are XXXX

Fig. 6b). The periphery displacing fluid front pushes around the displaced fluid towards

and advances downward faster than the bulk of the flow. The flow pattern is local and

the displacement can still leave behind a a wall residual layers that are typically uniform

and thin. Therefore, it may be reasonable to classify this periphery displacement flows as a

14

300 400 500 600 700

0

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

300 400 500 600 700

0

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

Figure 3.4 – The top row shows two panels each containing a sequence of experimental images,
showing from left to right nearly-stable and unstable displacements. The flow parameters in
each panel are (left) Fr = 2.47, Re∗N = 1.25 ; (right), Fr = 0.77, Re∗N = 70.73. ReN = 140±6
in both cases. The field of view in each snapshot is 8 × 800 (mm2) located 24 (mm) below
the gate valve. The bottom row plots the contours of depth averaged concentration profile
diagrams (corresponding to the panels in the top row).
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ẑ (mm)
300 400 500 600 700

t̂
(s
)

10

20

30

40
0.2

0.4

0.6

0.8

1(d)
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Figure 3.5 – The top row shows three panels each containing a sequence of experimental
images, showing from left to right smooth, wavy and corrugated static residual layers. The
flow parameters in each panel are (left) Fr = 0.57, Re∗N = 0.034; (middle) Fr = 1.82,
Re∗N = 0.040; (right) Fr = 1.73, Re∗N = 0.008. ReN = 103±5 in all cases. The field of view in
each snapshot is 8× 800 (mm2) located 24 (mm) below the gate valve. The bottom row plots
the contours of depth averaged concentration profile diagrams (corresponding to the panels in
the top row).
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diagrams of the depth averaged concentration profiles are presented. For all these flows, the
average concentration along the pipe remains almost constant with respect to the time and
position. In addition, the interface between the displaced and displacing fluids is sharp. In
the smooth case, the residual layers of the displaced fluid on the pipe wall are relatively
uniform and they present very low amplitude variations. The boundary between two fluids
in the spatiotemporal diagram seems to be also smooth (and appears to be nearly linear).
In the wavy and corrugated sub-regimes, however, there are visible vertical streaks in the
spatiotemporal diagrams, indicating the non-uniformity of the residual layers. The former is
identified by medium amplitude variations in the residual layers and more or less uniformity
(or linearity) of the boundary between two fluids in the spatiotemporal diagram. The latter
is characterised by large amplitude variations in the residual layer and non-uniformity (and
non-linearity) of the boundary between two fluids in the spatiotemporal diagram (see (58) for
more details).

There are also secondary flow features in our displacements, one of which is the observation of
central and periphery displacement forms (Fig. 3.6), which may typically occur near the front
position. Most of our experiments exhibit central displacement flows in which the displacing
fluid front prefers to flow into the displaced one towards the pipe centre (see Fig. 3.6a).
Therefore, the displacing fluid (as an inner layer) flows within the displaced one (as an outer
layer). However, there are also several experiments showing that when the density difference
between the fluids increases (i.e. creating stronger buoyancy forces), a periphery displacement
may occur, in which the displacing fluid front at least locally advances around the displaced
fluid, producing an outer Newtonian layer and an inner yield stress fluid layer (see Fig. 3.6b).
The periphery displacing fluid front pushes forward around the displaced fluid and appears
to advance downward faster than the bulk of the flow. The flow pattern is local and the
displacement can still leave behind a wall residual layer that is typically uniform and thin.
Therefore, it may be reasonable to classify these periphery displacement flows as a branch of
the smooth residual layer sub-regime.

3.4.2 Regime classifications

In order to better understand various flow regimes and patterns observed in our experiments,
we have analysed in detail a large number of displacements (roughly 200 experiments) and
we have attempted to describe them versus the dimensionless groups that govern the flow.
Fig. 3.7 classifies our main flow regimes discussed so far. One of the main observations is the
appearance of static and moving residual layers. Perhaps intuitively, our experiments show that
by increasing the yield stress, displacement flows represent residual layers that are fully static.
Therefore, to quantify this aspect, we have analysed in detail the variation of the concentration
field for each experiment and we have succeeded to classify static and moving residual layers
in the plane of BN and χ, as depicted in Fig. 3.7a. This figure shows that the occurrence of
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layer. Our experiments reveal that the transition roughly occurs at BN ⇡ 100, which is
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the text. For BN  100 the viscous stress is dominant and the residual layer regime is

moving, whereas for BN > 100, the yield stress is dominant and thus static residual layers

are observed.

Within the class of moving residual layers, two sub-regimes termed nearly-stable and

unstable displacements are observed, which we succeed to classify the in the plane Ree↵

and � in Fig. 7b. The results show that the transition is governed by �, which represents
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(a) (b)

Figure 3.6 – Sequence of experimental images, illustrating (a) a central displacement and
(b) a periphery displacement. A close up view and a schematic of the displacement front is
included in each subfigure. The field of view in each snapshot is 8 × 800 (mm2) located 24
(mm) below the gate valve. The flow parameters are (a) ReN = 662, Fr = 3.8, Re∗N = 0.33 ;
(b) ReN = 509, Fr = 1.72, Re∗N = 0.81.

static and residual layers highly depends on BN and it is almost independent of χ (at least
for smaller values of χ), which highlights the importance of the ratio of the yield to viscous
stress in the removal of the displaced layer. Our experiments reveal that the transition roughly
occurs at BN ≈ 100, which is in agreement with the prediction of the analytical lubrication
model (marked by the dashed line in Fig. 3.7a) that will be explained later in the text. For
BN < 100 the viscous stress is dominant and the residual layer regimes are moving (so they
are removable), whereas for BN & 100, the yield stress is dominant and thus static residual
layers are observed.

Within the class of moving residual layers, two sub-regimes termed nearly-stable and unstable
displacements are observed, which we succeed to classify in the plane of Re∗N and χ in Fig. 3.7b.
The results show that the transition between these sub-regimes is mainly governed by χ,
which represents the ratio of buoyant to viscous stresses, occurring at χc ≈ 120, more or
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Figure 3.7 – Regime classification. (a) Main regimes in the plane of BN versus χ for all
experiments: moving and stationary residual layers are marked by (�) and (◦), respectively.
Dashed line shows the transition predicted by the lubrication model (BN = 101.325−0.0819χ).
(b) Sub-regimes within moving residual layer flows in the plane of Re∗N versus χ: nearly-stable
flows (∗) and unstable flows (�). Vertical dashed line represents the transition at χ ≈ 120.
(c) Sub-regimes within stationary residual layer flows in the plane of Re∗N versus ReN/Fr:
smooth (H), the wavy (N), and the corrugated (I) residual layers. Dashed lines represent the
wavy-smooth and corrugated-way transitions at small ReN/Fr. As ReN/Fr increases, the
vertical dashed line marks a secondary transition to smooth residual layers ReN/Fr ≈ 93.
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less independent of Re∗N and of various combinations of the other dimensionless groups (not
shown for brevity). Our χc can be compared with the findings of Zare et al. (21) who studied
buoyant miscible displacement flows of a Bingham fluid by a Newtonian fluid along a vertical
2D plane-channel. They found that the transition between stable and unstable flow regimes is
mainly a function of χ, and varies in the range of 40 and 220, which is in qualitative agreement
with our results.

Within the class of static residual layers in our buoyant displacements (i.e. BN & 100), various
interesting flow features are observed in terms of the phenomenological behaviours of these
layers. As mentioned, Moisés et al. (58) studied these flows at the limit of zero density diffe-
rence in a horizontal pipe and classified smooth, wavy and corrugated residual layers versus
a Reynolds number similar to our Re∗N , which includes the yield stress effects of the displa-
ced fluid. Therefore, a reasonable regime map to analyse the effects of gradually increasing
the density difference on static residual layers naturally involves Re∗N versus another relevant
dimensionless parameter to represent the significance of buoyancy. This parameter turns out
to be ReN/Fr, which depends on the density difference, and it is independent of the imposed
flow velocity. Fig. 3.7c plots the experimental datapoints of smooth, wavy and corrugated
static residual layers in the plane of Re∗N and ReN/Fr, wherein various transitions can be
recognized. Let us first concentrate on the effects of increasing ReN/Fr on the transition
between the sub-regimes while ReN/Fr is small. For ReN/Fr=0, we already found that the
critical values of Re∗N ≈ 0.062 and ≈ 0.849 identify the corrugated-wavy and wavy-smooth
transitions, respectively. When ReN/Fr gradually increases from zero, we may expect that
these transition values are simply the leading order terms in an expansion of Re∗N with respect
to small ReN/Fr and assume

Re∗N = g (ReN/Fr) ≈ g (0) + g′ (0)ReN/Fr + ..., (3.9)

where g indicates that the critical Re∗N is a function of ReN/Fr. Using this coarse approach,
we are able to experimentally find that the corrugated-wavy transition follows

Re∗N ≈ 0.062 + 0.0007ReN/Fr + ...,

and that the wavy-smooth transition follows

Re∗N ≈ 0.849 + 0.1127ReN/Fr + ...,

which are valid for small ReN/Fr, as also seen in Fig. 3.7c. Note that these are leading
order approximations to the corrugated-wavy and wavy-smooth transitions in buoyant dis-
placements. However, as ReN/Fr increases, the assumptions for the expansion above break
down and, expectedly, the transition between the residual layer regimes cannot be predicted
by the relations provided. In fact, Fig. 3.7c shows that when ReN/Fr & O(102), implying
that buoyancy forces become significant, the residual layers are all smooth, independent of the
value of Re∗N . This transition can be roughly represented by ReN/Fr ≈ 93.
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Figure 3.8 – Panorama of spatiotemporal diagrams at long times for various Re/Fr and Re∗N .
Each small image shows a spatiotemporal diagram over 800 (mm) of the pipe length (horizontal
axis) over the last 3 seconds of each experiment (vertical axis). On each image, corrugated,
wavy and smooth residual layers are marked by c, w and s. From left to right, ReN/Fr =
[0, 46.5, 65.8, 93.1, 174.3, 294.6]. From top to bottom, Re∗N = [0.04, 0.25, 0.80, 2.47, 3.53, 5.58].

An explanation for the behaviours observed is that when ReN/Fr is small (weak buoyancy),
changes in the ratio of inertial to effective viscous forces captured through Re∗N (which include
the yield stress) are important in characterising the form of the static residual layers, i.e.
corrugated, way and smooth. However, when ReN/Fr is large, the buoyancy forces are strong
and, thus, dominate the flow. Therefore, the existence of the static layers becomes independent
of the yield stress and inertial effects. These findings emphasize that the static residual layers
have a complex trend versus the flow parameters. To better understand the flow behaviours
in Fig. 3.7c and visualize how the variations in Re∗N and ReN/Fr modify the flow regimes,
Fig. 3.8 illustrates a panorama of spatiotemporal diagrams at long times for various increasing
the values of theReN/Fr andRe∗N . As evident, increasingReN/Fr andRe

∗
N are both in favour

of transitioning to smooth static residual layers.

To more quantitatively demonstrate the effects of the flow parameters on the waviness of
the static residual layers, we have used a sum of sines (SoS) model to find the fluctuation
amplitudes in the depth averaged concentration profiles ( ¯̄Cxy(z)) along the pipe at long times
(when the front reaches the pipe end). The SoS model is a popular method to estimate a
given function using a sum of sinusoidal harmonics, to extract the relevant amplitudes and
frequencies. In order to extract the local fluctuations in ¯̄Cxy(z), let us rely on the following
double SoS application:

¯̄Cxy(z) ≈
n1∑
i=1

A1,i sin(B1,iz + C1,i) ≡ C1,fit, (3.10)

¯̄Cxy(z)− C1,fit ≈
n2∑
i=1

A2,i sin(B2,iz + C2,i) ≡ C2,fit, (3.11)

where Aj,i is the amplitude, Bj,i the frequency, Cj,i the phase constant for each sine wave
term, nj the number of terms in the series, and j = 1, 2. In our case, for simplicity, we take
nj = 2. C1,fit and C2,fit represent the fitted curves in the first and second application of the SoS
method, respectively. The former could be a qualitative representative for the overall shape
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Figure 3.9 – (a) An example of the depth averaged concentration profile, ¯̄Cxy (z) (blue dashed
line), and the fitted curve through the sum of sines model, C1,fit (dark solid line), at ReN/Fr =

58.9 and Re∗N = 0.04. (b) ¯̄Cxy (z) − C1,fit (blue dashed line), both from subfigure a, and the
fitted curve through re-applying the sum of sines model to find C2,fit (solid line). (c) A2,1 versus
Re∗N at ReN/Fr = 58.9 (filled symbols) and ReN/Fr = 174.3 (hollow symbol): smooth (H,O),
wavy (N), and corrugated (I) residual layers. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

of the mean residual layer values and the latter could represent the relative fluctuations. The
leading order amplitude fluctuations in ¯̄Cxy(z) can be found through analysing A2,1.

Fig. 3.9a shows the variation of the depth averaged concentration profile along the pipe (blue
dashed line) and the fitted curve through equation (3.11) (black solid line). The fitted curve
reasonably presents the overall shape of the depth average concentration profile. To ensure
that this fit is appropriate, we have also verified statical parameters such as the sum of squared
errors and the adjusted R-square, finding them to be close to zero and one, respectively. Fig.
3.9b shows the results of applying equation (3.11) (using the results obtained from Fig. 3.9a),
demonstrating that C2,fit reasonably approximates the fluctuations in the depth averaged
concentration.

Fig. 3.9c plots the variation of A2,1 versus Re∗N , for two fixed values of ReN/Fr = 58.9

and ReN/Fr = 174.3. As can be seen, when ReN/Fr is smaller than the critical values
of 93, increasing Re∗N results in significantly decreasing A2,1 and transitioning between the
corrugated, wavy and smooth static residual layers (this implies that at large values of the
yield stress, the residual layers are more non-uniform and thus the concentration fluctuation is
larger). However, when ReN/Fr is larger than the critical value of ∼ 93 (found earlier), A2,1

remains small and does not much vary with increasing Re∗N : the static residual layers become
smooth when ReN/Fr & 93.
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Figure 3.10 – Vf in the plane of BN and χ. The values of Vf are marked by the symbol size
and colours.

3.4.3 Front velocity

One of the crucial flow features frequently studied in displacement flows is the front velocity
of the advancing displacing fluid into the displaced one, since in particular, this velocity
can provide a measure of the overall displacement efficiency. If the front velocity is small,
we may expect that the displacement is efficient. To consistently measure the front velocity
at long times (Vf = V̂f/V̂0), we rely on the experimental approach discussed in Amiri et
al. (55). Fig. 3.10 presents the variation of Vf in the plane of BN and χ for a large number
of experiments. This figure reveals that the front velocities (and therefore the displacement
flow efficiency) are strongly affected by changes in BN ; in particular, in most cases, increasing
BN results in increasing the displacing fluid penetration velocity. Also, the datapoints with
moderate values of χ seem to have the largest Vf . Nevertheless, these trends do not apply to
all the datapoints.

In our experiments, we are generally dealing with fluid flows for which the imposed flow
Reynolds number is not too high (i.e. the imposed flow is in the laminar regime). Therefore,
in order to predict the front velocity, as a first step, it may be natural to develop a lubrication
type model and evaluate if this model could be used to predict the front velocity at long times,
as well as several other important flow features. This will be the focus in the next section.

3.5 Analytical model

In this section, we will provide an analytical lubrication model to evaluate whether it can
provide predictions about some of the flow behaviour. In our experiments, we have observed
the appearance of two interfacial flow patterns that are phenomenologically different (and
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Figure 3.11 – Schematic views of the idealized displacements considered in the analytical
model: periphery (left) and central (right).

therefore require different models), i.e. a central displacement and a periphery displacement.
Although these fluid flow cases are quite complex and perhaps involve several fluid layers,
for simplicity we define and analyse two highly idealized displacement cases, according to the
illustrations in Fig. 3.11. The right schematic image shows a central displacement, meaning
that the displacing fluid tends to move into the displaced fluid along the pipe centre line, and
the left schematic image depicts a periphery displacement, with the displacing fluid moving
closer to the pipe wall, leaving the displaced fluid in the channel centre. Note that although
these are highly simplified, idealized configurations for modelling purposes, they are still useful
to gain fundamental understanding about the flow dynamics.

Starting from the governing equations explained in § 3.2, to develop our simplified model,
let us rely on a cylindrical coordinate system of (r, θ, z) and u = (w, v, u). Assuming an
axisymmetric flow condition, we can reduce the problem to (v(r, z), u(r, z)) for which the
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leading order equations for the heavy and light fluids are

0 = f +
1

r

∂

∂r
(rτH,rz) , (3.12)

0 = f − χ+
1

r

∂

∂r
(rτL,rz) , (3.13)

respectively, where f = −∂p
∂z −

χ
2 and the incompressibility condition for each layer

1

r

∂ (rv)

∂r
+
∂u

∂z
= 0. (3.14)

Note that ∂p
∂r = 0 in the leading order equations.

For simplicity, we consider a Bingham version of the Herschel-Bulkley model (so n = 1), for
which the simplified constitutive equation at the leading order for the light fluid can be written
as

∂u

∂r
= 0 ⇔ |τL,rz| ≤ BN , (3.15)

τL,rz =

[
m+

BN∣∣∂u
∂r

∣∣
]
∂u

∂r
⇔ |τL,rz| > BN , (3.16)

while the heavy fluid simply obeys the Newton’s viscosity law:

τH,rz =
∂u

∂r
. (3.17)

Regarding the boundary conditions, at the pipe wall we have u = 0 and at the interface we
consider that both velocities and shear stresses are continuous. At the pipe centre we also
apply the symmetric condition. Since the flow rate is constant, we also have an additional flow
constraint

1

4
=

∫ 1/2

0
2rudr, (3.18)

which has to be satisfied by the solution. It can be shown that the interface evolves following

∂α

∂t
+
∂q

∂z
= 0, (3.19)

where α = r2
i (with ri ∈ [0, 1/2]) is the area fraction occupied by the inner layer fluid and q is

the flux function defined as
q =

∫ ri

0
2rudr, (3.20)

where ri is the radial position of the interface.
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3.5.1 Central displacement

In the central displacement, the displacing fingers move into the displaced fluid towards the
pipe centreline. In a theoretical ground, in terms of the velocity profiles and the appearance of
plugs within the yield-stress fluid, there are in particular six different cases that may appear,
as will be discussed below. Before we proceed to explain these cases in detail, let us first denote
the wall and interfacial shear stresses as τw and τi, respectively, and define the following useful
radii:  r1 =

√
B2

N+ri2χ(χ− f)−BN

χ−f ,

r2 =

√
B2

N+ri2χ (χ−f)+BN

|χ−f | ,
(3.21)

which will simplify the presentation of the results for each case in the following subsections.
These are simply the solutions of a quadratic equation that is related to the radii of the yield
surfaces. For clarification, simply consider a multilayer region in a displacement case with
moderate dimensionless parameter ranges where it is assumed to have a plug region within
the displaced layer. This implies that there are two radii (e.g. r1 and r2) corresponding to
two yield surfaces, with the difference between the radii (r2 − r1) being the thickness of the
unyielded plug region. In this situation, knowing that at the boundary of the unyielded region
the dimensionless stress is equal to BN , we can solve the equations and obtain these two radii.
Depending on the sign of the interfacial stress, equation 3.21 presents these two radii in a
general form. Of course, there are also other possible cases, for example when there are no
yield surfaces, as discussed below.

Case 1: −τw > BN & −τi > BN

For case 1, f is simply calculated as

f =
48 ri

4χ− 128 ri
3BN − 24χ ri

2 + 16BN + 3χ+ 96m

3 (16 ri4m− 16 ri4 + 1)
. (3.22)

Also, the flux function becomes

q =
(4χ+ (2m− 4) f) ri

4 − 8 ri
4χ ln (2ri) + 16 ri

3BN + (−8BN + f − χ) ri
2

16m
, (3.23)

and the velocity profiles are{
uH = (4χ+(4m−4)f)ri

2−8χ ri
2 ln(2ri)+16 riBN−4 fmr2−8BN+f−χ

16m , 0 ≤ r ≤ ri
uL =

(4 r2−1)χ−8χ ri
2 ln(2r)−4 fr2+16BN r−8BN+f

16m , ri < r ≤ 1
(3.24)

where subscripts H and L refer to the heavy and light layers, here and elsewhere. Figs. 3.12a
and 3.13a show an example of the variation of the shear stress and the velocity profile, versus
r, respectively, for case 1.
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Figure 3.12 – Variation of the shear stress versus radius for central displacements with m = 1
and ri = 0.3: (a) Case 1: χ = 60 & BN = 15; (b) Case 2: χ = 220 & BN = 25; (c) Case 3:
χ = 700 & BN = 25; (d) Case 4: χ = 30 & BN = 25; (e) Case 5: χ = 30 & BN = 65; (f) Case
6: χ = 1200 & BN = 65. The dashed lines mark ±BN for each case.
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Figure 3.13 – Model results: Variation of the velocity profiles versus radius for the corres-
ponding cases in Fig. 3.12. The interface position is marked by the thick horizontal lines. r1

and r2 are marked by arrows and dashed lines.
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Case 2: |τw| ≤ BN & −τi > BN

For case 2, f can be obtained using the following equation:

1

4
=

3 ((m− 1) f − χ) ri
4 + 8 ri

3BN + 6 ri
2χ r1

2 + 3 (f − χ) r1
4 − 8 r1

3BN
24m

, (3.25)

in which r1 must be replaced by the relation given in (3.21). The flux function is

q =
4 ri

4χ ln
(
r1
ri

)
+ (2χ+ (m− 2) f) ri

4 + 8 ri
3BN +

(
2 f r1

2 − 2χ r1
2 − 8BN r1

)
ri

2

8m
,

(3.26)
and the velocity profiles are

uH =
2χ ri

2 ln
(

r1
ri

)
+(χ+(m−1)f)ri

2+4BN ri−χ r12+(r12−mr2)f−4BN r1

4m , 0 ≤ r ≤ ri
uL =

2χ ri
2 ln( r1

r )+χ r2−χ r12−f r2+f r12+4BN r−4BN r1
4m , ri < r < r1

uL = 0. r1 ≤ r ≤ 1

(3.27)

A flow, in this case, involves a static residual wall layer with the thickness of 1 − r1 since
uL = 0 for r1 ≤ r ≤ 1. Figs. 3.12b and 3.13b show an example of the variation of the shear
stress and the velocity profile, versus r, respectively, for case 2.

Case 3: τw > BN & −τi > BN

For case 3, f can be obtained using the following equation:

1

4
=

(
48 r2

4 − 48 ri
4 +

(
96 r1

2 − 96 r2
2 + 24

)
ri

2 − 48 r1
4 − 3

)
χ

384m

+
48 f (m− 1) ri

4 + 128 ri
3BN +

(
48 r1

4 − 48 r2
4 + 3

)
f − 128BN

(
r2

3 + r1
3 − 1

8

)
384m

,(3.28)

where r1 and r2 must be replaced by the relations given in (3.21). The flux function is

q =
8 ri

4χ ln
(

r1
2r2ri

)
+ (4χ+ 2 (m− 2) f) ri

4 + 16 ri
3BN

16m

+

((
4 r2

2 − 4 r1
2 − 1

)
χ+

(
4 r1

2 − 4 r2
2 + 1

)
f − 16BN

(
r2 + r1 − 1

2

))
ri

2

16m
, (3.29)

and the velocity profiles are

uH =
8χ ri

2 ln
(

r1
2r2ri

)
+(4 r22+4 ri

2−4 r12−1)(χ−f)+4mf(ri2− r2 )+16BN ri−16BN(r2+r1− 1
2)

16m , 0 ≤ r ≤ ri
uL =

8χ ri
2 ln
(

r1
2r2ri

)
+(4 r2+4 r22−4 r12−1)χ+(16 r−16 r2−16 r1+8)BN−4 (r2+r22−r12− 1

4)f
16m , ri < r < r1

uL =
(4 r22−1)χ−8χ ri

2 ln(2r2)−4fr22−16BN r2+8BN+f

16m , r1 ≤ r ≤ r2

uL =
(4 r2−1)χ−8χ ri

2 ln(2r)−4 fr2−16BN r+8BN+f

16m . r2 < r ≤ 1

(3.30)
Figs. 3.12c and 3.13c show an example of the variation of the shear stress and the velocity
profile, versus r, respectively, for case 3.
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Case 4: −τw > BN & −τi ≤ BN

For case 4, f can be obtained using the following equation:

1

4
=

(
48 r2

4 + 24 ri
2 − 96 ri

2r2
2 − 3

)
χ+ 48 f ri

4m− 48 f r2
4 + 128BN r2

3 − 16BN + 3 f

384m
,

(3.31)
where r2 must be replaced by the relation given in (3.21). The flux function becomes

q =
ri

2
(
2 f ri

2m+ 4χ r2
2 − 4 f r2

2 + 16BN r2 − 8BN − χ+ f
)
− 8 ri

4χ ln (2r2)

16m
, (3.32)

and the velocity profiles are
uH = 4 f ri

2m−8χ ri
2 ln(2r2)−4 f mr2+4χ r22−4 f r22+16BN r2−8BN−χ+f

16m , 0 ≤ r ≤ ri
uL =

(4 r22−1)χ−8χ ri
2 ln(2r2)−4 f r22+16BN r2−8BN+f

16m , ri < r ≤ r2

uL =
(4 r2−1)χ−8χ ri

2 ln(2r)−4 f r2+16BN r−8BN+f

16m . r2 < r ≤ 1

(3.33)

Figs. 3.12d and 3.13d show an example of the variation of the shear stress and the velocity
profile, versus r, respectively, for case 4.

Case 5: |τw| ≤ BN & −τi ≤ BN

For case 5, the light layer is fully static and therefore f , q and velocity profiles are as follows:

f =
2

ri4
, (3.34)

q =
1

4
, (3.35)

{
uH = ri

2−r2
2ri4

, 0 ≤ r ≤ ri
uL = 0. ri < r ≤ 1

(3.36)

Figs. 3.12e and 3.13e show an example of the variation of the shear stress and the velocity
profile, versus r, respectively, for case 5.

Case 6: τw > BN & −τi ≤ BN

For case 6, f can be obtained using the following equation:

1

4
=

(
48 r2

4 − 96 ri
2r2

2 + 24 ri
2 − 3

)
χ+ 48 f ri

4m− 48 f r2
4 − 128BN r2

3 + 16BN + 3 f

384m
,

(3.37)
where r2 must be replaced by the relation given in (3.21). The flux function becomes

q =
ri

2
(
2 f ri

2m+ 4χ r2
2 − 4 fr2

2 − 16BNr2 + 8BN − χ+ f
)
− 8 ri

4χ ln (2r2)

16m
, (3.38)
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and the velocity profiles are
uH = 4 f ri

2m−8χ ri
2 ln(2r2)−4 f mr2+4χ r22−4 f r22−16BN r2+8BN−χ+f

16m , 0 ≤ r ≤ ri
uL =

(4 r22−1)χ−8χ ri
2 ln(2r2)−4 f r22−16BN r2+8BN+f

16m , ri < r ≤ r2

uL =
(4 r2−1)χ−8χ ri

2 ln(2r)−4 f r2−16BN r+8BN+f

16m . r2 < r ≤ 1

(3.39)

Figs. 3.12f and 3.13f show an example of the variation of the shear stress and the velocity
profile, versus r, respectively, for case 6.

Finding the modified pressure gradient

For specified fluid properties and a given interface radius (ri), the modified pressure gradient
(f), is an unknown that can be found. However, since the wall and interfacial stresses also
depend on f , it is not a priori known which displacement case and therefore which relation
(e.g. among equations (3.22), (3.25), (3.28), (3.31), (3.34) and (3.37)) must be considered to
find f . Therefore, to find f we have constructed a robust numerical procedure that considers
all the cases and finds f through an iterative approach that combines bisection, secant, and
inverse quadratic interpolation methods. After finding f , which simultaneously involves finding
the appropriate displacement case (among the six cases), the flux function and the velocity
profiles can be subsequently calculated using the corresponding equations.

Comparison between Vf from the model and experiments

It is natural to compare the front velocities of the central core interfacial flow, obtained from
the experiments and the model. For the former, the front velocities (Vf,exp = V̂f,exp/V̂0,exp)
are obtained by processing the experimental images to deliver experimental front velocities at
long times for a given parameter set. For the former, the model front velocity is equivalent to
the speed of an advancing interfacial shock at the front given by:

Vf,model =
1

2ri

∂q

∂ri

∣∣∣∣
ri=rf

, (3.40)

where rf is the radial position of the interface at the front, which can be computed through
the use of the conventional equal areas rule:

ri
2

∂q

∂ri

∣∣∣∣
ri=rf

= q (rf ) . (3.41)

Fig. 3.14 compares Vf,exp and Vf,model for increasing values of BN . The comparison is only
reasonable for small values of BN < 100 (moving residual layer flows) and as BN significantly
increases the model results further deviate from the experimental ones. In order to better
understand such deviation, let us look at the solution of the interface evolution equation (3.19),
corresponding to the experiments illustrated in Fig. 3.3 (top row), as depicted in Fig. 3.15.
The interface evolution equation is solved using a numerical shock capturing method explained
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Figure 3.14 – Comparison between the front velocities obtained from the model and experi-
ments. The size and colour of the square symbols represent the values of BN . The line shows
Vf,model = Vf,exp.

in detail in (17). As can be seen, when the yield stress is small (i.e. small BN ), the interface
shape resembles that in the experiments. However, as the yield stress or BN increases, the
displacing finger becomes progressively narrower, implying that the interface front speed must
increase significantly (due to the flow rate constraint). On the other hand, in our experiments
of Fig. 3.3 (top row), it seems that at larger BN the displacing fluid breaks into the Carbopol
gel through frontal inertial effects which cannot be ignored. Therefore, the lubrication model
is not able to provide a reasonable comparison with the experiments at large BN .

Static residual layers at long times

Far away from the displacement front (which may include inertial effects), the flow may be
expected to be in the laminar regime. In this case, the lubrication model developed can be
used to shed light on the interface behaviours. In particular, using the model it is of interest
to quantify whether the residual layers observed in the experiments at long times are fully
static or partially static.

For central displacement and among the six distinct cases (in terms of the velocity profiles),
case 2 and case 5 involve static residual wall layers (see the velocity profiles in Fig. 3.13). In
the other cases, although there may be plug layers within the light layer (e.g. in cases 3, 4
and 6), the yield stress fluid layer moves forward or backward, as a whole. Therefore, these
cases would not present any fully or partially static residual layers. For case 2, as we move
away from the upper wall towards the pipe centre, the velocity profile within the yield stress
fluid has a fully static residual layer attached to the upper wall and a slowly moving layer that
reaches the interface. This implies that case 2 represents a partially static residual wall layer.
For case 5, however, the residual layer is fully static throughout the yield stress layer.
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Figure 3.15 – Model results showing displacements obtained analytically (for L = 10), cor-
responding to the experiments with increasing the Carbopol concentrations in the top row of
Fig. 3.3. The contour colours are the same those in the experimental figure.

Let us first focus on the situation in which the fluid is static throughout the displaced layer
(case 5). In the spirit of case 5, depending on the values of the buoyancy number (χ), different
scenarios may occur. For example, if χ is small, the shear stress is expected to remain negative
and decrease throughout the light layer, implying that the largest magnitude of the shear
stress is found at the pipe wall. In this case, a maximal static residual layer thickness can be
calculated by satisfying −τw = BN . Therefore, if the layer starts to yield in this scenario, this
must first occur at the pipe wall (−τw > BN ). For moderate values of χ, the shear stress,
which is always negative at the interface, will start to increase across the outer layer and it
can even become positive; therefore, the largest magnitude of the shear stress will be found
at the interface while the shear stress magnitude remains below the yield stress throughout
the layer. Provided that the light layer starts to yield in this scenario, this must first occur
at the interface (−τi > BN ). Finally, as χ increases to large values, if the light layer yields,
again this must first occur at the pipe wall albeit with a positive wall shear stress (τw > BN ).
Analysing these three scenarios for case 5 results in finding two critical buoyancy numbers:

χc,yielded atwall =
2

ri4
, (3.42)

χc,yielded at interface =
10

ri4 (1− 4 ri2)
. (3.43)
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Fig. 3.16a shows the variation of the critical curves of χ, explained above, versus ri. Our
experimental results are also superimposed on this plot. Based on the prediction of the model,
if yielding occurs for the experimental datapoints lying below the thin line (equation (3.42))
or above the thick line (3.43), this must occur at the pipe wall: The yield stress fluid would be
either washed (small χ) or move upward (large χ). On the other hand, provided that a residual
wall layer is observed for these experimental datapoints, the layer is fully static and it is not
partially moving. However, for the experimental datapoints that are within the two lines (i.e.
thin and thick lines), if a residual wall layer is observed, it is not a priori known if the layer is
fully static or partially moving near the interface. It would be also difficult experimentally to
detect a partially moving residual throughout the interface over our long pipe. However, since
a partially moving residual layer corresponds to case 2, a maximal partially static residual
layer thickness can be calculated by satisfying τw = BN to find the modified pressure gradient
as

f = χ− 4χ ri
2 − 4BN . (3.44)

Therefore, for a given flow parameter set (experimental input parameters), the values of ri and
subsequently r1 corresponding to the maximal partially static residual wall layer thickness can
be numerically calculated, as depicted in Fig. 3.16b. This figure plots theoretical curves of χ
versus ri (lines) and r1 (dashed lines) for increasing values of BN . A value of m = 1 is chosen
for simplicity and illustrative purposes. The same experimental datapoints of Fig. 3.16a are
also superimposed on this plot in the plane of χ and ri. By increasing BN , the theoretical
results deviate from where the experimental results are concentrated (i.e. on average ri ≈
0.41) and move towards smaller values of radii, an observation for which the interpretation is
straightforward: Our experimental results at a very long time with observable residual layer
do not correspond to case 2, for which the residual wall layers are only partially static, but
instead, they correspond to case 5, for which the residual wall layers are fully static.

Before proceeding with our analysis to quantify residual layer behaviours at long times, it is
worth clarifying two aspects in relation to Fig. 3.16. First of all, one may wonder why χ and BN
seem to be correlated in terms of the variations of the datapoints, i.e. very small/large values
of χ generally (not always) correspond to very small/large values of BN . The explanation is
simple. χ and BN are both inversely proportional to V̂0, which is a parameter that has one
of the widest variation ranges in our experiments (i.e. over 2 orders of magnitude). Therefore,
as V̂0 varies in a wide range, χ and BN may generally seem to vary in the same direction
but it must be noted that they are not functions of each other. Secondly, and importantly,
one may wonder why the experimental results in Fig. 3.16 are concentrated in the high ri

range. The answer to this question needs highlighting the role of inertial effects, which are
completely absent in our lubrication type model. As stated earlier, away from the displacing
front, the flow is in the laminar regime but inertial effects are still present near the frontal
region of the displacing fluid, and they play a role in initially yielding and breaking into the
displaced fluid (also noted by (78)). On the one hand, it can be shown that inertial stresses

102



at the front could be in the same order of the yield stress of the displaced fluid. On the
other hand, as the densities do not much vary, these inertial stresses are mainly a function
of the frontal velocity, which vary over a small range (see Fig. 3.10). Therefore, knowing that
inertial stresses are large and responsible for the initial yielding of the displaced fluid, it may
be expected that ri should be also large and it should not vary over a significantly wide range.
Fig. 3.16 shows that the experimental results are concentrated around ri ≈ 0.41, which may
confirm this hypothesis. Nevertheless, it must be emphasized that, although inertial stresses
can not be perhaps ignored at the front, they vanish away from the front where viscous
stresses completely take over (see (78) for near front velocity measurements). This implies
that, although inertial stresses contribute in determining the interfacial position, these are in
fact the viscous stresses that govern the dynamics of the displacement flow behind the front
and, in particular, determine whether the residual layers are static or moving.

Let us return to our analysis. Knowing that our static residual layer flows are within the class
of case 5 and that our flows do not typically present the upward motion of the fluid layer near
walls (due to relatively small χ), we can calculate the wall shear stress at the verge of yielding
as

−τw = BN =
f

4
− χ

4

(
1− 4ri

2
)
. (3.45)

The first term in the above equation appears due to the modified pressure gradient in the
Newtonian layer and the second term is due to the buoyancy in the yield stress layer. Putting
f = 2

r4i
and ri ≈ 0.41 into equation (3.45) results in

BN = 17.69− 0.0819χ,

as a measure of the transition between static and moving residual layer flows. However, this
relation underestimates the critical transition observed in our experiments (i.e. BN ≈ 100).
The reason for this discrepancy may be due to that fact that the transition between static and
moving residual layers are expected to be affected by the surface roughness at the interface
between our fluid layers (see Alba and Frigaard (78)), implying that the interfacial shear stress
must be corrected based on a relation using the Darcy-Weisbach equation to eventually find
(after simplification):

f =
λReN
64r5

i

, (3.46)

where λ is the friction factor due to a large surface roughness in the laminar regime which can
be approximated by (142)

λ =
10210ε2 − 529.66ε+ 64

Reh
,

which is valid for 0.03 < ε < 0.33. In this relation ε is the relative roughness value and Reh is
the hydraulic Reynolds number, which can be written versus the Newtonian Reynolds number
as

Reh =
ReN
2ri

.
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Figure 3.16 – (a) Variation of critical curves of χ versus ri for case 5, according to equation
(3.42) (thin solid line) and equation (3.43) (thick solid line). (b) Variation χ versus ri (solid
line) and r1 (dash-dot line) for case 2 with m = 1, for various Newtonian Bingham numbers:
BN = 20 (blue), BN = 60 (red) and BN = 100 (pink). Experimental datapoints are superim-
posed on both subfigures as rectangles, for which the size and colour represent the values of
BN . (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

We can see that by putting ε = 0, the modified pressure gradient (relation (3.46)) reverts
back to f = 2

r4i
. We have analysed the surface roughness in our experiments following the

method proposed by Alba and Frigaard (78), finding that 0.03 ≤ ε ≤ 0.2 in our experiments.
Considering the maximum value of ε ≈ 0.2 we find

BN = 101.325− 0.0819χ, (3.47)

which is superimposed as the dashed line in Fig. 3.7a, showing that the transition between
static and moving residual wall layers can be reasonably predicted by the analytical model.

3.5.2 Periphery displacements

Let us now look into periphery displacements, by developing a heuristic approach based on the
lubrication model. We assume that in the periphery displacement the displacing fluid prefers
to occupy the outer layer, and the displaced yield stress fluid tends to place itself close to
the pipe centre (at least locally). We employ the same model equations as before but with
the layer positions switched (i.e. the light yield stress fluid layer in the inner domain and the
heavy Newtonian layer in outer domain). We will see, in theory, these flow model assumptions
result in 3 distinct displacement cases (in terms of the velocity profiles), which we call case A,
case B, and case C, as derived below. Before we proceed, let us first define the following plug
radius

ry =
2BN
|f − χ| , (3.48)

which will simplify the presentation of the results for each case in the following subsections.
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Case A: f ≥ χ & −τi > BN

For case A, f can be found through

1

4
=

((96χ− 48 f)m+ 48 f − 48χ) ri
4 − 128BN ri

3

384m

+
48χ ry

4 − 24 ri
2χm− 48 f ry

4 + 128BN ry
3 + 3 f m

384m
, (3.49)

and the flux function becomes

q =
24 ri

4χ ln (2ri)m+ 6 (f − 2 f m− χ ) ri
4

48m

+
6χ ry

4 − 16BN ri
3 + 3 ri

2f m− 6 f ry
4 + 16BN ry

3

48m
. (3.50)

The velocity profiles are
uL =

(f−χ)(ri2−ry2)
4m − BN (ri−ry)

m + f
16 + ri

2χ
2 ln (2ri)− ri

2f
4 , 0 ≤ r ≤ ry

uL =
(f−χ)(ri2−r2)

4m − BN (ri−r)
m + f

16 + ri
2χ
2 ln (2ri)− ri

2f
4 , ry < r ≤ ri

uH = f
16 + ri2χ

2 ln (2r)− r2f
4 . ri < r ≤ 1

(3.51)

Figs. 3.17a and b show an example of the variation of the shear stress and the velocity profile,
versus r, respectively, for case A.

Case B: f < χ & τi > BN

For case B, f can be found through

1

4
=

((96χ− 48 f)m+ 48 f − 48χ) ri
4 + 128BN ri

3

384m

+
48χ ry

4 − 24 ri
2χm− 48 f ry

4 − 128BN ry
3 + 3 f m

384m
. (3.52)

Also, the flux function is

q =
24 ri4χ ln (2ri)m+ 6 ( f − 2 fm− χ) ri

4 + 16BN
(
ri

3 − ry
3
)

+ 3 ri
2f m+ 6ry

4 (χ − f)

48m
.

(3.53)
The velocity profiles are

uL =
(f−χ)(ri2−ry2)

4m +
BN (ri−ry)

m + f
16 + ri

2χ
2 ln (2ri)− ri

2f
4 , 0 ≤ r ≤ ry

uL =
(f−χ)(ri2−r2)

4m + BN (ri−r)
m + f

16 + ri
2χ
2 ln (2ri)− ri

2f
4 , ry < r ≤ ri

uH = f
16 + ri2χ

2 ln (2r)− r2f
4 . ri < r ≤ 1

(3.54)

Figs. 3.17c and d show an example of the variation of the shear stress and the velocity profile,
versus r, respectively, for case B.
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Figure 3.17 – Model results: variation of the shear stress (top row) and velocity profiles
(bottom row) versus radius for periphery displacements with m = 1 and ri = 0.3: (a) Case A:
χ = 10 & BN = 2; (c) Case B: χ = 400 & BN = 10; (e) Case C: χ = 10 & BN = 10. In the
top row, the dashed lines mark ±BN for each case. In the bottom row, ri is marked by the
thick horizontal lines and ry is marked by arrows and horizontal dashed lines.

Case C: |τi| ≤ BN

Finally for case C, f is simply

f =
4 ri

4χ− ri2χ− 4

8 (16 ri4 − 1)
, (3.55)

while the flux function is

q =
ri

2

4

(
2 ri

2χ ln (2ri) +
f

4
− ri2f

)
(3.56)

and the velocity profiles are{
uL = f

16 + ri2χ
2 ln (2ri)− ri

2f
4 , 0 ≤ r ≤ ri

uH = f
16 + ri2χ

2 ln (2r)− r2f
4 . ri < r ≤ 1

(3.57)

Figs. 3.17e and f show an example of the variation of the shear stress and the velocity profile,
versus r, respectively, for case B.

Physical relevance of the model in our displacement flow context

Although the different cases for periphery displacements (i.e. cases A, B, and C) are possible
in theory, they are not all relevant to our experimental conditions. In fact, as we start our dis-
placements with an initially flat interface, for the displacing fluid to flow around the displaced
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Figure 3.18 – Model results for a physically relevant periphery displacement flow: interface
evolution obtained using the model corresponding to an experiment with n = 0.45, χ = 341,
BN = 253, m = 1504: displacement in a pipe with the dimensionless diameter of 1 and the
dimensionless length of L = 3, for t = 0, 0.05, ... 0.45, 0.5.

fluid, it may be intuitive that the displacement must be in the regime of case B (with a velocity
profile that is faster in the outer region). On the other hand, looking at the velocity profiles in
cases A and C shows that, with an initially flat interface, these profiles will not likely evolve to
become a physically relevant periphery displacement. Our solution of the interface evolution
equation for cases A and B also confirms this conclusion (the results are not shown for bre-
vity). In order to visualize how a periphery displacement may evolve in a realistic situation,
Fig. 3.18 illustrates a simulation result to be compared with a corresponding experiment. As
can be seen, a nearly flat interface (i.e. in fact slightly concave for numerical solution reasons)
develops to remove the yield stress fluid through the outer layer.

Within the periphery model developed so far, on increasing χ, the flow transitions between
regimes A, C and finally into B. Therefore, we expect to find the regime of case B at relatively
larger values of χ. In order to analyse how the flow transitions into the regime of case B,
we may look into the variation of ∂q/∂ri (which is proportional to the interface speed), as
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Figure 3.19 – Variation of ∂q/∂ri for BN = 100 and m = 1 with χ = 200 (line), 400 (dashed
line), 600 (dash-dot line) and 800 (dotted line).

depicted for example in Fig. 3.19 for a given parameter set. As can be seen, by increasing χ
values, ∂q/∂ri (which initially has positive values only) gradually curves further and starts to
have negative values. Based on this observation, we can define a critical buoyancy number,
χc,periphery, as the minimum value of χ for which ∂q/∂ri = 0 for an interface in the range of
(0, 1/2), or more formally the value of χ for which the following holds:

∃! ri ∈
(

0,
1

2

)
:
∂q

∂ri
= 0. (3.58)

Fig. 3.20a plots the contour line of ∂q/∂ri = 0 in the plane of χ and ri, for two parameter
sets. The minimum values of χ (i.e. χc,periphery) are marked by red circles and dotted lines.
Increasing BN results in increasing χc,periphery. Fig. 3.20b shows the variation of χc,periphery

versus m for different BN : by increasing BN , χc,periphery gradually increases but at very large
BN it reaches a constant value of ∼ 367, independent of both BN and m. For χ ≥ χc,periphery,
the flow may be expected to present a physically acceptable periphery displacement.

It is now insightful to compare the model results in terms of the existence of periphery
displacements (i.e. entering the regime of case B as a physically acceptable solution) with
our experimental results. This can be done through using the critical buoyancy number of
χc,periphery = 2RN

Fr2

∣∣∣
c

= 367, as a rough estimate. Fig. 3.21 plots our experimental datapoints

in the plane of ReN/Fr and Fr. The line represents ReN/Fr2 = 367/2 = 183.5, from the
model. It seems that the model prediction is more or less acceptable in terms of separating
the central and periphery displacement flows.
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Figure 3.20 – (a) Variation of the contour of ∂q/∂ri = 0 in the plane of χ and ri for two cases:
BN = 0 & m = 0.1 (solid line) and BN = 20 & m = 10 (dashed line). The minimum values of
χ are marked by the red circles and horizontal dotted lines, corresponding to χc,periphery ≈ 91
and ≈ 367. (b) Variation of the critical (i.e. the minimum) values of the buoyancy number,
χc,periphery, versus the viscosity ratio, m, for BN = 0 (solid line), BN = 5 (�), BN = 10
(◦), BN = 15 (4), BN = 20 (�), BN = 50 (O), BN = 1000 (F). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Figure 3.21 – Regime classification in the plane of ReN/Fr and Fr: central (◦) and periphery
(�) displacements. The oblique line represents ReN/Fr2 = 183.5
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3.6 Computational fluid dynamics (CFD) simulations

In order to complete our experimental and analytical methods in providing an understanding
about our complex flows, here we present our findings from CFD simulations for a specific range
of the flow parameters similar to an experimental set. Our computational study is performed
in a vertical 2D channel (i.e. the ẑŷ-plane in Fig. 3.1). Therefore, the dimensionless groups for
simulations are based on the channel thickness instead of the pipe diameter. We rely on the
governing equations presented in detail in § 3.2, at the limit of Pe → ∞ (implying that the
numerical diffusion dominates). No slip boundary conditions are satisfied at the walls. The
aspect ratio of the channel (length to width) is 100, comparable to our experiments. The heavy
fluid enters the domain with a fully developed velocity profile (plane Poiseuille profile) at the
inlet (x = −L/5) and the outflow boundary conditions are applied at the outlet (x = 4L/5).
The equations of motion are discretized using a mixed finite element-finite volume method,
employing the classical augmented Lagrangian method (143). The computational algorithm is
implemented in C++ and solved using an open source platform, called PELICANS. More
details on the computational approach and employing the PELICANS platform for CFD
simulations of yield stress flows can be found in (30; 86; 144). In our simulations, 63,000
mesh cells (1500× 42) are used, while the meshes (regular rectangular) in the y-direction are
refined slightly towards the channel walls. The initial interface between two fluids is separated
by an imaginary gate valve located at x = 0, to mimic the experiments. For brevity, we refer
to (67) for more details about the mesh density and benchmarking of the computational code.

Fig. 3.22 depicts CFD simulation results (concentration colourmaps and velocities) with simi-
lar flow parameters as in the experimental set illustrated at the bottom row of Fig. 3.3 (for
simplicity of the comparison between the experimental and simulation results, the experimen-
tal images of the bottom row of Fig. 3.3 are replotted in Fig. 3.22d). Fig. 3.22a shows the
transparent heavy fluid displacing the dark light fluid downward, for which the CFD results
appear to be in reasonable agreement with experimental ones in terms of the overall flow
behaviours. Similar to our experiments, at small yield stress values, unstable displacements
with strong mixing between the two fluids are visualized. As the yield stress increases, the
mixing decreases. At intermediate yield stress values, non-uniform, asymmetric static residual
wall layers of the yield stress fluid are formed. This is a particularly fascinating observation
since we find that our CFD simulations in a simple 2D channel are still able to predict these
exotic static residual layer features. Finally, at even larger yield stress values, the flow is fully
stable and static residual layers are smooth, in good agreement with the experimental obser-
vations. Fig. 3.22b shows the corresponding speed contours (

√
v2 + u2) for the concentration

colourmaps presented in Fig. 3.22a, where u and v are the stream-wise and depth-wise velo-
city components, respectively. As seen, at small yield stresses, the velocity field is far from
both a Poiseuille-like flow and a plug-type flow, while the high speed regions are towards the
channel centre with oscillations due to mixing. These oscillations decrease by increasing the
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Figure 3.22 – CFD results approximately corresponding to the experimental results in the
bottom row of Fig. 3.3. (a) Concentration colourmaps. (b) Speed contours:

√
v2 + u2. In (a) &

(b), from left to right the Newtonian Bingham number increases from BN = 0 to BN = 5200.
The domain size in the CFD results shown is 1 × 80, starting from the imaginary gate valve
position at z = 0. (c) Velocity vectors. (d) The same experimental snapshot images depicted
in the bottom row of Fig. 3.3. The image is zoomed-in on the indicated boxes of subfigure
(a) & (b). The red arrows mark the thickness of static residual layers which appear at these
conditions. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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yield stress value and the flow profile resemble a typical plug flow of a Bingham fluid. At these
conditions, the speed contours are zero within the yield stress fluid adjacent to the channel
walls, showing residual layers that are completely static. Fig. 3.22c plots the velocity vector
field for the simulation at the largest yield stress value, confirming the existence of comple-
tely static displaced fluid residual layers adjacent to the channel walls, wherein the velocity is
completely zero. Moreover, it can be seen that there exist frontal inertial effects (which were
ignored in the analytical model), which are responsible for breaking into the yield stress fluid,
and the flow behind the front is nearly laminar. Finally, the static layer thickness from CFD
simulations is interestingly in an acceptable agreement with their corresponding experimental
results.

3.7 Conclusions

We investigated fluid displacement flows in a long vertical pipe, experimentally, analytically
and computationally. The displaced fluid was a yield stress fluid while the displacing fluid
was a Newtonian fluid. The fluids were miscible (at the limit of large Pe) and had a different
density (at the limit of the Boussinesq approximation). The main dimensionless numbers that
controlled the flow were the Newtonian Bingham number (BN ), the Newtonian Reynolds
number (ReN ), the Froude number (Fr), the viscosity ratio (m), or the combination of these
parameters which appeared as an effective Reynolds number (Re∗N = ReN

m+BN
), a buoyancy

number (χ = 2ReN/Fr
2) or the ratio between the Newtonian Reynolds number and the

Froude number (ReN/Fr).

It is found that the yield stress and buoyancy forces strongly affect the displacement flow
behaviours. By increasing BN , the main flow regime changes from a moving to a stationary
residual wall layer regime, with the critical transition occurring at BN ≈ 100. For moving
residual layers (BN < 100), nearly-stable and unstable flow sub-regimes are observed, for
which the critical transition occurs at χ ≈ 120, above which buoyancy starts to dominate
the flow. For static residual layer flows (BN & 100), smooth, wavy and corrugated residual
layers are observed, for which the critical transitions can be described in the plane of Re∗N
and ReN/Fr.

A semi-analytical lubrication model was developed and succeeded in predicting some of the flow
behaviours. Most importantly, the front velocity of the heavy fluid into the light fluid cannot
be predicted by the lubrication model. On the other hand, the transition between stationary
and moving residual layers can be well predicted by the model wherein the interface surface
roughness is included. A secondary flow feature, i.e. the appearance of central and periphery
displacement (near the front) can be well predicted by the lubrication model.

Finally, CFD computations in a simpler 2D geometry reveal that some of the key flow pat-
terns, including non-uniform as well as smooth static residual layers, may be predicted using
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high quality CFD simulations in simpler geometries. Therefore, this suggests that CFD com-
putations may be used in future to provide further understanding about our complex fluid
flows.
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General conclusions and future
perspectives

The main goal of this Ph.D. thesis is to understand displacement flows of Newtonian and non-
Newtonian fluids in stationary or moving confined pipes. In this chapter the main contributions
and scientific conclusions of this thesis are summarized and potential directions for future
research are identified.

We categorize the main findings of this thesis into two groups:
• Buoyant miscible displacement flows of iso-viscous Newtonian fluids in the stationary vertical
pipe or periodically moving pipe.
• Buoyant miscible displacement flows of the yield stress fluid in the stationary vertical pipe.

One part of the results reported in this work is based on the iso-viscous Newtonian fluid dis-
placements. The density unstable configuration is studied in this research. For both stationary
and moving geometries the approach is experimental.

It was observed that for the displacement flow in the stationary geometry at the small Atwood
number and V̂0 = 0, some instabilities occur between the finger of the displacing fluid and the
surrounding displaced fluid. However, these helical instabilities are not strong to be able to mix
the fluids. The helical instabilities are faded after a few pipe diameters. The flow at long times
displays a stable counter-current flow. By adding the mean imposed flow velocity to the system,
the flow behaviour significantly changes. First, there is a transition from counter-current to
stable flow. Second, the initial interfacial waves and inertial tip decrease by increasing the
mean imposed flow velocity. At higher Atwood numbers, e.g. At = 10−3, we clearly observed
the stabilizing effect of the mean imposed flow. The overall mixing seems to decrease as the
mean imposed flow velocity increases. At a critical mean imposed flow velocity, we observed
that the flow is completely stabilized. It is obvious that at the larger Atwood number, the
buoyancy force is stronger and consequently the critical mean imposed flow velocity increases
to stabilize the flow.

In addition, it was found that for the displacement flow in the stationary geometry the problem
analysis can be reduced to two dimensionless numbers, i.e. Ret and Fr for a wide range of
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experiments. Two main flow regimes were identified as stable and unstable displacement flows.
The transition between these two regimes is quantified by Ret|Critical as a function of Fr. For
the stable displacement flows Ret|Critical < 79+Fr+2Fr2; otherwise, the regime is unstable. It
shows that increasing V̂0 stabilizes the displacement flow for certain ranges of the dimensionless
groups.

Moreover, we observed that when the flow is stable, the displacement flow regime is divided
into sustained-back-flows and no-sustained-back-flows. In the latter, the buoyancy is not strong
to induce a sustained movement of the displaced fluid above the gate valve. In the former,
due to a higher ratio of buoyancy to viscous stresses, the displaced fluid continuously moves
upward above the gate valve. The transition between these two regimes occurs at the critical
buoyancy number χs ≈ 230, well predicted by the lubrication model. For the stable flow
regime, the lubrication model delivered the front velocity at longer times V Lub

f , when the
viscous force dominates the inertial force in balancing buoyancy. Using V Lub

f and a velocity
scale formulation for the initial inertial acceleration, a predictive model for Vf (t) provides a
reasonable agreement with the experimental data.

Another important contribution of this thesis is addressing the issue of the displacement flow
in the moving pipe. Many observations are made. First of all, in the moving and stationary
geometries when V̂0 > 0, the displacing fluid finger seems to progress in the displaced fluid.
While in the stationary case, the interface between two fluids is clean and sharp, in the
moving case, the interface, especially at the front tip, is not sharp. We named this regime as
stable-diffusive regime. Second, at V̂0 = 0, for the moving pipe the displacing fluid does not
significantly penetrate into the displaced fluid, while in the stationary pipe the helical waves
appear at the interface between fluids and they eventually disappear.

Another interesting phenomenon is that in the stationary pipe, the heavy fluid advances in the
middle of the pipe. Consequently, the front interface is perpendicular to the pipe longitudinal
axis. But for the moving case, the pipe inclination varies over the range of −15 (◦) < β <

15 (◦). Therefore, a local segregation between two fluids is observed perhaps due to transverse
buoyancy forces. So, the front interface is not always perpendicular to the pipe longitudinal
axis. This phenomenon owes to the Boycott effect that causes the displacing fluid to be locally
separated from the displaced fluid so that the sedimentation velocity increases.

Moreover, we found that pipe movement caused the appearance of the stable-diffusive regime,
in which the fluids slightly mix not due to the buoyancy but primarily due to the pipe move-
ment. Therefore, this phenomenon is considered at small At while the pipe motion dominates.
The flow regime map indicates that these flows are observed at Re/Fr2 < 35 and Re/Ro > 70.
A stable flow regime is observed at Re/Fr2 < 35 and Re/Ro < 70. We observed an unstable-
diffusive flow regime at Re/Fr2 > 35 for all ranges of frequencies tested. In addition, we have
found that V̂f and D̂M quickly increase with time to attain their final nearly-steady values.
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Comparing with the stationary pipe, when the pipe moves periodically and the fluids have
smaller density differences, V̂f decreases while the opposite effect is observed at larger density
differences. Investigating D̂M at large At shows that D̂M is larger for displacement flows in
the moving pipe.

Finally, we experimentally studied the yield stress displacement flow in the stationary pipe.
First of all, we observed two main flow regimes: the moving residual layer regime and the
stationary residual layer regime. The transition between these regimes is a function of BN
number. The flow regime map shows that the critical Newtonian Bingham number is BN =

100. Each regime is divided into different sub-regimes. However, BN is not solely able to
classify all sub-regimes and there are other important forces that can affect displacement
flow behaviours e.g. Newtonian Reynolds number and the densimetric Froude number. Using
the combination of these dimensionless numbers, we found that in the moving residual layer,
the unstable and nearly- stable sub-regimes exist, for which the critical transition occurs at
χ ≈ 120, where the buoyancy is the dominant force. For static residual layer flows, we observed
smooth, wavy and corrugated residual layers, for which the critical transitions can be explained
in the plane of Re∗N and ReN/Fr. In addition, we could predict some of the flow patterns
analytically e.g. the transition between stationary and moving residual layers. However, the
model fails to predict some other patterns e.g. the front velocity. Moreover, computational
fluid dynamics simulations in a 2D geometry can reproduce some of the key flow patterns.

Limitations of the present thesis

In the current thesis, many features of displacement flows have been investigated. However,
due to limitations, we have not been able to have a comprehensive study in many respects.
Although a number of advances have been made in our study, we must also acknowledge some
limitations of our experimental and computational investigations. The experimental limita-
tions are the cost, the time of each experiment, fluid properties, the length and the diameter
of the pipe. Some of these limitations are explained below:

• First, in the present thesis, we use a single pipe diameter 9.6 (mm). The main dimensionless
numbers in our research are ReN , Fr, and BN . The combination of these dimensionless num-
bers enables us to classify different regimes. By changing the mean imposed flow velocity, all
of these numbers change linearly. Therefore, an independent assessment of these parameters
is vague. If we could vary the pipe diameter, the Fr increases by decreasing D̂ (Fr ≈ 1/

√
D̂)

whereas ReN and BN decrease by decreasing D̂. Thus, it is an easier assessment of the in-
dividual effects of the main dimensionless numbers. Therefore, a better understanding of the
physical mechanisms of various flow regimes requires running experiments at different pipe
diameters.
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• Second, in this research, the short time behaviour of flows has not been investigated. In
other words, the behaviour of flows right after opening the gate valve has not been studied
when the pressure gradient is imposed to the system. Strong inertial effects and accelerations
in different directions are two characteristics of this stage which led to a partial local mixing
at early times. It is obvious that the partial local mixing affects the local density contrast and
it may impact the dynamics of flows. To quantify how the dynamics of flows at this stage af-
fects the long time behaviours, understanding of the short time behaviour of flows is important.

• The third limitation is related to the working fluids. Preparation of water-based solutions
may coincide with dissolving air into the solutions. The degassing processes of water-based
solutions have not been performed in our experiments. Degassing of the solutions with a va-
cuum pump in a sealed tank helps to reduce associated effects of bubbles in solutions. The
existence of bubbles in the fluids affects the viscosity of fluids and the rheological properties.
Consequently, it can change the displacement flow behaviours and related results.

• Another limitation is that when the degree of transverse mixing is relatively high, we know
that the diffusive spreading along the pipe is important. To better observe these flows we need
to increase the length of the pipe (our current pipe length is 2.02 (m)). This helps us to better
analyse the long time mixing behaviour and measure the macroscopic diffusion coefficient with
higher accuracy.

• Finally, in terms of computational investigation in Chapter 3, our study was performed
in a 2D vertical plane channel in which the dimensionless groups for simulations are defined
based on the channel width instead of the pipe diameter. To better understanding the flow
behaviour, the simulations can be performed in a 3D vertical pipe. However, the drastic com-
putational cost of simulations with high mesh densities limited us to conduct such simulations
in a 3D frame.

Future work recommendations

The main motivation of studying the displacement flow in the present study comes from the
primary cementing process. The main objective is predicting the displacement efficiency of
one fluid by another one with different properties when the fluids flow downward. To date,
although many aspects of displacement flows have been well understood, there are still many
issues to be understood and to be analysed. Therefore, the current thesis may suggest a num-
ber of paths for future research.

• Newtonian density stable/unstable displacement flows in the presence of different pipe
motions: First of all, due to the simple form of the interface, the density stable displacement
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flow has the least challenging behaviour to analyse. In addition, compared to the unstable
displacement flow, the majority of data published in the literature concerns the unstable dis-
placement flow. Therefore, it would be interesting to investigate the stable displacement flow
in any direction, especially by adding the effect of different geometry motions. Second, in the
case of the unstable displacement flow, there is also a large gap in the literature when the
geometry is moving. In a more particular case, the stable-diffusive regime indicates very inter-
esting fingering features when the geometry slowly oscillates like an inverted pendulum, which
can be further studied experimentally or numerically. In addition, there are many geometry
motions (e.g. rotation, reciprocation) that can be of great importance for industrial applica-
tions and can be applied and investigated in depth.

• Shear-thinning, yield stress, elastic and viscoelastic effects on stable/unstable displacement
flows in stationary and moving geometries: A large part of fluids pumped into the oil and
gas wells during the primary cementing process have yield stress, shear-thinning, elastic and
viscoelastic behaviours. Although we investigated the yield stress effects of displacement flows
in a vertical stationary pipe, there is still a need for experimental, analytical and numerical
investigations of the shear-thinning, the yield stress, elastic and viscoelastic effects on the
displacement flow, especially in moving geometries.

• Laser Induced Florescence (LIF), Particle Image Velocimetry (PIV), and Ultrasound Dop-
pler Velocimetry (UDV) techniques: In this thesis, to increase the quality of the images, the
back-lit technique was applied. Bulk properties of displacement flows were described using an
image processing method. A wide range of detailed data showed that the physics of flows could
be measured using this type of experiments. To investigate more precisely the concentration
field with a higher resolution, we advise using the LIF technique. In addition, the velocity field
data and the local velocity can also be studied with a high resolution using the PIV and UDV
techniques.
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Annexe A

Lubrication model for 3-layer flow in
plane channel geometry

In the main text of the paper, we considered the vertical pipe geometry, which was well suited to
the experiment. For the purpose of comparison, we now turn to a 2D symmetric plane channel
geometry in order to quantify the conditions of the stationary layer state, and to compare it
with our pipe geometry calculations. The channel has height D̂ and it is completely vertical,
similar to the pipe. Similarly, a lighter fluid is displaced by a heavy fluid in the downwards
direction. Analogous to our pipe geometry, and using Cartesian coordinates, the lubrication
approach leads to a dimensionless evolution equation for the interface height, y = h(Z, T ):

∂h

∂T
+
∂q

∂Z
= 0, (A.1)

for which we find:

q =

(
−2

3
h6h4 − 2

3
h3 +

1

8
h2

)
χ+

3

2
h− 2h3. (A.2)

It is now straight forward to calculate the critical value of χ and h for which the entire flux
passes through the heavy layer while the interface speed is exactly equal to zero. We find that
for vertical symmetric plane channel geometry, the interface height of hs ≈ 0.33 is stationary
at χs ≈ 118.
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Annexe B

Concentration function coefficients

The functions in equation (2.5) can be analytically calculated as follows:

f0 = 1, (B.1)

f1 =
1

480

(
240y2 ln

(√
(1− 4y2) + 1

)
+ 120

√
(1− 4y2)− 240y2 ln

(
1−

√
(1− 4y2)

))
√

(1− 4y2)
,

(B.2)

f2 =
1

480

(
40
√

(1− 4y2) + 320y2
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)

√
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, (B.3)
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, (B.4)
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