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Résumé 

Dans la littérature, les réseaux de Bragg intégrés sur silicium sont relativement simples par 

rapport à leurs contreparties fibrées. Cependant, la fabrication de réseaux plus élaborés 

permettrait d’améliorer la capacité de traitement du signal des circuits sur silicium. Cette thèse 

s’attarde donc aux difficultés encourues lors de la conception, de la fabrication et de la 

caractérisation de réseaux de Bragg sur silicium ayant une réponse spectrale élaborée. 

Tout d'abord, afin de caractériser la réponse spectrale complexe des réseaux, l’utilisation de 

filtrage temporel est proposée afin de supprimer les réflexions parasites. Cela a permis d’utiliser 

des algorithmes de reconstruction fournissant une caractérisation complète de ces structures. De 

plus, l’ajout d’un filtrage des hautes fréquences spatiales a permis de réduire considérablement le 

bruit des mesures. 

Par la suite, les principales sources de distorsions de la réponse spectrale des réseaux ont été 

identifiées, soit la rugosité des guides et la variation de leur épaisseur. L’impact de ces 

phénomènes a été étudié numériquement et analytiquement et, pour la première fois, la longueur 

de corrélation de ces sources de bruit a été caractérisée expérimentalement sur une longueur 

suffisante. Finalement, deux techniques permettant de diminuer l’impact de ces phénomènes ont 

été proposées, ce qui a permis de fabriquer les réseaux de Bragg sur silicium ayant la plus petite 

largeur de bande publiée à ce jour. 

Également, nous avons fait les premières démonstrations d’apodisation de réseaux de Bragg 

utilisant uniquement la phase de ces derniers (c.-à-d. apodisation en phase et par superposition). 

Contrairement aux techniques déjà proposées, ces dernières ont l'avantage de ne pas introduire de 

distorsions de l'indice effectif, ils sont plus robuste aux erreurs de fabrication et sont compatibles 

avec l’apodisation de réseaux à corrugations de très petites amplitudes. 

Finalement, afin d'augmenter la longueur des réseaux tout en gardant leur dimension 

compatible avec la taille des puces de silicium, les réseaux ont été courbés en forme de spirale 

compacte. Pour ce faire, la période des réseaux a été modifiée afin de compenser l'effet de la 

courbure sur l'indice effectif. Ainsi, nous avons démontré que des réseaux de 2 mm de long 
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pouvaient être intégrés sur une surface de 200 µm x 190 µm sans ajout de dégradation spectrale 

et, surtout, sans restriction sur la structure du design.  

Ces résultats sont significatifs, car un contrôle précis de la phase et de l’amplitude des réseaux 

combinés avec la capacité de fabriquer de réseaux longs sont nécessaire afin de réaliser des filtres 

optiques intégrés avec des réponses spectrales élaborées. Ainsi, le travail présenté dans cette 

thèse ouvre la porte à de nouveaux designs à base de réseaux de Bragg.  
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Abstract 

In the literature, integrated Bragg gratings in Silicon-on-Insulator are relatively simple compared 

to their fibre Bragg grating counterpart. However, elaborate gratings could improve the signal 

processing capability of the silicon platform. Thus, this thesis addresses the issues that prevent 

the design, the fabrication and the characterization of Bragg gratings having elaborate spectral 

response in the silicon platform. 

Firstly, in order to precisely characterize Bragg gratings complex spectral response, we 

proposed to suppress parasitic reflections using temporal filtering. The results obtained with 

measurement technique, when used with an integral layer peeling algorithm, allowed us to 

retrieve the amplitude and phase profiles of the grating thus providing a complete 

characterization of the structure. Moreover, the addition of a low-pass spatial filter allowed 

improving the characterization process by reducing the measurement noise. 

Secondly, the main sources of distortion of Bragg gratings spectral response have been 

identified to be the sidewall roughness and the wafer height fluctuation. An exhaustive study of 

the impact of these phenomena has been done both numerically and analytically. Furthermore, for 

the first time, the autocorrelation of these noise sources has been characterized experimentally on 

a sufficient length. Finally, improvements in the waveguide designs have reduced significantly 

these effects which allowed the fabrication of Bragg gratings in silicon with the smallest 

bandwidth published to date. 

Thirdly, the first demonstration of apodized Bragg gratings using only phase modulation of the 

structure has been done (i.e. phase apodisation and superposition apodisation). Unlike already 

published techniques, the later ones have the advantage to be robust to deep-UV lithography and 

fabrication errors. Furthermore, they do no introduce distortions into the grating phase profile and 

they are compatible with gratings having small recesses.  

Finally, in order to increase the grating length while keeping their dimension compatible with 

the silicon chip size, we proposed to bend them in a compact spiral shape. To do this properly, 

the curvature impact on the effective index has been modeled and compensated successfully by 

modifying the grating period. Thus, we have shown that 2 mm long gratings can be integrated on 
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a surface of 200 µm x 190 µm without the addition of spectral degradation and without 

restrictions on the design structure. 

These results are of importance because longer grating structures with weaker coupling 

coefficients and a precise control both on its phase and amplitude are required in order to achieve 

integrated optical filters with elaborate spectral responses. Thus, we believe that the work 

presented in this thesis open the door to many new grating-based optical filter designs compatible 

with integrated optics technologies. 
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Symbol Definition 
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Chapter 5: Integrated Bragg Gratings in Spiral Waveguides 

Symbol Definition 

S Spiral path in the complex domain 
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Introduction 

Photonic integrated circuits (PIC) allow an optical system to be made more compact compared to 

its discrete free-space version. These devices have better mechanical vibration immunity and they 

have the advantage to be automatically aligned through a very precise fabrication process which 

eliminates the feedback loop often necessary to maintain a good alignment in free space optical 

circuits. However, the most promising advantage is the potential to achieve mass-production at a 

very low cost. Hopefully, the integration of optical components will follow a similar path as 

electronics, where the integration allowed transistor-based electronics to evolve into circuits with 

ever growing complexity and capability. PIC has many potential applications, such as imagery, 

spectroscopy systems, sensors and “lab-on-chip” for medical diagnostics, optical logic circuits 

and so on [1].  However, the focus applications of this thesis are optical communication systems 

for which key components are required, such as light sources, wavelength division multiplexing 

(WDM) multiplexers/demultiplexers, modulators, amplifiers and photodetectors. In current fiber 

optic telecommunication systems, such devices are used as discrete components, but significant 

benefits could come with monolithic integration. 

Unlike electronic integrated circuits, where silicon is the dominant material and the transistor 

is the dominant device, integrated photonics circuits require a large variety of devices as 

mentioned above, which have been independently optimized on different substrates due to their 

respective properties. For example, the lithium niobate crystal is well known for its good electro-

optical property that makes them exceptional modulators. Silica-on-silicon exhibits very low 

propagation loss and has a very low temperature sensitivity, which makes it interesting for 

passive devices such as arrayed-waveguide gratings (AWG) frequently used as optical 

multiplexers/demultiplexers in WDM systems. Semiconductor materials, such has GaAs and InP 

based devices, can amplify optical waves which also allows the fabrication of laser sources and 

amplifiers. Finally, photo-detectors with high sensitivity, fast response, low noise, low cost, and 

high reliability are usually fabricate in InGaAs or germanium for operation in the 

telecommunication band. The fact that all these components are fabricated in such many different 

materials makes challenging the monolithic integration of PIC.  
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Silicon is also an interesting material for PIC since the crystal quality is very good, which 

results in a negligible amount of absorption loss and its native oxide can be used as a good 

waveguide cladding. Silicon-on-insulator (SOI) wafers fabricated with the SMARTCUT 

technology [2] are of great quality and the high index contrast between the crystal 

( (@1550 nm) 3.41)n =  and its native oxide ( (@1550 nm) 1.444)n =   allows the guided optical 

wave to be extremely confined. This fact results in the possibility to achieve bends with small 

radius of curvature (~ 5 µm) without significant losses, thus creating extremely compact circuits. 

Furthermore, since silicon is the dominant material for electronic, the use of this material could 

enable co-integration of photonics with transistor based electronics which are fabricated with the 

complementary metal–oxide–semiconductor (CMOS) technology. This high volume and low-

cost production technique opens a wide range of applications for PIC since their fabrication 

follows similar step than that used in CMOS circuits which involves deep ultra-violet (DUV) 

photolithography to imprint the designed pattern on the photoresist, etching to transfer the pattern 

on the silicon layer, and material deposition/epitaxy to fabricate multilayered structures. The 

photonic community has only recently started to exploit the vast experience in the fabrication 

processes and the mature platform developed in the last decades by the electronic community.  

Even though silicon is not the best material for modulating and emitting light, tremendous 

work has already been made in both these domains to enable this platform to offer a complete set 

of components. Many optical modulator designs have been proposed in the last decades [3]–[6]. 

Some Mach-Zehnder modulators with travelling wave electrodes achieved data rate up to 26 Gb/s 

with a very low RF energy consumption of 146 fJ/bit [6]. 50 Gb/s bit rate has already been 

achieved [4] and even higher bit rates have been obtained with advanced modulation format [7]. 

More compact modulators than traveling wave Mach-Zehnder can be obtained with microring or 

microdisk resonators [8]–[11]. However, such modulators have narrow optical bandwidth. Up to 

40 Gb/s data rate has been obtained using such structures [12]. As for optical sources, even 

though silicon has an indirect bandgap, some schemes have been proposed to integrate light 

sources in a CMOS compatible environment [13]. For example, the bonding of unpatterned III–V 

active semiconductors layers on an SOI wafer can provide the gain required for laser emissions. 

It is possible to use either ultra-thin bonding layer and to consider the active section as an hybrid 

waveguide [14], [15] or to use a mode converter that couples the light in the III-V section and 
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provide gain to the optical wave [16]. There is also the possibility to grow germanium on the 

silicon layer. Although this material also has an indirect bandgap, it can be stress-engineered to 

achieve light emission [17]. Finally, there is always the possibility to use external light sources 

with the advantage that a significant heat source is off-chip but with the drawback of reduced 

integration capability and increased difficulty for high volume production. Despite these 

difficulties, recent work have demonstrated the feasibility to fabricate the building blocks 

required for optical communications [18], [19] in SOI. 

The choice between optical and electrical transmissions for communication systems is made 

based on a number of trade-offs [20]. Typically, optical communication systems are chosen over 

copper based transmission lines when a high bandwidth is required and when the system spans 

over long distances; i.e. when the bit-rate distance product is high, optical communications 

becomes a viable and, potentially, a better solution compared to electrical communications. As a 

result, fiber optic communications has initially been introduced in long-haul systems and metro-

area networks. However, nowadays, in the telecommunication era, with ever increasing data 

traffic, the bit-rate distance product is very high even for shorter links. Fiber optic 

communications are now well established in local area networks. 

Optical communications keep invading communication systems with shorter and shorter links. 

Recently, a significant portion of the computing and the data storage has moved from personal 

computers to data-centers (DC) which makes them a key infrastructure. This is due to the 

increasing popularity of cloud computing. While a significant part of the traffic is between these 

DCs and individual users, a much bigger portion of the traffic occurs within each DC [21]. The 

rapid increase in the required bit rate makes this application very appealing for photonic 

technology innovations targeting energy-efficient and high-speed devices. To further scale the 

density and reach higher data rates, PICs using WDM is a well-considered approach [21]. 

If we consider even smaller communication distance, it is well known that transistor 

performances significantly improves when their size is reduced, but this does not apply to the 

interconnections between them because copper wires generate an unacceptable amount of heat 

and induce significant losses when their cross-section dimension is reduced and when their length 

is increased. These properties make copper wires unsuitable for the next interconnect generation 
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[22]. Optical communications may solve the power and bandwidth problems of electronics [23]. 

Optical solutions have been proposed for inter-chip interconnects as well as for intra-chip 

interconnects, both for signal and clock distribution [20]. Obviously, intra-chip optical 

interconnects are not expected to replace copper-based interconnects, but could be beneficial for 

long interconnects in upper metal layers. Similarly, for inter-chip interconnects, the idea is to 

increase the bandwidth or decrease the power per bit for the data transferred over the long 

interconnects between chips. In both case, the focus is made on designs that take advantage of the 

unique properties of optical architectures, such as WDM networks.  

Thus, there is a strong motivation to work on the monolithic integration of components 

already used in fiber optic telecommunications since, on one side, WDM communication systems 

appear to be a credible solution both for DC [21] and chip-to-chip communications [19], [22] as 

it was for fiber optic telecommunications decades ago and, on the other side, such devices could 

also be beneficial to already existing fiber optic telecommunications links. Specifically, power 

efficient laser sources, modulators, photodetectors and switches are required as well as precise 

filtering devices. The latter ones are usually obtained using multimode interferometers (MMI), 

AWGs, Mach-Zehnder interferometers (MZI), micro-rings or integrated Bragg grating (IBG) 

filters and this thesis focuses on the last type of filters. 

Micro-ring resonator based devices are compact components capable of performing many 

functions required in an optical communication network. However, their periodic spectral 

response limits the amount of WDM channels that can be supported. Furthermore, their narrow 

Lorenztian spectral response distorts and attenuates optical signals and decreases the performance 

of high data rate systems. Finally, their resonant wavelengths are very sensitive to fabrication 

errors or process variations, which make them almost impossible to predict precisely. As a result, 

thermal tuning is frequently used to adjust the ring resonances, which requires a significant part 

of the power budget. MZI and generalized MZI interferometer are also very important for the 

silicon photonic platform, however, as micro-ring resonators, their periodic spectral response 

might be problematic for complex filtering devices. MZI are however a key building blocks for 

high-speed modulators. Finally, although MMIs and AWG are important for the fabrication of 

PICs, their filtering capabilities are restricted and they are mostly used for power splitters and 

WDM multiplexers respectively. 
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In comparison, Bragg gratings are exceptional filter. They are a key component in the field of 

semiconductor lasers, but with a proper phase and amplitude design, they can also provide 

tailored spectral response which can be used in a wide variety of applications. For example, 

Bragg gratings can be used as pulse shapers [24], as temporal differentiator and integrator [25], as 

phase engineering devices or multichannel dispersion compensation [26], [27], as wavelength 

stabiliser [28], as multi-wavelength lasers resonant cavity [29], as add/drop multiplexers [30] and 

so on [31]. As a result, the SOI platform could benefit from the integration of high-quality grating 

structures. However, a question remains: “can the progress made in the last twenty years for fiber 

Bragg gratings be transferred to the SOI platform?” Until now, IBG have been very simple, 

which limits their potential applications. At the start of this PhD work, five main issues could be 

identified as limiting or even preventing the fabrication of IBGs having elaborate spectral 

responses with a CMOS compatible process:  

1) There was a lack of reliable procedure to fully characterize IBGs in reflection. Spectral 

distortion were observed but the origin could not be identified 

2) Due to the high confinement of silicon waveguides, very small waveguide deformations 

create a high level of phase noise, which induces severe distortions in IBGs spectrum.  

3) There was a lack of reliable apodization technique compatible with small corrugations. 

4) The device length requirement for IBGs to design elaborate spectral response, which might 

go up to the cm-scale, was not compatible with most PIC device chip size;  

5) Magnetic materials are not compatible with CMOS processes, which results in a lack of 

isolator/circulator and prevent the use of IBGs in reflection in PICs.  

This thesis addressed the first four points while the fifth one has been solved in the meantime 

by other groups by using contra-directional Bragg grating couplers [32]–[34]. More specifically, 

this thesis is structured as follows:  

Chapter 1 provides the theoretical background on Bragg grating structures and presents the 

state-of-the-art in IBGs, mainly in silicon, but also in other materials if the notions are necessary 

in the context of this thesis. This chapter also presents techniques to simulate the grating 

spectrum; it introduces an algorithm that reconstructed IBGs structure from experimental 
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measurements and shows how to properly characterize IBGs in order to allow the use of such 

algorithm (issue #1). This experimental procedure is going to be used throughout this thesis.  

Chapter 2 and 3 discuss in detail the phase distortion sources affecting IBGs in SOI and their 

impact on the grating spectral response (issue #2). In chapter 2, a technique to emulate IBG 

spectral responses in the presence of an imperfect waveguide was proposed. This work is useful 

to determine the fabrication parameters required to guarantee a target fabrication yield. In order 

to save computation time, the analysis also shows that only the low frequency components of the 

noise are significant to the IBG spectral response. Finally, an analytic study of the impact of 

sidewall roughness for weak gratings having small variance is presented. This analysis gives a 

good understanding of the impact of sidewall roughness and grating parameters on the spectral 

response. In chapter 3, the wafer height fluctuation, another important source of spectral 

distortion for IBGs, was incorporated in the model elaborated in the previous chapter and was 

characterized experimentally. Furthermore, a new technique to characterize roughness of silicon-

on-insulator photonic waveguides is presented, thus providing the experimental parameters 

required in the model developed in chapter 2. Finally, two techniques were demonstrated to 

reduce IBG spectral distortions which allowed fabricating high quality IBGs. 

Chapter 4 presents two fabrication‐friendly apodization techniques that are compatible with 

deep UV lithography usually used in CMOS processes. The fabricated apodized gratings show 

very good agreement with the designed apodization profile. The proposed techniques are reliable 

even for weak index modulation amplitudes. 

Finally, chapter 5 addressed the problem of integrating long IBGs in a way compatible with 

typical PIC chip size (issue #4). Specifically, this chapter demonstrate the integration of Bragg 

gratings with mm-lengths in spiral waveguides having a footprint of 200 x 190 μm2 without 

degradation of their spectral response. The phase compensation technique that was used to 

overcome the distortion created by the waveguide curvature is presented. Furthermore, the 

integration capability has been increased by using interleaved spirals. Finally, it is shown that the 

spiral designs are compatible with the phase modulation apodisation technique presented in 

chapter 4. 
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Chapter 2 to 5 of this thesis are reproductions of published papers aside for some minor 

modifications such as symbol definitions made to improve the thesis uniformity, figure reshaping 

made for the reader convenience, the removal of the fabricated devices and the characterization 

procedure (which is done only once in section 1.2 and 1.7 respectively). Before the abstracts of 

each chapter, a short (unpublished) introduction of the paper is made in order to put it in the 

context of the work presented in this thesis and, whenever required, the last section contains 

(unpublished) results and discussion that were considered necessary for the completeness of the 

thesis.  
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Chapter 1: Bragg Gratings 

In this chapter, the Bragg grating structure is introduced. Section 1.1 is discussing the state of the 

art of IBGs in SOI. A discussion on the different approaches used to create Bragg reflection is 

done as well as their respective limitations in the context of designing long IBGs with elaborate 

spectral responses. Section 1.2 presents a short description of the IBGs that were fabricated for 

this thesis and points out the differences in their structures. Section 1.3 outlines the derivation of 

the coupled mode equations applied to Bragg gratings. Section 1.4 focuses on the spectral 

simulation of such structure. The discussion is limited to the transfer matrix formalism, the 

approach that has been used in this thesis, and to the weak grating approximation, which is used 

in chapter 2. The calculation of the spectrum is often referred to as a direct scattering problem. 

Inversely, section 1.5 presents the inverse scattering algorithm used throughout this thesis to 

reconstruct the grating structure from the measured IBG complex spectral response in reflection. 

Section 1.4 and 1.5 are not meant to be an exhaustive literature review on Bragg gratings 

modeling but only to provide the tools that have been used for the completion of the work 

presented here. In this thesis, many references are made to the fabrication of “elaborate gratings”. 

In section 1.6, this concept is discussed in detail. Finally, section 1.7 focuses on IBGs 

experimental characterisation. Due to the fact that these structures are embedded between 

reflective structures (grating couplers, cleaved fibers and/or cleaved facets) which interferes with 

the wave reflected form the IBGs, special care must be taken to retrieve the grating spectral 

response. This subsection is strongly inspired by reference [35] which was presented at the OSA 

topical meeting Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides in 2012. It 

fully describes the experimental procedure used throughout the thesis to characterize IBGs.  

1.1 – Integrated Bragg gratings 

A few techniques have been proposed to fabricate an integrated component having an effective 

index periodic perturbation. For a reader familiar with FBGs, a straightforward way to modulate 

the effective index is to modify the material. In a silicon waveguide, it is possible to dope the 

silicon layer to reduce the refractive index through a modification of the carrier density [36]. 

However, this approach is not common since the typical minimum feature size achievable with 

carrier implementation is much larger than the lithography/etching minimum features size. Even 
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though some researchers successfully achieved such grating structure [37], this approach is not 

accessible to most research group, including ours, since the photoresist with high resolution 

usually used in CMOS compatible foundries has a thickness too thin to be used as the 

implantation screen mask. As a result, in [37] they had to develop their own approach to decrease 

the minimal feature size of carrier implantation.  

IBGs are usually fabricated by perturbing the waveguide structure such as a modification of its 

height (top IBGs as shown in Fig. 1-a)) [38], its width (lateral IBGs as shown in Fig. 1-b)) [39] or 

by adding pillar structure on the waveguide sides (pillar IBGs as shown in Fig. 1-c)) [40].  

 
Fig. 1: Type of structural modification used to fabricate IBG : a) top IBG [38], b) lateral IBG [39], c) pillar IBG [40]. 

Top gratings are the least flexible of the three approaches. To fabricate such IBGs, a 

lithography/etching step must be used to define the waveguide and another one to define the 

grating, which increases the cost of the components, unless such fabrication step are already used 

for other components on the chip. Furthermore, this etching step depth is usually not flexible in 

CMOS compatible fabrication facilities. For example, the smallest etching depth of IMEC, a 

foundry optimized for the fabrication of photonic circuits, is fixed at 70 nm, which prevent an 

IBG designer to specify the grating coupling amplitude. As a result, such structure will not be 

used in this thesis.  

The two last approaches have the advantage to be defined by the same lithographic/etching 

step of the waveguide which allows the designers to control the grating coupling amplitude 

(through a variation of the recess or the pillar-waveguide distance). However, the high 

confinement of photonic wires in SOI results in a high amount of optical power at the waveguide 

sidewalls. The waveguide cross-section with dimensions providing singlemode operation is 

shown in Fig. 2-a). This phenomenon combined with the waveguide sidewall roughness (SWR), 

which results from the fabrication process and creates effective index variation as a function of 
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position, strongly distorts IBGs spectra. It creates a phase noise in the grating structure that is 

amplified if the mode intensity is strong near the waveguide walls. To reduce this effect, we 

suggested in [41], [42] (chapters 2 and 3) to use hybrid singlemode/multimode waveguides. 

These waveguides are composed of a multimode section which contains the grating, surrounded 

by two singlemode waveguides connected with adiabatic tapers that force the optical mode to be 

coupled in the fundamental mode of the multimode waveguide. The grating presented in this 

thesis are made with lateral corrugations (Fig. 1-b)) instead of pillars (Fig. 1-c)) since the 

coupling amplitude that could be obtained with the latter approach would be unreasonably small.  

 
Fig. 2: Typical singlemode a) photonic wire, b) ridge waveguide with a thin slab and c) ridge waveguide with a thick 

slab cross-section. 

Finally, it is also possible to fabricate IBGs in a ridge waveguide. This type of waveguide 

comes in two different configurations. The first one has micrometers waveguide thickness [38], 

[43]–[45] while the other one implements the same type of waveguide geometry but on sub-

micrometer thick silicon layer [46], [47]. A large portion of the silicon photonic community has 

oriented their efforts towards sub-micrometer silicon thickness (typically 220 nm) because of the 

high modal confinement of such structures. However, many relevant works have also been 

published with larger waveguides since these devices have better propagation and coupling loss 

performances. Compared to micrometer-size cross-sections, sub-micrometer can be bent with 

very tight radius of curvature which is necessary to the design of highly integrated circuits (and 

the work presented in chapter 5). Considering that the silicon layer thickness cannot be modified 

easily in a photonic circuit, waveguides having thickness of the order of micrometers have been 

discarded (and the work presented in this thesis is entirely done with waveguides having 

thickness of 220 nm). As for the sub-micrometer ridge waveguide, this category can be split into 

two categories. The first one, shown in Fig. 2-b), has a thin slab layer which is usually used in 

active devices to connect the waveguide to a PN junction. The second one, shown in Fig. 2-c), 

has a thick slab layer. This latter waveguide is quite interesting for passive IBGs since it provides 

coupling coefficient that is compatible to long structure and the phase-noise properties caused by 



12 

 

the SWR are certainly better than for singlemode photonic wires. However, it is not clear if this 

waveguide have better performances than the hybrid singlemode/multimode waveguide approach 

proposed in chapter 2 and 3 and this approach have been discarded due to the miss-alignment that 

can happen between the two lithographic steps required to fabricate such waveguides which 

could result in a reduced fabrication yield. Considering the long time required to achieve an 

experimental iteration loop (design, fabrication, characterization), which is roughly one year in a 

fabless research group, this possible source of error could have brought significant delay in the 

presentation of this work without bringing significant design improvement. Other research groups 

have used this approach [46], [47], but phase measurements were not available to accurately 

compare IBGs phase noise robustness. Anyhow, this type of waveguide is potentially a good one 

to explore in the future. 

As mentioned above, in order to design an IBG with a specific spectral response, it is 

necessary to have a complete control over the amplitude and phase of the effective index 

modulation. In order to control the grating coupling amplitude (i.e. the grating apodization), 

many approaches have already been proposed, such as a variation of the corrugation recess 

amplitude [39], [48] or of the duty cycle [49]. Those techniques modify the grating coupling 

amplitude, but at the expense of an effective index variation. As a result, the grating phase is 

modified which is problematic since it distorts the spectral response. The only approach that has 

been used to apodize IBGs without involving a systematic spectral distortion consist of varying 

the IBGs corrugation recess and the local waveguide width in order to obtain the desired 

amplitude and phase profiles [50], [51]. In principle, this approach is very flexible since it allows 

the fabrication of tailored grating structure. However, it is unclear if the desired waveguide width 

and corrugation recess profiles are going to be robust to fabrication errors such as exposure dose 

variation. As mentioned in [52] and shown in Fig. 3-a), the fabricated waveguide width (or line 

width) is varying as a function of exposure dose and as a function of etching condition and the 

optimal exposure dose is a function of the waveguide width. Furthermore, the effective index 

variation is not linear as a function of the waveguide width, as shown in Fig. 3-b). As a result, a 

bias in the average waveguide width will distort both the apodization profile and the average 

effective index profile. Thus, to be robust to fabrication uncertainty, an IBG should have a 

constant average waveguide width as well as constant corrugation recess amplitude. In this 

situation, a bias in the waveguide width only introduces a constant effective index shift and a bias 
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in the corrugation recess will only change the average grating coupling amplitude. For both 

profiles, no distortion is added to the grating structure. Chapter 4 is proposing two approaches to 

fabricate such apodized IBGs. As for the control of the phase, this problem is addressed in 

chapter 2 and 3. 

 
Fig. 3: a) Variation of the fabricated waveguides width (or line width) as a function of exposure dose [52] and the 

designed waveguide line width. b) Sensitivity of the effective index of the TE0 mode to photonic wire width at 1550 nm. 
The height of the wire is 220 nm. The gray region depicts the cutoff region [53]. 

Even if good quality, long and elaborate grating structure have not been used extensively yet 

in silicon due to the aforementioned issues, short and simple ones with strong reflectivity have 

already been demonstrated in SOI waveguides with good spectral responses [54] and integration 

of such short uniform gratings on a contra-directional IBG-couplers, a four ports structure, has 

allowed operating the gratings in reflection [32]. This later contribution has a significant 

importance due to the absence of CMOS compatible isolators and circulators and has already 

been used for on-chip pulse compression applications [33]. Signal processing filter, such as on 

chip optical differentiator, have been obtained using a π phase shifted grating [55]. Furthermore, 

the demonstration of tunable gratings using the charge carrier effect [37], the thermo-optic effect 

[44], [45], [56] and of contra-directional IBG-couplers using the charge carrier effect [57] suggest 

potential use of these devices for modulation and switching.  

1.2 – Fabricated gratings 

The gratings fabricated for this thesis were very simple in order to characterize the SOI platform. 

They had a weak reflectivity to ease the convergence of the reconstruction algorithm presented in 
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section 1.5 and they were 2 mm long uniform grating unless mentioned otherwise (in chapter 4 

and 5, some gratings are Gaussian apodized with a full-width at half maximum of 1 mm). The 

IBGs were fabricated on strip waveguides having a width (w0) of 1200 nm (without ridge 

structure), except in chapter 3 where the impact of the waveguide width on the phase noise was 

studied and some gratings were fabricated on 800 nm wide waveguides. The recess amplitude 

(Δw) was 30 nm and 10 nm for 1200 nm and 800 nm wide waveguide respectively. The recess 

amplitude was modified to obtain a similar grating reflectivity. The nominal silicon layer 

thickness was 220 nm.  

Fig. 4 shows the schematic of the devices characterized for this thesis. Singlemode sections 

with adiabatic couplers are placed before and after the multimode section in order to 

predominantly excite the fundamental mode of the multimode section as suggested in chapter 2. 

As a result, the grating is behaving as if it were in a singlemode waveguide, but with less 

distortion. Input/output light coupling is achieved with grating couplers [58] having etched depth 

of 70 nm in 10 μm wide waveguides (except for spiral gratings presented in chapter 3 and 5 

where compact focusing grating couplers [59] were used). These couplers are followed by 600 

μm long adiabatic tapers that lead to single-TE mode waveguides having a width of 500 nm and a 

length of 190 μm (for spiral gratings, the taper was no longer necessary because of the focusing 

grating and was replaced by a simple singlemode waveguide longer than 800 µm). Then two 125 

μm-long adiabatic tapers connect the single-TE mode waveguides to the multimode waveguide 

that contains the 2 mm-long IBG.  

For the grating period, there is a limitation due to the smallest feature size available at IMEC, 

the CMOS facilities used to fabricate the gratings discussed in this thesis (except for the spiral 

gratings presented in chapter 3 and 5, which were fabricated at IME). The smallest structure that 

can be fabricated at IMEC has a dimension of 140 nm. Thus, a grating having a 50 % duty cycle 

must have a period larger than 280 nm. However, as mentioned previously, the waveguide used 

in this thesis are wide enough to require a grating period very close to 280 nm to have a 

resonance in the C-band. As a result, third order gratings were used with a duty-cycle of 25 % to 

ensure a resonance around 1550 nm. The 25 % duty-cycle is necessary since the corrugation 

amplitudes used in this thesis are much smaller than the process resolution. Thus, designed IBGs 

having rectangular corrugations are likely to become IBGs with sinusoidal-like corrugations [60] 
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that are characterized, in theory, by a null third order resonance. With a 25 % duty cycle, 

although the third order will be attenuated, a significant portion should remainI. The following 

tables summarize the grating characteristics mentioned above and will be referred to in 

subsequent chapters.  

 

 

 
Fig. 4: 3D view and top-view of the schematic of the third order 2 mm-long IBGs used in this thesis 

 

 

 

                                                 

 

I Technically, the required period for 1200 nm wide waveguide is ~286 nm to have a resonance close to 1550 nm. 
However, third order grating has been fabricated since phase-apodized gratings experience local period smaller than 
the 280 nm limit. As a result, to prevent the comparison of IBGs with different grating order, all of them were 
fabricated with a third order resonance at 1550 nm. This comment also includes the spiral gratings fabricated at IME. 
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Table 1: Characteristics of the grating from now on named “Straight Grating #1” 

Parameter Values 
Waveguide width 1 200 nm 
Silicon thickness 220 nm 
Top-silica layer No 

Grating physical period (Λp) 858 nm 
Grating length 2 mm 

Grating duty-cycle 25 % 
Corrugation amplitude 30 nm 

Shape Straight gratings 
External circuit on each side Grating couplers +  600 μm long 

adiabatic tapers + 500 nm wide 
and 190 μm long waveguide + 
125 μm-long adiabatic tapers 

CMOS foundry IMEC 
Chapters 3-4 

Comments 193 nm DUV lithography 
 

 

Table 2: Characteristics of the grating from now on named “Straight Grating #2” 

Parameter Values 
Waveguide width 800 nm 
Silicon thickness 220 nm 
Top-silica layer No 

Grating physical period (Λp) 873 nm 
Grating length 2 mm 

Grating duty-cycle 25 % 
Corrugation amplitude 10 nm 

Shape Straight gratings 
External circuit on each side Grating couplers +  600 μm long 

adiabatic tapers + 500 nm wide 
and 190 μm long waveguide + 
125 μm-long adiabatic tapers 

CMOS foundry IMEC 
Chapters 3 

Comments Same fabrication run than 
Straight Grating #1 
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Table 3: Characteristics of the grating from now on named “Spiral Grating #3” 

Parameter Values 
Waveguide width 1 200 nm 
Silicon thickness 220 nm 
Top-silica layer Yes 

Grating physical period (Λp) 858 nm 
Grating length 2 mm 

Grating duty-cycle 25 % 
Corrugation amplitude 30 nm 

Shape Spiral gratings 
External circuit on each side Focusing grating couplers + 500 

nm wide waveguide (longer than 
800 µm) + 125 μm-long 

adiabatic tapers 
CMOS foundry IME (OpSIS) 

Chapters 3-5 
Comments 1) This fabrication run was the 

first OpSIS public run. The 248 
nm DUV lithography results in 
weaker gratings 
2) The fabricated spiral gratings 
are phase compensated unless 
told otherwise 
3) The spiral waveguide 
characteristics are described in 
chapter 5. 

 

1.3 – Bragg grating coupled equations 

The derivation of the coupled mode equations has already been done many times [61]–[65] (to 

name a few). However, considering the extensive reference made to those equations throughout 

this thesis, a derivation of those equations from the Maxwell equations was considered essential 

and is done in Appendix A. Those equations can be used to model many physical phenomena, 

however, since this thesis focuses on Bragg gratings, this section considers that only one mode 

contains the energy and that the permittivity modulation induces a coupling between this mode 

and its contra-directional equivalent. Considering only the presence of those two modes, Eq. 

(A.33) and (A.34) reduces to 

 ( ) 2t z i zA iB e
z

β
µν µν

−∂
= Κ −Κ

∂
 (1.1) 
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 ( ) 2t z i zB iA e
z

β
µν µν

∂
= − Κ −Κ

∂
 , (1.2) 

where z is the axis of propagation, A and B are the amplitude of the forward and backward 

propagating modes, β is the propagation constant and t
µνΚ  and z

µνΚ  are the tangential and 

longitudinal coupling coefficient between mode µ and ν given by 
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 .

 (1.3) 

In Eq. (1.3) x and y are respectively the cross-section axis tangential and normal to the wafer 

surface as shown in Fig. 4, c is the speed of light, n(λ) is the effective index, λ is the free-space 

wavelength, ε is the permittivity and Δε is the deviation of the permittivity from the nominal 

waveguide profile. Since a Bragg grating is created by a periodic perturbation of the permittivity, 

the periodicity of the coupling coefficient can be made explicit by expending Eq. (1.3) with a 

Fourier series and by keeping only the term that has a resonance near the C-band such as 

 
( )

( )
, ,

( ) ( )

2 2cos  

     e

t z

iG z iG z

n z z

e

µ µ µ µ
π π φ
λ

κ

− −

−

 Κ −Κ = ∆ + Λ 

= +
, (1.4) 

where κ is the effective coupling coefficient, which takes into account both the tangential and the 

normal coupling, G(z) is the grating phase and Δn is a unit less parameter representing the grating 

effective index perturbation. This latter term is introduced to express the coupling coefficient 

term in a similar manner as for FBG. Finally, Λ is the first order grating period having a 

resonance near the C-band (i.e. Λ = Λp/m’ where m’ is the grating order). The effective index of a 

waveguide containing a grating can then be written in the form 

 
( ) ( ) ( )
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λ λ

πλ θ

= + ∆

 = + ∆ + Λ 

, (1.5) 
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where θ(z) includes any z-varying function that might be introduced into the grating period and 

 ( ) ( )0 1 0n n nλ λ λ= + −  (1.6) 

is the average effective index of the unperturbed waveguide, which is wavelength dependent. The 

ni are the terms of the truncated Taylor series modeling the effective index and λ0 is the reference 

wavelength of the truncated Taylor series, in the present case 1550 nm. It is also convenient to 

write Eq. (1.6) as a function of the group index (ng), which gives 

 ( ) 1gn n nλ λ= +  . (1.7) 

In this thesis, the coupling coefficient is not calculated explicitly. Instead, a reconstruction 

algorithm, applied to experimental complex spectral measurements, provides the average 

effective index fluctuations as well as the grating coupling coefficient or, equivalently, Δn. As 

discussed in the previous section, the gratings fabricated in the context of this thesis are third 

order grating (i.e. Λp is equal to 858 nm and Λ = 286 nm). However, this fact does not bring 

confusions or errors since the Δn function displayed in this thesis comes from reconstruction of 

experimental measurement, which already takes into account the Δn amplitude reduction related 

to the grating order and corrugation shape.  

The required corrugation amplitude for long gratings is typically much smaller than the 

minimum feature size allowed by CMOS compatible facilities. As a result, the lithography and 

etching steps severely modify the corrugation shapes (i.e. a rectangular corrugation will be 

severely rounded). As a result, if one is interested to predict the fabricated coupling coefficient, 

the appropriate permittivity variation profile must be determined. To do so, it is possible to either 

use an algorithm modeling the fabrication effect on the design [60] or to use a scanning electron 

microscope (SEM) image to measure it. Afterwards, the waveguide width variation should be 

parameterized using an appropriate function (i.e. square function, triangular function, sinusoidal 

function, rounded square wave function). Then, the Fourier term corresponding to the target 

resonant wavelength should be calculated. Furthermore, the importance of the longitudinal 

coupling coefficient should be evaluated. Obviously, this is not a trivial work and was not 

considered necessary for this thesis.  
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Inserting Eq. (1.4) into Eqs. (1.1) and (1.2), the coupled mode equations can be simplified to  

 

( ) ( )( )
( ) ( )( )

2 ( ) 2 ( )

2 ( ) 2 ( )
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∂
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∂
∂

= − +
∂

. (1.8) 

If we define a detuning parameter, such as,  
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where δ0 is the designed detuning parameter, we obtain 
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where the higher harmonics have been neglected since they do not lead to phase matched mode 

coupling. Finally, using the following change of variable 

 
e
e

i z

i z

A u
B v

δ

δ

−=

=
, (1.12) 

Eq. (1.11) becomes the well-known coupled equations [66] 

 ( )'u i u vδ κ= +  (1.13) 

 ( )'v i v uδ κ= − + , (1.14) 
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where u and v are the slowly varying amplitude of the forward and backward waves. It must be 

pointed out that if the effective index is varying along the z-axis, as it is the case when phase 

noise is considered (refer to Chapter 2 and 3) or whenever the waveguide width is voluntary 

modified [50], Eq (1.10) becomes  

 
( ) ( ) ( )

( ) ( )

2 1
2

2 21
2

z

z

n

n n

n z
z

z
z

z

π

π π

λ θπδ
λ

λ θπ
λ λ

∆

+ ∆  ∂ = − −
Λ ∂

∂
= − − +

Λ ∂

 (1.15) 

 
( ) ( )

( )
0

( )2 1
2

1
2

n z
z

z
z

z

π λ πδ
λ

δ

∂Φ
= − −

Λ ∂
∂Φ

= −
∂

, (1.16) 

where a new phase term, given by  

 ( ) ( ) ( )
0

0

2
' '

z

zdz nz z z
n
πθ ∆Φ = −
Λ ∫  (1.17) 

is defined to take into account all the z-varying parameter of the gratings i.e. including the new 

effective index variation along the z-axis parameter given by Δnz (the label “z” has been used to 

prevent confusion with the grating effective index perturbation symbol “Δn”). In Eq. (1.17), the 

wavelength has been approximated to be equal to the designed Bragg wavelength at 1550 nm (i.e. 

2n0Λ). In subsequent chapters, the experimentally retrieved grating phase information is going to 

be represented by the Bragg wavelength (λB) which, using Eqs. (1.7) and (1.16), can be associated 

to the grating parameters by the following expression: 

 ( ) ( )
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2

1 2
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z

z
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zπ
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+ − Λ
∂

. (1.18) 
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1.4 – Numerical simulations of Bragg grating response 

In this section, two techniques that solve Eqs. (1.13) and (1.14) for arbitrary gratings are 

considered. The boundary conditions are u(-L/2) = 1 and v(L/2) = 0, where L is the grating length. 

The first technique uses the transfer matrix formalism while the second one considers the special 

case of weak gratings. 

1.4.1 – Transfer matrix solution 

The transfer matrix approach links the field u and v at the input of the grating to the field at its 

output with the following matrix 

 
1( / 2) ( / 2)

( / 2) ( / 2)1

ru L u Lt t
v L v Lr

t t

∗

∗

∗

 
−    =    −     

, (1.19) 

where r and t are the complex reflection and transmission coefficient of the structure. 

Fortunately, the coupled-mode equations have an analytical solution for the special case of 

uniform gratings (κ(z) = κ0 and δ(z) = δ0). The reflection and transmission coefficient are given 

by 
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As a result, the spectral response of any tailored gratings can be calculated by decomposing it in 

many short sections, short enough to consider the grating uniform over the section length. The 

field is then propagated along the grating structure. The total matrix of the structure can be 

calculated numerically and, by using the appropriate boundary condition, the grating reflection 

and transmission coefficient are found. The simulation tool used in this thesis is quite similar to 
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those already presented in the literature [66], [67]. More specifically, using Eq. (1.20) and (1.21) 

to obtain 1/t and r/t gives 

 2 2 2 20
0 0 0 02 2

0 0

1 cosh( ) sinh( )iL L
t

δ δ
δ

δκ κ
κ

= − − −
−

 (1.22) 

 2 20
0 02 2

0 0

sinh( )ir L
t

δ
δ

κ κ
κ

= −
−

. (1.23) 

The insertion of Eqs. (1.22), (1.23) in (1.19) give the same transfer matrix discussed in [67]. 

Other approaches exist to solve the coupled-mode equations. For example, it is possible to solve 

them, once reduced to a single Riccati differential equation, using a Runge-Kutta algorithm [68]. 

However, this approach might lead to excessive convergence time. Bragg gratings spectral 

responses can also be simulated using the Rouard method [69], [70] which consist of discretizing 

the grating in a succession of discrete reflectors. This technique provides the grating reflectivity 

product by a “sinc” function which depends on the discrete reflector thickness. This approach 

might create numerical error, especially for gratings with wide spectrum. Thus, because of its 

flexibility and reliability, the transfer matrix approach has been chosen for this thesis.  

1.4.2 – Weak grating approximation 

The last approach discussed in this chapter to solve the coupled mode equations considers the 

special case where the grating coupling coefficient is small (also called the Born approximation). 

This approximation provides an analytical solution to the coupled-mode equations [64], [71]. 

More specifically, Eqs. (1.13) and (1.14) can be simplified by neglecting the coupling between 

the modes in Eq. (1.13). As a result, it can be found that exp (z)u i dzδ =  ∫ , which means that 

the mode simply propagates through the structure. Inserting this solution into Eq. (1.14) gives 

 
(z)

' e
i dzv i v δ

δ κ ∫= − + 
 

. (1.24) 
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Such first order differential equation can be solved analytically [72]. When the boundary 

conditions stated in the previous section are applied, we find that the grating complex reflectivity 

is given by  

 ( ) 0
/2 2 ' ( )

/2

z
L i dz z

L
r dz z e

δ
κ

−

∫= −∫ .  (1.25) 

Although the latter equation is the one used in chapter 2, it is interesting to make the detuning z-

dependency explicit. Considering Eq. (1.16), we obtain 
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∫

,  (1.26) 

where the last equality is obtained by making the change of variable 2z → z and by extending the 

integral interval over infinity. This latter operation does not add any error since κ = 0 for |z| > L/2. 

By doing this change of variable, we see that the grating physical structure 

( ) ( )/2/ 2
2

i zz
e

κ − Φ−  

is forming a Fourier transform pair with its complex reflectivity. Furthermore, the Fourier 

transform of r is also the grating impulse response (h). Thus, according to (1.26), since  

 { } ( ) ( )/2/ 2
FT

2
i zz

r e
κ − Φ= − , (1.27) 

the Born approximation allows associating the grating structure to the grating impulse response 

(h), such as [73] 

 ( ) ( ) ( )2 2i zz e h zκ − Φ = − . (1.28) 

This equation will be used in the following section to achieve the grating reconstruction.  
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Knowing that the weak grating spectral response is linked with a Fourier transform to its 

physical structure provides a good intuition of gratings behaviour. Moreover, it is important to 

mention that many of the Fourier transforms properties such as translation, frequency shift and 

scaling can be applied even to strong gratings. These properties are formally derived in [74], [75].  

1.5 – Grating reconstruction 

As discussed previously, when the grating structure is known, the complex spectral response of 

the grating can be calculated and this operation is referred to the direct scattering problem [73]. 

However, in some situation, it is essential to calculate the physical structure of the grating from a 

complex spectral response. This inverse scattering problem may happen in two different contexts: 

1) in a synthesis problem, where the grating physical profiles are calculated from the desired 

spectral response and 2) in a reconstruction problem, where the grating physical profiles are 

retrieved from experimental measured complex spectral responses. This latter problem is the one 

that needed to be solved in the context of this thesis.  

Several approaches have been proposed to solve the inverse scattering problem of Bragg 

gratings, however, in this thesis, the integral layer peeling (ILP) algorithm has been preferred 

[73] since it allows the reconstruction of strongly reflective gratings, which is a necessary feature 

for integrated gratings in SOI due to the high index contrast of silicon and silica. For more 

information on other approaches to solve the inverse scattering problem, the reader should refer 

to [73], [76] and the references therein.  

Briefly, the algorithm separates the structure in M layers having a length Δz. Each layer, 

labeled by “m”, is composed of non-uniform amplitude and phase profiles. These variables are 

shown on the schematic of Fig. 5. This approach reduces the error of the reconstruction, 

especially for strong gratings, since the algorithm considers that the reflectivity may decrease 

significantly from one facet of the layer to the other. The local position within a layer is identified 

by z'. When the layers are small enough to use the Born approximation, the local reflectivity of a 

single layer can be considered small even for strong gratings which leads to the simple recursive 

formula 
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where  

 ( ) ( ) ( )
2

0 0exp
z

m mr d h i tδ τ τ δ
∆

−∞
= ∫ . (1.30) 

The recursive formula allows calculating the local reflection coefficient before the next layer. 

The grating structure of the mth + 1 layer is thus given by the local impulse response, such as 

 ( ) ( ) ( )'' 2 2 ' 0 'i m z z
mm z z e h z z zκ − Φ ∆ +∆ + = − ≤ ≤ ∆  . (1.31) 

Eq. (1.29), (1.30) and (1.31) are the one that has been used to reconstruct the grating structure 

presented in this thesis.  

 
Fig. 5: Schematic of the ILP algorithm 

The algorithm works as follow: r0 is the experimentally measured complex spectral response 

of the grating. The first layer structure is found by applying a fast-Fourier transform algorithm on 

r0, which provides h0. Afterward, using Eq. (1.31), one can obtain the grating coupling amplitude 

and phase information of the first layer. Subsequently, 0r is found with h0 and Eq. (1.30) and r0 

and 0r  are used to obtain r1 with Eq. (1.29). This procedure is reproduced over the whole grating 

length. Every spectral measurement taken in this thesis has been obtained with a commercial 

optical frequency domain reflectometer (OFDR) from LUNA technologies. 
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1.6 – Elaborate grating structures 

In this thesis, many references are made to the fabrication of “elaborate gratings” or “complex 

spectral responses”. Obviously, the complexity of a grating is a qualitative description and the 

goal of this section is to illustrate more precisely how the complexity of a grating structure can 

improve the filter response. Unfortunately, when the grating complexity is increased, the 

fabrication yield is likely to be reduced, which is why designing elaborate gratings must be done 

carefully. The grating complexity is higher when the grating coupling amplitude and phase vary 

significantly (i.e.  |𝜕𝜅 𝜕𝑧|⁄  and |𝜕𝜆𝐵 𝜕𝑧|⁄ ). Moreover, the difficulty in fabricating a grating is 

strongly dependant on the material. For example, designing FBGs having large κ can be 

challenging due to the relatively small index change that can be photo-induced. For IBGs in SOI, 

the main issue comes from random geometrical variations of the waveguide which induce phase 

noise (refer to chapter 2 and 3). As will be shown in chapter 2, the phase noise impact on the 

grating spectral response increases as the square of κL and as a square root of L. In other words, 

when the grating reflectivity or when the grating length is increased, spectral distortions are going 

to be stronger. Thus, the fabrication yield is decreased. However, increasing the grating 

complexity, or equivalently designing filter with tailored spectral responses, is beneficial (and 

sometime necessary) for many applications [24]–[31]. 

To illustrate this concept, we consider the design of a WDM add/drop filter having a designed 

reflectivity and bandwidth of respectively -0.04 dB (99 %) and 8 nm (i.e. appropriate for coarse 

WDM network). As a first tryout, let’s consider a uniform grating. In this example, the target 

reflectivity defines the κL product and the grating length is fixed using the bandwidth 

requirement (i.e. κ = 36.5 mm-1 and L = 82 μm). As can be seen in black in Fig. 6 (which shows 

the reflection amplitude and dispersion in a) and b) respectively and the grating Bragg 

wavelength and coupling coefficient in c) and d)), the use of a uniform grating for WDM filter 

might not be appropriate due to the low side-lobe suppression ratio (SLSR). Low SLSR creates 

crosstalk between channels and, ultimately, increases the bit error rates.  However, it is possible 

to increase the SLSR by increasing the complexity of the grating coupling amplitude profile 

(apodizing the grating) as shown in red in Fig. 6. This Gaussian apodization, which has a full-

width at half-maximum of 70 μm, increases the SLSR by 13 dB. To maintain the same bandwidth 
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and reflectivity, the maximal value of κ as well as the grating length had to be slightly increased 

to 43 mm-1 and 105 μm respectively. 

 
Fig. 6: a) Simulated reflection spectrum b) dispersion, c) Bragg wavelength profile and d) coupling coefficient profile 

of a uniform Bragg grating (in black) and a gaussian apodized grating (in red). The gratings length is respectively 80 μm 
and 105 μm. 

In order to further improve the filter shape, one might be interested to design a grating having 

flat-top dispersion-less response. Such grating structure, obtained with the ILP algorithm 

described in section 1.5 and shown in blue in Fig. 7, has an increased complexity since the Bragg 

wavelength and coupling coefficient profiles variations are much more important. Moreover, 

compared to the Gaussian apodized uniform grating structure (shown in red), the grating length 

had to be increased significantly (from 105 μm to 1600 μm). This can be understood with the 

Fourier transform scaling property, discussed in section 1.4.2 since faster variations in one 

domain (i.e. sharp edges in the spectral domain) result in longer structures in the other. However, 

the improvements obtained with this elaborate grating can be beneficial since the filter SLSR is 
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increased by another 13 dB, the sharpness of the amplitude response is increased and fit closely 

to the WDM channel bandwidth and the optical phase does not experience significant chirp 

anymore, which could be desirable at high bit-rate. This example clearly shows the benefit that 

can be obtained by increasing the grating complexity (amplitude, phase and length).  

 
Fig. 7: a) Simulated reflection spectrum b) dispersion, c) Bragg wavelength profile and d) coupling coefficient profile 

of a gaussian apodized grating (in red) and a tailored dispersion-less flattop Bragg grating (in blue). The gratings length is 
respectively 105 μm and 1600 μm. 

For this filter to be feasible experimentally the apodization technique must be reliable in order 

to define correctly the sinc-like shape and the phase noise must not be too significant otherwise 

the grating spectral response will be severely distorted compared to the design. An interesting 

point that can be seen from Fig. 7-d) is that as the grating complexity increases (the blue curves), 

the required grating coupling coefficient is likely to be reduced, at least at some specific positions 

(on the grating sides in the example discussed here). As a result, there is a strong motivation to 

develop apodisation techniques compatible with small κ values (work done in chapter 4). If the 
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fabrication technology limits the grating length and/or the minimum coupling coefficient that can 

be fabricated, the designed grating response is going to be distorted, as shown in Fig. 8 where the 

tailored grating presented above is cut closer to the coupling coefficient main lobe (the gratings in 

cyan and red are 950 μm and 600 μm long respectively). Thus, this figure shows that a reduction 

of the grating length will increase the oscillation in the phase of the spectral response of the 

grating. This grating design has been chosen in this section especially because the optical phase is 

particularly sensitive which illustrates well the necessity to develop a reliable technology to 

fabricate long IBGs compatible with weak coupling coefficients. A short mention should also be 

made on the Bragg grating profile. As can be seen in Fig. 7-c) and Fig. 8-c), a series of phase 

shift structure are required at the location of the zeroes of the apodization profile. However, since  

 
Fig. 8: a) Simulated reflection spectrum b) dispersion, c) Bragg wavelength profile and d) coupling coefficient profile 

of the same tailored dispersion-less flattop Bragg grating cut at different distance from the main coupling coefficient lobe. 
The length of the grating in blue is 1600 μm while the grating in cyan and red are respectively 950 μm and 600 μm. 
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Fig. 9: a) Simulated reflection spectrum b) dispersion, c) Bragg wavelength profile and d) coupling coefficient profile 

of tailored square-shape-zero-dispersion Bragg grating for coarse (in blue) and dense (in cyan) WDM application. The 
gratings length is respectively 1600 μm and 12 000 μm. 

Bragg gratings are not affected by high frequency variations (as discussed in chapter 2), the 

reconstruction algorithm cannot provide discrete phase shifts. Thus, before fabricating this 

structure, a performance comparison should be made between this structure and one where these 

distributed phase shifts are replaced by discrete phase shifts that are easier to fabricate.  

Finally, to further increase the data-traffic in a WDM system, one could also be interested to 

design a similar filter, but for dense WDM applications. In this situation, the channel bandwidth 

is reduced to 100 GHz (in this example). Once again, the Fourier transform scaling property 

involves an increase in the required grating length, as shown in Fig. 9 where the length of the 

grating in cyan is 12 mm. The phase noise inherent to IBG in SOI will reduce the yield of such 

filter. As a result, this narrow band filter is a much more complex structure to fabricate. However, 

the increased data-rate that can be obtained with dense WDM network, compared to coarse 
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WDM network, is a strong motivation to keep improving the Bragg grating fabrication 

capabilities.  

1.7 – Characterization of integrated Bragg gratings 

Most work focusing on integrated Bragg gratings only provides the spectral response amplitude 

in transmission, which incompletely characterizes the grating. Indeed, phase measurement is 

difficult because the device under test is embedded between reflective structures (grating 

couplers, cleaved fibers and/or cleaved facets) that interfere with the wave reflected form the 

IBGs. This section which is strongly inspired by [35], a conference paper presented at Bragg 

Gratings, Photosensitivity, and Poling in Glass Waveguides in 2012, addresses this issue by 

providing a technique to post process the retrieved complex spectral response of the component, 

reduce the measurement high frequency noise and reconstruct the grating structure. This 

procedure is used throughout this thesis to optically characterize IBGs phase noise (chapter 3), to 

confirm the reliability of the apodization technique (chapter 4) and to confirm that the phase 

compensation of spiral-waveguides was done correctly (chapter 5). Briefly, the main steps used 

to characterize IBGs are: 1) characterizing the complex spectral response in reflection using and 

OFDR, 2) applying a time filter to suppress spurious reflections, 3) reconstructing the grating 

structure using the ILP algorithm to obtain the spatial profiles of the IBG and 4) comparing the 

measured and reconstructed spectral response.  

1.7.1 – Complex spectral response measurement in reflection 

When the light is injected in the SOI chip, spurious reflections can interfere and distort the 

grating reflection spectrum. Recently, a data processing approach was used to retrieve the grating 

spectral response when using butt coupling [77]. In this work, the authors considered that their 

gratings were surrounded by two waveguide (propagation region) and two strong reflectors 

(created by the silicon-air interface), which allows them to successfully isolate the IBG spectral 

response from the Fabry-Perot response. However, this method cannot be applied to most 

elaborate photonic integrated circuits since many reflections might occur at different positions.  

Fig. 10-a) shows a typical time response of an IBG in reflection. Specifically, this IBG is a 

straight grating described in Table 1 and represented in Fig. 4. The origin of the graph 
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corresponds to the reflection from the input fiber end and time-to-position conversion is done to 

match the 4 mm component length (the grating has a length of 2 mm). Although this procedure 

neglects possible effective index changes along the waveguide, it still gives precious information 

on the position of each event.  

1.7.2 – Time filtering of the measured impulse response 

The impulse response shown in Fig. 10-a) is separated in five distinct sections. Sections A and E 

correspond to the reflection coming respectively from the input and output cleaved fiber end. 

Sections B and D correspond to the grating coupler, the subsequent taper and the singlemode 

waveguide. These latter sections can be separate in two subsections; one without significant 

reflected amplitude (first half of section B and second half of section D) which corresponds 

mostly to the tapers, and one with relatively important reflection amplitude compared to the 

grating (second half of B). As shown in Fig. 4, these subsections correspond to the 500 nm wide 

single transverse electric mode (TE-mode) waveguides. As discussed in [78], the measured 

reflection is a SWR induced reflection. This backscattered light due to SWR is depending on the 

waveguide width and, as it increases, the mode intensity on the sidewall is reduced which 

involves a reduction of the backscattered light. Thus, the measured reflection is significant only 

on a limited interval in section B and D since the 500 nm wide waveguides are surrounded by 

adiabatic tapers. From IBG perspective, this measurement shows that singlemode waveguides 

suffer from backscattered light induced by SWR that might have amplitude comparable to an 

IBG. This phenomenon should be suppressed as much as possible since it increases the measured 

noise level in reflection which reduces the grating characterization precision using the ILP 

algorithm. Finally, it can be noticed that there is a reflection spike in section B that is not present 

in section D although both sections are nominally identical. This spike is likely coming from a 

discrete reflection that happens at the bottom of the silicon substrate, which has a thickness of 

~ 700 μm. It can appear if the IBG resonance does not match the grating coupler resonance. As a 

result, the fiber injection angle must be modified to match these resonances and, in this situation, 

the injection angle was close to a normal injection which allowed some light to be coupled back 

in the input fiber. 
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Fig. 10: a) Amplitude of the impulse response as a function of propagation distance in the device. b) Reflection 

spectrum without time-filtering (black) and with the section C time-filtered (red) 

The four sections mentioned above, when time filtered independently, do not exhibit any 

resonance at the IBG frequency. They are wideband reflection. Section C corresponds to the IBG. 

As mentioned previously, the singlemode waveguides (section B and D) are important to excite 

the fundamental mode of the multimode section. Fig. 10-b) shows the spectral response of the 

raw data (black) and of the one obtained with a rectangular time window to extract section C 

(red). On this figure, the insertion loss caused by the grating coupler has been removed. The 

processed data clearly shows the resonance of a weak grating, which was unclear using the raw 

data. 

1.7.3 – Grating reconstruction using the ILP algorithm 

To characterize the IBG amplitude and phase profiles, the ILP presented above is applied to the 

processed data. Due to the recurrent use of the fast-Fourier transform algorithm in the ILP 

algorithm, the spatial resolution of those profiles depends on the measured optical bandwidth 

and, since IBGs are narrowband filters, most of the information is noise (corresponding to a 

wavelength offset larger than ~ ±1.5 nm for the grating shown in Fig. 11-a)). As a result, the 

phase and amplitude profiles, shown in Fig. 11-b) and c), contain both low frequency variations 
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that alter the grating spectrum and higher frequency variations that are artefacts, due to out-of-

band measurement noise, hiding the relevant information. Consequently, the retrieved profiles 

should be low-pass filtered. As shown in [41]II, IBGs reflection spectrum are distorted by spatial 

frequencies lower than ( )( ) 1
2 1c g B Bf n λ λ λ

−
≈ ∆ − , where Δλ is the spectrum width taken at the 

noise level and Bλ  is the average Bragg wavelength which, in the special case of a uniform 

grating, is given by 
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 (1.32) 

1.7.4 – Comparison of the reconstructed and measured spectra 

The spectral response can then be reconstructed from the retrieved and filtered grating coupling 

amplitude and phase profiles with a standard transfer matrix solution of the coupled mode 

equations. Fig. 11-a) compares the grating experimental spectrum with reconstructed one with 

different cut-off frequencies: the reconstructed spectrum without spatial filtering is shown by the 

black curve while the green and blue curves are reconstructed spectra with cut-off frequencies 

corresponding to Δλ = 3 nm and Δλ = 1.5 nm respectively. All the reconstructed spectra follow 

closely the experimental one for wavelength offset smaller than 1.5 nm which gives good 

confidence in the reconstruction technique. It should be noted that in this thesis, the value Δλ is 

determined by the grating bandwidth at the measurement noise floor (Δλ = 1.5 nm for the 

example above). 

                                                 

 

II Chapter 2 is a reproduction of paper [41]; the derivation of fc is made in this chapter. 
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Fig. 11: a) Comparison of the experimental reflection spectrum of an unapodized grating (red) to the reconstructed 

spectrum without spatial filtering (black), with Δλ = 3 nm (green) and Δλ = 1.5 nm (blue). The retrieved b) λB and c) Δn 
profiles associated to the spectrum of a) 
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Chapter 2: Impact of Sidewall Roughness on Integrated 

Bragg Gratings 

A wide variety of waveguide size has been used in the SOI platform. However, the silicon 

photonic community has oriented its effort mostly towards sub-micrometer silicon thickness 

(typically 220 nm) because of the high modal confinement. Such structure, compared to 

micrometer-size cross-sections, is beneficial to the design of highly integrated circuits, since it 

allows tight curvature.  

To be compatible with other integrated silicon components, singlemode waveguides having 

both sub-micrometer thickness and width have first been considered at the start of this project. 

Unfortunately, such highly confined waveguides suffer from a high level of phase noise which 

distorts the Bragg grating spectral response. This issue is addressed in the two following chapters. 

This chapter, a reproduction of [41] published in the “Journal of Lightwave Technology” in 2011, 

models numerically and analytically the SWR impact on the grating spectral response. The 

analysis has been done solely on SWR since this effect is the dominant one for singlemode 

photonic wires. The conclusion drawn in this chapter has led us to use hybrid 

singlemode/multimode waveguides in subsequent works (chapter 3 to 5).  

2.1 – Abstract 

A major issue in the fabrication of IBG filters in highly confined waveguides is the average 

effective index fluctuations caused by SWR. In this work, we model the impact of this effect on 

IBG spectral responses and we identify key parameters that need to be controlled in order to 

minimize distortions. We show that only low spatial frequency components of the noise are 

relevant to the calculation of the IBG spectral response, which decreases considerably the 

computation time. Furthermore, we present an IBG emulator that allows estimation of expected 

fabrication yield of specific gratings given that the fabrication process is well characterized. The 

analysis of apodized gratings is used as an example to illustrate how this modeling can help to 

reduce development cost by first studying robustness of IBG designs to fabrication limitations. 

Finally, we study analytically the impact of SWR having short correlation lengths and small 

roughness variances on the spectral response of weak gratings. 
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2.2 – Introduction  

There are currently major research efforts worldwide to develop photonic integrated circuits for 

telecommunication applications using SOI. The goal is to provide a low-cost small-footprint 

platform to integrate several functions on the same photonic chip. One type of components 

typically required for WDM systems are optical filters with flexible and precise spectral 

responses. IBG structures in SOI could provide greater tuning properties, compared to FBGs, 

through the plasma dispersion [79], [80] or the thermo-optic [81], [82] effects. To obtain IBGs 

with complex spectral responses, long structures must be used (tens of thousands of periods). 

Very recently, footprint reduction of long IBGs has been proposed using curved waveguides [83], 

[84]. Large scale integration of IBGs could be achieved with a photonic wire in a spiral shape 

without having a significant impact on the grating spectral response [83]. However, long grating 

structures are more sensitive to phase noise induced by SWR. 

Over the past few years, a lot of work has been dedicated to model propagation losses caused 

by SWR [85]–[87]. Simultaneously, other researchers have focused their efforts on reducing the 

waveguides roughness by optimizing the lithography techniques and etching conditions [88], 

[89]. Furthermore, the effect of SWR on Bragg gratings in silica waveguides has been studied 

theoretically in [90]. However, this work is limited to the analysis of the average impact of the 

noise, which does not provide any information on the resulting distortion of the grating spectral 

response. In addition, in waveguides with high index contrast, such as photonic wires in SOI, 

SWR severely degrades the performance of long IBGs because small waveguide width variations 

induce significant modifications of the mode effective index. Consequently, since this effect 

cannot be neglected in SOI waveguides, as it is the case for silica waveguides, there is great 

interest in modeling it in order to develop robust grating designs that will lead to reasonable 

fabrication yields. The model can also be useful to guide future refinement of fabrication 

processes by establishing targets for desired roughness parameters.  

This work is structured as follows: section 2.3 summarizes briefly the SWR model used in this 

chapter. In section 2.4, we describe how our model converts the SWR information in an effective 

index variation. This information will be used in the following sections to model the grating 

spectral response. In section 2.5, an IBG emulator based on coupled-mode theory is presented 
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and simulated spectra are qualitatively compared to experimental ones in order to examine the 

validity of the approach. We also examine the noise spatial frequencies that are needed in order to 

accurately model the grating spectral responses. We find that the noise spectral density content 

below a cutoff frequency of typically 0.1 µm-1 is the most relevant. Section 2.6 presents numerical 

results of unapodized and apodized uniform-period gratings obtained with this IBG emulator in 

order to evaluate the apodization resistance to SWR. This section shows how to use the emulator 

in order to predict IBG yield, hence saving a huge amount of time, effort and resources. Section 

2.7 presents analytical results on the behavior of weak gratings in the presence of SWR. In this 

section, we use the weak grating approximation of the usual coupled-mode equations. Finally, 

section 2.8 proposes some approaches to mitigate the impact of SWR on IBG spectral responses. 

2.3 – Sidewall roughness model 

As discussed in [85]–[87], SOI platforms have very high quality Si/SiO2 interfaces due to the 

high precision of the wafer fabrication process. However, the etching process typically leaves 

vertical stripes [91], as illustrates in Fig. 12, creating sidewall fluctuations that follow a normal 

distribution. The spatial frequency content of a random process, X, is described by its power 

spectral density function, GX, which is the Fourier transform of its autocorrelation function, RX. 

Thus, the spatial frequency content is described by the spectral density function, GSWR, which is 

the Fourier transform of the sidewall autocorrelation function, RSWR, defined by 

 ( )
/2

/2

1lim ( ) ( )
L

SWR L L
R z x z x z z dz

L→∞ −
∆ = ∆ ∆ + ∆∫ , (2.1) 

where Δx is the deviation of the sidewall from its average position and Δz is the spatial shift 

along the waveguide propagation axis. Throughout this thesis, many random processes will be 

discussed (i.e. the effective index, the Bragg wavelength, the SWR, the wafer height fluctuation 

(WHF), etc.). To simplify the notation, σX is going to refer to the standard deviation of the 

process. Similarly, Lc,X is going to refer to the autocorrelation length of X. For lithographically-

defined waveguides, the autocorrelation function is typically given by [92] 

 ( ) 2

,

expSWR SWR
c SWR

z
R z

L
σ

 − ∆
∆ =   

 
, (2.2) 



40 

 

where σSWR is the waveguide sidewall position standard deviation and Lc,SWR is the autocorrelation 

length. Consequently, the spectral power density function is given by 

 ( )
2

,
2 2 2

,

2
1 4
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G f

L f
σ
π

=
+

, (2.3) 

 
Fig. 12: Waveguide geometry. 

 
Fig. 13: SWR spectral power density as a function of spatial frequencies for different values of autocorrelation length. 

where fz is the spatial frequency (along the z-axis). Typical values for σSWR and Lc,SWR are, 

respectively, from ~ 2 to 4 nm and 50 to 500 nmIII. Fig. 13 shows the spectral power density 

                                                 

 

III Those estimated values were provided by a CMOS compatible foundry (IMEC). However, these values do not 
properly model the phase noise affecting IBGs spectral response since the related spatial frequency are too high 
(see section 2.5), which is why the work of the next chapter was necessary. The results obtained in Chapter 3 
shows that the sidewall roughness standard deviation is around 2 nm and the autocorrelation length that is 
affecting IBGs is of the order of ~ 10 µm. 
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normalized by 2
SWRσ  for different values of Lc,SWR. As expected, as Lc,SWR increases so does the 

spectral density at low frequencies. In section 2.5, we show that it is mostly these slow 

fluctuations that are damaging to the in-band IBG spectral response. Thus, small Lc,SWR will result 

in better spectral response performances. 

2.4 – Sidewall roughness model for IBG analysis 

For Bragg grating analysis, the waveguide sidewall perturbations must be transposed to effective 

index perturbations. These effective index perturbations will then create a detuning with respect 

to the designed grating. It is this additional detuning that is used to model the grating spectral 

response using coupled-mode theory. This theory is assumed to be valid since this work focuses 

on long grating structures in order to fabricate complex spectral responses that involve weak local 

coupling coefficient and negligible mode profile variations.  

In order to obtain a concise analysis of the impact of SWR on IBGs, three approximations are 

made:  

1) This work does not consider any random process associated to ΛIV or κV. Those 

parameters are considered noiseless.  

2) Since the SWR amplitude is relatively small (i.e. < 1 % of the waveguide width), the 

effective index variation as a function of width variation (Δwz) is assumed to be linear 

around the average waveguide width (w0). The proportionality constant 

0
( )SWR w
C dn dw=  has been found using a finite element method mode solver [93]. For 

example, Fig. 1 of [53] and reproduced in this thesis in Fig. 3-b) shows the dependency 

of CSWR as a function of w0 for a photonic wire of height of 220 nm. The CSWR used in 

this chapter is 1.9 x10-3 nm-1, value associated with w0 = 500 nm. 
                                                 

 

IV This hypothesis has not been discussed in detail in this publication but, in the context of this thesis, it was 
necessary to discuss this point in more detail. This is done at section 3.7.3. 
 
V The justification of this approximation is done in section 4.8 where it is shown that the amplitude noise has a 
much smaller impact on the grating spectral response than the phase noise. 
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3) Although the dispersion is strong in photonic wires, the effective index perturbation 

due to a small width variation has a negligible wavelength dependency in the telecom 

band. Consequently, z SWR zn C w∆ = ∆  is evaluated at λ = 1550 nm.  

Due to approximations 2 and 3 above, the effective index standard deviation is given by  

 2n SWR SWRCσ σ≈  . (2.4) 

The factor √2 comes from the fact that both sides of the waveguides are independent random 

processes following a normal distribution. This waveguide width variation can also be included 

in the detuning parameter since, as shown in Eq. (1.15), a waveguide effective index variation 

along the z-axis is given by  

 
0

2 z z
z

n n
n

π πδ
λ
∆ ∆

∆ = ≈
Λ

 . (2.5) 

As a result, the standard deviation of this process is  

 
0

2 SWR SWRC
nδ

π σσ ≈
Λ

. (2.6) 

The detuning has an autocorrelation function still given by Eq. (2.2) where σSWR is replaced by σδ, 

since δ and Δx are linearly dependant.  

2.5 – Emulator 

The IBG emulator, coded in MATLAB, is constructed as follows. The necessary inputs 

parameters are the coupling coefficient and the local detuning, both being vectors along the z-

axis. Once the noise-less parameters are fixed by the target grating design, a white Gaussian noise 

is filtered by the function given by Eq. (2.3) to introduce random detuning variations. At this 

point the filtered white Gaussian noise standard deviation corresponds to Eq. (2.6) provided that 

the amount of points used to generate the white Gaussian noise is large enough to ensure the 

presence of all the relevant frequencies shown in Fig. 13. For calculation purposes, a grating 

suffering from a SWR noise of Lc,SWR ~100 nm should typically be divided in sections of ~ 1 to 
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10 nmVI. Those sections are considered uniform when calculating the transfer function using 

coupled-mode equations. As discussed below, because high frequencies do not impact the 

spectral response of a narrow band grating, the filtered Gaussian noise can be filtered a second 

time by a low-pass filter having a cut-off frequency described above by fc. This procedure allows 

using sections lengths of ~ 1 to 10 μm, which reduces considerably the computation time. 

Finally, the grating spectral response is simulated using coupled-mode equations [67]. 

To examine the validity of this low-pass filtering operation, we consider the index profile of 

an IBG as shown by Eq. (1.5) on which we add a phase modulation of frequency fc and amplitude 

φ , i.e. 

 ( ) ( ) ( ) ( )2, cos sin 2 cn z n n z z f zπλ λ θ φ π = + ∆ + + Λ 
. (2.7) 

Eqs. (1.15) and (1.17) show that an effective index variation along the z axis (Δnz) is equivalent 

to a z-varying grating phase and, as shown by Eq. (1.17), the phase function that would represent 

such an effective index variation can be written as 

 ( )
0

0

2
' '

z

zdz n z
n
π

∆−
Λ ∫ . (2.8) 

In other words, both approaches can be used to examine grating phase noise. By expanding the 

term ( )sin 2 cf zφ π with a Fourier series and using the Bessel function integral definition, Eq. 

(2.7) becomes 

 ( ) 2( ) cos 2m c
m

n n n J z m f zπλ φ π
∞

=−∞

 = + ∆ + Λ 
∑ . (2.9) 

                                                 

 

VI The relevance of having such small layer thickness is discussed in section 2.10 
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Eq. (2.9) shows that a periodic perturbation of the phase of the grating creates side resonances 

around the fundamental grating. If we focus on the order m = 1, the cosine term can be rewritten 

as 

( )
2cos

/ (1 )c

z
f

π 
  Λ + Λ 

. 

This form is insightful since it shows that the m = 1 order has an equivalent grating period of 

1 / (1 )m cf=Λ = Λ +Λ  and that this resonance is shifted farther as fc is increased. Consequently, the 

high noise frequencies have an out-of-band impact on the grating spectral response. Knowing that 

we have gratings of period Λ and Λm=1 and knowing that the resonances occur at wavelengths 

given by Eq. (1.18), the spectral spacing between those two gratings (Δλ – which is equivalent to 

the measurable spectrum width taken at the noise floor discussed in section 1.6) is given by 

11 2
c B

c

f
n f

λλ Λ
∆ =

− Λ + Λ
    

or inversely, the low-pass filter cut-off frequency as a function of the spectral band of interest is 

given by 

 
2

.
1

g
c

B
B

n
f

λλ λ

=
 − ∆ 

 (2.10) 

An illustration of the appropriateness of using only the noise components with spatial frequencies 

lower than Eq. (2.10) is shown in Fig. 14-a) and b) which compares two simulated spectra. The 

simulated grating has a length of 3 mm, κ = 1000 m-1, and the noise properties are Lc,SWR  = 200 

nm and σSWR = 3 nm. The white Gaussian noise was first generated randomly but the same noise 

vector was used for all curves. The blue curves, identical on both graphs, are the simulation 

results without a low-pass filter performed with grating sections length of ~ 10 nm. Therefore, 

the highest spatial frequency accurately modeled in this simulation is 50 µm-1, which is enough to 

cover 99 % of the noise Lorentzian spectral power density. The 1 % left is composed of higher 

spatial frequency components and is considered negligible. The red curves were calculated with 
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the same grating parameters, but the noise was low-pass filtered to model the grating spectral 

response on a bandwidth of 2Δλ = 10 nm and 2Δλ = 20 nm for Fig. 14 a) and b) respectively 

using Eq. (2.10). 

 
Fig. 14: Comparison of an IBGs simulated without using the low-pass filtering approach (in blue) and with a low-pass 

filter having a cut-off frequency defined by equation (2.10) (in red). The bandwidth of interest is a) 2Δλ = 10 nm 
(fc = 1.8x104 m-1) and b) 2Δλ =20 nm (fc = 3.6x104 m-1). 

The very good correspondence between the red and blue curves in the inner part of the 

spectrum of those two figures confirms that only the low spatial frequencies are relevant in the 

analysis of narrow-band IBG spectral responses. The higher frequencies do not have any impact 

around the Bragg grating resonance. Similarly the low-pass filter has totally suppressed the noise 

in the outer part of the spectrum. Finally, a comparison between those two figures shows that Eq. 

(2.10) is a very good approximation to determine the low-pass filter cut-off frequency as a 

function of the desired analysis bandwidth. 

Fig. 15 shows typical spectra simulated with this emulator with 1st order gratings of length 2.8 

mm and linear chirp of 14 nm/cm. The SWR standard deviation of figures a) and b) correspond to 

σSWR ~ 4 nm while figures c) and d) correspond to σSWR ~ 2 nm. The SWR autocorrelation length 

of figure a) and c) are equal to 300 nm while the autocorrelation length of figure b) and d) are 10 
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times smaller. From Fig. 15, it is clear that both Lc,SWR and σSWR are important parameters in IBG 

design which must be maintained as low as possible to allow the fabrication of complex grating 

structures. 

 
Fig. 15: Numerical simulations of chirped IBG with σSWR and Lc, SWR of, respectively a) 4 nm and 300 nm, b) 4 nm and 

30 nm c) 2 nm and 300 nm, and d) 2 nm and 30 nm. 

After a set of simulation, this emulator gives the fraction of the fabricated gratings that will 

meet specified requirements with the available roughness parameters. Consequently, if the yield 

is not sufficient, design modifications can be done without actually requiring fabrications and 

measurements, hence saving a huge amount of time, effort and resources. It should be noted that 

when the SWR parameters are too high, strong resonances might appear in the spectrum. This 
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kind of structure can be seen in Fig. 15-a) around 1550.5 nm. Those phase-shifts like structures 

are very damaging to the filtering performance, since it decreases the extinction ratio 

considerably and increases the ripple amplitude. 

To confirm the validity of this model, Fig. 16 compares typical experimental results of IBGs 

to simulations done using σSWR ~ 4 nm and Lc,SWR ~ 300 nm [94]. Of course, since a random 

process is involved, this comparison remains qualitative and the idea is not to retrieve 

experimental roughness parameters, which should be done by analyzing scanning electron 

microscope images of the waveguide sidewalls in order to obtain the experimental 

autocorrelation functionVII [95]–[97]. Nonetheless, the observed similarities between 

experimental and simulated spectra shown in Fig. 16 confirm the validity of this model. 

More specifically, in Fig. 16-a), the main similarity is the phase-shift like resonance in the 

uniform grating spectrum which adds a strong ripple in the main lobe. Another feature observed 

both experimentally and numerically is the reduction of the SLSR. In the case of the strong 

uniform gratings shown in Fig. 16-b), the ripples seen on the edge of the transmitted spectrum are 

similar in terms of amplitude and wavelength band. Experimentally, the measured spectrum has a 

noise floor around -40 dB due to a measurement limitation while the numerical simulation has a 

floor located at about -120 dB. In the chirped grating case of Fig. 16-c), the experimental ripple 

amplitude seems to be higher than the emulated one, which suggests that the emulated roughness 

parameters might be too small. However, since we are dealing with a random process, it is more 

reasonable to reproduce the analysis on a larger number of samples before drawing any 

conclusions. Nonetheless, the emulated results are close enough to the experimental ones to 

confirm that a major source of ripples is effectively coming from the phase noise created by 

SWR. 

                                                 

 

VII This work is done in the next chapter 
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Fig. 16: Comparison of 2.8 mm experimental (red), emulated (blue) and unperturbed (black)  a) weak uniform 

gratings, b) strong uniform gratings, and c) chirped gratings. 

2.6 – Numerical analysis 

In this section, we use the emulator developed in the last section to evaluate the roughness 

parameters necessary to achieve IBG apodized filters. If SWR is too large, its effect will damage 

or, ultimately, completely cancel the positive effects of grating apodization. To do this analysis, 

uniform and Gaussian apodized uniform gratings, which improves the SLSR, are analyzed and 

compared. The procedure presented here can be used to study any grating design in order to 

determine its expected fabrication yield against specific quality factors, i.e. SLSR, ripple 

amplitude, central wavelength position, etc. 

2.6.1 – Uniform gratings 

For uniform gratings, the performance criteria are the accuracy of the central wavelength and the 

SLSR. The central wavelength is obtained with a weighted mean of the emulated spectrum (i.e. 

The central wavelength is given by 
' '

2 2

1 1
( ) ( )

N N

c i i i
i i

r rλ λ λ λ
= =

=∑ ∑  where N’ is the length of the 
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wavelength vector and |r(λi)|2 is the reflection amplitude at λi.). To retrieve the SLSR, an ideal 

grating is simulated in order to obtain the spectral width of the main lobe and the ideal SLSR 

(shown in Fig. 17-a) by the dotted red line). Furthermore, using the spectral reflection of the 

emulated gratings, an algorithm determines which pair of zeros surrounding the main lobe is 

closest to this ideal width. This step is delicate since the emulated spectrum might be 

considerably affected by the phase noise. Those two zeros separate the main lobe and the side-

lobes regions. The SLSR is the difference, in dB, between the maximum reflectivity of the main-

lobe and side-lobe regions. Finally, because ripples in the main lobe are undesirable, only 

gratings with a smooth spectral response in the main-lobe region are considered usable. Unusable 

gratings are assigned a 0 dB SLSR. To identify them, the width of every grating, taking at the 

first zeroes of the spectrum, has been calculated. If this value was smaller than 60 % of the ideal 

grating width, it was assumed that the phase noise distortion of the central lobe spectrum was too 

high (i.e. it meant that a strong notch was present in the main lobe).  

In this section, four sets of gratings having L = 2.8 mm, κ = 1000 m-1 and roughness 

parameters values [σSWR, Lc,SWR] of respectively [4 nm, 300 nm], [4 nm, 50 nm], [2 nm, 300 nm],  

and [2 nm, 50 nm] have been simulated. Each set is composed of 1000 gratings.  

Fig. 17 shows the distribution obtained for the set [4 nm, 300 nm], which is the worst of the 

four. The dotted red lines represent the results of an ideal uniform grating. First, it should be 

mentioned that only ~ 65 % of the grating do not exhibit unwanted resonance and ripples in the 

main lobe. This decreases considerably the design yield and explains the large amount of SLSR 

occurrence smaller than 1 dB. As seen on the top figure, the SWR is very damaging for the 

SLSR. If a SLSR > 3 dB is required, those simulations shows that only ~ 10 % of the fabricated 

grating could be used. The thick black curve of Fig. 17-a) is a smoothed curve fit of the simulated 

data while the black curve of the bottom figure is a Gaussian fit. The calculated central position 

of the distribution is 1549.998 nm and the standard deviation is 42.37 pm, which strongly suggest 

that the mean grating wavelength, on average, is unaffected by the SWR, which is in agreement 

with the weak grating analysis presented in section VI. Those fits are used in Fig. 18 to compare 

results with different SWR parameters. 
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Fig. 17: Distribution of a) the SLSR and b) of the central wavelength of uniform IBGs having σSWR =4 nm and 

Lc,SWR =300 nm. The dotted red lines represent the results of an ideal uniform grating. The solid black line of a) is a 
smoothed curve of the simulated data while on b) it is a Gaussian fit. 

For the three other sets of simulations, the ripples in the main lobe are considerably reduced 

and less than 1 % of the gratings exhibit strong ripples with phase-shift like structures. For the set 

[4 nm, 50 nm], about 55 % of the grating exhibit SLSR > 3 dB while for the set [2 nm, 300 nm], 

it is about 45 %. For the set [2 nm, 50 nm], 95 % of the grating exhibits a SLSR larger than 3 dB 

and 30 % a SLSR larger than 5 dB.   

2.6.2 – Apodized gratings 

Apodized-amplitude uniform-period gratings are typically used to increase SLSR. In this section, 

we verify if a Gaussian apodization profile can be efficient in the presence of SWR having the 

same parameters as in section 2.6.1. We consider an apodization function having a full-width at 

half maximum of 1.2 mm, which gives in the ideal case (without noise) a SLSR of ~ 42 dB. For 

comparison sake, the ideal uniform grating (without noise and apodization) having the same 
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length and strength (i.e. ( )z dzκ∫  is not varied) should have a SLSR of ~ 10 dB while the ideal 

uniform grating having the same length and same maximum κ value, presented in section 2.6.1, 

should have a SLSR of ~ 6 dB. 

 
Fig. 18: Probability density function  of a) the SLSR and b) of central wavelength of uniform IBGs having different 

SWR parameters. The numbers in a) are the average SLSR values. 

 

The occurrence density distribution of both SLSR and central wavelength are shown in Fig. 

19. As expected, the noise reduces the SLSR improvement; for the set [4 nm, 300 nm], the 

average SLSR is only 7.3 dB, for the set [4 nm, 50 nm], the SLSR is 15.9 dB, for the set [2 nm, 

300 nm], the SLSR is 14.6 dB and for the set [2 nm, 50 nm], the SLSR is 23.1 dB. 
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Fig. 19: Probability density function of a) the SLSR and of b) the central wavelength of IBGS with Gaussian 

apodization and different SWR parameters. The numbers above the curves of a) are the average SLSR values. The dotted 
red line is the ideal SLSR, the dotted green line is the SLSR of the ideal unapodized grating having the same length and 
∫κ(z)dz while the dotted blue line is the SLSR of the ideal unapodized grating having the same length and same maximum κ 
value. 

2.6.3 – Discussion  

In Fig. 20-a) to d) we compare the spectrum of the four sets of unapodized gratings simulated 

with different roughness parameter. The blue curves are the average of all calculated spectrum 

(1000 gratings). The black curves delimit the insertion loss values which enclose 90 % of the 

simulated spectra while the red curves are typical simulated spectrum. A comparison between 

Fig. 20-a) and d) shows that, as the roughness parameters improve, the resonance of uniform 

gratings becomes more defined. Fig. 21 presents similar results but for the Gaussian-apodized 

grating case. Fig. 21-a) shows that, on average, apodization in the presence of high SWR 

parameters does not have much impact on the grating spectrum since the blue and the black 

curves are almost identical. However, when the SWR parameters are improved (Fig. 21-d)), the 



   

53 

 

apodization becomes more efficient, i.e. variations in the main lobe are strongly limited as seen 

from the black curves and the SLSR of this structure is considerably improved by apodization.  

We conclude that when the roughness parameters of fabricated waveguides are of the order of 

magnitude discussed in this article, IBG design should include a statistical analysis of the impact 

of SWR to provide the expected fabrication yield. This modeling can further be used to improve 

the design robustness to given SWR parameters. 

2.7 – Weak grating analysis 

The previous section gives information on grating performance limitations due to SWR through 

numerical analysis of figure of merits such as the SLSR. In this section we examine whether an 

analytical approach could provide more insights on the impact of the grating and phase noise 

parameters on the obtained spectral responses. We use an approach similar to [90] to derive the 

grating averaged spectral response in reflection and we compare it to the ideal grating response. 

This analytical approach is of interest because it gives the averaged grating spectrum without 

having to emulate thousands of identical IBG structures. We validate our analytical formulation 

by comparing it to the average of 1000 simulated spectra. Unfortunately, as can be seen by 

comparing the blue and the red curves of Fig. 20 and Fig. 21, the ensemble average does not 

reflect how much a typical spectrum is distorted. Consequently, this analysis cannot provide 

information on the fabrication yield of IBGs. More information on this aspect can be obtained by 

the calculation of the variance of grating spectral responses in the presence of SWR. We derive 

an analytical expression for this parameter that is valid for low reflectivity gratings and we 

compare it to the spectral reflectivity variance calculated numerically.  

We restrict our analysis to the case of weak gratings, for which we can obtain an analytical 

solution. We further restrict our analysis to SWR having small Lc,SWR and σSWR. Considering the 

weak grating approximation [64], with a real coupling coefficient and a detuning that varies as a 

function of the position, the grating reflectivity is given by Eq. (1.25). However, since the only 

random process is in the term ( )0
exp 2 ' ( ')

z
i dz zδ∫ , we separate the random term from the designed 

detuning (δd) factor and rewrite (1.25) as 
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Fig. 20: Calculated spectral response of uniform 

gratings with κL=2.8 and various phase noise parameters. 
The blue curves show the averaged spectrum of 1000 
gratings. The black curves delimit the insertion loss values 
that enclose 90 % of the simulated spectra while the red 
curves are typical spectra. 

 
Fig. 21: Calculated spectral response of apodized 

gratings with ∫κ(z)dz=1.3 and various phase noise 
parameters. The blue curves are the calculated averaged 
spectrum of 1000 gratings. The black curves delimit the 
insertion loss values that enclose 90 % of the simulated 
spectra while the red curves are typical spectra.         

 0
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2 ' ( ')( )

/2

( )
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d
L

i dz zi z

L

r dz z e e
δδκ ∫

−

∫= − ∫ , (2.11) 

where a new random distribution, δ∫(z), has been defined. We name δ∫(z) the detuning distribution 

and the index ∫ refers to the integral from 0 to z. The autocorrelation function of this distribution 

is obtained in Appendix B.1 for small Lc,SWR values. It should be mentioned that this 

approximation is still valid for LC,SWR up to ~ 100 µm. To analyze the impact of SWR on the 

grating spectral response, the average reflection in intensity of “noisy gratings” is obtained and 
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compared to the ideal grating reflection. We use the expected value operator (E[…]) and the nth 

moment of a probability distribution of a random process, X(t) defined by 

( ) ( )n n
XE X t x p x dx

∞

−∞
  =  ∫ , 

where pX is the probability density function of the random process X(t). E[rr*], where * refers to 

the complex conjugate, is the 1st moment, or the mean value, of the random process rr* and is 

given by 
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Since E[…] is a linear operator, it can be interchanged with the integral, which allows us to write 

E[rr*] as 
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Considering only the situation where the noise amplitude is relatively small, the exponential in 

the expected value operator can be expanded with a Taylor series, which gives 

 
[ ] ( ){

0 0

/2 /2

/2 /2

2 ' ( ') 2 ' ( ')

* 1 ( ) ( )

               ( ) ( )
z

d d

L L

L L

i d i dz z

E rr dz d E z

e z e
ζ

ζ δ ζ δ

ζ δ δ ζ

κ ζ κ

∫ ∫
− −

−

 ≈ +  

∫ ∫



∫ ∫
. (2.12) 

Finally, Eq. (2.12) can be simplified to 

 [ ]* nE rr R R≈ + , (2.13) 
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where R is the IBG reflection spectrum without noise, which can be simulated either by Eq. 

(1.25) or by the usual transfer matrix solution of the coupled mode theory, and Rn, the noise 

contribution, is given by 

0 0
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2 ' ( ') 2 ' ( ')
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d d
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i dz z i d
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∫ ∫ , 

where ( ) ( )R E zδ δ δ ζ
∫ ∫ ∫

 =   is the detuning distribution autocorrelation function derived in 

Appendix B.1. We thus obtain 
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 (2.14) 

and, in the case of uniform grating, Eq. (2.14) simplifies to  

 ( ) ( )
2

2
2

2
0

sin 22 2 12 cos
2 2

dSWR
n c d

d d

LC LR L L
n L

δπ σ κ δ
δ δ

   
= −    Λ   

. (2.15) 

To examine the validity of this approach, Fig. 22 compares Eq. (2.13) and (2.15) to the mean 

of a thousand emulated weak uniform gratings having different phase noise characteristics. The 

correspondence between those curves is very good for the considered grating strength and phase 

noise. Of course we expect this model to become less accurate as larger coupling coefficient and 

phase noise values are used. Remember that the purpose of this analysis is to get a better 

understanding of the impact of each parameter and not to achieve precise analysis of specific 

grating designs.  
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Fig. 22: Comparison between analytical analysis (black) of the mean spectrum of uniform grating with SWR (Eqs. 

(2.13) and (2.15)) and the average of 1000 spectrum numerically simulated (blue). The red curves are the unperturbed 
spectral responses. a) → b) shows the impact of increasing L, b) → c) shows the impact of increasing Lc,SWR, c) → d) shows 
the impact of increasing σSWR, c) → e) shows the impact of increasing κL 

As shown by Eq. (2.13), the mean reflection spectrum of a noisy grating is composed of the 

sum of the ideal reflection spectrum and another term (Rn) associated to the noise contribution, 

which is plotted in Fig. 23 and Fig. 24 for various grating parameters. In [90], E[rr*] was 

obtained by solving the coupled mode equations by a perturbative approach. The conclusion of 

the study was that the visibility of the grating resonances is strongly decreased by the presence of 
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SWR, as can be observed in Fig. 22. However, an analysis only based on the study of the mean 

spectrum does not show how the spectrum of a single grating is distorted, which can lead to a 

wrong interpretation of the impact of the SWR on the grating spectrum. Consequently, since we 

are interested by knowing how much a grating is expected to deviate from the ensemble average, 

the remaining part of this section is dedicated to the study of the spectral response variance, σR
2, 

and the standard deviation, σR, of a uniform grating. In this case, the second moment of rr* is 

given by 
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Fig. 23: Comparison of Rn of three gratings having the same κL but different lengths. 

Once again, if we only consider cases where the noise amplitude is relatively small, the second 

moment is 

 [ ] 2
,* * 4 2 (4)n n rE rr rr R RR RR O= + − + , (2.17) 

where Rn,r, the term that involves E[δ(z)δ(ζ)] and E[δ(z’)δ(ζ’)], is given by 
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and O(4), the term that involves the fourth moment of δ(z), is given in appendix B.2. Finally, the 

variance of rr* is given by 
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Fig. 24: Comparison of Rn of three gratings having the same length but different κL.    

Fig. 25 compares σR calculated with Eq. (2.19) to the numerical one obtained from the 

simulation of a 1000 gratings. The analytical approximation of the σR is very close to the 

numerical once, except for Fig. 25-c). In this case, the grating reflection is too high to obtain a 

good approximation of the second moment.  

Those curves show that the spectral distortions are relatively small near the Bragg wavelength 

and that the distortions exhibit two strong maxima on both sides of the grating main lobe. This 

explains why, as the noise increases, the central wavelength of the gratings shifts from the 
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unperturbed one as shown in Fig. 17. In Eq. (1.25), the operations that link the noise of the 

waveguide width to the grating spectral response are linear. Consequently, the distribution of rr* 

remains normal and one can evaluate with Eqs. (2.13) and (2.19) the percentage of gratings that 

will be within a specified spectral mask. For example, the area delimited by the curves  
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encloses ~70 % of the ensemble spectra as shown in Fig. 26. Consequently,  

 ( ) ( )lower bound upper bound first lobeth B upSLSR R R Rλ λ= −  (2.21) 

gives the SLSR threshold (SLSRth) that will be met by 70 % of the gratings.  

 
Fig. 25: Comparison between analytical analysis (black) of the standard deviation of uniform grating with SWR and 

the standard deviation of 1000 spectrum numerically simulated (blue). The noise and grating parameters correspond to 
the parameters of Fig. 22-a), b) and e). 
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Fig. 26: The blue curve shows the theoretical mean spectrum of a 1 mm long grating having a κL = 0.8, Lc = 20 nm and 

σ, SWR = 4 nm while the black curves delimit the reflection values that enclose ~70 % of the spectra while the red curve is a 
typical simulated spectrum. 

To obtain more information on the parameters leading to large spectral reflectivity distortion 

we examine more closely the maxima of σR for which the dominant term is ( ),2 ,n n rR R R− which 

gives 
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We find that the maxima are located at  
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Eq. (2.24) gives good insights on the important parameters defining grating noise amplitude, such 

as the grating length, strength and resonant wavelength as well as the SWR properties (σSWR and 

Lc,SWR). Eq. (2.24)  shows that long gratings are more affected by SWR since max(σR)  is 

proportional to the square of κ and to  L5/2. That means that for two uniform gratings with the 

same reflectivity (identical κL) but different lengths, max(σR) increases with √L. Eq. (2.24) also 

shows that the noise contribution to the grating distortion increases as the square of κL, but 

linearly with σSWR and CSWR,  and as a square root function with Lc,SWR. Finally, a careful analysis 

of Eq. (2.24) shows that using the Bragg filter at higher λ (i.e. higher n0Λ) will improve its 

robustness to SWR. 

2.8 – Discussion  

We now examine how we can reduce the impact of SWR on IBG spectral response. Eq. (2.4) 

indicates that careful waveguide design can decrease the impact of fabrication-limited SWR. For 

example, the use of waveguides with width larger than w0 ~ 400 nm causes CSWR to decrease [53] 

(Fig. 3-b)). This approach should be done carefully since the waveguide becomes multimode for 

w0 > ~ 600 nm, however selective mode excitation could be achieved with a hybrid waveguide 

structure [98]. This design would connect a multimode waveguide, containing the IBG, to a 

single TE-mode waveguides with adiabatic tapers thus coupling the power solely in the 

fundamental TE-mode of the multimode waveguide.  

The use of other types of waveguide such as quasi-planar waveguides [99], which are 

intermediate structures between highly confined photonic wires and micrometer scale ridge 

waveguides, could also reduce σλB through a smaller CSWR. However, less confined waveguides 

are more affected by curvatures and the use of those waveguides will diminish the capability to 

achieve large scale integration of IBGs [83].  

2.9 – Conclusion 

In this chapter, we have examined and modeled the importance of SWR on IBGs spectral 

response. Both the roughness amplitude and correlation length have been shown to be critical to 

IBGs performance. We proposed a technique to emulate IBG spectral responses in the presence 
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of an imperfect waveguide. This numerical analysis is useful to design the long IBG structures 

necessary to develop filters with elaborate spectral responses. This tool should prove useful in 

establishing the fabrication parameters required to obtain a target fabrication yield for IBG 

fabricated in SOI nanowires. This technology has SWR that is far from being negligible but that 

could be improved through future process developments. In order to save computation time, our 

analysis also showed that only the low frequency components of the noise are significant to the 

IBG spectral response. 

Finally, we have presented an analytic study of SWR for weak gratings having short 

correlation lengths and small roughness variances. A general analytical expression of the 

averaged spectrum in presence of the phase noise caused by SWR has been obtained, which 

could be used to analyze more complex weak gratings. Using weak uniform gratings as an 

example, we found an analytical expression for the standard deviation of the spectral response 

that gives information on the spread of the grating reflection spectra around the average. This 

analysis shows why the noise has a relatively small impact on the reflection strength at the Bragg 

wavelength while larger distortions appear on each side of the main reflection peak. The 

analytical expressions also help to evaluate how the noise impact depends on other grating 

parameters. We have shown that the noise contribution to the grating distortion increases as the 

square of κL, but linearly with σSWR and CSWR, and as a square root function with Lc,SWR. 

2.10 – Supplementary information  

This section discusses the compatibility of the coupled mode theory with transfer matrices having 

short layer thickness and with the presence of high spatial frequency content. It is usual in 

references on Bragg gratings to have the requirement that the layer thickness should be larger 

than the grating period for the coupled mode theory to be valid [100]. However, the “restrictive” 

approximation is that the optical field should be varying slowly (approximation done at Eq. 

(1.11)). As a result, if the “excessive” discretization done in section 2.5 does not lead to an 

optical field that is varying too fast, the coupled mode theory should remain valid. Fig. 14 shows 

that it is the case in this work since there are negligible variations in the grating band between the 

simulations done with different layer thickness (~ 10 nm and ~ 10 µm) which implies that the 

algorithm does not diverge as the layer thickness decreases. Furthermore, even if the grating 
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structure is varying rapidly, due to the SWR for example, the coupled mode equations are still 

valid if the roughness effect on the spectrum can be seen as a small perturbation [90]. 

To confirm this point, numerical simulation has been done with a finite difference time 

domain (FDTD) simulator. The program is FDTD Solution from Lumerical. The 2D simulation 

has been done has followed: first, the spectral response of a 700 period’s uniform grating has 

been simulated (in blue in Fig. 27). The grating has corrugation amplitudes of 50 nm on a 850 nm 

wide waveguide. The period is constant at a value of 280 nm and the grid size along the 

waveguide axis is 10 nm. The same simulation has been done using the coupled mode theory 

solved by the transfer matrix approach. The coupling coefficient has been matched to fit the 

maximal reflectivity value and the result is shown in black in Fig. 27. As expected, the two 

curves correspond well to each other over the whole grating band, which confirm the validity of 

the coupled mode equations in this situation. This is so because the grating coupling coefficient is 

relatively weak (~ 90 cm-1) as well as the mode overlap mismatch between the two sections 

within a period (< 2 %); thus the two main approximations required for the coupled mode 

equations to be valid are respected.  

 
Fig. 27: Spectral response of a 700 periods uniform grating simulated by a FDTD simulator and by a matrix solution 

of the coupled mode equations. This figure also shows the spectrum of similar gratings but with high frequency 
modulation. 
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Another FDTD simulation has been done, and shown in red in Fig. 27, with the exact same 

parameters but with the difference that the period was modified alternatively by 20 nm (i.e. 260 

nm, 300 nm, 260 nm and so on) which introduce a high frequency variation in the grating 

structure but with the same average period. Interestingly, the differences between this latter 

simulation and the two previous one are negligible. This result, is predicted by the coupled mode 

theory which allows us to conclude that this latter theory is still valid with the presence of high 

frequency perturbations having a small amplitude (i.e. with the presence of SWR). Another very 

important conclusion that can be drawn from these simulations is that even if CMOS foundries 

have grid rules, which mean that the position of each polygon lattices is discretized, it does not 

have an impact on the grating spectral response. As a result, it is possible to design a grating with 

a local period of 302.5 nm on a 5 nm grid, for example, if the local period is alternated between 

300 nm and 305 nm. This knowledge is particularly useful to fabricate gratings with a 

continuously varying period. 

Finally, two more simulations have been done, but with larger phase modulation amplitude. 

The period was modified alternatively by 40 nm and 60 nm around the average period. As shown 

in cyan and purple in Fig. 27, when the modulation amplitude is increased, the grating reflectivity 

is decreased. According to Eq. (2.9), when ϕ increases, ( )0J φ decreases, which reduces the 

Bragg grating reflectivity to the benefit of the higher order phase modulation terms, since the 

terms ( )  (for 0)mJ mφ ≠  increase. Thus, this result is predicted both by the coupled mode 

equations and by FDTD simulations. However, the asymmetry shown in the main lobe of the 

purple curve shows that, for high spatial frequency fluctuations having significant amplitude, 

FDTD and coupled mode equations predictions diverge from each other’s. Furthermore, although 

the coupling coefficient is weak in this example, the correspondence between the coupling 

coefficient strength obtained with 3D-FDTD simulation and Eq. (1.3) should be done to fully 

understand the limit of the coupled mode equation model; the accuracy of the model is expected 

to be reduced for narrower waveguides. Further simulations in these directions should be done to 

analyse thoroughly the limit of the coupled mode theory of silicon photonic IBGs, but this work 

falls out of the scope of this thesis since the gratings that have been used are much weaker and 

the phase modulation added to the grating structure had much lower frequency (chapter 4 and 5).  
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Chapter 3: Characterization and Reduction of Spectral 

Distortion in Silicon-on-Insulator Integrated Bragg Grating  

The main difficulty that arises when using the model developed in the previous chapter is to 

obtain the values describing the SWR (σSWR and Lc,SWR) from CMOS compatible foundries. It was 

initially anticipated that the SWR would be a “guaranteed” parameter from those foundries in a 

similar manner as the waveguide propagation loss. Unfortunately, this information is not known 

by the fab or, at least, not disclosed. To show the impact of the SWR on the grating spectral 

response, in section 2.5 and 2.6, we estimated these values from the partial information 

divulgated by the foundries at the time. Although this “guess” was appropriate to describe how to 

use the model, it is not suitable to obtain quantitative information on the grating response, the 

fabrication yield prediction and so on. As a result, the retrieval of these parameters is a critical 

issue. 

In chapter 2, the relevant parameters that influence the phase noise have been identified and 

the implementation of IBGs in hybrid singlemode/multimode waveguides has been proposed to 

significantly reduce their impact. This hybrid approach is used in chapters 3 to 5. However, when 

using such hybrid waveguides, the SWR is not the dominant phase noise source anymore which 

is why, in this chapter, we also have improved the model by incorporating the effect of the WHF. 

This chapter also partially characterizes this phenomenon and provides another approach to 

reduce this second phase noise source: the use of compact IBG in spiral waveguides. Using both 

phase noise reduction techniques, we fabricated the IBG on SOI having, to our knowledge, the 

narrowest 3 dB bandwidth (i.e. 0.14 nm). This chapter is a reproduction of [42], a paper 

published in Optics Express in 2013 while the work on spiral IBGs is presented in detail in 

chapter 5 [101].  

3.1 – Abstract 

A major issue in the fabrication of IBG filters in highly confined waveguides is the average 

effective index fluctuations caused by waveguide dimension variations. Lateral variations are 

caused by the SWR created during the etching process while vertical variations are coming from 

the silicon waveguide thickness non-uniformity. Grating spectral distortions are known to result 
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solely from the low spatial frequency components of these variations. As a result, in this work, 

we present an experimental method to quantify such relevant spatial components by stitching a 

hundred high-resolution SEM images. Additionally, we propose two techniques to reduce, in the 

design, the phase noise impact on IBGs without relying on fabrication process improvements. 

More specifically, we show that the use of hybrid multimode/singlemode waveguides reduce by 

more than one order of magnitude the effect of SWR on IBGs while we show that the fabrication 

of ultra-compact gratings in spiral waveguides mitigate the impact of the silicon layer thickness 

variations. 

3.2 – Introduction 

Due to its compatibility with CMOS processes, silicon photonics has emerged as an attractive 

solution for the fabrication of low-cost small-footprint photonic integrated circuits. Alongside 

these developments, FBGs provide filters with versatile and precise spectral responses, but their 

footprint could be significantly reduced if integrated in SOI platform. IBGs with complex 

spectral responses require long structures with tens of thousands of periods but, unfortunately, 

these long gratings are sensitive to phase noise [41]. The grating phase defines the local Bragg 

wavelength or, equivalently, the grating detuning coefficient whereas the grating strength refers 

to the coupling coefficient. In this chapter, we therefore use the term “phase noise” to regroup 

perturbations that have an impact on the local Bragg wavelength of the grating [41]. Any 

perturbation to the waveguide geometry that changes its effective refractive index is thus a source 

of phase noise that can induce distortion in the grating spectral response. Recent work reported 

significant spectral distortions of IBGs in SOI due to waveguide dimension variations that 

perturb the mode effective index [41], [102]. This effect is significant due to the high index 

contrast of SOI waveguides. Waveguide width variations are caused by the SWR introduced by 

the lithography and etching processes whereas the height variations are caused by the silicon 

layer thinning and polishing processes, i.e. WHF. Since these phenomena modify the waveguide 

effective index, they consequently perturb the grating phase or equivalently introduce variations 

in the local Bragg wavelength along the waveguide.  

The study of waveguide non-uniformities in SOI has recently received growing attention due 

to the associated performance degradation observed for many devices. The impact of SWR was 
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mostly studied in the context of waveguide group delay [103], propagation losses [85], [104] and 

spectral distortions in IBGs [41], while WHF was recently identified as a major concern in the 

reproducibility of micro-ring [105] and IBGs [47] resonances. Furthermore, much work was 

already dedicated to reduction of the SWR [88], [89], [106], [107] as well as to the improvement 

of silicon thickness uniformity [108].  

The modeling of SWR and its impact on IBG spectral responses was discussed in [41] (the 

previous chapter), but this work did not include the effect of WHF. Furthermore, the 

experimental characterization of those two random processes has never been done in the context 

of IBGs that are more sensitive to dimension variations with low spatial frequency components, 

in contrast to propagation loss that is more severely affected by the high spatial frequency 

components and less by the low frequency ones. Thus, the first objective of this chapter is to 

present an experimental method to quantify the phase noise terms that affect the quality of IBG 

spectral responses. Those parameters can be used as inputs to a Bragg grating emulator in order 

to predict device yield [41]. The second objective is to demonstrate how the phase noise can be 

reduced by appropriate design, i.e. without relying on fabrication process improvements. It 

should be mentioned that propagation loss also affects IBGs spectral response. However this 

phenomenon can already be considered by adding a complex index of refraction in the coupled-

mode equations.  

This chapter is organized as follows: section 3.3 presents the phase-noise model that links the 

SWR and WHF random processes to the Bragg wavelength fluctuations observed in IBGs. 

Previous studies have already addressed the characterization of the SWR random process using 

scanning electron microscope (SEM) images ([95], [104], [109], [110] to name a few). However, 

these previous reports did not characterize the low spatial frequency content of SWR, which is 

critical to predict spectral distortions of IBGs, because the required characterization length 

exceeds the field-of-view (FOV) of SEM images. Consequently, we propose in section 3.4 an 

experimental method to increase the length over which the waveguide is analyzed, thus enabling 

the characterization of the low spatial frequency content of SWR. We also discuss how to extract 

the parameters characterizing WHF from IBGs optical measurements. Finally, section 3.5 

presents two techniques to improve IBG robustness to phase noise: the first one is to fabricate 

IBGs on wider waveguide to reduce the impact of SWR, while the second one proposes to 
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fabricate ultra-compact gratings to mitigate the impact of the WHF, i.e. using spiral IBGs [83], 

[101]. 

3.3 – Phase-noise model 

This section presents the theoretical background that links the parameters of the SWR and the 

WHF random processes to the standard deviation of the grating Bragg wavelength profile. These 

two processes are modeled by a normal distribution and an exponentially decaying 

autocorrelation function [86], [92], [111]. In section 3.4, we will show that this model provides a 

good fit to the SWR experimental results and we assume that this model could be extended to the 

WHF. The good correspondence between the model and the experimental results presented in the 

following sections supports this hypothesis. For the random processes SWR and WHF, the 

autocorrelation function are defined by 
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where Δy is the wafer height deviation from the average silicon thickness (Δx and Δz were 

defined in the previous section). The axes are indicated on the SEM image of Fig. 28-a), which 

shows a typical top-down image of a photonic wire. We use the usual exponential function to 

model the autocorrelation function of the SWR and the WHF processes, which is given by [92] 
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Resulting from Eq. (3.2), the power spectral density functions are given by 
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The parameters describing the SWR (σSWR and Lc,SWR) are determined in section 3.4.1 using SEM 

images. Due to experimental limitations, a combination of the parameters describing the WHF 

(σWHF and Lc,WHF) will be extracted using optical measurements in section 3.4.2.  

In order to analyze IBG phase noise, the model describing SWR and WHF must be linked to 

the variations of the local Bragg wavelength. Since the standard deviation of the Bragg 

wavelength is related to the effective index standard deviation, we write  

 2
B nλσ σ= Λ . (3.4) 

Considering both the presence of SWR and WHF noise sources, σn is given by 

 
2 2 2 22n SWR SWR WHF WHFC Cσ σ σ= + , (3.5) 

instead of Eq (2.4), where CWHF is the proportionality constants that link the waveguide height 

variations to an effective index variation. This parameter is evaluated around the waveguide 

average height using a finite element mode solver.  

In analogy to the phase modulation of a carrier that introduces sidebands around the carrier 

frequency, spatial frequency components of grating phase noise introduce spectral distortions 

located at specific optical frequency bands of the grating spectrum. As the spatial frequency of 

the phase noise increases, the distortions will appear in frequency bands located farther away 

from the grating resonance [41]. Consequently, the grating spectral response is not affected by 

high frequency noise components because their impact will be outside the relevant optical 

bandwidth. Furthermore, because experimental measurements have a limited dynamic range, the 

distortions induced by high frequency noise content are often below the noise floor of the 

detection system. Thus, since only low spatial frequencies have an impact on the grating spectral 

response, the noise can be filtered to consider only such frequencies lower than the cut-off 
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frequency, fc, given by Eq. (2.10) [35], [41]. Considering that Bλ λ>> ∆ , Eq. (2.10) can be 

simplified to  

 
2

2 g
c

B

n
f

λ
λ
∆

≈ . (3.6) 

Since the integral of the power spectral density over the frequencies is, by definition, equal to the 

variance of the noise, the variance of the filtered noise, which has a significant impact on IBGs 

spectral response and is noted with “~”, is defined by 

  ( )
2

2
2 2 2

4 .
4 1

c

c

f c c
x z zf

c c

L fG f df
L f
σσ

π∆−
= =

+∫  (3.7) 

In the special case where the cut-off frequency is significantly smaller than (2πLc)-1, 2σ  can be 

well approximated by 4𝜎2𝐿𝑐𝑓𝑐. The filtered variances are thus given by 
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and the filtered Bragg wavelength standard deviation 
Bλ

σ  is obtained by using Eq. (3.8) in Eqs. 

(3.4) and (3.5), such as 
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where nσ is the filtered effective index standard deviation, which results in 
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By using the parameters that describe the waveguide dimension fluctuations experimentally 

determined in section 3, Eq. (3.10) will be used in section 4 to compare the model to the 

experimentally retrieved Bragg wavelength standard deviations. Eq. (3.10) must be used instead 



   

73 

 

of Eq. (3.4) since the experimental measurements of the Bragg wavelength were low-pass filtered 

by the optical characterization process because the noise floor of the spectral measurement hides 

the higher frequency content of the noise. 

3.4 – Phase-noise characterization 

As mentioned previously, the measurement of the low frequency content is critical for the 

modeling of IBG spectral responses. In section 3.1, the SWR parameters will be directly 

measured by stitching high-resolution images from a SEM. In section 3.2, the characterization of 

WHF will be done by optical measurements of IBGs. The parameters will be extracted using the 

results of section 3.1 and by reconstructing the grating structure using an integral layer peeling 

algorithm [73]. Through Eq. (9), the grating phase gives information on the WHF parameters but 

this method only allows the determination of the product 1/2
,WHF c WHFLσ .Unfortunately, atomic force 

microscope (AFM) images could not be used to properly characterize the surface because, in 

order to measure low frequency components, the scan size should be made as large as possible. 

However, the mechanical properties of the piezoelectric element that moves the AFM probe near 

the surface introduce 2nd and 3rd order curvatures that are usually called “bow”. These phenomena 

increase with the scan size. As a result, the bow must be removed using a third order polynomial 

regression, which suppressed the low frequency contents that needs to be characterize.  

3.4.1 – Characterization of sidewall roughness 

The high resolution images needed to resolve the SWR random process having a σSWR of typically 

a few nanometers can be obtained with SEM images [95], [104], [109], [110]. The algorithm 

used in this chapter to determine the sidewall position follows closely the one presented in [95] 

and is summarized in section 3.4.1.1. However, those measurements require special care since 

high-resolution SEM pictures provide a relatively limited FOV. If the FOV is too small, Lc will 

be under-estimated. Consequently, to increase the FOV along the waveguide propagation axis 

without degrading the resolution, hundreds of successive images have been taken with an overlap 

between them of roughly half a FOV. An algorithm was developed to properly align them in 

order to obtain the waveguide width fluctuation over a length of ~ 100 µm. Section 3.4.1.2 
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presents the alignment algorithm while the retrieval of the SWR parameters is described in 

section 3.4.1.3. 

Measurements reported in this section were made on uncorrelated straight SOI waveguides 

having nominal cross sections of 220 nm x 500 nm that were fabricated using 193 nm DUV 

photolithography (IMEC). The SEM was a Zeiss 1540XB CrossBeam. The picture magnification 

was 60 kX and the acceleration tension was 20 kV which results in a probe size of 1.1 nm. The 

FOV was about 1.9 µm along the waveguide axis. 

3.4.1.1 – Waveguide edge determination 

The algorithm used to determine the positions of the waveguide edges is based on a signal-

threshold analysis, i.e. the edges are determined using a threshold value on the signal itself, as 

opposed to a derivate-threshold analysis that determines the edges using a threshold on the 

derivative signal. The derivative-threshold analysis has been discarded due to its higher noise 

sensitivity [95].  

As can be seen in Fig. 28, the waveguide is defined by two bright lines. The algorithm can be 

applied either on the inner part or the outer part of the lines or could locate the position of the 

maximal brightness. However, it has been shown [95] that the retrieved edge functions using 

those three positions are alike. In this work, we chose to analyze the SWR using the outer part of 

the bright lines.  

The first step after the image has been transformed into an array of pixel is to determine the 

pixel size (1.86 nm in this chapter; the picture length along the waveguide axis is 

1024·1.86 nm = 1905 nm). The pixel size evaluation is done by the SEM and this value does not 

change from one picture to another. Afterward, since the image noise is white whereas the useful 

information is mostly composed of low frequencies, the images are low-pass filtered using a 

Gaussian filter having a size of 5 x 5 pixels [95]. Then, the average background intensity is 

subtracted to the filtered-picture and the intensity is normalized to the maximal intensity value of 

the waveguide edge. Consequently, the threshold value is a ratio smaller than 1 (0.2 in this 

chapter as shown by the black line in Fig. 29). Since the intensity might differ between the two 

waveguide walls, the normalization is done independently on both sides of the waveguide which 



   

75 

 

explains the discontinuity at the center of the intensity profile shown in Fig. 29. At this point, the 

sidewall positions can be easily determined. Fig. 30 shows the top-down SEM image converted 

into a binary image with the retrieved sidewall positions.  

 
Fig. 28: Typical top-down SEM image of a photonic wire  

 

 
Fig. 29: Typical intensity profile of a pixel column (taken at the position of the red line in Fig. 28.  
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Fig. 30: Typical top-down SEM image converted into a binary image with the threshold shown by the black line in Fig. 

29. The red lines are the outer waveguide sidewalls. 

To conclude, pixel size up to 4 nm does not have significant impact on the edge position [95]. 

As a result, the resolution used for this measurement is sufficient for our purpose. Furthermore, 

the retrieved sidewall profile is not changing as a function of the threshold value [95], aside for a 

position shift (as long as the threshold is fixed to a value superior to the noise floor). However, 

since we are not interested by the absolute position of the sidewall but by its variation around its 

mean, as will be discussed in more details in the next subsection, the choice of the threshold has 

no impact on the waveguide width variation measurement. 

3.4.1.2 – Picture alignment  

Before aligning the pictures, the systematic source of error coming from the tilt that exists 

between the sample surface and the electron beam must be considered. Ideally, the beam would 

be at normal incidence on the silicon layer; however, a small residual tilt can have a major impact 

on the waveguide roughness analysis. The misalignment of the e-beam can be separated in three 

components; a rotation around the x-axis, the y-axis and the z-axis. 

Rotation around the y-axis is the most obvious since it simply rotates the waveguide in the 

picture. Although this effect is often corrected by doing a linear fit of the retrieved sidewall 

function and by rotating numerically the picture accordingly, this cannot be done when analysing 
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low frequency components since this operation suppresses an important portion of these low 

frequencies. Consequently, instead of correcting the picture misalignment and analysing the two 

sidewalls independently, it is wiser to analyse the waveguide width fluctuation instead, which is 

defined by removing w0 to the waveguide width profile. This procedure cancels out the 

misalignment without influencing the retrieved SWR parameter since both sides of the 

waveguide are equally affected by this tilt and because the random processes affecting both 

sidewalls are identical. Therefore, the retrieved Lc parameter of the waveguide width fluctuation 

is the same as Lc,SWR while the retrieved σ should be divided by a factor √2 to obtain σSWR.  

The rotation around the z-axis has a negligible impact since it simply reduce w0 in a similar 

manner on every picture. Once again, we are not interested in the absolute width value. As a 

result, this error source is not relevant. 

 However, the rotation around the x-axis is critical. This tilt has a dramatic impact on the 

measured waveguide width fluctuation since it systematically increases the width on one side of 

the picture and reduces it on the other side. Obviously, this effect is very small and, when one 

analyzes one SEM picture at a time, this effect can easily be neglected. However, in this work, 

since a hundred pictures are put together, this effect adds up and must be removed. To this end, 

we superimposed every waveguide width fluctuation measurement from the different images as a 

function of pixel number as shown in Fig. 31. Since a random process with zero-mean is 

involved, the waveguide width fluctuation averaged over every picture should be equal to zero 

for every pixel. However, as can be seen from this figure, there is a small residual slope (in blue) 

which would result in a waveguide width variation of ~ 0.6 nm/picture (or equivalently 0.315 

nm/µm) if this effect is not removed. Obviously, the left side of the sample was closer to the e-

beam source than the right side for this measurement. It is interesting to evaluate what would be 

the Bragg wavelength chirp of a uniform grating if one was fabricated on this nominally constant 

waveguide. A grating having a length of 100 µm would have a waveguide width varying by 

about 30 nm. Thus, considering the effective index change of a waveguide having a width 

varying from 480 nm to 510 nm, the associate Bragg wavelength chirp of a uniform Bragg 

grating would be of the order of ~ 20 nm/100 µm (i.e. 2000 nm/cm). However, such chirp ratio 

has never been measured on a nominally straight waveguide (i.e. narrowband Bragg gratings can 

be fabricated with this technology [47], [102]). As a result, this slope is obviously a measurement 
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artifact and has been removed on every picture. Finally, if the waveguide would have been 

designed in a tapered-shaped instead, this procedure would also have removed this linear width 

variation. However, since we are interested in the random process that affects the waveguide 

width, we can discard any source of systematic width variation. 

 
Fig. 31: Typical superposition of the waveguide width fluctuation from every image of a set of measurement. The thick 

blue line is the linear regression of the average waveguide width fluctuation per pixel (black curve). 

The translation from one picture to another is about half a FOV. However, we must apply a 

correction to both w0 and the waveguide axis (z-axis), in order to stitch together the images and 

be able to extract the width fluctuation profile over many tens of microns. For the z-alignment, 

the retrieved waveguide width of the Mth image is scanned over the M - 1 image until the 

fluctuations are matched. The optimal alignment corresponds to the position where the root mean 

square error is minimal. This is necessary because the translation stage of the SEM has a 

precision of about ± 0.3 µm. Fortunately the presence of high frequency components in the 

waveguide width measurement eases the alignment process.   

An error in w0 is introduced by the focus variations (working distance) from one picture to 

another. To illustrate this point, many pictures of a waveguide were taken at the same position 

but with the working distance being modified around the optimal value. Fig. 32 shows the 

superposition of the different measurements of waveguide width fluctuations once w0 is removed. 

It can be noticed that the measured waveguide width fluctuations are not changing significantly, 
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which means that a small error in the focus will not affect significantly the roughness analysis 

although, as shown in Fig. 33, w0 is strongly modified. The waveguide image remains clear on a 

small range of working distance, which corresponds to a variation of the measured average 

waveguide width of about 5 nm. Sensitivity of waveguide width measurements to focus 

adjustments makes this parameter hard to characterize experimentally. As a result, because of this 

error in waveguide width measurement, a correction must be introduced which is simply done by 

adjusting the width of the image M + 1 to the width of the Mth image. This procedure is not 

problematic since we are only interested in the waveguide width fluctuation. Once every images 

are properly aligned, the average width is removed which provides the waveguide width 

fluctuation.  

 
Fig. 32: Waveguide width fluctuation obtained from top-down SEM taken at the same location with different working 

distance. 

The red, blue and green curves of Fig. 34 are typical results of waveguide width fluctuations 

retrieved from consecutive SEM measurements after a proper alignment. The good 

correspondence of the waveguide width fluctuations measured in overlapping regions gives good 

confidence in the precision of this technique. The black curve in Fig. 34 and Fig. 35 is the final 

profile that will be used from now on and was obtained by averaging the superimposed curves.  
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Fig. 33: Dependency of the average waveguide width caused by a variation of the working distance. 

3.4.1.3 – Extraction of sidewall roughness parameters 

To obtain the parameters σSWR and LSWR, the autocorrelation of the waveguide width fluctuation 

function is calculated as displayed in Fig. 36. The amplitude at Δz = 0 is, by definition, the 

variance of the process (i.e. to obtain the SWR variance, this value must be divided by a factor 2). 

In the region Δz < 1 µm, the autocorrelation of the raw data experiences a very steep decay 

(identified by the red arrows). This region is associated to high frequency fluctuations and, since 

the high spatial frequency has no impact on IBG spectral response, the retrieved profile (in black 

in Fig. 35) can be low-pass filtered with a cut-off frequency of ~ 0.7 µm-1 (in blue in Fig. 35). 

This cut-off frequency has been optimized in order to suppress the steep decay around Δz = 0 

while maintaining the other parts of the function unchanged as shown by the blue curve of Fig. 

36. This part of the autocorrelation function that is removed can be obtained by analyzing a series 

of SEM images without the alignment procedure explained above. Those high frequency 

components are irrelevant for IBG analysis, but are critical to propagation loss calculations [104], 

[109]. The noise spatial frequency range relevant for propagation loss is discussed in [111]. 

Inversely, the low frequency components of waveguide width fluctuations discussed in this 

chapter are not important to characterize propagation loss.  
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Fig. 34: Typical overlap of the waveguide width fluctuation between three consecutive images (red, blue and green). 

The black curve is the averaged waveguide width as a function of position. 

 
Fig. 35: Typical waveguide width fluctuation profile as a function of position. The black line is the raw data while the 

blue line is a filtered version of the waveguide width profile. 

The red curve of Fig. 36 shows the autocorrelation, after filtering, modeled by a decaying 

exponential function. It should be mentioned that the filtered part of the waveguide width 

fluctuation measurement (high spatial frequencies), by itself, can also be modeled by a decaying 

exponential function as mentioned in [109], but obviously with a smaller autocorrelation length 
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(a few tens to a few hundreds of nm). If one is interested to consider both the high and the low 

spatial frequencies of the waveguide SWR, the autocorrelation could be parameterized by the 

summation of two decaying exponential functions, with their respective set of parameters, σSWR 

and LSWR.  

 
Fig. 36: Autocorrelation function of the waveguide width fluctuation of the filtered (blue) and unfiltered (black) curve 

of Fig. 35. The red curve is the decaying exponential autocorrelation fit.  

The whole measurement procedure was repeated for seven photonic wires over a length of 

~ 100 µm on three chips of the same wafer. The retrieved parameters are: σSWR = 1.8 nm ± 0.1 nm 

and LSWR = 14 200 nm ± 600 nmVIII. The measurement length of 100 µm (i.e. 7x longer than the 

measured autocorrelation length) seems sufficient since it has been shown that the measurement 

length of a process to be characterized should be longer than the autocorrelation length by a 

factor in the range between three to eight [112]–[114]IX.  

                                                 

 

VIII The weak grating analysis presented in section 2.7 has been done for LC,SWR of a few nanometers, while the 
measured LC,SWR is about three order of magnitude larger. Fortunately, as mentioned in section 2.7, the approximation 
for small LC,SWR is still valid for values up to ~ 100 µm.  

IX This point is studied in more detail in section 3.7.1 
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Fig. 37: Probability density functions of the SWR. The red curve is a Gaussian function. 

Finally, as mentioned in section 2, the SWR is modeled by a random process with a normal 

distribution. This assumption is widely used for convenience since this kind of process can be 

easily handled mathematically. However, to our knowledge, this point has never been proven 

experimentally. To verify this affirmation, we considered the seven waveguide width profiles 

retrieved and plot a histogram (Fig. 37) to retrieve the probability density function of the process. 

The red curve is a Gaussian function with the width defined by the variance of the process. The 

overlap between the two confirms indeed that a normal distribution is an appropriate model for 

this kind of random process.  

3.4.2 – Characterization of wafer height fluctuation 

In this section, we use measurements of IBG spectral responses to estimate the phase-noise 

originating from WHFs. The IBGs samples were fabricated on the multimode section of a hybrid 

multimode/singlemode waveguide [98], [102] as shown in Fig. 4. The fabricated gratings used in 

this section are straight grating #1 and #2 described in Table 1 and Table 2. They were fabricated 

at IMEC. The λB(z) and Δn(z) profiles have been obtained using the characterization procedure 

described in section 1.6. The amplitude of a typical spectral response is shown in red in Fig. 38-

a), while the retrieved grating profiles are displayed in Fig. 38-b) and c). The maximal grating 

reflectivity was designed to be very small to ease the convergence of the grating reconstruction 
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algorithmX. The retrieved grating coupling amplitude and phase profiles, after appropriate 

filtering, are used to calculate the reconstructed spectral responses, showed by the black curve in 

Fig. 38-a), using a standard transfer matrix solution of the coupled mode equations. We confirm 

the precision of the retrieved λB and Δn profiles by obtaining a good correspondence between the 

reconstructed spectra and the measured ones. For the gratings studied in this chapter and the one 

shown in Fig. 38, the noise level allowed us to characterize the grating over a spectral band of 

roughly Δλ = ± 1 nm around the resonances. As a result, a cut-off frequency of fc ≈ 3 000 m-1 has 

been used. 

Using Eq. (3.10) with the SWR parameters obtained in section 3.1 and the value of 
Bλ

σ

experimentally determined from measurements of IBGs fabricated on 1200 nm wide waveguides, 

the product 1/2
,WHF c WHFLσ can be estimated. A total of 11 gratings were measured on four different 

chips from two different wafers. We obtained 
Bλ

σ = 0.17 nm ± 0.01 nm resulting in 1/2
,WHF c WHFLσ = 

6.6 x 10-13 m3/2 using the calculated values CWHF (3.6x10-3 nm-1) and CSWR (1.2x10-4 nm-1) for 

these waveguides. This result is significantly lower than the experimentally determined product 
1/2

,2 SWR c SWRLσ =1.4 x 10-11 m3/2 of the SWR. This means that, for a typical singlemode waveguide 

having a width of 500 nm, even though CWHF (4.0x10-3 nm-1) is about two times larger than CSWR 

(1.9x10-3 nm-1), SWR distortion is about one order of magnitude more damaging for IBGs 

spectral responses than WHF.  

                                                 

 

X The physical structure of strong gratings are harder to retrieve using inverse scattering algorithm since the 
optical wave is strongly reflected close to the input of the grating. As a result, very little optical power is reflected by 
the grating end thus making the reconstruction of the whole structure difficult. However, a lot of effort has been 
dedicated to solve this issue. In [73], the ILP algorithm used in this thesis, they successfully characterized grating 
having reflectivity of 99.99 %. However, in the work presented in this thesis, the grating reflectivity has been limited 
because of the high level of phase noise. As discussed in chapter 2, the spectral response of strong gratings (high κL) 
is more distorted by the phase noise. As a result, high phase fluctuations can be observed in the grating response and, 
since the algorithm is depending on the fast-Fourier transform algorithm, the obtained phase values must be 
unwrapped to provide the grating phase profile. If the wrong integer value of 2π is removed, the local evaluation of 
the Bragg wavelength will be wrong as well as the reconstructed profiles. Thus, to stay away from this problematic, 
weak gratings have been used. 
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Fig. 38: a) Comparison of the experimental reflection spectrum of a typical straight grating on a 1200 nm wide 

waveguide (in red) with the reconstructed reflection spectrum (in black). Retrieved b) λB and c) Δn profiles, which are 
used to calculate the black curve of a). 

3.5 – Phase-noise reduction techniques 

Although an obvious way to reduce IBGs spectral distortions is to improve fabrication techniques 

to reduce the WHF, as discussed in [108], and the SWR, as discussed in [88], [89], [106], [107]. 

In the latter case, it is unclear if the proposed approaches, which are appropriate to reduce 

propagation losses, are compatible with the fabrication of corrugation based IBGs. These 

techniques optimize either the lithography, etching or post-etch process conditions in order to 

reduce the propagation losses, which are mainly influenced by spatial frequencies near the 

propagation constant of the guided mode [92]. Since the noise spatial frequencies that those 

techniques aim to remove are close to the grating spatial frequency, the grating corrugations will 

also be strongly suppressed during the fabrication process. Consequently, in this section we 
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propose two approaches to reduce the phase noise by optimizing the design. The first one reduces 

the impact of SWR on IBGs spectra while the second one reduces the impact of WHFs. 

3.5.1 – Reduction of the impact of sidewall roughness 

The impact of SWR and WHF on the IBG phase noise is shown in Fig. 39 as a function of w0. 

The curves were calculated for a waveguide with a 220 nm height using Eq. (3.10) with the 

experimentally determined parameter values for σSWR, LSWR and 1/2
,WHF c WHFLσ , and using a finite 

element mode solver to obtain CSWR(w0) and CWHF(w0). In Fig. 39, the red and the blue curves 

represent the respective contributions of the WHF and SWR impact on
Bλ

σ , while the black curve 

shows their combined effect. Clearly, wider waveguide reduce considerably the IBG phase noise 

coming from SWR while leaving the impact of WHF unchanged. The cyan bars shows the value 

of 
Bλ

σ determined from optical measurements of gratings in waveguides with w0 = 1200 nm (i.e. 

the results used to obtain the product 1/2
,WHF c WHFLσ  in the previous section) and in waveguides 

w0 = 800 nm (a total of 14 gratings were measured on five different chips and two different 

wafers). The latter result is in good agreement with the theoretical curve, hence confirming the 

 
Fig. 39: Bragg wavelength standard deviation as a function of the waveguide width. The black curve contains both 

the impact of the SWR and the WHFs, while the blue and red curve takes those to effect independently. The cyan lines 
are the optical measurement of 2 mm-long IBGs while the purple line is the optical measurement for spiral IBGs. 
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validity of this model. As mentioned previously, the 1200 nm wide waveguides had an averaged 

Bragg wavelength standard deviation of 
Bλ

σ = 0.17 nm ± 0.01 nm while the 800 nm wide 

waveguides had a standard deviation of 
Bλ

σ = 0.31 nm ± 0.05 nm. 

Since the fundamental mode becomes more strongly guided as w0 increases, CSWR decreases 

rapidly as shown on Fig. 3-b). It will be reduced by one order of magnitude when the waveguide 

width increases from 500 nm to 1050 nm when considering a waveguide thickness of 220 nm.  

As a result, as w0 increases, the noise becomes dominated by WHF and the related Bragg 

wavelength standard deviation becomes 

 ,

,8
2B WHF

g c WHFWHF WHF

B

n LC
λ

λσσ
λ

∆Λ
→  (3.11) 

which corresponds to the minimal amount of noise that can be obtained using hybrid single-mode 

waveguides [98], [102]. This approach allows a significant reduction of the phase noise but, as 

the calculations show, the improvement is limited by the level of WHF. Another motivation for 

designing IBGs in hybrid multimode/singlemode waveguides is the fact that the amount of 

backscattered light due to SWR is reduced as the waveguide width increases [78], i.e. when CSWR 

is reduced. Considering that, in future work, longer grating structures with weaker coupling 

coefficients could be required to achieve integrated optical filters with elaborate spectral 

responses. As a result, backscattering noise could become problematic for standard singlemode 

waveguides (500 nm wide). 

3.5.2 – Reduction of the impact of wafer height fluctuations 

Considering that the phase noise that affects IBGs is composed of low frequency components and 

assuming that the autocorrelation length of the WHF is much longer than the SWR one, the 

fabrication of IBGs along a spiral as shown in Fig. 40 should reduce the WHF impact on the 

grating spectral response [83], [101]. With proper tuning of the grating period to compensate for 

the effective index variations caused by the curvature, as discussed in chapter 5 [101], those IBGs 

are as flexible as straight grating, provide highly compact devices and are less affected by phase 

noise.  
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Fig. 40: Schematic of spiral IBGs 

A total of nine spiral gratings on five different chips from the same wafer have been 

characterized. The detail of the spiral grating #3 parameters, fabricated at IME, is described in 

Table 3. The procedure to obtain the Bragg wavelength standard deviation is similar to the one 

described above for straight gratings. For this experiment, we obtained a Bragg wavelength 

standard deviation of 0.12 ± 0.01 nm. This result is indicated by the purple dot in Fig. 39 and can 

be compared to the straight grating result. It should be mentioned that, unlike the straight 

gratings, a layer of silica has been put on the wafer containing the spiral gratings. As a result, the 

improvement showed in Fig. 39 is probably underestimated due to the addition of a phase noise 

source caused by the possible presence of air-gaps between the waveguide and the silica layer. It 

should be mentioned that the top-cladding is causing a slight modification on CSWR and CWHF. 

The reduction of these parameters are responsible for about 10 % of the measured improvement 

of the Bragg wavelength standard deviation obtained with spiral gratings having an oxide top-

layer while the remaining 90 % improvement is coming from the waveguide compactness. 

To assess the impact of the SWR and the WHF reduction techniques on IBGs spectrum, a 

comparison is made in Fig. 41 between 2 mm-long straight gratings having widths of 800 nm and 

1200 nm, with a spiral grating having a width of 1200 nm. The standard deviation of the Bragg 

wavelength of those gratings is 0.26 nm, 0.16 nm and 0.11 nm respectively, which makes them 

among the best of their category. The 3-dB bandwidths were respectively 0.22 nm (0.13 nm), 

0.18 nm (0.13 nm) and 0.14 nm (0.12 nm). The value in parenthesis refers to the simulated 3-dB 
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bandwidth of each design (presented in blue in Fig. 41). As can be seen from this figure, the use 

of wider straight waveguides improved the SLSR by ~ 3 dB and brought the grating 3-dB 

bandwidth closer to the design by ~ 0.04 nm. Furthermore, the improvement from 0.16 nm to 

0.11 nm of the Bragg wavelength standard deviation obtained by using 1200 nm wide spiral-

IBGs had a significant impact on the grating spectrum leading to a symmetrical main lobe that 

corresponds closely to the design (in blue). The SLSR has also been improved by ~ 3 dB 

compared to the straight 1200 nm wide IBGs and the first side-lobe corresponds more closely to 

the design. Fig. 42 presents the superposition of every Bragg wavelength measurements for the 

three types of IBG described above. The improvement due to the two phase-noise reduction 

techniques is clearly illustrated although further improvement could be achieved with even more 

compact spiral waveguides. In this work, the IBG strength was deliberately designed to be low in 

order to ease the reconstruction of the Bragg wavelength profile along the grating length but the 

two approaches could easily be extended to stronger grating filters. 

 
Fig. 41: Typical spectral response of 2 mm-long a) straight grating on a 800 nm wide waveguide, b) straight grating on 

a 1200 nm wide waveguide and c) spiral grating on a 1200 nm wide waveguide. The blue curves are the designs while the 
black curves are the experimental results. 
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Fig. 42: Superposition of every Bragg wavelength fluctuation measurements for a) 800 nm straight waveguide, b) 1200 

nm straight waveguide and c) 1200 nm spiral waveguide. 

3.6 – Conclusion 

In this chapter, we presented an improved technique to characterize SWR of silicon-on-insulator 

photonic waveguides and described how this phenomenon impacts the spectral response of IBGs. 

Many papers have discussed in length how to retrieve the sidewall roughness from SEM images. 

However, previously proposed technique could only be applied to single SEM image and, 

consequently, resulted in power spectral density described by an autocorrelation length of a few 

tens to a few hundreds of nm. In our work, we clearly show that there is also a significant portion 

of low frequency fluctuations. IBGs are predominantly influenced by the low spatial frequency 

content of the SWR whereas the high frequencies are relevant to characterize optical loss but are 

not sufficient to model and predict IBGs distortions. This chapter clearly demonstrates that, in 

addition to its amplitude, the spatial frequency content of SWR is of critical importance for IBG-

based devices. Furthermore, the impact of the WHF on IBGs spectral response has been modeled 

and quantified for the first time. 
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This chapter also presented two techniques to improve IBG robustness to phase noise at the 

design step. The first one proposes the use of hybrid multimode/singlemode waveguides to 

reduce by more than one order of magnitude the effect of SWR on IBGs. The second one takes 

advantage of the fabrication of ultra-compact gratings in spiral waveguides to mitigate the impact 

of the silicon layer thickness variation. 

These results are of importance because longer grating structures with weaker coupling 

coefficients are required in order to achieve integrated optical filters with elaborate spectral 

responses, both in amplitude and phase. Since longer gratings are more affected by phase noise, 

such demonstrations have been so far very limited. We believe that those phase-noise reduction 

techniques open the door to many new grating-based optical filter designs. 

3.7 – Supplementary information 

A few points should be added to this chapter: first, a thorough discussion should be made on the 

impact of the window size when characterizing the SWR autocorrelation length. Second, the 

numerical analysis presented in section 2.6 has been made with SWR parameters that do not 

model well the noise source of SOI waveguides; the SWR autocorrelation length is too small and 

the WHF phase noise source has been neglected. However, considering the results obtained in 

chapter 3 (σSWR, Lc,SWR, σWHF and Lc,WHF), the emulated IBGs can be converted to model IBGs on 

wider waveguide. This conversion is done below. Third, a discussion on the importance of a 

possible period noise is made. Finally, the autocorrelation shape obtained in Fig. 36 has been 

fitted with an exponential decaying function. However, a discussion on the exact shape of the 

autocorrelation function is made. Furthermore, the work presented in this chapter shows Lc values 

much larger than what is usually published in the literature. This aspect is also discussed in this 

section 

3.7.1 – Window size 

As stated in this chapter, the ratio (NLc) of the measurement length (or the window size) and the 

measured autocorrelation length should be larger by a factor between three to eight [112]–[114]. 

However, since this value is varying from reference to reference, we found necessary to analyse 

the impact of the measurement window with more attention. To do so, a white Gaussian noise has 
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been generated and filtered with a Lorentzian function (as described by Eq. (2.3)) having a width 

defined by the measured autocorrelation length. To emulate the measurement taken in this 

chapter, the measurement window length was fixed at 100 μm and the generated autocorrelation 

length was varied between 2 μm and 100 μm which make NLc varied from 1 to 50. Using the 

generated noisy vector, the autocorrelation length was then calculated. The ratio between the 

calculated autocorrelation length and the generated autocorrelation length (αLc) is then calculated 

and plotted in Fig. 43 as a function of NLc. Each blue marker on this figure represents the average 

result obtained with 500 emulated data.  

As can be seen in Fig. 43, αLc → 1 when the measured window is much larger than the 

autocorrelation length to characterize. The value NLc
 = 8 as stated in [113], [114] is indeed 

sufficient to obtain a very precise estimation of the autocorrelation length while a value of NLc
 = 3 

as stated in [112] seems only sufficient to evaluate the order of magnitude of the autocorrelation 

length. As shown on this figure, the precision that can be obtain when using NLc
 = 7, the value 

used in this work, is higher than 90 %. Ideally, the measurement windows would have been 

slightly larger, but this parameter could not be easily increased since the precision of the SEM 

translation stage was not precise enough. As stated in this chapter, the precision of the translation 

 
Fig. 43: αLc is plotted in blue as a function of NLc. The red curve is a smoothed version of the blue markers while the 

black line is highlighting the NLc value used in this chapter and the green lines highlight the minimal NLc value suggested 
in [112]–[114].  
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stage is about ± 0.3 µm. This value is not provided by the manufacturer but is the standard 

deviation of the z-translation correction that has been introduced on the data presented in this 

chapter. However, as the measurement window increases, the chance to have at least one 

translation offset larger than the FOV (1900 nm) increases. As a result, many measurements had 

to be thrown out. The impact of a 10 % variation of the autocorrelation length on the overall IBG 

phase noise is shown in Fig. 44. The proximity between the black and the red curve confirms that 

the use of a window length of ~ 100 µm was indeed appropriate to characterize the Bragg grating 

phase noise.  

 
Fig. 44: Bragg wavelength standard deviation as a function of the waveguide width. The black curve contains both the 

impact of the SWR and the WHFs (already presented in Fig. 39) while the red curve presents the same result but with a 
larger Lc,SWR (to consider a possible underestimation of the parameter due to the window size). The cyan lines are the 
optical measurement of 2 mm-long IBGs while the purple line is the optical measurement for spiral IBGs (already 
presented in Fig. 39). 

3.7.2 – Emulation results 

The emulation results obtained in section 2.6 were obtained using waveguide width and height of 

500 nm x 220 nm and the phase noise parameters summarized in Table 4. Unfortunately, at the 

time, the values modeling the SWR were unknown and the WHF was neglected. As a result, 

those results are off. However, by calculating the 
Bλ

σ values used in these simulations using Eq. 

(3.10) and by using these values, as well as the results presented in Fig. 39 (which takes into 
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account the effect of WHF and uses properly characterized phase noise parameters), the 

emulation done in chapter 2 can be associated to IBGs made on hybrid waveguides. The widths 

that match 
Bλ

σ are shown in Table 4 for three of the four emulation sets. The last one does not 

have any associated width since the WHF noise contribution, which does not vary significantly 

with the waveguide width, is higher than the emulated one.  

Table 4: The inputs describe the phase noise characteristic used for the emulations presented in section 2.6 while the 
outputs is final standard deviation of the Bragg wavelength used in these simulations and the waveguide width that has the 

same emulation results considering the phase noise parameter measured in this chapter 

Input Output 
σSWR Lc,SWR σWHF Lc,WHF width 

Bλ
σ  width 

4 nm 300 nm 0 nm - 500 nm 0.45 nm 680 nm 
4 nm 50 nm 0 nm - 500 nm 0.19 nm 1040 nm 
2 nm 300 nm 0 nm - 500 nm 0.23 nm 915 nm 
2 nm 50 nm 0 nm - 500 nm 0.10 nm - 

 
Furthermore, experimentally, the standard deviation of the central wavelength of IBG devices, 

measured over a full wafer, is of the order of several nanometers, which is a lot higher than the 

emulated gratings shown on Fig. 18-b). Even if the source of this wavelength shift is the same as 

the source of the spectral distortion discussed in chapters 2 and 3 (i.e. SWR and WHF), the 

spatial content that is responsible for the variability of the central wavelength of the IBGs is the 

very low spatial frequency, which has not been characterized in this third chapter. To model the 

central wavelength variability, one should characterize the SWR and the WHF on a wafer scale.   

3.7.3 – Period noise 

Finally, as stated in section 2.4, the impact of a period noise has been neglected in this thesis. 

However, as the SWR creates a waveguide width fluctuation which results in IBG phase noise, 

the same SWR could also create a period noise since each sidewall of the corrugations, parallel to 

the x-axis, can be moved in space around its designed value as shown by the horizontal arrows in 

Fig. 45. Consequently, strictly speaking, the impact of SWR should be analysed both on the 

waveguide (vertical arrows) and on the other corrugation sidewalls (horizontal arrows). However, 

since very small corrugation are required to obtain grating resonances, the fabricated IBG 

waveguide noise contribution can be approximated to be similar to the one of a simple 

waveguide.  
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Fig. 45: The black line is an example of the shape of the corrugations of an IBG mask layout, the red lines shows a 

possible fabricated sidewall of an IBG while the arrows illustrate the position shifts of the sidewall that can happens after 
fabrication.  

However, it should be mentioned that we do not expect the period phase noise to be significant 

even in the case of larger corrugation amplitudes since this effect will have negligible impact on 

IBGs spectral response. To confirm this point, let’s consider that the corrugation central position 

is well modeled by a white Gaussian noise (i.e. the power spectral density is constant). 

Additionally, since the period is by definition the spacing between two corrugations, the period 

power spectral density will be composed of the initial white Gaussian noise power spectral 

density product by the linear function “iω” coming from the differentiation. As a result, if we 

consider only the low frequency content (below fc ≈ 3 000 m-1 as it was done in section 3.4.2), 

according to simulations done with Matlab, the period standard deviation in this spectral range 

will be reduced by ~ 1x10-4 compared to the initial white Gaussian noise which makes this 

phenomenon negligible. 

3.7.4 – Autocorrelation shape and autocorrelation length 

When considering Fig. 36, one can notice that the experimental decaying autocorrelation 

model [92] might not be the best fit to the experimental results. On one hand, introducing the 

Hurst factor [89] would add another fitting degree of freedom and could help to improve the 

match between the model and the experimental measurement. On the other hand, although this 

approach is not supported by a theoretical model, a linear regression seems to be a simple 

function that matches relatively well the result shown in Fig. 36. However, as shown in Fig. 46, 

the use of a linear model instead of an exponential decaying model does not modify significantly 

the impact of the phase noise on the grating spectral response. Fig. 46-a) shows the 

autocorrelation function, while Fig. 46-b) shows the associated power spectral density functions 

of both the exponential decaying model and the linear regression fit. Even if the shapes of the 

power spectral density function are slightly different from one another, the low frequency content 
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that are relevant to IBGs spectral response (between the vertical dotted lines) have a similar 

amplitude. Thus the exact autocorrelation shape will not have a significant impact on the results 

presented in this chapter. 

 
Fig. 46: a) Exponential decaying autocorrelation function (in red) and a linear fit (in black) and b) the associate power 

density function. The vertical dotted lines are the frequency content relevant for IBGs spectral response 

Finally, unlike in many papers characterizing the SWR autocorrelation length [88], [89], 

[106], [111], where Lc is typically a few tens to a few hundreds of nanometers, the results 

presented in this chapter shows autocorrelation length of a few microns. However, this is due to 

the picture alignment procedure. When high resolution SEM pictures having a FOV of a few 

microns are analysed, the low frequency contents of the SWR are suppressed which reduces the 

Lc measurement. To confirm this point, the SEM images analysed in this chapter have been 

analysed without the picture alignment procedure and the resulting autocorrelation is shown in 

Fig. 47. The calculated autocorrelation length in that case is 42.2 nm and the noise standard 

deviation is 1.94 nm which agrees well with the results presented in the literature.  
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Fig. 47: Experimental autocorrelation function of the data presented in this paper but where the SEM images are 

analysed independently (without the picture alignment procedure). The thick black curve is the exponential fit having a 
42.2 nm autocorrelation length.  
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Chapter 4: Apodized Silicon-on-Insulator Bragg Gratings 

As shown on Fig. 3-b), the effective index of a photonic wire is varying non-linearly with the 

waveguide width. Similarly, the coupling coefficient associated with a recess variation is also 

non-linear. As a result, the spectral response of apodized grating fabricated with a recess varying 

approach will be distorted, both in phase and amplitude, by an offset of the average waveguide 

width or by a calibration error of the recess depth. Such an approach makes this kind of grating 

very sensitive to fabrication variation. A solution to this problem is to design gratings with 

uniform corrugation recess and uniform waveguide width. In this situation, an offset of the 

average waveguide width only shift the resonance and an offset in the recess amplitude will 

modify the maximal coupling coefficient value without adding distortion in these profiles. 

Furthermore, as discussed in section 1.6, when the grating complexity is increased, small local 

grating coupling coefficient are likely to be required. As a result, there is also strong motivation 

to develop apodisation techniques compatible with small κ values.  

This chapter proposes two reliable apodization techniques solving these issues. However, the 

high amount of phase noise prevented the SLSR from reaching the expected design value. This 

last point was not fully discussed in this short paper, a reproduction of [102], which is why 

simulation results were added at the end of this chapter. This work was published in “Photonics 

Technology Letters” in 2012. 

4.1 – Abstract 

Accurate control of the apodization profile is still an issue for IBG filters fabricated in SOI 

because of the high modal confinement of these waveguides. In this chapter, we present two 

fabrication-friendly apodization techniques that are compatible with DUV lithography and can be 

used in mass-production of photonic-integrated circuits. These techniques are reliable even for 

weak effective index modulation amplitude, thus opening the door to the fabrication of long and 

elaborate grating structures. 
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4.2 – Introduction 

IBGs find many applications in semiconductor lasers, on-chip interconnects, PICs, and so on. On 

one hand, IBGs in distributed-feedback lasers are typically short (hundreds of micrometers) and 

have strong reflectivity (coupling coefficient having value of a few hundreds of cm-1). On the 

other hand, optical filters made with IBGs having lengths up to cm scale can provide on-chip 

phase engineering for dispersion or laser chirp compensation, pulse shaping for high-bit-rate 

optical communications, and channel selection for WDM applications. Recently, footprint 

reduction of long IBGs was proposed using curved waveguides [83], [84]. In all cases, grating 

apodization remains an issue. 

Full control of the complex spectral responses of IBGs requires the development of reliable 

apodization techniques. Some previously studied techniques considered a change in the 

corrugation duty-cycle or recess amplitude to modify the local coupling coefficient [48], [49]. 

Unfortunately, in addition to the variation of the local coupling coefficient, these approaches 

often involve an important modification of the local effective index, which distorts the spectral 

response. To prevent these unwanted phase variations, it was proposed to simultaneously modify 

both the waveguide width and the amplitude of the grating corrugation recesses in order to 

independently control the coupling coefficient and average effective index profiles [50]. In 

principle, this approach is very flexible but, for long IBGs in SOI, the corrugation recesses are 

typically smaller than a few tens of nanometers and the precision of the lithographic process will 

limit the accuracy of the apodization technique. For research purposes, these IBGs can be 

fabricated using e-beam lithography, a very accurate but time consuming technique. However, for 

mass-production, CMOS processes typically use DUV lithography that offer enough precision to 

fabricate uniform IBGs, but have insufficient precision to apodize gratings by changing the 

amplitude of the corrugation recesses.   

In this chapter, we investigate two apodization schemes that are CMOS compatible. The first 

one is based on the superposition of the two sidewall gratings while the second one relies on 

phase modulation of the grating. Both techniques rely on a modulation of the corrugation position 

rather than its recess amplitude. These apodization techniques are examined for the first time in 

SOI. 
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4.3 – Design and post processing 

As shown in section 2.6.2 [41], the benefits of apodized gratings are strongly reduced when the 

noise on the Bragg wavelength is high. This effect is caused by the high index contrast of SOI 

waveguides and as mentioned in the previous chapter, a mean to reduce this phase noise in the 

design process is to implement the IBG in the multimode section of a hybrid 

multimode/singlemode waveguide [98] as shown in Fig. 4. The gratings used in this chapter are 

the 1200 nm wide straight gratings described in Table 1. For apodized gratings, a Gaussian 

apodization profile with a full-width at half maximum of 1 mm was used. To fully analyze the 

impact of the apodization schemes on the amplitude and phase profile of the IBGs, the recess 

amplitude had to be maintained constant. Consequently, the reflection of the apodized gratings is 

 
Fig. 48: a) Comparison of the experimental reflection spectrum of an unapodized grating (in red) with the 

reconstructed reflection spectrum (in black) and the designed spectrum (in blue). Retrieved b) λB and c) Δn profiles, 
which are used to calculate the black curve of a). 
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smaller compared to the unapodized ones due to the reduced value of the coupling coefficient 

integral over the grating length. The characterization of the grating has been done as described in 

section 1.6. The reconstructed spectra (in black in Fig. 48-a), Fig. 49-a) and Fig. 50-a)) are 

compared to the measured ones (in red) and to the designs (in blue). In [41], it was shown that 

only the phase noise with low spatial frequency has an impact on the IBG spectral response and 

that the cut-off frequency depends on the grating bandwidth. Therefore, the λB and Δn profiles 

were filtered by an ideal low-pass filter with a cut-off frequency of ~10 mm-1, which corresponds 

to a spectral bandwidth of roughly ±3 nm around the Bragg wavelength.  

Fig. 48-a) shows the results for an unapodized grating. The good correspondence between the 

experimental and the reconstructed curves, as well as the spatial uniformity of Δn, gives 

confidence in the technique used to retrieve the Bragg wavelength (shown in Fig. 48-b)) and Δn 

profiles (shown in Fig. 48-c)). The relatively low SLSR, ~ 8 dB (4 dB less than the design), is 

due to λB(z) fluctuations that are likely caused by variations of the waveguide dimensions. 

4.4 – Superposition-apodized Bragg gratings 

The first apodization technique that we investigated relies on the superposition of two gratings 

that interfere to provide the desired apodization profile. This approach has already been tested in 

rectangular silica waveguides [115], but has never been studied for IBGs in highly confined 

waveguides such as SOI photonic wires. More specifically, this technique changes the relative 

phase of two grating structures, such that  
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2( ) cos ( ) ( )
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i i

i i

nn n z z F zπλ θ
=
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where i = 1 and 2 refer to the left-hand-side and right-hand-side gratings, respectively. When 

both gratings are identical, aside from the phase functions Fi(z) that are equal but opposite, 

F1(z)=- F2(z)=F(z), Eq. (4.1) reduces to 

 ( ) 2( ) cos ( ) cos ( )n n n F z z zπλ θ = + ∆ + Λ 
. (4.2) 
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Consequently, the phase function F(z) must be equal to the arccosines of the target apodization 

profile. Fig. 49-a) shows a comparison between the measured, reconstructed, and designed 

grating spectra. Fig. 49-c) clearly shows that the fabricated apodization profile follows the target 

Gaussian profile, which confirms the robustness of this fabrication technique even for very small 

index modulation amplitude. 

 
Fig. 49: a) Comparison of the experimental reflection spectrum of the superposition-apodized grating #1 (in red) with 

the reconstructed spectrum (in black) and the designed spectrum (in blue). Retrieved b) λB and c) Δn profiles, which are 
used to simulate the black curve of a). The blue curve in c) is the target apodization profile. 

4.5 – Phase-apodized Bragg gratings 

The second apodization technique, named phase-apodization, adds a slow modulation function in 

the phase function of the grating with a z-dependant amplitude [116]. In this case, both sidewall 

gratings are identical. The effective index of the grating can be expressed as 
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By expanding this equation with Fourier series and using the Bessel function integral definition, 

Eq. (4.3) becomes 

 ( ) ( ) 2( ) cos ( )m
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∞

=−∞

 2
= + ∆ + + Λ Λ 
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Fig. 50: a) Comparison of the experimental reflection spectrum of the phase-apodized grating #1 (in red) with the 

reconstructed spectrum (in black) and the designed spectrum (in blue). Retrieved b) λB and c) Δn profiles which are used 
to simulate the black curve of a), blue curve is the target apodization. 
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The desired apodized grating (m=0) is accompanied by Bragg grating structures (|m| ≥ 1) at 

different resonant frequencies. The modulation periodXI (ΛM) must therefore be chosen small 

enough to prevent any perturbation of the desired grating resonance (m=0) by the satellite peaks 

(m ≠ 0) induced by phase modulation but not too small to prevent distortions caused by 

inaccurate sampling. We find that ΛM = 17.5 μm is a good tradeoff value. To apodize the 0th 

order grating, ϕ(z) must be equal to 1
0 ( ( ))J f z− , where f(z) is the target apodization profile. Fig. 50 

shows the result obtained for the phase-apodization scheme. Satellite peaks (m = ±1) are present 

at ± ~15 nm but are not displayed in Fig. 50.  

4.6 – Discussion 

For each apodization technique, we measured the spectral response of three grating samples. 

Table 5 displays the peak reflectivity, 3-dB and 5-dB bandwidths, and SLSR of each sample. 

Every sample follows the apodization design in a similar way as those shown in Fig. 49 and Fig. 

50. These results show that the main reflection lobes of phase-apodized gratings match closely 

the design in terms of reflectivity and bandwidth. Fig. 49-b) and Fig. 50-b) suggest that the better 

spectral characteristics of phase-apodized gratings result from the lower effective index 

fluctuations displayed as Bragg wavelength fluctuations in the figures. This hypothesis was 

verified through numerical simulations, which showed that the effective index fluctuations in the 

superposition-apodization explained the spectral broadening and the reduced maximal 

reflectivity. We believe that this phase perturbation is related to the photolithographic process. 

The dose locally applied on the resist where the two gratings are in-phase slightly differs from the 

                                                 

 

XI According to Eq. (2.10), the wavelength spacing between the main Bragg resonance and the first satellite is 
well approximated by   
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dose applied where the two gratings are out of phase, which results in a slight variation of the 

average waveguide width; i.e. the Bragg wavelength is modified. Even if the coupling between 

the apodization and the effective index is small, this effect might be critical for applications that 

require nearly perfect control of the grating phase. Therefore, phase-apodization shows better 

promises for future applications. Although improved with respect to uniform gratings, the SLSR 

of both techniques is far from the expected 33 dB. This discrepancy is believed to be due to the 

aforementioned waveguide dimension fluctuations, which is still a major problem for the 

fabrication of phase sensitive devices on SOIXII. 

Table 5: Spectral measurement of IBG samples 

 Rmax  (dB) BW3dB (GHz) BW5 dB (GHz) SLSR (dB) 
Design -9.0 25.4 32.1 33.3 

Super. #1 -9.9 34.5 45.3 12.4 
Super. #2 -10.9 48.2 61.8 10.3 
Super. #3 -9.7 30.7 40.7 13.1 
Phase #1 -8.5 25.8 32.6 13.4 
Phase #2 -8.1 24.9 31.5 13.8 
Phase #3 -8.7 25.8 33.2 15.5 

 

4.7 – Conclusion 

We investigated two apodization techniques, superposition and phase modulation, for IBG 

fabrication in SOI. Both techniques present the advantage of having corrugation recess with 

constant amplitude along the grating, which facilitates fabrication with standard DUV 

lithography. Better results were obtained by apodization with phase-modulation. Precise 

apodization profiles can be realized even for gratings having very small index modulation 

amplitude, which would have been impossible using amplitude apodization. These results open 

the door to fabrication of the long grating structures necessary to design filters with elaborate 

spectral responses.  

 

 

                                                 

 

XII This point is discussed in more detail in section 4.8. 
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4.8 – Supplementary information 

As mentioned in the discussion, the discrepancy between the design and the measured spectra are 

believed to be due to waveguide dimension fluctuations which create phase noise as stated in 

chapters 2 and 3. To confirm this point, the reconstructed profile of the apodized gratings 

obtained in sections 4.4 and 4.5 are used to simulate the spectrum of the retrieved apodized 

gratings, but without the phase noise contribution. To do that, the Bragg wavelength profile is 

artificially made constant to the average of the reconstructed profile. The results are presented in 

green in Fig. 51 and Fig. 52. As can be seen from these figures, it is the phase noise that 

dramatically distorts the grating spectra. When this phenomenon is removed, the spectra SLSR is 

 
Fig. 51: a) Comparison of the experimental reflection spectrum of the superposition-apodized grating #1 (in red) with 

the reconstructed spectrum (in black) and the designed spectrum (in blue). Retrieved b) λB and c) Δn profiles, which are 
used to simulate the black curve of a). The blue curve in c) is the target apodization profile. This figure is a reproduction 
of Fig. 49 on which the simulated spectrum of the reconstructed apodization profile with an ideal Bragg wavelength 
profile is added in green. 
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improved by 11 dB and 16 dB for the superposition and phase apodisation technique respectively 

compared to their respective measured spectrum. A similar procedure has been done for an ideal 

apodisation profile but with the reconstructed phase noise profile, but the obtained spectra did not 

differ significantly from the experimental measurements, which confirm that the dominant 

impairment is phase noise rather than amplitude noise. 

 
Fig. 52: a) Comparison of the experimental reflection spectrum of the phase-apodized grating #1 (in red) with the 

reconstructed spectrum (in black) and the designed spectrum (in blue). Retrieved b) λB and c) Δn profiles which are used 
to simulate the black curve of a), blue curve is the target apodization. This figure is a reproduction of Fig. 50 on which the 

simulated spectrum of the reconstructed apodization profile with an ideal Bragg wavelength profile is added in green.  
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Chapter 5: Integrated Bragg Gratings in Spiral Waveguides 

In this chapter we discuss how the form factor of IBGs can be improved in order to be compatible 

with PIC chip size. This issue is particularly critical for filters with tailored optical responses like 

apodized or sampled gratings that typically are several millimeters long. The idea is to modify the 

strongly asymmetric grating aspect ratio into a symmetrical one by implementing the grating into 

a spiral-shaped waveguide. This chapter is a reproduction of a paper published in “Optics 

Express” in 2013 [101]. As discussed in chapter 3, it turns out that this approach is also a good 

solution to reduce the contribution of the wafer thickness fluctuations on IBGs phase distortion.  

5.1 – Abstract 

Over the last two decades, many filters requiring custom spectral responses were obtained from 

photo-inscribed FBGs because of the flexibility inherent to this technology. However, Bragg 

gratings in silicon waveguides have the potential to provide faster and more efficient tuning 

capabilities when compared to optical fiber devices. One drawback is that Bragg gratings filters 

with elaborate spectral amplitude and phase responses often require a long interaction length, 

which is not compatible with current integration trends in CMOS compatible photonic circuits. In 

this chapter, we propose to make Bragg gratings in spiral-shaped waveguides in order to increase 

their lengths while making them more compact. The approach preserves the flexibility of regular 

straight grating structures. More specifically, we demonstrate 2-mm long gratings wrapped in an 

area of 200 µm x 190 µm without any spectral degradation due to waveguide curvature. 

Furthermore, we interleave three spiral waveguides with integrated gratings thereby tripling the 

density and demonstrate good phase compensation for each of them. Finally, we show that this 

approach is compatible with phase-apodization of the grating coupling coefficient. 

5.2 – Introduction 

Optical filters with flexible and precisely tuned spectral responses are of great interest for many 

applications in communication and sensing. In the last two decades, FBG technology has been 

widely used to provide such custom optical filters. However, in recent years, the fabrication of 

Bragg gratings in silicon waveguides has become very appealing because CMOS technology 
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provides a low-cost small-footprint platform on which several functions and devices can be 

integrated. Short and simple grating structures with strong coupling coefficients have already 

been demonstrated in SOI waveguides with good quality spectral responses and integration of 

such short uniform gratings on a four ports structure has allowed operating the gratings in 

reflection [32], [54]. Furthermore, demonstrations of tunable gratings using the thermo-optic and 

the electro-optic effects suggests potential use of these devices for modulation and switching 

[45], [57]. However, when elaborate spectral responses are needed long gratings must be used. 

Unfortunately, straight IBGs have an aspect ratio that can make them difficult to integrate 

efficiently in photonic integrated circuits. Furthermore, long straight gratings will be more 

affected by non-uniformities of fabrication processes including wafer thickness variations [105], 

[117]. There is therefore a strong interest to make compact grating structures having more 

convenient form factor that will provide increased flexibility in the design of photonic integrated 

circuits on SOI.  

Huge research efforts have recently been deployed to minimize losses in curved photonic 

wires resulting in loss values lower than 0.01 dB/90° for singlemode waveguides with a radius of 

curvature of 5 μm [118]. Numerical simulations have also shown that hybrid multimode/single-

mode waveguides should also exhibit such small bending losses [98], [119]. Those advances 

allow the work presented in this chapter, which focuses on the implementation of IBGs in spiral 

waveguides in order to increase grating length while improving its aspect ratio. When designing 

such spiral IBGs, the local radius of curvature is relatively large (R > 20 μm in this chapter) 

compared to the radius of curvature considered in [118], [119]. With such large radius of 

curvature, bending losses are not a concern compared to the induced effective index variation. As 

a result, the analysis of curved waveguides presented in this chapter focuses on preventing 

unwanted variations of the grating phase that would result in spectral distortion.  

Several studies have addressed the modeling of bent waveguides. It has been shown that 

conformal transformations convert circularly curved step index waveguides with a constant 

radius of curvature and a 1D confinement to simple straight waveguides with modified refractive 

index profiles [120], [121]. Furthermore, the equivalent straight waveguide (ESW) 

approximation has extended this approach to waveguides having a 2D confinement [122]–[124]. 

Later on, it was shown that this approximation is also appropriate for photonic wires with R > ~2 
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μm [125]. In this work, we use this approach to model spiral IBGs by defining an equivalent 

straight grating that includes an effective index perturbation caused by the waveguide curvature. 

Then, the spectral response of spiral IBGs can be calculated using a 1-D simulator based on 

coupled mode equations. 

The chapter is organized as follows. Firstly, we present the procedure to correct the effective 

index perturbation caused by the curvature when an IBG is implemented in a spiral waveguide on 

SOI. Afterwards, we show experimental results that compare compensated and uncompensated 

grating structures. The results confirm that the correction was successful and that spiral IBGs can 

be fabricated without spectral degradation. We further demonstrate a spiral configuration with 

interleaved waveguides that results in a highly compact IBG structure. Lastly, we address the 

apodization of spiral IBGs. When the Bragg grating length is increased, its coupling coefficient is 

usually reduced and this makes grating apodization more challenging because the modulation of 

the corrugation amplitude becomes limited by the precision of the fabrication process. However 

this difficulty can be overcome by using phase apodization as demonstrated in [102]. We show 

that spiral IBG structures are compatible with phase apodization. 

5.3 – Waveguide and grating design 

To improve IBGs compactness, a zigzag layout has been proposed in which the grating 

waveguide is bent in a succession of curved sections with uniform radius of curvature thus 

forming a series of s-shape waveguides [84]. Unfortunately, this approach adds a fair amount of 

propagation loss due to mode mismatch at the connection point between two curved sections 

where the center of rotation is moved. Furthermore, at those positions, there is a rapid 

modification of the effective index, which distorts the grating spectral response. These effects, 

that increase drastically when the radius of curvature is decreased or when the grating length is 

increased, strongly jeopardize the merit of this approach in terms of integration capability. Spiral 

waveguides, as shown in Fig. 53, do not induce significant losses since the radius of curvature is 

on average much larger, except near its center, and there is no discontinuity in the waveguide 

curvature, which alleviates coupling losses between waveguide sections. As a result, the spiral 

geometry makes it possible to design long waveguides with large radius of curvature while still 

improving significantly the compactness of the device. As for the effective index perturbation 
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caused by the variation of the radius of curvature, we present in the remaining of this section an 

efficient technique to compensate this effect.  

 
Fig. 53: Three different schematic of spiral gratings having α values of 0.3355, 0.671 and 1.0065 (red, black and blue 

curve respectively). The red dots represents the position where Δxs becomes negligible. 

As shown in [41], the spectrum of a long IBG is strongly distorted by the effect of SWR. This 

effect is enhanced by the high index contrast of SOI waveguides. A means to reduce this phase 

noise in the design process is to implement the IBG in the multimode section of a hybrid 

multimode/singlemode waveguide or in a rib waveguide. The first waveguide type was 

considered in this chapter. The detail of those 1200 nm wide spiral gratings are described in 

Table 3. The computer-aided design (CAD) mask is shown in Fig. 54-a) and an optical 

microscope image of the first row of the chip is shown in Fig. 54-b). This chip of 600 µm x 1400 

µm has been covered by a silica cladding and contains 17 samples of 2-mm long gratings in 

spiral waveguides surrounded by 2 mm-long waveguides on each side of the IBGs. Since 

multimode waveguides are more sensitive to curvature losses, the radius of curvature should be 

larger than about 10 microns. Fortunately, as discussed previously, it is possible to design spiral 

gratings with small length-footprint ratio without using small radius of curvature. 
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In order to bend a straight grating into a spiral-shaped grating, three steps need to be taken: 1) 

a spiral waveguide of the required length is defined, 2) the grating is designed for the equivalent 

straight waveguides, which means that the grating incorporates the phase compensation term, and 

3) the grating is geometrically mapped on the spiral. As mentioned earlier, this procedure uses the 

ESW approximation to transform the curved waveguide into an equivalent straight waveguide 

with a modified index profile. We detail below these three steps.  

 
Fig. 54: a) CAD mask of the spiral IBGs used in this chapter (α value of 0.671); b) Optical microscope image of the 

first spiral-IBG row.  

5.3.1 – Spiral waveguide definition 

The x and y coordinates of the spiral are given by the real and imaginary parts of S defined by 

 ( ) i
SS R e xρρ= − ∆ , (5.1) 

where  

 0( ) sgn( ) sR R wρ ρ ρ π= + ∆ , (5.2) 

 /
0 sgn( )sx R e ρ αρ −∆ = , (5.3) 
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“sgn” is the sign function, Δws is the spacing between two consecutive waveguide in the spiral 

(as shown in Fig. 53) and ρ is the angle of rotation that increases along the spiral waveguide 

(ρ = 0 at the center). The term R(ρ)ei|ρ| is the spiral itself with a radius of curvature that is 

changing linearly with the angle of rotation. Without the Δxs term in Eq. (5.1), the profile of the 

radius of curvature would be given by the black dotted line in Fig. 55 having a minimum value 

equal to R0 at ρ = 0. A simple spiral could be designed by using an s-shaped waveguide having a 

radius of curvature of R0/2 to connect a spiral waveguide defined by R(ρ)eiρ, with ρ > 0, to 

another one defined by R(ρ)eiρeiπ [83]. However, this leads to a discontinuity in the radius of 

curvature (jumping from R0 to R0/2). The addition of the term Δxs in Eq. (5.1) avoids this 

discontinuity by smoothly shifting the center of rotation between the two spirals. Fig. 55 shows 

the numerically calculated profile of the radius of curvature, R(z), as a function of the position on 

the spiral path from the input to the output of the waveguide (refer to by “z-position”XIII). When 

Δxs becomes negligible, outside the red dots in Fig. 53 (located in this case at ρ = ± 5π/4), the 

waveguide behaves as a simple spiral with a radius of curvature that increases linearly with ρ. 

The profiles of the radius of curvature for three typical spirals are shown by the red, black and 

blue lines in Fig. 55 and the spiral themselves are presented in Fig. 53. R0 = 46.85 µm and Δws = 

12.5 µm for each spirals, while the α parameter, which controls the rate of change of the center of 

rotation as function of ρ, is respectively 0.3355, 0.671 and 1.0065. On one hand, when α is 

reduced, the minimum value of the radius of curvature of the spiral becomes smaller and, on the 

other hand, when α is increased, the radius of curvature increases significantly in the central 

portion of the spiral (around the location [ 40, ± 40] in Fig. 53 and at the z-position around ± 

0.2 mm in Fig. 55) which decreases the waveguide spacing in this area. Consequently, α must be 

chosen carefully.  

                                                 

 

XIII In the previous chapters, the z-axis was referring to “axis of propagation” (as defined in the list of symbols) 
and the x-axis and y-axis were referring to the waveguide cross-section. Strictly speaking, the z-position definition 
still applies since it also refers to the axis of propagation. However, the x-position and y-position are not equivalent 
to the x-axis and y-axis defined in the previous chapters. The x-position and y-position are the real and imaginary 
axis of the complex plane where S is defined. As a result, the waveguide cross section coordinates are given by the 
local unitary tangential vector of S and the y-axis discussed in previous chapters.   
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Once the waveguide is defined, the local unitary normal vector, N


 is found numerically, which 

allows the calculation of the exact position of the waveguide sidewalls, i.e. 0 / 2S w N±


, and 

eventually allows the calculation of the position of the corrugation amplitudes.  

 
Fig. 55: a) Radius of curvature of the spirals shown in Fig. 53. 

5.3.2 – Grating design 

IBGs index profiles are given by 

 ( ) 2( ) ( ) ( ) cos ( ) ( )n z n n R z n z z zπλ δ θ 
 
 

= + +∆ + +Ω
Λ

, (5.4) 

where δn(R(z)) is the effective index perturbation caused by the curvature, as shown in Fig. 56 for 

a waveguide of 1200 nm x 220 nm. The dependency of the waveguide effective index as a 

function of curvature was obtained using a finite elements mode solver simulator combined with 

the ESW approximation. The calculations take into account the specific profile of the radius of 

curvature calculated as a function of the z-position for the given spiral. The phase term Ω(z) in 

Eq. (5.4) is added to compensate for the effective index distortion δn(R(z)) caused by the spiral 

and is given by 
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0

0

2( ) ' ( ') .
z

z dz n R z
n
π δΩ =
Λ ∫  (5.5) 

 
Fig. 56: Variation of the effective index of a 1200 nm x 220 nm silicon waveguide with top-oxyde as function of its 

radius of curvature. 

The unbent position of each rectangular corrugation added on the side of the waveguide is 

obtained directly from the maximal values of every cycle of the cosine term in Eq. (5.4). The 

edge of the corrugation is then simply determined from the duty cycle. 

The associated phase correction for the three spirals discussed previously is shown in Fig. 57. 

As can be seen on this figure, when the radius of curvature is large (on the sides), the phase 

function increases slowly since the effective index perturbation is very small. However, when the 

radius of curvature becomes smaller, the phase correction varies rapidly and the grating period 

must be decreased locally in order to compensate for the higher index of refraction. To illustrate 

the impact of the phase correction term, the grating local period, given by 

 ( ) ( ) ( )1
2 2

z
z z

z z
θ

π π

Λ
=

Λ ∂ Λ ∂Ω + + ∂ ∂ 

Λ , (5.6) 
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is displayed in Fig. 58. Despite the fact that the period correction is small, it has a significant 

impact on the phase function and on the grating spectra because of the integral in Eq. (5.5). 

 
Fig. 57: Phase function that must be incorporated in the grating structure to compensate the effective index variation 

caused by the curvature of the spirals shown in Fig. 53. 

 
Fig. 58: The grating period of the spiral shown in Fig. 53. The black line is the uncorrected grating period. 
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5.3.3 – Mapping of the grating on the spiral 

The last step of the mask design consists of mapping the grating corrugation profile of the 

straight waveguide onto the path of the spiral shape. The normal coordinate is calculated using N


and the designed corrugation width. It should be noted that the coupling coefficient asymmetry 

associated with the gratings on the inner and outer side of a curved waveguide is negligibly small 

for the radius of curvature considered in this chapter (> 20 µm) and therefore, the corrugation 

amplitude has not been compensated [83]. 

5.4 – Grating characterization 

As for the previous chapters, the complex spectral responses of every gratings was measured with 

a commercial optical frequency domain reflectometer to which we removed the coupling losses. 

The data processing that has been done to retrieve the λB(z) and Δn(z) profiles is described in 

section 1.6. The experimental measurements are shown in red in the following figures presenting 

experimental results (Fig. 59-a), Fig. 60-a), Fig. 62-a) and Fig. 63-a)). Once again, the grating 

reflectivity was designed to be small to ease the convergence of the grating reconstruction 

algorithm. However, it should be mentioned that spiral-IBGs are not limited to weak gratings. 

The corrugation recess amplitude can be increased as easily as for straight IBGs.  The retrieved 

grating coupling amplitude and phase profiles, after appropriate filtering, are used to calculate the 

reconstructed spectral responses using a standard transfer matrix solution of the coupled mode 

equations (black curves in Fig. 59-a), Fig. 60-a), Fig. 62-a) and Fig. 63-a)). The good 

correspondence between the reconstructed spectra and the measured ones indicate that the λB and 

Δn profiles were retrieved with sufficient precision. More details on the post-processing 

procedure can be found in [35]. The designed grating spectral responses are shown in blue in Fig. 

59-a), Fig. 60-a), Fig. 62-a) and Fig. 63-a). The grating spectra displayed in this chapter are 

typical results. Over thirty gratings have been characterized with similar responses. 
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5.5 – Experimental results and discussion 

5.5.1 – Phase correction effect 

We designed two uniform IBGs on a spiral having the following parameters: R0 = 46.85 µm, 

Δws = 12.5 µm and α = 0.671 which results in spirals having a minimal radius of curvature of 20 

µm, a length of 2 mm and an area of 200 µm x 190 µm. The spirals have the same parameters as 

those shown in Fig. 53 with α = 0.671.  

 
Fig. 59: a) Comparison of the experimental reflection spectrum of an uncompensated spiral IBG (in red) with the 

reconstructed reflection spectrum (in black) and the designed uniform grating response (blue curve). Retrieved b) λB and 
c) Δn profiles, which are used to calculate the black curve of a).  
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The first grating, presented in Fig. 59, was made without phase correction while the second 

grating, presented in Fig. 60, was designed with the phase correction. The spectral response of 

both measured and reconstructed gratings are shown in Fig. 59-a) and Fig. 60-a) while their 

retrieved physical profiles are shown in Fig. 59-b) and Fig. 59-c) and Fig. 60-b) and Fig. 60-c). 

As expected, the Bragg wavelength profile of the uncorrected grating shows a strong Bragg 

wavelength perturbation near its center. The spiral curvature acts as a distributed phase shift 

which results in a resonance in the grating bandgap as shown in Fig. 59-a). In this case, the 

distributed phase shift seems to be reasonably close to π since the resonance in the grating band is 

centered in the grating band, which might be of interest for some applications such as notch 

filters. Simulations of discrete phase-shifted gratings actually show that this asymmetry between 

the two main lobes can be obtained with a centered phase-shift of ~1.15π. However, for most 

 
Fig. 60: a) Comparison of the experimental reflection spectrum of a phase compensated spiral IBG (in red) with the 

reconstructed reflection spectrum (in black) and the designed uniform grating response (blue curve). Retrieved b) λB and 
c) Δn profiles, which are used to calculate the black curve of a).  
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applications, the grating effective index should be corrected in order to prevent spectral 

distortions. Fig. 59-b) shows that the Bragg wavelength perturbation is cancelled out in the 

corrected grating displayed in Fig. 60-b) showing that the phase compensation approach is 

working properly. The grating SLSR shown in Fig. 60 (~10 dB) is slightly better than what has 

already been published for identical 2 mm-long straight grating [102]. Because the spiral grating 

is localized on a smaller area of the wafer, the phase noise created by silicon thickness variations 

is less likely to have an impact on the grating spectral response compared to gratings in straight 

waveguides.  

Finally, it might seem odd that the phase shift in the Bragg wavelength profile of Fig. 59-b) 

does not experience a minimum at its center since the spiral is straight at this particular section of 

the grating and hence it should not experience phase distortion. However, Bragg gratings are not 

affected by the high frequency spatial components of the phase and index modulation profiles 

[35], [41]. Furthermore, only the low frequency components can be measured. As a result, the 

Bragg grating reconstruction acts as a low-pass filter which suppresses the localized minimum 

inside the spiral-induced distortion. 

 
Fig. 61: a) Interleaved spiral having R0 = 59 µm, Δws = 15 µm and α = 0.671 and a minimal radius of curvature of 20 

µm for the blue and red waveguides and 25 µm for the black (central) waveguide. b) Radius of curvature of a typical 
interleaved spiral as function of the position on the spiral waveguide. c) Phase function that must be incorporated in the 
grating structure to compensate the effective index variation caused by the curvature 
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5.5.2 – Highly integrated gratings 

In order to improve the grating integration factor, we designed a spiral structure consisting of 

three interleaved gratings. The addition of two other spirals (in red and blue in Fig. 61-a)) beside 

the central spiral (in black) is straightforward since the spiral function (S) and N


 are already 

known. As a result, the center of the side-spirals waveguides are defined by ( / 3)S S w N± = ± ∆


. 

Aside from this detail, the design of those side-spiral gratings is exactly the same as discussed 

above. In this work, we chose spirals with R0 = 59 µm, Δws = 15 µm, α = 0.671 and N = 1.345 

which gives three spirals spaced by 5 µm, having a minimal radius of curvature of 20 µm for the 

side-spirals and 25 µm for the central spiral, a path length of 2 mm (each spiral has the same total 

length) and a total area of 230 µm x 215 µm. It can be noticed that the total footprint of these 

 
Fig. 62: a) Comparison of the experimental reflection spectrum of a compensated interleaved spiral IBG (in red) with 

the reconstructed reflection spectrum (in black) and the designed uniform grating response (blue curve). Retrieved b) λB 
and c) Δn profiles, which are used to calculate the black curve of a). 
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three IBGs is almost the same as the single spiral grating described in the previous section, 

thereby tripling the integration efficiency. The radius of curvature of the three gratings and their 

associated phase correction terms are shown in Fig. 61-b) and Fig. 61-c) respectively. As can be 

seen in Fig. 61-b), the central spiral has a symmetric radius of curvature profile. However, even if 

the side spirals experienced asymmetric profiles, their physical structure can be as easily 

compensated. Fig. 62 shows that the interleaved spiral does not affect significantly the grating 

spectrum as well as the fact that each waveguides are much closer than in the previous section. 

As it was the case for single-spiral, the correction phase term compensates well the effective 

index perturbation caused by the curvature; at least, the phase error has amplitude in the center 

portion of the grating that is smaller than the random phase noise observed near its input and 

output ends.  
 

5.5.3 – Apodized gratings 

Finally, since a full control of the complex spectral responses of IBGs requires reliable 

apodization techniques, the results presented in this last section confirms that spiral waveguides 

are compatible with the phase-apodization technique presented in [102]. Briefly, this technique 

adds a slow phase modulation in the grating structure with a z-dependent amplitude (ϕ(z)). 

Consequently, the last term of Eq. (5.4) representing the grating can be written in the form  

 2cos ( ) ( ) ( )sin .
M

n z z z z zπ πθ φ
  2

∆ + +Ω +   Λ Λ  
 (5.7) 

Phase modulation at a spatial frequency 1/Λm results in amplitude apodized grating with a 

spectral response having satellite resonances out of the band of interest when Λm is sufficiently 

small (in the present case Λm = 17.5 µm). Fig. 63-c) shows that the effective index modulation of 

the grating now follows the designed Gaussian profile with a 1 mm full-width at half maximum 

indicating that the correction applied to the grating does not affect the apodization profile. 
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Fig. 63: a) Comparison of the experimental reflection spectrum of a compensated Gaussian-apodized CBG (in red) 

with the reconstructed reflection spectrum (in black). The blue curve is the spectrum obtained with the ideal Gaussian 
apodization profile shown in c) and an ideal Bragg wavelength while the green curve is the spectrum calculated with the 
noisy apodization profile but without phase noise (ideal Bragg wavelength). Retrieved b) λB and c) Δn profiles, which are 
used to calculate the black curve of a). 

 Unfortunately, IBGs in SOI usually experience a fair amount of phase noise, which prevents the 

apodization to properly reduce the side-lobe amplitudeXIV. To confirm this point, the green curve 

of Fig. 63-a) presents the spectral response obtained using the grating apodization profile shown 

in Fig. 63-c), but with an ideal Bragg wavelength profile (no phase noise). As a result, the SLSR is 

decreased by more than 20 dB, which corresponds closely to the design (in blue). Consequently, 

                                                 

 

XIV As mentioned in chapter 3, spiral gratings should be more robust to phase noise. However, a comparison of 
Fig. 50 and Fig. 63 (i.e. straight and spiral apodized IBGs) does not show that apodized gratings have better 
performances in spiral waveguides. However, it should be mentioned that the grating shown in  Fig. 63 is not the best 
one, but it is the only one that could be reconstructed with the algorithm presented in [73]. The weak reflectivity of 
the grating has created instabilities in the reconstruction and most IBGs in this category could not be reconstructed. 
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the variation of the apodization profile compared to the ideal design is not a major source of 

spectral distortion and we thus conclude that spiral IBGs are compatible with phase-apodization. 

5.6 – Conclusion 

We presented a simple procedure to design IBGs in a spiral configuration to improve their 

integration. We showed that IBGs in spiral waveguide can be fabricated without additional 

phase-noise or spectral distortions due to waveguide curvature. We further proposed an 

interleaved spiral configuration that allows fabrication of many gratings on the same chip section, 

thereby improving the integration factor. Finally, we have confirmed that this work is compatible 

with the phase-apodization technique needed for the fabrication of grating-based devices with 

elaborate spectral responses. Future work should consider the optimization of the waveguide 

spacing, Δw, in order to improve the compactness of the spiral-gratings. This work shows that as 

the quality of SOI wafers improves, long IBGs with high quality spectral characteristics will be 

achievable. This design approach can be used for various grating types and strengths thereby 

giving increased flexibility for the layout of photonic circuits. 
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Conclusion 

In this work, several issues susceptible to prevent the conception and the fabrication of elaborate 

IBGs in SOI have been explored. In chapter 1.7 the parasitic reflections, which prevented the 

accurate characterization of IBGs spectral responses in reflection, have been successfully 

removed. Time filtering was introduced as a necessary step to use the reconstruction algorithms 

developed for FBGs. The ability to retrieve the grating coupling amplitude and phase was a key 

element for the remaining works of this thesis. 

In chapter 2 and 3, the high level of phase noise in silicon IBGs has been thoroughly analysed 

for the first time. In chapter 2, the importance of SWR on IBGs spectral response has been 

modeled. Both the roughness amplitude and correlation length have been shown to be critical to 

IBGs performance. A technique to emulate IBG spectral responses in the presence of an 

imperfect waveguide has been proposed in order to evaluate the fabrication yield for IBGs 

fabricated in SOI photonic wires. Finally, an analytical study of SWR for weak gratings and 

small roughness variances was presented. A general analytical expression of the averaged 

spectrum in presence of the phase noise caused by SWR has been obtained, which could be used 

to analyze more complex weak gratings. Using weak uniform gratings as an example, an 

analytical expression for the standard deviation of the spectral response that gives information on 

the spread of the grating reflection spectra around the average was found. This analysis shows 

why the noise has a relatively small impact on the reflection strength at the Bragg wavelength 

while larger distortions appear on each side of the main reflection peak. The analytical 

expressions also help to evaluate how the spectral distortion depends on other grating parameters. 

Specifically, it was shown that it increases as the square of the integrated coupling coefficient, 

κL, but linearly with the standard deviation of the sidewall roughness, σSWR, and the effective 

index variation associate to a waveguide width variation, CSWR, and as a square root function with 

the grating length, L, and the sidewall roughness autocorrelation length, Lc,SWR. 

The results obtained in chapter 2 strongly suggest using hybrid multimode/singlemode 

waveguide to reduce the impact of SWR. However, in this situation, the WHF is becoming an 

important source of phase noise and, unfortunately, in the literature both SWR and WHF were 

not properly characterized processes in the context of IBGs. As a result, in chapter 3, a model that 
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links the SWR and the WHF random processes to Bragg wavelength fluctuations observed in 

IBGs have been presented. A technique to characterize the low spatial frequency content of SWR 

which is critical to predict the quality of IBGs spectral response was proposed. It was also shown 

how to extract the parameters characterizing WHF from IBGs optical measurements. Finally, two 

techniques to improve IBG robustness to phase noise at the design step were proposed and 

experimentally characterized. First, the aforementioned hybrid multimode/singlemode waveguide 

was shown to reduce by more than one order of magnitude the effect of SWR on IBGs. Second, 

the fabrication of ultra-compact gratings in spiral waveguides mitigates the impact of the WHF.  

As mentioned multiple times in this thesis, these results are of importance because longer 

grating structures with weaker coupling coefficients are required in order to achieve integrated 

optical filters with elaborate spectral responses, both in amplitude and phase. Since longer 

gratings are more affected by phase noise, such demonstrations have been so far very limited. We 

believe that these phase-noise reduction techniques open the door to many new grating-based 

optical filter designs. 

Furthermore, in order to properly design an elaborate IBG spectral response, a perfect control 

over the grating coupling amplitude is required. In chapter 4, two apodization techniques for IBG 

fabricated in SOI were proposed. Both techniques present the advantage of having corrugation 

recesses with constant amplitude along the grating. This aspect improves the robustness to deep-

UV lithography and fabrication errors. Furthermore, both techniques do no introduce distortions 

into the grating phase profile and they are compatible with gratings having small recesses.  

Finally, the grating length required to design elaborate spectral response, which might go up to 

the cm-scale, is not compatible to most PIC device chip size. As a result, a simple procedure to 

design IBGs in a spiral configuration to improve their integration was presented. It was shown 

that IBGs in spiral waveguide can be fabricated without additional phase-noise or spectral 

distortions due to waveguide curvature. To further improve the integration factor, it was proposed 

to use an interleaved spiral configuration that allows the fabrication of many gratings on the same 

chip section. Finally, it has been confirmed that this work is compatible with the phase-

apodization technique. This design approach can be used for various grating types and strengths 

thereby giving increased flexibility in the layout of photonic circuits. 



   

129 

 

To conclude, the work presented in this thesis addressed many issues in the fabrication of 

elaborate IBGs. But, “can we translate the progress made in the last twenty years in FBG to the 

SOI platform?”. Unfortunately, this question cannot be answered positively for any design. 

Fibers are almost perfect waveguides and even with the reduction of the phase noise in SOI IBGs 

that has been achieved in this thesis, the phase noise property of FBGs are still orders of 

magnitude better. Since the phase noise robustness of IBGs was improved by about one order of 

magnitude, it means that IBGs length can be increased by about one or two order of magnitude, 

which ultimately can lead to the fabrication of more complex spectral response. As a result, the 

fabrication of grating structure having a millimeter scale length could be fabricate by using such 

phase noise reduction technique with the same quality than the usual hundreds of micron grating 

length. However, if the design requires longer gratings, the phase noise will likely be too 

important.   

Further improvement could be realized by using immersed lithography techniques or extreme 

UV lithography. Such improved lithography technology is expected to be accessible soon to the 

photonic community since the fabrication technology of PIC is roughly 10 years behind the 

technology used by the electronics community. Furthermore, as it has been done for arrayed 

waveguide grating a few years ago [126], [127], where the path length error were thermally 

compensated, or for microring resonators, where the resonant wavelength can be either photo-

adjust by exposing locally a photosensitive over-cladding material [128] or by thermal tuning, a 

possible approach to improve the spectral response quality of IBG could be to post-compensate 

the grating phase distortion. The first step in this direction is to be able to characterize gratings 

and this work has been done in this thesis. Assuming that the right technology can be found to do 

this post-correction, it could contribute to increase the fabricated grating length; i.e. hence the 

complexity of the spectral response. However, the next steps that should be done to properly test 

the technology is to fabricate IBGs with specific functionality and analyse the match between 

these elaborate gratings and their design. 

Finally, in this thesis, since weak IBGs have been used to characterize the platform, the 

coupled mode theory described in chapter 1 was an appropriate model. However, when 

considering narrow photonic wires, the accuracy of this model is likely to be significantly 

reduced. As a result, future work should study the accuracy of modeling techniques. Furthermore, 
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even if this theory is not supposed to be valid for high frequency spatial variation, it was shown 

in this thesis that, if the phase variation has small amplitude, the theory is still providing good 

results. However, since IBGs are typically short, it is likely that the spatial frequency of many 

grating structures will be relatively high by design (to obtain broadband reflector for example). 

Consequently, the precision of the theory should be analysed in these limits.  
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Appendix A: Coupled-Mode Equation Derivation 

In this appendix, the derivation of the general coupled mode equations from the Maxwell 

equations is done. The final equation of this appendix is the starting point of section 1.3. The 

derivation closely matches the one presented by Kogelnick in [65]. 

A.1 – Simplification of Maxwell equations 

Maxwell equations are  

Faraday's law of electromagnetic induction  BE
t

∂
∇× = −

∂





 (A.1) 

Ampère's circuital law  f
DH J
t

∂
∇× = +

∂



 

 (A.2) 

Gauss's law  fD ρ∇⋅ =


 (A.3) 

Gauss's law for magnetism  0B∇⋅ =


 (A.4) 

Where 𝐸�⃗  is the electric field, 𝐵�⃗  is the magnetic induction, 𝐻��⃗  is the magnetic field, 𝐷��⃗  is the 

electric displacement field, J⃗𝑓 is the free current density and 𝜌𝑓 is the free charge density. Since 

no magnetic material is CMOS compatible, we can write the following constitutive equation: 

 0B H

D E P

µ

ε

=

= +

 

  

 (A.5) 

where µ0 is the free space permeability, ε is the permittivity and 𝑃�⃗  is the polarisation field. 

Furthermore, since this thesis focus on passive devices, we consider an intrinsic silicon layer 

without the presence of current and free charges (i.e.  J⃗𝑓 = 0 and 𝜌𝑓 = 0). Finally, let’s consider 

a stationary solution, which can be written in the form 

 

( , , , ) ( , , )

( , , , ) ( , , )

i t

i t

E t x y z E x y z e

H t x y z H x y z e

ω

ω

−

−

=

=

 

 

   (A.6) 
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where ω is the optical angular frequency. As a result, Maxwell’s equations can be simplify to 

 0( , , ) ( , , )E x y z i H x y zωµ∇× =
 

 (A.7) 

 ( , , ) ( , , ) ( , , )H x y z i E x y z i P x y zωε ω∇× = − −
  

 (A.8) 

A.2 – Excitation of modes 

In this subsection, the simplified Maxwell Eqs. ((A.7) and (A.8)) are going to be used to describe 

the fields obtained from exciting sources. Later on, the resulting equations are going to be used to 

model coupling between modes of interest. If we consider two set of induced polarisation 

(labeled 1 and 2) and their associated field and we subtract the dot product of 𝐻��⃗ 2∗ with (A.7)1 to 

the dot product of 𝐸�⃗1 with the complex conjugate of (A.8)2, we obtain 

 ( )* * * * *
2 1 1 2 0 1 2 1 2 1 2H E E H i H H i E E i E Pωµ ωε ω⋅∇× − ⋅∇× = ⋅ − ⋅ + ⋅
         

 (A.9) 

Using ( ) ( ) ( )a b b a a b∇⋅ × = ⋅ ∇× − ⋅ ∇× , Eq. (A.9) gives 

 ( )* * * *
1 2 0 1 2 1 2 1 2E H i H H i E E i E Pωµ ωε ω∇⋅ × = ⋅ − ⋅ − ⋅
       

 (A.10) 

Similarly, subtracting the dot product of 𝐻��⃗ 1∗ with the complex conjugate of (A.7)2 to the dot 

product of 𝐸�⃗ 2∗ with (A.8)1 gives 

 
( )

( )

* * *
2 1 1 2 2 1

* * *
0 1 2 1 2 2 1

E H H E E H

i H H i E E i E Pωµ ωε ω

∇⋅ × = ⋅∇× − ⋅∇×

= − ⋅ + ⋅ + ⋅

     

     

. (A.11) 

Summing Eq. (A.10) and (A.11) gives 

 ( )* * * *
1 2 2 1 2 1 1 2E H E H i E P i E Pω ω∇⋅ × + × = ⋅ − ⋅
       

 (A.12) 
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Now, let’s consider that the excitation source is coming from the field “1” (i.e. 𝑃�⃗ = 𝑃�⃗1 and 

𝑃�⃗2 = 0) while the field “2” corresponds to a mode of interest. If we integrate over the guide 

cross-section, we obtain 

 ( )* * *
1 2 2 1 2dxdy E H E H i dxdyE Pω

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞
∇ ⋅ × + × = ⋅∫ ∫ ∫ ∫

     

 (A.13) 

and if we split the transverse (“t” labels) and longitudinal (“z” labels) components of the left-

hand side of (A.13) 

 
( )
( )

* *
1 2 2 1

* * *
1 2 2 1 2

t t

t t t t z

dxdy E H E H

dxdy E H E H i dxdyE P
z

ω

∞ ∞

−∞ −∞

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

∇ ⋅ × + ×

∂
+ ⋅ × + × = ⋅

∂

∫ ∫

∫ ∫ ∫ ∫

   

     

 (A.14) 

and use the divergence theorem, given by 

 t t
c

dxdy g dsg a
∞ ∞

−∞ −∞
∇ ⋅ = ⋅∫ ∫ ∫

  



 (A.15) 

to show that the first term of Eq. (A.14) is null, we obtain 

 ( )* * *
1 2 2 1 2t t t t z

dxdy E H E H i dxdyE P
z

ω
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

∂
⋅ × + × = ⋅

∂∫ ∫ ∫ ∫
     

. (A.16) 

Since the waveguide modes form an orthogonal basis, it is possible to expend the field “1” in 

terms of the waveguide co-propagating (a) and contra-propagating (b) modes such as 

 ( ) ( )1 1t t t tE a b E H a b Hν ν ν ν ν ν= + = −∑ ∑
   

 (A.17) 

where aν and bν are z varying amplitude. Later on, the mode of interest is going to be selected. 

When the second field has a forward running mode, expressed by 

 2 2
i z i zE E e H H eβ β

µ µ= =
   

, (A.18) 

inserting (A.17) and (A.18) into the left-hand side of (A.16) gives 
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( ) ( )( )
( ) ( )

( ) ( )
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1 2 2 1

* *

' ' * *

* ' ' *
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t t z

i z i z
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i z i z
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i z i z
t t

i z i z
t t

e a b dxdyE H i e a b dxdyE H

e a b dxdyE H i e a b dxdyE H

β β
ν ν ν µ ν ν ν µ

β β
ν ν µ ν ν ν µ ν

β

β

∞

−∞
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The orthogonally relation allows us to ignore every modes where µ ≠ ν. As a result, we have  

( )

( ) ( )

( ) ( )

* *
1 2 2 1

' '

' '

'

1 1
2 2
1 1
2 2

z

i z i z

i z i z
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a e a i e
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β β
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µ µ
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∂
⋅ × + ×

∂

= + − +
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∂
=

∂

∫ ∫
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. 

The last equation is obtained with this following change of variable: 

 ( ) ( )exp expa A i z b B i zβ β= = −  (A.19) 

which modify the field of Eq. (A.17) to 

 
( ) ( )( )
( ) ( )( )

1

1

exp exp

exp exp
t t

t t

E A i z B i z E

H A i z B i z H
ν ν ν ν

ν ν ν ν ν

β β

β β

= + −

= − −

∑
∑

 

 

 (A.20) 

To sum up, inserting (A.20) and (A.18) into (A.16) gives 

 * i zA
i dxdyE e P

z
µβµ

µω
∞ ∞ −

−∞ −∞

∂
= ⋅

∂ ∫ ∫
 

. (A.21) 
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Similarly, when the second field has a backward running mode, expressed by 

 2 2
i z i z i z i z

t tE E e E e H H e H eβ β β β
µ µ µ µ

− − − −
− −= = = = −

     

, (A.22) 

inserting (A.20) and (A.22) into the (A.16) gives 

 * i zB
i dxdyE e P

z
µβµ

µω
∞ ∞

−−∞ −∞

∂
= − ⋅

∂ ∫ ∫
 

. (A.23) 

Eqs. (A.21) and (A.23) show the change of amplitude experienced by the mode µ resulting of an 

excitation described by the polarisation field. Those equations are the basis of many coupled-

modes physical problems.  

A.3 – Calculation of the polarisation  

The specific problem of interest for this thesis concerns a periodic perturbation of the waveguide 

structure. At this point, more attention must be accorded to the polarisation, related to the 

electrical field by 

 P Eε= ∆
 

. (A.24) 

where Δε is the deviation of the permittivity from the nominal distribution which induces a 

polarisation.  Since the orthogonal relation only apply to the transverse field components, the z-

component must be treated with special care. On one hand, considering Eqs. (A.17) and (A.24), 

the transverse component of the polarisation is given by 

 ( )t t tP E a b Eν ν νε ε= ∆ = ∆ +∑
  

. (A.25) 

On the other hand, the z-component of the polarisation is given by 

 z zP Eε= ∆
 

 (A.26) 

To evaluate the z-component of the electric field, Eqs. (A.8) and (A.24) are combined to give 

 ( )t t zH i Eω ε ε∇ × = + ∆
 

 (A.27) 
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As a result,  

 
( )z t tP H

i
ε

ω ε ε
∆

= ∇ ×
+ ∆

 

. (A.28) 

Combining the previous result with Eq. (A.17) gives 

 
( ) ( ) ( ) ( )z t t zP a b H a b E

i ν ν ν ν ν ν
ε ε ε

ω ε ε ε ε
∆ ∆

= − ∇ × = −
+ ∆ + ∆∑ ∑

  

. (A.29) 

A.4 – General coupled-mode equations 

In order to obtain the coupled mode equations, the polarisation equations, found in the previous 

section, must be inserted into Eqs. (A.21) and (A.23), which results in 

( ) ( ) ( )

( ) ( ) ( )
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* *

i z
t t z z

i z
t t z z
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 ∂ ∆
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   

   

 (A.30) 

where the following symmetry equations has been used to express the mode *E µ−



 in terms of *Eµ


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( ) ( ) ( ) ( )
t t z z

t t z z

E z E z E z E z
H z H z H z H z

= − = − −
= − − = −

   

    . (A.31) 

Eq. (A.30) can be simplified by defining a tangential and longitudinal coupling coefficient, such 

as 
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∫ ∫
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 

 

     , (A.32) 

and by using Eq. (A.19) where n(λ) is the effective index of the mode. As a result, we obtain 
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i A e B e
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µ ν µ νβ β β βµ

ν µν µν ν µν µν
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 ( ) ( ) ( ) ( )( )i z i zt z t zB
i A e B e

z
µ ν µ νβ β β βµ

ν µν µν ν µν µν
+ −∂

= − Κ −Κ + Κ +Κ
∂ ∑  (A.34) 

The previous equations can be used to obtain the change of amplitude of the µth mode resulting 

from a permittivity deformation. These equations are the starting point of section 1.3. 
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Appendix B: Sidewall Roughness Modeling 

This appendix has been published with the paper “Impact of Sidewall Roughness on Integrated 

Bragg Gratings” presented in chapter 2. 

B.1 – Detuning distribution autocorelation 

To obtain information on E(rr*), which is the mean value of the grating reflection amplitude, we 

need information on the detuning distribution autocorrelation. The detuning distribution is given 

by 

( ) ( ) ( )
0 0

0 0

2 2 22 ' ' ' '
z zSWR SWRC Cz dz x z dz x z

n n
π πδ∫ = ∆ = ∆
Λ Λ∫ ∫ , 

consequently, the autocorrelation function is given by 
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Considering the case where z < ζ, we obtain 
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If we consider small Lc values, we obtain 1 ,2 c SWRI L z≈ . Similarly, since the autocorrelation 

equation is symmetric for z and ζ, when z > ζ  1 ,2 c SWRI L ζ≈ which gives 1 ,2 min( , )c SWRI L z ζ≈ . 

Consequently, the autocorrelation function is given by 
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 (B.1) 

B.2 – Derivation of O(4) 

The term involving the fourth order moment of δ(z), O(4), is given by 
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∫ ∫ ∫ ∫
 =    (B.2) 

where L, the linear operator describing the integral over the grating structure, is given by 
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and where the fourth order moment of δ(z) is given by 
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Using the definition of the detuning distribution autocorrelation given by Eq. (B.1) and 

integrating over z1 to z4, O(4) is given by  
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