
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-015 March 22, 2011

Intel Concurrent Collections for Haskell
Ryan Newton, Chih-Ping Chen, and Simon Marlow

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4426267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Intel Concurrent Collections for Haskell

Ryan Newton Chih-Ping Chen Simon Marlow

Intel Microsoft Research

Abstract. Intel Concurrent Collections (CnC) is a parallel program-
ming model in which a network of steps (functions) communicate through
message-passing as well as a limited form of shared memory. This paper
describes a new implementation of CnC for Haskell. Compared to ex-
isting parallel programming models for Haskell, CnC occupies a useful
point in the design space: pure and deterministic like Evaluation Strate-
gies, but more explicit about granularity and the structure of the parallel
computation, which affords the programmer greater control over parallel
performance. We present results on 4, 8, and 32-core machines demon-
strating parallel speedups over 20× on non-trivial benchmarks.

1 Introduction

Graph-based parallel programming models, including data-flow and process net-
works, offer an attractive means of achieving robust parallel performance. For
example, programming systems based on synchronous dataflow (SDF) have been
able to show fully automatic parallelization and excellent scaling on a wide vari-
ety of parallel architectures, without program modification (8), and without spe-
cializing the programming model to particular hardware. Graph-based program-
ming can provide both more accessible and more portable parallel programming,
and covers an application domain that is large and rapidly growing, including
most data-intensive processing from signal processing to financial analytics.

Past research has explored the relationship between functional programming
and synchronous dataflow (11) and the semantics of streams and signals (15;
19). But in practice, functional programmers have had few practical tools for
parallelism available to them. That is gradually changing. Recent versions of the
Glasgow Haskell Compiler (GHC) provide excellent access to pure parallelism
(and, increasingly, to nested data-parallelism). Producer-consumer parallelism is
also possible in GHC, but typically requires leaving purity behind for IO threads
communicating with FIFOs—a low-level, nondeterministic form of programming
that does not support the high-level transformations that can make graph-based
programming efficient.

The Haskell edition of Intel Concurrent Collections (CnC) (10) is an attempt
to bring an efficient multicore implementation of a graph-based programming
model to Haskell, while exposing an interface that remains deterministic and
pure. The primary contributions of this paper are the following:

– We bring a new parallel programming paradigm to Haskell, which occupies
a useful point in the design space: pure and deterministic like Evaluation

2 Ryan Newton Chih-Ping Chen Simon Marlow

Strategies (18), but more explicit about granularity and the structure of the
parallel computation.

– Haskell CnC allows multiple scheduling policies to be provided, giving the
programmer greater control over parallel execution. New schedulers can be
readily developed, and we describe schedulers that we have already built.

– Compared to implementations of the CnC model for other languages, the
Haskell implementation can guarantee determinism. The Haskell implemen-
tation is shorter, clearer, and easier to modify and extend.

– We report results on parallel machines ranging from 4 to 32 cores, and
demonstrate speedups in the range of 7× to 22× on non-trivial benchmarks
with the current implementation. We also identify some areas for improve-
ment.

This work has stress-tested GHC’s parallel capabilities, exposed one runtime
bug, and highlighted the effects of improvements that will be available in the 7.0
GHC release. The lessons learned from this project and described in this paper
are potentially useful to other projects aiming to achieve significant parallel
performance on GHC.

2 The CnC Model

In the Intel CnC model, a network of steps (functions) communicate through
message-passing as well as a limited form of shared memory. Steps are pure
functions with one argument (a message), but may use the contents of that
message to get data from, and put data into, shared tables called item collections.
As a simple example, consider a wavefront computation in which we compute
each position (i,j) of a matrix from positions (i-1,j-1), (i-1,j), (i,j-1) (also
known as a stencil computation). In Haskell CnC we would define a step that
computes each (i, j) position of an item collection named matrix, as follows:

– Trivial example: add neighbors’ values to compute ours

wavestep (i,j) =

do nw ← get matrix (i-1,j-1)

w ← get matrix (i-1,j)

n ← get matrix (i,j-1)

put matrix (i,j) (nw + w + n)

Item collections are single-assignment key-value stores. That is, for each key,
only one put operation is allowed, and more than one is a dynamic error1. If
a step attempts to get an item that is not yet available, that step blocks un-
til a producer makes the item available. This can be seen as an extension of
synchronous dataflow—a step can only complete its execution when all of its
inputs (in wavestep, the three gets) are available. But rather than reading from
a fixed set of FIFOs, the step reads a data-dependent (but deterministic) set of

1 This makes item collections a table of IVars(2) similar to Haskell’s MVars

Intel Concurrent Collections for Haskell 3

items. One way to think of it is that CnC dynamically constructs dataflow net-
works, where item collections contain an unbounded number of communication
channels and coin new ones on demand. This makes CnC a desirable program-
ming model—while still deterministic, unlike data-flow and stream processing
the communication relationships can be data-dependent and dynamic.

Our proof of determinism(1) does not directly rely on the determinism of
synchronous dataflow. It is instead based on the monotonicity of item collections
acquiring new entries. The contents of an item collection—when available—will
always be deterministic, and therefore the output of an individual step is also
determined. Likewise the result of evaluating a network of CnC steps (the result
being the final contents of item collections) is deterministic.

In CnC parlance the messages that cause steps to execute are called tags (a
term that derives from the fact that these messages typically serve as keys for
looking up data within item collections). A step can, in addition to putting and
getting items, output new tags and thereby trigger other steps. These put and
get commands give steps an imperative look and feel. The abstraction, however,
remains pure; one can think of a step as executing only when its inputs are ready,
reading immutable data from item collections, and producing a list of new items
and tags as output, i.e. functional updates. Indeed, we provide both pure and
imperative implementations of Haskell CnC (exposing the same interface) and
our pure implementations represent steps in exactly this way.

Finally, in addition to item collections, CnC uses tag collections as an in-
termediary between steps. Each step is controlled by one tag collection. A tag
collection receives new tags and broadcasts them to an arbitrary number steps.
It is said to prescribe those steps. In fact even steps are seen as collections;
wavestep above would be a step collection while each invocation wavestep(i,j)

corresponds to a step instance. The name “Concurrent Collections” (CnC) is
due to the symmetry between step, item, and tag collections.

Historically, CnC has primarily been concerned with static graphs of col-
lections in which all step, item, and tag collections and their dependencies are
declared statically (sometimes with metadata enabling index analysis). The re-
sult is called a CnC graph or CnC specification, and it enables a greater degree of
offline analysis. Usually a CnC tool generates the code for constructing graphs,
and therefore it can implement graph transformations (such as fusing steps based
on profiling information). Haskell CnC, while compatible with this mode of oper-
ation also allows the dynamic construction of CnC graphs via the API described
in the next Section (2.1), and, further, allows the use of steps/items outside of
an explicit graph (Section 2.2).

2.1 Haskell CnC API

The Haskell CnC API is structured around two monads: StepCode and GraphCode.
Computations in the GraphCode monad construct CnC graphs. The monad’s
methods include newTagCol and newItemCol for creating tag and item collections,
respectively. A call to prescribe has the effect of adding to the graph both a

4 Ryan Newton Chih-Ping Chen Simon Marlow

step and an edge connecting it to exactly one tag collection2. The step itself is
a function of one argument (its tag).

newTagCol :: GraphCode (TagCol a)

newItemCol :: GraphCode (ItemCol a b)

type Step tag = tag → StepCode ()

prescribe :: TagCol tag → Step tag → GraphCode ()

Each step in a CnC graph is realized by a computation in the StepCode

monad. A step interacts with its neighbors in the graph by getting and putting
items and by emitting new tags.

get :: Ord a =〉 ItemCol a b → a → StepCode b

put :: Ord a =〉 ItemCol a b → a → b → StepCode ()

– Emit a new tag into the graph; putt is short for put-tag:

putt :: TagCol tag → tag → StepCode ()

One way to think of a tag collection TagCol tag is as a set of steps with type
Step tag. Steps are added to the set by calling prescribe. The steps in a TagCol

are executed by putt, which applies each step in the set to the supplied tag.
In the Haskell edition of CnC there are no explicitly established edges between

item/tag collections and steps. Instead, item collections are first class values. The
Haskell CnC idiom is to define steps within the lexical scope of the collection
bindings, or to define steps at top-level and pass needed collections as arguments
(a ReaderT monad transformer would do as well).

The above functions allow us to create graphs and steps. Only one thing is
missing before we have a basic but useful interface: inserting input data and
retrieving results from outside CnC. In CnC, we refer to the program outside
the CnC graph as the environment. The environment can put an initial set of
tags and items into the graph, run the graph until no more steps can execute,
and finally retrieve output values in item collections.

A third monad could be used to represent environment computations that
interact with CnC graphs. But to keep things simple we instead provide a way
to lift StepCode computations into the GraphCode monad and we use it to both
construct and execute graphs. We currently enforce a split-phase structure in
which the environment executes one initialize and one finalize step for input and
output respectively.

initialize :: StepCode a → GraphCode a

finalize :: StepCode a → GraphCode a

Once a GraphCode computation is assembled, evaluating the graph to yield a
final value is accomplished by runGraph. The final result is the value returned by
the finalize step.
2 We support direct visualization and user manipulation of CnC graphs in other CnC

implementations, but one advantage of programmatically constructing graphs is that
the normal tools of abstraction can be used for building and reusing graph topologies.

Intel Concurrent Collections for Haskell 5

runGraph :: GraphCode a → a

2.2 Discussion: Alternate Dynamic API

If the user imports the Intel.CncDynamic rather than Intel.Cnc, they can access
a more basic interface that may be more convenient for some tasks, but which
moves away from the explicit graph specifications in the CnC methodology. The
idea behind this interface is that the StepCode and GraphCode monads become
a single monad. Item collections may be constructed dynamically by steps, and
computations may be spawned as (asynchronous) step instances. This can be
used to implement a variety of different control constructs, for example, parallel
for loops.

data CnC a

instance Monad CnC

runCnC :: CnC a → a

newItemCol :: CnC (ItemCol k v)

get :: Ord k =〉 ItemCol k v → k → CnC v

put :: ord k =〉 ItemCol k v → k v → CnC ()

forkStep :: CnC a → CnC ()

Like its graph-based counterpart, the above API provides deterministic parallel
execution. It may even be more efficient in some situations, but it also precludes
scheduling strategies that involve scheduling many of the same step.

3 Implementation

Haskell CnC provides several different modules that implement the same monadic
interface. These include both pure implementations and imperative ones; the
latter internally use the IO monad, but hide it through unsafePerformIO. Pure
implementations provide a clear reference implementation that illustrates the
CnC semantics—steps produce lists of new items, which can be lazily integrated
into item collections in any order. The imperative implementations, on the other
hand, currently provide better parallel performance on most benchmarks.

The key choice in implementing CnC for GHC is how much to rely on existing
mechanisms in GHC for scheduling and synchronization. For example, the most
simple implementation of CnC is nearly trivial—forkIO executes steps and MVars

provide synchronization on missing items.

3.1 Runtime Schedulers

Haskell CnC version 0.1.4 provides schedulers based, respectively, on IO-threads,
a global task queue, or sparks and which use either MVars or continuations for
synchronizing access to items. These choices, in turn, determine how termination
is handled. We go to the trouble of describing multiple schedulers because each

6 Ryan Newton Chih-Ping Chen Simon Marlow

of them is best for at least one of the benchmarks we will see in Section 4—
switching between schedulers is part of optimizing parallel performance. Also,
because Haskell is an outlier among languages, particularly in implementing lazy
evaluation, it should not be assumed that conventional wisdom always applies.
(For example, global task queues beat work-stealing in most of our benchmarks.)

3.2 Blocking, MVar-based schedulers

Haskell’s MVars are essentially one-element FIFOs that support reading without
popping. An item can be represented by an MVar which is initially empty and
filled exactly once. IO-threads work together with MVars, blocking when an
MVar is read. Most Haskell CnC schedulers use MVars.

IO-Thread scheduler GHC has very lightweight user threads; for a long time it
won the “language shootout” Threadring benchmark. In the IO-thread scheduler
we map each CnC step onto its own thread (e.g. one forkIO per step). The
result is a simple and predictable scheduler. But, alas, it suffers on programs
with finer grained steps. Haskell threads, while lightweight, are still preemptable
(and require per-thread stack space). Thus they are overkill for CnC steps, which
need not be preempted. It is possible to get a clear idea for the implementation
strategy from the types chosen for the two CnC monads, and the representations
for tags and item collections.

– Step and graph code directly use the IO monad (safely):

newtype StepCode t = StepCode (IO t)

newtype GraphCode t = GraphCode (IO t)

– Tag collections store executed tags (for optional memoization)

– and a list of steps that are controlled by the tag collection.

newtype TagCol a = TagCol (IORef (Set a), IORef [Step a])

– Mutable maps with support for synchronization:

newtype ItemCol a b = ItemCol (IORef (Map a (MVar b)))

Global task pool schedulers These work sharing implementations use a
global stack or queue of steps, with all worker threads feeding from that pool.
The number of worker threads is roughly equal to the number of processors.
The reason the correspondence is not exact is that blocking on an MVar will
stop the associated thread. At start-up, both task-pool-based schedulers fork
numCapabilities threads, but before blocking on a get, a worker thread must
fork a replacement.

When a blocked thread wakes up, over-subscription will occur (more workers
than processors). Our task-pool schedulers minimize, but do not prevent, over-
subscription. The strategy is to mark threads that block on an MVar operation

Intel Concurrent Collections for Haskell 7

as mortal—when they wake up they will complete the step they were executing
but then terminate rather than continuing the scheduler loop.

Here we will describe two schedulers, designated workQ busy and workQ lazy.
Where they differ is in their treatment of termination. When the global task
pool runs dry, each worker has a choice to make. Either spin/sleep or terminate;
workQ busy takes the former approach, and workQ lazy the latter.

Under workQ lazy, whenever a worker observes the task pool in an empty
state, it terminates and sends its ID number back to the main scheduler thread
through a Control.Concurrennt.Chan. (The scheduler thread is the one that called
runGraph.) By itself, this strategy creates a different problem—a serial bottleneck
will cause workers to shutdown prematurely even if there is another parallel phase
coming (i.e., a currently running step will refill the task pool). To compensate,
it adopts the following method: upon enqueueing work in the task-pool, if the
pool was previously empty, then reissue any worker-threads that are dead.

Both schedulers augment the representation of StepCode to include extra state
that tracks the task pool, worker ID, and a pointer to the container for mortal
threads:

newtype StepCode a = StepCode (StateT (HiddenState) IO a)

3.3 Non-blocking, continuation or retry-based schedulers

When a step performs a get for unavailable data, rather than blocking on an
MVar (which uses the underlying thread-scheduling mechanism to sleep and
wake the thread), another option is to abort the step and try again later. Aborted
steps are registered in a wait-list on the item itself. Whenever that item becomes
available, steps on the wait-list can be requeued for execution.

There’s a design choice to be made as to exactly which function to place
on the wait-list. Either (1) the step could be replayed from the beginning, or
(2) its continuation could be captured at the point of the failed get and the
computation resumed from that point onward. Typically steps acquire their in-
put data before doing any real work, so the former strategy is not as bad as it
sounds, and other CnC implementations use this approach where continuation-
capture is not possible. However, this scheduler, which we call simply the ContT
scheduler uses a continuation monad transformer to provide a limited form of
continuation-passing-style (CPS)—specifically, the ability to capture continua-
tions at the point of each get. The advantage of monads, in this case, is that
they allow library code to CPS-transform a part of the user’s program, with-
out modifying the compiler. Finally, the ContT scheduler can use either a global
queue to manage tasks or work stealing (as in Cilk (7)). We refer to the resulting
variants as ContT Q and ContT WS.

Spark-based Scheduling There’s one more scheduler that will appear in Sec-
tion 4, which is based on a package we built called HCilk. GHC’s par mechanism

8 Ryan Newton Chih-Ping Chen Simon Marlow

for pure parallelism implement futures which subsume the strictly nested (fork-
join) parallelism of Cilk (7). In the GHC runtime, the work stealing dequeues are
called spark pools. But there’s a limitation, sparks cannot safely be used for IO
computations because sparks may be dropped at any time. None of the scheduler
designs we’ve discussed thus far use GHC’s native work-stealing mechanism. In
order to leverage it we built HCilk, which implements fork-join parallelism by
sparking IO computations but also storing the sparks in the parent computa-
tion, which must sync on them before it may return. HCilk can be used to build
a CnC implementation by simply forking on all tag or item puts, and syncing
before a step completes.

3.4 Hash-Tables vs. Data.Map and Friends

All (non-Haskell) CnC implementations use some form of hash table to represent
item collections. In Haskell, we have the choice of using either mutable data
structures (Data.HashTable) or mutable pointers to immutable data structures
(Data.Map). But because Haskell/Hackage do not presently contain a concurrent
hash-table implementation, as of this writing we can only (easily) use hash tables
concurrently via coarse-grained locking on each table. In our limited tests, we
found that even when locking overhead was omitted, Data.HashTable-based item
collections underperformed Data.Map implementations and we settled on Map-
based implementations for the time being. For Haskell CnC we have built an
implementation of a Map datatype based on indexed type families that allow
for certain optimizations in data representation. The details are described in
Appendix A.

3.5 Problems and solutions for the GHC runtime system

Parallel schedulers strive to balance load and reduce scheduling overhead; like-
wise, programmers try to increase locality and manage granularity, but in a com-
plex runtime system (RTS), all of these efforts can be undermined by unforeseen
RTS interactions. This section describes an improvement that was necessary for
the GHC runtime to support effective parallel scaling in Haskell CnC (which it
did not as of the 6.12 release).

The key issue in this case was the handling of “BLACKHOLE” objects used
to synchronize when multiple threads try to evaluate the same thunk. We will re-
turn to this issue to quantify the impacts of the new BLACKHOLE architecture
in Section 4, but first we discuss the structure of the problem and its solution.

Ultimately, we believe targeting new, high-level parallel abstractions to GHC
is a mutually beneficial proposition, as evidenced by Haskell CnC’s (1) highlight-
ing performance problems, (2) validating the new BLACKHOLE architecture,
and (3) uncovering a GHC parallel runtime deadlock bug in the process!

Blocking and lazy evaluation in GHC Lazy evaluation presents an inter-
esting challenge for multicore execution. The heap contains nodes that represent

Intel Concurrent Collections for Haskell 9

suspended computations (thunks), and in a shared heap system such as GHC it
is possible that multiple processors may try to evaluate the same thunk simul-
taneously, leaving the runtime system to manage the contention somehow.

Fortunately, all suspended computations are pure3, so a given thunk will
always evaluate to the same value. Hence we can allow multiple processors to
evaluate a thunk without any ill effects, although if the computation is expensive
we may wish to curtail unnecessary duplication of work. It comes down to finding
the right balance between synchronisation and work duplication: preventing all
work duplication entails excessive synchronisation costs (9), but reducing the
synchronization overhead may lead to too much work duplication.

The GHC RTS takes a relaxed approach: by default duplication is not pre-
vented, but at regular intervals (a context switch) the runtime takes a lock on
each of the thunks under evaluation by the current thread. The lock is applied
by replacing the thunk with a BLACKHOLE object; any other thread attempt-
ing to evaluate the thunk will then discover the BLACKHOLE and block until
evaluation is complete. This technique means that we avoid expensive synchro-
nisation in the common case, while preventing arbitrary amounts of duplicate
work.

It is important for the blocking mechanism to be efficient: ideally we would
like to have no latency between a thunk completing evaluation and the threads
that are blocked on it becoming runnable again. This entails being able to find the
blocked threads corresponding to a particular BLACKHOLE. Unfortunately, due
to the possibility of race conditions when replacing thunks with BLACKHOLEs,
it was not possible in GHC to attach a list of blocked threads to a BLACKHOLE,
so we kept all the blocked threads on a separate global linked list. The list was
checked periodically for threads to wake up, but the linear list meant that the
cost of checking was O(n), which for large n became a bottleneck.

This issue turned out to be important for the CnC implementation. An item
collection is essentially a shared mutable data structure, implemented as a mu-
table reference in which an immutable value (the mapping from keys to values)
is stored. In many cases, the contents of the reference is either unevaluated (a
thunk) or partially evaluated, and since the reference is shared by many threads,
there is a good chance that one of the threads will lock a thunk and block all
the others, leading to at best sequentialisation, and at worst a drastic slowdown
due to the linear queue of blocked threads. We observed this effect with some
of the CnC benchmarks: often the benchmark would run well, but sometimes it
would run a factor of 2 or more slower.

Noticing that the blocking scheme was becoming a bottleneck in certain
scenarios, the GHC developers embarked on a redesign of this part of the runtime
in GHC. We defer a detailed description of the new scheme for future work, but
the key ideas can be summarized as:

– A BLACKHOLE refers to the owning thread.

3 except for applications of unsafePerformIO, which present interesting problems. A
full discussion is out of scope for this paper, however.

10 Ryan Newton Chih-Ping Chen Simon Marlow

– Blocking is based around message passing; when blocking on a BLACK-
HOLE, a message is sent to the owning thread.

– The owner of a BLACKHOLE is responsible for keeping track of threads
blocked on each BLACKHOLE, and for waking up threads when the BLACK-
HOLE is evaluated.

Together with some careful handling of race conditions, this scheme leads
to a much more efficient and scalable handling of blocked threads. A blocked
thread will be woken up promptly as soon as the thunk it was blocked on is
evaluated. Since the owner of a BLACKHOLE can be identified, the scheduler
can give extra runtime to the owner so as to clear the blockage quickly.

Following the implementation of the new scheme, we noticed significant im-
provements in many of the Concurrent Collections benchmarks (Section 4).

4 Evaluation

We evaluate Haskell CnC on three platforms, termed: desktop, small server, and
large server, the first two representing common platforms today, and the latter
representing the coming generation of hardware (or today’s very high-end). Most
of the benchmarks below are direct ports of their counterparts included in the
distribution package for the C++ version of CnC and these provide a natural
point of comparison (see Table 1, Figure 1).

– Black-Scholes – a differential equation used in finance that describes how,
under a certain set of assumptions, the value of an option changes as the
price of the underlying asset changes. This benchmark achieved a maximum
speedup of 18.4× (Figure 3).

– Cholesky Decomposition – an algorithm in linear algebra that factors a
symmetric, positive definite matrix A into LL∗ where L is a lower triangu-
lar matrix and L∗ its conjugate transpose. Cholesky was the largest of the
benchmarks we ported (see Table 1).

– N-body problem – quadratic algorithm to compute accelerations on N
bodies in 3D space. Maximum speedup achieved was 22.1× over single threaded
execution.

– Mandelbrot – compute each pixel of a Mandelbrot fractal in parallel. Max
speedup was 11.8× (Figure 2).

– Primes – naive primality test in parallel. Max speedup was 25.5×.
– Queens – the N-queens problem (place N queens on a NxN chessboard so

none threatens another).

Experimental setup: Our desktop platform consisted of a single-socket 3.33
GHz quad-core Core i7, Nehalem architecture; the small server was a dual-socket
2.27 GHz 8-core Nehalem, whereas the large server was a 32-core platform con-
sisting of four 2.27 GHz 8-core processors, Westmere architecture. Hyperthread-
ing (SMT) was enabled on the desktop and disabled on both servers. Speedup

Intel Concurrent Collections for Haskell 11

blackscholes cholesky mandel primes nbody queens

C++ LOC 293 390 147 84 81

Haskell LOC 90 158 51 29 46 35

Serial Slowdown 0.78 2.47 12.45 2.75 77.3

Table 1. A table comparing non-comment, non-blank lines of code in C++/CnC
benchmarks and Haskell CnC. A 62% reduction in size is achieved on average,
in large part by reducing type-definition and boilerplate code. However, serial
speed is also lower; dramatically so for nbody.

 2

 4

 8

 12

 16

 20

 24

 0

 16

 32

prim
es

blackscholes

nbody

m
andel

cholesky

queens

desktop
small server
large server

hypothetical scalable GC
CnC/C++ speedup

Fig. 1. Best parallel speedup with any number of threads or Haskell CnC sched-
uler. All Haskell results used the GHC development compiler. C++ results are
from the large server platform using identical input sizes; speedups are relative
to C++ serial times. (Superlinear speedup on Cholesky was to 34.1×.)

12 Ryan Newton Chih-Ping Chen Simon Marlow

results across our benchmark suite are summarized in Figure 1. All results re-
ported are from the 6.13.20100607 development version of GHC. In contrast,
GHC 6.12 produced highly chaotic results and typically parallel slowdown rather
than speedup. We verified that the improvement is due to the new BLACKHOLE
architecture (Section 3.5) by rewinding to exactly before and after that patch to
the compiler. Nevertheless, the programmer must be on the lookout for unpre-
dictable speedups. For example, one culprit is loops that don’t allocate, as we
found when we implemented a simple multiply-add benchmark. (A thread must
allocate to be preempted by the GHC scheduler.)

Examining Figure 1, the reader will notice speedups exceeding 4× on the
four-core desktop platform. In our earlier experiments, enabling hyperthreading
on larger (8, 32 core) platforms did not provide much benefit and in fact increased
unpredictability. On the desktop platform, however, hyperthreading was useful,
and as Figure 1 shows, the Black-Scholes benchmark achieved a 6.28× speedup
on four cores. Further, all but one benchmark (Cholesky) achieved their best
speeds at six or eight (rather than four) threads.

Another striking thing about the results was that superlinear speedups on
the small server platform were quite common. Using both processors on a dual-
socket system increases the available memory bandwidth and processor cache,
which can have a non-linear effect on some applications. Our benchmarks tended
produce a lot of memory traffic, a subject to which we will return when we discuss
garbage collection.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 5 10 15 20 25 30 35

P
ar

al
le

l s
pe

ed
up

 o
ve

r
se

ria
l v

er
si

on

Number of Threads

Benchmark: mandel, speedup relative to serial time of 68.18 seconds

threads
workQ busy
workQ lazy

hcilk
contT Q

contT WS
contT Q hypothetical

Fig. 2. Mandelbrot benchmark’s parallel scaling on large server platform. Three
runs per data-point, median time shown. Includes plot for simulated scalable
garbage collector (contT Q hypothetical). The graph also demonstrates the well-
known “last core parallel slowdown” when running GHC on Linux.

Intel Concurrent Collections for Haskell 13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35

P
ar

al
le

l s
pe

ed
up

 o
ve

r
se

ria
l v

er
si

on

Number of Threads

Benchmark: Black-Scholes, speedup relative to serial time 30.23 seconds

threads
workQ busy
workQ lazy

hcilk
contT Q

contT WS

Fig. 3. Black-Scholes benchmark, large server. This benchmark demonstrates
how with a larger number of tasks the IO-thread-based implementation lags
behind.

The effects of garbage collection

To determine the bottlenecks limiting our test suite’s scaling on the large server,
we used the performance analysis tools built-in to GHC itself, which include
heap residency profiles, multi-threaded system event traces, and simply recording
garbage-collection statistics. In addition to the fundamental concerns of sched-
uler overhead, task granularity, synchronization cost, and locality, we found that
the architecture of the garbage collector (GC) is a primary barrier to scaling
parallelism to larger numbers of cores with GHC. We can determine this by
examining the amount of time spent in garbage collection as a function of the
number of threads. Typically it descends from under 10% on one thread to over
40% on 32 threads (sometimes much over). The amount of time spent in garbage
collection is sufficient to explain the relative lack of scaling in the Cholesky and
Mandelbrot benchmarks. For visualization purposes we included bars in Figure 1
that correspond to a simulated scalable garbage collector, which is assumed to
consume a constant amount of time as the number of cores scales. You can see
a line representing the same simulated scalable collector on Figure 2.

At the time of writing, GHC is using a stop-the-world parallel garbage col-
lector (12) in which each processor has a separate nursery (allocation area). The
garbage collector optimizes locality by having processors trace local roots during
parallel GC and by not load-balancing the GC of young-generation collections
(13), and this strategy has resulted in reasonable scaling on small numbers of
processors.

14 Ryan Newton Chih-Ping Chen Simon Marlow

heap MB N -body: time / collects Black-Scholes: time / collects

10 8.9s / 6705 1.63s / 716
100 6.3s / 1080 1.63s / 574
250 6.23s / 421 2.1s / 387
500 6.2s / 211 2.96s / 386

1,000 6.2s / 103 5.29s / 386
10,000 9.45s / 14 93.5s / 386
100,000 44s / 5

Table 2. (32 threads) The effects of suggested heap size (-H) on parallel per-
formance and number of collections—different right answers for different bench-
marks. All benchmarks slow down at massive heap sizes (we tested up to 110
gigabytes), but N -body increases in performance up to 500M, whereas Black-
Scholes, for example, peaks much earlier and is suboptimal at heap size 500M.

However, the stop-the-world aspect of the garbage collector remains the most
significant bottleneck to scaling. The nurseries have to be kept small (around the
L2 cache size) in order to benefit from the cache, but small nurseries entail a high
rate of young-generation collections. With each collection requiring an all-core
synchronization, this quickly becomes a bottleneck, especially in programs that
allocate a lot. Hence, the most effective way to improve scaling in the context of
the current architecture is to tune the program to reduce its rate of allocation;
we found this to be critical in some cases.

This locality trade-off means that the common technique of increasing the
heap size to decrease the overall GC overhead often doesn’t work. As shown in
Table 2, the best selection for one benchmark can do badly on another. (All
our results from other figures are reported without any per-benchmark tuning
parameters, heap-size or otherwise.) A new garbage collector is currently under
development that allows individual processors to collect their own local heaps
without synchronizing with the other processors, and this should give a signifi-
cant boost to scaling.

It is difficult to predict the interaction of the heap size, scheduler, and a CnC
program. For example, the Mandelbrot benchmark on the large server: using a
10G heap did not significantly lessen the performance (with either one thread
or up to 32) for all schedulers except the IO-thread based one, where the larger
heap size had a catastrophic effect. (It became 2× slower in the serial case, 15.8×
slower in the 32-thread case.) Because of the compounded complexity of memory
effects and parallelism we recommend auto-tuning approaches. Reinforcing this
view is the issue of scheduler choice: every scheduler presented here performs the
best in at least one benchmark.4

In this study, we experimented systematically with some runtime parameters
and informally with others. The GHC runtime can optionally make use of the

4 Fortunately, because GHC’s concurrency abstractions are composable, separately
compiled modules can use different Haskell CnC schedulers.

Intel Concurrent Collections for Haskell 15

OS’s affinity APIs to pin threads to particular cores (the -qa flag), and we found
that this consistently helped performance. The -qb flag disables load balancing
within parallel garbage collections (aiding some parallel programs). But across
our benchmark suite, enabling the flag results in a geometric mean slow-down of
23% (measured by the best wall-clock time achieved for each benchmark under
any number of threads).

Detailed Benchmark Discussion

Granularity of computation is a universal problem in parallel scheduling (though
it has been overshadowed by memory concerns in these tests). It is easy to write
programs whose step granularity is too small, or allocation rate is too high, to
get any parallel speedup whatsoever (or worse, dramatic and unpredictable slow-
down), in spite of a large amount of parallelism being exposed. Requiring some
support for user control of granularity is typical of systems that rely on dynamic
scheduling (e.g. TBB (6), or Haskell CnC) as opposed to static scheduling (e.g.
StreamIT (8)).

The Black-Scholes and Cholesky benchmarks, ported from C++ already had
a blocked structure, wherein steps, rather than operating on individual elements,
process batches of elements of a configurable size, thus addressing the granularity
problem but requiring tuning of block size. Black-Scholes performed well after
its initial port, but Cholesky did not. It turns out that Cholesky performance in
Haskell is not affected greatly by block size, rather, on the large server it reaches
peak performance at four or eight threads where it hits a memory wall. Cholesky
manipulates a large matrix, and in this case suffers greatly from inefficient in-
memory data representations.

Many of these benchmarks have fairly high allocation rates. Mandelbrot,
primes, Black-Scholes, Cholesky and N -body all produce output of the same size
as their input—by allocating arrays or individual items within the steps. N -body,
when first ported, achieved no speedup. It allocated two gigabytes over a 2.5
second execution. N -body’s inner loop for each body sums over the other bodies
in the system to compute an acceleration. This loop was written in idiomatic
Haskell (over lists), and while the lists were being deforested, the tuples were not
being unboxed/eliminated. After manually inlining the loops, deforesting, and
unpacking the tuple loop-state, N -body’s allocation decreased by a mere 25%
and yet it started achieving excellent speedups. This is indicative of the kinds of
sensitivities in parallel performance given the state of the tools at this moment.

5 Discussion and Related Work

CnC is situated in a landscape of graph-based computational models. These
include data-flow, stream processing, task graphs, actors, agents, and process
networks. These models appear in disparate parts of computer science rang-
ing from databases to graphics to cluster computing, leading to many divergent
terminologies. For our purposes, a graph-based computational model is one in

16 Ryan Newton Chih-Ping Chen Simon Marlow

which message-passing along defined channels (edges) is the only form of com-
munication between separate computations (nodes). We summarize some of the
basic design choices in Table 3.

Set of nodes • dynamic, • static

Edge data rates • dynamic, • static

Nodes • processes, • stateless tasks, • stateful tasks

Node/edge • read all inbound edges at once
synchronization: • read edges in deterministic order

• read edges in nondeterministic order
(event-driven / asynchronous)

Table 3. Major choices to build-your-own graph-based model.

First, the nodes of a computation graph may be either continuously running
processes or discrete tasks that execute for a finite duration after receiving data
on incoming edges. Discrete tasks may or may not maintain state between invo-
cations. The set of tasks may be known statically, as in synchronous data-flow
(11) and “task scheduling” (16), or change dynamically (as in most streaming
databases (3)).

Stream processing systems typically have ordered edges and statically known
graph topologies. Generally, they allow both stateful and stateless tasks (the
latter providing data parallelism). They may be based on synchronous data-
flow (e.g. StreamIt (8)) and have known edge data-rates, or dynamic rates (e.g.
WaveScope (14)).

A key choice is how nodes with multiple inbound edges combine data. They
can, for example, read a constant number of messages from each inbound edge
during every node execution (SDF). Alternatively, edges can be read in an input-
dependent but deterministic order (e.g. Kahn networks (4)). Or, finally, edges
can be processed by a node in a nondeterministic order, as when handling real
time events or interrupts (e.g. WaveScope (14) and most streaming databases).

In contrast with these systems, CnC has unordered communication channels
(carrying tags) and stateless tasks (steps). (Unordered channels with stateful
tasks would be a recipe for nondeterminism.) CnC also has item collections. In a
purely message-passing framework, item collections can be modeled as stateful
tasks that are connected to step nodes via ordered edges that carry put, get, and
get-response messages. That is, a producer task sends a put message to the item
collection and a consumer task first sends a get message and then blocks on
receipt of a value on the response edge. The edges must be ordered to match up
get requests and responses. This also requires a formulation of steps that allows
them, once initiated, to synchronously read data from other incoming edges.
Thus CnC can be modeled as a hybrid system with two kinds of edges and two
kinds of nodes.

Intel Concurrent Collections for Haskell 17

In addition to the above mentioned systems, there are many less obviously re-
lated precedents as well, including graphical workflow toolkits (such as Labview
and Matlab Simulink) and Linda/Tuple-spaces. Also, the functional program-
ming literature includes several projects that explore the connection between
functional programming, stream processing, and synchronous data-flow (15; 5),
but not all projects have achieved (or aimed for) effective parallel performance.

6 Conclusion and Future Work

We overcame a number of obstacles to achieve a platform for effective paral-
lel programming in Haskell, delivering excellent performance on the multicore
desktop and server platforms that comprise the majority of today’s comput-
ing landscape. Moreover, while Haskell CnC delivers reasonable performance on
larger-scale shared memory machines, it has also concretely identified the areas
for future improvements that will enable further scaling.

Future work will refine the data structures used by Haskell CnC, incorpo-
rating, perhaps, low-level implementations of concurrent data structures (hash
tables and work stealing dequeues). Second, an overhaul of the GHC garbage
collector to enable independent per-thread collections is already underway and
Haskell CnC is helping to test the new architecture.

Bibliography

[1] Zoran Budimlic, Michael Burke, Vincent Cave, Kathleen Knobe, Geoff
Lowney, Ryan Newton, Jens Palsberg, David Peixotto1, Vivek Sarkar, Frank
Schlimbach, Sagnak Tasrlar. The Concurrent Collections Programming
Model. In Press.

[2] Arvind, Rishiyur Nikhil, and Keshav Pingali. I-structures: Data structures
for parallel computing. In Joseph Fasel and Robert Keller, editors, Graph
Reduction, volume 279 of Lecture Notes in Computer Science, pages 336–
369. Springer Berlin / Heidelberg, 1987.

[3] D. Carney, U. Cetintemel, M. Cherniak, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams—a new
class of data management applications. In VLDB, 2002.

[4] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence
Plateau, and Marc Pouzet. N-synchronous kahn networks: a relaxed model
of synchrony for real-time systems. In POPL ’06: Conference record of the
33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 180–193, New York, NY, USA, 2006. ACM.

[5] Jean-Louis Colaço, Alain Girault, Grégoire Hamon, and Marc Pouzet. To-
wards a Higher-order Synchronous Data-flow Language. In ACM Fourth
International Conference on Embedded Software (EMSOFT’04), Pisa, Italy,
September 2004.

[6] Intel Corporation. Intel(R) Threading Building Blocks reference manual.
Document Number 315415-002US, 2009.

[7] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implemen-
tation of the Cilk-5 multithreaded language. In Proceedings of PLDI’98,
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 212–223, 1998.

[8] M. I. Gordon et al. Exploiting coarse-grained task, data, and pipeline par-
allelism in stream programs. In ASPLOS-XII: Proceedings of the 12th in-
ternational conference on Architectural support for programming languages
and operating systems, pages 151–162, New York, NY, USA, 2006. ACM.

[9] Tim Harris, Simon Marlow, and Simon Peyton Jones. Haskell on a shared-
memory multiprocessor. In Haskell ’05: Proceedings of the 2005 ACM SIG-
PLAN workshop on Haskell, pages 49–61. ACM Press, September 2005.

[10] Intel Corporation. Intel Concurrent Collections Web-
site. http://software.intel.com/en-us/articles/
intel-concurrent-collections-for-cc/.

[11] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal processing. IEEE Trans.
Comput., 36(1):24–35, 1987.

[12] Simon Marlow, Tim Harris, Roshan P. James, and Simon Peyton Jones. Par-
allel generational-copying garbage collection with a block-structured heap.

Intel Concurrent Collections for Haskell 19

In ISMM ’08: Proceedings of the 7th international symposium on Memory
management. ACM, June 2008.

[13] Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime support
for multicore haskell. In ICFP ’09: Proceeding of the 14th ACM SIGPLAN
international conference on Functional programming, August 2009.

[14] Ryan R. Newton, Lewis D. Girod, Michael B. Craig, Samuel R. Madden,
and John Gregory Morrisett. Design and evaluation of a compiler for em-
bedded stream programs. In LCTES ’08: Proceedings of the 2008 ACM
SIGPLAN-SIGBED conference on Languages, compilers, and tools for em-
bedded systems, pages 131–140, New York, NY, USA, 2008. ACM.

[15] John Peterson, Valery Trifonov, and Andrei Serjantov. Parallel functional
reactive programming. In PADL ’00: Proceedings of the Second Interna-
tional Workshop on Practical Aspects of Declarative Languages, pages 16–
31, London, UK, 2000. Springer-Verlag.

[16] Oliver Sinnen. Task Scheduling for Parallel Systems (Wiley Series on Par-
allel and Distributed Computing). Wiley-Interscience, 2007.

[17] Martin Sulzmann, Edmund S.L. Lam, and Simon Marlow. Comparing the
performance of concurrent linked-list implementations in haskell. SIGPLAN
Not., 44(5):11–20, 2009.

[18] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algo-
rithm + strategy = parallelism. J. Funct. Program., 8(1):23–60, 1998.

[19] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. Elec-
tron. Notes Theor. Comput. Sci., 203(5):263–284, 2008.

A Appendix: Generic Map Implementation Details

There are many improvements to be made to a basic Data.Map implementation.
In particular, the Haskell CnC distribution includes its own implementation of
“generic maps” (GMap) using indexed type families. GMaps can take on different
physical representations based on their key types (and potentially value types as
well). All key types must provide an instance of the class GMapKey, a simplified
version of which follows:

– A simplified class GMapKey

class GMapKey t where

data GMap t :: * → *

empty :: GMap t v

lookup :: t → GMap t v → Maybe v

We can then define instances for each different key type we are interested in.
For example, Data.IntMap is more efficient than Data.Map when keys are integers.
Also, pair-keys can be deconstructed and represented using nested maps. Like-
wise, Eithers, Bools, and unit key types also have specialized implementations.

20 Ryan Newton Chih-Ping Chen Simon Marlow

The problem with this approach is that GMaps are not a drop-in replace-
ment for Data.Map. The user would have to be aware that item collections are
implemented as GMaps and define their own GMapKey instances. They are not
derivable, and have no “fallthrough” for index types that satisfy Ord but do
not have explicit GMapKey instances defined. Such a fallthrough would constitute
an overlapping instance with the specialized versions. The language extension
OverlappingInstances permits overlaps for regular type classes, but not for in-
dexed type families.

Fortunately there is a work-around for this type-checking limitation, sug-
gested by Oleg Kiselyov on the Haskell-cafe mailing list. The idea is to use an
auxiliary type class to first classify a given key type, and then dispatch on it
(without overlaps) in the indexed type family. The “categories” are represented
by newtypes, and might include things like PairType or EitherType, but here we
consider only two categories: those types that can be packed into a single word,
and those that cannot.

– We will classify types into the following categories

newtype PackedRepr t = PR t deriving (Eq,Ord,Show)

newtype BoringRepr t = BR t deriving (Eq,Ord,Show)

Next, we assume a class FitInWord that captures types that can be packed into
a machine word. (Template Haskell would be useful for generating all tuples of
scalars that share this property, but this is not yet implemented.)

class FitInWord v where

toWord :: v → Word

fromWord :: Word → v

– Example: Two Int16’s fit in a word:

fI x = fromIntegral x

instance FitInWord (Int16,Int16) where

toWord (a,b) = shiftL (fI a) 16 + (fI b)

fromWord n = (fI$ shiftR n 16,

fI$ n .&. 0xFFFF)

Next, we introduce the class ChooseRepr, which permits overlapping instances
and does the “classification”. We generate an instance for every instance in
FitInWord that selects the packed representation.

Intel Concurrent Collections for Haskell 21

– Auxiliary class to choose the appropriate category:

class ChooseRepr a b | a → b where

choose repr :: a → b

choosen repr :: b → a

– Choose a specialized representation:

instance ChooseRepr (Int16,Int16)

(PackedRepr (Int16,Int16)) where

choose repr = PR

choosen repr (PR p) = p

– Fall through to the default representation:

instance (c ∼ BoringRepr a) =〉 ChooseRepr a c where

choose repr = BR

choosen repr (BR p) = p

It is then possible to create non-overlapping instances of GMapKey that use IntMaps
where applicable and Maps otherwise.

import qualified Data.IntMap as IM

import qualified Data.Map as Map

– For PackedRepr we pack the key into a word:

instance FitInWord t =〉 GMapKey (PackedRepr t) where

data GMap (PackedRepr t) v = GMapInt (IM.IntMap v)

empty = GMapInt IM.empty

lookup (PR k) (GMapInt m) = IM.lookup (fI$ toWord k) m

– For BoringRepr we use Data.Map:

instance Ord t =〉 GMapKey (BoringRepr t) where

data GMap (BoringRepr t) v = GMapBR (Map.Map t v)

empty = GMapBR Map.empty

lookup (BR k) (GMapBR m) = Map.lookup k m

Finally, there is one last basic data structure trade-off to make. Haskell CnC’s
use of Maps requires storing them in a mutable variable and performing atomic
updates to that variable. In our implementation we currently include a toggle
to select between TVars, MVars, and IORefs for all “hot” mutable variables in the
CnC implementation. We reach the same conclusion as previous authors (17),
and select TVars by default.

