
CLAUDE BOLDUC

INTERPROCEDURAL PROGRAM ANALYSIS

USING VISIBLY PUSHDOWN KLEENE ALGEBRA

Thèse présentée
à la Faculté des études supérieures de l'Université Laval
dans le cadre du programme de doctorat en informatique
pour l'obtention du grade de Philosophiæ Doctor (Ph.D.)

FACULTÉ DES SCIENCES ET DE GÉNIE
UNIVERSITÉ LAVAL

QUÉBEC

2011

c© Claude Bolduc, 2011



Résumé

Les analyses interprocédurales automatiques de programmes qui sont basées sur des
théories mathématiques rigoureuses sont complexes à réaliser, mais elles sont d'excel-
lents outils pour augmenter notre con�ance envers les comportements possibles d'un
programme. Les méthodes classiques pour réaliser ces analyses sont l'analyse de modè-
les, l'interprétation abstraite et la démonstration automatique de théorèmes. La base
d'un démonstrateur automatique de théorèmes est une logique ou une algèbre et le
choix de celle-ci a un impact sur la complexité de trouver une preuve pour un théorème
donné.

Cette dissertation développe un formalisme algébrique concis pouvant être utilisé en
démonstration automatique de théorèmes. Ce formalisme est appellé algèbre de Kleene
à pile visible. Cette dissertation explique comment ce formalisme peut être utilisé
pour réaliser des analyses interprocédurales de programmes, comme des véri�cations
formelles et des véri�cations d'optimisations e�ectuées par des compilateurs. Cette
dissertation apporte aussi des preuves que ces analyses pourraient être automatisées.

L'algèbre de Kleene à pile visible est une extension de l'algèbre de Kleene, un ex-
cellent formalisme pour réaliser des analyses intraprocédurales de programmes. En
bref, l'algèbre de Kleene est la théorie algébrique des automates �nis et des expressions
régulières. Donc, cette algèbre à elle seule n'est pas appropriée pour faire des analyses
interprocédurales de programmes car la puissance des langages non contextuels est sou-
vent nécessaire pour représenter le �ot de contrôle d'un tel programme. L'algèbre de
Kleene à pile visible étend celle-ci en lui ajoutant une famille d'opérateurs de plus petit
point �xe qui est basée sur une restriction des grammaires non contextuelles. En fait,
cette algèbre axiomatise exactement la théorie équationnelle des langages à pile visibles.
Ces langages sont une sous-classe des langages non contextuels et ont été dé�nis par
Alur et Madhusudan pour faire de l'analyse de modèles. La complexité résultante de
la théorie équationnelle de l'algèbre proposée est EXPTIME-complète.



Abstract

Automatic interprocedural program analyses based on rigorous mathematical theories
are complex to do, but they are great tools to increase our con�dence in the behaviour
of a program. Classical ways of doing them is either by model checking, by abstract
interpretation or by automated theorem proving. The basis of an automated theorem
prover is a logic or an algebra and the choice of this basis will have an impact in the
complexity of �nding a proof for a given theorem.

This dissertation develops a lightweight algebraic formalism for the automated theo-
rem proving approach. This formalism is called visibly pushdown Kleene algebra. This
dissertation explains how to do some interprocedural program analyses, like formal ver-
i�cation and veri�cation of compiler optimizations, with this formalism. Evidence is
provided that the analyses can be automated.

The proposed algebraic formalism is an extension of Kleene algebra, a formalism for
doing intraprocedural program analyses. In a nutshell, Kleene algebra is the algebraic
theory of �nite automata and regular expressions. So, Kleene algebra alone is not
well suited to do interprocedural program analyses, where the power of context-free
languages is often needed to represent the control �ow of a program. Visibly pushdown
Kleene algebra extends Kleene algebra by adding a family of implicit least �xed point
operators based on a restriction of context-free grammars. In fact, visibly pushdown
Kleene algebra axiomatises exactly the equational theory of visibly pushdown languages.
Visibly pushdown languages are a subclass of context-free languages de�ned by Alur and
Madhusudan in the model checking framework to model check interprocedural programs
while remaining decidable. The resulting complexity of the equational theory of visibly
pushdown Kleene algebra is EXPTIME-complete whereas that of Kleene algebra is
PSPACE-complete.
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Chapter 1

Introduction

Separation of concerns is one of the most important design principle in object-oriented
software engineering. One typical way to achieve this is through modularity of program-
ming. Hence, functions (or code blocks or procedures or methods) are unavoidable for
writing clean code for complex systems. Programs using functions are called interpro-

cedural programs and programs not using them are called intraprocedural programs.

Analyzing an imperative interprocedural program for bugs is a di�cult task, but
it must be done to increase our con�dence in the behaviour of a program. Currently,
software testing and code review are the usual ways to analyze programs in the indus-
try. Software testing proved itself useful, particularly in Agile software development,
and even inspired software development techniques like test-driven development [4] and
behaviour-driven development [42]. I believe that software testing is a necessary �rst
step. However, software engineers should also seek to complement (not replace) software
testing with other analyses to improve the quality of their software. Automatic inter-
procedural program analyses based on rigorous mathematical theories are a promising
avenue. Among these, the following two are useful and complementary:

Formal veri�cation of interprocedural programs: Proving the correctness of an
interprocedural program with respect to a property (speci�cation).

Veri�cation of interprocedural compiler optimizations: Proving that a sequen-
ce of optimizing transformations does not change a program's behaviour. Some
transformations can be applied by looking at a single function (these are called in-
traprocedural optimizations), but for others, the entire program must be analyzed
(these are called interprocedural optimizations).
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Program analysis can be done by several approches. For example, it can be done
by model checking (see [19] for a survey), by abstract interpretation (see [17] for a
survey) or by automated theorem proving (see [45] for a survey). The complexity of
the programs that these approaches can deal with constantly increases.

In the theorem proving approach, the idea is to state the problem to solve as a
theorem using the theorem prover's underlying �logic� and to prove the theorem using
the tool. Several logics (or algebras) can be used as the basis of a theorem prover and
this choice will have an impact in the complexity of �nding a proof for a given theorem.

Kleene algebra is an interesting lightweight candidate for the automated theorem
proving approach. In a nutshell, Kleene algebra is the algebraic theory of �nite au-
tomata and regular expressions. More precisely, it is an axiomatic system that axioma-
tises equality between regular languages [25]. In the last two decades, Kleene algebra
has been investigated successfully as a unifying framework for doing some intraproce-

dural program analyses [7, 18, 30, 33, 50].

Unfortunately, Kleene algebra alone is not well suited to do interprocedural program
analyses, where the power of context-free languages is often needed to represent the
control �ow of a program. This dissertation is about extending Kleene algebra to allow
one to reason over interprocedural programs.

My Thesis. My thesis is that interprocedural program analyses like formal veri�ca-
tion and veri�cation of compiler optimizations can be done in a Kleene-like algebraic
formalism such that the analyses can be automated.

This dissertation develops an algebraic formalism that I call visibly pushdown Kleene

algebra, and provides evidence that this formalism supports the thesis. In particular, I
show that the formalism can be used in the above-mentioned interprocedural program
analyses and that these analyses can be automated. The axiomatic system underlying
the proposed formalism is linked with the notion of state transitions, uses equational
reasoning and is able to represent well-known constructs of programming languages
(sequences, alternatives, loops and code blocks) in a natural way. The generated proofs
are formal, equational proofs similar to the mathematical style that is learned in high
school.

Visibly pushdown Kleene algebra extends Kleene algebra by adding a family of
implicit least �xed point operators based on a restriction of context-free grammars.
In fact, visibly pushdown Kleene algebra axiomatises exactly the equational theory of
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visibly pushdown languages. Visibly pushdown languages are a subclass of context-free
languages de�ned by Alur and Madhusudan in the model checking framework to model
check interprocedural programs while remaining decidable [1]. The resulting complexity
of the equational theory of visibly pushdown Kleene algebra is EXPTIME-complete
whereas that of Kleene algebra is PSPACE-complete.

1.1 Contributions

This dissertation contributes to the state-of-the-art both in interprocedural program
analyses and in Kleene-like algebraic formalisms. In particular, this dissertation intro-
duces the following results.

1. The development of an example (a �model�) of the proposed algebraic formalism.
This model is based on a language theory used in model checking that allows one
to represent executions of interprocedural programs.

2. The development of an original algebraic formalism and the de�nition of syntactic
sugar for the formalism to ease its use in program analysis.

3. A proof that the equations that can be proved in this algebraic formalism matches
exactly the equations that are satis�ed in the intended model of this formalism.
So, the formalism is a faithful abstraction of the model and one can use its intuition
about the model to infer some results in the formalism.

4. A proof that one can determine in EXPTIME if an equation can be proved in a
large part of the proposed algebraic formalism. Also, it is shown that this is a
lower bound since this problem is EXPTIME-hard (this is related to the language
equivalence problem of visibly pushdown automata [1]). This is an important step
for the automation of the interprocedural program analyses using this formalism.

5. The de�nition of two interprocedural program analyses, namely formal veri�cation
and veri�cation of compiler optimizations, using the proposed algebraic formalism.
Several examples of these analyses are also presented.

All results presented in this dissertation are personal unless stated otherwise.
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1.2 Outline of the Dissertation

This dissertation is organized to provide evidence that support the thesis. The basics
to develop the proposed formalism are introduced in Chapter 2. These basics include
the presentation of an algebraic formalism, namely Kleene algebra, and the de�nition
of a superset of regular languages called visibly pushdown languages, borrowed from
the model checking community. Then, the proposed formalism to support the thesis is
partially de�ned in Chapter 3 (and the proof of a key theorem of this chapter is given
in Appendix A). In fact, a large part of the formalism is introduced in Chapter 3. The
suitability of this part for the automation of a proof existence procedure is analyzed in
Chapter 4 (and the proof that this procedure works takes place in Appendices B to E).
In particular, a connection between the formalism and its intended model is de�ned.
Next, the de�nition of the proposed formalism is completed in Chapter 5 and syntactic
sugar is also added to the algebraic formalism to ease its use in program analysis.
The proof of some key lemmas of this chapter are proved in Appendix F. Afterward,
two interprocedural program analyses, namely formal veri�cation and veri�cation of
compiler optimizations, are de�ned in Chapter 6 using the proposed formalism. Several
examples of these analyses are also introduced. In conclusion, a review of all the
evidence presented in this dissertation is done in Chapter 7 and open problems and
future work are identi�ed.



Chapter 2

Basics

This chapter brie�y reviews an algebraic formalism, namely Kleene algebra, that allows
one to do intraprocedural program analyses. Then, the weaknesses of Kleene algebra,
based on regular languages, to represent interprocedural program analyses are identi�ed.
This chapter culminates by presenting a superset of regular languages called visibly
pushdown languages, borrowed from the model checking community, that allows one to
do formal veri�cation of interprocedural programs, but that does not have (currently) a
related algebraic formalism. The proposed algebraic formalism developed in this thesis
is based on visibly pushdown languages.

2.1 Kleene Algebra (KA)

Kleene algebra is the algebraic theory of �nite automata and regular expressions. Finite
automata and regular expressions come from an article of Stephen Cole Kleene in the
1950s [24]. In this article, Kleene de�ned regular languages as the languages that are
accepted by �nite automata. He also showed that regular languages are exactly the
languages denoted by regular expressions. Since then, regular expressions and �nite
automata have had a great impact in several �elds of computer science.

De�nition 2.1 (Regular expressions). The class of regular expressions is the smallest
class of expressions on an alphabet Σ that contains each element of Σ, the expressions
0 and 1, and that is closed under the binary operations + and · and unary operation ∗.
The language denoted by a regular expression p is noted L(p) and is de�ned by1

L(0) := ∅, L(1) := {ε}, L(a) := {a} for any a ∈ Σ,

1The symbol ε denotes the empty word.
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and extends homomorphically over the structure of regular expressions where

• · becomes • (concatenation of languages);

• + becomes ∪ (union of languages);

• ∗ becomes the set operator ∗ (Kleene closure of languages). �

Kleene algebra is an algebra that axiomatises the equality between regular expres-
sions. In this dissertation, we use Kozen's axiomatization of Kleene algebra [25].

De�nition 2.2 (Kleene algebra [25]). A Kleene algebra (KA) is an algebraic structure
(K,+, ·, ∗, 0, 1) satisfying the following axioms2.

p+ (q + r) = (p+ q) + r p(qr) = (pq)r p = p+ 0

p(q + r) = pq + pr p+ q = q + p p0 = 0 = 0p

(p+ q)r = pr + qr p+ p = p p1 = p = 1p

qp+ r 6 p→ q∗r 6 p 1 + p∗p 6 p∗ p 6 q ↔ p+ q = q

pq + r 6 p→ rq∗ 6 p 1 + pp∗ 6 p∗ �

The theory of Kleene algebra is very interesting in itself. For the purpose of this
dissertation, we will need only a small fraction of this theory. A more complete presen-
tation of Kleene algebra can be found in [6, 31].

The axiomatic system of Kleene algebra has several interesting models like the
language-theoretic model and the matrix model. For an alphabet Σ, the language-
theoretic model of Kleene algebra is the algebra with universe 2Σ∗ along with operations
∪, •, ∗, ∅ and {ε}. The natural interpretation for the language-theoretic model is L, as
outlined above.

It turns out that Kozen's axiomatization of Kleene algebra represents exactly the
equality between regular expressions. Thus, for any expressions p and q of the syntax
of KA [25],

` p = q ⇐⇒ L(p) = L(q) .

In more technical terms, the equational theory of Kleene algebra is sound and complete
for the language-theoretic model under its natural interpretation. Furthermore, the
problem of deciding if p = q is a theorem of Kleene algebra is PSPACE-complete [25].

2In the sequel, we write pq instead of p · q. The increasing precedence of the operators is +, · and ∗.
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Here are some useful laws of Kleene algebra for any regular expressions p, q and r:

• p∗ = 1 + pp∗;

• p∗ = 1 + p∗p;

• p∗ = p∗p∗;

• p∗ = (p∗)∗;

• (p+ q)∗ = p∗(qp∗)∗ (denesting rule);

• p(qp)∗ = (pq)∗p (sliding rule);

• qp = pr → q∗p = pr∗ (bisimulation rule);

• q 6 p ∧ r 6 p↔ q + r 6 p.

Note that we will use freely these laws in the remainder of this dissertation.

2.1.1 The Matrix Model of Kleene Algebra

We now present the matrix model for Kleene algebra that will be used to prove a
completeness theorem for our proposed formalism (visibly pushdown Kleene algebra).
The matrix model states that the family of matrices over a Kleene algebra again forms
a Kleene algebra (see for example [16, 25]). Let K be a Kleene algebra. The notation
A[i, j] refers to the entry in row i and column j of the matrix A. Since it is a matrix
over K, the element A[i, j] is any element of the universe of K. Let 0 be the matrix
whose entries are all 0. Let I be the identity matrix. In other words, for any row i and
column j of I,

I[i, j] :=

{
1 if i = j,

0 otherwise.

Note that the elements 0 and 1 in the matrices 0 and I are the constants 0 and 1 of K.

Some standard operations on matrices are de�ned. The matrix addition operation
+ between matrices A and B of the same size is de�ned, for any entry i, j, by

(A+B)[i, j] := A[i, j] + B[i, j] ,
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where + is taken from K. The matrix multiplication operator • between matrices A of
size n1 × n2 and B of size n2 × n3 is de�ned, for any entry i, j, by

(A •B)[i, j] := (
∑

k | 1 6 k 6 n2 : A[i, k] ·B[k, j]) ,

in which the right-hand side expression is a quanti�cation over
∑

(which represents the
operator + of K) having quanti�ed variable k, range 1 6 k 6 n2 and bodyA[i, k]·B[k, j]

where · is taken from K. The matrix Kleene star operation ? for a square matrix A

of size n × n is de�ned recursively. If n = 1, [a]? := [a∗] where the ∗ is taken from
K. If n > 2, then it is always possible to partition the matrix A into four nonempty
submatrices such that

A :=

[
B C

D E

]
,

where B and E are square. Then,[
B C

D E

]?
:=

[
F? F?CE?

E?DF? E?+ E?DF?CE?

]
,

where F := B+CE?D. It is usual to de�ne an abbreviation for any square matrix A:

A+ := A ·A? .

Note that the matrix model will be used freely in the remainder of the dissertation.
In particular, we will use matrices in Chapter 4 to model the transition relation of
automata.

2.1.2 Kleene Algebra with Tests (KAT)

Kleene algebra with tests is an extension of Kleene algebra proposed by Dexter Kozen
in 1996 [26, 27]. This extension is useful to model and to reason about intraprocedural
programs.

The basic idea of Kleene algebra with tests is to distinguish test elements from
instruction elements in the universe of the algebra. To achieve it, a universe B is
extracted from the universe K of a Kleene algebra and B will stand as the set of
possible test elements. The standard operators of Kleene algebra still work in universe
B, but it is now required that, when all operands applied to an operator of Kleene
algebra come from B, the result is an element of B. Also, the universe B acts as a
Boolean algebra: the operators + and · now operate on B like the disjunction and
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conjunction of Boolean algebra, and 0 and 1 act as true and false values. There is also
a new operator that can be applied only on tests: the complementation operator .
Here is the formal de�nition of Kleene algebra with tests.

De�nition 2.3 (Kleene algebra with tests). A Kleene algebra with tests is an algebraic
structure (K,B,+, ·, ∗, , 0, 1) such that

• B ⊆ K;

• (K,+, ·, ∗, 0, 1) is a Kleene algebra;

• (B,+, ·, , 0, 1) is a Boolean algebra.

In fact, it su�ces to add these two axioms to Kleene algebra to obtain the axiomatization
of Kleene algebra with tests:

bb = 0 and b+ b = 1 . �

Kleene algebra with tests has been used in several program analyses, for example in
formal veri�cation of intraprocedural programs [30], in concurrency control [15] and in
veri�cation of intraprocedural compiler optimizations [33]. The idea of all these program
analyses is to encode the program to be analysed (and the property to be checked or
another artifact) into Kleene algebra with tests to generate a formula such that if the
formula holds in KAT (i.e., it is a theorem of KAT), then the analysis outputs �yes,
the program satis�es the analysis� and, if the formula does not hold, then the analysis
outputs �no, the program does not satisfy the analysis�.

We will not see in this section the complete encoding in KAT for the previous program
analyses since the representation of interprocedural programs in our proposed formalism
(an extension of KAT) will be presented in full details in Chapter 6. Here, we only give
an overview of the encoding of intraprocedural programs in Kleene algebra with tests.
In program semantics, the operators of KAT applied on instruction elements have the
intuitive meaning described in Table 2.1, and the operators applied on test elements
have the intuitive meaning described in Table 2.2. Using this intuitive meaning, the
control �ow of the standard programming constructs of imperative programs is easy to
encode in KAT:

s ;t := st, if b then s else t := bs+ bt, while b do s := (bs)∗b,
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Operator Intuitive meaning in program semantics

+ Non-deterministic choice
· Sequential composition
∗ Finite iteration
0 The abort instruction
1 The skip instruction

Table 2.1: Intuitive meaning of the KAT's operators applied on instructions.

Operator Intuitive meaning in program semantics

+ Disjunction
· Conjunction

Negation
0 The false value
1 The true value

Table 2.2: Intuitive meaning of the KAT's operators applied on tests.

where b is a test and s and t are programs. The expression encoding a program is then
used to generate the formula to verify. See the respective works for more details [15,
30, 33].

2.1.3 Weaknesses of Kleene Algebra to Represent Interproce-

dural Programs

Kleene algebra is the algebraic theory of �nite automata and regular expressions. So,
Kleene algebra is built on well-known concepts for programmers, but Kleene algebra
seems to handle elegantly only intraprocedural programs3 (i.e., programs without func-
tions). Applications of Kleene algebra4 seem to con�rm this thought since Kleene alge-
bra has been used successfully to do some intraprocedural program analyses [7, 30, 33],
but it has not been used directly to deal with interprocedural programs. In particular,
it seems di�cult to represent recursive functions and, more importantly, the idea of

3In fact, these programs must be abstracted to be used with Kleene algebra since Kleene algebra

alone cannot handle assignment �directly�. This will also be true in our proposed formalism.
4In this dissertation, we sometimes use the term �Kleene algebra� as a misnomer (we should use

�Kleene algebra with tests� instead). We allow it to simplify the discussion. It is not really dangerous

since the two theories are strongly related.
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local scope of a variable. Note that the representation of the control �ow of a pro-
gram may be a context-free language (which subsumes regular languages) if there are
(mutually) recursive functions. So, Kleene algebra alone is not well suited to deal with
interprocedural programs.

Some work has been done to extend Kleene algebra to handle subclasses of context-
free languages [5, 36, 37, 39]. However, these extensions do not seem to be satisfactory
for interprocedural program analyses:

(i) the complexity of the equational theory of these extensions is unknown or unde-
cidable;

(ii) frameworks for formal veri�cation of interprocedural programs, based on these
extensions, are only able to deal with regular properties5;

(iii) none of these extensions has been applied to the veri�cation of interprocedural
compiler optimizations.

Remark (i) is disappointing: it says that it is not easy to build an automated or
semi-automated tool to do interprocedural program analyses.

Remark (ii) is disturbing: non-regular properties are interesting for formal veri�ca-
tion of interprocedural programs. In particular, the ability to use the nesting structure
of procedure calls and returns (procedural context) when de�ning properties is useful.
For example, here are some non-regular properties6:

Secure �le manipulation policies like �whenever a secret �le is opened in a secure
procedural context, it must be closed before control exits the current context�;

Stack-sensitive security properties like �a program must not execute a sensitive
operation at any point when an untrusted procedure is currently on the stack or
has ever been on the stack�;

Logging policies like �whenever a procedure returns an error value, the error must be
logged via a log procedure before control leaves the current procedural context�.

Remark (iii) is annoying: results concerning the veri�cation of several intraprocedural
optimizations in Kleene algebra with tests have already been obtained by Kozen and
Patron [33]. However, no one extended their results to interprocedural optimizations.

5Properties described by regular sets.
6This list is mostly inspired by [13].
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How can we address remarks (i) to (iii) in a common axiomatic system while keeping
the elegance of Kleene algebra? Recall that regular expressions (and, thus, Kleene
algebra) were inspired by �nite automata. Once again, automata theory inspires us as
we will see in the following section.

2.2 Visibly Pushdown Languages, a Way to Represent

Executions of Interprocedural Programs

The model checking community already works on the formal veri�cation of interpro-
cedural programs [1, 12, 46]. However, most of the tools developed so far can only
deal with regular properties. There is an exception: Alur and Madhusudan de�ned a
subclass of context-free languages they called visibly pushdown languages [1].

Visibly pushdown languages are a natural candidate for the representation of exe-
cutions of interprocedural programs. In fact, the metaphor at the basis of a word (a
string created from an alphabet Σ) in these languages is exactly a trace of an interpro-
cedural program. To leverage the metaphor to an interesting, but still abstract, level,
the alphabet Σ of a visibly pushdown language is divided into three disjoint sets Σi, Σc

and Σr which represent, respectively, the set of internal actions, the set of calls and the
set of returns of an interprocedural program. This division is similar to �typing� the
elements of Σ.

The class of visibly pushdown languages is de�ned by acceptance by a subclass
of pushdown automata called visibly pushdown automata. The idea behind visibly
pushdown automata is to drive the stack manipulations of the automaton according to
the current �type� of input symbol it reads. The class of visibly pushdown languages is
surprisingly robust and the language equivalence problem is EXPTIME-complete [1].
So, it is possible to use visibly pushdown automata in model checking to represent
both the (mutually) recursive program and the property to be checked. In fact, some
non-regular properties like those presented in remark (ii) of page 11 can be expressed
with visibly pushdown automata.

2.2.1 (Semi-)Visibly Pushdown Automata ((S-)VPA)

Visibly pushdown automata were introduced by Mehlhorn in 1980 under the name input
driven pushdown automata [40] and reinvented by Alur and Madhusudan in 2004 [1].
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Visibly pushdown automata are a particular case of pushdown automata in which the
stack manipulations are driven (made �visible�) by the input word, which can be thought
of as a string representing an execution of an interprocedural program. To allow this,
the input alphabet Σ of a visibly pushdown automaton is divided into three disjoint sets
Σi, Σc and Σr which represent, respectively, the set of internal actions, the set of calls
and the set of returns of a program. The idea behind this is: when a visibly pushdown
automaton reads

(i) an internal action, it cannot modify the stack;

(ii) a call action, it must push a symbol on the stack;

(iii) a return action, it must read the symbol on the top of the stack and pop it, unless
it is the bottom-of-stack symbol.

This idea is quite simple but useful in program analysis: since a word is an execution
of a program and the program's source code is usually available for the programmers,
it is easy to infer the �type� of an action in a word.

Let ε be the empty word and let the set of �nite words on the alphabet Σi∪Σc∪Σr

be denoted by (Σi ∪ Σc ∪ Σr)
∗.

De�nition 2.4. A visibly pushdown automaton (VPA) is a structure

(S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F )

in which:

• S is a �nite set of states;

• I ⊆ S is the set of initial states;

• F ⊆ S is the set of accepting states;

• Σi, Σc and Σr are three disjoint input alphabets;

• Γ is the stack alphabet and ⊥ is the bottom-of-stack symbol;

• δ is a transition relation of type

S × Σi × {λ} × S × {λ}
∪ S × Σc × {λ} × S × Γ

∪ S × Σr × Γ× S × {λ}
∪ S × Σr × {⊥} × S × {⊥}
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where λ stands for �no action on the stack�. A transition in this relation is
represented by a quintuple (s1, a, d; s2, d2) in which s1 is the current state, a is
the current input symbol read by the automaton, d1 is the popped symbol, s2 is
the new state and d2 is the pushed symbol.

A visibly pushdown automaton accepts a word w ∈ (Σi ∪Σc ∪Σr)
∗ if and only if there

exists at least one run of the automaton on w that starts in an initial state with a stack
containing only ⊥, follows a transition for every single action of the word, and ends in
an accepting state. �

Visibly pushdown automata de�ne a robust class of languages called visibly push-

down languages. Here are some examples of visibly pushdown automata. A visibly push-
down automaton that accepts the non-regular language {cn rn | c ∈ Σc∧r ∈ Σr∧n ∈ N}
is the structure

({s1, s2, s3, s4}, {} ∪ {c} ∪ {r}, {d, e} ∪ {⊥}, δ, {s1}, {s1, s4})

where the relation δ is represented by the following transition diagram:

s1 s2 s3 s4
c, λ; d r, e;λ

c, λ; e

r, d;λ

r, d;λ

r, e;λ

In the preceding example, note that the number of calls is identical to the number of
returns. This is not always the case in visibly pushdown languages. For example, the
langage {cn | c ∈ Σc ∧ n ∈ N} is a visibly pushdown language because it is accepted by
the following visibly pushdown automaton:

({s1}, {} ∪ {c} ∪ {}, {d} ∪ {⊥}, δ, {s1}, {s1})

where the relation δ is represented by the following transition diagram:

s1

c, λ; d

The langage {rn | r ∈ Σr ∧ n ∈ N} is also a visibly pushdown language because it is
accepted by the following visibly pushdown automaton:

({s1}, {} ∪ {} ∪ {r}, {d} ∪ {⊥}, δ, {s1}, {s1})
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where the relation δ is represented by the following transition diagram:

s1

r,⊥;⊥

Let Σi := {a}, Σc := {c} and Σr := {r}. To give the reader a feeling of the class of
visibly pushdown languages, here is a list of visibly pushdown languages without the
proof that they really are visibly pushdown languages:

• {an | n ∈ N} ;

• {cm an rm a a cl rl | l,m, n ∈ N} ;

• {r r r cm an rl | l,m, n ∈ N ∧m > l} .

Note that a �nite word w := σ1σ2σ3 . . . σn in (Σi ∪ Σc ∪ Σr)
∗, where each σi is a

letter from Σi ∪ Σc ∪ Σr, may have pending calls and pending returns. Intuitively, a
pending call is a call action σi ∈ Σc that is not matched with a return action σj ∈ Σr

where i < j, and a pending return is a return action σi ∈ Σr that is not matched with
a call action σj ∈ Σc where j < i. For example, in the word

a f〉 b b 〈f 〈g a a a g〉 b

for which Σi := {a, b}, Σc := {〈f, 〈g} and Σr := {f〉, g〉}, the �rst action f〉 is a pending
return and the �rst action 〈f is a pending call. Obviously, 〈g and g〉 are well matched
since 〈g occurs before g〉 in the word and there is no other pending call or pending
return between 〈g and g〉. Note that we used particular constants like 〈f and f〉 for the
set of call and return actions. This was done only to emphasize the structure of the
word. Instead, we could have used the more classical word

a r b b c d a a a s b

for which Σi := {a, b}, Σc := {c, d} and Σr := {r, s}. We will use the two styles in
this dissertation with a slight preference for the former when encoding programs in our
proposed formalism.

A visibly pushdown language can contain words that have pending calls and pending
returns. Pending calls and pending returns are necessary to have a class of languages
closed under the pre�x-closure and su�x-closure operators. The number of pending
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calls and pending returns in a word can be calculated by reading it left-to-right (re-
spectively, right-to-left), counting 1 for a call (respectively, a return) if the remaining
su�x (respectively, pre�x) of the word does not have pending returns (respectively,
pending calls), and counting 0 otherwise.

More explicitly, the operator pc : (Σi ∪ Σc ∪ Σr)
∗ → N that counts the number of

pending calls in a word and the operator pr : (Σi ∪ Σc ∪ Σr)
∗ → N that counts the

number of pending returns in a word are de�ned by mutual induction over the structure
of a �nite word w ∈ (Σi ∪ Σc ∪ Σr)

∗ as follows:

pc(w) :=


0 if w ∈ Σi ∪ Σr ∪ {ε},
1 if w ∈ Σc,

1 + pc(w′) if w = σw′ where σ ∈ Σc and pr(w′) = 0,

pc(w′) otherwise (where w = σw′ with σ ∈ Σi ∪ Σc ∪ Σr),

pr(w) :=


0 if w ∈ Σi ∪ Σc ∪ {ε},
1 if w ∈ Σr,

1 + pr(w′) if w = w′σ where σ ∈ Σr and pc(w′) = 0,

pr(w′) otherwise (where w = w′σ with σ ∈ Σi ∪ Σc ∪ Σr).

A word w ∈ (Σi∪Σc∪Σr)
∗ is said to be well matched if and only if it does not have

pending calls or pending returns. Note that the set of all words in (Σi ∪ Σc ∪ Σr)
∗ can

be described easily with well-matched words, pending calls and pending returns. Let
Σwm be the set of all well-matched words in (Σi ∪ Σc ∪ Σr)

∗. It is easy to see that

(Σi ∪ Σc ∪ Σr)
∗ = (Σr ∪ Σwm)∗ • (Σc ∪ Σwm)∗ , (2.1)

or, equivalently,

(Σi ∪ Σc ∪ Σr)
∗ = (Σr ∪ Σwm)∗ • (Σc • Σwm)∗ . (2.2)

We prefer the latter equation (Equation (2.2)) in this dissertation. It simpli�es some
proofs.

The notion of the height of a well-matched word will be useful in this dissertation.
The height of a well-matched word measures its hierarchical complexity. In other words,
it gives the largest number of pending calls (or stack height) among all possible a�xes
of a well-matched word. For example, if Σi := {a, b}, Σc := {c, d} and Σr := {r, s},
then the well-matched word a c b b d d a a s a s b b r c a r has a height of 3 because of the
a�x c b b d d. Note that a well-matched word of height 0 is any well-matched word not
containing call actions or return actions. In other words, it is a word of Σ∗i . We allow
ourselves to give the height of a well-matched subword of a word.
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The class of visibly pushdown languages is a strict subclass of deterministic context-
free languages and a strict superclass of regular languages and balanced languages [1].
For example, we saw that {cn rn | n ∈ N ∧ c ∈ Σc ∧ r ∈ Σr} and {cn | n ∈ N ∧ c ∈ Σc}
are VPLs, but the language {an rn | n ∈ N ∧ a ∈ Σi ∧ r ∈ Σr} is not since the stack
cannot be used when reading internal actions.

Visibly pushdown languages are surprisingly robust: they are closed under union,
concatenation, Kleene star, intersection, complementation and pre�x-closure [1, 2]. In
Section 4.3, we will show some of these results algebraically.

A very interesting fact about VPLs is that their language equivalence problem is
EXPTIME-complete [1]. Recall that the language equivalence problem is undecidable
for context-free languages and PSPACE-complete for regular languages.

Deterministic visibly pushdown languages are as expressive as nondeterministic ones.
De�nition 2.4 de�nes what is sometimes called a nondeterministic visibly pushdown

automaton, but it is also possible to de�ne deterministic VPAs.

De�nition 2.5. A deterministic visibly pushdown automaton is a visibly pushdown
automaton

(S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F )

in which:

• there is only one initial state;

• for every s ∈ S and a ∈ Σi, there exists one and only one s′ ∈ S such that
(s, a, λ; s′, λ) ∈ δ;

• for every s ∈ S and c ∈ Σc, there exists one and only one s′ ∈ S and d ∈ Γ such
that (s, c, λ; s′, d) ∈ δ;

• for every s ∈ S, r ∈ Σr and d ∈ Γ, there exists one and only one s′ ∈ S such that
(s, r, d; s′, λ) ∈ δ;

• for every s ∈ S, r ∈ Σr, there exists one and only one s′ ∈ S such that
(s, r,⊥; s′,⊥) ∈ δ. �

Nondeterministic VPAs can be determinized as we will show in Section 4.3. Such a
result does not hold for general pushdown automata.

It is not di�cult to see that the de�nition of visibly pushdown automata can be
relaxed a bit to allow some ε-transitions while still accepting the same class of languages.
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For example, it can be relaxed to allow an ε-transition to change the current top of
the stack symbol into the bottom-of-stack symbol (and thus blocking up the section of
the stack below this symbol). This relaxation gives rise to the concept of semi-visibly
pushdown automaton, which is useful for the design of e�cient algorithms for operations
like concatenation and Kleene star on these automata. To our knowledge, the concept
of semi-visibly pushdown automaton has not been de�ned elsewhere before.

De�nition 2.6. A semi-visibly pushdown automaton (S-VPA) is a structure

(S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F )

in which S, I, F , Σi, Σc, Σr and Γ are as for a VPA and δ is a transition relation of
type

S × Σi × {λ} × S × {λ}
∪ S × Σc × {λ} × S × Γ

∪ S × Σr × Γ× S × {λ}
∪ S × Σr × {⊥} × S × {⊥}
∪ S × {ε} × (Γ ∪ {⊥})× S × {⊥}

where λ stands for �no action on the stack� and the following property is satis�ed: for
all s, s′ ∈ S and d ∈ Γ,

(s, ε, d; s′,⊥) ∈ δ ⇐⇒ (∀ d′ | d′ ∈ Γ : (s, ε, d′; s′,⊥) ∈ δ) . (2.3)

The criterion for accepting a word is the same as for a VPA. �

It is not di�cult (but lengthy) to prove that the class of languages represented by
semi-visibly pushdown automata is exactly that of visibly pushdown languages7 [8]. The
concept of semi-visibly pushdown automaton will be used only in the completeness proof
of Section 4.3 where it allows us to avoid an exponential blow-up in the construction
made in the proof.

As an historical note, Alur and Madhusudan were not the �rst to think of �typing�
the atomic elements of pushdown automata. In 1980, Mehlhorn studied input driven
(real-time) pushdown automata [40] which are very similar to visibly pushdown au-
tomata. Later, in 1983, Braunmühl and Verbeek further studied these input driven
pushdown automata [49]. However, neither seems to have used it in formal veri�cation
of interprocedural programs.

7This result is proved algebraically in Theorem 4.7. In short, the proof is only an elimination of

ε-transitions.
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2.2.2 Visibly Pushdown Grammars

Visibly pushdown grammars were de�ned by Alur and Madhusudan [2]. It is a re-
striction of context-free grammars that characterizes exactly the visibly pushdown lan-
guages. The notion of visibly pushdown grammar inspired us for the de�nition of the
terms of the proposed algebra.

De�nition 2.7 (Visibly pushdown grammars [2]). A visibly pushdown grammar on Σi,
Σc and Σr is a structure

(V0, V1, Z, {→})
in which:

• V0 and V1 are two disjoint sets of nonterminals that represent, respectively, the
set of nonterminals that can only derive well-matched words and the set of non-
terminals that can derive words having pending calls and pending returns;

• Z ∈ V0 ∪ V1 is the starting nonterminal;

• {→} is the �nite set of rewrite rules (or productions). Each rewrite rule must
have one of the following forms:

� X → ε where X ∈ V0 ∪ V1;

� X → a Y where X, Y ∈ V0 and a ∈ Σi;

� X → c Y rW where X, Y,W ∈ V0, c ∈ Σc and r ∈ Σr;

� X → a Y where X ∈ V1, Y ∈ V0 ∪ V1 and a ∈ Σi ∪ Σc ∪ Σr;

� X → c Y rW where X ∈ V1, Y ∈ V0, W ∈ V0 ∪ V1, c ∈ Σc and r ∈ Σr.

The semantics of a visibly pushdown grammar (and any grammar presented in this
dissertation) is the same as for context-free grammars. It is de�ned by a derivation
relation ⇒∗ over the nonterminals and the terminals. For every rewrite rule X → α of
the grammar and for all �words� β and γ that can contain terminals and nonterminals,
the relation β X γ ⇒ β α γ holds. The relation ⇒∗ is the least �xed point of ⇒. The
language of a grammar having starting nonterminal S is the set of all words w that
contain only terminals such that S ⇒∗ w holds. In other words, w is a word of the
language of a grammar if and only if it can be derived from the starting nonterminal
in a �nite number of steps. �

Here is an example of a visibly pushdown grammar that generates the language
{cn rn | n ∈ N ∧ c ∈ Σc ∧ r ∈ Σr}:

({X, Y }, ∅, X, {X → cX r Y, X → ε, Y → ε}) .
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Here is another example of a visibly pushdown grammar that generates the language
{rm cn rn | m > 1 ∧ n ∈ N ∧ c ∈ Σc ∧ r ∈ Σr}:

({X, Y }, {Z}, Z, {Z → r Z, Z → r X, X → cX r Y, X → ε, Y → ε}) .

An interesting fact about visibly pushdown grammars is that they generate exactly
the visibly pushdown languages as shown by the following theorem.

Theorem 2.8 (Visibly pushdown grammars generate exactly the visibly pushdown
languages [2]). Let Σi, Σc and Σr be three disjoint alphabets. A language L ⊆ (Σi ∪
Σc ∪ Σr)

∗ is a visibly pushdown language if and only if there exists a visibly pushdown

grammar that generates L.

It is easy to see that any visibly pushdown grammar on Σi, Σc and Σr is also
a context-free grammar on Σi ∪ Σc ∪ Σr, but the opposite is not true (after all, the
context-free language {an bn | n ∈ N ∧ a, b ∈ Σi} is not a visibly pushdown language).
Thus, visibly pushdown grammars are a strict subset of context-free grammars.

The de�nition of visibly pushdown grammars is linked to the notion of a well-
matched word (the set V0 represents the nonterminals that can generate only well-
matched words). Note also that the rewrite rules having a nonterminal from V0 in the
left-hand side are independent from the other rewrite rules in the sense that no element
of V0 can generate a nonterminal from V1. So, it is possible to calculate the language
generated by a visibly pushdown grammar by �rst generating all well-matched words
of V0 and then generate the other words. We will use this idea in the proposed algebra
when de�ning the terms of the algebra.



Chapter 3

Visibly Pushdown Kleene Algebra

(VPKA)

This chapter presents the proposed formalism to support the thesis: visibly pushdown

Kleene algebra (VPKA). In a nutshell, VPKA characterizes exactly the equality between
two visibly pushdown languages. Before showing the axiomatic system, we present the
terms of VPKA: visibly pushdown regular expressions.

3.1 Visibly Pushdown Regular Expressions (VPRE)

To our knowledge, Pitcher is the only one that has previously de�ned �expressions�
(that he calls �visibly pushdown expressions�) that denote exactly the visibly pushdown
languages [43]. He de�ned these expressions in the context of XML stream processing.
Visibly pushdown expressions are based on regular expression types [22]. Unfortunately,
visibly pushdown expressions do not seem well suited to be the basis of a Kleene-like
algebra. In particular, they have some operations which will complicate the resulting
algebra. For instance, Pitcher has an intersection operator, two di�erent concatenations
operators and explicit variables (with special constraints to prevent inadequate use of
these variables) that must have an algebraic de�nition. Moreover, it seems di�cult to
de�ne mutually recursive programs in this setting.

Thus, we de�ne our own concept of �visibly pushdown regular expressions� that
denote exactly the visibly pushdown languages while remaining close to the terms of
Kleene algebra. Some set operations on visibly pushdown languages are �rst introduced.
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Let Σi, Σc and Σr be three disjoint �nite sets. Let S, T ⊆ (Σi ∪ Σc ∪ Σr)
∗. The

concatenation operation on sets of words is de�ned as usual:

S • T := {st | s ∈ S ∧ t ∈ T} .

The power Sn with respect to • is de�ned inductively by S0 := {ε} and Sn+1 := S •Sn.
This allows us to de�ne the Kleene star operator by

S∗ := (∪ n | n ∈ N : Sn) ,

which is a quanti�cation with quanti�er ∪, quanti�ed variable n, range n ∈ N and body
Sn.

The standard operators of regular expressions are not su�cient to generate every
visibly pushdown language from ∅, {ε}, and the singletons {a} for a ∈ Σi∪Σc∪Σr. So,
other operators are needed. It is not di�cult to see that visibly pushdown languages
di�er from regular languages mostly for their well-matched words. More precisely, if we
are able to generate every visibly pushdown language that contains only well-matched
words, we can use the standard operators of Kleene algebra on these languages and the
singletons {a} for a ∈ Σc∪Σr to generate every visibly pushdown language. So, a way is
needed to generate visibly pushdown languages that contain only well-matched words.
An in�nite family of operators for doing that is de�ned. To ease the understanding of
this family of operators, we give two alternative de�nitions of VPRE: one is grammar-
based [10] and the other is �block�-based [9].

3.1.1 Grammar-Based De�nition of Visibly Pushdown Regular

Expressions

This de�nition is based on the idea that visibly pushdown languages that contain only
well-matched words are better described via context-free grammars. Thus, in this de�-
nition, visibly pushdown regular expressions are an extension of regular expressions by
a restricted set of context-free grammars. In these grammars, we will use nonterminals
of the form P(x,y) to enforce the de�nition of a �starting element� x and an �ending
element� y (the goal to reach) in each nonterminal. Here is the formal de�nition of
these grammars.

De�nition 3.1 (Well-matched visibly pushdown grammar (WMVPG)). Let Σi, Σc and
Σr be disjoint �nite sets of atomic elements. Let V be a �nite set of symbols (or labels)
containing symbols s and t, and let N(V ) := {P(x,y) | x, y ∈ V }. A well-matched visibly

pushdown grammar over Σi, Σc and Σr is a tuple G := (V, P(s,t),→) where N(V ) is the
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set of nonterminals, P(s,t) ∈ N(V ) is the starting nonterminal and → is a �nite set of
explicit rewrite rules of the form

• P(x,y) → ε, where x, y ∈ V ;

• P(x,y) → a, where a ∈ Σi and x, y ∈ V ;

• P(x,y) → c P(z,w) r, where c ∈ Σc, r ∈ Σr and w, x, y, z ∈ V

and implicit rewrite rules

• P(x,y) → P(x,z) P(z,y) for each x, y, z ∈ V .

The language generated by G is the set of words (remark: well-matched words, in fact)
that can be derived by the rewrite rules of G when starting with P(s,t). �

We will use WMVPGs in set expressions. For example, for a WMVPG G and elements
a1, a2 ∈ Σi, {a1} • G ∪ {a2} is such an expression. Note that one only needs to know
the explicit rewrite rules of G along with its starting nonterminal P(s,t) since the other
components of G can be inferred from them. For example, a WMVPG generating
{cnrn | n ∈ N} for c ∈ Σc and r ∈ Σr can be expressed shortly by

(P(x,y), {P(x,y) → c P(x,y) r, P(x,y) → ε})

and represents the WMVPG ({x, y}, P(x,y),→) where → is

{P(x,y) → c P(x,y) r, P(x,y) → ε, P(x,x) → P(x,x) P(x,x), P(x,x) → P(x,y) P(y,x),

P(x,y) → P(x,x) P(x,y), P(x,y) → P(x,y) P(y,y), P(y,x) → P(y,x) P(x,x),

P(y,x) → P(y,y) P(y,x), P(y,y) → P(y,x) P(x,y), P(y,y) → P(y,y) P(y,y)} .

To ease the writing of lengthy grammars, we de�ne a notation called the �block�
notation for WMVPGs that not only shows the structure of the explicit rewrite rules
in the context of a program but also emphasizes the starting nonterminal. Let G :=

(V, P(s,t),→) be a WMVPG. We write

[
x

ε
y

], [
x

a
y

], [
x

c ↓
z

w

↑ r
y

]

to respectively represent the explicit rewrite rules

P(x,y) → ε, P(x,y) → a, P(x,y) → c P(z,w) r .
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We call unary block each rule of the form [x ε ]y or [x a ]y. The labels x and y are
respectively called the starting label and the ending label of the block. We also call
binary block each rule of the form [x c ↓z ↑

w r ]y. The labels x, y, z and w are respectively
called the starting label, the ending label, the call label and the return label.

Let B be the block notation of the explicit rewrite rules of G. De�ne B1 as the set of
unary blocks and B2 as the set of binary blocks. The labels of the starting nonterminal
P(s,t) are used to surround B by writing Ls B Mt. Thus, G is abbreviated as Ls B Mt.

Here are some examples of languages generated by WMVPGs, using the block nota-
tion. Let Σi := {a, b}, Σc := {c, d}, Σr := {r, s} and V := {v,w, x, y, z}. Then,

• L
x

[
x

a
x

]
x

M = {an | n > 0};

• L
x

[
x

a
y

], [
x

a
y

]
x

M = ∅;

• L
x

[
x

c ↓
x

y

↑ r
y

], [
x

ε
y

]
y

M = {cn rn | n ∈ N};

• L
x

[
y

c ↓
v

w

↑ r
z

], [
y

b
z

], [
v

d ↓
x

z

↑ s
w

] , [
x

a
y

]
z

M = {a (c d a)n b (s r)n | n ∈ N}.

Note from the examples that, for convenience, we write the blocks as a list rather than
as a set. However, this is a set.

We are now ready to de�ne visibly pushdown regular expressions.

De�nition 3.2 (Visibly pushdown regular expressions (grammar-based)). Let Σi, Σc

and Σr be disjoint �nite sets of atomic elements. De�ne a grammar pattern of a WMVPG

G on Σi, Σc and Σr to be a partial operator obtained by

• replacing the terminals in G by variables (placeholders) of the same type (Σi, Σc

or Σr);

• writing [x 1 ]y instead of [x ε ]y;

• adding, for convenience, blocks of the form [x 0 ]y.

The arity of a grammar pattern is the number of di�erent variables it contains. De�ne
G as the set of all grammar patterns on Σi, Σc and Σr. A VPRE is any well-formed
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expression that can be generated from the base elements 0, 1, a for each a ∈ Σi∪Σc∪Σr,
the unary operator ∗, the binary operators · and +, and the grammar patterns in G.
The language denoted by a VPRE p is noted L(p) and is de�ned by

L(0) := ∅, L(1) := {ε}, L(a) := {a} for any a ∈ Σi ∪ Σc ∪ Σr,

and extends over the structure of VPREs with · becoming •, + becoming ∪, and ∗
becoming the set operator ∗. An operator of G along with its operands becomes a
WMVPG G, and so L(G) is the language generated by G.1 �

Some Alternative De�nitions of WMVPGs

The de�nition of WMVPGs is interesting. For one thing, nonterminals of the form P(x,y)

are used in WMVPGs to enforce the de�nition of a �starting element� x and an �ending
element� y for each nonterminal. Note how useful this is when de�ning the �cut� in
implicit rewrite rules. Note also that the implicit rewrite rules allow multiple choices for
a derivation of a word. We will see in Chapter 6 that multiple choices for a derivation
are an essential ingredient to ease program manipulations.

On the other hand, one can sometimes be interested in using a �xed strategy (re-
stricting the choices) when deriving nonterminals of a WMVPG. Such strategies will
be useful when de�ning axioms for our proposed formalism. Among the possibilities
to restrict the choices, one can always use an explicit rewrite rule to derive the �rst

nonterminal generated by an implicit rewrite rule. Intuitively, this strategy would be
the same as de�ning the implicit rewrite rules in WMVPGs by P(x,z) → q P(y,z) for each
x, y, z ∈ V and q ∈ {ε} ∪ Σi ∪ Σc × N(V ) × Σr whenever the explicit rewrite rule
P(x,y) → q exists. It turns out that such a strategy for WMVPGs does not limit the
generative capacity of the grammar as we will see below. First, let us de�ne a new class
of grammars that use this strategy and then show that it generates the same class of
languages as WMVPGs.

De�nition 3.3 (Grammars restricted to well-matched VPLs using a forward strategy).
Let Σi, Σc and Σr be disjoint �nite sets of atomic elements. Let V be a �nite set
of symbols containing s and t, and let N(V ) := {P(x,y) | x, y ∈ V }. A grammar

restricted to well-matched VPLs using a forward strategy over Σi, Σc and Σr is a tuple
G := (V, P(s,t),→) where N(V ) is the set of nonterminals, P(s,t) ∈ N(V ) is the starting
nonterminal and → is a �nite set of explicit rewrite rules of the form

1Blocks of the form [x 0 ]
y
do not translate to a rule. They are just omitted in the grammar. Those

blocks are a way to identify the fail instruction in programs.
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• P(x,y) → ε where x, y ∈ V ;

• P(x,y) → a where a ∈ Σi and x, y ∈ V ;

• P(x,y) → c P(z,w) r where c ∈ Σc, r ∈ Σr and w, x, y, z ∈ V

and the set of implicit rewrite rules :

• P(x,z) → P(y,z) for each x, y ∈ V where the rule P(x,y) → ε is in the explicit rewrite
rules and for all z ∈ V ;

• P(x,z) → aP(y,z) for each x, y ∈ V and a ∈ Σi where the rule P(x,y) → a is in the
explicit rewrite rules and for all z ∈ V ;

• P(x,z) → c P(w,w2) r P(y,z) for each x, y, w, w2 ∈ V , c ∈ Σc and r ∈ Σr where the
rule P(x,y) → c P(w,w2) r is in the explicit rewrite rules and for all z ∈ V . �

Note that every grammar restricted to well-matched VPLs using a forward strategy
can be associated uniquely to a L M-expression if we use the same abbreviations as for
WMVPGs.

Theorem 3.4. Grammars restricted to well-matched VPLs using a forward strategy

generate the same class of languages as WMVPGs.

Proof. Note that every grammar restricted to well-matched VPLs using a forward strat-
egy is associated uniquely to a WMVPG and vice versa. Note also that every word
generated by a grammar restricted to well-matched VPLs using a forward strategy can
be generated by its associated WMVPG. So, it su�ces to prove that every word gen-
erated by a WMVPG G can also be generated by its associated grammar restricted to
well-matched VPLs using a forward strategy (call it G′). To do it, we use the notion of
the height of a well-matched word de�ned in Section 2.2.1. We show that for all n ∈ N
and x, y ∈ V , every well-matched word w of height n generated by the rewrite rules of
G when starting in P(x,y) can also be generated by the rewrite rules of G′ when starting
in P(x,y). We prove this by generalized induction over n.

For the base case n = 0, the well-matched word w is just a sequence of internal
actions. Take any derivation tree that generates w using the rewrite rules of G and
starting with P(x,y). By the de�nition of WMVPG, the parent node of any leaf of
the tree (an internal action or the empty word) comes from the explicit rewrite rules
P(u,u′) → ε or P(u,u′) → a for a ∈ Σi and u, u′ ∈ V . Moreover, by the de�nition of
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WMVPG, it is easy to see that, when reading the tree left-to-right, the sequence of
nonterminals of the explicit rewrite rules follow the pattern:

P(u1,u2) P(u2,u3) P(u3,u4) · · · P(uk−1,uk) P(uk,uk+1) ,

in which ui ∈ V for all i ∈ {1, 2, . . . , k + 1}, and, of course, u1 = x and uk+1 = y.
Using this sequence, we can construct another valid derivation tree that uses only the
rewrite rules of G′. For the case where there is only one nonterminal in the sequence,
this is trivial. For the other cases, we construct the tree from bottom to top. We start
with the last two nonterminals (P(uk−1,uk) and P(uk,uk+1)). Take the leaf m ∈ {ε} ∪ Σi

associated to P(uk−1,uk). Note that the rule P(uk−1,uk+1) → mP(uk,uk+1) exists. Then, we
consider the nonterminal P(uk−2,uk−1) and its associated leaf m2 ∈ {ε} ∪ Σi. Again, by
De�nition 3.3, the rewrite rule P(uk−2,uk+1) → m2 P(uk−1,uk+1) exists. This idea can be
reused for any P(ui,ui+1) in the sequence by reading them right-to-left. Hence, we have
created a valid derivation tree for the word w using the rewrite rules of G′ and starting
with P(u1,uk+1) (and considering that u1 = x and uk+1 = y).

For the inductive case, we suppose that for all j ∈ {0, 1, . . . , l} and x, y ∈ V , every
well-matched word of height j generated by the rewrite rules of G when starting in
P(x,y) can also be generated by the rewrite rules of G′ when starting in P(x,y). We prove
that for all x, y ∈ V , every well-matched word w of height l+1 generated by the rewrite
rules of G when starting in P(x,y) can also be generated by the rewrite rules of G′ when
starting in P(x,y).

Take any derivation tree that generates w using the rewrite rules of G and starting
with P(x,y). By the de�nition of WMVPG, the parent node of any leaf of the tree comes
from the explicit rewrite rules of the grammar. Moreover, by the de�nition of WMVPG,
it is easy to see that, when reading left-to-right the nonterminal of any leaf that is not
a return action (so it is either an internal action, a call action or the empty word), and
omitting the nonterminals that have as ancestor a nonterminal coming from an explicit
rewrite rule of the form P(u,u′) → c P(z,z2) r, the sequence of nonterminals of the explicit
rewrite rules follow the pattern:

P(u1,u2) P(u2,u3) P(u3,u4) · · · P(uk−1,uk) P(uk,u(k+1)) ,

in which ui ∈ V for all i ∈ {1, 2, . . . , k + 1} and, of course, u1 = x and uk+1 = y.
Note that the nonterminal of a rewrite rule of the form P(u,u′) → c P(z,z2) r appears once
(not twice) in the sequence for a pair of elements c and r. Using this sequence, we
can construct another valid derivation tree that uses only the rewrite rules of G′. We
�rst use the induction hypotheses. For any nonterminal P(ui,ui+1) in the sequence that
is linked to a rule of the form P(u,u′) → c P(z,z2) r, the induction hypotheses say that we
can �nd a valid derivation tree for P(z,z2) since the height of the well-matched subword
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generated by P(z,z2) is smaller or equal to l. Then, we just use a reasoning similar to the
base case and this allows us to generate a valid derivation tree for w using the rewrite
rules of G′ and starting with P(u1,uk+1) (and considering that u1 = x and uk+1 = y). �

Moreover, one can always use an explicit rewrite rule to derive the last nonterminal
generated by an implicit rewrite rule. Again, this strategy for WMVPGs does not limit
the generative capacity of the grammar as we will see below.

De�nition 3.5 (Grammars restricted to well-matched VPLs using a backward strat-
egy). Let Σi, Σc and Σr be disjoint �nite sets of atomic elements. Let V be a �nite
set of symbols containing s and t, and let N(V ) := {P(x,y) | x, y ∈ V }. A grammar

restricted to well-matched VPLs using a backward strategy over Σi, Σc and Σr is a tuple
G := (V, P(s,t),→) where N(V ) is the set of nonterminals, P(s,t) ∈ N(V ) is the starting
nonterminal and → is a �nite set of explicit rewrite rules of the form

• P(x,y) → ε where x, y ∈ V ;

• P(x,y) → a where a ∈ Σi and x, y ∈ V ;

• P(x,y) → c P(z,w) r where c ∈ Σc, r ∈ Σr and w, x, y, z ∈ V

and the set of implicit rewrite rules :

• P(x,z) → P(x,y) for each x, y, z ∈ V such that the rule P(y,z) → ε exists;

• P(x,z) → P(x,y) a for each x, y, z ∈ V and a ∈ Σi such that the rule P(y,z) → a

exists;

• P(x,z) → P(x,y) c P(w,w2) r for each x, y, z, w, w2 ∈ V , c ∈ Σc and r ∈ Σr such that
the rule P(y,z) → c P(w,w2) r exists. �

Theorem 3.6. Grammars restricted to well-matched VPLs using a backward strategy

generate the same class of languages as WMVPGs.

The proof of Theorem 3.6 is similar to the proof of Theorem 3.4.

WMVPGs are di�erent from visibly pushdown grammars as de�ned by Alur and
Madhusudan [2] and introduced in Section 2.2.2. In particular, visibly pushdown gram-
mars can generate words having pending calls and pending returns, but WMVPGs can-
not. They can only generate well-matched words. However, if the de�nition of visibly



Chapter 3. Visibly Pushdown Kleene Algebra (VPKA) 29

pushdown grammar is restricted to use only nonterminals of V0, then the restricted
visibly pushdown grammars will generate only well-matched words. A natural question
arising from this is: Do they represent the same class of languages? As we will show,
the answer is yes.

We �rst de�ne the restriction of visibly pushdown grammars to well-matched words.
The idea is to use only the set of nonterminal V0 of De�nition 2.7.

De�nition 3.7 (Visibly pushdown grammar (VPG) restricted to well-matched VPLs).
Let Σi, Σc and Σr be disjoint �nite sets of atomic elements. A visibly pushdown grammar

restricted to well-matched VPLs over Σi, Σc and Σr is a tuple G := (V0, S,→) where V0

is a �nite set of nonterminals, S ∈ V0 is the starting nonterminal and → is a �nite set
of rewrite rules of the form

• X → ε where X ∈ V0;

• X → a Y where a ∈ Σi and X, Y ∈ V0;

• X → c Z r Y where c ∈ Σc, r ∈ Σr and X, Y, Z ∈ V0. �

Theorem 3.8. WMVPGs generate the same class of languages as VPGs restricted to

well-matched VPLs.

The proof of Theorem 3.8 is in Appendix A.

VPGs restricted to well-matched VPLs can generate every well-matched VPL and only
well-matched VPLs [2]. Thus, by Theorem 3.8, we have that WMVPGs can generate
every well-matched VPL and only well-matched VPLs.

Languages Denoted by Visibly Pushdown Regular Expressions

The class of visibly pushdown regular expressions is rich enough to denote exactly the
visibly pushdown languages as shown by the following theorem.

Theorem 3.9 (Theorem à la Kleene for visibly pushdown regular expressions). Let
Σi, Σc and Σr be three disjoint �nite sets. Let L ⊆ (Σi ∪Σc ∪Σr)

∗ be a language. The

following propositions are equivalent:

(i) L is accepted by a visibly pushdown automaton;
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(ii) L is denoted by a visibly pushdown regular expression.

Proof sketch. We �rst prove that ii =⇒ i. The proof is by structural induction on a
visibly pushdown regular expression. The base cases 0, 1, a ∈ Σi, c ∈ Σc and r ∈ Σr

are easy:

s0

,
s0

,
s0 s1

a, λ;λ

,

s0 s1
c, λ; c

,
s0 s1

r,⊥;⊥

.

The induction cases for ·, + and ∗ are immediate from [2, Theorems 3.5 and 3.6]. So,
the case for the set of grammar patterns G is the only one remaining. Of course, a
grammar pattern along with its operands is a WMVPG. By Theorem 3.8, there exists
a VPG that generates the same language as this WMVPG. Thus, we just have to prove
that there exists a visibly pushdown automaton that accepts the same language as the
one generated by this VPG. This is immediate from [2, Theorem 5.3].

We now show that i =⇒ ii. To do this, we use matrices over the languages
contained in 2(Σi∪Σc∪Σr)∗ . In other words, we use matrices whose entries are languages.
Of course, we can use visibly pushdown regular expressions to denote languages in the
entries of these matrices. So, we can use the matrix operations •, + and ? de�ned in
Section 2.1 between matrices on VPREs. These matrices will ease the calculation of the
visibly pushdown regular expression representing a visibly pushdown automaton.

Let S := {s1, s2, . . . , s|S|} be a nonempty �nite set. Encode a visibly pushdown
automaton

(S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F )

by the structure
(
−→
I ,WM,Tc,T⊥,

−→
F )

where:

•
−→
I and

−→
F are �Boolean� column vectors2 of size |S| representing the initial states

and the accepting states;

2Boolean column vectors in this case are vectors that contain only 0s and 1s where 0 and 1 are the

constants of VPREs.
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• each entry i, j of the square matrix Tc (of size |S| × |S|) is de�ned by

Tc[i, j] := (
∑

a | a ∈ Σc ∧ (∃ d | d ∈ Γ : (si, a, λ; sj, d) ∈ δ) : a) .

This matrix represents the possibly pending calls;

• each entry i, j of the square matrix T⊥ (of size |S| × |S|) is de�ned by

T⊥[i, j] := (
∑

a | a ∈ Σr ∧ (si, a,⊥; sj,⊥) ∈ δ : a) .

This matrix represents the possibly pending returns;

• each entry i, j of the square matrix WM (of size |S| × |S|) represents the well-
matched words that can be generated from a state si of the automaton to a state
sj, and it is de�ned by

WM[i, j] := L
si

B
sj

M

where the list of blocks B (identical for all entries of the matrix) represents the
encoding of the structure of the visibly pushdown automaton using the following
rules:

A. The set of labels S is used.

B. For all states si ∈ S, [si 1 ]si ∈ B.

C. For all internal actions a ∈ Σi and states si, sj ∈ S,

[
si

a
sj

] ∈ B ⇔ (si, a, λ; sj, λ) ∈ δ .

D. For all call actions c ∈ Σc, return actions r ∈ Σr and states si, sj, sk, sl ∈ S,

[
si

c ↓
sk

sj

↑ r
sl

] ∈ B ⇔ (∃ d | d ∈ Γ : (si, c, λ; sk, d) ∈ δ ∧ (sj, r, d; sl, λ) ∈ δ) .

The encoding is mainly concerned about getting rid of the explicit stack in the au-
tomaton. Note that the exact stack symbol pushed on the stack when reading a call
action is important only if this symbol is used to read a return action. So, this situation
occurs only if an a�x of the current word is well-matched and contains these call and
return actions. So, this situation can be taken care of without using an explicit stack
by using the matrix WM which allows a binary block only if the call action and the
return action use the same stack symbol. In all other cases, it is not useful to know the
exact stack symbol used, but it is essential to know whether the stack is empty of not.
So, the encoding forgets the stack symbol for the matrix Tc.
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Using this encoding, we �nd the visibly pushdown regular expression that represents
exactly the language accepted by the visibly pushdown automaton. It is the expression
contained in the entry of the 1× 1 matrix:

−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F . (3.1)

This is inspired from Equation (2.2). Intuitively, assume that WM[i, j] gives the set
of well-matched words that can be read by the VPA. This assumption is easy to accept
because the expression encodes the structure of the automaton. So, the language (3.1)
can be understood in the following way:

• First, any accepted word of the automaton starts in an initial state (a state of
−→
I )

with an empty stack.

• The expression (T⊥+WM)? represents the possibilities that the automaton has
to accept the word without leaving an empty stack :

� it can read a pending return action (transition) of T⊥ (so, the stack remains
the same);

� it can read a well-matched word by using WM (so, the stack remains the
same).

• The expression (Tc •WM)? represents the possibilities that the automaton has
to accept a word when processing the �rst pending call: reading a pending call
action followed by well-matched words and more pending calls.

• The automaton must stop in a �nal state (a state of
−→
F ). �

3.1.2 Block-Based De�nition of Visibly Pushdown Regular Ex-

pressions

An alternative de�nition of the in�nite family of operators is to de�ne it directly with
the notion of �block� instead of using the detour of grammars. Thus, in this de�nition,
visibly pushdown regular expressions are an extension of regular expressions with an
in�nite family of operators working on �nite lists of �blocks�.

There are two kinds of blocks:

Unary blocks of the form [xm ]y, where m ∈ Σi ∪ {ε}. The labels x and y are
respectively called the starting label and the ending label. The element m is
called the operand of the unary block;
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Binary blocks of the form [x c ↓z ↑
w r ]y, where c ∈ Σc and r ∈ Σr. The labels x, y,

z and w are respectively called the starting label, the ending label, the call label

and the return label. The elements c and r are respectively called the left operand
and the right operand of the binary block.

Let B be a �nite list of unary and binary blocks on a �nite set of labels V , and let
x, x′ ∈ V . An operator of the family has the form Lx B Mx

′
. The operator's arity is the

number of unary blocks in B that do not contain ε as operand plus twice the number
of binary blocks in B. Also, note that the labels in an operator are not variables but
just a way to identify which operator of the family is used. To see this more clearly,
let Σi := {a, b}, Σc := {c, d}, Σr := {r, s} and V := {v,w, x, y, z}, and rewrite the
expression

L
x

[
y

c ↓
w

v

↑ r
z

], [
y

b
z

], [
w

d ↓
x

z

↑ s
v

], [
x

a
y

]
z

M

by the expression
f(x,(y,w,v,z),(y,z),(w,x,z,v),(x,y),z)(c, r, b, d, s, a)

in which f(x,(y,w,v,z),(y,z),(w,x,z,v),(x,y),z) is a 6-ary operator. Moreover, note that each oper-
ator of the family is partial. An operand of a block is just an element allowed by the
de�nition of blocks.

The idea behind an expression Lx B Mx
′
is to generate any well-matched word that

can be produced by a correct �travelling� of the list of blocks, starting the travel in any
block that has x as starting label and ending it in any block that has x′ as ending label.
A correct travelling starting with y, ending with y′ and producing a set of well-matched
words S is a �nite sequence b1b2 . . . bn of blocks of B (where n > 0), such that either
n = 1 and bn is a unary block of the form [ym ]y

′
and S = {m}, or n > 1 and (there

are three possible cases):

• b1 is a unary block of the form [ym ]v
′
for v′ ∈ V (including y′) and b2 . . . bn

is a correct travelling starting with v′, ending with y′ and producing T , and
S = {m} • T ;

• b1 is a binary block of the form [y c ↓z ↑
w r ]y

′
and b2 . . . bn is a correct travelling

starting with z, ending with w and producing T , and S = {c} • T • {r};

• b1 is a binary block of the form [y c ↓z ↑
w r ]v

′
for v′ ∈ V (including y′) and there

exists an i ∈ N such that 1 < i < n and b2 . . . bi is a correct travelling starting with
z, ending with w and producing T and bi+1 . . . bn is a correct travelling starting
with v′, ending with y′ and producing U , and S = {c} • T • {r} • U .
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Note that the idea of a correct travelling of a L M-expression is similar to the derivation
relation in grammars restricted to well-matched VPLs using a forward strategy.

Let B be a �nite list of unary and binary blocks on a �nite set of labels V . De�ne
B1 as the set of unary blocks of B and B2 as the set of binary blocks of B. For
n ∈ N, de�ne the power-recursion operator Lx B Myn, where x, y ∈ V , by induction on n:
Lx B My0 := (∪ m | [xm ]y ∈ B1 : {m}), and

L
x

B
y

M
n+1

:= (∪ m, v | [
x

m
v

] ∈ B1 : {m} • L
v

B
y

M
n

)

∪ (∪ c, z, r, w | [
x

c ↓
z

w

↑ r
y

] ∈ B2 : {c} • L
z

B
w

M
n

• {r})

∪ (∪ c, z, r, w, v, n1, n2 | [
x

c ↓
z

w

↑ r
v

] ∈ B2 ∧ n1, n2 ∈ N

∧ n1 + n2 = n− 1 : {c} • L
z

B
w

M
n1

• {r} • L
v

B
y

M
n2

) .

Intuitively, Lx B Myn denotes the set of all well-matched words that can be generated by
any correct travelling of B of length n+ 1 starting with x and ending with y. With this
de�nition, it is easy to de�ne an operator Lx B My by

L
x

B
y

M := (∪ n | n ∈ N : L
x

B
y

M
n

) .

We are now ready to de�ne visibly pushdown regular expressions.

De�nition 3.10 (Visibly pushdown regular expressions (block-based)). Let Σi, Σc

and Σr be disjoint �nite sets of atomic elements. De�ne a labelled block pattern of a set
expression Lx B Mx

′
on Σi, Σc and Σr to be a partial operator obtained by

• replacing the operands (except ε) in blocks by variables (placeholders) of the same
type (Σi, Σc or Σr);

• writing [x 1 ]y instead of [x ε ]y;

• adding, for convenience, blocks of the form [x 0 ]y.

The arity of a labelled block pattern is the arity of the set expression Lx B Mx
′
that it

represents. De�ne FL M as the set of all labelled block patterns on Σi, Σc and Σr. A
VPRE is any well-formed expression that can be generated from the base elements 0, 1,
a for each a ∈ Σi ∪ Σc ∪ Σr, the unary operator ∗, the binary operators · and +, and
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the operators in FL M. The language denoted by a VPRE p is noted L(p) and is de�ned
by

L(0) := ∅, L(1) := {ε}, L(a) := {a} for any a ∈ Σi ∪ Σc ∪ Σr,

and extends over the structure of VPREs with · becoming •, + becoming ∪, and ∗
becoming the set operator ∗. An operator of FL M along with its operands becomes a set
expression Lx B Mx

′
, and so L(Lx B Mx

′
) is the language denoted by Lx B Mx

′
.3 �

This de�nition of VPRE is equivalent to the de�nition given in Section 3.1.1 [11].

Theorem 3.11. The de�nitions of VPRE given in Section 3.1.1 and in Section 3.1.2

represent the same class of languages.

Proof. By Theorem 3.4, it su�ces to prove that a L M-expression written with an operator
of FL M gives exactly the same language as if it was written with its associated grammar
restricted to well-matched VPLs using a forward strategy and vice versa.

Let B be a �nite list of unary and binary blocks on a �nite set of labels V . It su�ces
to prove that, for all n ∈ N and x, y ∈ V , the language represented by the expression
Lx B Myn is exactly the set of well-matched words that can be generated by the associated
grammar restricted to well-matched VPLs using a forward strategy Lx B My when using
exactly n+ 1 rewrite rules and vice versa. We do a proof by generalized induction over
n.

For the base case n = 0, Lx B My0 = (∪ m | [xm ]y ∈ B1 : {m}). So, every word of
Lx B My0 is an operand of a unary block that begins with x and ends with y. This is
the same situation for the language generated by the associated grammar restricted to
well-matched VPLs using a forward strategy Lx B My when using exactly 1 rewrite rule.

For the inductive case, we suppose that for all j ∈ {0, 1, . . . , k} and x, y ∈ V , the
language represented by the expression Lx B Myj is exactly the set of well-matched words
that can be generated by the associated grammar restricted to well-matched VPLs using
a forward strategy Lx B My when using exactly j+1 rewrite rules and vice versa. We prove
that for all x, y ∈ V , the language represented by the expression Lx B Myk+1 is exactly the
set of well-matched words that can be generated by the associated grammar restricted
to well-matched VPLs using a forward strategy Lx B My when using exactly k+ 2 rewrite

3Blocks of the form [x 0 ]
y
do not translate to a block. They are just omitted in the set operator.

Again, those blocks are a way to identify the fail instruction in programs.
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rules and vice versa. By the de�nition of the family FL M,

L
x

B
y

M
k+1

:= (∪ m, v | [
x

m
v

] ∈ B1 : {m} • L
v

B
y

M
k

)

∪ (∪ c, z, r, w | [
x

c ↓
z

w

↑ r
y

] ∈ B2 : {c} • L
z

B
w

M
k

• {r})

∪ (∪ c, z, r, w, v, k1, k2 | [
x

{c} ↓
z

w

↑{r}
v

] ∈ B2 ∧ k1, k2 ∈ N

∧ k1 + k2 = k − 1 : {c} • L
z

B
w

M
k1

• {r} • L
v

B
y

M
k2

) .

Every word w of the �rst union quanti�er can be derived by the associated grammar
restricted to well-matched VPLs using a forward strategy by using exactly k+ 2 rewrite
rules. First, the induction hypothesis states that the language represented by the
expression Lv B Myk is exactly the set of well-matched words that can be generated by the
associated grammar restricted to well-matched VPLs using a forward strategy Lv B My

when using exactly k + 1 rewrite rules and vice versa. Then, it su�ces to use the
implicit rewrite rule P(x,y) → mP(v,y) (where m ∈ Σi or m = ε) to generate w. The
opposite direction is also true.

Every word w of the second union quanti�er can be derived by the associated gram-
mar restricted to well-matched VPLs using a forward strategy by using exactly k + 2

rewrite rules. First, the induction hypothesis states that the language represented by
the expression Lz B Mwk is exactly the set of well-matched words that can be generated
by the associated grammar restricted to well-matched VPLs using a forward strategy
Lz B Mw when using exactly k + 1 rewrite rules and vice versa. Then, it su�ces to use
the explicit rewrite rule P(x,y) → c P(z,w) r to generate w. The opposite direction is also
true.

Every word w of the third union quanti�er can be derived by the associated grammar
restricted to well-matched VPLs using a forward strategy by using exactly k+ 2 rewrite
rules. First, the induction hypothesis states that the languages represented by the
expressions Lz B Mwk1 and Lv B Myk2 are exactly respectively the set of well-matched words
that can be generated by the associated grammar restricted to well-matched VPLs using
a forward strategy Lz B Mw when using exactly k1 +1 rewrite rules and Lv B My when using
exactly k2 + 1 rewrite rules and vice versa. So, k1 + 1 + k2 + 1 = k − 1 + 2 = k + 1

rewrite rules have currently been used. Then, it su�ces to use the implicit rewrite rule
P(x,y) → c P(z,w) r P(v,y) to generate w. The opposite direction is also true. �

We will favour the grammar-based de�nition in this dissertation particularly when
explaining intuition behind laws and reasonings.
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3.2 Axiomatic System of Visibly Pushdown Kleene

Algebra

In this section, we �rst present the axiomatization of visibly pushdown Kleene algebra
(VPKA). Then, we show some useful laws of VPKA in Section 3.2.2 and we also com-
pare the axiomatic system of VPKA with other algebras that axiomatize subclasses of
context-free languages in Section 3.2.3.

3.2.1 Axiomatization of Visibly Pushdown Kleene Algebra

Visibly Pushdown Kleene Algebra characterizes exactly the equality of the languages
denoted by two VPREs. Its axiomatization adds seven axioms to Kleene algebra to
deal with grammar patterns. The �rst two axioms of VPKA are inspired by the explicit
rewrite rules of a WMVPG. The �rst one states that a WMVPG (V, P(x,y),→) can
generate at least all terminals of explicit rewrite rules whose left-hand side is the starting
nonterminal P(x,y) and right-hand side a single terminal or the empty word. Thus, let
Lx B My be an expression, on a �nite set of symbols V , representing an operator of G
along with its operands. The �rst axiom of VPKA is

L
x

B
y

M > m, for [
x

m
y

] ∈ B1 . (3.2)

Note that, in the algebraic world, the �generation of a word� is replaced by the operator
�greater or equals� (>) between expressions since it operates like the ⊇ operator of sets.
Moreover, note that axiom (3.2) also states that if [x 0 ]y ∈ B1, then 0 6 Lx B My. This
adds nothing to the axiomatization since, by Kleene algebra, 0 is the least element of
the algebra. After all, the empty set is a subset of any set.

The second axiom of VPKA represents the explicit rewrite rules of a WMVPG whose
right-hand side is complex (it contains a call terminal, a return terminal, and a nonter-
minal between the terminals). It is presented similarly as axiom (3.2). Thus, let Lx B My

be an expression, on a �nite set of symbols V , representing an operator of G along with
its operands and let z, w ∈ V . The second axiom of VPKA is

L
x

B
y

M > c · L
z

B
w

M · r, for [
x

c ↓
z

w

↑ r
y

] ∈ B2 . (3.3)

Note that axiom (3.3) uses the expression Lz B Mw to represent the nonterminal P(z,w).
This is easily understood when thinking of grammars. Suppose that a WMVPG G :=

(V, P(x,y),→) has an explicit rewrite rule of the form P(x,y) → c P(z,w) r. Thus, the
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derivation relation can be used to have P(x,y) ⇒ c P(z,w) r. Since c and r are terminals,
only P(z,w) can be derived further. So, at this point, if we want to know c P(z,w) r ⇒∗ ?

(i.e., which words can be derived by c P(z,w) r?), then the problem is to derive all words
that can be generated by G when starting with the nonterminal P(z,w) and concatenating
{c} and {r} respectively before and after the language generated. So, the derivation
part of the problem is exactly the same as using a grammar G′ that is identical to G
except that the starting nonterminal is now P(z,w). This is what axiom (3.3) does.

The third axiom of VPKA represents the implicit rewrite rules of the grammar.
Thus, let Lx B My be an expression, on a �nite set of symbols V , representing an operator
of G along with its operands and let z ∈ V . The third axiom of VPKA is

L
x

B
y

M > L
x

B
z

M · L
z

B
y

M . (3.4)

Once again, we use expressions like Lx B Mz to represent a nonterminal P(x,z). The idea
behind that is similar to the idea used in axiom (3.3). Suppose that a WMVPG G :=

(V, P(x,y),→) has an implicit rewrite rule of the form P(x,y) → P(x,z) P(z,y). Thus, the
derivation relation can be used to have P(x,y) ⇒ P(x,z) P(z,y). Both P(x,z) and P(z,y) can
be derived further. So, at this point, if we want to know P(x,z) P(z,y) ⇒∗ ? (i.e., which
words can be derived by P(x,z) P(z,y)?), then the problem can be split in two parts:

1. derive all words that can be generated by G when starting with the nonterminal
P(x,z);

2. derive all words that can be generated by G when starting with the nonterminal
P(z,y);

and the overall problem is resolved by concatenating the two languages generated.
So, the �rst derivation part of the problem is exactly the same as using a grammar
G′ that is identical to G except that the starting nonterminal is now P(x,z), and the
second derivation part of the problem is exactly the same as using a grammar G′′

that is identical to G except that the starting nonterminal is now P(z,y). This is what
axiom (3.4) does.

Here, we can stop and think of the signi�cance of axioms (3.2) to (3.4). These
axioms are a convenient way to simulate the derivation of every word of a WMVPG.
This claim might surprise the reader. After all, axioms (3.2) and (3.3) only deal with
explicit rewrite rules whose left-hand side is the starting nonterminal. They do not deal
with every left-hand side! However, axiom (3.4), applied wisely, helps us to handle every



Chapter 3. Visibly Pushdown Kleene Algebra (VPKA) 39

left-hand side P(z,w) of an explicit rewrite rule of an expression Lx B My. For example, if
z and w are not x nor y, then we can use axiom (3.4) twice to obtain

L
x

B
y

M > L
x

B
z

M · L
z

B
w

M · L
w

B
y

M .

So, it is always possible to simulate the derivation of every word of a WMVPG by using
axioms (3.2) to (3.4).

Being able to prove that a word is really generated by a given grammar does not
handle all the cases of equality of the languages denoted by two VPREs. Of course,
axioms (3.2) to (3.4) are able to prove equalities other than those related to the deriva-
tion of word, but they cannot handle all equalities between languages denoted by two
VPREs. In particular, there is no axiom stating if the language generated by a grammar
is included into (is a subset of) another language. The next two axioms handle most
of these cases. To explain them, we take a detour via inequational systems described
by a grammar. A grammar can be described by an inequational system by considering
that every nonterminal is a variable and by converting its rewrite rules P → α to an
inequation P > α. Of course, it is possible to write an expression α containing termi-
nals and variables Pi as α(P1, P2, . . . , Pn) to emphasize possible use of the variables in
the expression α. Thus, a grammar is translated to an inequational system

P1 > α1(P1, P2, . . . , Pn)

P2 > α2(P1, P2, . . . , Pn)

P2 > α3(P1, P2, . . . , Pn)
...
Pn > αm(P1, P2, . . . , Pn)

Note that the third line in the inequational system above begins with P2. This is to
make explicit that each rewrite rule is written as an inequation, so if a nonterminal
(now, a variable) is the left-hand side of more than one rewrite rule, then it will appear
more than once in the inequational system.

It is natural to use a complete solution vector for an inequation system. A vector
−→s is a solution of an inequational system if each inequation of the system is valid
when substituting all variables Pi by their component solution −→s (i). So, −→s contains a
component solution for all variables of the inequational system, and only that. When
viewed as a solution of an inequational system, the language generated by a grammar
is the least solution for the component (variable) representing the starting nonterminal.

We will use the analogy with inequational systems to de�ne the next two induction
axioms called L M-induction axioms. They de�ne an expression Lx B My as the least solu-
tion for the nonterminal P(x,y) of the inequational system described by the grammar.
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So, they state that Lx B My is less than or equal to any other possible solution −→s of the
inequational system for the component P(x,y). The hypothesis part of the induction
only validates that −→s is a solution of the inequational system. Of course, the valida-
tion proceeds by verifying if each inequation of the system is valid when substituting
all variables P(u,u′) for u, u′ ∈ V by their component solution −→s (u, u′).

From the de�nition of WMVPGs, it seems natural to de�ne an axiom such as the
following. Let Lx B My be an expression on a �nite set of symbols V representing an
operator of G along with its operands. Let s(u,u′) be a VPRE for all u, u′ ∈ V . Each s(u,u′)

acts as a solution for a component (or nonterminal) P(u,u′) of the grammar. Collectively,
they represent a complete solution vector −→s . Then(

∧ u, u′ | u, u′ ∈ V :

(∧ m | [
u

m
u′

] ∈ B1 : m 6 s(u,u′))

∧ (∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r 6 s(u,u′))

∧ (∧ v | v ∈ V : s(u,v) · s(v,u′) 6 s(u,u′))
)

→ L
x

B
y

M 6 s(x,y) .

(3.5)

Note that the hypotheses of (3.5) represent the validation of the solution −→s for the
inequational system of a WMVPG. So, it contains inequations representing explicit
rewrite rules and implicit rewrite rules in which the nonterminals have been substi-
tuted by their component solution. Thus, if the hypotheses of (3.5) are valid for given
s(u,u′) for all u, u′ ∈ V , then the law states that Lx B My is smaller than or equal to the
component solution s(x,y). Note also that s(u,u′) := Lu B Mu

′
for all u, u′ ∈ V is a solution

of the inequational system (simply use axioms (3.2) to (3.4)). So, the law (3.5) states
that Lx B My is the least solution for the nonterminal P(x,y) of the inequational system
described by the grammar.

However, it is not convenient to take (3.5) as an axiom. The problem is that the
veri�cation of the last set of hypotheses

(∧ u, u′ | u, u′ ∈ V : (∧ v | v ∈ V : s(u,v) · s(v,u′) 6 s(u,u′)))

can be di�cult to do. There can be lots of cases to verify and some of them may be
very complex. Thus, it is convenient to take as axioms other laws that contain simpler
conditions for the same goal. Recall from Section 3.1.1 that WMVPGs are equivalent to
grammars restricted to well-matched VPLs using a forward strategy. So, this de�nition
of grammar can be taken and an inequational system can be extracted from it (as
was done with WMVPGs). Let Lx B My be an expression on a �nite set of symbols V
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representing an operator of G along with its operands. Let s(u,u′) be a VPRE for all
u, u′ ∈ V . Each s(u,u′) acts as a solution for a component (or nonterminal) P(u,u′) of the
grammar. Collectively, they represent a complete solution vector −→s . Then(

∧ u, u′ | u, u′ ∈ V :

(∧ m | [
u

m
u′

] ∈ B1 : m 6 s(u,u′))

∧ (∧ m, v | [
u

m
v

] ∈ B1 : m · s(v,u′) 6 s(u,u′))

∧ (∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r 6 s(u,u′))

∧ (∧ c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : c · s(z,w) · r · s(v,u′) 6 s(u,u′))
)

→ L
x

B
y

M 6 s(x,y) .

(3.6)

The hypotheses in this law should be simpler to verify most of the time because each
one is linked to the existence of a rewrite rule in the grammar and the body of each
quanti�cation contains more precise information on the left-hand side of 6. Note that
there could be more hypotheses to prove in (3.6) for a given formula than in (3.5).
However, law (3.6) and Kleene algebra allow one to derive law (3.5) as shown below.

To prove (3.5) from (3.6), �rst suppose, for all u, u′ ∈ V ,

(∧ m | [
u

m
u′

] ∈ B1 : m 6 s(u,u′)) , (3.7)

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r 6 s(u,u′)) , (3.8)

(∧ v | v ∈ V : s(u,v) · s(v,u′) 6 s(u,u′)) . (3.9)

We prove

L
x

B
y

M 6 s(x,y) .

By (3.6) with s(u,u′) := s(u,u′) for all u, u′ ∈ V , it su�ces to prove that, for all u, u′ ∈ V

(∧ m | [
u

m
u′

] ∈ B1 : m 6 s(u,u′)) , (3.10)

(∧ m, v | [
u

m
v

] ∈ B1 : m · s(v,u′) 6 s(u,u′)) , (3.11)

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r 6 s(u,u′)) , (3.12)

(∧ c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : c · s(z,w) · r · s(v,u′) 6 s(u,u′)) . (3.13)
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Inequations (3.10) and (3.12) are exactly hypotheses (3.7) and (3.8). We now pro-
ve (3.11). For each unary block [um ]v ∈ B1, we prove that

m · s(v,u′) 6 s(u,u′) .

We are able to prove it.

m · s(v,u′)

6 {{ Hypothesis: [um ]v ∈ B1 & Hypothesis (3.7) & Monotonicity of · }}
s(u,v) · s(v,u′)

6 {{ Hypothesis (3.9) }}
s(u,u′)

Inequation (3.13) is proved similarly. For any binary block [u c ↓z ↑
w r ]v ∈ B2, we prove

that
c · s(z,w) · r · s(v,u′) 6 s(u,u′) .

We are able to prove it.

c · s(z,w) · r · s(v,u′)

6 {{ Hypothesis: [u c ↓z ↑
w r ]v ∈ B2 & Hypothesis (3.8) & Monotonicity of · }}

s(u,v) · s(v,u′)

6 {{ Hypothesis (3.9) }}
s(u,u′)

So, law (3.6) may sometimes require the veri�cation of more hypotheses, but each
of them should be simpler and, if not, it is possible to use (3.5). I do not currently
know if it is possible to derive (3.6) from (3.5). I do not think it is, but I did not �nd
a counter-example. More on this will be discussed in Section 7.2.

It is interesting to note that (3.6) is committed to a given �direction� (the unfolding
always goes from the left to the right). In this particular case, if a speci�c component
solution s(x,y) is considered for an expression Lx B My, it is not always mandatory to have
the complete solution vector −→s for the grammar associated to Lx B My. For example, to
prove that

L
x

[
x

a
x

], [
y

b
y

]
x

M 6 aa∗
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for a, b ∈ Σi, it is not necessary to have the component solutions s(x,y), s(y,x) and s(y,y).
Only the component solution s(x,x) := aa∗ is mandatory. After all, when unfolding this
grammar from the left to the right, only the rewrite rule [x a ]x can be used. This is
di�erent from WMVPGs where there could be derivations like

P(x,x) ⇒ P(x,y) P(y,x) ⇒ P(x,y) P(y,y) P(y,x) ⇒ P(x,y) b P(y,x) .

Of course, this derivation cannot generate a word, but the rewrite rule [y b ]y can be
used somewhere. Thus, if a law such as (3.6) is committed to a �direction�, there could
be fewer cases to check, i.e., some hypotheses could be dropped. It is possible to use
this intuition to de�ne a more interesting law than (3.6). The idea is to restrict the
inequational system to solve. An inequation can be dropped if it is not used to calculate
the actual result desired for a set of rewrite rules B (committed to a derivation from
left-to-right). This idea is represented by a function F∗B (called the �forward strategy�)
that is used in the law. This function approximates the needed component solution.
It is the least �xed point of the monotone function F1

B : 2V×V → 2V×V de�ned for all
T ⊆ V × V by:

F1
B(T ) := T ∪ {(y, y′) | (∃ z,m | (z, y′) ∈ T : [zm ]y ∈ B1)}

∪ {(y, y′), (w,w′) | (∃ z, c, r | (z, y′) ∈ T : [z c ↓w ↑
w′ r ]y ∈ B2)} .

Using this function, a more interesting law than (3.6) can be de�ned. It is taken
as the fourth axiom of VPKA. Let Lx B My be an expression on a �nite set of symbols
V representing an operator of G along with its operands. Let s(u,u′) be a VPRE for all
(u, u′) ∈ F∗B({(x, y)}). Each s(u,u′) acts as a solution for a component (or nonterminal)
P(u,u′) of the grammar. Then(

∧ u, u′ | (u, u′) ∈ F∗B({(x, y)}) :

(∧ m | [
u

m
u′

] ∈ B1 : m 6 s(u,u′))

∧ (∧ m, v | [
u

m
v

] ∈ B1 : m · s(v,u′) 6 s(u,u′))

∧ (∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r 6 s(u,u′))

∧ (∧ c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : c · s(z,w) · r · s(v,u′) 6 s(u,u′))
)

→ L
x

B
y

M 6 s(x,y) .

(3.14)

Axiom (3.14) easily allows one to derive (3.6). So, law (3.5) can be derived by tak-
ing (3.14) as an axiom. Recall that (3.14) is committed to a derivation from left-to-right

of the grammar. It is also interesting to have an axiom like (3.14), but such that it
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is committed to a derivation from right-to-left of the grammar. To do this, one can
use grammars restricted to well-matched VPLs using a backward strategy from Sec-
tion 3.1.1 and recall that WMVPGs are equivalent to them. So, these grammars can
be taken and an inequational system can be extracted from it (as it was done with
WMVPGs). Once again, the inequational system to solve can be restricted. An inequa-
tion can be dropped if it is not used to calculate the actual result desired for a set of
rewrite rules B (committed to a derivation from right-to-left). This idea is represented
by a function B∗B (called the �backward strategy�) that is used in the next axiom. This
function approximates the needed component solution. It is the least �xed point of the
monotone function B1

B : 2V×V → 2V×V de�ned for any T ⊆ V × V by:

B1
B(T ) := T ∪ {(y, y′) | (∃ z,m | (y, z) ∈ T : [y′m ]z ∈ B1)}

∪ {(y, y′), (w,w′) | (∃ z, c, r | (y, z) ∈ T : [y′ c ↓w ↑
w′ r ]z ∈ B2)} .

Using this function, a new axiom can be de�ned. It is taken as the �fth axiom of
VPKA. Let Lx B My be an expression on a �nite set of symbols V representing an operator
of G along with its operands. Let s(u,u′) be a VPRE for all (u, u′) ∈ B∗B({(x, y)}). Each
s(u,u′) acts as a solution for a component (or nonterminal) P(u,u′) of the grammar. Then(

∧ u, u′ | (u, u′) ∈ B∗B({(x, y)}) :

(∧ m | [
u

m
u′

] ∈ B1 : m 6 s(u,u′))

∧ (∧ m, v | [
v

m
u′

] ∈ B1 : s(u,v) ·m 6 s(u,u′))

∧ (∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r 6 s(u,u′))

∧ (∧ c, z, r, w, v | [
v

c ↓
z

w

↑ r
u′

] ∈ B2 : s(u,v) · c · s(z,w) · r 6 s(u,u′))
)

→ L
x

B
y

M 6 s(x,y) .

(3.15)

Note that the �rst �ve axioms of VPKA state that the language represented by a
WMVPG is exactly the least solution of the inequational system described by the gram-
mar for the component of its starting nonterminal. Note also that the �rst �ve axioms
of VPKA are inspired by the axioms of the ∗ operator of Kleene algebra. There are un-
folding axioms for the �xed point and induction axioms to represent the operator as the
least solution of an inequation. In the case of the ∗ operator, there is only one inequation
to solve, but, for the operators of G, there are multiple inequations (an inequational sys-
tem). Since we must use the inequational system as a whole, axioms (3.14) and (3.15)
are more complex than the induction axioms of the ∗ operator.
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For the moment, �ve new axioms have been de�ned for VPKA. One may wonder
whether these �ve axioms su�ce to handle any equality of visibly pushdown regular
expressions. In our experiments, axioms (3.2), (3.3), (3.4), (3.14) and (3.15) seemed
su�cient to handle lots of equalities of visibly pushdown regular expressions if not all of
them. However, we saw some limitations when attempting to show that the axiomatic
system of VPKA is complete for valid equations between languages denoted by visibly
pushdown regular expressions. To realize this proof (presented in Section 4.2), we will
encode visibly pushdown automata by expressions of VPKA. So, we will recreate alge-
braically some results of visibly pushdown automata theory. The problem occurs when
trying to prove that two visibly pushdown automata are bisimilar. In this particular
case, it is really useful to have a law such as the bisimulation rule of Kleene algebra:
for any expressions p, q and r,

rp = qr → rp∗ = q∗r .

However, it seems impossible to prove a similar law for the operators of G using only
axioms (3.2), (3.3), (3.4), (3.14) and (3.15). So, we now introduce two more axioms
that will allow us to resolve this problem. In this dissertation, they will be used only

in the completeness proof discussed earlier. No other proof of this dissertation needs
them. First note that the bisimulation rule of Kleene algebra could have been split into
two simulation rules : for any expressions p, q and r,

rp 6 qr → rp∗ 6 q∗r ,

rp > qr → rp∗ > q∗r .

The next two axioms of VPKA are equational implications called L M-simulation ax-

ioms that are inspired by the two previous simulation rules. The goal of these axioms
is to verify whether a �nite list B of unary and binary blocks on labels from a �nite set
V can be simulated by another �nite list C of unary and binary blocks on labels from
a �nite set V ′. Like for axioms (3.14) and (3.15), the next two axioms are committed
to a given �direction�:

• The �rst of these axiom always unfolds from the left to the right (we call it,
�travelling forward�) to verify that a given relation is a simulation relation;

• The second of these axiom always unfolds from the right to the left (we call it,
�travelling backward�) to verify that a given relation is a simulation relation.

To simplify the discussion, consider that a label of a block of B or C is a state of a visibly
pushdown automaton (this is not exactly true, but it will help the reader to understand
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the point). The simulation relation is encoded by a set of expressions like b(u′,u)
u2 , where

u, u′ ∈ V and u2 ∈ V ′. An expression b(u′,u)
u2 will be substituted by the constant 0 or 1

in our uses but it can be any expression of the algebra. Intuitively, an expression b(u′,u)
u2

indicates if the label (state) u ∈ V is simulated by the label (state) u2 ∈ V ′ when the
�rst label (state) processed just after the last unmatched call is u′ ∈ V (such a u′ is
useful to show some results like the determinization of visibly pushdown automata).

In the �rst place, let Lx B My be an expression on a �nite set of symbols V representing
an operator of G along with its operands. Looking at this expression from the point of
view of visibly pushdown automata, we can say that B represents the transitions of a
visibly pushdown automaton by using the following idea4:

• a block [um ]u
′
∈ B1 represents a transition from a state u to a state u′ labelled

with the internal action m (we do not consider the cases m = 1 and m = 0 in this
informal presentation);

• a block [u c ↓z ↑
w r ]u

′
∈ B2 represents a transition from a state u to a state z

labelled with the call action c (and pushing a stack symbol d ∈ Γ on the stack)
and a transition from a state w to a state u′ (when popping the stack symbol d
and) labelled with the return action r.

Thus, Lx B My should represent the language accepted by the visibly pushdown automa-
ton when starting in the initial state x and ending in the �nal state y with an empty
stack (since the expression only represents well-matched words).5

Now, let {Lx2 C My
′
2}y′2∈V ′ be a set of expressions on a �nite set of symbols V ′ and on

a common �nite list of unary and binary blocks C, each representing an operator of G
along with its operands. Looking at this set of expressions from the point of view of
visibly pushdown automata, we can say that, for any Y ⊆ V ′, (

∑
y′2 | y′2 ∈ Y : Lx2 C My

′
2)

represents the language accepted by the visibly pushdown automaton described by C
when starting in the state x2 and ending in any of the �nal states Y with an empty
stack.

Next, let b(u′,u)
u2 be a VPRE for all u, u′ ∈ V and u2 ∈ V ′. Each b

(u′,u)
u2 acts as an

indication of whether the label (state) u ∈ V is simulated by a label (state) u2 ∈ V ′
when the �rst label (state) processed just after the last unmatched call is u′ ∈ V .
Collectively, the b(u′,u)

u2 act as a simulation relation. Intuitively, the sixth axiom of

4This is not always true. Again, it is just a way to simplify things for the discussion.
5Again, this is not always true.
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VPKA is an equational implication whose conclusion part states that the automaton
described by Lx B My is simulated by an automaton, described by an expression such
as (

∑
y′2 | y′2 ∈ Y : Lx2 C My

′
2), whose initial state (label) x2 simulates the initial state

(label) x of the automaton and whose accepting states are exactly the states (labels)
that simulate the accepting state (label) y. In other words, the conclusion part of the
axiom is

b(y′,x)
x2

· L
x

B
y

M 6 (
∑

y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M · b(y′,y)

y′2
) .

The hypothesis part of the sixth axiom just ensures that the b(u′,u)
u2 act collectively

as a simulation relation. A simulation relation is correct if it preserves inequalities with
internal actions, calls and returns for all blocks of the list. Thus, the axiom �rst ensures
that for all u, u′, u′′ ∈ V and all x′2 ∈ V ′ such that the state (label) u is simulated by
the state (label) x′2 when the �rst state (label) processed just after the last unmatched
call is u′′, and for all transitions (u,m, λ;u′, λ) of an internal action m, there exists at
least one state (label) y′′2 ∈ V ′ such that (x′2,m, λ; y′′2 , λ) exists and the state (label) u′

is simulated by the state (label) y′′2 when the �rst state (label) processed just after the
last unmatched call is u′′. In other words, it veri�es whether the following formula is
valid: (

∧ u, u′, u′′, x′2,m | u′′ ∈ V ∧ x′2 ∈ V ′ ∧ [
u

m
u′

] ∈ B1 :

b
(u′′,u)

x′2
·m 6 (

∑
y′′2 | [

x′2

m
y′′2

] ∈ C1 : m · b(u′′,u′)
y′′2

)
)

Second, it ensures that for all u, u′, u′′, z, w ∈ V and all x′2 ∈ V ′ such that the
state (label) u is simulated by the state (label) x′2 when the �rst state (label) processed
just after the last unmatched call is u′′, and for all pairs of transitions (u, c, λ; z, d)

and (w, r, d;u′, λ) of a call action c and a return action r by using a common stack
element d, there exists at least states (labels) z′, w′, y′′2 ∈ V ′ such that (x′2, c, λ; z′, d′)

and (w′, r, d′; y′′2 , λ) exist for a stack element d′, and the state (label) z is simulated by
the state (label) z′ when the �rst state (label) processed just after the last unmatched
call is z (z is used here because the last unmatched call is the c that was just handled).
In other words, it veri�es whether the following formula is valid:(

∧ u, u′, u′′, x′2, c, z, r, w | u′′ ∈ V ∧ x′2 ∈ V ′ ∧ [
u

c ↓
z

w

↑ r
u′

] ∈ B2 :

b
(u′′,u)

x′2
· c 6 (

∑
z′, w′, y′′2 | [

x′2

c ↓
z′

w′

↑ r
y′′2

] ∈ C2 : b
(u′′,u)

x′2
· c · b(z,z)

z′ · b
(z,z)
z′ )

)
.

Lastly, it ensures that for all u, u′, u′′, z, w ∈ V and all x′2, z
′, w′, w′′, y′′2 ∈ V ′ such

that
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• the state (label) u is simulated by the state (label) x′2 when the �rst state (label)
processed just after the last unmatched call is u′′,

• the state (label) z is simulated by the state (label) z′ when the �rst state (label)
processed just after the last unmatched call is z,

• the state (label) w is simulated by the state (label) w′′ when the �rst state (label)
processed just after the last unmatched call is z,

and

• for all pairs of transitions (u, c, λ; z, d) and (w, r, d;u′, λ) of a call action c and a
return action r by using a common stack element d,

• for all pairs of transitions (x′2, c, λ; z′, d′) and (w′, r, d′; y′′2 , λ) of a call action c and
a return action r by using a common stack element d′,

there exists at least a state (label) y′′′2 ∈ V ′ such that (x′2, c, λ; z′, d′′) and (w′′, r, d′′; y′′′2 , λ)

exist for a stack element d′′, and the state (label) u′ is simulated by the state (label) y′′′2
when the �rst state (label) processed just after the last unmatched call is u′′. In other
words, it veri�es whether the following formula is valid:(

∧ u, u′, u′′, x′2, c, z, r, w, z
′, w′′ | u′′ ∈ V ∧ x′2, z′, w′′ ∈ V ′ ∧ [

u

c ↓
z

w

↑ r
u′

] ∈ B2 :

(
∑

w′, y′′2 | [
x′2

c ↓
z′

w′

↑ r
y′′2

] ∈ C2 : b
(u′′,u)

x′2
· c · b(z,z)

z′ · L
z′
C
w′′

M · b(z,w)
w′′ · r)

6 (
∑

y′′′2 | [
x′2

c ↓
z′

w′′

↑ r
y′′′2

] ∈ C2 : c · L
z′
C
w′′

M · r · b(u′′,u′)
y′′′2

)
)
.

Note that this set of hypotheses is particular: any label simulated just before and after
a call must be remembered until its matching return is reached. This is to remember
su�cient information when it comes to simulating the return action.

In essence, if all the hypotheses are valid, then it can be said that the b(u′,u)
u2 act

collectively as a simulation relation for visibly pushdown automata. Thus, it can be
concluded that (this is the conclusion part of the sixth axiom) the automaton described
by Lx B My is simulated by an automaton, described by an expression such as (

∑
y′2 |

y′2 ∈ Y : Lx2 C My
′
2), where its initial state (label) x2 simulates the initial state (label) x

of the automaton and its accepting states are exactly the states (labels) that simulate
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the accepting state (label) y. As a result, the sixth axiom of VPKA is

(
∧ u, u′, u′′, x′2,m | u′′ ∈ V ∧ x′2 ∈ V ′ ∧ [

u
m

u′

] ∈ B1 :

b
(u′′,u)
x′2

·m 6 (
∑

y′′2 | [
x′2

m
y′′2
] ∈ C1 : m · b(u′′,u′)

y′′2
)
)

∧
(
∧ u, u′, u′′, x′2, c, z, r, w | u′′ ∈ V ∧ x′2 ∈ V ′ ∧ [

u
c ↓
z

w
↑ r

u′

] ∈ B2 :

b
(u′′,u)
x′2

· c 6 (
∑

z′, w′, y′′2 | [
x′2

c ↓
z′

w′

↑ r
y′′2
] ∈ C2 : b

(u′′,u)
x′2

· c · b(z,z)
z′ · b(z,z)

z′ )
)

∧
(
∧ u, u′, u′′, x′2, c, z, r, w, z

′, w′′ | u′′ ∈ V ∧ x′2, z
′, w′′ ∈ V ′ ∧ [

u
c ↓
z

w
↑ r

u′

] ∈ B2 :

(
∑

w′, y′′2 | [
x′2

c ↓
z′

w′

↑ r
y′′2
] ∈ C2 : b

(u′′,u)
x′2

· c · b(z,z)
z′ · L

z′
C
w′′

M · b(z,w)
w′′ · r)

6 (
∑

y′′2 | [
x′2

c ↓
z′

w′′

↑ r
y′′2
] ∈ C2 : c · L

z′
C
w′′

M · r · b(u′′,u′)
y′′2

)
)

→ b(y′,x)
x2 · L

x
B
y

M 6 (
∑

y′2 | y′2 ∈ V ′ : L
x2

C
y′2
M · b(y′,y)

y′2
) .

(3.16)

The seventh, and last, axiom of VPKA is similar to (3.16), but the simulation is done
by travelling �backward�. Thus, this axiom is an equational implication whose conclu-
sion part states that the automaton described by an expression Lx2 C My2 is simulated
by an automaton, described by an expression such as (

∑
x′ | x′ ∈ X : Lx′ B My), whose

accepting state (label) y simulates the accepting state (label) y2 of the automaton and
whose initial states are exactly the states (labels) that simulate the initial state (label)
x2. In other words, the conclusion part of the axiom is

L
x2

C
y2

M · b(y′,y)
y2

6 (
∑

x′ | x′ ∈ V : b(y′,x′)
x2

· L
x′
B
y

M) .

Accordingly, the hypotheses of the seventh axiom ensure that the b(u′,u)
u2 act collectively

as a simulation relation for visibly pushdown automata. As for the conclusion part,
the de�nition of a simulation relation is also mirrored in the hypotheses (modulo some
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small modi�cations). Thus, the seventh axiom of VPKA is

(
∧ u, u′, x′2, y

′
2,m | u, u′ ∈ V ∧ [

x′2

m
y′2

] ∈ C1 :

m · b(u,u′)
y′2

6 (
∑

u′′ | [
u′′
m

u′

] ∈ B1 : b
(u,u′′)
x′2

·m)
)

∧
(
∧ u, u′, x′2, y

′
2, c, z, r, w | u, u′ ∈ V ∧ [

x′2

c ↓
z

w

↑ r
y′2

] ∈ C2 :

r · b(u,u′)
y′2

6 (
∑

u′′, z′, w′ | [
u′′
c ↓
z′

w′

↑ r
u′

] ∈ B2 : b(z′,w′)
w · b(u,u′′)

x′2
· r)
)

∧
(
∧ u, u′, x′2, y

′
2, c, z, r, w, u

′′, z′, w′ | u ∈ V ∧ [
x′2

c ↓
z

w

↑ r
y′2

] ∈ C2

∧ [
u′′
c ↓
z′

w′

↑ r
u′

] ∈ B2 : (
∑

z′′ | z′′ ∈ V : c · b(z′,z′′)
z · L

z′′
B
w′

M · b(u,u′′)
x′2

· r)

6 b
(u,u′′)
x′2

· c · L
z′
B
w′

M · r
)

→ L
x2

C
y2

M · b(y′,y)
y2

6 (
∑

x′ | x′ ∈ V : b(y′,x′)
x2

· L
x′
B
y

M) .

(3.17)

We now have all the axioms needed to de�ne the algebraic system of visibly push-
down Kleene algebra. Of course, all these axioms are sound for the language model
under interpretation L, as shown in Section 4.1.

De�nition 3.12 (Visibly pushdown Kleene algebra (VPKA)). Let Σi, Σc and Σr be
disjoint �nite sets of atomic elements such that at least one of the sets is nonempty. A
visibly pushdown Kleene algebra is a structure (K,+, ·, ∗, 0, 1,G) generated by Σi, Σc

and Σr under the axioms of Kleene algebra (in other words, the structure (K,+, ·, ∗, 0, 1)

is a Kleene algebra) and such that the laws (3.2), (3.3), (3.4), (3.14), (3.15), (3.16)
and (3.17) hold for the structure (K,+, ·, ∗, 0, 1,G). �

To get a better grip on the axioms, we prove a simple theorem

L
x

[
x

c ↓
x

y

↑ r
y

], [
x

a
y

]
y

M 6 L
x

[
x

c ↓
x

y

↑ r
y

], [
x

a
x

], [
x

a
y

]
y

M

for Σi := {a}, Σc := {c}, Σr := {r} and V := {x, y}. Let

Cex := [
x

c ↓
x

y

↑ r
y

], [
x

a
x

], [
x

a
y

] .

By
F∗[x c ↓x ↑y r ]y, [x a ]y({(x, y)}) = {(x, y), (y, y)}
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and axiom (3.14), it su�ces to prove, for s(x,y) := Lx Cex My and s(y,y) := 0, that

a 6 L
x

Cex
y

M , (3.18)

a · 0 6 L
x

Cex
y

M , (3.19)

c · L
x

Cex
y

M · r 6 L
x

Cex
y

M , (3.20)

c · L
x

Cex
y

M · r · 0 6 L
x

Cex
y

M . (3.21)

Inequations (3.19) and (3.21) are trivial by Kleene algebra. Inequations (3.18)
and (3.20) are solved respectively by using axioms (3.2) and (3.3).

Remark 3.13 (Axiomatic system of visibly pushdown Kleene algebra). Any visibly push-
down Kleene algebra is a partial algebra because each operator of G is de�ned only on
atomic elements. However, a deductive system for equational logic [47] can be used
for visibly pushdown Kleene algebra modulo a slight modi�cation: any substitution of
elements of Σi, Σc and Σr must follow an operator's �typing�. This deductive system
along with the axioms of visibly pushdown Kleene algebra form the axiomatic system
of visibly pushdown Kleene algebra. �

In the sequel, we freely use the classical laws of Kleene algebra (see Section 2.1 or,
for example [25]) and the following laws of visibly pushdown Kleene algebra.

3.2.2 Some Useful Laws of VPKA

Some equalities of L M-expressions: Let Lx B My be an expression on a �nite set of
symbols V representing an operator of G along with its operands. Here is a theorem
of VPKA inspired by the de�nition of Lx B My for the block-based de�nition of visibly
pushdown regular expressions:

L
x

B
y

M = (
∑

m | [
x

m
y

] ∈ B1 : m)

+ (
∑

m, v | [
x

m
v

] ∈ B1 : m · L
v

B
y

M)

+ (
∑

c, z, r, w | [
x

c ↓
z

w

↑ r
y

] ∈ B2 : c · L
z

B
w

M · r)

+ (
∑

c, z, r, w, v | [
x

c ↓
z

w

↑ r
v

] ∈ B2 : c · L
z

B
w

M · r · L
v

B
y

M) .

(3.22)

The > part is proved using the KA law

p1 + p2 6 p3 ↔ p1 6 p3 ∧ p2 6 p3
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and repeated use of axioms (3.2), (3.3) and (3.4). For the 6 part, axiom (3.14) can be
used with solutions

s(u,u′) := (
∑

m | [
u

m
u′

] ∈ B1 : m)

+ (
∑

m, v | [
u

m
v

] ∈ B1 : m · L
v

B
u′

M )

+ (
∑

c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · L
z

B
w

M · r)

+ (
∑

c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : c · L
z

B
w

M · r · L
v

B
u′

M ) ,

for all labels u, u′ ∈ F∗B({(x, y)}). So, to prove

L
x

B
y

M 6 s(x,y) ,

it su�ces to prove that, for all labels u, u′ ∈ F∗B({(x, y)}),

(∧ m | [
u

m
u′

] ∈ B1 : m 6 s(u,u′))

∧ (∧ m, v | [
u

m
v

] ∈ B1 : m · s(v,u′) 6 s(u,u′))

∧ (∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r 6 s(u,u′))

∧ (∧ c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : c · s(z,w) · r · s(v,u′) 6 s(u,u′)) .

By the KA law p1 + p2 6 p3 ↔ p1 6 p3 ∧ p2 6 p3, it su�ces to prove that, for all labels
u, u′ ∈ F∗B({(x, y)}),

s(u,u′) > (
∑

m | [
u

m
u′

] ∈ B1 : m)

+ (
∑

m, v | [
u

m
v

] ∈ B1 : m · s(v,u′))

+ (
∑

c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · s(z,w) · r)

+ (
∑

c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : c · s(z,w) · r · s(v,u′)) .

(3.23)

Since the > part of (3.22) has been proved, then for all labels u, u′ ∈ F∗B({(x, y)}),

s(u,u′) 6 L
u

B
u′

M . (3.24)
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Using (3.24) in (3.23) along with the transitivity of 6 and the monotonicity of · and
+, it su�ces to prove that, for all labels u, u′ ∈ F∗B({(x, y)}),

s(u,u′) > (
∑

m | [
u

m
u′

] ∈ B1 : m)

+ (
∑

m, v | [
u

m
v

] ∈ B1 : m · L
v

B
u′

M )

+ (
∑

c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · L
z

B
w

M · r)

+ (
∑

c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : c · L
z

B
w

M · r · L
v

B
u′

M ) .

This is trivial by the de�nition of s(u,u′) (re�exivity of 6).

Of course, a similar theorem holds for the �backward travelling� version of (3.22):

L
x

B
y

M = (
∑

m | [
x

m
y

] ∈ B1 : m)

+ (
∑

m, v | [
v

m
y

] ∈ B1 : L
x

B
v

M · m)

+ (
∑

c, z, r, w | [
x

c ↓
z

w

↑ r
y

] ∈ B2 : c · L
z

B
w

M · r)

+ (
∑

c, z, r, w, v | [
v

c ↓
z

w

↑ r
y

] ∈ B2 : L
x

B
v

M · c · L
z

B
w

M · r) .

(3.25)

The proof is similar to (3.22), but uses (3.15) instead of (3.14).

Add/Remove a unary block: Let Lx B, [y a ]y
′
, C Mx

′
be an expression on a �nite set

of symbols V representing an operator of G along with its operands. Then,

L
x

B, C
x′

M 6 L
x

B, [
y

a
y′

] , C
x′

M . (3.26)

To prove (3.26), we use (3.5) with s(u,u′) := Lu B, [y a ]y
′
, C Mu

′
for all u, u′ ∈ V . So, it

su�ces to prove that, for all u, u′ ∈ V ,

(∧ m | [
u

m
u′

] ∈ (B, C)1 : m 6 L
u

B, [
y

a
y′

] , C
u′

M ) , (3.27)

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ (B, C)2 : c · L
z

B, [
y

a
y′

] , C
w

M · r 6 L
u

B, [
y

a
y′

] , C
u′

M ) , (3.28)

(∧ v | v ∈ V : L
u

B, [
y

a
y′

] , C
v

M · L
v

B, [
y

a
y′

] , C
u′

M 6 L
u

B, [
y

a
y′

] , C
u′

M ) . (3.29)

Inequations (3.27), (3.28) and (3.29) are proved by Kleene algebra, set theory and
respectively by axioms (3.2), (3.3) and (3.4).
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Add/Remove a binary block: Let Lx B, [y c ↓y1 ↑
y2 r ]y

′
, C Mx

′
be an expression on a

�nite set of symbols V representing an operator of G along with its operands. Then,

L
x

B, C
x′

M 6 L
x

B, [
y

c ↓
y1

y2

↑ r
y′

] , C
x′

M . (3.30)

The proof is similar to (3.26).

Idempotency of blocks: Let Lx B, [y a ]y
′
, C Mx

′
and Lx B, [y c ↓z ↑

z′ r ]y
′
, C Mx

′
be expres-

sions on a �nite set of symbols V representing operators of G along with their operands.
Then,

L
x

B, [
y

a
y′

] , [
y

a
y′

] , C
x′

M = L
x

B, [
y

a
y′

] , C
x′

M , (3.31)

L
x

B, [
y

c ↓
z

z′

↑ r
y′

] , [
y

c ↓
z

z′

↑ r
y′

] , C
x′

M = L
x

B, [
y

c ↓
z

z′

↑ r
y′

] , C
x′

M . (3.32)

The case> is immediate from (3.26) and (3.30). The case6 is immediate from (3.14)
with

s(u,u′) := L
u

B, [
y

a
y′

] , C
u′

M for (3.31) and s(u,u′) := L
u

B, [
y

c ↓
z

z′

↑ r
y′

] , C
u′

M for (3.32)

for all u, u′ ∈ V and noting that, for i ∈ {1, 2},

(B, [
y

a
y′

] , [
y

a
y′

] , C)i = (B, [
y

a
y′

] , C)i

and

(B, [
y

c ↓
z

z′

↑ r
y′

] , [
y

c ↓
z

z′

↑ r
y′

] , C)i = (B, [
y

c ↓
z

z′

↑ r
y′

] , C)i .

Swap blocks: Let

L
x

B, [
y1

a
y′1

] , [
y2

b
y′2

] , C
x′

M ,

L
x

B, [
y1

a
y′1

] , [
y3

c1 ↓
z1

z′1
↑ r1

y′3

] , C
x′

M ,

L
x

B, [
y3

c1 ↓
z1

z′1
↑ r1

y′3

] , [
y4

c2 ↓
z2

z′2
↑ r2

y′4

] , C
x′

M
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be expressions on a �nite set of symbols V representing operators of G along with their
operands. Then,

L
x

B, [
y1

a
y′1

] , [
y2

b
y′2

] , C
x′

M = L
x

B, [
y2

b
y′2

] , [
y1

a
y′1

] , C
x′

M , (3.33)

L
x

B, [
y1

a
y′1

] , [
y3

c1 ↓
z1

z′1
↑ r1

y′3

] , C
x′

M = L
x

B, [
y3

c1 ↓
z1

z′1
↑ r1

y′3

] , [
y1

a
y′1

] , C
x′

M , (3.34)

L
x

B, [
y3

c1 ↓
z1

z′1
↑ r1

y′3

] , [
y4

c2 ↓
z2

z′2
↑ r2

y′4

] , C
x′

M = L
x

B, [
y4

c2 ↓
z2

z′2
↑ r2

y′4

] , [
y3

c1 ↓
z1

z′1
↑ r1

y′3

] , C
x′

M . (3.35)

The cases 6 and > are direct from (3.14) with appropriate solutions and noting
that, for i ∈ {1, 2},

(B, [y1 a ]y
′
1 , [y2 b ]y

′
2 , C)i = (B, [y2 b ]y

′
2 , [y1 a ]y

′
1 , C)i ,

(B, [y1 a ]y
′
1 , [y3 c1 ↓z1 ↑

z′1 r1 ]y
′
3 , C)i = (B, [y3 c1 ↓z1 ↑

z′1 r1 ]y
′
3 , [y1 a ]y

′
1 , C)i ,

(B, [y3 c1 ↓z1 ↑
z′1 r1 ]y

′
3 , [y4 c2 ↓z2 ↑

z′2 r2 ]y
′
4 , C)i

= (B, [y4 c2 ↓z2 ↑
z′2 r2 ]y

′
4 , [y3 c1 ↓z1 ↑

z′1 r1 ]y
′
3 , C)i .

Note that the swap blocks and the idempotency of blocks laws (laws (3.31) to (3.35))
are easy and intuitive laws of VPKA. So, their uses are not mentioned in the remaining
proofs.

Add/Remove a unary block containing 0: Let Lx B, [y 0 ]y
′
Mx
′
be an expression on

a �nite set of symbols V representing an operator of G along with its operands. Then,

L
x

B, [
y

0
y′

]
x′

M = L
x

B
x′

M . (3.36)

The case > is direct from (3.26). The case 6 is direct from (3.14) with s(u,u′) :=

Lu B Mu
′
for all u, u′ ∈ V and using zero of ·, identity of + and some simple quanti�cation

laws.

Substitution function: Let Lx B Mx
′
be an expression on a �nite set of symbols V

representing an operator of G along with its operands. Let V ′ be another �nite set of
symbols. Let f : V → V ′ be a total function. De�ne f̂ to be the trivial extension of the
function f to lists of unary and binary blocks (this function only modi�es every label
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of a block according to f). Then,

L
x

B
x′

M 6 L
f(x)

f̂(B)
f(x′)

M . (3.37)

To prove it, we use (3.5) with s(u,u′) := Lf(u) f̂(B) Mf(u′) for all u, u′ ∈ V . So, it su�ces
to prove that, for all u, u′ ∈ V ,

(∧ m | [
u

m
u′

] ∈ B1 : m 6 L
f(u)

f̂(B)
f(u′)

M ) , (3.38)

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · L
f(z)

f̂(B)
f(w)

M · r 6 L
f(u)

f̂(B)
f(u′)

M ) , (3.39)

(∧ v | v ∈ V : L
f(u)

f̂(B)
f(v)

M · L
f(v)

f̂(B)
f(u′)

M 6 L
f(u)

f̂(B)
f(u′)

M ) . (3.40)

By de�nition of f and f̂ , [um ]u
′
∈ B1 ⇒ [f(u) m ]f(u′) ∈ (f̂(B))1 and [u c ↓z ↑

w r ]u
′
∈

B2 ⇒ [f(u) c ↓f(z) ↑f(w) r ]f(u′) ∈ (f̂(B))2, and v ∈ V ⇒ f(v) ∈ V ′. So, inequa-
tions (3.38), (3.39) and (3.40) follow respectively from axioms (3.2), (3.3) and (3.4).

3.2.3 Comparison of VPKA with Other Axiomatizations of Sub-

classes of Context-Free Languages

The axiomatization of subclasses of context-free languages is not new. Leiÿ proposed
Kleene algebra with recursion [36] which is essentially an idempotent semiring with an
explicit general least �xed point operator µ. Bloom and Ésik did something similar
to Leiÿ when they de�ned iteration algebras [5], but they did it in the more general
setting of �xed point operators. In contrast, we de�ne a family G of partial operators
(grammar patterns) that are implicit least �xed points and deal only with a restricted
set of �xed point formulae.

Note that Leiÿ also proposed an axiomatization of linear context-free languages
through the notion of Kleene modules over a Kleene algebra [37]. However, linear
context-free languages and visibly pushdown languages are incomparable.



Chapter 4

Soundness, Completeness and

Complexity Results for VPKA

This chapter shows that it is possible to automate the process of deciding whether an
equation is a theorem of VPKA. This is important since proving equations is at the
heart of the process of doing interprocedural program analyses in VPKA.

More explicitly, this chapter shows that the equational theory of visibly pushdown
Kleene algebra is EXPTIME-complete. This result is proved by �rst showing that
the axiomatic system of VPKA is sound and complete for valid equations between lan-
guages denoted by visibly pushdown regular expressions. In other words, for any visibly
pushdown regular expressions p and q,

` p = q ⇐⇒ L(p) = L(q) .

4.1 Soundness over the Language Model under Inter-

pretation L

We show the following theorem.

Theorem 4.1. The axiomatic system of VPKA is sound with respect to the language

model under interpretation L.

Proof. To show that the axiomatic system is sound, it su�ces to verify that all axioms
of VPKA are valid in the language model under interpretation L because it is trivial to
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see that each inference rule of the axiomatic system given in Remark 3.13 preserves the
validity of formulae. It is known that the algebra (2(Σi∪Σc∪Σr)∗ ,∪, •, ∗, ∅, {ε}) is a Kleene
algebra [25]. So, it su�ces to verify that axioms (3.2), (3.3), (3.4), (3.14), (3.15), (3.16)
and (3.17) are valid in the language model under interpretation L. We just show that
axioms (3.3), (3.4), (3.14) and (3.16) are valid. The other axioms are proved similarly.
To ease the proof, we use the block-based de�nition of VPREs.

Axiom (3.3) is valid: We suppose that [x c ↓z ↑
w r ]y ∈ B2 and we prove that {c} •

Lz B Mw • {r} ⊆ Lx B My.

{c} • Lz B Mw • {r}
= {{ De�nition of Lz B Mw for the language model (block-based de�nition) }}

{c} • (∪ n | n ∈ N : Lz B Mwn ) • {r}
= {{ Distributivity of • over ∪ }}

(∪ n | n ∈ N : {c} • Lz B Mwn • {r})
⊆ {{ Hypothesis: [x c ↓z ↑

w r ]y ∈ B2 & Set theory & De�nition of Lx B Myn+1 for
n ∈ N }}

(∪ n | n ∈ N : Lx B Myn+1)

⊆ {{ Set theory }}
(∪ n | n ∈ N : Lx B Myn+1) ∪ Lx B My0

= {{ Arithmetic & Quanti�cation: Split o� term }}
(∪ n | n ∈ N : Lx B Myn)

= {{ De�nition of Lx B My for the language model (block-based de�nition) }}
Lx B My

Axiom (3.4) is valid: We show that, for all words w,

w ∈ L
x

B
y′

M • L
y′
B
y

M⇒ w ∈ L
x

B
y

M .

We suppose that w ∈ Lx B My
′
• Ly′ B My and we show that w ∈ Lx B My. By the hypothesis

w ∈ L
x

B
y′

M • L
y′
B
y

M

and the de�nitions of Lx B My
′
, Ly′ B My and • for the language model, there exists at least

two words w1 and w2 and numbers k1, k2 ∈ N such that w = w1w2, and w1 ∈ Lx B My
′

k1

and w2 ∈ Ly′ B Myk2 . Since w1 ∈ Lx B My
′

k1
(respectively, w2 ∈ Ly′ B Myk2), there exists a
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correct travelling b1b2 . . . bk1+1 (respectively, b′1b
′
2 . . . b

′
k2+1) of blocks of B starting with x

(respectively, y′), ending with y′ (respectively, y) and producing a set of well-matched
words that contains w1 (respectively, w2). Thus, it is possible to concatenate these
two correct travellings to generate another correct travelling b1b2 . . . bk1+1b

′
1b
′
2 . . . b

′
k2+1

of length k1 + k2 + 2 of blocks of B starting with x, ending with y and producing a set
of well-matched words that contains w1w2. Using the hypothesis w = w1w2 and the
de�nition of Lx B Myk1+k2+1, the previous correct travelling means that w ∈ Lx B Myk1+k2+1.
So, w ∈ Lx B My.

Axiom (3.14) is valid: We suppose that x, y ∈ V and that a set of inclusions of the
form

(∧ m | [
u

m
u′

] ∈ B1 : {m} ⊆ s(u,u′)) , (4.1)

(∧ m, v | [
u

m
v

] ∈ B1 : {m} • s(v,u′) ⊆ s(u,u′)) , (4.2)

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : {c} • s(z,w) • {r} ⊆ s(u,u′)) , (4.3)

(∧ c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : {c} • s(z,w) • {r} • s(v,u′) ⊆ s(u,u′)) , (4.4)

is valid for all (u, u′) ∈ F∗B({(x, y)}). We show that

L
x

B
y

M ⊆ s(x,y)

is valid. By de�nition of Lx B My for the language model (block-based de�nition), it
su�ces to prove that

(∪ n | n ∈ N : L
x

B
y

M
n

) ⊆ s(x,y) .

By set theory, it su�ces to prove that

L
x

B
y

M
n

⊆ s(x,y)

for all n ∈ N. A more general result is proved: for all (u, u′) ∈ F∗B({(x, y)}) and n ∈ N,

L
u

B
u′

M
n

⊆ s(u,u′) .

This proof is done by generalized induction over n. For the base case (n = 0), we show
that

L
u

B
u′

M
0

⊆ s(u,u′) .
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By de�nition of Lu B Mu
′

0 , it su�ces to show that

(∪ m | [
u

m
u′

] ∈ B1 : {m}) ⊆ s(u,u′) .

By set theory, it su�ces to show that

(∧ m | [
u

m
u′

] ∈ B1 : {m} ⊆ s(u,u′)) .

This is exactly hypothesis (4.1).

For the inductive case, we suppose that

L
u

B
u′

M
k

⊆ s(u,u′) (4.5)

is true for all k ∈ {0, . . . , n} and for all (u, u′) ∈ F∗B({(x, y)}) and we show that

L
u

B
u′

M
n+1

⊆ s(u,u′)

is also true for all (u, u′) ∈ F∗B({(x, y)}). By de�nition of Lu B Mu
′

n+1 for n ∈ N, it su�ces
to prove that

(∪ m, v | [um ]v ∈ B1 : {m} • Lv B Mu
′

n )

∪ (∪ c, z, r, w | [u c ↓z ↑
w r ]u

′
∈ B2 : {c} • Lz B Mwn • {r})

∪ (∪ c, z, r, w, v, n1, n2 | [u c ↓z ↑
w r ]v ∈ B2 ∧ n1, n2 ∈ N

∧ n1 + n2 = n− 1 : {c} • Lz B Mwn1
• {r} • Lv B Mu

′

n2
)

⊆ s(u,u′) .

Note that, by de�nition of F∗B and since (u, u′) ∈ F∗B({(x, y)}), then each (v, u′) and
(z, w) in the previous inclusion is in F∗B({(x, y)}). So, the induction hypotheses are
applicable for them. By induction hypothesis (4.5), by transitivity of ⊆ and by mono-
tonicity of ∪ and •, it su�ces to prove that

(∪ m, v | [um ]v ∈ B1 : {m} • s(v,u′))

∪ (∪ c, z, r, w | [u c ↓z ↑
w r ]u

′
∈ B2 : {c} • s(z,w) • {r})

∪ (∪ c, z, r, w, v, n1, n2 | [u c ↓z ↑
w r ]v ∈ B2 ∧ n1, n2 ∈ N

∧ n1 + n2 = n− 1 : {c} • s(z,w) • {r} • s(v,u′))

⊆ s(u,u′) .

Since the body of the last quanti�cation does not use the quanti�ed variables n1 and
n2, by arithmetics and by set theory, they can be removed. Then, by set theory, it
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su�ces to prove that

(∧ m, v | [
u

m
v

] ∈ B1 : {m} • s(v,u′) ⊆ s(u,u′)) ,

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : {c} • s(z,w) • {r} ⊆ s(u,u′)) ,

(∧ c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ B2 : {c} • s(z,w) • {r} • s(v,u′) ⊆ s(u,u′)) .

These are exactly hypotheses (4.2), (4.3) and (4.4).

Axiom (3.16) is valid: By de�nition of the language model, we suppose that for all
u, u′, u′′ ∈ V , x′2 ∈ V ′ and m ∈ Σi ∪ {ε} such that [um ]u

′
∈ B1,

b
(u′′,u)

x′2
• {m} ⊆ (∪ y′′2 | [

x′2

m
y′′2

] ∈ C1 : {m} • b(u′′,u′)
y′′2

) . (4.6)

Also, we suppose that for all u, u′, u′′, z, w ∈ V , x′2 ∈ V ′, c ∈ Σc and r ∈ Σr such that
[u c ↓z ↑

w r ]u
′
∈ B2,

b
(u′′,u)

x′2
• {c} ⊆ (∪ z′, w′, y′′2 | [

x′2

c ↓
z′

w′

↑ r
y′′2

] ∈ C2 : b
(u′′,u)

x′2
• {c} • b(z,z)

z′ • b
(z,z)
z′ ) . (4.7)

Moreover, we suppose that for all u, u′, u′′, z, w ∈ V , x′2, z′, w′′ ∈ V ′, c ∈ Σc and r ∈ Σr

such that [u c ↓z ↑
w r ]u

′
∈ B2,

(∪ w′, y′′2 | [
x′2

c ↓
z′

w′

↑ r
y′′2

] ∈ C2 : b
(u′′,u)

x′2
• {c} • b(z,z)

z′ • L
z′
C
w′′

M • b(z,w)
w′′ • {r})

⊆ (∪ y′′2 | [
x′2

c ↓
z′

w′′

↑ r
y′′2

] ∈ C2 : {c} • L
z′
C
w′′

M • {r} • b(u′′,u′)
y′′2

) .

(4.8)

We show that

b(y′,x)
x2

• L
x

B
y

M ⊆ (∪ y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M • b(y′,y)

y′2
) .

By de�nition of Lx B My, by distributivity of • over ∪ and by set theory, it su�ces to
prove that for all n ∈ N,

b(y′,x)
x2

• L
x

B
y

M
n

⊆ (∪ y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M • b(y′,y)

y′2
) .

The proof is done by generalized induction over n. For the base case (n = 0), we
show that

b(y′,x)
x2

• L
x

B
y

M
0

⊆ (∪ y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M • b(y′,y)

y′2
) .
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By de�nition of Lx B My0, distributivity of • over ∪ and set theory, it su�ces to prove
independently that, for all unary blocks [xm ]y ∈ B1,

b(y′,x)
x2

• {m} ⊆ (∪ y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M • b(y′,y)

y′2
) .

We prove it.

b
(y′,x)
x2 • {m}

⊆ {{ Hypothesis (4.6) }}
(∪ y′2 | [x2 m ]y

′
2 ∈ C1 : {m} • b(y′,y)

y′2
)

⊆ {{ Since [x2 m ]y
′
2 ∈ C1, axiom (3.2) can be used & Monotonicity of • and

∪ }}
(∪ y′2 | [x2 m ]y

′
2 ∈ C1 : Lx2 C My

′
2 • b(y′,y)

y′2
)

⊆ {{ By de�nition: [x2 m ]y
′
2 ∈ C1 ⇒ y′2 ∈ V ′ & Range weakening }}

(∪ y′2 | y′2 ∈ V ′ : Lx2 C My
′
2 • b(y′,y)

y′2
)

For the inductive case, we suppose that

b(y′,x)
x2

• L
x

B
y

M
k

⊆ (∪ y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M • b(y′,y)

y′2
)

is true for all k ∈ {0, . . . , n} and for all x, y, y′ ∈ V and x2 ∈ V ′ and we show that

b(y′,x)
x2

• L
x

B
y

M
n+1

⊆ (∪ y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M • b(y′,y)

y′2
)

is also true. By de�nition of Lx B Myn+1, by distributivity of • over ∪ and by set theory,
it su�ces to show independently that,

• for all v ∈ V and unary blocks [xm ]v ∈ B1,

b(y′,x)
x2

• {m} • L
v

B
y

M
n

⊆ (∪ y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M • b(y′,y)

y′2
) , (4.9)

• for all binary blocks [x c ↓z ↑
w r ]y ∈ B2,

b(y′,x)
x2

• {c} • L
z

B
w

M
n

• {r} ⊆ (∪ y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M • b(y′,y)

y′2
) , (4.10)
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• for all v ∈ V , binary blocks [x c ↓z ↑
w r ]v ∈ B2 and n1, n2 ∈ N such that n1 + n2 =

n− 1,

b(y′,x)
x2

• {c} • L
z

B
w

M
n1

• {r} • L
v

B
y

M
n2

⊆ (∪ y′2 | y′2 ∈ V ′ : L
x2

C
y′2

M • b(y′,y)

y′2
) . (4.11)

For (4.9),

b
(y′,x)
x2 • {m} • Lv B Myn

⊆ {{ Hypothesis (4.6) & Monotonicity of • }}
(∪ v′ | [x2 m ]v

′
∈ C1 : {m} • b(y′,v)

v′ ) • Lv B Myn
= {{ Distributivity of • over ∪ }}

(∪ v′ | [x2 m ]v
′
∈ C1 : {m} • b(y′,v)

v′ • Lv B Myn)

⊆ {{ Induction hypothesis & Monotonicity of • and ∪ }}
(∪ v′ | [x2 m ]v

′
∈ C1 : {m} • (∪ y′2 | y′2 ∈ V ′ : Lv′ C My

′
2 • b(y′,y)

y′2
))

= {{ Distributivity of • over ∪ & Nesting }}
(∪ y′2 | y′2 ∈ V ′ : (∪ v′ | [x2 m ]v

′
∈ C1 : {m} • Lv′ C My

′
2) • b(y′,y)

y′2
)

⊆ {{ Since [x2 m ]v
′
∈ C1, axiom (3.2) can be used & Axiom (3.4) & Monotonic-

ity of • and ∪ }}
(∪ y′2 | y′2 ∈ V ′ : (∪ v′ | [x2 m ]v

′
∈ C1 : Lx2 C My

′
2) • b(y′,y)

y′2
)

⊆ {{ Set theory }}
(∪ y′2 | y′2 ∈ V ′ : Lx2 C My

′
2 • b(y′,y)

y′2
) .

For (4.10) and (4.11), we �rst prove that for all v, v′ ∈ V , binary blocks [x c ↓z ↑
w r ]v

∈ B2 and k ∈ N such that k 6 n,

b(v′,x)
x2

• {c} • L
z

B
w

M
k

• {r} ⊆ (∪ v′2 | v′2 ∈ V ′ : L
x2

C
v′2

M • b(v′,v)

v′2
) . (4.12)

For (4.12),

b
(v′,x)
x2 • {c} • Lz B Mwk • {r}

⊆ {{ Hypothesis (4.7) & Monotonicity of • }}
(∪ z′, w′, v′2 | [x2 c ↓z′ ↑

w′ r ]v
′
2 ∈ C2 : b

(v′,x)
x2 • {c} • b(z,z)

z′ • b
(z,z)
z′ ) • Lz B Mwk • {r}

= {{ Distributivity of • over ∪ }}
(∪ z′, w′, v′2 | [x2 c ↓z′ ↑

w′ r ]v
′
2 ∈ C2 : b

(v′,x)
x2 • {c} • b(z,z)

z′ • b
(z,z)
z′ • Lz B Mwk • {r})

⊆ {{ Induction hypothesis & Monotonicity of • and ∪ }}
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(∪ z′, w′, v′2 | [x2 c ↓z′ ↑
w′ r ]v

′
2 ∈ C2 : b

(v′,x)
x2 • {c} • b(z,z)

z′ • (∪ w′′ | w′′ ∈ V ′ :

Lz′ C Mw
′′
• b(z,w)

w′′ ) • {r})
= {{ Distributivity of • over ∪ & Nesting }}

(∪ z′, w′′ | z′ ∈ V ′ ∧ w′′ ∈ V ′ : (∪ w′, v′2 | [x2 c ↓z′ ↑
w′ r ]v

′
2 ∈ C2 : b

(v′,x)
x2 • {c} • b(z,z)

z′ •
Lz′ C Mw

′′
• b(z,w)

w′′ • {r}))
⊆ {{ Hypothesis (4.8) & Monotonicity of ∪ }}

(∪ z′, w′′ | z′ ∈ V ′ ∧ w′′ ∈ V ′ : (∪ v′2 | [x2 c ↓z′ ↑
w′′ r ]v

′
2 ∈ C2 : {c} • Lz′ C Mw

′′
• {r} •

b
(v′,v)

v′2
))

= {{ Nesting & Distributivity of • over ∪ }}
(∪ v′2 | v′2 ∈ V ′ : (∪ z′, w′′ | [x2 c ↓z′ ↑

w′′ r ]v
′
2 ∈ C2 : {c} • Lz′ C Mw

′′
• {r}) • b(v′,v)

v′2
)

⊆ {{ Since [x2 c ↓z′ ↑
w′′ r ]v

′
2 ∈ C2, axiom (3.3) can be used & Monotonicity of •

and ∪ }}
(∪ v′2 | v′2 ∈ V ′ : (∪ z′, w′′ | [x2 c ↓z′ ↑

w′′ r ]v
′
2 ∈ C2 : Lx2 C Mv

′
2) • b(v′,v)

v′2
)

⊆ {{ Set theory }}
(∪ v′2 | v′2 ∈ V ′ : Lx2 C Mv

′
2 • b(v′,v)

v′2
) .

Now, the proof of (4.10) is direct with (4.12) and appropriate substitution.

For (4.11),

b
(y′,x)
x2 • {c} • Lz B Mwn1

• {r} • Lv B Myn2

⊆ {{ Inclusion (4.12) & Monotonicity of • }}
(∪ v′2 | v′2 ∈ V ′ : Lx2 C Mv

′
2 • b(y′,v)

v′2
) • Lv B Myn2

= {{ Distributivity of • over ∪ }}
(∪ v′2 | v′2 ∈ V ′ : Lx2 C Mv

′
2 • b(y′,v)

v′2
• Lv B Myn2

)

⊆ {{ Induction hypothesis & Monotonicity of • and ∪ }}
(∪ v′2 | v′2 ∈ V ′ : Lx2 C Mv

′
2 • (∪ y′2 | y′2 ∈ V ′ : Lv′2 C My

′
2 • b(y′,y)

y′2
))

= {{ Distributivity of • over ∪ & Nesting }}
(∪ y′2 | y′2 ∈ V ′ : (∪ v′2 | v′2 ∈ V ′ : Lx2 C Mv

′
2 • Lv′2 C My

′
2) • b(y′,y)

y′2
)

⊆ {{ Axiom (3.4) & Monotonicity of • and ∪ }}
(∪ y′2 | y′2 ∈ V ′ : (∪ v′2 | v′2 ∈ V ′ : Lx2 C My

′
2) • b(y′,y)

y′2
)

⊆ {{ Set theory & Monotonicity of • and ∪ }}
(∪ y′2 | y′2 ∈ V ′ : Lx2 C My

′
2 • b(y′,y)

y′2
) . �
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4.2 Completeness of the Equational Theory of VPKA

over the Language Model under Interpretation L

We show the following theorem.

Theorem 4.2 (Completeness of the equational theory of VPKA over the language model
under interpretation L). Let Σi, Σc and Σr be three disjoint �nite sets such that at least

one of them is nonempty. Let p and q be visibly pushdown regular expressions over the

same tripartition denoting the same visibly pushdown language. Then, the axiomatic

system of visibly pushdown Kleene algebra can derive p = q. In other words, for any

VPREs p and q,

L(p) = L(q) =⇒ ` p = q .

The proof of Theorem 4.2 is very involved. We use an approach similar to Con-
way [16] and Kozen [25], but we also use some ideas of Wagner [51]. The key step of
the proof is to encode (semi-)visibly pushdown automata directly in visibly pushdown
Kleene algebra. This allows us to manipulate (S-)VPA in a purely algebraic setting.
The algebraic encoding is de�ned using matrices over a Kleene algebra like Kozen's
�nite automata encoding [25], but the encoding is di�erent. Recall that, by de�nition,
any visibly pushdown Kleene algebra is a Kleene algebra, and the family of matrices
over a Kleene algebra again forms a Kleene algebra (see Section 2.1). So visibly push-
down regular expressions can be used as entries of matrices. Also, matrices using these
expressions can be manipulated with the standard operators of Kleene algebra.

At �rst glance, the algebraic encoding of (semi-)visibly pushdown automata that
can lead to the de�nition of a halting algorithm (to ensure decidability) does not seem
easy. Known algebraic encodings of pushdown automata are of no help here because
they usually give matrices of in�nite size like in [35]. So, the particular structure of
(S-)VPA must be exploited to de�ne such an encoding.

De�nition 4.3 (Algebraic encoding of a semi-visibly pushdown automaton). Let Σi,
Σc and Σr be three disjoint �nite sets such that at least one of them is nonempty. Let
S := {s1, s2, . . . , s|S|} be a nonempty �nite set. Let

A := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F )

be a semi-visibly pushdown automaton. The algebraic encoding of A is the structure

(
−→
I ,WM,Tc,T⊥, ε⊥, ε6⊥,

−→
F )

in which:
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•
−→
I and

−→
F are �Boolean� column vectors1 of size |S| representing the initial states

and the accepting states;

• each entry i, j of the square matrix Tc (of size |S| × |S|) is de�ned by

Tc[i, j] := (
∑

c | c ∈ Σc ∧ (∃ d | d ∈ Γ : (si, c, λ; sj, d) ∈ δ) : c) .

This matrix represents the possibly pending calls;

• each entry i, j of the square matrix T⊥ (of size |S| × |S|) is de�ned by

T⊥[i, j] := (
∑

r | r ∈ Σr ∧ (si, r,⊥; sj,⊥) ∈ δ : r) .

This matrix represents the possibly pending returns;

• each entry i, j of the square matrix ε⊥ (of size |S| × |S|) is de�ned by

ε⊥[i, j] :=

{
1 if (si, ε,⊥; sj,⊥) ∈ δ,
0 otherwise.

This matrix represents the ε-transitions that test if the top symbol on the stack
is the bottom-of-stack symbol;

• each entry i, j of the square matrix ε 6⊥ (of size |S| × |S|) is de�ned by

ε 6⊥[i, j] :=

{
1 if for all d ∈ Γ, (si, ε, d; sj,⊥) ∈ δ,
0 otherwise.

This matrix represents the ε-transitions that seal the current stack by a ⊥ symbol;

• each entry i, j of the square matrix WM (of size |S| × |S|) represents the well-
matched words that can be generated from a state si of the automaton to a state
sj without using an ε-transition, and it is de�ned by

WM[i, j] := L
si

B
sj

M

where the list of blocks B (identical for all entries of the matrix) represents the
encoding of the structure of the semi-visibly pushdown automaton (except for
ε-transitions) using the following rules:

A. The set of labels S is used.
1Boolean column vectors in this case are vectors that contain only 0s and 1s, where 0 and 1 are the

constants of VPREs.
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B. For all states si ∈ S,
[
si

1
si

] ∈ B .

C. For all internal actions a ∈ Σi and states si, sj ∈ S,

[
si

a
sj

] ∈ B ⇔ (si, a, λ; sj, λ) ∈ δ .

D. For all call actions c ∈ Σc, return actions r ∈ Σr and states si, sj, sk, sl ∈ S,

[
si

c ↓
sk

sj

↑ r
sl

] ∈ B ⇔ (∃ d | d ∈ Γ : (si, c, λ; sk, d) ∈ δ ∧ (sj, r, d; sl, λ) ∈ δ) .

The language accepted by A is denoted by (see explanation below)

−→
I t • (T⊥+WM+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F . (4.13)

Note that, for matrices of size 1× 1, we use the matrix
[
x
]
as a VPRE x. �

Remark 4.4 (Algebraic encoding of a visibly pushdown automaton). Let A be a visibly
pushdown automaton. Recall that a visibly pushdown automaton is a semi-visibly push-
down automaton that does not have ε-transitions. So, by De�nition 4.3, the algebraic
encoding of A is a structure

(
−→
I ,WM,Tc,T⊥,0,0,

−→
F ) .

When dealing explicitly with visibly pushdown automata, the abbreviation

(
−→
I ,WM,Tc,T⊥,

−→
F )

for the algebraic encoding of A is used and the language accepted by A is denoted by

−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F . �

The algebraic encoding is mainly concerned about getting rid of the explicit stack
in the automaton. Note that the exact stack symbol pushed on the stack when reading
a call action is important only if this symbol is used to read a return action. So, this
situation occurs only if an a�x of the current word is well-matched and contains these
call and return actions. So, this situation can be taken care of without using an explicit
stack by using the matrix WM which allows a binary block only if the call action and
the return action use the same stack symbol. In any other cases, it is not useful to know
the exact stack symbol used, but it is essential to know whether the stack is empty or
not. So, the encoding forgets the stack symbol for matrices Tc and ε 6⊥.
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Assume that WM[i, j] gives the set of well-matched words that can be read by
the S-VPA without using ε-transitions. This assumption is easy to accept because the
expression WM[i, j] encodes the structure of the automaton. So, the language (4.13)
can be understood in the following way:

• First, every accepted word of the automaton starts in an initial state (a state of−→
I ) with an empty stack.

• The expression (T⊥+WM+ε⊥+ (Tc •WM)+ •ε 6⊥)? represents the possibilities
that the automaton has to accept the word without leaving an empty stack (or a

stack sealed with a ⊥ symbol):

� it can read a return action (transition) of T⊥ (so, the stack remains the
same);

� it can read a well-matched word by using WM (so, the stack remains the
same);

� it can follow an ε-transition of ε⊥ (so, the stack remains the same);

� it can read any �nite nonzero number of calls (Tc) followed by any well-
matched words ofWM, only if this is followed immediately by an ε-transition
that seals the stack with a ⊥ symbol (so, the stack grows but is nevertheless
sealed with a ⊥ symbol). Note that, after reading a call action of Tc, the
stack is not empty and has a symbol of Γ on top of it, so, the transitions of
T⊥ and ε⊥ cannot be applied before following a transition of ε 6⊥.

• The expression (Tc •WM)? represents the possibilities that the automaton has
to accept a word when processing the �rst pending call that is not sealed by a ⊥
symbol: reading a pending call action followed by well-matched words and more
pending calls.

• The automaton must stop in a �nal state (a state of
−→
F ).

Lemma 4.5 (Properties of WM). Let Σi, Σc and Σr be three disjoint �nite sets such

that at least one of them is nonempty. Let S := {s1, s2, . . . , s|S|} be a nonempty �nite

set. Let A := (S,Σi,Σc,Σr,Γ∪{⊥}, δ, I, F ) be a semi-visibly pushdown automaton. Let

WM be the matrix of the algebraic encoding of A described in De�nition 4.3. Then,

(i) I 6WM;

(ii) WM •WM = WM;

(iii) WM? = WM.
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Proof. We �rst show property i. By de�nitions of I andWM, it su�ces to show that for
every i, j ∈ {1, 2, . . . , |S|} such that i 6= j, 0 6 Lsi B Msj and for every i ∈ {1, 2, . . . , |S|},
1 6 Lsi B Msi . The �rst inequation is trivial by the fact that 0 is the minimum element
of the algebra (simple Kleene algebraic reasoning). For the second inequation, by
condition B of the de�nition of B, there is a unary block [si 1 ]si in B. So, Lsi B Msi > 1

by axiom (3.2).

We now show ii. The case > is easy by using property i and simple Kleene algebraic
reasoning:

WM •WM > I •WM = WM .

The case 6 is also easy. By de�nition of • and WM, it su�ces to show that for every
i, j ∈ {1, 2, . . . , |S|},

(
∑

k | 1 6 k 6 |S| : L
si

B
sk

M · L
sk

B
sj

M ) 6 L
si

B
sj

M .

This is trivial by (3.4), monotonicity of + and idempotency of +.

We now show iii. The case 6 is easy:

WM? 6WM

← {{ ∗-induction axiom }}
I+WM •WM 6WM

↔ {{ Kleene algebra: p+ q 6 r ↔ p 6 r ∧ q 6 r }}
I 6WM ∧ WM •WM 6WM

� ( Lemma 4.5, properties i and ii . )

The case > is trivial by the ∗-unfold axiom and simple Kleene algebraic reasoning. �

The main idea of the proof of Theorem 4.2 is to use the algebraic encoding of a
(semi-)visibly pushdown automaton to derive some results of the theory of (S-)VPA but
using only the axiomatic system presented in Section 3.2. The results that are derived
here are

• an extension of Kleene's representation theorem for semi-visibly pushdown au-
tomata;

• an ε-transition elimination for semi-visibly pushdown automata (that gives visibly
pushdown automata);
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• the determinization of visibly pushdown automata;

• the synchronization of two deterministic visibly pushdown automata.

Note that the synchronization of two visibly pushdown automata is used instead of the
minimization of these automata (unlike [25]). Minimization cannot be used easily here
because minimization does not work well for every visibly pushdown automaton; such
minimization is not necessarily unique [14] which is a crucial fact for Kozen's proof [25].
To circumvent the problem, we use synchronization between automata which was used
by Wagner in [51]. To our knowledge, Wagner was the �rst to use this idea in an
algebraic setting.

Here are the results of the theory of (semi-)visibly pushdown automata that are
used in the proof of Theorem 4.2. For each of these results, we give the complete
construction, but we only give an overview of each proof since they are lengthy. See
Appendices B to E for the complete proofs. We write ` φ to mean that a formula φ is
derivable using the deductive system of visibly pushdown Kleene algebra.

Theorem 4.6 (Extension of Kleene's representation theorem for semi-visibly push-
down automata). Let Σi, Σc and Σr be three disjoint �nite sets such that at least one

of them is nonempty. Let p be a visibly pushdown regular expression on Σi, Σc and

Σr. Then, there exists a semi-visibly pushdown automaton A := (S,Σi,Σc,Σr,Γ ∪
{⊥}, δ, I, F ) that accepts the language L(p) and the algebraic encoding of A by the

structure (
−→
I ,WM,Tc,T⊥, ε⊥, ε6⊥,

−→
F ) is such that

` p =
−→
I t • (T⊥ +WM+ ε⊥ + (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F . (4.14)

Proof sketch (for the complete proof, see Appendix B). The proof of Theorem 4.6 is do-
ne by induction on the structure of p. Note that the base cases construct VPAs (which
are a special case of S-VPAs) and follow Remark 4.4. Note also that, in our equations
between matrices, we sometimes take the liberty of having di�erent entry notation for
the matrices. However, the correspondence between the notations will always be clear
from the context and, of course, the matrices will always be of the same size.

For the base case of the constant 0, it su�ces to construct a one-state VPA without
an accepting state. Since there is no accepting state,

−→
F is the zero vector and thus

` 0 =
−→
I t • (T⊥+WM+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

[
0
]
,

by Kleene algebra.
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For the base case of the constant 1, it su�ces to construct a one-state VPA with-
out transitions and such that its state is accepting. The algebraic encoding of this
automaton is ([

1
]
,
[

Ls1 [s1 1 ]s1 Ms1
]
,0,0,

[
1
])

.

It is easy to see that ` 1 = Ls1 [s1 1 ]s1 Ms1 . The case 6 is direct by (3.2). The other case
follows from (3.14) with s(s1,s1) := 1 and simple Kleene algebraic reasoning. Thus, it is
easy to prove (4.14):

[
1
]
•
(
0+

[
Ls1 [s1 1 ]s1 Ms1

])?
•
(
0 •
[

Ls1 [s1 1 ]s1 Ms1
])?
•
[

1
]

= {{ Zero of · & Kleene algebra: 0∗ = 1 & Identity of · and + }}[
Ls1 [s1 1 ]s1 Ms1

]?
= {{ Lemma 4.5, property iii & Previous result: ` 1 = Ls1 [s1 1 ]s1 Ms1 }}

1 .

For the base cases of an internal action a ∈ Σi, a call action c ∈ Σc and a return
action r ∈ Σr, the proofs are similar. It su�ces to construct a VPA like this one:

s1 s2
transition

where transition represents either the transition

• (s1, a, λ; s2, λ);

• (s1, c, λ; s2, d) for a d ∈ Γ;

• (s1, r,⊥; s2,⊥).

Let us prove only the case for an internal action a ∈ Σi. Let

B := [
s1

1
s1

] , [
s2

1
s2

] , [
s1

a
s2

] .

The algebraic encoding of this automaton is([
1

0

]
,

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

]
,0,0,

[
0

1

])
.

We �rst prove that ` a = Ls1 B Ms2 . The case 6 is direct by (3.2). For the case >,
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Ls1 B Ms2 6 a

← {{ Axiom (3.14) with s(s1,s1) := 1, s(s1,s2) := a and s(s2,s2) := 1 }}
1 6 1 ∧ 1 · 1 6 1 ∧ a 6 a ∧ 1 · a 6 a ∧ a · 1 6 a

� ( Identity of · & Re�exivity of 6 )

It is easy to prove (4.14):

[
1 0

]
•

(
0+

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

])?

•

(
0 •

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

])?

•

[
0

1

]
= {{ Zero of · & Kleene algebra: 0∗ = 1 & Identity of · and + }}[

1 0
]
•

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

]?
•

[
0

1

]
= {{ Lemma 4.5, property iii & De�nition of • & Zero of · & Identity of · and

+ }}
Ls1 B Ms2

= {{ Previous result: ` a = Ls1 B Ms2 }}
a .

For the inductive case +, let p := q1 + q2 where q1 and q2 are VPREs. Suppose there
exists a semi-visibly pushdown automaton A1 := (S1,Σi,Σc,Σr,Γ1 ∪ {⊥}, δ1, I1, F1)

that accepts the language L(q1) and the algebraic encoding of A1 by the structure
(
−→
I1 ,WM1,Tc1 ,T⊥1 , ε⊥1 , ε6⊥1 ,

−→
F1) is such that (4.14) is valid. Also, suppose there ex-

ists a semi-visibly pushdown automaton A2 := (S2,Σi,Σc,Σr,Γ2 ∪ {⊥}, δ2, I2, F2) that
accepts the language L(q2) and the algebraic encoding of A2 by the structure
(
−→
I2 ,WM2,Tc2 ,T⊥2 , ε⊥2 , ε6⊥2 ,

−→
F2) is such that (4.14) is valid.

Without loss of generality, suppose S1 ∩ S2 = ∅ and Γ1 ∩ Γ2 = ∅. De�ne the
semi-visibly pushdown automaton

A := (S1 ∪ S2,Σi,Σc,Σr,Γ1 ∪ Γ2 ∪ {⊥}, δ, I1 ∪ I2, F1 ∪ F2)

where δ := δ1 ∪ δ2 ∪Waste, and

Waste := {(s, ε, d; s′,⊥) | d ∈ Γ2 ∧ (∃ d′ | d′ ∈ Γ1 : (s, ε, d′; s′,⊥) ∈ δ1)}
∪ {(s, ε, d; s′,⊥) | d ∈ Γ1 ∧ (∃ d′ | d′ ∈ Γ2 : (s, ε, d′; s′,⊥) ∈ δ2)} .

It is easy to see that A accepts the language L(q1 + q2). Note that the elements of
Waste are added just to satisfy the property (2.3) of the de�nition of S-VPA.
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Let B := B1,B2 (this list of block is used since S1 ∩ S2 = ∅ and Γ1 ∩ Γ2 = ∅ by
hypothesis, and the construction just adds ε-transitions). The algebraic encoding of
this automaton is(

−→
I ,WM,

[
Tc1 0

0 Tc2

]
,

[
T⊥1 0

0 T⊥2

]
,

[
ε⊥1 0

0 ε⊥2

]
,

[
ε 6⊥1 0

0 ε 6⊥2

]
,
−→
F

)
,

where
−→
I :=

[ −→
I1−→
I2

]
and

−→
F :=

[ −→
F1−→
F2

]
.

First, it is easy to see (but lengthy to prove) that

`WM =

[
WM1 0

0 WM2

]
. (4.15)

We now prove (4.14).

[ −→
I1
t −→I2

t
]
•

([
T⊥1 0

0 T⊥2

]
+WM+

[
ε⊥1 0

0 ε⊥2

]

+
([

Tc1 0

0 Tc2

]
•WM

)+

•

[
ε 6⊥1 0

0 ε 6⊥2

]?

•

([
Tc1 0

0 Tc2

]
•WM

)?

•

[ −→
F1−→
F2

]
= {{ Equation (4.15) }}[ −→

I1
t −→I2

t
]
•

([
T⊥1 0

0 T⊥2

]
+
[
WM1 0

0 WM2

]
+
[
ε⊥1 0

0 ε⊥2

]

+
([

Tc1 0

0 Tc2

]
•

[
WM1 0

0 WM2

])+

•

[
ε 6⊥1 0

0 ε 6⊥2

]?

•

([
Tc1 0

0 Tc2

]
•

[
WM1 0

0 WM2

])?

•

[ −→
F1−→
F2

]
= {{ De�nition of •, ? and + & Kleene algebra }}[ −→

I1
t −→I2

t
]
•

([
T⊥1 0

0 T⊥2

]
+
[
WM1 0

0 WM2

]
+
[
ε⊥1 0

0 ε⊥2

]

+
[

(Tc1 •WM1)+ • ε 6⊥1 0

0 (Tc2 •WM2)+ • ε 6⊥2

])?

•

[
(Tc1 •WM1)? 0

0 (Tc2 •WM2)?

]
•

[ −→
F1−→
F2

]
= {{ De�nition of + and ? & Kleene algebra }}
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[ −→
I1
t −→I2

t
]
•


(T⊥1 +WM1+ ε⊥1

+ (Tc1 •WM1)+ • ε 6⊥1)
? 0

0
(T⊥2 +WM2+ ε⊥2

+ (Tc2 •WM2)+ • ε 6⊥2)
?


•

[
(Tc1 •WM1)? 0

0 (Tc2 •WM2)?

]
•

[ −→
F1−→
F2

]
= {{ De�nition of • & Zero of · & Identity of + }}

−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? • (Tc1 •WM1)? •
−→
F1

+
−→
I2
t • (T⊥2 +WM2+ ε⊥2 + (Tc2 •WM2)+ • ε 6⊥2)

? • (Tc2 •WM2)? •
−→
F2

= {{ Induction hypotheses }}
q1 + q2

For the inductive case ·, let p := q1 · q2, and suppose the same inductive hypotheses
as for the inductive case +. De�ne the semi-visibly pushdown automaton

A := (S1 ∪ S2,Σi,Σc,Σr, (Γ1 ∪ Γ2) ∪ {⊥}, δ, I1, F2)

where δ := δ1∪ δ2∪{(f, ε, d; i′,⊥) | f ∈ F1∧ i′ ∈ I2∧ d ∈ (Γ1∪Γ2)∪{⊥}}∪Waste, and

Waste := {(s, ε, d; s′,⊥) | d ∈ Γ2 ∧ (∃ d′ | d′ ∈ Γ1 : (s, ε, d′; s′,⊥) ∈ δ1)}
∪ {(s, ε, d; s′,⊥) | d ∈ Γ1 ∧ (∃ d′ | d′ ∈ Γ2 : (s, ε, d′; s′,⊥) ∈ δ2)} .

It is easy to see that A accepts the language L(q1 · q2). Note that the elements of Waste

are added just to satisfy the property (2.3) of the de�nition of S-VPA.

Let B := B1,B2 (this list of block is used since S1 ∩ S2 = ∅ and Γ1 ∩ Γ2 = ∅ by
hypothesis, and the construction just adds ε-transitions). The algebraic encoding of
this automaton is(
−→
I ,WM,

[
Tc1 0

0 Tc2

]
,

[
T⊥1 0

0 T⊥2

]
,

[
ε⊥1

−→
F1 •
−→
I2
t

0 ε⊥2

]
,

[
ε 6⊥1

−→
F1 •
−→
I2
t

0 ε 6⊥2

]
,
−→
F

)
,

where
−→
I :=

[ −→
I1−→
0

]
and

−→
F :=

[ −→
0
−→
F2

]
.

Once again, it is easy to see (but lengthy to prove) that

`WM =

[
WM1 0

0 WM2

]
. (4.16)
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The proof of (4.14) is similar to the proof of the inductive case for +: it is done by
using (4.16), Kleene algebra, the de�nition of the matrix model, and the induction
hypotheses.

For the inductive case ∗, let p := q∗1, and suppose the same inductive hypothesis for
q1 as for the inductive case +. Since q∗1 = 1 + q1 · q∗1 by Kleene algebra and since the
cases 1 and + are already proved, it su�ces to �nd a semi-visibly pushdown automaton
that accepts L(q1 · q∗1) and such that (4.14) is valid. De�ne the semi-visibly pushdown
automaton

A := (S1,Σi,Σc,Σr,Γ1 ∪ {⊥}, δ, I1, F1)

where
δ := δ1 ∪ {(f, ε, d; i,⊥) | f ∈ F1 ∧ i ∈ I1 ∧ d ∈ Γ1 ∪ {⊥}} .

It is easy to see that A accepts the language L(q1 · q∗1).

Let B := B1 (this list of block is used since the construction just adds ε-transitions
between �nal states and initial states). The algebraic encoding of this automaton is

(
−→
I1 ,WM1,Tc1 ,T⊥1 , ε⊥1 +

−→
F1 •
−→
I1
t, ε6⊥1 +

−→
F1 •
−→
I1
t,
−→
F1) .

We now show (4.14).

−→
I1
t • (T⊥1 +WM1+ ε⊥1 +

−→
F1 •
−→
I1
t+ (Tc1 •WM1)+ • (ε 6⊥1 +

−→
F1 •
−→
I1
t))? • (Tc1 •

WM1)? •
−→
F1

= {{ Distributivity of · over + & Commutativity of + }}
−→
I1
t • (
−→
F1 •
−→
I1
t+ (Tc1 •WM1)+ •

−→
F1 •
−→
I1
t+T⊥1+WM1+ ε⊥1+ (Tc1 •WM1)+ •

ε 6⊥1)
? • (Tc1 •WM1)? •

−→
F1

= {{ Kleene algebra (mainly, 1 + q+ = q∗) }}
−→
I1
t • ((Tc1 •WM1)? •

−→
F1 •
−→
I1
t + T⊥1 +WM1 + ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? •
(Tc1 •WM1)? •

−→
F1

= {{ Kleene algebra: Denesting rule }}
−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

?

•
(

(Tc1 •WM1)? •
−→
F1 •

−→
I1
t • (T⊥1 +WM1 + ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

?
)?
•

(Tc1 •WM1)? •
−→
F1

= {{ Kleene algebra: Sliding rule }}
−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? • (Tc1 •WM1)? •
−→
F1

·
(−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? • (Tc1 •WM1)? •
−→
F1

)?
= {{ Induction hypothesis }}

q1 · q∗1
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For the inductive case of the family of operators G, let p := Lx B My where Lx B My is
an expression on a �nite set of symbols V . Note that, for every expression Lx B My, there
exists a �nite set of expressions {Lx′ C My}x′∈I where I ⊆ V ∪ {zc | z ∈ V } and the list C
has the following properties:

i. the set of symbols used by C is V ′ and is at most V ∪ {zc | z ∈ V };

ii. there is no unary block of the form [z 0 ]z
′
in C1 where z, z′ ∈ V ′;

iii. there is exactly one unary block of the form [z 1 ]z in C1 for each z ∈ V ′;

iv. there is no other block of the form [z 1 ]z
′
in C1 except those de�ned by iii;

such that

` L
x

B
y

M = (
∑

x′ | x′ ∈ I : L
x′
C
y

M) .

Moreover, the size of (
∑

x′ | x′ ∈ I : Lx′ C My) is polynomial in the size of Lx B My.
Intuitively, this result can be proved by doing the following:

1. Remove all unary blocks containing 0.

2. Clone the symbols from V to prepare for respecting property iii. De�ne B′ by the
following rules:

a. for a ∈ Σi ∪ {1} and z, z′ ∈ V , the unary blocks [z a ]z
′
and [zc a ]z

′
are in (B′)1

if [z a ]z
′
is in B1;

b. for c ∈ Σc, r ∈ Σr and z, z′, w, w′ ∈ V , the binary blocks [z c ↓wc
↑w′ r ]z

′
and

[zc c ↓wc
↑w′ r ]z

′
are in (B′)2 if [z c ↓w ↑

w′ r ]z
′
is in B2.

It is easy to prove that ` Lx B My = Lxc B
′ My.

3. Add a unary block of the form [z 1 ]z in B′ for each z ∈ V ′. The result is still equal
to Lx B My because of step 2 that ensures that

• the �rst symbol xc is a cloned one;

• any �rst symbol after a call action is a cloned one;

• any block starting with a cloned symbol must end with a non-cloned symbol.

4. Remove all unary blocks of the form [z 1 ]z
′
such that z 6= z′ by simulating re�exive

transitive closure over unary blocks of the form [z1 1 ]z2 for every z1, z2 ∈ V ′.
Let 1t∗B′(z) represents the set of symbols accessible from a symbol z by going
�backward� in the list B′ through a �nite number of blocks of the form [z1 1 ]z2 .
De�ne C by the following rules:
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a. for z ∈ V ′, the unary block [z 1 ]z is in C1;

b. for a ∈ Σi and z, z′ ∈ V ′, the unary block [z a ]z
′
is in C1 if there exists z′′ ∈ V ′

such that [z a ]z
′′
is in (B′)1 and z′′ ∈ 1t∗B′(z

′);

c. for c ∈ Σc, r ∈ Σr and z, z′, w, w′ ∈ V ′, the binary block [z c ↓w ↑
w′ r ]z

′
is in C2

if there exists z′′, w′′ ∈ V ′ such that [z c ↓w′′ ↑
w′ r ]z

′′
is in (B′)2, w′′ ∈ 1t∗B′(w)

and z′′ ∈ 1t∗B′(z
′).

Note that condition 4b is de�ned only for any a ∈ Σi but not for a = 1. At the
end of this process, we have that

` L
xc

B′
y

M = (
∑

x′ | xc ∈ 1t∗B′(x
′) : L

x′
C
y

M) . (4.17)

Thus, to prove the inductive case of the family of operators G, it su�ces to prove
the theorem for every expression (

∑
x′ | x′ ∈ I : Lx′ C My) de�ned previously. De�ne the

semi-visibly pushdown automaton

A := (V ′ ∪ {f ′},Σi,Σc,Σr, V
′ × Σr × V ′ ∪ {⊥}, δ, I, {f ′})

where f ′ /∈ V ′ and

δ := {(w, a, λ;w′, λ) | [w a ]w
′
∈ C1}

∪ {(w, c, λ;w′, (z, r, z′)), (z, r, (z, r, z′); z′, λ) | [w c ↓w′ ↑
z r ]z

′
∈ C2}

∪ {(y, ε,⊥; f ′,⊥)} .

It is easy to see that A accepts the language L((
∑

x′ | x′ ∈ I : Lx′ C My)). In particular,
note that it accepts only well-matched words since the stack must be empty to reach
the accepting state f ′.

Let
−→
F1 be the column vector of size |V ′| such that 1 is in row y and 0 in every other

row. Let C ′ := C, [f ′ 1 ]f
′
. The algebraic encoding of this automaton is([ −→
I

0

]
,WM,Tc,0,

[
0
−→
F1

0 0

]
,0,

[ −→
0

1

])
.

It is easy to see that

`WM =

[
WM1

−→
0

0 1

]
(4.18)

whereWM1 is a matrix of size |V ′|×|V ′| containing, for each entry j1, j2, the expression
Lj1 C Mj2 . Also, by de�nition of Tc, it is direct that every entry containing f ′ is 0. In
other words,

` Tc =

[
Tc1

−→
0

0 0

]
(4.19)
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where Tc1 is a matrix of size |V ′| × |V ′| containing, for each entry j1, j2, the expression
Tc[j1, j2]. We now show (4.14).

[ −→
I t 0

]
•

(
0+WM+

[
0
−→
F1

0 0

]
+ (Tc •WM)+ • 0

)?

•(Tc•WM)?•

[ −→
0

1

]
= {{ Identity of · & Zero of + & Equations (4.18) and (4.19) }}[ −→

I t 0
]
•

([
WM1

−→
0

0 1

]
+
[

0
−→
F1

0 0

])?

•

([
Tc1

−→
0

0 0

]
•

[
WM1

−→
0

0 1

])?

•

[ −→
0

1

]
= {{ De�nition of +, • and ? & Kleene algebra }}[ −→

I t 0
]
•

[
WM?

1 WM?
1 •
−→
F1

0 1

]
•

[
(Tc1 •WM1)?

−→
0

0 1

]
•

[ −→
0

1

]
= {{ De�nition of • & Kleene algebra }}

−→
I t •WM?

1 •
−→
F1

= {{ Lemma 4.5, property iii & De�nition of
−→
I ,
−→
F1 and WM1 & De�nition

of • }}
(
∑

x′ | x′ ∈ I : Lx′ C My) �

Theorem 4.7 (Elimination of ε-transitions). Let Σi, Σc and Σr be three disjoint �-

nite sets such that at least one of them is nonempty. Let A := (S,Σi,Σc,Σr,Γ ∪
{⊥}, δ, I, F ) be a semi-visibly pushdown automaton. Let (

−→
I ,WM,Tc,T⊥, ε⊥, ε6⊥,

−→
F )

be the algebraic encoding of A. Then, there exists a visibly pushdown automaton A′ :=
(S ′,Σi,Σc,Σr,Γ

′ ∪ {⊥}, δ′, I ′, F ′) having an algebraic encoding (
−→
I ′ ,WM′,T′c,T

′
⊥,
−→
F ′)

such that

`
−→
I t • (T⊥ +WM+ ε⊥ + (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F

=
−→
I ′ t • (T′⊥ +WM′)? • (T′c •WM′)? •

−→
F ′ .

(4.20)

Proof sketch (for the complete proof, see Appendix C). This proof is done in two steps.
The �rst step eliminates ε-transitions of the form (s, ε,⊥; s′,⊥) for all s, s′ ∈ S and the
second step eliminates ε-transitions of the form (s, ε, d; s′,⊥) for all s, s′ ∈ S and d ∈ Γ.
We give the constructions for the two steps and we present some details of the proof
for the �rst step.

For the �rst step, de�ne the function εt∗A : S → 2S by

εt∗A(s) := {s′ ∈ S | ` ε?⊥[s′, s] = 1}
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for all s ∈ S. This function simulates the re�exive transitive closure of transitions
of the form (t1, ε,⊥; t2,⊥), but reversed: an expression s′ ∈ εt∗A(s) means that it is
possible to start from state s′ and reach state s by using only ε-transitions of the form
(t1, ε,⊥; t2,⊥). Note that every entry (s′, s) of ε?⊥ can be reduced to 1 or 0 by the
de�nition of ε⊥, the de�nition of ?, zero of ·, identity of · and laws: 0∗ = 1 and 1∗ = 1.

The automaton has states of the form s⊥ and s 6⊥ for each s ∈ S. The idea is just
to encode in a state an information stating that the top of the stack is the bottom-of-
stack symbol (this is represented by s⊥) or not (this is represented by s 6⊥). De�ne the
semi-visibly pushdown automaton

A′′ := ({s⊥, s6⊥ | s ∈ S},Σi,Σc,Σr, {d⊥, d6⊥ | d ∈ Γ} ∪ {⊥}, δ′, I ′, {f⊥, f6⊥ | f ∈ F})

where I ′ := {s⊥ | (∃ s′ | s′ ∈ I : s′ ∈ εt∗A(s))}, and

δ′ := {(s⊥, a, λ; s′⊥, λ) | a ∈ Σi ∧ (∃ s′′ | s′′ ∈ εt∗A(s′) : (s, a, λ; s′′, λ) ∈ δ)}
∪ {(s 6⊥, a, λ; s′6⊥, λ) | a ∈ Σi ∧ (s, a, λ; s′, λ) ∈ δ}
∪ {(s⊥, c, λ; s′6⊥, d⊥), (s 6⊥, c, λ; s′6⊥, d6⊥) | c ∈ Σc ∧ (s, c, λ; s′, d) ∈ δ}
∪ {(s 6⊥, r, d⊥; s′⊥, λ) | r ∈ Σr ∧ (∃ s′′ | s′′ ∈ εt∗A(s′) : (s, r, d; s′′, λ) ∈ δ)}
∪ {(s 6⊥, r, d 6⊥; s′6⊥, λ) | r ∈ Σr ∧ (s, r, d; s′, λ) ∈ δ}
∪ {(s⊥, r,⊥; s′⊥,⊥) | r ∈ Σr ∧ (∃ s′′ | s′′ ∈ εt∗A(s′) : (s, r,⊥; s′′,⊥) ∈ δ)}
∪ {(s 6⊥, ε, d 6⊥; s′⊥,⊥), (s 6⊥, ε, d⊥; s′⊥,⊥) | (∃ s′′ | s′′ ∈ εt∗A(s′) : (s, ε, d; s′′,⊥) ∈ δ)} .

The algebraic encoding of this automaton is([ −→
I • ε?⊥−→

0

]
,WM′,

[
0 Tc

0 Tc

]
,

[
T⊥ • ε?⊥ 0

0 0

]
,0,

[
0 0

ε 6⊥ • ε?⊥ 0

]
,

[ −→
F
−→
F

])
.

First, two results are given without proof. Using these results, the proof of the �rst
step is presented. Recall that the matrix WM is de�ned with respect to a list of
blocks B encoding the structure of the semi-visibly pushdown automaton (except for
ε-transitions). We �rst de�ne a list of blocks C over labels S ∪ {sc | s ∈ S} (where each
label sc is fresh) that is very similar to B but does not have unary blocks [s 1 ]s for s ∈ S
(and binary blocks are a little di�erent). In fact, the list of blocks C is de�ned by the
following propositions:

(a) [sc 1 ]sc ∈ C1 for all s ∈ S;

(b) [s a ]s
′
∈ C1 and [sc a ]s

′
c ∈ C1 for all s, s′ ∈ S, a ∈ Σi and [s a ]s

′
∈ B1;

(c) [s c ↓tc ↑
t′c r ]s

′
∈ C2 and [sc c ↓tc ↑

t′c r ]s
′
c ∈ C2 for all s, s′, t, t′ ∈ S, c ∈ Σc, r ∈ Σr and

[s c ↓t ↑
t′ r ]s

′
∈ B2.
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Note that
`WM = I+WMc (4.21)

where WMc is a matrix of size |S| × |S| in which each entry (s, s′) ∈ S × S is exactly
Ls C Ms

′
. Also, note that

`WM′ =

[
(WMc • ε?⊥)? 0

0 WM

]
. (4.22)

We now prove that the language accepted by A′′ is the same as the one accepted by
A.

[ −→
I t • ε?⊥

−→
0
]
•

([
T⊥ • ε?⊥ 0

0 0

]
+WM′+ 0

+
([

0 Tc

0 Tc

]
•WM′

)+

•

[
0 0

ε 6⊥ • ε?⊥ 0

]?

•

([
0 Tc

0 Tc

]
•WM′

)?

•

[ −→
F
−→
F

]
= {{ Identity of + & Equation (4.22) }}[ −→

I t • ε?⊥
−→
0
]
•

([
T⊥ • ε?⊥ 0

0 0

]
+
[

(WMc • ε?⊥)? 0

0 WM

]

+
([

0 Tc

0 Tc

]
•

[
(WMc • ε?⊥)? 0

0 WM

])+

•

[
0 0

ε 6⊥ • ε?⊥ 0

]?

•

([
0 Tc

0 Tc

]
•

[
(WMc • ε?⊥)? 0

0 WM

])?

•

[ −→
F
−→
F

]
= {{ De�nition of •, + and ? & Kleene algebra }}[ −→

I t • ε?⊥
−→
0
]
•

([
T⊥ • ε?⊥ 0

0 0

]
+
[

(WMc • ε?⊥)? 0

0 WM

]

+
[
0 (Tc •WM)+

0 (Tc •WM)+

]
•

[
0 0

ε 6⊥ • ε?⊥ 0

])?

•

[
I (Tc •WM)+

0 (Tc •WM)?

]
•

[ −→
F
−→
F

]
= {{ De�nition of • and + }}[ −→

I t • ε?⊥
−→
0
]
•

[
T⊥ • ε?⊥+ (WMc • ε?⊥)?+ (Tc •WM)+ • ε 6⊥ • ε?⊥ 0

(Tc •WM)+ • ε 6⊥ • ε?⊥ WM

]?
•

[
I (Tc •WM)+

0 (Tc •WM)?

]
•

[ −→
F
−→
F

]
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= {{ De�nition of ? & Kleene algebra }}

[ −→
I t • ε?⊥

−→
0
]
•


(T⊥ • ε?⊥+ (WMc • ε?⊥)?

+ (Tc •WM)+ • ε 6⊥ • ε?⊥)?
0

WM? • (Tc •WM)+ • ε 6⊥ • ε?⊥
• (T⊥ • ε?⊥+ (WMc • ε?⊥)?

+ (Tc •WM)+ • ε 6⊥ • ε?⊥)?
WM?


•

[
I (Tc •WM)+

0 (Tc •WM)?

]
•

[ −→
F
−→
F

]
= {{ De�nition of • & Kleene algebra }}[ −→

I t • ε?⊥ • (T⊥ • ε?⊥+ (WMc • ε?⊥)?+ (Tc •WM)+ • ε 6⊥ • ε?⊥)?
−→
0
]

•

[
(Tc •WM)? •

−→
F

(Tc •WM)? •
−→
F

]
= {{ De�nition of • & Kleene algebra }}

−→
I t • ε?⊥ • (T⊥ • ε?⊥+ (WMc • ε?⊥)?+ (Tc •WM)+ • ε 6⊥ • ε?⊥)? • (Tc •WM)? •

−→
F

= {{ Kleene algebra: (p∗ + q)∗ = (p+ q)∗ }}
−→
I t • ε?⊥ • (T⊥ • ε?⊥+WMc • ε?⊥+ (Tc •WM)+ • ε 6⊥ • ε?⊥)? • (Tc •WM)? •

−→
F

= {{ Distributivity of · over + }}
−→
I t • ε?⊥ • ((T⊥+WMc+ (Tc •WM)+ • ε 6⊥) • ε?⊥)? • (Tc •WM)? •

−→
F

= {{ Denesting rule }}
−→
I t • (T⊥+WMc+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F

= {{ Kleene algebra: p∗ = (1 + p)∗ }}
−→
I t • (T⊥+ I+WMc+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F

= {{ Equation (4.21) }}
−→
I t • (T⊥+WM+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F

For the second step, suppose that we have a S-VPA A := (S,Σi,Σc,Σr,Γ∪
{⊥}, δ, I, F ) such that δ does not contain ε-transitions of the form (s, ε,⊥; s′,⊥) for
all s, s′ ∈ S. This is always possible because of the �rst step of the proof. Let
(
−→
I ,WM,Tc,T⊥, ε⊥, ε6⊥,

−→
F ) be the algebraic encoding of A. We construct a S-VPA

that does not have ε-transitions of the form (s, ε, d; s′,⊥) for all s, s′ ∈ S and d ∈ Γ.

The automaton has states of the form sa⊥ , sa6⊥ and sp6⊥ for each s ∈ S. The idea
is just to encode in a state an information stating if the stack is �allowed� to be read
normally and is empty (this is represented by sa⊥) or if the stack is �allowed� to be
read normally and is nonempty (this is represented by sa6⊥) or if it must be �protected�
when reading symbols from the nonempty stack (this is represented by sp6⊥). A state sp6⊥
protecting the reading of the stack is just a way of saying that the values of the symbols
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on the stack are irrelevant. A value of a symbol on the stack becomes irrelevant when
simulating a transition of the form (t, ε, d; t′,⊥) which protects the stack from being
read. The idea is that any transition of the form (t, r,⊥; t′,⊥) is simulated in tp6⊥ by
saturation of the transitions over the possible stack symbols.

De�ne the visibly pushdown automaton

A′ := ({sa⊥ , sa6⊥ , sp6⊥ | s ∈ S},Σi,Σc,Σr, {a⊥, a6⊥, p 6⊥} × Γ ∪ {⊥}, δ′, {ia⊥ | i ∈ I},
{fa⊥ , fa6⊥ , fp6⊥ | f ∈ F})

where

δ′ = {(sa⊥ , a, λ; s′a⊥ , λ), (sa6⊥ , a, λ; s′a6⊥ , λ), (sp6⊥ , a, λ; s′p6⊥ , λ) | a ∈ Σi

∧ (s, a, λ; s′, λ) ∈ δ}
∪ {(sa6⊥ , a, λ; s′p6⊥ , λ) | a ∈ Σi

∧ (∃ s′′ | (∀ d | d ∈ Γ : (s′′, ε, d; s′,⊥) ∈ δ) : (s, a, λ; s′′, λ) ∈ δ)}
∪ {(sa⊥ , c, λ; s′a6⊥ , (a⊥, d)), (sa6⊥ , c, λ; s′a6⊥ , (a6⊥, d)), (sp6⊥ , c, λ; s′a6⊥ , (p6⊥, d)) | c ∈ Σc

∧ (s, c, λ; s′, d) ∈ δ}
∪ {(sa⊥ , c, λ; s′p6⊥ , (a⊥, d)), (sa6⊥ , c, λ; s′p6⊥ , (a6⊥, d)), (sp6⊥ , c, λ; s′p6⊥ , (p6⊥, d)) | c ∈ Σc

∧ (∃ s′′ | (s′′, ε, d; s′,⊥) ∈ δ : (s, c, λ; s′′, d) ∈ δ)}
∪ {(sa6⊥ , r, (a⊥, d); s′a⊥ , λ), (sa6⊥ , r, (a 6⊥, d); s′a6⊥ , λ), (sa6⊥ , r, (p6⊥, d); s′p6⊥ , λ) | r ∈ Σr

∧ (s, r, d; s′, λ) ∈ δ}
∪ {(sa6⊥ , r, (a6⊥, d); s′p6⊥ , λ) | r ∈ Σr

∧ (∃ s′′ | (∀ d′ | d′ ∈ Γ : (s′′, ε, d′; s′,⊥) ∈ δ) : (s, r, d; s′′, λ) ∈ δ)}
∪ {(sa⊥ , r,⊥; s′a⊥ ,⊥) | r ∈ Σr ∧ (s, r,⊥; s′,⊥) ∈ δ}
∪ {(sp6⊥ , r, (a⊥, d); s′a⊥ , λ) | r ∈ Σr ∧ d ∈ Γ ∧ (s, r,⊥; s′,⊥) ∈ δ}
∪ {(sp6⊥ , r, (a6⊥, d); s′p6⊥ , λ), (sp6⊥ , r, (p6⊥, d); s′p6⊥ , λ) | r ∈ Σr ∧ d ∈ Γ

∧ (s, r,⊥; s′,⊥) ∈ δ} .

The automaton A′ accepts the same language as A. In other words, equation (4.20) is
valid. �

Theorem 4.8 (Determinization of visibly pushdown automata). Let Σi, Σc and Σr be

three disjoint �nite sets such that at least one of them is nonempty. Let

A := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F )

be a visibly pushdown automaton. Let (
−→
I ,WM,Tc,T⊥,

−→
F ) be the algebraic encoding

of A. Then, there exists a deterministic visibly pushdown automaton

A′ := (S ′,Σi,Σc,Σr,Γ
′ ∪ {⊥}, δ′, I ′, F ′)

having an algebraic encoding (
−→
I ′ ,WM′,T′c,T

′
⊥,
−→
F ′) such that

`
−→
I t•(T⊥+WM)?•(Tc•WM)?•

−→
F =

−→
I ′ t•(T′⊥+WM′)?•(T′c•WM′)?•

−→
F ′ . (4.23)
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Proof sketch (for the complete proof, see Appendix D). The construction used here is a
simpli�cation of Alur and Madhusudan's construction [1]: the deterministic automaton
A′ just uses states of the form T where T ⊆ S × S is a binary relation between states
of A. Intuitively, the range of the relation T represents the current set of reachable
states of S. This is the �standard� component of the usual subset construction of �nite
automata. On the other hand, the domain of T represents the set of states reached
just after reading the last possibly pending call in the current run (except for the initial
state in which an identity function of I is used). The component T is used to postpone
the evaluation of push actions on the stack until their associated pop action occurs (if
there is such a pop action). Note that only the evaluation of the push action on the
stack is postponed and not the reading of the call action. Note also that if there is no
pop action associated to a push action, then the evaluation of this push action on the
stack is not important since it is a pending call (it will never be used).

To understand the component T more clearly, take a word w = a1a2 . . . ai . . . aj . . . ak
where ai is a call action and aj is its associated return action. Since A′ is a deterministic
pushdown automaton, there is one and only one run of A′ on w. Suppose that we stop
the run just after the action aj. Name the state of A′ just after the action aj by Tj+1.
Each pair (s, s′) ∈ Tj+1 represents that it is possible to start A in the state s with an
empty stack (⊥), run A on the a�x ai . . . aj and end the run in the state s′ of A with
an empty stack (⊥).

We now express this construction formally. Let

S ′ := 2S×S,

ran(T ) := {s′ ∈ S | (∃ s |: (s, s′) ∈ T )} for T ⊆ S × S,
IdR := {(s, s) ∈ S × S | s ∈ R} for R ⊆ S.

Construct the following deterministic visibly pushdown automaton:

A′ := (S ′,Σi,Σc,Σr, S
′ × Σc ∪ {⊥}, δ′, {IdI}, {T ∈ S ′ | ran(T ) ∩ F 6= ∅})

where δ′ is de�ned by the set of all the following transitions:

• a transition (T, a, λ;T ′, λ) for each a ∈ Σi and T ∈ S ′ where

T ′ := {(s, s′) ∈ S × S | (∃ s′′ | (s, s′′) ∈ T : (s′′, a, λ; s′, λ) ∈ δ)} ;

• a transition (T, c, λ; IdR′ , (T, c)) for each c ∈ Σc and T ∈ S ′ where

R′ := {s′ ∈ S | (∃ s, d | s ∈ ran(T ) ∧ d ∈ Γ : (s, c, λ; s′, d) ∈ δ)} ;
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• a transition (T, r,⊥;T ′,⊥) for each r ∈ Σr and T ∈ S ′ where

T ′ := {(s, s′) ∈ S × S | (∃ s′′ | (s, s′′) ∈ T : (s′′, r,⊥; s′,⊥) ∈ δ)} ;

• a transition (T, r, (T ′′, c);T ′, λ) for each r ∈ Σr, T ∈ S ′ and (T ′′, c) ∈ S ′ × Σc

where

T ′ := {(s, s′) ∈ S × S | (∃ s′′ | (s, s′′) ∈ T ′′ : (s′′, s′) ∈ Update)}

and

Update := {(s, s′) ∈ S × S | (∃s1, s2, d | (s1, s2) ∈ T ∧ d ∈ Γ :

(s, c, λ; s1, d) ∈ δ ∧ (s2, r, d; s′, λ) ∈ δ)} .

We now show (4.23). To do this, we use a projection between states of 2S×S and
states of S. The projection is in fact the composition of two simple projections X and
Y expressed as matrices. Let X be a matrix of size |2S×S| × |S × S| de�ned for each
T ⊆ S × S and s, s2 ∈ S by

X[T, (s2, s)] :=

{
1 if (s2, s) ∈ T,
0 otherwise.

Let also Y be a matrix of size |S × S| × |S| de�ned for each s, s′, s2 ∈ S by

Y[(s2, s), s
′] :=

{
1 if s = s′,

0 otherwise.

The projection X •Y is split in two because it helps a lot, for well-matched words, to
have an �intermediate� level in which the component T is �explicit�.

The projection X •Y is useful since it su�ces to prove that

`
−→
I ′ t •X •Y =

−→
I t , (4.24)

`
−→
F ′ = X •Y •

−→
F , (4.25)

` T′c •X •Y = X •Y •Tc , (4.26)

` T′⊥ •X •Y = X •Y •T⊥ , (4.27)

`WM′ •X •Y = X •Y •WM , (4.28)

and (4.23) follows easily,

−→
I ′ t • (T′⊥+WM′)? • (T′c •WM′)? •

−→
F ′

= {{ Equation (4.25) }}
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−→
I ′ t • (T′⊥+WM′)? • (T′c •WM′)? •X •Y •

−→
F

= {{ By (4.28) and (4.26), it is direct that T′c•WM′•X•Y = X•Y•Tc•WM.
& Kleene algebra: Bisimulation rule }}−→

I ′ t • (T′⊥+WM′)? •X •Y • (Tc •WM)? •
−→
F

= {{ By (4.28), (4.27) and Kleene algebra, it is direct that (T′⊥+WM′) •X •
Y = X •Y • (T⊥+WM). & Kleene algebra: Bisimulation rule }}−→

I ′ t •X •Y • (T⊥+WM)? • (Tc •WM)? •
−→
F

= {{ Equation (4.24) }}
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F .

The proof of (4.24) to (4.28) are straightforward. Note that the proof of (4.28) es-
sentially uses axioms (3.16) and (3.17) since we are proving a bisimulation between
the two automata. This is our �rst use of these axioms since the beginning of this
dissertation. �

Theorem 4.9 (Synchronization of two deterministic VPAs). Let Σi, Σc and Σr be three

disjoint �nite sets such that at least one of them is nonempty. Let A1 := (S1,Σi,Σc,Σr,

Γ1 ∪ {⊥}, δ1, I1, F1) be a deterministic visibly pushdown automaton and

(
−→
I1 ,WM1,Tc1 ,T⊥1 ,

−→
F1)

its algebraic encoding. Let A2 := (S2,Σi,Σc,Σr,Γ2 ∪ {⊥}, δ2, I2, F2) be another deter-

ministic visibly pushdown automaton and

(
−→
I2 ,WM2,Tc2 ,T⊥2 ,

−→
F2)

its algebraic encoding. Then, there exist two deterministic visibly pushdown automata

A′1 := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F ′1) and A′2 := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F ′2)

having respectively algebraic encodings

(
−→
I ,WM,Tc,T⊥,

−→
F ′1) and (

−→
I ,WM,Tc,T⊥,

−→
F ′2)

such that A′1 and A′2 di�er only in their accepting states (F ′1 and F ′2 are not necessarily

equal) and are such that

`
−→
I1
t • (T⊥1 +WM1)? • (Tc1 •WM1)? •

−→
F1

=
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F ′1 ,

(4.29)

`
−→
I2
t • (T⊥2 +WM2)? • (Tc2 •WM2)? •

−→
F2

=
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F ′2 .

(4.30)
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Proof sketch (for the complete proof, see Appendix E). Without loss of generality, sup-
pose that Γ1 6= ∅ and Γ2 6= ∅. The idea of the construction is to use the synchronous
product of visibly pushdown automata.

De�ne the �rst deterministic visibly pushdown automaton by

(S1 × S2,Σi,Σc,Σr,Γ1 × Γ2 ∪ {⊥}, δ, I1 × I2, F1 × S2)

and the second one by

(S1 × S2,Σi,Σc,Σr,Γ1 × Γ2 ∪ {⊥}, δ, I1 × I2, S1 × F2) ,

where δ is de�ned as the set of all the following transitions:

• a transition ((s, s′), a, λ; (t, t′), λ) for all pairs (s, s′) ∈ S × S ′, internal actions
a ∈ Σi and transitions (s, a, λ; t, λ) ∈ δ1 and (s′, a, λ; t′, λ) ∈ δ2;

• a transition ((s, s′), c, λ; (t, t′), (d, d′)) for all pairs (s, s′) ∈ S × S ′, call actions
c ∈ Σc and transitions (s, c, λ; t, d) ∈ δ1 and (s′, c, λ; t′, d′) ∈ δ2;

• a transition ((s, s′), r, (d, d′); (t, t′), λ) for all pairs (s, s′) ∈ S × S ′, return actions
r ∈ Σr, stack symbols d ∈ Γ1, d′ ∈ Γ2 and transitions (s, r, d; t, λ) ∈ δ1 and
(s′, r, d′; t′, λ) ∈ δ2;

• a transition ((s, s′), r,⊥; (t, t′),⊥) for all pairs (s, s′) ∈ S × S ′, return actions
r ∈ Σr and transitions (s, r,⊥; t,⊥) ∈ δ1 and (s′, r,⊥; t′,⊥) ∈ δ2.

We only show (4.29), because the proof of (4.30) is similar.

To do this, we use a projection between states of S1 × S2 and states of S1. The
projection is expressed as a matrix. Let X be a matrix of size |S1 × S2| × |S1| de�ned
for each s, t ∈ S1 and s′ ∈ S2 by

X[(s, s′), t] :=

{
1 if s = t,

0 otherwise.

The projection X is useful since it su�ces to prove that

`
−→
I t •X =

−→
I1
t ,

`
−→
F ′1 = X •

−→
F1 ,

` Tc •X = X •Tc1 ,

` T⊥ •X = X •T⊥1 ,

`WM •X = X •WM1 .
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and (4.29) follows easily. In fact, the rest of the proof is similar in spirit to the proof of
Theorem 4.8. �

We are now ready to prove the completeness of the equational theory of VPKA over
the language model under interpretation L.

Proof of Theorem 4.2. We suppose L(p) = L(q) and we prove ` p = q. By the genera-
lization of Kleene's representation theorem for semi-visibly pushdown automata (The-
orem 4.6), there exists semi-visibly pushdown automata

A1 := (S1,Σi,Σc,Σr,Γ1 ∪ {⊥}, δ1, I1, F1)

and
A2 := (S2,Σi,Σc,Σr,Γ2 ∪ {⊥}, δ2, I2, F2)

that accept respectively the languages L(p) and L(q) and such that the algebraic en-
coding of A1 and A2 by the structures

(
−→
I1 ,WM1,Tc1 ,T⊥1 , ε⊥1 , ε6⊥1 ,

−→
F1) and (

−→
I2 ,WM2,Tc2 ,T⊥2 , ε⊥2 , ε6⊥2 ,

−→
F2)

satis�es

` p =
−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? • (Tc1 •WM1)? •
−→
F1 ,

` q =
−→
I2
t • (T⊥2 +WM2+ ε⊥2 + (Tc2 •WM2)+ • ε 6⊥2)

? • (Tc2 •WM2)? •
−→
F2 .

Then, by the elimination of ε-transitions (Theorem 4.7), by the determinization of visi-
bly pushdown automata (Theorem 4.8) and by the synchronization of two deterministic
visibly pushdown automata (Theorem 4.9), there exists two deterministic visibly push-
down automata

A′1 := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F ′1) and A′2 := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F ′2)

having respectively algebraic encodings

(
−→
I ,WM,Tc,T⊥,

−→
F ′1) and (

−→
I ,WM,Tc,T⊥,

−→
F ′2)

such that these automata di�er only in their accepting states and that

`
−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? • (Tc1 •WM1)? •
−→
F1

=
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F ′1 ,

`
−→
I2
t • (T⊥2 +WM2+ ε⊥2 + (Tc2 •WM2)+ • ε 6⊥2)

? • (Tc2 •WM2)? •
−→
F2

=
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F ′2 .



Chapter 4. Soundness, Completeness and Complexity Results for VPKA 88

Now, let us get rid of inaccessible states in F ′1 and F
′
2. Let

IS := {s ∈ S | `
(−→
I t • (T⊥+WM)? • (Tc •WM)?

)
[1, s] = 0} .

It is easy to see that IS is the set of inaccessible states in both A′1 and A′2. Also, by
Kleene algebra,

`
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F ′1

=
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−−−→
F ′1\IS ,

`
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F ′2

=
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−−−→
F ′2\IS .

Let us summarize what has been done so far. The proof started with two VPREs
p and q such that L(p) = L(q). These expressions were used to �nd two deterministic
visibly pushdown automata

A′′1 := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F ′1\IS)

and
A′′2 := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F ′2\IS)

having respectively algebraic encoding

(
−→
I ,WM,Tc,T⊥,

−−−→
F ′1\IS) and (

−→
I ,WM,Tc,T⊥,

−−−→
F ′2\IS)

such that these automata di�er only in their accepting states, their set of accepting
states has only accessible states, and these automata are such that

` p =
−→
I t • (T⊥ +WM)? • (Tc •WM)? •

−−−→
F ′1\IS ,

` q =
−→
I t • (T⊥ +WM)? • (Tc •WM)? •

−−−→
F ′2\IS .

So, to show
` p = q

it su�ces to show that

`
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−−−→
F ′1\IS =

−→
I t • (T⊥+WM)? • (Tc •WM)? •

−−−→
F ′2\IS.

In fact, we prove that `
−−−→
F ′1\IS =

−−−→
F ′2\IS and the result follows. To show `

−−−→
F ′1\IS =

−−−→
F ′2\IS,

the hypothesis L(p) = L(q) is used. Since A′′1 and A′′2 are deterministic and they di�er
only in their accepting states, then the unique run of A′′1 on any word w ends in a
state s if and only if the unique run of A′′2 on w also ends in s. Since L(p) = L(q)

by hypothesis, this means that L(p) and L(q) contain the same words. So, they must
have exactly the same accepting states when considering only accessible states. In other
words, F ′1\IS = F ′2\IS. So, `

−−−→
F ′1\IS =

−−−→
F ′2\IS, and then ` p = q. �
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4.3 Complexity of the Equational Theory of VPKA

We show the following theorem.

Theorem 4.10 (Complexity of the equational theory of VPKA). Let Σi, Σc and Σr

be three disjoint �nite sets such that at least one of them is nonempty. Let p and q

be visibly pushdown regular expressions. The problem of deciding if p = q using the

axiomatic system of visibly pushdown Kleene algebra is EXPTIME-complete in the size

of p and q.

Proof. One can see in the proof2 of Theorem 4.2 that the �algorithm� used to decide
if ` p = q is in EXPTIME in the size of p and q. In fact, the running time of the
algorithm is dominated by the time needed for the determinization step (described in
the proof of Theorem 4.8) which is in EXPTIME in the size of the automaton.

It remains to show that the problem of deciding if p = q using the axiomatic system
of VPKA is EXPTIME-hard. To do this, note that the proof of Theorem 3.9 shows that
the problem of deciding whether two VPAs accept the same language (an EXPTIME-
hard problem) can be reduced polynomially to the problem of deciding if two VPREs
denote the same language. Theorems 4.1 and 4.2 show that the problem of deciding
whether two VPREs denote the same language is exactly the same as deciding whether
two VPREs are equivalent using only the axiomatic system of visibly pushdown Kleene
algebra. So, the problem ` p = q is hard for EXPTIME (this is the same as the
language equivalence problem of visibly pushdown automata [1]). �

It should be noted that the use of semi-visibly pushdown automata instead of plain
visibly pushdown automata in the proof of Theorem 4.6 allowed us to avoid an expo-
nential blow-up in the construction made in the proof, in particular for the case of the
operator ∗.

2Some parts of the proof of Theorem 4.2 are in Appendices B to E.



Chapter 5

Visibly Pushdown Kleene Algebra

with Tests (VPKAT) and Metablocks

In order to do interprocedural program analyses using VPKA, we need a way to rep-
resent imperative interprocedural programs in VPKA. However, the representation of
these programs in VPKA alone is limited. The �rst reason is that it lacks an essential
ingredient of imperative programs: tests. The second reason is that it lacks syntactic
sugar to write blocks to create clean representations of programs that look like the
original programs.

This chapter addresses both issues. First, tests are added in VPKA in Section 5.1.
Second, the concept of metablock is introduced in Section 5.2.

5.1 Visibly Pushdown Kleene Algebra with Tests

Tests are an essential ingredient to analyze imperative programs. We add them in a
way similar to Kleene algebra with tests [27], presented in Section 2.1.2: a Boolean
algebra (B,+, ·, , 0, 1) generated by atomic tests B is added to VPKA, where B ⊆ K.
Let TestsB be the set of all test expressions that can be generated from B and the
operators of Boolean algebra. For example, if a, b ∈ B, then b is a test expression of
TestsB and so is b · a+ a. Note that 0 ∈ TestsB and 1 ∈ TestsB.

In this dissertation, we consider only Boolean algebras having a �nite number of
atomic elements B. In this case, it is possible to de�ne atoms of a Boolean algebra. An
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atom is like an assignment of a truth value to each element of B.

De�nition 5.1 (Atoms of a Boolean algebra). Let B := {b1, b2, . . . , bn} be a �nite set
of atomic tests. Following Kozen [29], we de�ne an atom of B to be any test c1 c2 . . . cn
such that, for all i ∈ {1, 2, . . . , n}, ci ∈ {bi, bi}. We denote the set of all atoms of B by
AtomsB. Note that |AtomsB| = 2|B|.

In the case that B = ∅, we de�ne the constant 1 to be the only possible atom (it is
the only case in which the constant 1 is an atom). �

Here is an interesting fact about atoms of a Boolean algebra. For every atom
α ∈ AtomsB and every expression (test) b ∈ TestsB, either ` α 6 b or ` α 6 b.

We would like to use tests in operands of grammar patterns. How can we interpret
a test? It seems natural to think of tests as a subset of internal actions. So, we
extend the de�nition of explicit rewrite rules of grammar patterns to allow tests. We
allow additional explicit rewrite rules of the form P(x,y) → b where b is a variable (or
placeholder) of type TestsB. Here is a more explicit de�nition:

De�nition 5.2 (Grammar patterns for VPKAT). Let Σi, Σc and Σr be disjoint �nite
sets of atomic elements. Let B be a set of atomic tests. Let V be a �nite set of
symbols (or labels) containing symbols s and t, and let N(V ) := {P(x,y) | x, y ∈ V }. A
grammar pattern for VPKAT over Σi, Σc, Σr and B is a partial operator represented by
a tuple G := (V, P(s,t),→) where N(V ) is the set of nonterminals, P(s,t) is the starting
nonterminal and → is a �nite set of explicit rewrite rules of the form

• P(x,y) → b, where b is a variable (or placeholder) of type TestsB, and x, y ∈ V ;

• P(x,y) → a, where a is a variable (or placeholder) of type Σi, and x, y ∈ V ;

• P(x,y) → c P(z,w) r, where c is a variable (or placeholder) of type Σc, r is a variable
(or placeholder) of type Σr, and w, x, y, z ∈ V

and implicit rewrite rules

• P(x,y) → P(x,z) P(z,y) for each x, y, z ∈ V .

Of course, the block notation is still possible with these grammar patterns. It su�ces
to consider that [x b ]y is the unary block notation for P(x,y) → b. �
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The de�nition of grammar patterns for VPKAT may seem surprising at �rst since
grammar patterns for VPKA do not allow complex expressions in unary blocks. However,
tests enjoy an interesting property when B is �nite: they can be represented by a
disjoint sum of atoms. So, they are easy to deal with in unary blocks as we will see in
the de�nition of the intended model for VPKAT in Section 5.1.1.

The axioms of VPKA with tests are the axioms of Kleene algebra with tests (pre-
sented in Section 2.1.2) and axioms (3.2), (3.3), (3.4), (3.14), (3.15), (3.16) and (3.17)
adapted in a natural way to allow unary blocks with tests. Furthermore, to help pro-
gram analysis, we also add two axioms to VPKA with tests. To ease the reading of the
new axioms, their de�nition uses the concept of metablock. So, we �rst present this
concept in Section 5.2 and after we de�ne the two new axioms for VPKA with tests
in Section 5.4. Before switching to the concept of metablock, the intended model of
VPKAT is presented.

5.1.1 Language-Theoretic Model of VPKAT

The intended model of VPKAT is a language-theoretic model that is closely linked to a
trace model. In fact, it is an extension of the language-theoretic model of VPKA. The
di�erence is that languages in VPKAT are not sets of strings, but sets of guarded strings.
Guarded strings were �rst de�ned by Kaplan in 1969 [23] and reused by Kozen in 1996
to de�ne Kleene algebra with tests [34]. As already described nicely by Kozen [29],
�guarded strings are like ordinary strings over a �nite alphabet Σ, except that atoms of
the free Boolean algebra on a set of atomic tests B alternate with the symbols of Σ�.
Here is a more explicit de�nition of guarded string.

De�nition 5.3 (Guarded string [29]). A guarded string over alphabet Σ and test
alphabet B is a sequence of the form

α0 p1 α1 p2 α2 . . . αn−1 pn αn

such that n > 0, α0 ∈ AtomsB and, for every i ∈ {1, 2, . . . , n}, αi ∈ AtomsB and pi ∈ Σ.
Note that, in the case n = 0, a guarded string is just an atom of the test alphabet. �

So, a guarded string always begins and ends with an atom and the atoms alternate
with symbols of Σ. Thus, �concatenation� of guarded strings cannot be the same as
concatenation of languages since this would involve to have two consecutive atoms in
the resulting sequence (the last atom of the �rst guarded string would be followed by
the �rst atom of the second guarded string), and so, it would violate the de�nition
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of guarded string. The previous reasoning is just a �syntactic� problem, but it hides
a �semantic� problem. Recall that we said that we could consider an atom like an
assignment of a truth value to each element of B. So, the meaning of two consecutive
atoms is like potentially assigning two di�erent truth values to an element of B at the

same �time�!1 This should not happen in this framework unless the two atoms are
identical (they share the same truth value for each element of B). The �concatenation�
operation deriving from this idea is called the coalesced product for guarded strings.
Suppose q α is a guarded string ending with the atom α and suppose that β r is a
guarded string beginning with the atom β. The coalesced product � of these two
guarded strings is de�ned by

q α � β r :=

{
q α r if α = β ,

unde�ned otherwise .

So, the coalesced product of two guarded strings merges the last atom of the �rst
guarded string with the �rst atom of the second guarded string if the two atoms are

the same. Otherwise, the coalesced product is unde�ned. So, this operation is a partial
operation when applied to guarded strings. However, it is a total operation when
applied to sets of guarded strings. Let S and T be sets of guarded strings. The
coalesced product of these two sets is de�ned by

S � T := {s � t | s ∈ S ∧ t ∈ T} .

The coalesced product plays the same role for guarded strings as the concatena-
tion operation plays for ordinary strings. However, this implies that the unit of the
concatenation (the set only containing the empty word) should also be replaced for
the coalesced product. In the language-theoretic model of guarded strings, the set {ε}
(playing the role of the unit of the concatenation) is now replaced by the set of all
atoms AtomsB. Besides, the Kleene star operation on guarded strings is de�ned to use
the coalesced product instead of the concatenation operation. Thus, for every set S of
guarded strings, de�ne S0 := AtomsB and Sn+1 := S � Sn for every n ∈ N. Then,

S∗ := (∪ n | n ∈ N : Sn) .

It is already known that the powerset of all guarded strings over an alphabet Σ and a
test alphabet B forms a Kleene algebra with binary operations ∪ and �, unary operation
∗ and constants AtomsB and ∅ [34]. Also, the powerset of all atoms AtomsB forms a

1�Time� in this framework is more like a speci�c state in a computation. In this settings, atoms

denote a state and elements of Σ (though of as instructions of a program) allow one to change the

current state.
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Boolean algebra with binary operations ∪ and �, unary complementation operation
(de�ned, for every A ⊆ AtomsB, by A := AtomsB − A) and constants AtomsB and ∅.
Thus, the two algebras combined give a Kleene algebra with tests. Also, the standard
interpretation G for this algebra is de�ned, for every atomic test b ∈ B and every atomic
element p ∈ Σ, by

G(0) := ∅, G(1) := AtomsB, G(p) := {α p β | α, β ∈ AtomsB},
G(b) := {α | α ∈ AtomsB ∧ b occurs positively in α},

and extends over the structure of regular expressions with tests with · becoming �, +

becoming ∪, ∗ becoming the set operator ∗ on guarded strings, and becoming the
complementation operator on the powerset of AtomsB.

We will now see that this model of Kleene algebra with tests can be extended to
form a model of visibly pushdown Kleene algebra with tests. In this case, the alphabet
Σ is simply Σi ∪ Σc ∪ Σr. Besides, the in�nite family of operators must be de�ned
for guarded strings. To do this, we introduce the concept of a well-matched visibly
pushdown grammar on guarded strings.

De�nition 5.4 (Well-matched visibly pushdown grammar (WMVPG) on guarded
strings). Let Σi, Σc and Σr be disjoint �nite sets of atomic elements. Let B be a
set of atomic tests. Let V be a �nite set of symbols (or labels) containing symbols s
and t, and let N(V ) := {P(x,y) | x, y ∈ V }. A well-matched visibly pushdown grammar

on guarded strings over Σi, Σc, Σr and B is a tuple G := (V, P(s,t),→) where N(V ) is
the set of nonterminals, P(s,t) is the starting nonterminal and→ is a �nite set of explicit
rewrite rules of the form

• P(x,y) → α, where α ∈ AtomsB and x, y ∈ V ;

• P(x,y) → α0 aα1, where α0, α1 ∈ AtomsB, a ∈ Σi and x, y ∈ V ;

• P(x,y) → α0 c α1 � P(z,w) � α2 r α3, where α0, α1, α2, α3 ∈ AtomsB, c ∈ Σc, r ∈ Σr

and w, x, y, z ∈ V

and implicit rewrite rules

• P(x,y) → P(x,z) � P(z,y) for each x, y, z ∈ V . �

Note that WMVPGs on guarded strings are di�erent from usual context-free gram-
mars. First, the terminals of the grammar are guarded strings instead of strings. Sec-
ond, the �concatenation� operation used between elements of the right-hand side of a
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rule is the coalesced product. This use of the coalesced product has a slight impact on
the de�nition of �words� generated by such a grammar. After all, the coalesced product
of guarded strings may be unde�ned in some cases. To handle this case, the idea of the
coalesced product on sets of guarded strings is used: the words generated by a WMVPG

on guarded strings is a set containing only the correctly de�ned guarded strings that
can be generated from the grammar. Note that each guarded string in this set is �nite.

As for WMVPGs, a �block� notation for WMVPGs on guarded strings can be de�ned.
Let G := (V, P(s,t),→) be a WMVPG. We write

[
x

α
y

], [
x

α0 aα1

y

], [
x

α0 c α1 ↓
z

w

↑α2 r α3

y

]

to respectively represent the explicit rewrite rules

P(x,y) → α, P(x,y) → α0 aα1, P(x,y) → α0 c α1 � P(z,w) � α2 r α3 .

We call unary block each rule of the form [x α ]y or [x α0 aα1 ]y. We also call binary block
each rule of the form [x α0 c α1 ↓z ↑w α2 r α3 ]y.

Let B be the block notation of the explicit rewrite rules of G. Then, G is abbreviated
as Ls B Mt.

Here are some examples of languages generated by WMVPGs on guarded strings,
using the block notation. Let Σi := ∅, Σc := {c}, Σr := {r}, B := {b} and V := {x, y}.
Then,

• L
x

[
x

b c b ↓
x

y

↑ b r b
y

], [
x

b
y

]
y

M = {(b c)n b (r b)n | n ∈ N},

• L
x

[
x

b c b ↓
x

y

↑ b r b
y

], [
x

b
y

]
y

M = {b}.

Note that, in the second example, the binary block cannot be used to generate a cor-
rectly de�ned guarded string since the guarded string b c b ends with the atom b and
since no block of the grammar begins with the atom b.

The set operators on guarded strings are now all de�ned. To complete the de�nition
of the model, a link (an interpretation) between operators and atomic elements of
VPKAT, and the set operators on guarded strings and atomic elements of guarded strings
must be de�ned. To do this, it su�ces to extend properly the standard interpretation
G for Kleene algebra with tests to every expression of visibly pushdown Kleene algebra
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with tests. Thus, the standard interpretation G for VPKAT is de�ned, for every atomic
test b ∈ B, every internal action a ∈ Σi, every call action c ∈ Σc and every return
action r ∈ Σr, by

G(0) := ∅, G(1) := AtomsB, G(a) := {α aβ | α, β ∈ AtomsB},
G(c) := {α c β | α, β ∈ AtomsB}, G(r) := {α r β | α, β ∈ AtomsB},

G(b) := {α | α ∈ AtomsB ∧ b occurs positively in α},

and extends over the structure of visibly pushdown regular expressions with · becoming
�, + becoming ∪, ∗ becoming the set operator ∗ on guarded strings, and becoming
the complementation operator on the powerset of AtomsB. Also, a grammar pattern
for VPKAT along with its operands (note this expression G) becomes (is interpreted as)
a WMVPG on guarded strings in the following way:

• every explicit rewrite rule of the form P(x,y) → b in which b ∈ TestsB in G becomes
the following rewrite rules for a WMVPG on guarded strings:

P(x,y) → α, for all α ∈ AtomsB such that α 6 b ,

• every explicit rewrite rule of the form P(x,y) → a in which a ∈ Σi in G becomes
the following rewrite rules for a WMVPG on guarded strings:

P(x,y) → α aβ, for all α, β ∈ AtomsB ,

• every explicit rewrite rule of the form P(x,y) → c P(z,w) r in which c ∈ Σc and r ∈ Σr

in G becomes the following rewrite rules for a WMVPG on guarded strings:

P(x,y) → α0 c α1 � P(z,w) � α2 r α3, for all α0, α1, α2, α3 ∈ AtomsB .

So, G(G) is the language generated by the WMVPG on guarded strings represented by
G.

It is routine to prove that the powerset of all guarded strings along with its set
operators is a model of visibly pushdown Kleene algebra with tests.

Alternative De�nition of the Family of Operators for Guarded Strings

Like for the de�nition of G for VPKA, there exists an alternative de�nition of the
preceding in�nite family of operators that uses directly the notion of �block� instead of
using the detour of grammars. The idea behind a block expression Lx B Mx

′
is to generate
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any well-matched guarded string that can be produced by a correct �travelling� of the
list of blocks, starting the travel in any block that has x as starting label and ending it in
any block that has x′ as ending label. In essence, a correct travelling of a L M-expression
is similar to the following derivation strategy for a WMVPG on guarded strings: always
use an explicit rewrite rule to derive the �rst nonterminal generated by an implicit
rewrite rule. Such correct travelling is easy to infer from the de�nition of a correct
travelling of Section 3.1.2 and the de�nition of blocks for guarded strings.

Let B be a �nite list of unary and binary blocks on a �nite set of labels V . De�ne
B1 as the set of unary blocks of B and B2 as the set of binary blocks of B. Note that,
in the following, we denote a unary block by [xm ]y ∈ B1 for labels x and y, but m can
be either an atom α ∈ AtomsB or an internal action surrounded by atoms α aβ where
α, β ∈ AtomsB and a ∈ Σi. This is to facilitate the reading of the expression.

For n ∈ N, de�ne the power-recursion operator on guarded strings Lx B Myn, where
x, y ∈ V , by induction on n: Lx B My0 := (∪ m | [xm ]y ∈ B1 : {m}), and

L
x

B
y

M
n+1

:= (∪ m, v | [
x

m
v

] ∈ B1 : {m} � L
v

B
y

M
n

)

∪ (∪ α0, c, α1, z, α2, r, α3, w | [
x

α0 c α1 ↓
z

w

↑α2 r α3,
y

] ∈ B2 :

{α0 c α1} � L
z

B
w

M
n

� {α2 r α3})

∪ (∪ α0, c, α1, z, α2, r, α3, w, v, n1, n2 | [
x

α0 c α1 ↓
z

w

↑α2 r α3

v

] ∈ B2

∧ n1, n2 ∈ N ∧ n1 + n2 = n− 1 :

{α0 c α1} � L
z

B
w

M
n1

� {α2 r α3} � L
v

B
y

M
n2

) .

Intuitively, Lx B Myn denotes the set of all well-matched guarded strings that can be gen-
erated by any correct travelling of B of length n+ 1 starting with x and ending with y.
With this de�nition, it is easy to de�ne an operator Lx B My by

L
x

B
y

M := (∪ n | n ∈ N : L
x

B
y

M
n

) .

Like for the block-based de�nition of the in�nite family of operators in Section 3.1.2,
it is possible to de�ne a notion of labelled block pattern for VPKAT that is similar to
the notion of grammar patterns for VPKAT.

Accordingly, the interpretation of these labelled block patterns for VPKAT in the
model of guarded strings is also similar to the interpretation of grammar patterns for
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VPKAT in the model of guarded strings. In particular, a labelled block pattern for
VPKAT along with its operands (note this expression Lx B My) becomes (is interpreted
as) a block expression on guarded strings Lx GB(B) My where GB(B) is a function applied
to each block of B that gives a list of blocks on guarded strings in the following way:

• for every unary block of the form [z b ]w in which b ∈ TestsB in B1, GB([z b ]w)

becomes a list of blocks on guarded strings containing [z α ]w for each α ∈ AtomsB
such that α 6 b,

• for every unary block of the form [z a ]w in which a ∈ Σi in B1, GB([z a ]w) becomes
a list of blocks on guarded strings containing [z α aβ ]w for each α, β ∈ AtomsB,

• for every binary block of the form [z c ↓v ↑
v′ r ]w in B2, GB([z c ↓v ↑

v′ r ]w) becomes
a list of blocks on guarded strings containing [z α0 c α1 ↓v ↑v

′
α2 r α3 ]w for each

α0, α1, α2, α3 ∈ AtomsB.

5.2 Metablocks

The forms of explicit rewrite rules (the blocks in L M-expressions) for grammar patterns
for VPKAT are simple, but it can be tedious to write such rewrite rules for a large
expression. To simplify this process, we de�ne metablocks, which are abbreviations
(similar to regular expressions) of a list of blocks. Thus, metablocks allow us to write
more complex explicit rewrite rules to ease program manipulation.

Let Σi, Σc, Σr and B be �nite sets. Let V be a �nite set of symbols. A metablock
is an expression [[x e ]]

y where x, y ∈ V and e is an expression of the set MBexp that
is de�ned as the smallest set containing a for each a ∈ Σi ∪ TestsB, (c↓z ↑w r) for
each c ∈ Σc, r ∈ Σr and z, w ∈ V , and closed under �operators� ·, + and ∗. Note
that metablocks are written with bolder square brackets than blocks. A metablock is
reduced to a list of unary and binary blocks by the function mb de�ned inductively by:

• mb([[x a ]]
y) := [x a ]y for a ∈ Σi ∪ TestsB and x, y ∈ V ;

• mb([[x(c↓z ↑
w r) ]]y) := [x c ↓z ↑

w r ]y for c ∈ Σc, r ∈ Σr and x, y, z, w ∈ V ;

• mb([[x p · q ]]
y) := mb([[x p ]]

z),mb([[z q ]]
y) for x, y ∈ V and a fresh label z (a label

not in V );

• mb([[x p+ q ]]y) := mb([[x p ]]
y),mb([[x q ]]

y) for x, y ∈ V ;
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• mb([[x p
∗ ]]y) := [x 1 ]y,mb([[x p ]]

y),mb([[x p ]]
z),mb([[z p ]]

z),mb([[z p ]]
y) for x, y ∈ V

and a fresh label z.

Note that, in the following sections, we allow ourselves to apply the function mb to lists
of metablocks instead of a single metablock.

To simplify metablock expressions, we write pq instead of p · q. However, this
abbreviation is ambiguous for tests since, for a, b ∈ B, the metablock [[x ab ]]

y both
represents the unary block [x a·b ]y and the metablock [[x a·b ]]

y. To avoid this ambiguity,
we consider that [[x ab ]]

y always represents the unary block [x a ·b ]y. This extra syntactic
care is not really useful since we will see in the following sections that the unary block
[x a · b ]y and the metablock [[x a · b ]]

y behave similarly (as one should expect).

Here are some examples of metablocks and their reduction to lists of unary and
binary blocks. Let Σi := {a1, a2}, Σc := {c}, Σr := {r}, B := {b} and V := {x, y}. The
fresh labels t1, t2, t3, t4, t5, v1, v2, v3, v4, v, w and z will also be used. Suppose that
every following example is independent from the others, so the fresh labels are always
fresh at the beginning of a new example. Then,

• mb([[x b · a1 + b · a2 ]]
y) =

[x b ]z, [z a1 ]y, [x b ]w, [w a2 ]y ;

• mb
(
[[x(b · a1 + b · a2)∗ ]]y

)
=

[x 1 ]y, [x b ]v1 , [v1 a1 ]y, [x b ]t1 , [t1 a2 ]y, [x b ]v2 , [v2 a1 ]z, [x b ]t2 , [t2 a2 ]z,

[z b ]v3 , [v3 a1 ]z, [z b ]t3 , [t3 a2 ]z, [z b ]v4 , [v4 a1 ]y, [z b ]t4 , [t4 a2 ]y ;

• mb
(
[[x a1 ·

(
b · (c↓x ↑y r)

)∗ · b · a2 ]]
y
)

=

[x a1 ]z, [z 1 ]w, [z b ]t1 , [t1 c ↓x ↑y r ]w, [z b ]t2 , [t2 c ↓x ↑y r ]v,

[v b ]t3 , [t3 c ↓x ↑y r ]v, [v b ]t4 , [t4 c ↓x ↑y r ]w, [w b ]t5 , [t5 a2 ]y .

It is clear from the previous examples that metablocks ease the comprehension of a
list of unary and binary blocks. Note that this is possible by mimicking the standard
operators of regular expressions in a metablock.

So, we now have an interesting tool to ease the comprehension of (or to model) a
list of unary and binary blocks: metablocks. However, modelling is not enough. We
should also provide reasoning tools that directly use the notion of metablock. This way,
proofs in VPKAT should be easier to do. This is the goal of the following section.
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5.3 Extension of Some Laws to Metablocks

It is easy to see that some simple laws of L M-expressions carry over to L M-expressions
containing metablocks. Axiom (3.4), the law of idempotency of blocks, the law of
commutativity of blocks and the law of the removal of unused blocks are such exam-
ples. However, there are some laws of L M-expressions that are di�cult to extend to
metablocks. We discuss such laws here (these laws �rst appeared in [11]).

To facilitate the discussion, let Σi, Σc and Σr be disjoint �nite sets of atomic ele-
ments, B be a set of atomic tests and V be a �nite set of labels. Let B be a �nite list
of metablocks on a �nite set of labels V . Let Bset be the set containing every metablock
of B. Let θ be a substitution environment (a partial function) taking a pair of labels
from V and returning a visibly pushdown regular expression.

We de�ne a useful function for metablocks. Let mb_vpreθ be a function (relative
to θ), that creates a visibly pushdown regular expression from an expression of MBexp,
de�ned inductively by:

• mb_vpreθ(a) := a, for a ∈ Σi ∪ TestsB;

• mb_vpreθ((c↓z ↑w r)) := c · θ(z, w) · r, for c ∈ Σc, r ∈ Σr and z, w ∈ V ;

• mb_vpreθ(p · q) := mb_vpreθ(p) ·mb_vpreθ(q);

• mb_vpreθ(p+ q) := mb_vpreθ(p) + mb_vpreθ(q);

• mb_vpreθ(p
∗) := (mb_vpreθ(p))

∗.

Here are some theorems involving mb_vpreθ. Let θB be the substitution environment
de�ned by, for all u, u′ ∈ V ,

θB(u, u′) := L
u

B
u′

M .

Then, a generalization of the unfolding axioms (3.2) and (3.3) can be proved:

mb_vpreθB(m) 6 L
x

B
y

M , if [[
x

m
y

]] ∈ Bset . (5.1)

Proof. We prove (5.1) by structural induction on m. For the base case where m ∈ Σi ∪
TestsB, the proof is direct by the de�nition of metablock, the fact that mb_vpreθB(m) =

m and axiom (3.2).
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For the base case where m is an expression (c↓z ↑w r), the proof is direct by the
de�nition of metablock, the fact that mb_vpreθB((c↓z ↑w r)) = c · Lz B Mw · r and ax-
iom (3.3).

For the inductive case where m = p · q, we �rst consider the metablock [[x p · q ]]
y in

B. We suppose that u is the fresh label used by mb. In other words, we suppose that

mb([[
x

p · q
y

]]) = mb([[
x

p
u

]]), mb([[
u

q
y

]]) .

We also suppose that mb_vpreθB(p) 6 Lx B Mu and mb_vpreθB(q) 6 Lu B My. By the
de�nition of mb_vpreθB , we have to prove that

mb_vpreθB(p) ·mb_vpreθB(q) 6 L
x

B
y

M .

By the two previous inductive hypotheses and Kleene algebra, it su�ces to prove that

L
x

B
u

M · L
u

B
y

M 6 L
x

B
y

M .

This is direct by axiom (3.4) extended to metablocks.

For the inductive case where m = p+ q, by the de�nition of mb_vpreθB , we suppose
that mb_vpreθB(p) 6 Lx B My and mb_vpreθB(q) 6 Lx B My. We have to prove that

mb_vpreθB(p) + mb_vpreθB(q) 6 L
x

B
y

M .

By the two previous inductive hypotheses and Kleene algebra, it su�ces to prove that

L
x

B
y

M + L
x

B
y

M 6 L
x

B
y

M .

This is direct by the idempotency of +.

For the inductive case where m = p∗, we �rst consider the metablock [[x p
∗ ]]y in B.

We suppose that u is the fresh label used by mb. In other words, we suppose that

mb([[
x

p∗
y

]]) = [
x

1
y

], mb([[
x

p
y

]]), mb([[
x

p
u

]]), mb([[
u

p
u

]]), mb([[
u

p
y

]]) .

We also suppose that

mb_vpreθB(p) 6 L
x

B
y

M , (5.2)

mb_vpreθB(p) 6 L
x

B
u

M , (5.3)

mb_vpreθB(p) 6 L
u

B
u

M , (5.4)

mb_vpreθB(p) 6 L
u

B
y

M . (5.5)
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By the de�nition of mb_vpreθB , we have to prove that

(mb_vpreθB(p))∗ 6 L
x

B
y

M .

By Kleene algebra, it su�ces to prove that

1 6 L
x

B
y

M , (5.6)

mb_vpreθB(p) 6 L
x

B
y

M , (5.7)

mb_vpreθB(p) ·mb_vpreθB(p) 6 L
x

B
y

M , (5.8)

mb_vpreθB(p) ·mb_vpreθB(p) · (mb_vpreθB(p))∗ ·mb_vpreθB(p) 6 L
x

B
y

M . (5.9)

Inequation (5.6) is trivial by axiom (3.2) and the fact that [x 1 ]y is �hidden� in [[x p
∗ ]]y

that is in B.

Inequation (5.7) is simply the inductive hypothesis (5.2).

Inequation (5.8) is proved by using inductive hypotheses (5.3) and (5.5), Kleene
algebra and axiom (3.4) extended to metablocks.

For (5.9), by axiom (3.4) extended to metablocks, by the inductive hypotheses (5.3)
and (5.5), and by Kleene algebra, it su�ces to prove that

mb_vpreθB(p) ·mb_vpreθB(p) · (mb_vpreθB(p))∗ ·mb_vpreθB(p)

6 mb_vpreθB(p) · L
u

B
u

M · mb_vpreθB(p) .

By monotonicity of ·, it su�ces to prove that

mb_vpreθB(p) · (mb_vpreθB(p))∗ 6 L
u

B
u

M .

Thus, by the Kleene star induction axiom and by simple Kleene algebraic reasoning, it
su�ces to prove that

mb_vpreθB(p) 6 L
u

B
u

M ,

L
u

B
u

M · mb_vpreθB(p) 6 L
u

B
u

M .

The �rst inequation is direct from inductive hypothesis (5.4). The second inequation is
proved by using inductive hypothesis (5.4), Kleene algebra and axiom (3.4) extended
to metablocks. �
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We now want to extend the induction axioms (3.14) and (3.15) to metablocks. We
�rst de�ne some functions. Let set_labels : MBexp→ 2V×V be a function that extracts
all explicit pairs of labels in a metablock expression. It is de�ned inductively by:

• set_labels(a) := ∅ for a ∈ Σi ∪ TestsB;

• set_labels((c↓z ↑w r)) := {(z, w)} for c ∈ Σc, r ∈ Σr and z, w ∈ V ;

• set_labels(p · q) := set_labels(p) ∪ set_labels(q);

• set_labels(p+ q) := set_labels(p) ∪ set_labels(q);

• set_labels(p∗) := set_labels(p).

Also, let FM∗B and BM∗B be functions that approximate the needed metablocks for the
induction axioms. These functions are the least �xed points of the monotone functions
FM1
B : 2V×V → 2V×V and BM1

B : 2V×V → 2V×V de�ned for every T ⊆ V × V by:

FM1
B(T ) := T ∪ {(y, y′), (w,w′) | (∃ z,m | (z, y′) ∈ T : [[zm ]]y ∈ Bset

∧ (w,w′) ∈ set_labels(m))} ,

BM1
B(T ) := T ∪ {(y, y′), (w,w′) | (∃ z,m | (y, z) ∈ T : [[y′m ]]z ∈ Bset

∧ (w,w′) ∈ set_labels(m))} .

Now, let ϑB be any substitution environment that is de�ned for all pairs (u, u′) ∈
FM∗B({(x, y)}) by a visibly pushdown regular expression. Then, a generalization of the
induction axiom (3.14) can be proved:(

∧ u, u′ | (u, u′) ∈ FM∗B({(x, y)}) :

(∧ m | [[
u

m
u′

]] ∈ Bset : mb_vpreϑB(m) 6 ϑB(u, u′))

∧ (∧ m, v | [[
u

m
v

]] ∈ Bset : mb_vpreϑB(m) · ϑB(v, u′) 6 ϑB(u, u′))
)

→ L
x

B
y

M 6 ϑB(x, y) .

(5.10)

Now, let ϑ′B be any substitution environment that is de�ned for all pairs (u, u′) ∈
BM∗B({(x, y)}) by a visibly pushdown regular expression. Then, a generalization of the
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induction axiom (3.15) can be proved:(
∧ u, u′ | (u, u′) ∈ BM∗B({(x, y)}) :

(∧ m | [[
u

m
u′

]] ∈ Bset : mb_vpreϑ′B(m) 6 ϑ′B(u, u′))

∧ (∧ m, v | [[
v

m
u′

]] ∈ Bset : ϑ′B(u, v) ·mb_vpreϑ′B(m) 6 ϑ′B(u, u′))
)

→ L
x

B
y

M 6 ϑ′B(x, y) .

(5.11)

We just prove (5.10) since the proof of (5.11) is similar. We �rst de�ne a function
that will be very useful. Let mb_vpre_suffixesθ be a function that takes a metablock
and generates a partial function. The partial function takes a starting label of a block
contained in the metablock under mb, and returns a visibly pushdown regular expression
representing the su�x of the metablock from the label. The function mb_vpre_suffixesθ
is de�ned inductively by:

• if a ∈ Σi ∪ TestsB, and x and y are labels, then

mb_vpre_suffixesθ([[
x

a
y

]]) := {x 7→ a} ;

• if c ∈ Σc, r ∈ Σr, and x, y, z and w are labels, then

mb_vpre_suffixesθ([[
x

(c↓
z

w

↑ r)
y

]]) := {x 7→ c · θ(z, w) · r} ;

• if x and y are labels and z is a fresh label, then

mb_vpre_suffixesθ([[
x

p · q
y

]]) :=

{w 7→ p′ · (mb_vpre_suffixesθ([[
z

q
y

]]))(z) | (w 7→ p′) ∈ mb_vpre_suffixesθ([[
x

p
z

]])}

∪mb_vpre_suffixesθ([[
z

q
y

]]) ;

• if x and y are labels, then

mb_vpre_suffixesθ([[
x

p+ q
y

]]) :=

{x 7→ (mb_vpre_suffixesθ([[
x

p
y

]]))(x) + (mb_vpre_suffixesθ([[
x

q
y

]]))(x)}

∪ {w 7→ p′ | (w 7→ p′) ∈ mb_vpre_suffixesθ([[
x

p
y

]]) ∧ w 6= x}

∪ {w 7→ q′ | (w 7→ q′) ∈ mb_vpre_suffixesθ([[
x

q
y

]]) ∧ w 6= x} ;
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• if x and y are labels and z is a fresh label, then

mb_vpre_suffixesθ([[
x

p∗
y

]]) :=

{x 7→ ((mb_vpre_suffixesθ([[
x

p
y

]]))(x))∗}

∪ {z 7→ ((mb_vpre_suffixesθ([[
z

p
z

]]))(z))∗ · (mb_vpre_suffixesθ([[
z

p
y

]]))(z)}

∪ {w 7→ p′ | (w 7→ p′) ∈ mb_vpre_suffixesθ([[
x

p
y

]]) ∧ w 6= x}

∪ {w 7→ p′ · ((mb_vpre_suffixesθ([[
z

p
z

]]))(z))∗ · (mb_vpre_suffixesθ([[
z

p
y

]]))(z)

| (w 7→ p′) ∈ mb_vpre_suffixesθ([[
x

p
z

]]) ∧ w 6= x}

∪ {w 7→ p′ · ((mb_vpre_suffixesθ([[
z

p
z

]]))(z))∗ · (mb_vpre_suffixesθ([[
z

p
y

]]))(z)

| (w 7→ p′) ∈ mb_vpre_suffixesθ([[
z

p
z

]]) ∧ w 6= z}

∪ {w 7→ p′ | (w 7→ p′) ∈ mb_vpre_suffixesθ([[
z

p
y

]]) ∧ w 6= z} .

We now present three results on the function mb_vpre_suffixesθ. The proof of these
three results (lemmas) is given in Appendix F.

Lemma 5.5 (Relation between mb_vpre_suffixesθ and mb_vpreθ). For all metablocks
[[xm ]]y,

(mb_vpre_suffixesθ([[
x

m
y

]]))(x) = mb_vpreθ(m) . (5.12)

Lemma 5.6 (Handling unary and binary blocks that end with the same label as their
associated metablock). For all metablocks [[xm ]]y, unary blocks [zm

′ ]y ∈ mb([[xm ]]y)1

and binary blocks [z′ c ↓w ↑
w′ r ]y ∈ mb([[xm ]]y)2,

m′ 6 (mb_vpre_suffixesθ([[
x

m
y

]]))(z) , (5.13)

c · θ(w,w′) · r 6 (mb_vpre_suffixesθ([[
x

m
y

]]))(z′) . (5.14)

Lemma 5.7 (Handling unary and binary blocks that do not end with the same la-
bel as their associated metablock.). For all metablocks [[xm ]]y, unary blocks [zm

′ ]z
′
∈
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mb([[xm ]]y)1 and binary blocks [u c ↓w ↑
w′ r ]u

′
∈ mb([[xm ]]y)2 such that z′ 6= y and u′ 6= y,

m′ · (mb_vpre_suffixesθ([[
x

m
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

m
y

]]))(z) , (5.15)

c · θ(w,w′) · r · (mb_vpre_suffixesθ([[
x

m
y

]]))(u′)

6 (mb_vpre_suffixesθ([[
x

m
y

]]))(u) .
(5.16)

We are now ready to prove (5.10).

Proof. We suppose that, for all (u, u′) ∈ FM∗B({(x, y)}),

• each metablock [[um ]]u
′
∈ Bset is such that

mb_vpreϑB(m) 6 ϑB(u, u′) , (5.17)

• each metablock [[um ]]v ∈ Bset (for every v ∈ V ) is such that

mb_vpreϑB(m) · ϑB(v, u′) 6 ϑB(u, u′) , (5.18)

and we must prove that

L
x

B
y

M 6 ϑB(x, y) . (5.19)

Note that FM∗B({(x, y)}) ⊆ F∗mb(B)({(x, y)}), but it is not necessarily the case that
F∗mb(B)({(x, y)}) ⊆ FM∗B({(x, y)}). So, we cannot use directly axiom (3.14) since ϑB may
be unde�ned for some pairs of F∗mb(B)({(x, y)}).

To facilitate the discussion, let V ′ be the set of fresh labels used in the generation of
mb(B). Note that, by de�nition of mb, each label z ∈ V ′ is used in the transformation
of one and only one metablock of B into a list of blocks. Note also that the pairs in
F∗mb(B)({(x, y)})\FM∗B({(x, y)}) are all of the form (z, z′) where z ∈ V ′ and z′ ∈ V .

Let us de�ne a �saturation� of the substitution environment ϑB for the pairs of
F∗mb(B)({(x, y)}). We �rst de�ne ϑB

sat by

ϑB
sat(u, u′) := ϑB(u, u′)

for all (u, u′) ∈ FM∗B({(x, y)}).
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For the remaining pairs (u, u′) ∈ F∗mb(B)({(x, y)})\FM∗B({(x, y)}), let [[zm′ ]]
z′ ∈ Bset

be the unique metablock that produced the fresh label u. We de�ne ϑB
sat(u, u′) by

ϑB
sat(u, u′) :=

{
(mb_vpre_suffixesϑB([[zm

′ ]]z
′
))(u) · (1 + ϑB(u′, u′)) if z′ = u′,

(mb_vpre_suffixesϑB([[zm
′ ]]z
′
))(u) · ϑB(z′, u′) otherwise.

To prove (5.19), by axiom (3.14) with solutions ϑB
sat, it su�ces to prove that, for

all (u, u′) ∈ F∗mb(B)({(x, y)}),

• for each unary block [um ]u
′
∈ mb(B)1,

m 6 ϑB
sat(u, u′) , (5.20)

• for each unary block [um ]v ∈ mb(B)1 where v ∈ V ∪ V ′,

m · ϑBsat(v, u′) 6 ϑB
sat(u, u′) , (5.21)

• for each binary block [u c ↓z ↑
w r ]u

′
∈ mb(B)2,

c · ϑB(z, w) · r 6 ϑB
sat(u, u′) , (5.22)

• for each binary block [u c ↓z ↑
w r ]v ∈ mb(B)2 where v ∈ V ∪ V ′,

c · ϑB(z, w) · r · ϑBsat(v, u′) 6 ϑB
sat(u, u′) . (5.23)

Note that, in (5.22) and (5.23), we use ϑB(z, w) instead of ϑB
sat(z, w). The reason is

that z and w are in V by the de�nition of the functions FM∗B and F∗mb(B). So, for this
case,

ϑB
sat(z, w) = ϑB(z, w) .

For (5.20), let [[tm
′ ]]u
′
∈ Bset be the metablock that produced [um ]u

′
. By Lemma 5.6,

inequation (5.13), we have that

m 6 (mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u) .

So, to prove (5.20), by Kleene algebra, it su�ces to show that

(mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u) 6 ϑB
sat(u, u′) .
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Let us do a proof by case analysis on u. If u ∈ V , then we must prove that

(mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u) 6 ϑB(u, u′) .

By the de�nition of mb, this case happens only if t = u. So, by Lemma (5.5), it su�ces
to prove that

mb_vpreϑB(m′) 6 ϑB(t, u′) .

This is direct from hypothesis (5.17).

If u ∈ V ′, then we must prove that

(mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u)

6 (mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u) · (1 + ϑB(u′, u′)) .

This is trivial by Kleene algebra.

For (5.21), let [[tm
′ ]]t
′
∈ Bset be the metablock that produced [um ]v. Let us do a

proof by case analysis. If u ∈ V and v ∈ V , then we must prove that

m · ϑB(v, u′) 6 ϑB(u, u′) .

By the de�nition of mb, this case happens only if t = u and t′ = v. By Lemma 5.6,
inequation (5.13), and by Kleene algebra, it su�ces to prove that

(mb_vpre_suffixesϑB([[
u

m′
v

]]))(u) · ϑB(v, u′) 6 ϑB(u, u′) .

So, by Lemma 5.5, it su�ces to prove that

mb_vpreϑB(m′) · ϑB(v, u′) 6 ϑB(u, u′) .

This is direct from hypothesis (5.18).

If u ∈ V ′, v ∈ V and v = u′, then, by the de�nition of mb, this case happens only if
t′ = v, and we must prove that

m · ϑB(u′, u′) 6 (mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u) · (1 + ϑB(u′, u′)) .

By Lemma 5.6, inequation (5.13), and by Kleene algebra, it su�ces to prove that

(mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u) · ϑB(u′, u′)

6 (mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u) · (1 + ϑB(u′, u′)) .
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This is trivial by Kleene algebra.

If u ∈ V ′, v ∈ V and v 6= u′, then, by the de�nition of mb, this case happens only if
t′ = v, and we must prove that

m · ϑB(v, u′) 6 (mb_vpre_suffixesϑB([[
t

m′
v

]]))(u) · ϑB(v, u′) .

By monotonicity of ·, it su�ces to prove that

m 6 (mb_vpre_suffixesϑB([[
t

m′
v

]]))(u) .

This is direct by Lemma 5.6, inequation (5.13).

If u ∈ V , v ∈ V ′ and t′ = u′, then, by the de�nition of mb, this case happens only
if t = u, and we must prove that

m · (mb_vpre_suffixesϑB([[
u

m′
u′

]] ))(v) · (1 + ϑB(u′, u′)) 6 ϑB(u, u′) .

By Lemma 5.7, inequation (5.15), and by Kleene algebra, it su�ces to prove that

(mb_vpre_suffixesϑB([[
u

m′
u′

]] ))(u) · (1 + ϑB(u′, u′)) 6 ϑB(u, u′) .

So, by Lemma 5.5, it su�ces to prove that

mb_vpreϑB(m′) · (1 + ϑB(u′, u′)) 6 ϑB(u, u′) .

By Kleene algebra, it su�ces to prove the two following formulae:

mb_vpreϑB(m′) 6 ϑB(u, u′) ,

mb_vpreϑB(m′) · ϑB(u′, u′) 6 ϑB(u, u′) .

This is direct from hypotheses (5.17) and (5.18).

If u ∈ V , v ∈ V ′ and t′ 6= u′, then, by the de�nition of mb, this case happens only
if t = u, and we must prove that

m · (mb_vpre_suffixesϑB([[
u

m′
t′

]]))(v) · ϑB(t′, u′) 6 ϑB(u, u′) .

By Lemma 5.7, inequation (5.15), and by Kleene algebra, it su�ces to prove that

(mb_vpre_suffixesϑB([[
u

m′
t′

]]))(u) · ϑB(t′, u′) 6 ϑB(u, u′) .
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So, by Lemma 5.5, it su�ces to prove that

mb_vpreϑB(m′) · ϑB(t′, u′) 6 ϑB(u, u′) .

This is direct from hypothesis (5.18).

If u ∈ V ′, v ∈ V ′ and t′ = u′, then we must prove that

m · (mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(v) · (1 + ϑB(u′, u′))

6 (mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u) · (1 + ϑB(u′, u′)) .

By monotonicity of ·, it su�ces to prove that

m · (mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(v) 6 (mb_vpre_suffixesϑB([[
t

m′
u′

]] ))(u) .

This is direct from Lemma 5.7, inequation (5.15).

If u ∈ V ′, v ∈ V ′ and t′ 6= u′, then we must prove that

m · (mb_vpre_suffixesϑB([[
t

m′
t′

]]))(v) · ϑB(t′, u′)

6 (mb_vpre_suffixesϑB([[
t

m′
t′

]]))(u) · ϑB(t′, u′) .

By monotonicity of ·, it su�ces to prove that

m · (mb_vpre_suffixesϑB([[
t

m′
t′

]]))(v) 6 (mb_vpre_suffixesϑB([[
t

m′
t′

]]))(u) .

This is direct from Lemma 5.7, inequation (5.15).

The proof of (5.22) is similar to the proof of (5.20).

The proof of (5.23) is similar to the proof of (5.21). �

We now present some laws that can be derived from the extension of the axioms
to metablocks. We �rst show an extension of (3.22) to metablocks. Let θB be the
substitution environment de�ned, for all u, u′ ∈ V , by

θB(u, u′) := L
u

B
u′

M .
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Then it can be proved that

L
x

B
y

M = (
∑

m | [[
x

m
y

]] ∈ Bset : mb_vpreθB(m))

+ (
∑

m, v | [[
x

m
v

]] ∈ Bset : mb_vpreθB(m) · L
v

B
y

M) .
(5.24)

Proof. The case > is direct from Kleene algebra, inequation (5.1) and axiom (3.4)
extended to metablocks.

For the case 6, we use (5.10) with solutions from θB. So, it su�ces to prove that,
for all u, u′ ∈ V ,

• for every metablock [[um ]]u
′
∈ Bset,

mb_vpreθB(m) 6 θB(u, u′) ;

• for every metablock [[um ]]v ∈ Bset where v ∈ V ,

mb_vpreθB(m) · θB(v, u′) 6 θB(u, u′) .

By the de�nition of θB, it su�ces to prove that, for all u, u′ ∈ V ,

• for every metablock [[um ]]u
′
∈ Bset,

mb_vpreθB(m) 6 L
u

B
u′

M ;

• for every metablock [[um ]]v ∈ Bset where v ∈ V ,

mb_vpreθB(m) · L
v

B
u′

M 6 L
u

B
u′

M .

This is direct from inequation (5.1), Kleene algebra and axiom (3.4) extended to
metablocks. �

Another useful law allows one to replace the �content� of a metablock by another
content if their associated visibly pushdown regular expressions are equal. Let C be
the same list of metablocks as B except for a metablock [[zm1 ]]

w in Bset that becomes
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a metablock [[zm2 ]]
w in Cset. Let θ′ be the substitution environment de�ned by, for all

u, u′ ∈ V ,

θ′(u, u′) := L
u

C
u′

M .

Then, it can be proved that

mb_vpreθ′(m1) = mb_vpreθ′(m2)→ L
x

B
y

M = L
x

C
y

M . (5.25)

Note that mb_vpreθ′(m1) is well de�ned since B and C share the same labels.

Of course, we also have that

mb_vpreθ′(m1) 6 mb_vpreθ′(m2)→ L
x

B
y

M 6 L
x

C
y

M . (5.26)

In fact, inequation (5.26) is su�cient to prove (5.25) since the other case is similar.

Proof. We suppose
mb_vpreθ′(m1) 6 mb_vpreθ′(m2) (5.27)

and we prove

L
x

B
y

M 6 L
x

C
y

M . (5.28)

To prove (5.28), we use (5.10) with solutions from θ′. So, it su�ces to prove that,
for all u, u′ ∈ V ,

• for every metablock [[um ]]u
′
∈ Bset,

mb_vpreθ′(m) 6 θ′(u, u′) ;

• for every metablock [[um ]]v ∈ Bset where v ∈ V ,

mb_vpreθ′(m) · θ′(v, u′) 6 θ′(u, u′) .

By the de�nition of θ′, it su�ces to prove that, for all u, u′ ∈ V ,

• for every metablock [[um ]]u
′
∈ Bset,

mb_vpreθ′(m) 6 L
u

C
u′

M ; (5.29)
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• for every metablock [[um ]]v ∈ Bset where v ∈ V ,

mb_vpreθ′(m) · L
v

C
u′

M 6 L
u

C
u′

M . (5.30)

For all metablocks [[um ]]v ∈ Bset (except for [[zm1 ]]
w), the same metablock exists in Cset.

So, inequations (5.29) and (5.30) are trivial for these cases by (5.1), Kleene algebra and
axiom (3.4) extended to metablocks. It remains to prove that for the metablock [[zm1 ]]

w,

mb_vpreθ′(m1) 6 L
z

C
w

M ;

mb_vpreθ′(m1) · L
w

C
u′

M 6 L
z

C
u′

M .

By de�nition of C and by hypothesis (5.27), we have that there exists a metablock
[[zm2 ]]

w in Cset such that

mb_vpreθ′(m1) 6 mb_vpreθ′(m2) .

So, by Kleene algebra, it su�ces to prove that

mb_vpreθ′(m2) 6 L
z

C
w

M ;

mb_vpreθ′(m2) · L
w

C
u′

M 6 L
z

C
u′

M .

This is trivial by (5.1), Kleene algebra and axiom (3.4) extended to metablocks. �

5.4 New Axioms for Visibly Pushdown Kleene Alge-

bra with Tests: Propagation of Tests

When working with programs and tests, it is sometimes useful to guard a term by
tests. For example, knowing whether a test a is true before doing an internal action
p (in other words, a is a precondition of p) can result in knowing whether a test b
is true after doing p (in other words, b is the postcondition of p when respecting a).
This is usually expressed in Kleene algebra with tests by an hypothesis ap 6 pb (or,
equivalently, ap = apb) representing the Hoare triple {a} p {b}. These hypotheses are
an important tool when dealing with program analysis. During a proof attempt, most
of the time, we end up handling terms like apb (we call them guarded terms).
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However, it seems hard to guard operands in unary and binary blocks with tests. In
fact, it is easy to do when dealing with �non-recursive� blocks, but it is di�cult to deal
with recursive ones2. To ease this process, we introduce axioms for the �propagation�
of tests into L M-expressions.

Let Σ̂i := Σi ∪ TestsB. Let B be a �nite list of unary and binary blocks on a �nite
set of labels V and let x, y ∈ V . Let bu be a test for all u ∈ V . Let C be a �nite list of
metablocks (representing guarded terms in blocks) such that,

• for all unary blocks [um ]u
′
∈ B1, there exists a metablock [[u bu ·m′ · bu′ ]]

u′ ∈ Cset
where m′ ∈ Σ̂i;

• for all binary blocks [u c ↓z ↑
w r ]u

′
∈ B2, the metablock [[u bu·(c↓z ↑

w r)·bu′ ]]u
′
∈ Cset

exists;

• no other metablock can be in C.

Note that C is expressed with metablocks to ease the reading, but it could have been
de�ned only with unary and binary blocks. Note also that we allowed that a unary
block [um ]u

′
∈ B1 can be �replaced� with one or more metablocks [[u bu ·m′ ·bu′ ]]

u′ ∈ Cset
in which m′ is not necessarily m. This is to accomodate re�nement hypotheses that
sometimes replace an internal action by a more precise internal action when knowing if
a test is true before or after the action.

There are two simple results about C (under the above assumptions):

L
x

C
y

M = L
x

C
y

M · by , (5.31)

L
x

C
y

M = bx · L
x

C
y

M . (5.32)

Proof. We just prove (5.31) since the proof of (5.32) is similar.

Lx C My

= {{ Backward version of (5.24) }}
(
∑

m | [[xm ]]y ∈ Cset : mb_vpreθC(m))

+ (
∑

m, v | [[vm ]]y ∈ Cset : Lx C Mv · mb_vpreθC(m))

2A recursive block is a binary block that refers directly or indirectly to its starting label in the

calling label.
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= {{ Hypotheses: Any metablock of C ending with y has the test by as its last
element. & Idempotency of tests & De�nition of mb_vpreθC }}

(
∑

m | [[xm ]]y ∈ Cset : mb_vpreθC(m) · by)
+ (
∑

m, v | [[vm ]]y ∈ Cset : Lx C Mv · mb_vpreθC(m) · by)
= {{ Distributivity of · over + }}(

(
∑

m | [[xm ]]y ∈ Cset : mb_vpreθC(m))

+ (
∑

m, v | [[vm ]]y ∈ Cset : Lx C Mv · mb_vpreθC(m))
)
· by

= {{ Backward version of (5.24) }}
Lx C My · by �

We are now ready to introduce the two new axioms for visibly pushdown Kleene
algebra with tests. We add the following axioms to VPKA with tests (respectively called
the forward propagation of tests and the backward propagation of tests):(

∧ u, u′,m | [
u

m
u′

] ∈ B1 :

bu ·m 6 (
∑

m′ | [[
u

bu ·m′ · bu′
u′

]] ∈ Cset ∧m′ ∈ Σ̂i : m′) · bu′
)

∧
(
∧ u, u′, c, z, r, w | [

u

c ↓
z

w

↑ r
u′

] ∈ B2 :

bu · c 6 c · bz ∧ bw · r 6 r · bu′
)

→ bx · L
x

B
y

M 6 L
x

C
y

M ,

(5.33)

(
∧ u, u′,m | [

u

m
u′

] ∈ B1 :

m · bu′ 6 bu · (
∑

m′ | [[
u

bu ·m′ · bu′
u′

]] ∈ Cset ∧m′ ∈ Σ̂i : m′)
)

∧
(
∧ u, u′, c, z, r, w | [

u

c ↓
z

w

↑ r
u′

] ∈ B2 :

c · bz 6 bu · c ∧ r · bu′ 6 bw · r
)

→ L
x

B
y

M · by 6 L
x

C
y

M .

(5.34)

These axioms are valid for the language-theoretic model of VPKAT as shown in the
following proof. Note that we just prove that axiom (5.33) is valid since the proof that
axiom (5.34) is valid is similar.
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Proof. Before doing the proof, we �rst recall an easy theorem of Kleene algebra with
tests that will be useful in the proof. For all tests b and c, and for all p and q,

bp 6 qc↔ bp 6 bqc . (5.35)

We now show that axiom (5.33) is valid for the language-theoretic model of VPKAT

under its natural interpretation G. To do the proof, we use the block-based de�nition
of the in�nite family of operators for VPKAT. By de�nition of the language-theoretic
model, we suppose that for all u, u′ ∈ V and m ∈ Σ̂i such that [um ]u

′
∈ B1,

G(bu) � G(m) ⊆ (∪ m′ | [[
u

bu ·m′ · bu′
u′

]] ∈ Cset ∧m′ ∈ Σ̂i : G(m′)) � G(bu′) . (5.36)

Also, we suppose that for all u, u′, z, w ∈ V , c ∈ Σc and r ∈ Σr such that [u c ↓z ↑
w r ]u

′

∈ B2,

G(bu) � G(c) ⊆ G(c) � G(bz) , (5.37)

G(bw) � G(r) ⊆ G(r) � G(bu′) . (5.38)

We show that

G(bx) � L
x

GB(B)
y

M ⊆ L
x

GB(C)
y

M .

By de�nition of Lx GB(B) My, by distributivity of � over ∪ and by set theory, it su�ces
to prove that for all n ∈ N,

G(bx) � L
x

GB(B)
y

M
n

⊆ L
x

GB(C)
y

M .

The proof is done by generalized induction over n. For the base case (n = 0), we
show that

G(bx) � L
x

GB(B)
y

M
0

⊆ L
x

GB(C)
y

M .

By de�nition of Lx GB(B) My0, distributivity of � over ∪ and set theory, it su�ces to prove
independently that, for all unary blocks [xm ]y ∈ (GB(B))1,

G(bx) � {m} ⊆ L
x

GB(C)
y

M .

We prove it. First, by de�nition of GB, there exists a unary block [xm2 ]y in B1 that
created [xm ]y. Note that, by de�nition of GB and G, m ∈ G(m2). Now,
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G(bx) � {m}
⊆ {{ Previous reasoning: m ∈ G(m2) & Set theory }}

G(bx) � G(m2)

⊆ {{ Hypothesis (5.36) & Formula (5.35) }}
G(bx) � (∪ m′ | [[x bx ·m′ · by ]]

y ∈ Cset ∧m′ ∈ Σ̂i : G(m′)) � G(by)

= {{ Distributivity of � on ∪ }}
(∪ m′ | [[x bx ·m′ · by ]]

y ∈ Cset ∧m′ ∈ Σ̂i : G(bx) � G(m′) � G(by))

= {{ Interpretation G }}
(∪ m′ | [[x bx ·m′ · by ]]

y ∈ Cset ∧m′ ∈ Σ̂i : G(bx ·m′ · by))
⊆ {{ Since [[x bx ·m′ · by ]]

y ∈ Cset, inequation (5.1) can be used & Monotonicity
of ∪ & De�nition of G and GB }}

(∪ m′ | [[x bx ·m′ · by ]]
y ∈ Cset ∧m′ ∈ Σ̂i : Lx GB(C) My)

⊆ {{ Idempotency of ∪ }}
Lx GB(C) My .

For the inductive case, we suppose that

G(bx) � L
x

GB(B)
y

M
k

⊆ L
x

GB(C)
y

M

is true for all k ∈ {0, . . . , n} and for all x, y ∈ V and we show that

G(bx) � L
x

GB(B)
y

M
n+1

⊆ L
x

GB(C)
y

M

is also true. By de�nition of Lx GB(B) Myn+1, by distributivity of � over ∪ and by set
theory, it su�ces to show independently that,

• for all v ∈ V and unary blocks [xm ]v ∈ (GB(B))1,

G(bx) � {m} � L
v

GB(B)
y

M
n

⊆ L
x

GB(C)
y

M , (5.39)

• for all binary blocks [x α0 c α1 ↓z ↑w α2 r α3 ]y ∈ (GB(B))2,

G(bx) � {α0 c α1} � L
z

GB(B)
w

M
n

� {α2 r α3} ⊆ L
x

GB(C)
y

M , (5.40)

• for all v ∈ V , binary blocks [x α0 c α1 ↓z ↑w α2 r α3 ]v ∈ (GB(B))2 and n1, n2 ∈ N
such that n1 + n2 = n− 1,

G(bx) � {α0 c α1} � L
z

GB(B)
w

M
n1

� {α2 r α3} � L
v

GB(B)
y

M
n2

⊆ L
x

GB(C)
y

M . (5.41)
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For (5.39), by de�nition of GB, there exists a unary block [xm2 ]v in B1 that created
[xm ]v. Note that, by de�nition of GB and G, m ∈ G(m2). Now,

G(bx) � {m} � Lv GB(B) Myn
⊆ {{ Previous reasoning: m ∈ G(m2) & Monotonicity of � }}

G(bx) � G(m2) � Lv GB(B) Myn
⊆ {{ Hypothesis (5.36) & Formula (5.35) & Monotonicity of � }}

G(bx) � (∪ m′ | [[x bx ·m′ · bv ]]
v ∈ Cset ∧m′ ∈ Σ̂i : G(m′)) � G(bv) � Lv GB(B) Myn

= {{ Idempotency of tests & Distributivity of � over ∪ }}
(∪ m′ | [[x bx ·m′ · bv ]]

v ∈ Cset ∧m′ ∈ Σ̂i : G(bx) �G(m′) �G(bv)) �G(bv) � Lv GB(B) Myn
⊆ {{ Induction hypothesis & Monotonicity of � }}

(∪ m′ | [[x bx ·m′ · bv ]]
v ∈ Cset ∧m′ ∈ Σ̂i : G(bx) � G(m′) � G(bv)) � Lv GB(C) My

= {{ Interpretation G }}
(∪ m′ | [[x bx ·m′ · bv ]]

v ∈ Cset ∧m′ ∈ Σ̂i : G(bx ·m′ · bv)) � Lv GB(C) My

⊆ {{ Since [[x bx ·m′ · bv ]]
v ∈ Cset, inequation (5.1) can be used & Monotonicity

of ∪ and � & De�nition of G and GB }}
(∪ m′ | [[x bx ·m′ · bv ]]

v ∈ Cset ∧m′ ∈ Σ̂i : Lx GB(C) Mv) � Lv GB(C) My

⊆ {{ Idempotency of ∪ }}
Lx GB(C) Mv � Lv GB(C) My

⊆ {{ Axiom (3.4) extended to metablocks }}
Lx GB(C) My .

For (5.40) and (5.41), we �rst prove a simple lemma: for all v ∈ V , binary blocks
[x α0 c α1 ↓z ↑w α2 r α3 ]v ∈ (GB(B))2 and k ∈ N such that k 6 n,

G(bx) � {α0 c α1} � L
z

GB(B)
w

M
k

� {α2 r α3} ⊆ L
x

GB(C)
v

M . (5.42)

For (5.42), by de�nition of GB, there exists a binary block [x c
′ ↓z ↑w r′ ]

v in B2 that
created [x α0 c α1 ↓z ↑w α2 r α3 ]v. Note that, by de�nition of GB and G, α0 c α1 ∈ G(c′)

and α2 r α3 ∈ G(r′). Now,

G(bx) � {α0 c α1} � Lz GB(B) Mwk � {α2 r α3}
⊆ {{ Previous reasonings: α0 c α1 ∈ G(c′) and α2 r α3 ∈ G(r′) & Monotonicity

of � }}
G(bx) � G(c′) � Lz GB(B) Mwk � G(r′)

⊆ {{ Hypothesis (5.37) & Formula (5.35) & Monotonicity of � }}
G(bx) � G(c′) � G(bz) � Lz GB(B) Mwk � G(r′)
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⊆ {{ Induction hypothesis & Monotonicity of � }}
G(bx) � G(c′) � Lz GB(C) Mw � G(r′)

= {{ Equation (5.31) }}
G(bx) � G(c′) � Lz GB(C) Mw � G(bw) � G(r′)

⊆ {{ Hypothesis (5.38) & Monotonicity of � }}
G(bx) � G(c′) � Lz GB(C) Mw � G(r′) � G(bv)

= {{ De�nition of G and GB }}
G(bx · c′ · Lz C Mw · r′ · bv)

⊆ {{ De�nition of C: the metablock [[x bx ·(c′ ↓z ↑
w r′)·bv ]]v ∈ Cset exists because

[x c
′ ↓z ↑w r′ ]

v ∈ B2. So, inequation (5.1) can be used. & De�nition of G

and GB }}
Lx GB(C) Mv .

Now, the proof of (5.40) is direct from (5.42) and appropriate substitution.

For (5.41),

G(bx) � {α0 c α1} � Lz GB(B) Mwn1
� {α2 r α3} � Lv GB(B) Myn2

⊆ {{ Inclusion (5.42) & Monotonicity of � }}
Lx GB(C) Mv � Lv GB(B) Myn2

= {{ Equation (5.31) }}
Lx GB(C) Mv � G(bv) � Lv GB(B) Myn2

⊆ {{ Induction hypothesis & Monotonicity of � }}
Lx GB(C) Mv � Lv GB(C) My

⊆ {{ Axiom (3.4) extended to metablocks }}
Lx GB(C) My . �

Note that when C is such that for all unary blocks [um ]u
′
∈ B1, the metablock

[[u bu ·m · bu′ ]]
u′ ∈ Cset exists, then the two following laws are easily derivable for visibly

pushdown Kleene algebra with tests.

(∧ u, u′,m | [
u

m
u′

] ∈ B1 : bu ·m 6 m · bu′)

∧ (∧ u, u′, c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : bu · c 6 c · bz ∧ bw · r 6 r · bu′)

→ bx · L
x

B
y

M 6 L
x

C
y

M ,

(5.43)
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(∧ u, u′,m | [
u

m
u′

] ∈ B1 : m · bu′ 6 bu ·m)

∧ (∧ u, u′, c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · bz 6 bu · c ∧ r · bu′ 6 bw · r)

→ L
x

B
y

M · by 6 L
x

C
y

M .

(5.44)



Chapter 6

Interprocedural Program Analysis

Using VPKAT

This chapter shows that the proposed formalism called visibly pushdown Kleene algebra
extended with tests can be used for doing some interprocedural program analyses like
formal veri�cation and veri�cation of compiler optimizations.

6.1 VPKAT as a Modelling Tool: Encoding an Inter-

procedural Program

VPKAT can be used to encode an interprocedural program written in an imperative pro-
gramming language like C. This section extends the �classical� way of encoding programs
in Kleene-like algebras [6, 27].

The goal is to encode a program (and its associated property or optimization) in
VPKAT. In other words, a formula written in VPKAT should be �extracted� from the
program (and its associated property or optimization). To do this, the encoding is done
in three steps. The �rst step is obvious, one should de�ne the desired abstraction for
atomic program instructions and variables through the sets Σi, Σc, Σr and B. After all,
to create a formula of VPKAT, one �rst needs the alphabets for the atomic elements.
Usually, a crude abstraction is taken for the atomic instructions: each instruction of
the program is considered an internal action. The desired abstraction for the variables
is more complex. They are usually represented by a set of atomic tests. This set varies
a lot depending on the type of the variable and of the veri�cation to be done. For
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example, it may be su�cient to encode an integer variable n used in a program by
using only a test like �is n equal to 0 ?�. However, it can be as complex as trying to
represent lots of tests for n by Booleans (similar to the binary encoding of an integer
by a compiler). For more �exibility, the encoding of atomic instructions and variables
is left at the user's discretion. As a result, this abstraction step is semi-automatic. Lots
of works already done in software veri�cation can help to guide this abstraction step
(see, for example, [3]).

The �rst step of the encoding takes care of representing the atomic elements of a
program. So, it remains to take care of the standard programming constructs (including
functions) to give an expression of VPKAT. This is the goal of the second step. The
second step encodes the standard programming constructs and gives an expression of
MBexp:

s ;t := s · t, if b then s else t := b · s+ b · t, while b do s := (b · s)∗ · b,

where b is a test and s and t are programs, whereas any function f gives a metablock
[[f s ]]

τ where s is the body of the function and τ is a label used to indicate the end
of the body of any function. The whole expression for the program is an expression
Lx′ [x′

〈x ↓x ↑τ x〉 ]
τ ,B Mτ where B represents the encoding of all the individual functions

of the program and x is the label used for the designated main function of the program.
Note that the main function of the program (here, x) is enclosed by its proper call
action and return action just like any other function by having x′ has the starting label
of the expression. This is why the binary block [x′

〈x ↓x ↑τ x〉 ]
τ have been added to the

expression.

To further ease the use of functions, the following abbreviation is used when �calling�
functions in VPKA: 〈czr〉 := (〈c↓z ↑τ r〉) for a call action 〈c, a return action r〉 and a
label z. Also, two abbreviations of the abbreviation are used:

• 〈z〉 := 〈zzz〉 for a label z;

• 〈izi〉 := 〈zizzi 〉 for a label z.

These abbreviations allow us to put an emphasis on the name of the function being
called instead of the associated call action and return action. We hope that it will be
more natural for a programmer.

The encoding of the programming constructs presented previously is very close to
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void f() {

p;

while (b) {

q;

}

}

Figure 6.1: Abstract program containing only one non-recursive function.

the syntax of the programming language. This should highlight the analogy with pro-
gramming languages. In particular, the sequence operator is well represented by the
concatenation operator, the conditional instruction is well represented by a choice be-
tween two options guarded respectively by the test and by the complementation of the
test, and the while loop is almost well represented by the ∗ operator and the guard
which states that the body of the loop is executed until the test is false. The term
almost is used to emphasize that the ∗ operator only deals with �nite loops, not in�nite
loops.

Some examples of the second step are presented. In these examples, consider that
the source code of the programs already contains �abstracted� elements of the algebra
(the result of the �rst step). As a �rst example, let us consider the abstract program
of Figure 6.1 containing only one non-recursive function that is called f . The result of
the second step produces the following expression:

L
f ′
[[
f ′

〈f 〉
τ

]], [[
f

p · (b · q)∗ · b
τ

]]
τ

M .

The resulting expression matches the abstracted program. We clearly see the single
function and the structure of the loop.

As a second example, let us consider the abstract program of Figure 6.2 containing
only two non-recursive functions that are called f and g. Note that f is exactly the
same function as in the previous example. Consider that g is the main function of the
program. The result of the second step produces the following expression:

L
g′
[[
g′

〈g〉
τ

]], [[
f

p · (b · q)∗ · b
τ

]], [[
g

r · 〈f 〉 · s
τ

]]
τ

M .

Once again, the resulting expression matches the abstracted program. We clearly see
the two functions and the call of the function f . Note that the abbreviation used to
call the function f in g also hides the complexity of using the call action 〈f and the
return action f 〉.
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void f() {

p;

while (b) {

q;

}

}

void g() {

r;

f();

s;

}

Figure 6.2: Abstract program containing only two non-recursive functions.

void h() {

if (b) {

r;

} else {

p;

h();

q;

}

}

Figure 6.3: Abstract program containing one recursive function.

As a third example, let us consider the abstract program of Figure 6.3 containing
one recursive function that is called h. The result of the second step produces the
following expression:

L
h′
[[
h′

〈h〉
τ

]], [[
h

b · r+ b · p · 〈h〉 · q
τ

]]
τ

M .

Note how intuitive the recursive call is in this setting. It is the same thing as calling
any other function.

As a �nal example, let us consider the abstract program of Figure 6.4 containing
mutually recursive functions k and l. Consider that k is the main function of the
program. The result of the second step produces the following expression:

L
k′
[[
k′

〈k〉
τ

]], [[
k

b1 · r1 + b1 · p1 · 〈l〉 · q
τ

]], [[
l

b2 · r2 + b2 · p2 · 〈k〉
τ

]]
τ

M .
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void k() {

if (b1) {

r1;

} else {

p1;

l();

q;

}

}

void l() {

if (b2) {

r2;

} else {

p2;

k();

}

}

Figure 6.4: Abstract program containing mutually recursive functions.

Note how intuitive the mutual recursive calls are handled. It is the same thing as calling
any other functions.

Recall that we said that the while loop is almost well represented by the ∗ operator.
In fact, in the proposed encoding, any in�nite loop is �lost� in the encoding. For
example, the in�nite loop while (true) do p; is encoded by (1 · p) · 0 and so it is equal
to 0 by Kleene algebra although there is an in�nite loop here. Something similar
happens when calling functions in�nitely often within blocks. So, in the remainder of
this chapter, in�nite behaviours will be avoided (this is left as future work). Note that
halting programs are obtained by restricting recursive procedures and loops to simple
cases.

Incidentally, when seeing the result of the �rst two steps of the encoding of programs,
one could ask if VPKAT is powerful enough to prove program equivalence or to verify
properties of programs. This is not the case. The reason is primarily linked with the
�rst step (and the de�nition of the algebra of course): an abstraction of the original
program is done for the atomic elements. This abstraction allows us to do algebraic
reasoning over the program, but it can lack some features of the original program
necessary to prove properties about it. All in all, the second step of the encoding
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void main(void) {

int n = 2;

while (n < 2) {

n++;

}

printf ("%d", n);

}

(a) First program

void main(void) {

int n = 1;

n++;

printf ("%d", n);

}

(b) Second program

Figure 6.5: Two semantically equivalent programs (when considering only inputs and
outputs).

encodes the control �ow of the program, but it misses the data �ow of the program!
In particular, the semantics of the instructions is not considered! Let us see this by an
example. Consider the two programs of Figure 6.5. If we consider the semantics of the
instructions, we can see that the body of the loop of the �rst program will never be
executed. So, the �rst program only assigns 2 to the variable n and writes the value of
n to the console. The second program is straightforward: it assigns 1 to n, increments
n by 1 (thus yielding 2) and writes the value of n to the console. So, the two programs
are semantically equivalent when considering relational equivalence (when we are only
interested in inputs and outputs of the programs).

Using the �rst two steps of the encoding of programs in VPKAT, one can �rst de�ne
the following abstraction:

b represents the test n < 2 ,
p represents the internal action n = 2; ,
q represents the internal action n++; ,
r represents the internal action n = 1; ,
s represents the internal action printf ("%d", n); ,

and then encode the �rst program by

L
m′

[[
m′

〈m〉
τ

]], [[
m

p · (b · q)∗ · b · s
τ

]]
τ

M

and the second by

L
m′

[[
m′

〈m〉
τ

]], [[
m

r · q · s
τ

]]
τ

M .
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So, to verify whether the two programs are equivalent using VPKAT, we should verify
whether

L
m′

[[
m′

〈m〉
τ

]], [[
m

p · (b · q)∗ · b · s
τ

]]
τ

M = L
m′

[[
m′

〈m〉
τ

]], [[
m

r · q · s
τ

]]
τ

M

is a theorem of VPKAT. However, this cannot be the case. Recall that equality in VPKA

represents the language equivalence between visibly pushdown languages. In VPKAT,
the equality now represents trace equivalence between Kripke structures (as inspired
by [27]). The two previous expressions are not trace equivalent mainly because:

• the loop cannot be removed in the �rst expression (p has no semantics, it is just
a token saying that an action occurs, but it is not known what this instruction
does);

• assigning 2 to n is a di�erent operation than assigning 1 to n and increment it by
one just after.

So, the �rst two steps in VPKAT yield expressions that are, most of the time, too
restrictive for us. Usually, when we compare programs, we intend to be more ��exible�
than trace equivalence. Fortunately, VPKAT allows us to extend its notion of equiva-
lence at will. Thus, we can decide what we mean by �semantically equivalent� (it should
be an extension of trace equivalence). The idea is to use hypotheses for the veri�cation
(this will be our third step of the encoding). In other words, Horn formulae will be used
instead of simple equations. The hypotheses used in these formulae will represent some
semantic equivalences that are easily veri�able. Generally, the hypotheses state simple
facts about the program and usually involve only few atomic elements. This allows us
to retrieve some of the semantics of the atomic elements and help to constitute a simple
data �ow. For example, using the previous encoding, it is correct to de�ne a hypothesis
such as

p = p · b

when we consider only inputs and outputs. It simply states that just after the execution
of p (n = 2;), the test b (n < 2) is always false. Also, it is correct to de�ne a hypothesis
such as

p = r · q

when we consider only inputs and outputs. After all, this states that assigning 2 to n

is the same thing as assigning 1 to n and immediately increment it by one. Thus, the
complete formula to verify is:

p = p · b ∧ p = r ·q → L
m′

[[
m′

〈m〉
τ

]], [[
m

p · (b ·q)∗ · b ·s
τ

]]
τ

M = L
m′

[[
m′

〈m〉
τ

]], [[
m

r ·q ·s
τ

]]
τ

M .
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This formula is a theorem of VPKAT. We suppose p = p · b and p = r · q, and we show

L
m′

[[
m′

〈m〉
τ

]], [[
m

p · (b · q)∗ · b · s
τ

]]
τ

M = L
m′

[[
m′

〈m〉
τ

]], [[
m

r · q · s
τ

]]
τ

M .

By law (5.25), it su�ces to show that

p · (b · q)∗ · b · s = r · q · s .

We prove it.

p · (b · q)∗ · b · s
= {{ Hypothesis: p = p · b }}

p · b · (b · q)∗ · b · s
= {{ Kleene algebra: t∗ = 1 + t · t∗ }}

p · b · (1 + b · q · (b · q)∗) · b · s
= {{ Distributivity of · over + & Identity of · }}

p · (b+ b · b · q · (b · q)∗) · b · s
= {{ Contradiction: b · b = 0 & Zero of · & Identity of + }}

p · b · b · s
= {{ Hypothesis: p = p · b, twice }}

p · s
= {{ Hypothesis: p = r · q }}

r · q · s

In short, the third step of the encoding of a program in VPKAT is to encode the
desired semantics of atomic program instructions, variables and variable passing me-
chanisms by a set of equational hypotheses H. This step is powerful, but it is also the
most tedious one: the hypotheses usually represent an abstraction of the data �ow of
the program as we saw in the previous example. However, it is also useful to have some
hypotheses that represent the variable passing mechanism of the procedure. We present
some of these in Section 6.2. It is also possible to encode other assumptions about the
program (like some optimization assumptions that will be used in Section 6.3).

Recall that it should be easy to verify that the program satis�es the hypotheses.
Some classes (patterns) of hypotheses are already studied in Kleene algebra with tests
(see for example [27]). In our experiments, these patterns are used often and represent
the majority of the semantic equivalences that one usually needs. Surprisingly, these
patterns are most of the time equivalent to an equation of the form p = 0 for an
expression p.
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The most used pattern is that of hypotheses of the form b1p = b1pb2. These hypothe-
ses had a great impact in program veri�cation in Kleene-like algebras [28, 33, 41, 50].
The reason is that these hypotheses represent Hoare's partial correctness assertion
{b1}p{b2}. So, they allow one to study the behaviour of an instruction, and they are
already well used in program veri�cation in general. The idea is that if a precondition
b1 is satis�ed before doing an instruction p (and the instruction p terminates), then the
postcondition b2 is satis�ed after the instruction. Note that the hypothesis b1p = b1pb2

can be represented by four equivalent forms [30]:

b1p = b1pb2 , b1p 6 pb2 , pb2 6 b1p , b1pb2 = 0 .

Another usual pattern is that of hypotheses of the form b1p = pb2. They are a
generalization of hypotheses of commutativity between a test and a program (b1p = pb1).
In essence, they state that a precondition b1 is satis�ed just before executing p if and
only if a postcondition b2 is satis�ed just after executing p. As for the previous pattern,
these hypotheses have several equivalent forms [6]:

b1p = pb2 , b1p = pb2 , b1pb2 + b1pb2 = 0 .

The last pattern of hypotheses presented here is one often used for the veri�cation
of program optimizations. They are hypotheses of the form bp = b where p is an atomic
instruction. Intuitively, such a hypothesis states that executing p when knowing that
the test b is true just before the execution is useless. Kozen and Hardin showed that
these hypotheses do not correspond to any hypothesis of the form q = 0 [20]. These
hypotheses will not be used in this dissertation.

In short, the encoding of an interprocedural program written in an imperative pro-
gramming language like C in VPKAT is done in three steps:

1. De�ne the desired abstraction for atomic program instructions and variables
through the sets Σi, Σc, Σr and B;

2. Encode the program control �ow by a VPRE p;

3. Encode the desired semantics of atomic program instructions, variables and vari-
able passing mechanisms by a set of equational hypothesesH. It is also possible to
encode other assumptions about the program (like some optimization assumptions
that will be used in Section 6.3).

Notice how elegant and clean the �classical� way of encoding programs in Kleene-
like algebras is. In particular, the separation is clear between the representation of the
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Program
P

Property
S

Representation
of P : expres-
sion p and

hypotheses H

Set of exe-
cutions that
satisfy S:

expression q
and re�nement
hypotheses R

Yes/No

Encoding
of P in
algebra

Encoding
of S in
algebra

Deductive
system:

` H ∧ R →
p 6 q ?

Figure 6.6: Framework of static analysis in visibly pushdown Kleene algebra with tests.

control �ow of the program and the semantics used for the atomic instructions. This
enables one to add and remove hypotheses at will without modifying the control �ow!
So, it naturally supports re�nement and abstraction of the data �ow without modifying
the control �ow! The more hypotheses are given for an equation, the more re�ned is
the model (abstract program). Of course, it is always a challenge to �nd the right
abstraction level for analysis.

6.2 Formal Veri�cation of Interprocedural Programs

Here is a �rst application of VPKAT for formal veri�cation. It is a framework for static
analysis like the framework de�ned in [30] or in [7].

Formal veri�cation of interprocedural programs follows the process in Figure 6.6.
First, encode the program in VPKAT as we have explained in Section 6.1. The encoding
gives a VPRE p representing the program control �ow and a set of equational hypotheses
H representing the desired semantics of the program.

Currently, the framework deals only with halting programs, since non-halting pro-
grams need speci�c mechanisms (see for example [30]). Halting programs are obtained
by restricting recursive procedures and loops to simple cases.

The encoding of the property in VPKAT is left at the user's discretion. Since the
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framework is restricted to halting programs, the full power of visibly pushdown au-
tomata can be used to de�ne the property (this is not the case with non-halting pro-
grams). However, de�ning a property by such automata does not always seem easy. In
our experiments, we found it clearer to de�ne the property directly in VPKAT. This has
the drawback of not having a �xed encoding like in [7] or [30]. We used an encoding of
the visibly pushdown language representing the set of executions of any program on Σi,
Σc, Σr and B that satisfy the property; that encoding is composed of an expression q of
VPKAT and a set R of �re�nement hypotheses� that help to sharpen the program abs-
traction according to the desired property. Some re�nement hypotheses are presented
in Section 6.2.1.

The static analysis ends by verifying whetherH∧R → p 6 q is a theorem of VPKAT.
The program is said to satisfy the property if and only if the formula is a theorem of
VPKAT.

6.2.1 Example

Take the abstract program of Figure 6.7a. In it, the action open(i) (respectively
close (i)) represents opening and writing to the �le named i (respectively, the writ-
ing to and closing the �le named i). To simplify the example, suppose that these
actions are internal actions. We want to show the non-regular property S:

Any �le opened in a procedure must be closed exactly in this procedure.

We prove it for the cases where i ∈ {0, 1} (this is a drastic �nite abstraction of the
possible values of the variable).

For the encoding of the program, use an atomic test b to represent i = 0 and b to
represent i = 1. So, B := {b}. Also, use Σi := {o, c}, Σc := {〈f}, Σr := {f〉} and
V := {f, f ′, τ}, where f ′ is used as the main procedure. Note that actions open(i) and
close (i) are abstracted by actions o and c. The information that they depend on the
value of i is lost. This will be taken care of in the re�nement hypotheses. The encoding
of the program control �ow p is given in Figure 6.7b.
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void f(int i) {

if (i 6 0) {

open(i);

close (i);

} else {

open(i);

f(i− 1);

close (i);

}

}

(a) Abstract program

L
f′
[[
f′

〈f〉
τ

]], [[
f

boc + bo〈f〉c
τ

]]
τ

M

(b) Program control �ow in algebra

L
x

[[
x

(
〈f xf〉 + o0 · contextOpen(0) · c0

+ o1 · contextOpen(1) · c1

)∗ τ
]],

[[
y0

contextOpen(0)
τ

]],

[[
y1

contextOpen(1)
τ

]],

[[
y0,1

(〈f y0,1
f〉)∗

τ

]]
τ

M

(c) The property in algebra

Figure 6.7: Elements for the example of interprocedural analysis.

The encoding of the desired semantics is given only for hypotheses used in the proof.
So,

H := bo = ob

∧ b · 〈f 6 〈f · b
∧ b · 〈f · Lf B Mτ · f〉 = 〈f · Lf B Mτ · f〉 · b

where
B := [[

f′

〈f〉
τ

]], [[
f

boc + bo〈f〉c
τ

]] .

The �rst hypothesis states that action o does not modify the test b. The second and
third hypotheses abstractly encode the passing of the variable i by value: the second is
a Hoare triple that states that if i = 1 just before calling f , then the value of i at the
beginning of the newly called f is now 0 (since the actual argument of f in the program
is i − 1), and the third states that the value of i just before calling f is remembered
just after returning from f .

As we saw earlier, the property is relative to the exact �le used, but the encoding
of the program control �ow does not give enough information about which �le is really
used. To do this, add four internal actions, namely o0, o1, c0 and c1 to Σi and de�ne

R := bo 6 o0

∧ bo 6 o1

∧ bc 6 c0

∧ bc 6 c1 .
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These hypotheses state that actions o and c depend on b and b.

The encoding of the property S by an expression q uses metablocks having starting
labels {x, y0, y1, y0,1}. Intuitively,

• the label x represents that no �le is opened;

• each label yj, for j ∈ {0, 1}, represents that only the �le j is opened;

• the label y0,1 represents that the two �les are opened.

To ease the de�nition of the property, for i ∈ {0, 1}, let

other(0) := 1 , other(1) := 0 ,

contextOpen(i) :=
(〈f yif〉 + oother(i)(

〈f y0,1
f〉)∗cother(i)

)∗
.

The metablock expression contextOpen(i) states that, for the context in which �le i is
already opened, a program can call function f and keep the context as is, or it can open
and close the other �le interleaved with the call of the function f with the new context
that the two �les are opened. Of course, this choice can be done any �nite number of
times. The encoding of the property S by an expression q is given in Figure 6.7c.

The program satis�es S if H ∧R → p 6 q is a theorem of VPKAT. Let

B := [[
f′

〈f〉
τ

]], [[
f

boc + bo〈f〉c
τ

]] .

Note that no correct travelling can start with τ . So, by (5.24),

L
τ

B
τ

M = 0 . (6.1)

Now, let

C := [[
x

(〈f xf〉 + o0 · contextOpen(0) · c0 + o1 · contextOpen(1) · c1)∗
τ

]],

[[
y0

contextOpen(0)
τ

]], [[
y1

contextOpen(1)
τ

]], [[
y0,1

(〈f y0,1
f〉)∗

τ

]] .

We �rst prove that

o0c0 6 L
y1

C
τ

M . (6.2)

By inequation (5.1) and the transitivity of 6, it su�ces to prove that

o0c0 6 mb_vpreθC(contextOpen(1)) .
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o0c0

= {{ Identity of · }}
o0 · 1 · c0

6 {{ Kleene algebra: for any expression r, 1 6 r∗ & Monotonicity of · }}
o0 · (〈f · Ly0,1 C Mτ · f〉)∗ · c0

6 {{ Kleene algebra: for any expression r, r 6 r∗ }}(
o0 · (〈f · Ly0,1 C Mτ · f〉)∗ · c0

)∗
6 {{ Kleene algebra: for any expressions r1 and r2, r∗1 6 (r2 + r1)∗ }}(

〈f · Ly1 C Mτ · f〉 + o0 · (〈f · Ly0,1 C Mτ · f〉)∗ · c0

)∗
= {{ De�nition of contextOpen(1) and mb_vpreθC }}

mb_vpreθC(contextOpen(1))

Then, we prove that

o0c0 + o1 · 〈f · L
y1

C
τ

M · f〉 · c1 6 L
x

C
τ

M . (6.3)

By inequation (5.1) and the transitivity of 6, it su�ces to prove that

o0c0 + o1 · 〈f · Ly1 C Mτ · f〉 · c1

6 mb_vpreθC

(
(〈f xf〉 + o0 · contextOpen(0) · c0 + o1 · contextOpen(1) · c1)∗

)
.

o0c0 + o1 · 〈f · Ly1 C Mτ · f〉 · c1

= {{ Identity of · }}
o0 · 1 · c0 + o1 · 〈f · Ly1 C Mτ · f〉 · c1

6 {{ Kleene algebra: for any expression r, 1 6 r∗ & Monotonicity of · and + }}
o0 ·

(
〈f · Ly0 C Mτ · f〉 + o1 · (〈f · Ly0,1 C Mτ · f〉)∗ · c1

)∗
· c0 + o1 · 〈f · Ly1 C Mτ · f〉 · c1

6 {{ Kleene algebra: for any expressions r1 and r2, r1 6 (r1 + r2)∗ & Mono-
tonicity of · and + }}

o0 ·
(
〈f · Ly0 C Mτ · f〉 + o1 · (〈f · Ly0,1 C Mτ · f〉)∗ · c1

)∗
· c0

+ o1 ·
(
〈f · Ly1 C Mτ · f〉 + o0 · (〈f · Ly0,1 C Mτ · f〉)∗ · c0

)∗
· c1

6 {{ Kleene algebra: for any expressions r1 and r2, r1 6 (r2 + r1)∗ }}(
〈f · Lx C Mτ · f〉 + o0 ·

(
〈f · Ly0 C Mτ · f〉 + o1 · (〈f · Ly0,1 C Mτ · f〉)∗ · c1

)∗
· c0

+ o1 ·
(
〈f · Ly1 C Mτ · f〉 + o0 · (〈f · Ly0,1 C Mτ · f〉)∗ · c0

)∗
· c1

)∗
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= {{ De�nition of contextOpen(j) for j ∈ 0, 1 and mb_vpreθC }}
mb_vpreθC

(
(〈f xf〉 + o0 · contextOpen(0) · c0 + o1 · contextOpen(1) · c1)∗

)

Then, we prove that
〈f · L

x

C
τ

M · f〉 6 L
x

C
τ

M . (6.4)

By inequation (5.1) and the transitivity of 6, it su�ces to prove that

〈f · Lx C Mτ · f〉

6 mb_vpreθC

(
(〈f xf〉 + o0 · contextOpen(0) · c0 + o1 · contextOpen(1) · c1)∗

)
.

〈f · Lx C Mτ · f〉

6 {{ Kleene algebra: for any expressions r1 and r2, r1 6 (r1 + r2)∗ }}(
〈f · Lx C Mτ · f〉 + o0 ·

(
〈f · Ly0 C Mτ · f〉 + o1 · (〈f · Ly0,1 C Mτ · f〉)∗ · c1

)∗
· c0

+ o1 ·
(
〈f · Ly1 C Mτ · f〉 + o0 · (〈f · Ly0,1 C Mτ · f〉)∗ · c0

)∗
· c1

)∗
= {{ De�nition of contextOpen(j) for j ∈ 0, 1 and mb_vpreθC }}

mb_vpreθC

(
(〈f xf〉 + o0 · contextOpen(0) · c0 + o1 · contextOpen(1) · c1)∗

)

We are now ready to prove that H ∧R → p 6 q.

Lf′ B Mτ

= {{ Equations (5.24) and (6.1) & Zero of · & Identity of + }}
〈f · Lf B Mτ · f〉

= {{ Equations (5.24) and (6.1) & Zero of · & Identity of + }}
〈f · (boc + bo · 〈f · Lf B Mτ · f〉 · c) · f〉

6 {{ Idempotency of tests & Hypotheses in H & Kleene algebra with tests:
bo = ob↔ bo = ob & Monotonicity of · and + }}

〈f · (bobc + bo · 〈f · b · Lf B Mτ · f〉 · bc) · f〉
= {{ Equations (5.24) and (6.1) & Zero of · & Identity of + }}

〈f ·
(

bobc + bo · 〈f · b · (boc + bo · 〈f · Lf B Mτ · f〉 · c) · f〉 · bc
)
· f〉

= {{ Distributivity of · over + & Contradiction of tests & Zero of · & Identity
of + & Hypothesis: bo = ob }}
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〈f · (bobc + bo · 〈f · bobc · f〉 · bc) · f〉
6 {{ Hypotheses in R & Monotonicity of · and + }}

〈f · (o0c0 + o1 · 〈f · o0c0 · f〉 · c1) · f〉
6 {{ Inequation (6.2) & Monotonicity of · and + }}

〈f · (o0c0 + o1 · 〈f · Ly1 C Mτ · f〉 · c1) · f〉

6 {{ Inequation (6.3) & Monotonicity of · }}
〈f · Lx C Mτ · f〉

6 {{ Inequation (6.4) }}
Lx C Mτ

6.3 Veri�cation of Common Interprocedural Compiler

Optimizations

Let us examine how some interprocedural compiler optimizations can be veri�ed with
VPKAT.1 Our proposition for this veri�cation (which is an extension of Kozen and
Patron's proposition [33]) is shown in Figure 6.8. In this proposition, the encoding of
the unoptimized and optimized programs in VPKAT follows the encoding presented in
Section 6.1. Note that the set of hypotheses H contains not only the desired seman-
tics of atomic program instructions, variables and variable passing mechanisms, but
may also contain some optimization assumptions (assumptions about the optimizing
transformations that have been applied). Optimization assumptions will be used in
Sections 6.3.2 and 6.3.3.

The veri�cation of a sequence of interprocedural optimizing transformations is done
by verifying if H → p = q is a theorem of VPKAT. The optimization is considered safe
if and only if the formula is a theorem of VPKAT (after all, the formula expresses that
the two programs are �semantically� equivalent under hypotheses H). Our veri�cation
deals only with halting programs, since non-halting programs may lead to incorrect
results. Halting programs are obtained by restricting recursive procedures and loops to
simple cases.

We now present some interprocedural compiler optimizations and we show how they
can be veri�ed using VPKAT.

1We do not verify the compiler itself, but we verify the output of a compiler after it has done some

optimizations.
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Unoptimized
program P

Optimized
program Q

Control
�ow of
P : p

Control
�ow of
Q: q

Hypothe-
ses H

Yes/No

Optimizing
compiler

Encoding
in algebra

Deductive
system:

` H → p = q ?

Figure 6.8: Veri�cation of interprocedural compiler optimizations in visibly pushdown
Kleene algebra with tests.

6.3.1 Interprocedural Dead Code Elimination

Dead code elimination is the removal of unreachable instructions. When dealing with
procedures, it is possible that all actual calls of a procedure in a program do not allow
it to reach a set of instructions. There is a common case when this situation happens:
the case where the preconditions of a procedure are not respected.

Simple Non Recursive Example

Take the C program of Figure 6.9a. In this program, the pointer n cannot be null. So,
the compiler can remove the test n == NULL without modifying the behaviour of the
code. This will speed up the application (not too much in this example, but it can
be very handy in real situations). However, note that it is useful for a programmer to
write this test to have a bullet-proof code and ease maintenance over time. So, it is not
the task of the programmer to remove this test, but the task of the compiler!

Figure 6.9b is the C program without the test2. Using visibly pushdown Kleene alge-
bra, it is possible to prove that the optimized program is equivalent to the unoptimized
one. Let b be the representation of the test n != NULL. Also, let a represent the test

2Of course, in this code the remaining increment function should be inlined by the compiler to make

it more e�cient. We will talk about this issue in Section 6.3.2.
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int main(void) {

int x = 2;

increment(&x);

increment(&x);

return 0; /*Success. */

}

void increment(int∗ n) {

if (n == NULL)

printf ( stderr , "Error");

else

∗n += 1;

}

(a) Unoptimized program

int main(void) {

int x = 2;

increment(&x);

increment(&x);

return 0; /*Success. */

}

void increment(int∗ n) {

∗n += 1;

}

(b) Optimized program

Figure 6.9: Simple non-recursive program example.

that the address of the variable x exists. Let

• p be the internal action printf ( stderr , "Error");

• q be the internal action ∗n += 1;

• s be the internal action int x = 2;

• t be the internal action return 0. Of course, it is a return action in the code, but
we treat it as an internal action followed by a return action (going out of context).
This will be clear in the encoding of the program control �ow.

Since s creates the local variable x, we have the hypothesis s = s · a. We also use the
hypothesis a · t = t since the memory for x is still allocated just before the return of the
context (it is a local variable). Moreover, the action ∗n += 1 modi�es neither the test
n != NULL nor the existence of x. So, the hypothesis a · b · q = q · a · b is correct in this
program.

For the representation of the function calls, let 〈m and m〉 be respectively the call
of the main function and its return. Also, let 〈f and f〉 be respectively the call of the
increment function and its return.



Chapter 6. Interprocedural Program Analysis Using VPKAT 139

Since the variable x is passed to the function increment by a pointer, we have the
following valid hypotheses: a · 〈f = 〈f · a · b and a · b · f〉 = f〉 · a.

With these actions and hypotheses, the control �ow of the two programs can easily
be encoded in visibly pushdown Kleene algebra. The �rst program gives

L
m′

[[
m′

〈m〉
τ

]], [[
m

s · 〈f〉 · 〈f〉 · t
τ

]], [[
f

b · p + b · q
τ

]]
τ

M .

So, we must show that, under the preceding hypotheses,

L
m′

[[
m′

〈m〉
τ

]], [[
m

s · 〈f〉 · 〈f〉 · t
τ

]], [[
f

b · p + b · q
τ

]]
τ

M = L
m′

[[
m′

〈m〉
τ

]], [[
m

s · 〈f〉 · 〈f〉 · t
τ

]], [[
f

q
τ

]]
τ

M . (6.5)

First, note that no valid derivation can start with τ . So, by (5.24),

L
τ

[[
m′

〈m〉
τ

]], [[
m

s · 〈f〉 · 〈f〉 · t
τ

]], [[
f

b · p + b · q
τ

]]
τ

M = 0 . (6.6)

Now, let us prove (6.5).

Lm′ [[m′
〈m〉 ]]τ , [[m s · 〈f〉 · 〈f〉 · t ]]τ , [[f b · p + b · q ]]τ Mτ

= {{ Equations (5.24) and (6.6) }}
〈m · Lm [[m′

〈m〉 ]]τ , [[m s · 〈f〉 · 〈f〉 · t ]]τ , [[f b · p + b · q ]]τ Mτ · m〉

= {{ Equations (5.24) and (6.6) }}
〈m · s · 〈f · Lf [[m′ 〈m〉 ]]

τ , [[m s · 〈f〉 · 〈f〉 · t ]]τ , [[f b · p + b · q ]]τ Mτ · f〉

· 〈f · Lf [[m′ 〈m〉 ]]
τ , [[m s · 〈f〉 · 〈f〉 · t ]]τ , [[f b · p + b · q ]]τ Mτ · f〉 · t ·m〉

= {{ Equations (5.24) and (6.6), multiple times }}
〈m · s · 〈f · (b · p + b · q) · f〉 · 〈f · (b · p + b · q) · f〉 · t ·m〉

= {{ Hypothesis: s = s · a }}
〈m · s · a · 〈f · (b · p + b · q) · f〉 · 〈f · (b · p + b · q) · f〉 · t ·m〉

= {{ Hypothesis: a · 〈f = 〈f · a · b }}
〈m · s · 〈f · a · b · (b · p + b · q) · f〉 · 〈f · (b · p + b · q) · f〉 · t ·m〉

= {{ Distributivity of · over + }}
〈m · s · 〈f · (a · b · b · p + a · b · b · q) · f〉 · 〈f · (b · p + b · q) · f〉 · t ·m〉

= {{ Contradiction of tests & Idempotency of tests }}
〈m · s · 〈f · (a · 0 · p + a · b · q) · f〉 · 〈f · (b · p + b · q) · f〉 · t ·m〉

= {{ Zero of · & Identity of + }}
〈m · s · 〈f · a · b · q · f〉 · 〈f · (b · p + b · q) · f〉 · t ·m〉

= {{ Hypotheses: a · b · q = q · a · b, a · b · f〉 = f〉 · a and a · 〈f = 〈f · a · b }}
〈m · s · 〈f · q · f〉 · 〈f · a · b · (b · p + b · q) · f〉 · t ·m〉

= {{ Distributivity of · over + & Contradiction of tests & Idempotency of
tests }}
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〈m · s · 〈f · q · f〉 · 〈f · (a · 0 · p + a · b · q) · f〉 · t ·m〉
= {{ Zero of · & Identity of + }}

〈m · s · 〈f · q · f〉 · 〈f · a · b · q · f〉 · t ·m〉
= {{ Hypotheses: a · b · q = q · a · b, a · b · f〉 = f〉 · a and a · t = t }}

〈m · s · 〈f · q · f〉 · 〈f · q · f〉 · t ·m〉
= {{ Equations (5.24) and (6.6) }}

〈m · s · 〈f · Lf [[m′ 〈m〉 ]]
τ , [[m s · 〈f〉 · 〈f〉 · t ]]τ , [[f q ]]τ Mτ · f〉

· 〈f · Lf [[m′ 〈m〉 ]]
τ , [[m s · 〈f〉 · 〈f〉 · t ]]τ , [[f q ]]τ Mτ · f〉 · t ·m〉

= {{ Equations (5.24) and (6.6) }}
〈m · Lm [[m′

〈m〉 ]]τ , [[m s · 〈f〉 · 〈f〉 · t ]]τ , [[f q ]]τ Mτ · m〉

= {{ Equations (5.24) and (6.6) }}
Lm′ [[m′

〈m〉 ]]τ , [[m s · 〈f〉 · 〈f〉 · t ]]τ , [[f q ]]τ Mτ

Complex Recursive Example

The veri�cation of interprocedural dead code elimination works also in the presence of
recursive functions and user inputs when considering only halting cases. For example,
take the C program of Figure 6.10a that calculates the factorial of a number. In that
program, the test n < 0 in the function fact cannot be true. So, it can be removed as
in Figure 6.10b.

We can prove that these two programs are equivalent using visibly pushdown Kleene
algebra with tests. If we are only interested in a bounded value for n, then the proof
follows a pattern similar to the proof of page 139. However, the unbounded case for n
is also provable. Here is such a proof.

By abstract interpretation, it is easy to see that it is possible to limit ourselves to
the equivalence classes

[−∞,−1], {0}, {1}, [2,+∞]

for x in this veri�cation. Note that this abstraction does not allow us to calculate the
real answer of the factorial, but we are not interested in this. We are just interested in
removing the test n < 0.

Let us encode variable x by the atomic tests a0 and b0 (since there are four cases to
represent for x) and variable n by the atomic tests a and b (since there is four cases to
represent for n):
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int main(void) {

int x, result ;

do {

/* Ask a number. */

scanf("%d", &x);

} while(x < 0)

result = fact(x);

printf ("%d", result );

return 0; /*Success. */

}

int fact (int n) {

int prec_fact;

if (n < 0)

return −1; /*Error. */

else {

if (n == 0)

return 1;

else {

prec_fact = fact(n−1);

return n ∗ prec_fact;

}

}

}

(a) Unoptimized program

int main(void) {

int x, result ;

do {

/* Ask a number. */

scanf("%d", &x);

} while(x < 0)

result = fact(x);

printf ("%d", result );

return 0; /*Success. */

}

int fact (int n) {

int prec_fact;

if (n == 0)

return 1;

else {

prec_fact = fact(n−1);

return n ∗ prec_fact;

}

}

(b) Optimized program

Figure 6.10: Complex recursive program example.

• a0b0 represents the case x < 0;

• a0b0 represents the case x == 0;

• a0b0 represents the case x == 1;

• a0b0 represents the case x > 1;

• ab represents the case n < 0;
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• ab represents the case n == 0;

• ab represents the case n == 1;

• ab represents the case n > 1.

Also, let

• p be the internal action scanf("%d", &x);

• q be the internal action result = fact(x) (here, it is the assignment that is encoded
and not the call to the fact function);

• r be the internal action printf ("%d", result );

• s be the internal action return 0;

• t be the internal action return −1;

• u be the internal action return 1;

• v be the internal action prec_fact = fact(n − 1);

• w be the internal action return (n ∗ prec_fact).

We also need some hypotheses on the representation of the function calls. Let 〈f1
and f1

〉 be respectively the call and return of the fact function by the main function. Let
〈f2 and f2

〉 be respectively the call and return of the fact function by the fact function.
We distinguish between the call of the main function and the call of the fact function
because they do not have the same argument (one is n and the other is n − 1).

We have the following valid hypotheses for the call actions:

a0b0 · 〈f1 = 〈f1 · ab ,

a0b0 · 〈f1 = 〈f1 · ab ,

a0b0 · 〈f1 = 〈f1 · ab ,

a0b0 · 〈f1 = 〈f1 · ab ,

ab · 〈f2 = 〈f2 · (ab + ab) ,

ab · 〈f2 = 〈f2 · ab ,

ab · 〈f2 = 〈f2 · ab ,

ab · 〈f2 = 〈f2 · ab .

The �rst four hypotheses encode the fact that the variable x is passed by value to the
function fact . Also, the hypothesis ab · 〈f2 = 〈f2 · (ab + ab) states that if n has a value
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greater than 1 before doing the inductive call 〈f2 (with argument n − 1), then after the
call, the value of n is a value greater than or equal to 1 (and vice versa). Of course, we
could have additional hypotheses, but we will not need them in the veri�cation.

With these actions, the two programs can easily be encoded in visibly pushdown
Kleene algebra. We must show that, under the preceding hypotheses,

L
m′

[[
m′

〈m〉
τ

]], [[
m

p · (a0b0 · p)∗ · a0b0 · 〈1f1〉 · q · r · s
τ

]],

[[
f

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M

= L
m′

[[
m′

〈m〉
τ

]], [[
m

p · (a0b0 · p)∗ · a0b0 · 〈1f1〉 · q · r · s
τ

]],

[[
f

ab · u + ab · 〈2f2〉 · v · w
τ

]]
τ

M .

(6.7)

We �rst note that

ab·L
f

[[
f

ab·t+ab·(ab·u+ab·〈2f2〉·v·w)
τ

]]
τ

M = L
f

[[
f

ab·(ab·t+ab·(ab·u+ab·〈2f2〉·v·w))
τ

]]
τ

M . (6.8)

The proof of (6.8) is shown below in page 144.

We now note that

L
f

[[
f

ab · (ab · t+ab · (ab ·u+ab · 〈2f2〉 ·v ·w))
τ

]]
τ

M = L
f

[[
f

ab · (ab ·u+ab · 〈2f2〉 ·v ·w)
τ

]]
τ

M . (6.9)

The proof of (6.9) is shown below in page 146.

Furthermore,

L
f

[[
f

ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M = ab · L
f

[[
f

ab · u + ab · 〈2f2〉 · v · w
τ

]]
τ

M . (6.10)

The proof of (6.10) is shown below in page 147.

With these results, we are able to prove (6.7).

Lm′ [[m′
〈m〉 ]]τ , [[m p·(a0b0·p)∗·a0b0·〈1f1〉·q·r·s ]]τ , [[f ab·t+ab·(ab·u+ab·〈2f2〉·v·w) ]]τ Mτ

= {{ Equation (5.24) & Remark: no valid derivation can start with τ }}
〈m · Lm [[m′

〈m〉 ]]τ , [[m p · (a0b0 · p)∗ · a0b0 · 〈1f1〉 · q · r · s ]]τ , [[f ab · t + ab · (ab · u + ab ·
〈2f2〉 · v · w) ]]τ Mτ · m〉

= {{ Equation (5.24) & Remark: no valid derivation can start with τ }}
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〈m · p · (a0b0 · p)∗ · a0b0 · 〈f1 · Lf [[m′ 〈m〉 ]]
τ , [[m p · (a0b0 · p)∗ · a0b0 · 〈1f1〉 · q · r · s ]]τ ,

[[f ab·t+ab·(ab·u+ab·〈2f2〉 ·v·w) ]]τ Mτ · f1〉 ·q·r ·s·m〉
= {{ Remove unused metablocks }}

〈m ·p · (a0b0 · p)∗ ·a0b0 · 〈f1 · Lf [[f ab · t+ab · (ab ·u+ab · 〈2f2〉 ·v ·w) ]]τ Mτ · f1
〉 ·q · r · s ·m〉

= {{ Boolean algebra & Hypotheses for 〈f1 }}
〈m ·p · (a0b0 · p)∗ · 〈f1 · ab · Lf [[f ab · t+ ab · (ab ·u+ ab · 〈2f2〉 · v ·w) ]]τ Mτ · f1

〉 ·q · r · s ·m〉
= {{ Equations (6.8), (6.9) and (6.10) }}

〈m · p · (a0b0 · p)∗ · 〈f1 · ab · Lf [[f ab · u + ab · 〈2f2〉 · v · w ]]τ Mτ · f1
〉 · q · r · s ·m〉

= {{ Add unused metablocks }}
〈m · p · (a0b0 · p)∗ · 〈f1 · ab · Lf [[m′ 〈m〉 ]]

τ , [[m p · (a0b0 · p)∗ · a0b0 · 〈1f1〉 · q · r · s ]]τ ,
[[f ab · u + ab · 〈2f2〉 · v · w ]]τ Mτ · f1

〉 · q · r · s ·m〉
= {{ Boolean algebra & Hypotheses for 〈f1 }}

〈m · p · (a0b0 · p)∗ · a0b0 · 〈f1 · Lf [[m′ 〈m〉 ]]
τ , [[m p · (a0b0 · p)∗ · a0b0 · 〈1f1〉 · q · r · s ]]τ ,

[[f ab · u + ab · 〈2f2〉 · v · w ]]τ Mτ · f1
〉 · q · r · s ·m〉

= {{ Equation (5.24) & Remark: no valid derivation can start with τ }}
〈m·Lm [[m′

〈m〉 ]]τ , [[m p·(a0b0 ·p)∗ ·a0b0 ·〈1f1〉 ·q·r ·s ]]τ , [[f ab·u+ab·〈2f2〉 ·v ·w ]]τ Mτ · m〉
= {{ Equation (5.24) & Remark: no valid derivation can start with τ }}

Lm′ [[m′
〈m〉 ]]τ , [[m p · (a0b0 · p)∗ · a0b0 · 〈1f1〉 · q · r · s ]]τ , [[f ab · u + ab · 〈2f2〉 · v · w ]]τ Mτ

Proof of (6.8): By the de�nition of metablock, it su�ces to prove that

ab·L
f

[[
f

ab·t+ab·(ab·u+ab·〈2f2〉·v·w)
τ

]]
τ

M = L
f

[[
f

ab
g

]], [[
g

ab·t+ab·(ab·u+ab·〈2f2〉·v·w)
τ

]]
τ

M .

By (5.24), it su�ces to prove that

ab · L
f

[[
f

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M

= ab · L
g

[[
f

ab
g

]], [[
g

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M .

By Kleene algebra, it su�ces to prove that

L
f

[[
f

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M

= L
g

[[
f

ab
g

]], [[
g

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M .
(6.11)
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The case > of (6.11) is easy. We �rst show that

L
f

[[
f

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M

= L
f

[[
f

1 · (ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w))
τ

]]
τ

M .
(6.12)

By (5.25), it su�ces to prove that

ab · t + ab(ab · u + ab · 〈f2 · L
f

[[
f

1 · (ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w))
τ

]]
τ

M ·f〉2 · v · w)

= 1 ·
(

ab · t + ab(ab · u + ab · 〈f2 · L
f

[[
f

1 · (ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w))
τ

]]
τ

M ·f〉2

· v · w)
)
.

This is trivial by Kleene algebra.

By the de�nition of metablock, equation (6.12) becomes

L
f

[[
f

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M

= L
f

[[
f

1
g

]], [[
g

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M .

By (5.24) and Kleene algebra, the previous equation becomes

L
f

[[
f

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M

= L
g

[[
f

1
g

]], [[
g

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M .

So, to prove the case > of (6.11), it su�ces to prove that

L
g

[[
f

ab
g

]], [[
g

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M

6 L
g

[[
f

1
g

]], [[
g

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M .

By (5.26), it su�ces to prove that

ab 6 1 .

This is trivial by Boolean algebra.

We now prove the case 6 of (6.11). To facilitate the proof, we de�ne

B1 := [[
f

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]] ,

C1 := [[
f

ab
g

]], [[
g

ab · t + ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]] .
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We use (5.10) with a substitution environment θB1 de�ned by

θB1(f, τ) := L
g

C1

τ

M , and θB1(τ, τ) := 0 .

So, it su�ces to prove that

mb_vpreθB1
(ab · t + ab · (ab · u + ab · (〈f2 ↓

f

τ

↑ f
〉
2) · v · w)) 6 θB1(f, τ) , (6.13)

mb_vpreθB1
(ab · t + ab · (ab · u + ab · (〈f2 ↓f ↑τ f

〉
2) · v · w)) · θB1(τ, τ)

6 θB1(f, τ) .
(6.14)

Inequation (6.14) is trivial by the fact that θB1(τ, τ) = 0 and by Kleene algebra. We
now prove (6.13). By the de�nitions of mb_vpreθB1

and θB1 , it su�ces to prove that

ab · t + ab(ab · u + ab · 〈f2 · L
g

C1

τ

M · f
〉
2 · v · w) 6 L

g

C1

τ

M .

We prove it.

ab · t + ab(ab · u + ab · 〈f2 · Lg C1 Mτ · f
〉
2 · v · w)

= {{ Distributivity of · on + }}
ab · t + (ab · ab · u + ab · ab · 〈f2 · Lg C1 Mτ · f

〉
2 · v · w)

= {{ Boolean algebra: idempotency of tests & Distributivity of · on + }}
ab · t + ab(ab · u + ab · ab · 〈f2 · Lg C1 Mτ · f

〉
2 · v · w)

= {{ Boolean algebra }}
ab · t + ab(ab · u + ab · (ab + ab) · 〈f2 · Lg C1 Mτ · f

〉
2 · v · w)

= {{ Hypotheses: ab · 〈f2 = 〈f2 · (ab + ab) and ab · 〈f2 = 〈f2 · ab, so, by Kleene
algebra, (ab + ab) · 〈f2 = 〈f2 · (ab + ab + ab). }}

ab · t + ab(ab · u + ab · 〈f2 · (ab + ab + ab) · Lg C1 Mτ · f
〉
2 · v · w)

= {{ Boolean algebra }}
ab · t + ab(ab · u + ab · 〈f2 · ab · Lg C1 Mτ · f

〉
2 · v · w)

= {{ Law (5.24) }}
ab · t + ab(ab · u + ab · 〈f2 · Lf C1 Mτ · f

〉
2 · v · w)

6 {{ Law (5.1) }}
Lg C1 Mτ

Proof of (6.9): By (5.25), it su�ces to prove that

ab · (ab · t + ab(ab · u + ab · 〈f2 · L
f

[[
f

ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M · f
〉
2 · v · w))

= ab · (ab · u + ab · 〈f2 · L
f

[[
f

ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M · f
〉
2 · v · w) .
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We prove it.

ab · (ab · t + ab(ab · u + ab · 〈f2 · Lf [[f ab · (ab · u + ab · 〈2f2〉 · v · w) ]]τ Mτ · f
〉
2 · v · w))

= {{ Distributivity of · on + }}
ab · ab · t + ab · ab(ab · u + ab · 〈f2 · Lf [[f ab · (ab · u + ab · 〈2f2〉 · v · w) ]]τ Mτ · f

〉
2 · v · w)

= {{ Boolean algebra: contradiction of tests and idempotency of tests }}
0 · t + ab(ab · u + ab · 〈f2 · Lf [[f ab · (ab · u + ab · 〈2f2〉 · v · w) ]]τ Mτ · f

〉
2 · v · w)

= {{ Zero of · & Identity of + }}
ab · (ab · u + ab · 〈f2 · Lf [[f ab · (ab · u + ab · 〈2f2〉 · v · w) ]]τ Mτ · f

〉
2 · v · w)

Proof of (6.10): The proof of the case 6 is similar to the case > of (6.8). Then, it
remains to prove the case >. We have to prove that

ab · L
f

[[
f

ab · u + ab · 〈2f2〉 · v · w
τ

]]
τ

M 6 L
f

[[
f

ab · (ab · u + ab · 〈2f2〉 · v · w)
τ

]]
τ

M .

Since, by simple Kleene algebra with tests reasoning, for all expressions p

ab · (ab · u + ab · 〈f2 · p · f2〉 · v · w)

= ab · ab · ab · ab · u · 1
+ ab · ab · (ab + ab) · (ab + ab) · 〈f2 · p · f2〉 · 1 · 1 · v · 1 · 1 · w · 1 ,

then, by (5.25), it su�ces to prove that

ab · L
f

[[
f

ab · u + ab · 〈2f2〉 · v · w
τ

]]
τ

M

6 L
f

[[
f

ab · ab · ab · ab · u · 1

+ ab · ab · (ab + ab) · (ab + ab) · 〈2f2〉 · 1 · 1 · v · 1 · 1 · w · 1
τ

]]
τ

M .

By the de�nition of metablock, it su�ces to prove that

ab · L
f

[[
f

ab
g1

]] , [[
g1

u
τ

]], [[
f

ab
g2

]] , [[
g2

〈2f2〉
g3

]] , [[
g3

v
g4

]] , [[
g4

w
τ

]]
τ

M

6 L
f

[[
f

ab · ab · ab
g1

]] , [[
g1

ab · u · 1
τ

]], [[
f

ab · ab · (ab + ab)
g2

]] ,

[[
g2

(ab + ab) · 〈2f2〉 · 1
g3

]] , [[
g3

1 · v · 1
g4

]] , [[
g4

1 · w · 1
τ

]]
τ

M .

(6.15)

To prove (6.15), by (5.43), it su�ces to prove that
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• for [[f ab ]]g1 ,

ab · ab 6 ab · ab , (6.16)

• for [[g1 u ]]τ ,

ab · u 6 u · 1 , (6.17)

• for [[f ab ]]g2 ,

ab · ab 6 ab · (ab + ab) , (6.18)

• for [[g3 v ]]g4 ,
1 · v 6 v · 1 , (6.19)

• for [[g4 w ]]τ ,
1 · w 6 w · 1 , (6.20)

• for [[g2
〈2f2〉 ]]g3 ,

(ab + ab) · 〈f2 6 〈f2 · ab , (6.21)

1 · f2〉 6 f2
〉 · 1 . (6.22)

Each of these proofs is easy. The proof of (6.16) is trivial by the commutativity
of tests of Boolean algebra. The proofs of (6.17), (6.19), (6.20) and (6.22) are trivial
by Boolean algebra. The proof of (6.18) is trivial by Boolean algebra. For (6.21),
by hypotheses ab · 〈f2 = 〈f2 · (ab + ab) and ab · 〈f2 = 〈f2 · ab, and by Kleene algebra,

(ab + ab) · 〈f2 = 〈f2 · (ab + ab + ab). So, by Boolean algebra, (ab + ab) · 〈f2 = 〈f2 · ab.

Dead Function Elimination

A special case of interprocedural dead code elimination is the elimination of �unused�
functions in the source code (there is no call to these functions in the source code). This
elimination is trivial using VPKAT since it is an easy theorem of this algebraic system:
any unreachable block can be removed from the list of blocks. One can see intuitively
why by recalling the function F∗B of axiom (3.14) of page 43.

6.3.2 Inlining of Functions

The inlining of functions is an optimization that replaces a function call site with the
body of the callee. This may improve the time performance of the program, but may
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int main(void) {

int x = 2;

int∗ n;

/* Inlining the �rst call to increment. */

n = &x;

∗n += 1;

/* Inlining the second call to increment. */

n = &x;

∗n += 1;

return 0; /*Success. */

}

Figure 6.11: Inlining of increment in the simple non-recursive program example.

also increase the size of the resulting program. Note that not every function can be
inlined. For example, recursive functions may not always be inlined.

For example, the function increment of the program of Figure 6.9b can be inlined.
There are di�erent ways to handle the arguments of a function while inlining it. One
easy way is to add an explicit assignment instruction before the body of the function.
For the example program of Figure 6.9b, inlining would give the program of Figure 6.11.

Let u be the internal action n = &x. Using the alphabets de�ned on page 138, the
control �ow of the previous program can be represented by the VPKA expression:

L
m′

[[
m′

〈m〉
τ

]], [[
m

s · u · q · u · q · t
τ

]]
τ

M .

The formalization must rely on a compiler's trusted functionality that tells if a
particular function can be inlined. When knowing if a function can be inlined, it
becomes an assumption that can be expressed in VPKAT for this particular case. Then,
the veri�cation can be done for the entire program.

The assumption that the function increment can be inlined in the program of Figu-
re 6.9b is just the equational hypothesis:

〈f · q · f〉 = u · q , (6.23)
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So, using the inlining hypothesis (6.23), we can prove that

L
m′

[[
m′

〈m〉
τ

]], [[
m

s · 〈f〉 · 〈f〉 · t
τ

]], [[
f

q
τ

]]
τ

M = L
m′

[[
m′

〈m〉
τ

]], [[
m

s · u · q · u · q · t
τ

]]
τ

M .

By adding an unused block, it su�ces to prove that

L
m′

[[
m′

〈m〉
τ

]], [[
m

s · 〈f〉 · 〈f〉 · t
τ

]], [[
f

q
τ

]]
τ

M = L
m′

[[
m′

〈m〉
τ

]], [[
m

s · u · q · u · q · t
τ

]], [[
f

q
τ

]]
τ

M .

By (5.25), it su�ces to prove that

s · 〈f · L
f

[[
m′

〈m〉
τ

]], [[
m

s · u · q · u · q · t
τ

]], [[
f

q
τ

]]
τ

M · f〉

· 〈f · L
f

[[
m′

〈m〉
τ

]], [[
m

s · u · q · u · q · t
τ

]], [[
f

q
τ

]]
τ

M · f〉 · t

= s · u · q · u · q · t .

By (5.24) and the remark that no valid derivation can start with τ , it su�ces to prove
that

s · 〈f · q · f〉 · 〈f · q · f〉 · t = s · u · q · u · q · t .

This is trivial by the inlining hypothesis (6.23).

6.3.3 Tail-Recursion Elimination

Tail-recursion elimination is an optimization that allows a compiler to rewrite a tail-
recursive function3 as a non-recursive function having an iterative form.

Like for inlining of functions, the formalization of a program in this situation relies
on a compiler's trusted functionality that tells if a particular function is in tail-recursive
form. When knowing it, it becomes an assumption for this particular case. The assump-
tion is similar to the one generated for the inlining of functions. So, the veri�cation can
be done for the entire program.

6.3.4 Procedure Reordering

A common and easy interprocedural optimization is to reorder functions based on their
call relationship. The central idea of this optimization is to minimize instruction cache
thrashing by having the caller and the callee near each other in the program �le.

3A function is tail-recursive if the only recursive calls it contains are tail-recursive. A function call

is tail-recursive if there is nothing to do after the function returns except returning its value.
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Procedure reordering is easy to deal with in VPKAT since it is only an application
of the swap blocks laws (3.33) to (3.35).

6.3.5 Function Cloning

At �rst, cloning a function may seem a waste of memory. However, cloning a function
allows a compiler to specialize it (and thus optimize it) for a speci�c subset of the
call sites of this function. For example, it can be useful to remove unnecessary tests
in a function for certain call sites (recall the interprocedural dead code elimination of
Section 6.3.1). So, function cloning is useful in presence of other optimizations.

Correctness of function cloning is easy to show in VPKAT. It is just applying a
theorem of VPKAT.

Theorem 6.1 (Correctness of function cloning). Let B be a �nite list of metablocks

for a program. So, B contains only metablocks of the form [[x p ]]
τ . Let [[f q ]]

τ be the

metablock encoding of the function f to be cloned. Let C be a list that contains [[f q ]]
τ

and all the metablocks called by it in B (recursively). Let f ′ be a fresh label. Let C ′ be
the list C in which every starting and calling label f is replaced with f ′. Let D be the

list B without the metablocks of C. Let D′ be the list D in which some calling labels f
are replaced with f ′. Then, for every starting label g in D′,

L
g

B
τ

M = L
g

D′, C, C ′
τ

M . (6.24)

Proof. For the case > of (6.24), the proof is done by using the substitution func-

tion law (3.37) of VPKA. Let h be a substitution function de�ned by h(f ′) := f

and by h(v) := v for all labels v of mb(D′, C, C ′). The proof is done by noting that
ĥ(mb(D′, C, C ′)), gives exactly mb(B) when the list ĥ(mb(D′, C, C ′)) is shrinked with
idempotency and swapping of blocks.

For the case 6 of (6.24), �rst note that

L
f

mb(D′, C, C ′)
τ

M = L
f ′

mb(D′, C, C ′)
τ

M . (6.25)

By the de�nition of C, C ′ and D′, there are some unused blocks in these expressions.
So, it su�ces to prove that

L
f

mb(C)
τ

M = L
f ′

mb(C ′)
τ

M .
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Recall that mb(C ′) di�ers from mb(C) only for the use of label f ′ instead of f . So, the
proof is trivial with the substitution function law of VPKA. For the case >, let h2 be a
substitution function de�ned by h2(f ′) := f and by h2(v) := v for the remaining labels.
But, ĥ2(mb(C ′)) is exactly mb(C). For the case 6, use h−1

2 as the substitution function.

We now prove the case 6 of (6.24). Note that, for every starting label g in D′,
F∗mb(B)({(g, τ)}) contains only pairs of the form (x, τ) where x is in mb(B). So, we
use (3.14) with, for all labels x in mb(B),

s(x,τ) := L
x

mb(D′, C, C ′)
τ

M .

So, by the de�nition of B, it su�ces to prove that, for all labels u in mb(B),(
∧ m | [

u

m
τ

] ∈ mb(B)1 : m 6 L
u

mb(D′, C, C ′)
τ

M
)
, (6.26)(

∧ m, v | [
u

m
v

] ∈ mb(B)1 : m · L
v

mb(D′, C, C ′)
τ

M 6 L
u

mb(D′, C, C ′)
τ

M
)
, (6.27)(

∧ c, z, r | [
u

c ↓
z

τ

↑ r
τ

] ∈ mb(B)2 : c · L
z

mb(D′, C, C ′)
τ

M · r

6 L
u

mb(D′, C, C ′)
τ

M
)
,

(6.28)

(
∧ c, z, r, v | [

u

c ↓
z

τ

↑ r
v

] ∈ mb(B)2 : c · L
z

mb(D′, C, C ′)
τ

M · r · L
v

mb(D′, C, C ′)
τ

M

6 L
u

mb(D′, C, C ′)
τ

M
)
.

(6.29)

We �rst prove (6.26). We suppose that there exists a unary block [um ]τ in mb(B)1

and we prove that

m 6 L
u

mb(D′, C, C ′)
τ

M .

By de�nition of B, C and D′, every unary block in B is in C or in D′. So, the proof
follows from axiom (3.2).

We now prove (6.27). We suppose that there exists a unary block [um ]v in mb(B)1

and we prove that

m · L
v

mb(D′, C, C ′)
τ

M 6 L
u

mb(D′, C, C ′)
τ

M .

By de�nition of B, C and D′, every unary block in B is in C or in D′. So, by axiom (3.2)
and by Kleene algebra, it su�ces to prove that

L
u

mb(D′, C, C ′)
v

M · L
v

mb(D′, C, C ′)
τ

M 6 L
u

mb(D′, C, C ′)
τ

M .
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The proof is direct by axiom (3.4).

We now prove (6.28). We suppose that there exists a binary block [u c ↓z ↑
τ r ]τ in

mb(B2) and we prove that

c · L
z

mb(D′, C, C ′)
τ

M · r 6 L
u

mb(D′, C, C ′)
τ

M .

Let us do a proof by case analysis on the binary block. First, we consider the case where
[u c ↓z ↑

τ r ]τ is in mb(C)2. The proof is direct from the hypothesis that [u c ↓z ↑
τ r ]τ is

in mb(C)2 and axiom (3.3).

We now consider the case where [u c ↓z ↑
τ r ]τ is in mb(D)2. We took the associated

binary block [u c ↓w ↑
τ r ]τ in mb(D′)2. There are two possible cases: either w = z, or

z = f and w = f ′. In the case that w = z, the proof is direct from the hypothesis
that [u c ↓w ↑

τ r ]τ is in mb(D′)2 and axiom (3.3). For the case that z = f and w = f ′,
by (6.25), it su�ces to prove that

c · L
f ′

mb(D′, C, C ′)
τ

M · r 6 L
u

mb(D′, C, C ′)
τ

M .

The proof is direct from the hypothesis that [u c ↓f ′ ↑
τ r ]τ is in mb(D′)2 and axiom (3.3).

We now prove (6.29). We suppose that there exists a binary block [u c ↓z ↑
τ r ]v in

mb(B)2 and we prove that

c · L
z

mb(D′, C, C ′)
τ

M · r · L
v

mb(D′, C, C ′)
τ

M 6 L
u

mb(D′, C, C ′)
τ

M .

Let us do a proof by case analysis on the binary block. First, we consider the case where
[u c ↓z ↑

τ r ]v is in mb(C)2. By the hypothesis that [u c ↓z ↑
τ r ]v is in mb(C)2, axiom (3.3)

and by Kleene algebra, it su�ces to prove that

L
u

mb(D′, C, C ′)
v

M · L
v

mb(D′, C, C ′)
τ

M 6 L
u

mb(D′, C, C ′)
τ

M .

The proof is direct by axiom (3.4).

We now consider the case where [u c ↓z ↑
τ r ]v is in mb(D)2. We took the associated

binary block [u c ↓w ↑
τ r ]v in mb(D′)2. There are two possible cases: either w = z, or

z = f and w = f ′. In the case that w = z, by the hypothesis that [u c ↓w ↑
τ r ]v is in

mb(D′)2, by axiom (3.3) and by Kleene algebra, it su�ces to prove that

L
u

mb(D′, C, C ′)
v

M · L
v

mb(D′, C, C ′)
τ

M 6 L
u

mb(D′, C, C ′)
τ

M .
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int main(void) {

int x = 2;

x += 1;

x += 1;

return 0; /*Success. */

}

Figure 6.12: Optimized version of the simple non-recursive program example of Figu-
re 6.9a.

The proof is direct by axiom (3.4).

For the case that z = f and w = f ′, by (6.25), it su�ces to prove that

c · L
f ′

mb(D′, C, C ′)
τ

M · r · L
v

mb(D′, C, C ′)
τ

M 6 L
u

mb(D′, C, C ′)
τ

M .

By the hypothesis that [u c ↓f ′ ↑
τ r ]v is in mb(D′)2, by axiom (3.3) and by Kleene algebra,

it su�ces to prove that

L
u

mb(D′, C, C ′)
v

M · L
v

mb(D′, C, C ′)
τ

M 6 L
u

mb(D′, C, C ′)
τ

M .

The proof is direct by axiom (3.4). �

6.3.6 Linking The Analyses Together

Each veri�cation of an interprocedural compiler optimization that is presented in this
section is done only for a speci�ed optimizing transformation. However, our reasoning
can be used through a more extensive veri�cation (involving several optimizing transfor-
mations) to make sure the optimized program still behaves the same as the unoptimized
program. It allows us, for example, to verify that the program of Figure 6.9a can be
optimized to the program of Figure 6.12. This is done by using the veri�cations of Sec-
tion 6.3.1 and Section 6.3.2, and the intraprocedural veri�cation of copy propagation
of [33].
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6.4 Discussion

There already exist variants of Kleene algebra for the formal veri�cation of programs
with or without procedures [7, 18, 21, 30, 39, 44, 50]. However, all these frameworks
only allow a user to verify regular properties, whereas we are able to deal with some non-
regular properties. Of these frameworks, the only one that can deal with (mutually)
recursive programs is the work of Mathieu and Desharnais [39]. It uses pushdown
systems as programs and uses an extension of omega algebra with domain (that adds
laws to represent explicit stack manipulations) along with matrices on this algebra to
represent programs. We do not need such mechanisms.

De Moor et al. did an interesting work at the border of Kleene algebra and model
checking [48]. They represented programs by context-free languages, properties by
regular languages and they used residuals to isolate program parts. It is an interesting
technique, but De Moor et al. are still limited to regular properties.

The model checking community already works on the formal veri�cation of inter-
procedural programs [1, 12, 46]. However, most of the tools developed so far can just
deal with regular properties except, of course, tools using visibly pushdown automata
(that are able to deal with some non-regular properties). Note that our work is di�erent
because

(i) the veri�cation process looks for the existence of a proof in the algebraic system,

(ii) we can encode proofs à la Proof-Carrying Code, and

(iii) we are not limited to decidable problems when using the proof method. The
unrestricted use of hypotheses allows us to state undecidable problems. It is not
clear whether these hypotheses can be used to reach a precision in the program
data �ow that is not possible using only visibly pushdown automata.

In the process of verifying several interprocedural optimizations in VPKAT, we some-
times had to rely on a compiler's trusted functionality to generate equational hypotheses
apart from the standard hypotheses coming from the semantics of the programming lan-
guage. Such dependence on some compiler's trusted functionalities may seem a �aw
at �rst, but it appears to us more like a winning situation: VPKAT does not need to
reinvent the wheel; VPKAT may bene�t from already trusted analyzers that can merge
well in our veri�cation process. Veri�cations in VPKAT are done only in situations
where it is useful (where other analyzers do not succeed). Note that the veri�cation of
compiler optimizations in pure Kleene algebra has the same dependence [33].



Chapter 6. Interprocedural Program Analysis Using VPKAT 156

One may ask why VPKAT must rely on equational hypotheses to encode inlining
assumptions or tail-recursion elimination. The reason is linked with the notion of
equality in VPKAT: it characterizes the equality of the languages denoted by two visibly
pushdown regular expressions. In other words, equality represents trace equivalence

and, in this equality, each call action and return action is important. Those actions
cannot be �deleted� or �forgotten� from the expression. So, equational hypotheses are
necessary in VPKAT to extend the notion of equality around speci�ed call actions and
return actions.

Also, one may ask if some of our reasoning in this chapter may lead to the dead

variable paradox of Kozen and Patron [33]. In particular, for the reasoning of Sec-
tion 6.3.1, the test a seems a dangerous one since it is linked to the existence of a
variable. However, we do not have such a paradox here. The test that checks whether
the address of the variable x exists is a property of the local state of the computation

unlike the proposition �x is a dead variable�. In particular, the test a commutes with
any test involving x that is a property of the local state of the computation because its
existence cannot be changed by such a test.



Chapter 7

Conclusion

This dissertation developed an algebraic formalism that I call visibly pushdown Kleene

algebra (VPKA), and provided evidence that the formalism can be used in some in-
terprocedural program analyses and that these analyses could be automated. I brie�y
review all these aspects in Section 7.1. Then, I discuss of the open problems and future
work in Section 7.2.

7.1 Review of the Evidence Provided to Support the

Thesis

VPKA is a Kleene-like algebraic formalism: I �rst presented, in Chapter 3, the
proposed formalism: visibly pushdown Kleene algebra. The formalism is based on
state transitions (imperative style of programming) via an analogy to visibly pushdown
automata. In fact, VPKA is formed by adding a family of implicit least �xed point
operators, based on a restriction of context-free grammars, to the standard operators
of Kleene algebra (which already represents equality of regular languages). So, the
proposed formalism is linked to two well-known notions in computer science: �nite
automata and context-free grammars. The generated proofs in VPKA are equational
and machine-veri�able. Moreover, the mathematical style used by the algebra is close
to the mathematical style that is learned in high school.

VPKA has been developed to extend the metaphor introduced by Kleene algebra
with tests concerning imperative programming languages. Kleene algebra with tests
separates the notion of tests and instructions of a program in the syntax of the algebra.
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Also, the operators of the algebra are directly linked with well-known constructs of
imperative programming languages: sequences, alternatives and loops. I extended the
metaphor to encompass the notion of code blocks (or procedures or functions) via the
family of operators introduced in VPKA and the notion of metablocks (presented in
Chapter 5) to further enhance the similarity. Thus, the usual basic constructs of impe-
rative programming languages are linked to operators of the proposed formalism.

VPKA can be used in some interprocedural program analyses: I showed that
visibly pushdown Kleene algebra extended with tests is suitable to do some interproce-
dural program analyses in Chapter 6. In particular, I sketched a framework to do formal
veri�cation of interprocedural programs. The framework is similar to [7] or [30], but
procedures are added to the de�nition of programs and the veri�cation of non-regular
properties is possible. I also sketched a framework to do certi�cation of several inter-
procedural compiler optimizations including interprocedural dead code elimination and
inlining of functions. Thus, visibly pushdown Kleene algebra is a versatile formalism.
It is possible to use, within a compiler, the same formalism to do the formal veri�cation
of a program and the certi�cation of its optimization.

Analyses done using VPKA could be automated: Interprocedural program ana-
lyses done in VPKA reduce to extracting a model of a program and proving that a
formula is a theorem of visibly pushdown Kleene algebra extended with tests. Of
course, extracting a model of a program that is su�cient for a given veri�cation is a hard
problem. However, some heuristics already exist that give interesting approximations
in practice. For this part, it is possible to reuse work done, for example, for Boolean
programs [3]. So, this part could be automated if we accept that it also sometimes fails.

For the second part, we need a way to prove that a formula is a theorem of visibly
pushdown Kleene algebra extended with tests. There is great hope that an interesting
subset of the theory of VPKAT could be automated. In fact, I proved in Chapter 4 that
the algebraic system of VPKA is sound and complete for the equational theory of visibly
pushdown languages and I also showed that its complexity is EXPTIME-complete. The
described algorithm is linked with the theory of visibly pushdown automata and does
not directly give a proof of a theorem (it just veri�es that the theorem holds), but it is an
important step to de�ne such an algorithm. There should exist an algorithm that also
gives the proof of the theorem within the same boundaries. Fortunately, Kleene algebra
can inspire us in this direction. Note that Kleene algebra had the same �problem� until
recently. Worthington de�ned in 2008 a proof system for the equational theory of Kleene
algebra that produces a proof of a theorem by using a PSPACE transducer [52, 53]. It
should be possible to do something similar in VPKA. On the other hand, we can also
simply use a generic theorem prover and try to use it for our veri�cation purposes.
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7.2 Open Problems and Future Work

The axiomatization of visibly pushdown Kleene algebra is particular. For example, ax-
ioms (3.14) to (3.17) are committed to the �direction� of the derivation strategy. This
possibility to use a forward or a backward strategy is important when proving theorems
about a program since one of the strategies is usually easier to use than the other (de-
pending on the program). On the other hand, the L M-simulation axioms (axioms (3.16)
and (3.17)) of VPKA seem too complex. We would like to replace them by simpler
axioms. Fortunately, there is hope in this area because the completeness proof (the
proof of Theorem 4.2) uses the axiom (3.17) only once (in the determinization step)
and the axiom (3.16) only twice (in the determinization step and in the synchronization
step). So, these axioms are not used often during the proof. It makes sense to think
of replacing them with other axioms. For the moment, we have not found an inter-
esting replacement for these axioms and we still do not know whether they are really
independent from the other axioms.

For future work, one idea is to extend VPKA with �in�nite� operators to represent
visibly pushdown ω-languages as de�ned in [1]. This would allow us to handle non-
halting programs. Also, residuals can be added to the algebra, since visibly pushdown
languages are pre�x-closed. Moreover, it seems interesting to add a domain operator
since it can give an algebra related to the extension of PDL de�ned in [38]. More
than that, other applications for VPKA need to be investigated, like the veri�cation
of the correct transformation of a recursive algorithm into an iterative algorithm, or
the representation of programs having nonlocal transfer of control (for example, goto
statements). Kozen already did the latter for modular programs [32], but the proof is
very involved. We think that using continuations (the ending label of a block acts like a
continuation) would help to reduce the complexity of the representation and would be
easier to read. The representation of programs having an exception handling mechanism
in VPKA is also a desired goal to achieve.
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Appendix A

Proof that Well-Matched Languages

Generated by WMVPGs and VPGs

Coincide (Theorem 3.8)

We prove that WMVPGs generate the same class of languages as VPGs restricted to well-
matched VPLs. The proof of this result is eased by an intermediary class of grammars,
called �WMVPG restricted for ending rules�, that generate the same class of languages
as VPGs restricted to well-matched VPLs and WMVPGs.

De�nition A.1 (WMVPG restricted for ending rules). Let Σi, Σc and Σr be disjoint
�nite sets of atomic elements. Let V be a �nite set of symbols containing symbol S. Let
τ be another symbol such that τ /∈ V . Let N(V ∪ {τ}) := {P(x,y) | x, y ∈ V ∪ {τ}}. A
WMVPG restricted for ending rules over Σi, Σc and Σr is a tuple G := (V ∪{τ}, P(S,τ),→
) where N(V ∪ {τ}) is the set of nonterminals, P(S,τ) is the starting nonterminal and
→ is a �nite set of explicit rewrite rules of the form

• P(X,τ) → ε where X ∈ V ;

• P(X,Y ) → a where a ∈ Σi and X, Y ∈ V ;

• P(X,Y ) → c P(Z,τ) r where c ∈ Σc, r ∈ Σr and X, Y, Z ∈ V

and implicit rewrite rules of the form

• P(X,Y ) → P(X,Z) P(Z,Y ) for each X, Y, Z ∈ V ∪ {τ}. �
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Intuitively, WMVPGs restricted for ending rules are WMVPGs such that ε-rules are
restricted to nonterminals of the form P(X,τ) and each nonterminal P(X,Y ) that begins
a height of a well-matched subword is such that Y = τ .

We �rst prove in Section A.1 that VPGs restricted to well-matched VPLs generate the
same class of languages as WMVPGs restricted for ending rules. Then, in Section A.2,
we prove that WMVPGs restricted for ending rules generate the same class of languages
as WMVPGs.

A.1 Proof that VPGs Restricted to Well-Matched VPLs

Generate the Same Set of Languages as WMVPGs

Restricted for Ending Rules

First, note that there is a one-to-one correspondence between VPGs restricted to well-
matched VPLs and the following grammars.

De�nition A.2 (WMVPG restricted for ending rules using a forward strategy). Let Σi,
Σc and Σr be disjoint �nite sets of atomic elements. Let V be a �nite set of symbols
containing symbol S. Let τ be another symbol such that τ /∈ V . Let N(V ∪ {τ}) :=

{P(x,y) | x, y ∈ V ∪{τ}}. A WMVPG restricted for ending rules using a forward strategy

over Σi, Σc and Σr is a tuple G := (V ∪ {τ}, P(S,τ),→) where N(V ∪ {τ}) is the set of
nonterminals, P(S,τ) is the starting nonterminal and → is a �nite set of explicit rewrite
rules of the form

1. P(X,τ) → ε where X ∈ V ;

2. P(X,Y ) → a where a ∈ Σi and X, Y ∈ V ;

3. P(X,Y ) → c P(Z,τ) r where c ∈ Σc, r ∈ Σr and X, Y, Z ∈ V

and implicit rewrite rules of the form P(X,τ) → P(X,Y ) P(Y,τ) for each X, Y ∈ V such
that the nonterminal P(X,Y ) is already used in the left-hand side of an explicit rewrite
rule of the form 2 or of the form 3. �

Here is a quick proof showing the one-to-one correspondence between VPGs re-
stricted to well-matched VPLs and WMVPGs restricted for ending rules using a forward
strategy.
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Proof. Note that for WMVPGs restricted for ending rules using a forward strategy,
every nonterminal P(X,Y ) generated by an implicit rewrite rule P(X,τ) → P(X,Y ) P(Y,τ)

can be derived only by explicit rewrite rules of the form 2 or of the form 3. By the
previous remark and since WMVPGs restricted for ending rules using a forward strategy
all have a starting nonterminal P(S,τ), then WMVPGs restricted for ending rules using
a forward strategy are equivalent to grammars ({P(X,τ) | X ∈ V }, P(S,τ),→) where
{P(X,τ) | X ∈ V } is the set of nonterminals, P(S,τ) is the starting nonterminal and → is
a �nite set of rewrite rules of the form

• P(X,τ) → ε where X ∈ V ;

• P(X,τ) → aP(Y,τ) where a ∈ Σi and X, Y ∈ V ;

• P(X,τ) → c P(Z,τ) r P(Y,τ) where c ∈ Σc, r ∈ Σr and X, Y, Z ∈ V .

These grammars are easily seen to be equivalent to VPGs restricted to well-matched
VPLs by replacing each P(X,τ) by X for any X ∈ V . �

The di�erence between WMVPGs restricted for ending rules and WMVPGs restricted
for ending rules using a forward strategy is the implicit rewrite rules: there is more
implicit rewrite rules in WMVPGs restricted for ending rules. Note that every WMVPG

restricted for ending rules using a forward strategy is associated uniquely to a WMVPG

restricted for ending rules and vice versa. Thus, every word generated by a WMVPG

restricted for ending rules using a forward strategy is also generated by its associated
WMVPG restricted for ending rules. So, to prove that VPGs restricted to well-matched
VPLs generate the same class of languages as WMVPGs restricted for ending rules, it
su�ces to prove that the additional implicit rewrite rules in WMVPGs restricted for
ending rules do not allow the grammar to generate new words.

Proof. We show that for all n ∈ N and X ∈ V , every well-matched word w of height n
generated by the rewrite rules of a WMVPG restricted for ending rules G when starting
in P(X,τ) can also be generated by the rewrite rules of its associated WMVPG restricted
for ending rules using a forward strategy G′ when starting in P(X,τ). We prove this by
generalized induction over n.

For the base case n = 0, the well-matched word w is just a sequence of internal
actions. Take any derivation tree that generates w using the rewrite rules of G and
starting with P(X,τ). By De�nition A.1, the parent node of every leaf of the tree (here,
the leafs are internal actions or the empty word) comes from the explicit rewrite rules
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P(U,τ) → ε or P(U,U ′) → a for a ∈ Σi and U,U ′ ∈ V . Moreover, by De�nition A.1, it
is easy to see that, when reading the tree left-to-right, the sequence of nonterminals of
the explicit rewrite rules follow the pattern:

σ := P(U1,U2) P(U2,U3) P(U3,U4) · · · P(Uk−1,Uk) P(Uk,τ) ,

in which Ui ∈ V for all i ∈ {1, 2, . . . , k}, and, of course, U1 = X. Note that, by
De�nition A.1, each nonterminal P(Ui,Ui+1) (where 1 6 i 6 k− 1) of σ is rewritten using
a rule of the form P(Ui,Ui+1) → a for a ∈ Σi. Using the sequence σ, we can construct
another valid derivation tree that uses only the rewrite rules of G′. For the case where
there is only one nonterminal in the sequence, this is trivial. For the other cases,
we construct the tree from bottom to top. We start with the last two nonterminals
(P(Uk−1,Uk) and P(Uk,τ)). Note that the rule P(Uk−1,τ) → P(Uk−1,Uk) P(Uk,τ) exists since
P(Uk−1,Uk) is a nonterminal coming from a rewrite rule of the form P(Uk−1,Uk) → a for an
a ∈ Σi by hypothesis. Then, we consider the nonterminal P(Uk−2,Uk−1). By hypothesis,
this nonterminal comes from a rewrite rule of the form P(Uk−2,Uk−1) → a for an a ∈ Σi.
So, by De�nition A.2, the rewrite rule P(Uk−2,τ) → P(Uk−2,Uk−1) P(Uk−1,τ) exists. This idea
can be reused for every P(Ui,Ui+1) in the sequence by reading them right-to-left. Hence,
we have created a valid derivation tree for the word w using the rewrite rules of G′ and
starting with P(U1,τ) (and considering that U1 = X).

For the inductive case, we suppose that for all j ∈ {0, 1, . . . , l} and X ∈ V , every
well-matched word of height j generated by the rewrite rules of a WMVPG restricted
for ending rules G when starting in P(X,τ) can also be generated by the rewrite rules
of its associated WMVPG restricted for ending rules using a forward strategy G′ when
starting in P(X,τ). We prove that for all X ∈ V , every well-matched word w of height
l + 1 generated by the rewrite rules of G when starting in P(X,τ) can also be generated
by the rewrite rules of G′ when starting in P(X,τ).

Take any derivation tree that generates w using the rewrite rules of G and starting
with P(X,τ). By De�nition A.1, the parent node of every leaf of the tree comes from
the explicit rewrite rules of the grammar. Moreover, by De�nition A.1, it is easy to
see that, when reading left-to-right the nonterminals of any leaf that is not a return
action (so it is either an internal action, a call action or the empty word), and omitting
the nonterminals that have as ancestor a nonterminal coming from an explicit rewrite
rule of the form P(U,U ′) → c P(Z,τ) r, the sequence of nonterminals of the explicit rewrite
rules follow the pattern:

σ := P(U1,U2) P(U2,U3) P(U3,U4) · · · P(Uk−1,Uk) P(Uk,τ) ,

in which Ui ∈ V for all i ∈ {1, 2, . . . , k}, and, of course, U1 = X. Note that the
nonterminal of a rewrite rule of the form P(U,U ′) → c P(Z,τ) r appears once (not twice)
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in the sequence for a pair of elements c and r. Using this sequence, we can construct
another valid derivation tree that uses only the rewrite rules of G′. We �rst use the
induction hypothesis. For any nonterminal P(Ui,Ui+1) in the sequence that is linked to
a rule of the form P(U,U ′) → c P(Z,τ) r, the induction hypothesis says that we can �nd a
valid derivation tree for P(Z,τ) since the height of the well-matched subword generated
by P(Z,τ) is smaller or equals to l. Then, we just use a reasoning similar to the base
case and this allows us to generate a valid derivation tree for w using the rewrite rules
of G′ and starting with P(U1,τ) (and considering that U1 = X). �

A.2 Proof that WMVPGs Restricted for Ending Rules

Generate the Same Set of Languages as WMVPGs

We now show that WMVPGs generate the same class of languages as the WMVPGs
restricted for ending rules. Since every WMVPG restricted for ending rules is also a
WMVPG, it su�ces to prove that for every WMVPG G, we can �nd a WMVPG restricted
for ending rules G′ that accepts the same language.

Proof. The proof is done by several transformation steps. Some transformation steps
use the concept of a height-starting node. Let us call a height-starting node in a deriva-
tion tree the root of the tree (the nonterminal P(S,T )) and any node encapsulating the
nonterminal P(Z,W ) of a rewrite rule P(X,Y ) → c P(Z,W ) r of a WMVPG. We now present
the transformation steps.

Step 1: Ensure that any height-starting node contains a nonterminal P(X,Y )

such that X 6= Y . We �rst add fresh symbols {X ′ | X ∈ V } to G. Each symbol X ′

will be a clone ofX that will ensure that any height-starting node contains a nonterminal
P(X,Y ) such that X 6= Y . Let V ′ := V ∪ {Z ′ | Z ∈ V } So, we take G and we create a
new grammar G2 := (V ′, P(S′,T ),→2) where the explicit rewrite rules of →2 are

1. P(X,Y ) →2 ε⇔ P(X,Y ) → ε, for X, Y ∈ V ;

2. P(X′,Y ) →2 ε⇔ P(X,Y ) → ε, for X, Y ∈ V ;

3. P(X,Y ) →2 a⇔ P(X,Y ) → a, for a ∈ Σi and X, Y ∈ V ;

4. P(X′,Y ) →2 a⇔ P(X,Y ) → a, for a ∈ Σi and X, Y ∈ V ;
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5. P(X,Y ) →2 c P(Z′,W ) r ⇔ P(X,Y ) → c P(Z,W ) r, for c ∈ Σc, r ∈ Σr and W,X, Y, Z ∈
V ;

6. P(X′,Y ) →2 c P(Z′,W ) r ⇔ P(X,Y ) → c P(Z,W ) r, for c ∈ Σc, r ∈ Σr and W,X, Y, Z ∈
V .

It is easy to see that any derivation tree of G2 can be converted to a valid derivation tree
for G and vice versa by replacing each height-starting node containing a nonterminal
P(X′,Y ) (and its children generated by implicit rewrite rules of course) by the nonterminal
P(X,Y ) instead. After all, their associated rules' right-hand side are identical. Thus, the
grammar G2 generates the same language as G.

Step 2: Add self-looping ε-rules to G2. For the second step, we add �self-looping�
ε-rules to G2 for all pairs of V ′ × V ′. We de�ne a grammar G3 := (V ′, P(S′,T ),→3)

where the explicit rewrite rules of →3 are the explicit rewrite rules of →2 along with
the additional rewrite rules:

1. P(X,X) →3 ε, for all X ∈ V ′.

We now show that G3 generates the same language as G2. We �rst note that in any valid
derivation tree for G3, the parent node of any node that represents an added rewrite
rule P(X,X) →3 ε is necessarily a node representing an implicit rewrite rule. After
all, this is ensured by Step 1 (any height-starting node contains a nonterminal P(X,Y )

such that X 6= Y ). Note also that any implicit rewrite rule P(X,Y ) →3 P(X,Z) P(Z,Y )

such that one of the nonterminals P(X,Z) and P(Z,Y ) is immediately rewritten with an
added rewrite rule is such that Z = X or Z = Y . Thus, it �yields� the derivation
P(X,Y ) →3 P(X,Y ). So, no �progress� (no new word) can be made by using the implicit
rewrite rules along with the added rewrite rules. The remaining case is if the implicit
rewrite rule P(X,Y ) →3 P(X,Z) P(Z,Y ) is such that both nonterminals P(X,Z) and P(Z,Y )

are immediately rewritten with an added rewrite rule. This can happen only if X = Y .
However, in any valid derivation tree where it can happen, the parent node of the
node that represents the previous rule is necessarily a node representing an implicit
rewrite rule (again, this is ensured by Step 1). So, for this parent node representing
an implicit rewrite rule, the same reasoning can be applied until we �nd a parent node
representing an implicit rewrite rule P(X,Y ) →3 P(X,Z) P(Z,Y ) such that X 6= Y . This
will always happen since each height-starting node contains a nonterminal P(X,Y ) such
that X 6= Y .
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Step 3: Add a new starting nonterminal that can be used only once by the

explicit rewrite rules. We now add a fresh symbol S ′′ to G3. This symbol will be
a clone of S ′ but it will not be possible to use it more than once with explicit rewrite
rules. So, we take G3 and we create a new grammar G4 := (V ′ ∪ {S ′′}, P(S′′,T ),→4)

where the explicit rewrite rules of →4 are the explicit rewrite rules of →3 along with
the additional rewrite rules:

1. P(S′′,Y ) →4 ε⇔ P(S′,Y ) ⇒∗3 ε, for Y ∈ V ′;

2. P(S′′,Y ) →4 a⇔ P(S′,Y ) →3 a, for a ∈ Σi and Y ∈ V ′;

3. P(S′′,Y ) →4 c P(Z,W ) r ⇔ P(S′,Y ) →3 c P(Z,W ) r, for c ∈ Σc, r ∈ Σr andW,Y, Z ∈ V ′.

It is easy to see that the grammar G4 generates the same language as G3. After all,
every rule having P(S′′,T ) on the left-hand side is identical to a rule of G3 having P(S′,T )

on the left-hand side except for the rules of item 1 which represent a combination of
ε-rules of G3 and implicit rewrite rules of G3.

Step 4: Get rid of all non-self-looping explicit rewrite rules P(X,Y ) →4 ε for

X, Y ∈ V ′. We construct a new grammar G5 that simulates an ε-rules closure. We
de�ne G5 := (V ′ ∪ {S ′′}, P(S′′,T ),→5) where the explicit rewrite rules of →5 are

1. P(X,X) →5 ε, for all X ∈ V ′;

2. P(S′′,Y ) →5 ε⇔ P(S′′,Y ) →4 ε, for all Y ∈ V ′;

3. P(X,Y ) →5 a⇔ (∃ Z | Z ∈ V ′ ∪ {S ′′} : P(X,Z) →4 a ∧ P(Z,Y ) ⇒∗4 ε), for all a ∈ Σi

and X, Y ∈ V ′ ∪ {S ′′};

4. P(X,Y ) →5 c P(Z,W ) r ⇔ (∃ Z2, Y2 | Z2, Y2 ∈ V ′ ∪ {S ′′} : P(X,Y2) →4 c P(Z2,W ) r ∧
P(Z2,Z) ⇒∗4 ε ∧ P(Y2,Y ) ⇒∗4 ε), for all c ∈ Σc, r ∈ Σr and X, Y, Z,W ∈ V ′ ∪ {S ′′}.

We now show that G5 generates the same language as G4. It is easy to see that if a
word is generated by G5, then it can be generated by G4 (by saturation of the rules).
We just show the other case. We show that for each valid derivation tree t in G4 that
generates a word w, there exists a derivation tree in G5 that also generates w. This
derivation tree is obtained by transforming t. Recall that for any X ∈ V ′, P(X,X) →4 ε.
So, all the rules of G4 are in G5 except for rules of the form P(X,Y ) →4 ε for X 6= Y .
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For each node of t that represents a rule of the form P(X,Y ) →4 ε for X 6= Y , start
with the leftmost and �nd the root of its largest ε-tree1 that contains the node (suppose
P(U,U2) is the root of this ε-tree). If P(U,U2) is also the root of the tree, then the rule
P(U,U2) →5 ε exists since P(U,U2) ⇒∗4 ε.

If P(U,U2) is not the root of the tree and U = S ′′, then, by de�nition of G4, P(U,U2)

has as parent a node representing an implicit rewrite rule of the form P(S′′,U3) →5

P(S′′,U2) P(U2,U3) for a U3 ∈ V ′. Thus, we have the rewrite rules P(S′′,U2) →5 ε and
P(S′′,U3) →5 P(S′′,U2) P(U2,U3) that can be used in the derivation tree of G5. After that,
take the next leftmost node of the new t that represents a rule of the form P(X,Y ) →4 ε

for X 6= Y , and �nd the root of its largest ε-tree (call again P(U,U2) the root of this
ε-tree, but this U will be such that U 6= S ′′).

If P(U,U2) is not the root of the tree and U 6= S ′′, take its parent node. We construct
the derivation tree of G5 by removing the root of the ε-tree containing the leftmost
node (or the leftmost node just after the possible node representing the rewrite rule
P(S′′,Z) →5 ε). If the parent node of P(U,U2) is a node representing a rule of the form
P(X,Y ) →4 c P(U,U2) r, then by de�nition of →5, there exists the rewrite rules P(X,Y ) →5

c P(U2,U2) r and P(U2,U2) →5 ε which are needed for the derivation tree of G5.

On the other hand, if the parent node of P(U,U2) represents a rule of the form
P(X,Y ) →4 P(X,Z) P(Z,Y ), then either P(U,Y ) →4 P(U,U2) P(U2,Y ) or P(X,U2) →4 P(X,U) P(U,U2)

but P(U2,Y ) and P(X,U) do not generate ε in t since by de�nition P(U,U2) is the largest
ε-tree that contains the required node. If the rewrite rule is P(U,Y ) →4 P(U,U2) P(U2,Y ),
then it is possible to loop on the parent node of this rule until we �nd a rule of the
form P(X,Z) →4 P(X,U) P(U,Z) or until we encounter a height-starting node.

If we encounter a height-starting node, note that it cannot be the starting nonter-
minal P(S′′,T ), since U 6= S ′′ by hypothesis. So, it is another height-starting node and it
represents a rule of the form P(X,Y ) →4 c P(U,W ) r. By the de�nition of G5, the rewrite
rule P(X,Y ) →5 c P(U2,W ) r exists and can be used in the derivation tree of G5. Then,
we rewrite the node P(U,W ) (and its left child, recursively, that is of the form P(U,Z3) for
Z3 ∈ V ′) by P(U2,W ) and we delete the ε-tree having root P(U,U2).

It remains to show the case where the rewrite rule is P(X,Z) →4 P(X,U) P(U,Z). Take
the tree starting at node P(X,U) and �nd its rightmost node representing an explicit
rewrite rule (it is a node that we can call P(Z2,U) because it must end with U). If
Z2 = S ′′ and the explicit rewrite rule represented by P(Z2,U) is P(Z2,U) →5 ε, then it
is the case that P(Z2,U2) ⇒∗4 ε and so the node P(Z2,U) becomes the node P(Z2,U2) that

1A ε-tree is a derivation tree that generates ε.
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represents the rule P(Z2,U2) →5 ε in the derivation tree of G5. Then, we rewrite the node
P(U,Z) (and its left child, recursively, that is of the form P(U,Z3) for Z3 ∈ V ′) by P(U2,Z)

and we delete the ε-tree having root P(U,U2).

If Z2 6= S ′′ or if the explicit rewrite rule represented by P(Z2,U) is not P(Z2,U) →5 ε,
then we do another transformation. Since P(U,U2) is the root of the ε-tree that contains
the leftmost node representing a rewrite rule of the form P(X,Y ) →4 ε for X 6= Y and
X 6= S ′′, then the node for P(Z2,U) represents either the rewrite rule P(Z2,U) →4 a or
P(Z2,U) →4 c P(W,W2) r. By the de�nition of G5, either the rewrite rule P(Z2,U2) →5 a

or P(Z2,U2) →5 c P(W,W2) r exists and can be used in the derivation tree of G5. Then,
we rewrite the node P(U,Z) (and its left child, recursively, that is of the form P(U,Z3) for
Z3 ∈ V ′) by P(U2,Z) and we delete the ε-tree having root P(U,U2).

After this transformation, take the next leftmost node of the new t that represents
a rule of the form P(X,Y ) →4 ε for X 6= Y and X 6= S ′′, �nd the root of its largest ε-tree
and repeat this transformation until there is no such next leftmost node.

Step 5: Add explicit rewrite rules for the starting nonterminal that allow

us to use ε-rules only to generate the empty word. We de�ne G6 := (V ′ ∪
{S ′′}, P(S′′,T ),→6) where the explicit rewrite rules of →6 are the explicit rewrite rules
of →5 along with the rules

1. P(S′′,Y ) →6 a ⇔ (∃ Z | Z ∈ V ′ ∪ {S ′′} : P(S′′,Z) ⇒∗5 ε ∧ P(Z,Y ) →5 a), for a ∈ Σi

and Y ∈ V ′ ∪ {S ′′};

2. P(S′′,Y ) →6 c P(Z,W ) r ⇔ (∃ X | X ∈ V ′ ∪ {S ′′} : P(S′′,X) ⇒∗5 ε ∧ P(X,Y ) →5

c P(Z,W ) r), for c ∈ Σc, r ∈ Σr and Y, Z,W ∈ V ′ ∪ {S ′′}.

It is easy to see that the grammar G6 generates the same language as G5 (simple
saturation of the rules).

Step 6: Create the WMVPG restricted for ending rules. We de�ne the grammar
G′ := ((V ′ ∪ {S ′′})× (V ′ ∪ {S ′′}) ∪ {τ}, P((S′′,T ),τ),→7) where the explicit rewrite rules
of →7 are the following rules

1. P((X,Y ),τ) →7 ε⇔ P(X,Y ) →6 ε, for X, Y ∈ V ′ ∪ {S ′′};

2. P((X,Z),(Y,Z)) →7 a⇔ P(X,Y ) →6 a, for X, Y, Z ∈ V ′ ∪ {S ′′};
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3. P((X,Z),(Y,Z)) →7 c P((W,W2),τ) r ⇔ P(X,Y ) →6 c P(W,W2) r, for X, Y, Z,W,W2 ∈ V ′ ∪
{S ′′}.

It is easy to see that the grammar G′ generates the same language as G6. For the
case of the word ε, this is trivial. For every other word, consider that every nonter-
minal P((X,Y ),τ) can always be rewritten with the implicit rewrite rule P((X,Y ),τ) →7

P((X,Y ),(Y,Y ))P((Y,Y ),τ) and the explicit rewrite rule P((Y,Y ),τ) →7 ε. So, it remains to
prove that every nonterminal P((X,Y ),(Y,Y )) in G′ can be rewritten with similar rules in
G6 if deriving P(X,Y ). This is trivial by the de�nition of G′. The opposite is also true,
but we need to forget intermediate ε-rules for all heights. In particular, step 5 allows
us to not use ε-rules for the starting nonterminal and step 4 allows us to not use ε-rules
in the other cases.

Thus, G′ generates the same language as G and G′ is a WMVPG restricted for ending
rules. �



Appendix B

Proof of the Extension of Kleene's

Representation Theorem for S-VPA

(Theorem 4.6)

The proof of Theorem 4.6 is done by induction on the structure of p. Note that the
base cases construct VPAs (which are a special case of S-VPAs) and follow Remark 4.4.
Note also that, in our equations between matrices, we sometimes take the liberty of
having di�erent entry notation for the matrices. However, the correspondence between
the notations will always be clear from the context and, of course, the matrices will
always be of the same size.

B.1 Base Case: The Constant �Zero�

A visibly pushdown automaton that accepts L(0) = ∅ is

({s1},Σi,Σc,Σr, ∅ ∪ {⊥}, ∅, {s1}, ∅) .

In other words, it is the automaton

s1

The algebraic encoding of this automaton is([
1
]
,
[

Ls1 [s1 1 ]s1 Ms1
]
,0,0,

[
0
])
.
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We are able to prove (4.14):

[
1
]
•
(
0+

[
Ls1 [s1 1 ]s1 Ms1

])?
•
(
0 •
[

Ls1 [s1 1 ]s1 Ms1
])?
•
[

0
]

= {{ Zero of · }}
0

B.2 Base Case: The Constant �One�

A visibly pushdown automaton that accepts L(1) = {ε} is

({s1},Σi,Σc,Σr, ∅ ∪ {⊥}, ∅, {s1}, {s1}) .

In other words, it is the automaton

s1

The algebraic encoding of this automaton is([
1
]
,
[

Ls1 [s1 1 ]s1 Ms1
]
,0,0,

[
1
])
.

We are able to prove (4.14):

[
1
]
•
(
0+

[
Ls1 [s1 1 ]s1 Ms1

])?
•
(
0 •
[

Ls1 [s1 1 ]s1 Ms1
])?
•
[

1
]

= {{ Zero of · & Kleene algebra: 0∗ = 1 & Identity of · and + }}[
Ls1 [s1 1 ]s1 Ms1

]?
= {{ Lemma 4.5, property iii }}

Ls1 [s1 1 ]s1 Ms1

It remains to show that
` 1 = L

s1

[
s1

1
s1

]
s1

M . (B.1)

The case 6 is direct by axiom (3.2). For the case >,
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Ls1 [s1 1 ]s1 Ms1 6 1

← {{ Axiom (3.14) with s(s1,s1) := 1 }}
1 6 1 ∧ 1 · 1 6 1

� ( Identity of · & Re�exivity of 6 . )

B.3 Base Case: An Internal Action

A visibly pushdown automaton that accepts L(a) = {a} for a ∈ Σi is

({s1, s2},Σi,Σc,Σr, ∅ ∪ {⊥}, {(s1, a, λ; s2, λ)}, {s1}, {s2}) .

In other words, it is the automaton

s1 s2
a, λ;λ

Let B := [s1 1 ]s1 , [s2 1 ]s2 , [s1 a ]s2 . The algebraic encoding of this automaton is([
1

0

]
,

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

]
,0,0,

[
0

1

])
.

We are able to prove (4.14):

[
1 0

]
•

(
0+

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

])?

•

(
0 •

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

])?

•

[
0

1

]
= {{ Zero of · & Kleene algebra: 0∗ = 1 & Identity of · and + }}[

1 0
]
•

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

]?
•

[
0

1

]
= {{ Lemma 4.5, property iii & De�nition of • & Zero of · & Identity of · and

+ }}
Ls1 B Ms2

It remains to show that ` a = Ls1 B Ms2 . The case 6 is direct by axiom (3.2). For
the case >,
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Ls1 B Ms2 6 a

← {{ Axiom (3.14) with s(s1,s1) := 1, s(s1,s2) := a and s(s2,s2) := 1 }}
1 6 1 ∧ 1 · 1 6 1 ∧ a 6 a ∧ 1 · a 6 a ∧ a · 1 6 a

� ( Identity of · & Re�exivity of 6 . )

B.4 Base Case: A Call Action

A visibly pushdown automaton that accepts L(c) = {c} for c ∈ Σc is

({s1, s2},Σi,Σc,Σr, {d} ∪ {⊥}, {(s1, c, λ; s2, d)}, {s1}, {s2}) .

In other words, it is the automaton

s1 s2
c, λ; d

Let B := [s1 1 ]s1 , [s2 1 ]s2 . The algebraic encoding of this automaton is([
1

0

]
,

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

]
,

[
0 c

0 0

]
,0,

[
0

1

])
.

First, note that

`

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

]
=

[
1 0

0 1

]
. (B.2)

The case > is direct by Lemma 4.5, property i. For the case 6, all four inequations are
proved using axiom (3.14) with s(s1,s1) := 1, s(s1,s2) := 0, s(s2,s1) := 0 and s(s2,s2) := 1.
So, it su�ces to prove

1 6 1 ∧ 1 · 1 6 1 ∧ 1 · 0 6 0 ,

which is trivial using identity of ·, zero of · and re�exivity of 6.

We now prove (4.14).

[
1 0

]
•

(
0+

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

])?

•

([
0 c

0 0

]
•

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

])?

•[
0

1

]
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= {{ Identity of + & Equation (B.2) & Kleene algebra: 1∗ = 1 & Identity of
· }}[

1 0
]
•

[
0 c

0 0

]?
•

[
0

1

]
= {{ De�nition of ? & Zero of · & Identity of · and + }}[

1 0
]
•

[
1 c

0 1

]
•

[
0

1

]
= {{ De�nition of • & Zero of · & Identity of · and + }}

c

B.5 Base Case: A Return Action

A visibly pushdown automaton that accepts L(r) = {r} for r ∈ Σr is

({s1, s2},Σi,Σc,Σr, ∅ ∪ {⊥}, {(s1, r,⊥; s2,⊥)}, {s1}, {s2}) .

In other words, it is the automaton

s1 s2
r,⊥;⊥

Let B := [s1 1 ]s1 , [s2 1 ]s2 . The algebraic encoding of this automaton is([
1

0

]
,

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

]
,0,

[
0 r

0 0

]
,

[
0

1

])
.

We are able to prove (4.14).

[
1 0

]
•

([
0 r

0 0

]
+
[

Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

])?

•

(
0 •

[
Ls1 B Ms1 Ls1 B Ms2

Ls2 B Ms1 Ls2 B Ms2

])?

•[
0

1

]
= {{ Zero of · & Kleene algebra: 0∗ = 1 & Identity of · & Equation (B.2) }}[

1 0
]
•

([
0 r

0 0

]
+
[

1 0

0 1

])?

•

[
0

1

]
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= {{ Kleene algebra: (p+ 1)∗ = p∗ }}[
1 0

]
•

[
0 r

0 0

]?
•

[
0

1

]
= {{ De�nition of ? & Zero of · & Identity of · and + }}[

1 0
]
•

[
1 r

0 1

]
•

[
0

1

]
= {{ De�nition of • & Zero of · & Identity of · and + }}

r

B.6 Induction Case: Operator +

Let p := q1+q2 where q1 and q2 are visibly pushdown regular expressions. Suppose there
exists a semi-visibly pushdown automaton A1 := (S1,Σi,Σc,Σr,Γ1 ∪ {⊥}, δ1, I1, F1)

that accepts the language L(q1) and the algebraic encoding of A1 by the structure
(
−→
I1 ,WM1,Tc1 ,T⊥1 , ε⊥1 , ε6⊥1 ,

−→
F1) is such that (4.14) is valid. Also, suppose there ex-

ists a semi-visibly pushdown automaton A2 := (S2,Σi,Σc,Σr,Γ2 ∪ {⊥}, δ2, I2, F2)

that accepts the language L(q2) and the algebraic encoding of A2 by the structure
(
−→
I2 ,WM2,Tc2 ,T⊥2 , ε⊥2 , ε6⊥2 ,

−→
F2) is such that (4.14) is valid.

Without loss of generality, suppose S1 ∩ S2 = ∅ and Γ1 ∩ Γ2 = ∅. De�ne the
semi-visibly pushdown automaton

A := (S1 ∪ S2,Σi,Σc,Σr,Γ1 ∪ Γ2 ∪ {⊥}, δ, I1 ∪ I2, F1 ∪ F2)

where δ := δ1 ∪ δ2 ∪Waste, and

Waste := {(s, ε, d; s′,⊥) | d ∈ Γ2 ∧ (∃ d′ | d′ ∈ Γ1 : (s, ε, d′; s′,⊥) ∈ δ1)}
∪ {(s, ε, d; s′,⊥) | d ∈ Γ1 ∧ (∃ d′ | d′ ∈ Γ2 : (s, ε, d′; s′,⊥) ∈ δ2)} .

It is easy to see that A accepts the language L(q1 + q2). Note that the elements of
Waste are added just to satisfy the property (2.3).

Let B := B1,B2 (this list of block is used since S1 ∩ S2 = ∅ and Γ1 ∩ Γ2 = ∅ by
hypothesis, and the construction just adds ε-transitions). The algebraic encoding of
this automaton is(

−→
I ,WM,

[
Tc1 0

0 Tc2

]
,

[
T⊥1 0

0 T⊥2

]
,

[
ε⊥1 0

0 ε⊥2

]
,

[
ε 6⊥1 0

0 ε 6⊥2

]
,
−→
F

)
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where
−→
I :=

[ −→
I1−→
I2

]
and

−→
F :=

[ −→
F1−→
F2

]
.

First, note that

`WM =

[
WM1 0

0 WM2

]
. (B.3)

The case > follows from the fact that 0 is the minimum of the algebra and (3.26)
and (3.30). For the case 6, �rst recall that, by hypothesis, S1∩S2 = ∅ and Γ1∩Γ2 = ∅.
By de�nition of δ, any transition starting with si ∈ S1 (respectively, sk ∈ S2) also ends
with a state of S1 (respectively, S2). So, any block containing si (respectively, sk) as
its starting label also has labels of S1 (respectively, S2) as other labels (that is to say,
ending label, and call label and return label if it is a binary block). In other words,

• for every si ∈ S1 and [si m ]sj ∈ (B1,B2)1, it is true that [si m ]sj ∈ B1
1;

• for every si ∈ S1 and [si c ↓z ↑
w r ]sj ∈ (B1,B2)2, it is true that [si c ↓z ↑

w r ]sj ∈ B2
1;

• for every sk ∈ S2 and [sk m ]sl ∈ (B1,B2)1, it is true that [sk m ]sl ∈ B1
2;

• for every sk ∈ S2 and [sk c ↓z ↑
w r ]sl ∈ (B1,B2)2, it is true that [sk c ↓z ↑

w r ]sl ∈ B2
2.

Using the previous reasoning along with axiom (3.14), it is easy to prove all in-
equation of the case 6 of (B.3). Let s(si,sj) := Lsi B1 Msj , s(si,sk) := 0, s(sk,si) := 0 and
s(sk,sl) := Lsk B2 Msl for all si, sj ∈ S1 and sk, sl ∈ S2. So, it su�ces to prove, for all
si, sj ∈ S1 and sk, sl ∈ S2,

(∧ m | [
si

m
sj

] ∈ B1
1 : m 6 L

si

B1

sj

M ) ,

(∧ m, v | [
si

m
v

] ∈ B1
1 : m · L

v

B1

sj

M 6 L
si

B1

sj

M ) ,

(∧ c, z, r, w | [
si

c ↓
z

w

↑ r
sj

] ∈ B2
1 : c · L

z

B1

w

M · r 6 L
si

B1

sj

M ) ,

(∧ c, z, r, w, v | [
si

c ↓
z

w

↑ r
v

] ∈ B2
1 : c · L

z

B1

w

M · r · L
v

B1

sj

M 6 L
si

B1

sj

M ) ,

(∧ m, v | [
si

m
v

] ∈ B1
1 : m · 0 6 0) ,

(∧ c, z, r, w, v | [
si

c ↓
z

w

↑ r
v

] ∈ B2
1 : c · L

z

B1

w

M · r · 0 6 0) ,

(∧ m, v | [
sk

m
v

] ∈ B1
2 : m · 0 6 0) ,
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(∧ c, z, r, w, v | [
sk

c ↓
z

w

↑ r
v

] ∈ B2
2 : c · L

z

B2

w

M · r · 0 6 0) ,

(∧ m | [
sk

m
sl

] ∈ B1
2 : m 6 L

sk

B2

sl

M) ,

(∧ m, v | [
sk

m
v

] ∈ B1
2 : m · L

v

B2

sl

M 6 L
sk

B2

sl

M) ,

(∧ c, z, r, w | [
sk

c ↓
z

w

↑ r
sl

] ∈ B2
2 : c · L

z

B2

w

M · r 6 L
sk

B2

sl

M) ,

(∧ c, z, r, w, v | [
sk

c ↓
z

w

↑ r
v

] ∈ B2
2 : c · L

z

B2

w

M · r · L
v

B2

sl

M 6 L
sk

B2

sl

M) .

These inequations are easily proved by using zero of · and axioms (3.2), (3.3) and (3.4).

It remains to show (4.14).

[ −→
I1
t −→I2

t
]
•

([
T⊥1 0

0 T⊥2

]
+WM+

[
ε⊥1 0

0 ε⊥2

]

+
([

Tc1 0

0 Tc2

]
•WM

)+

•

[
ε 6⊥1 0

0 ε 6⊥2

]?

•

([
Tc1 0

0 Tc2

]
•WM

)?

•

[ −→
F1−→
F2

]
= {{ Equation (B.3) }}[ −→

I1
t −→I2

t
]
•

([
T⊥1 0

0 T⊥2

]
+
[
WM1 0

0 WM2

]
+
[
ε⊥1 0

0 ε⊥2

]

+
([

Tc1 0

0 Tc2

]
•

[
WM1 0

0 WM2

])+

•

[
ε 6⊥1 0

0 ε 6⊥2

]?

•

([
Tc1 0

0 Tc2

]
•

[
WM1 0

0 WM2

])?

•

[ −→
F1−→
F2

]
= {{ De�nition of •, ? and + & Kleene algebra }}[ −→

I1
t −→I2

t
]
•

([
T⊥1 0

0 T⊥2

]
+
[
WM1 0

0 WM2

]
+
[
ε⊥1 0

0 ε⊥2

]

+
[

(Tc1 •WM1)+ • ε 6⊥1 0

0 (Tc2 •WM2)+ • ε 6⊥2

])?

•

[
(Tc1 •WM1)? 0

0 (Tc2 •WM2)?

]
•

[ −→
F1−→
F2

]
= {{ De�nition of + and ? & Kleene algebra }}
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[ −→
I1
t −→I2

t
]
•


(T⊥1 +WM1+ ε⊥1

+ (Tc1 •WM1)+ • ε 6⊥1)
? 0

0
(T⊥2 +WM2+ ε⊥2

+ (Tc2 •WM2)+ • ε 6⊥2)
?


•

[
(Tc1 •WM1)? 0

0 (Tc2 •WM2)?

]
•

[ −→
F1−→
F2

]
= {{ De�nition of • & Zero of · & Identity of + }}

−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? • (Tc1 •WM1)? •
−→
F1

+
−→
I2
t • (T⊥2 +WM2+ ε⊥2 + (Tc2 •WM2)+ • ε 6⊥2)

? • (Tc2 •WM2)? •
−→
F2

= {{ Induction hypotheses }}
q1 + q2

B.7 Induction Case: Operator ·

Let p := q1 ·q2 where q1 and q2 are visibly pushdown regular expressions. Suppose there
exists a semi-visibly pushdown automaton A1 := (S1,Σi,Σc,Σr,Γ1 ∪ {⊥}, δ1, I1, F1)

that accepts the language L(q1) and the algebraic encoding of A1 by the structure
(
−→
I1 ,WM1,Tc1 ,T⊥1 , ε⊥1 , ε6⊥1 ,

−→
F1) is such that (4.14) is valid. Also, suppose there ex-

ists a semi-visibly pushdown automaton A2 := (S2,Σi,Σc,Σr,Γ2 ∪ {⊥}, δ2, I2, F2)

that accepts the language L(q2) and the algebraic encoding of A2 by the structure
(
−→
I2 ,WM2,Tc2 ,T⊥2 , ε⊥2 , ε6⊥2 ,

−→
F2) is such that (4.14) is valid.

Without loss of generality, suppose S1 ∩ S2 = ∅ and Γ1 ∩ Γ2 = ∅. De�ne the
semi-visibly pushdown automaton

A := (S1 ∪ S2,Σi,Σc,Σr, (Γ1 ∪ Γ2) ∪ {⊥}, δ, I1, F2)

where δ := δ1∪ δ2∪{(f, ε, d; i′,⊥) | f ∈ F1∧ i′ ∈ I2∧ d ∈ (Γ1∪Γ2)∪{⊥}}∪Waste, and

Waste := {(s, ε, d; s′,⊥) | d ∈ Γ2 ∧ (∃ d′ | d′ ∈ Γ1 : (s, ε, d′; s′,⊥) ∈ δ1)}
∪ {(s, ε, d; s′,⊥) | d ∈ Γ1 ∧ (∃ d′ | d′ ∈ Γ2 : (s, ε, d′; s′,⊥) ∈ δ2)} .

It is easy to see that A accepts the language L(q1 · q2). Note that the elements of Waste

are added just to satisfy the property (2.3).

Let B := B1,B2 (this list of block is used since S1 ∩ S2 = ∅ and Γ1 ∩ Γ2 = ∅ by
hypothesis, and the construction just adds ε-transitions). The algebraic encoding of
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this automaton is(
−→
I ,WM,

[
Tc1 0

0 Tc2

]
,

[
T⊥1 0

0 T⊥2

]
,

[
ε⊥1

−→
F1 •
−→
I2
t

0 ε⊥2

]
,

[
ε 6⊥1

−→
F1 •
−→
I2
t

0 ε 6⊥2

]
,
−→
F

)

where
−→
I :=

[ −→
I1−→
0

]
and

−→
F :=

[ −→
0
−→
F2

]
.

First, note that

`WM =

[
WM1 0

0 WM2

]
. (B.4)

The proof of (B.4) is similar to the proof of (B.3). The only di�erence is that we use the
fact that, by de�nition of δ, every non-ε-transition starting with si ∈ S1 (respectively,
sk ∈ S2) also ends with a state of S1 (respectively, S2). So, every block containing si
(respectively, sk) as its starting label also has labels of S1 (respectively, S2) as other
labels (that is to say ending label, and call label and return label if it is a binary block).

It remains to show (4.14).

[ −→
I1
t −→0

]
•

([
T⊥1 0

0 T⊥2

]
+WM+

[
ε⊥1

−→
F1 •
−→
I2
t

0 ε⊥2

]

+
([

Tc1 0

0 Tc2

]
•WM

)+

•

[
ε 6⊥1

−→
F1 •
−→
I2
t

0 ε 6⊥2

]?

•

([
Tc1 0

0 Tc2

]
•WM

)?

•

[ −→
0
−→
F2

]
= {{ Equation (B.4) }}[ −→

I1
t −→0

]
•

([
T⊥1 0

0 T⊥2

]
+
[
WM1 0

0 WM2

]
+
[
ε⊥1

−→
F1 •
−→
I2
t

0 ε⊥2

]

+
([

Tc1 0

0 Tc2

]
•

[
WM1 0

0 WM2

])+

•

[
ε 6⊥1

−→
F1 •
−→
I2
t

0 ε 6⊥2

]?

•

([
Tc1 0

0 Tc2

]
•

[
WM1 0

0 WM2

])?

•

[ −→
0
−→
F2

]
= {{ De�nition of •, + and ? & Kleene algebra }}
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[ −→
I1
t −→0

]
•

([
T⊥1 0

0 T⊥2

]
+
[
WM1 0

0 WM2

]
+
[
ε⊥1

−→
F1 •
−→
I2
t

0 ε⊥2

]

+
[

(Tc1 •WM1)+ • ε 6⊥1 (Tc1 •WM1)+ •
−→
F1 •
−→
I2
t

0 (Tc2 •WM2)+ • ε 6⊥2

])?

•

[
(Tc1 •WM1)? 0

0 (Tc2 •WM2)?

]
•

[ −→
0
−→
F2

]
= {{ De�nition of + and ? & Kleene algebra (including: 1 + q+ = q∗) }}

[ −→
I1
t −→0

]
•



(T⊥1 +WM1+ ε⊥1

+ (Tc1 •WM1)+ • ε 6⊥1)
?

(T⊥1 +WM1+ ε⊥1

+ (Tc1 •WM1)+ • ε 6⊥1)
?

• (Tc1 •WM1)? •
−→
F1 •
−→
I2
t

• (T⊥2 +WM2+ ε⊥2

+ (Tc2 •WM2)+ • ε 6⊥2)
?

0
(T⊥2 +WM2+ ε⊥2

+ (Tc2 •WM2)+ • ε 6⊥2)
?


•

[
(Tc1 •WM1)? 0

0 (Tc2 •WM2)?

]
•

[ −→
0
−→
F2

]
= {{ De�nition of • & Zero of · & Identity of + }}

−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? • (Tc1 •WM1)? •
−→
F1

·
−→
I2
t • (T⊥2 +WM2+ ε⊥2 + (Tc2 •WM2)+ • ε 6⊥2)

? • (Tc2 •WM2)? •
−→
F2

= {{ Induction hypotheses }}
q1 · q2

B.8 Induction Case: Operator ∗

Let p := q∗1 where q1 is a visibly pushdown regular expression. Suppose there ex-
ists a semi-visibly pushdown automaton A1 := (S1,Σi,Σc,Σr,Γ1 ∪ {⊥}, δ1, I1, F1) that
accepts the language L(q1) and the algebraic encoding of A1 by the structure
(
−→
I1 ,WM1,Tc1 ,T⊥1 , ε⊥1 , ε6⊥1 ,

−→
F1) is such that (4.14) is valid.

Since q∗1 = 1 + q1 · q∗1 by Kleene algebra and since the cases 1 and + are already
proved, it su�ces to �nd a semi-visibly pushdown automaton that accepts L(q1 · q∗1)

and such that (4.14) is valid. De�ne the semi-visibly pushdown automaton

A := (S1,Σi,Σc,Σr,Γ1 ∪ {⊥}, δ, I1, F1)

where
δ := δ1 ∪ {(f, ε, d; i,⊥) | f ∈ F1 ∧ i ∈ I1 ∧ d ∈ Γ1 ∪ {⊥}} .
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It is easy to see that A accepts the language L(q1 · q∗1).

Let B := B1 (this list of block is used since the construction just adds ε-transitions
between �nal states and initial states). The algebraic encoding of this automaton is

(
−→
I1 ,WM1,Tc1 ,T⊥1 , ε⊥1 +

−→
F1 •
−→
I1
t, ε6⊥1 +

−→
F1 •
−→
I1
t,
−→
F1) .

It remains to show (4.14).

−→
I1
t • (T⊥1 +WM1+ ε⊥1 +

−→
F1 •
−→
I1
t+ (Tc1 •WM1)+ • (ε 6⊥1 +

−→
F1 •
−→
I1
t))? • (Tc1 •

WM1)? •
−→
F1

= {{ Distributivity of · over + & Commutativity of + }}
−→
I1
t • (
−→
F1 •
−→
I1
t+ (Tc1 •WM1)+ •

−→
F1 •
−→
I1
t+T⊥1+WM1+ ε⊥1+ (Tc1 •WM1)+ •

ε 6⊥1)
? • (Tc1 •WM1)? •

−→
F1

= {{ Kleene algebra (mainly, 1 + q+ = q∗) }}
−→
I1
t • ((Tc1 •WM1)? •

−→
F1 •
−→
I1
t + T⊥1 +WM1 + ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? •
(Tc1 •WM1)? •

−→
F1

= {{ Kleene algebra: Denesting rule }}
−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

?

•
(

(Tc1 •WM1)? •
−→
F1 •

−→
I1
t • (T⊥1 +WM1 + ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

?
)?
•

(Tc1 •WM1)? •
−→
F1

= {{ Kleene algebra: Sliding rule }}
−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? • (Tc1 •WM1)? •
−→
F1

·
(−→
I1
t • (T⊥1 +WM1+ ε⊥1 + (Tc1 •WM1)+ • ε 6⊥1)

? • (Tc1 •WM1)? •
−→
F1

)?
= {{ Induction hypothesis }}

q1 · q∗1

B.9 Induction Case: Family of Operators G

Let V be a �nite set of labels and x, y ∈ V be labels. Let B be a �nite list of unary
blocks each containing one element of Σi ∪ {0, 1}, and binary blocks each containing
one element of Σc as left operand and one element of Σr as right operand, where all
blocks use labels from V . So, the expression that must be encoded in a semi-visibly
pushdown automaton is Lx B My.
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We �rst suppose (we will prove it after) that there exists a �nite set of expressions
{Lx′ C My}x′∈I where I ⊆ V ∪ {zc | z ∈ V } and the list C has the following properties:

i. the set of labels used by C is V ′ and is at most V ∪ {zc | z ∈ V };

ii. there is no unary block of the form [z 0 ]z
′
in C1, where z, z′ ∈ V ′;

iii. there is exactly one unary block of the form [z 1 ]z in C1 for each z ∈ V ′;

iv. there is no other block of the form [z 1 ]z
′
in C1 except those de�ned by iii;

such that

` L
x

B
y

M = (
∑

x′ | x′ ∈ I : L
x′
C
y

M) .

This assumption is in fact valid for every expression Lx B My as we will show below in
Lemma B.1. Moreover, the size of (

∑
x′ | x′ ∈ I : Lx′ C My) will be polynomial in the

size of Lx B My. However, since the proof of Lemma B.1 is very involved, we �rst �nish
the proof of the inductive case for the family of operators G before going on to the
de�nition and proof of Lemma B.1.

De�ne the semi-visibly pushdown automaton

A := (V ′ ∪ {f ′},Σi,Σc,Σr, V
′ × Σr × V ′ ∪ {⊥}, δ, I, {f ′})

where f ′ /∈ V ′ and

δ := {(w, a, λ;w′, λ) | [w a ]w
′
∈ C1}

∪ {(w, c, λ;w′, (z, r, z′)), (z, r, (z, r, z′); z′, λ) | [w c ↓w′ ↑
z r ]z

′
∈ C2}

∪ {(y, ε,⊥; f ′,⊥)} .

It is easy to see that A accepts the language L((
∑

x′ | x′ ∈ I : Lx′ C My)).

Let
−→
F be the column vector of size |V ′| such that 1 is in row y and 0 in every other

row. Let C ′ := C, [f ′ 1 ]f
′
. The algebraic encoding of this automaton is([ −→
I

0

]
,WM,Tc,0,

[
0
−→
F

0 0

]
,0,

[ −→
0

1

])
.

It is easy to see that

`WM =

[
WM1

−→
0

0 1

]
(B.5)
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where WM1 is a matrix of size |V ′| × |V ′| containing, for each entry (j1, j2), the ex-
pression Lj1 C Mj2 . The proof of (B.5) uses (B.1) and (B.3) (they are applicable in this
case), [

WM1
−→
0

0 1

]
=

[
WM1

−→
0

0 Lf ′ [f ′ 1 ]f
′
Mf
′

]
= WM .

Also, by de�nition of Tc, it is direct that every entry containing f ′ is 0. In other
words,

` Tc =

[
Tc1

−→
0

0 0

]
(B.6)

where Tc1 is a matrix of size |V ′|×|V ′| containing, for each entry (j1, j2), the expression
Tc[j1, j2].

It remains to show (4.14).

[ −→
I t 0

]
•

(
0+WM+

[
0
−→
F

0 0

]
+ (Tc •WM)+ • 0

)?

•(Tc•WM)?•

[ −→
0

1

]
= {{ Identity of · & Zero of + & Equations (B.5) and (B.6) }}[ −→

I t 0
]
•

([
WM1

−→
0

0 1

]
+
[
0
−→
F

0 0

])?

•

([
Tc1

−→
0

0 0

]
•

[
WM1

−→
0

0 1

])?

•[ −→
0

1

]
= {{ De�nition of +, • and ? & Kleene algebra }}[ −→

I t 0
]
•

[
WM?

1 WM?
1 •
−→
F

0 1

]
•

[
(Tc1 •WM1)?

−→
0

0 1

]
•

[ −→
0

1

]
= {{ De�nition of • & Kleene algebra }}

−→
I t •WM?

1 •
−→
F

= {{ Lemma 4.5, property iii & De�nition of
−→
I ,
−→
F and WM1 & De�nition of

• }}
(
∑

x′ | x′ ∈ I : Lx′ C My)

B.9.1 Simpli�cation of L M-Expressions

Now, it remains to state and prove Lemma B.1.
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Lemma B.1 (Simpli�cation of L M-expressions). Let Σi, Σc and Σr be three disjoint

�nite sets such that at least one of them is nonempty. Let V be a �nite set of labels and

x, y ∈ V be labels. Let B be a �nite list of unary blocks each containing one element of

Σi∪{0, 1}, and binary blocks each containing one element of Σc as left operand and one

element of Σr as right operand, where all blocks use labels from V . Then, there exists a

�nite set of expressions {Lx′ C My}x′∈I where I ⊆ V ∪ {zc | z ∈ V } and the list C has the

following properties:

i. the set of labels used by C is V ′ and is at most V ∪ {zc | z ∈ V };

ii. there is no unary block of the form [z 0 ]z
′
in C1, where z, z′ ∈ V ′;

iii. there is exactly one unary block of the form [z 1 ]z in C1 for each z ∈ V ′;

iv. there is no other block of the form [z 1 ]z
′
in C1 except those de�ned by iii;

such that

` L
x

B
y

M = (
∑

x′ | x′ ∈ I : L
x′
C
y

M) .

Moreover, the size of (
∑

x′ | x′ ∈ I : Lx′ C My) is polynomial in the size of Lx B My.

Proof. First note that the set V can be restricted to the �e�ectively used labels� in V .
In fact, there is at most 2× |B1|+ 4× |B2|+ 2 labels in the set of e�ectively used labels
in V . Without loss of generality, suppose that V is exactly the set of e�ectively used
labels in V . So, the size of V is polynomial in the number of the operands used in
Lx B My.

The proof is done by four successive transformations of the expression Lx B My.

Transformation 1: Clone the Labels from V

We �rst �clone� all labels from V by de�ning the set of labels {zc | z ∈ V } in which
each zc is a fresh label. Let V ′ := V ∪ {zc | z ∈ V }. De�ne the �nite list B′ by the
following rules:

a. for a ∈ Σi ∪ {0, 1} and z, z′ ∈ V , the unary blocks [z a ]z
′
and [zc a ]z

′
are in (B′)1 if

[z a ]z
′
is in B1;
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b. for c ∈ Σc, r ∈ Σr and z, z′, w, w′ ∈ V , the binary blocks [z c ↓wc
↑w′ r ]z

′
and

[zc c ↓wc
↑w′ r ]z

′
are in (B′)2 if [z c ↓w ↑

w′ r ]z
′
is in B2.

It is easy to see that for every z, z′ ∈ V

` L
z

B′
z′

M = L
zc

B′
z′

M . (B.7)

We prove it.

Lzc B
′ Mz
′

= {{ Equation (3.22) }}
(
∑

m | [zc m ]z
′
∈ (B′)1 : m)

+ (
∑

m, v | [zc m ]v ∈ (B′)1 : m · Lv B′ M
z′)

+ (
∑

c, w, r, w′ | [zc c ↓wc
↑w′ r ]z

′
∈ (B′)2 : c · Lwc

B′ Mw
′
· r)

+ (
∑

c, w, r, w′, v | [zc c ↓wc
↑w′ r ]v ∈ (B′)2 : c · Lwc

B′ Mw
′
· r · Lv B′ M

z′)

= {{ De�nition of B′, conditions a and b: [zc m ]v ∈ (B′)1 ⇔ [zm ]v ∈ (B′)1 and
[zc c ↓wc

↑w′ r ]v ∈ (B′)2 ⇔ [z c ↓wc
↑w′ r ]v ∈ (B′)2 }}

(
∑

m | [zm ]z
′
∈ (B′)1 : m)

+ (
∑

m, v | [zm ]v ∈ (B′)1 : m · Lv B′ M
z′)

+ (
∑

c, w, r, w′ | [z c ↓wc
↑w′ r ]z

′
∈ (B′)2 : c · Lwc

B′ Mw
′
· r)

+ (
∑

c, w, r, w′, v | [z c ↓wc
↑w′ r ]v ∈ (B′)2 : c · Lwc

B′ Mw
′
· r · Lv B′ M

z′)

= {{ Equation (3.22) }}
Lz B′ M

z′

Using (B.7), it is simple to prove that

` L
x

B
y

M = L
xc

B′
y

M . (B.8)

For the case >, use (3.37) with the following function g : V ′ → V de�ned by g(z) := z

and g(zc) := z for all z ∈ V . This works since the list ĝ(B′) shrinked with idempotency
of blocks and swapping of blocks gives exactly B. For the case 6, by (B.7), it su�ces
to prove that

` L
x

B
y

M 6 L
x

B′
y

M .
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Use (3.5) with s(u,u′) := Lu B′ M
u′ for all u, u′ ∈ V . It su�ces to show that, for all

u, u′ ∈ V ,

(∧ m | [
u

m
u′

] ∈ B1 : m 6 L
u

B′
u′

M ) , (B.9)

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 : c · L
z

B′
w

M · r 6 L
u

B′
u′

M ) , (B.10)

(∧ v | v ∈ V : L
u

B′
v

M · L
v

B′
u′

M 6 L
u

B′
u′

M ) . (B.11)

Inequations (B.9) are proved easily by condition a of the de�nition of B′ stating that
[um ]u

′
∈ B1 ⇔ [um ]u

′
∈ (B′)1 and axiom (3.2). Inequations (B.11) are proved easily

with axiom (3.4).

For inequations (B.10),

(∧ c, z, r, w | [u c ↓z ↑
w r ]u

′
∈ B2 : c · Lz B′ M

w · r 6 Lu B′ M
u′)

↔ {{ De�nition of B′, condition b: [u c ↓z ↑
w r ]u

′
∈ B2 ⇔ [u c ↓zc ↑

w r ]u
′
∈

(B′)2 }}
(∧ c, z, r, w | [u c ↓zc ↑

w r ]u
′
∈ (B′)2 : c · Lz B′ M

w · r 6 Lu B′ M
u′)

↔ {{ Equation (B.7) }}
(∧ c, z, r, w | [u c ↓zc ↑

w r ]u
′
∈ (B′)2 : c · Lzc B

′ Mw · r 6 Lu B′ M
u′)

� ( Axiom (3.3) . )

Transformation 2: Add Self-Looping Unary Blocks Containing 1 For All

Labels

The second transformation of the expression Lx B My is to simply add unary blocks of
the form [z 1 ]z for every z ∈ V ′. This is possible without �modifying the language�
because of the previous cloning step. The previous step ensures that xc 6= y and, for
every [z c ↓w ↑

w′ r ]z
′
∈ (B′)2, w 6= w′ since w ∈ {uc | u ∈ V } and w′ ∈ V .

De�ne D to be a �nite list containing one, and only one, unary block [z 1 ]z for all
z ∈ V ′. We prove that

` L
xc

B′
y

M = L
xc

B′,D
y

M . (B.12)
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The case 6 is direct by (3.26). For the case >, use (3.5) with

s(u,u′) :=

{
Lu B′ M

u′ if u 6= u′,

1 + Lu B′ M
u′ otherwise ,

for all u, u′ ∈ V ′. It su�ces to show that, for all u, u′ ∈ V ′ such that u 6= u′,

(∧ m | [
u

m
u′

] ∈ (B′,D)1 : m 6 L
u

B′
u′

M ) , (B.13)

(∧ m | [
u

m
u

] ∈ (B′,D)1 : m 6 1 + L
u

B′
u

M) , (B.14)

(∧ c, z, r, w | [
u

c ↓
zc

w

↑ r
u′

] ∈ (B′,D)2 : c · L
zc

B′
w

M · r 6 L
u

B′
u′

M ) , (B.15)

(∧ c, z, r, w | [
u

c ↓
zc

w

↑ r
u

] ∈ (B′,D)2 : c · L
zc

B′
w

M · r 6 1 + L
u

B′
u

M) , (B.16)

(∧ v | v ∈ V ′ ∧ v 6= u ∧ v 6= u′ : L
u

B′
v

M · L
v

B′
u′

M 6 L
u

B′
u′

M ) , (B.17)

(1 + L
u

B′
u

M) · L
u

B′
u′

M 6 L
u

B′
u′

M , (B.18)

L
u

B′
u′

M · (1 + L
u′
B′

u′

M ) 6 L
u

B′
u′

M , (B.19)

(1 + L
u

B′
u

M) · (1 + L
u

B′
u

M) 6 1 + L
u

B′
u

M . (B.20)

To ease the understanding of the proofs, the concept of self-looping unary block is
used.

De�nition B.2 (Self-looping unary block). A unary block [um ]u
′
is called self-looping

if u = u′. Otherwise, it is called non-self-looping. �

For (B.13), �rst note that D does not contain a non-self-looping unary block. So,
for every m ∈ Σi ∪ {0, 1} and u, u′ ∈ V ′ such that u 6= u′,

[
u

m
u′

] ∈ (B′,D)1 ⇔ [
u

m
u′

] ∈ (B′)1 .

Then, to prove (B.13), it su�ces to prove that, for every m ∈ Σi ∪ {0, 1} such that
[um ]u

′
∈ (B′)1,

m 6 L
u

B′
u′

M .

This is direct by axiom (3.2).
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For (B.14), �rst note that D contain one and only one self-looping unary block [u 1 ]u.
So, to prove (B.14), it su�ces to prove

1 6 1 + L
u

B′
u

M ∧ (∧ m | [
u

m
u

] ∈ (B′)1 : m 6 1 + L
u

B′
u

M) .

The �rst formula is trivial by Kleene algebra. For the second formula, note that, by
Kleene algebra, it su�ces to prove that

(∧ m | [
u

m
u

] ∈ (B′)1 : m 6 L
u

B′
u

M) .

This is direct by axiom (3.2).

For (B.15), �rst note that D does not contain a binary block. So, for every c ∈ Σc,
r ∈ Σr, z ∈ V and w ∈ V ′,

[
u

c ↓
zc

w

↑ r
u′

] ∈ (B′,D)2 ⇔ [
u

c ↓
zc

w

↑ r
u′

] ∈ (B′)2 .

Then, to prove (B.15), it su�ces to prove that, for every c ∈ Σc, r ∈ Σr, z ∈ V and
w ∈ V ′ such that [u c ↓zc ↑

w r ]u
′
∈ (B′)2,

c · L
zc

B′
w

M · r 6 L
u

B′
u′

M .

This is direct by axiom (3.3).

For (B.16), �rst note that, by Kleene algebra, it su�ces to prove that

(∧ c, z, r, w | [
u

c ↓
zc

w

↑ r
u

] ∈ (B′,D)2 : c · L
zc

B′
w

M · r 6 L
u

B′
u

M) . (B.21)

The proof of (B.21) is similar to the proof of (B.15).

Inequations (B.17) are proved easily with axiom (3.4).

For (B.18),

(1 + Lu B′ M
u) · Lu B′ M

u′

= {{ Distributivity of · over + & Identity of · }}
Lu B′ M

u′ + Lu B′ M
u · Lu B′ M

u′

= {{ Axiom (3.4) and de�nition of 6 }}
Lu B′ M

u′ .
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The proof of (B.19) is similar to the proof of (B.18).

For (B.20),

(1 + Lu B′ M
u) · (1 + Lu B′ M

u)

= {{ Distributivity of · over + }}
1 · 1 + 1 · Lu B′ M

u + Lu B′ M
u ·1 + Lu B′ M

u · Lu B′ M
u

= {{ Identity of · & Idempotency of + }}
1 + Lu B′ M

u + Lu B′ M
u · Lu B′ M

u

= {{ Axiom (3.4) and de�nition of 6 }}
1 + Lu B′ M

u .

Transformation 3: Remove All Unary Blocks Containing 0

The third transformation of the expression Lx B My is simply to remove unary blocks of
the form [z 0 ]z

′
for every z, z′ ∈ V ′. Let B′′ be the list B′ in which every unary block of

the form [z 0 ]z
′
for every z, z′ ∈ V ′ is removed. By (3.36),

` L
xc

B′,D
y

M = L
xc

B′′,D
y

M . (B.22)

Note that it is always possible to remove such a block using (3.36) since there is at least
one block in D.

Transformation 4: Remove All Non-Self-Looping Unary Blocks Containing 1

The fourth transformation of the expression Lx B My is to get rid of unary blocks of the
form [z 1 ]z

′
such that z 6= z′. This is done by simulating re�exive transitive closure over

unary blocks of the form [z 1 ]z
′
for every z, z′ ∈ V ′.

De�ne the function 1tnB′′,D : V ′ → 2V
′
(relative to the list of blocks B′′,D) that

calculates the set of labels accessible from a received label by going �backward� in the
list B′′,D through exactly n blocks of the form [z 1 ]z

′
. So, for all labels z ∈ V ′, 1tnB′′,D(z)

is de�ned by induction on n:

• Base case n = 0: 1t0
B′′,D(z) := {z}.
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• Induction case n > 0:

1tn+1
B′′,D(z) := {z′ ∈ V ′ | (∃ z′′ |: [

z′′
1
z

] ∈ (B′′,D)1 ∧ z′ ∈ 1tnB′′,D(z′′))} .

Note that, for all z ∈ V ′ and n > 0, every z′ in 1tnB′′,D(z) is also in 1tn+1
B′′,D(z) (this is

trivial since [z 1 ]z is always in D1).

Now, de�ne 1t∗B′′,D : V ′ → 2V
′
for all z ∈ V ′ by

1t∗B′′,D(z) := (∪ n | n ∈ N : 1tnB′′,D(z)) .

Note that, although this union is in�nite, the calculation of 1t∗B′′,D always stabilizes in
a polynomial time in the size of B′′,D and the number of labels in V ′.

De�ne the �nite list B′′′ by the following rules:

a. for z ∈ V ′, the unary block [z 1 ]z is in (B′′′)1;

b. for a ∈ Σi and z, z′ ∈ V ′, the unary block [z a ]z
′
is in (B′′′)1 if there exists z′′ ∈ V ′

such that [z a ]z
′′
is in (B′′,D)1 and z′′ ∈ 1t∗B′′,D(z′);

c. for c ∈ Σc, r ∈ Σr and z, z′, w, w′ ∈ V ′, the binary block [z c ↓w ↑
w′ r ]z

′
is in (B′′′)2 if

there exists z′′, w′′ ∈ V ′ such that [z c ↓w′′ ↑
w′ r ]z

′′
is in (B′′,D)2, w′′ ∈ 1t∗B′′,D(w) and

z′′ ∈ 1t∗B′′,D(z′).

Note that condition b is de�ned only for every a ∈ Σi and not for a = 1.

We now prove that

` L
xc

B′′,D
y

M = (
∑

x′ | xc ∈ 1t∗B′′,D(x′) : L
x′
B′′′

y

M) . (B.23)

Proof of the case 6 of (B.23): We use axiom (3.14) with

s(u,u′) := (
∑

u′′ | u ∈ 1t∗B′′,D(u′′) : L
u′′
B′′′

u′

M )
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for all u, u′ ∈ V ′. It su�ces to prove that, for all u, u′ ∈ V ′,

(∧ m | [
u

m
u′

] ∈ (B′′,D)1 : m 6 s(u,u′)) , (B.24)

(∧ m, v | [
u

m
v

] ∈ (B′′,D)1 : m · s(v,u′) 6 s(u,u′)) , (B.25)

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ (B′′,D)2 : c · s(z,w) · r 6 s(u,u′)) , (B.26)

(∧ c, z, r, w, v | [
u

c ↓
z

w

↑ r
v

] ∈ (B′′,D)2 : c · s(z,w) · r · s(v,u′) 6 s(u,u′)) . (B.27)

For (B.24), we suppose [um ]u
′
∈ (B′′,D)1 and we prove that

m 6 (
∑

u′′ | u ∈ 1t∗B′′,D(u′′) : L
u′′
B′′′

u′

M ) .

Let us prove this by case analysis on m. The case m = 0 does not exist by the third
transformation (see Section B.9.1).

For the case m = 1, since [u 1 ]u
′
∈ (B′′,D)1, then u ∈ 1t∗B′′,D(u′). So, by Kleene

algebra, it su�ces to prove

1 6 L
u′
B′′′

u′

M .

This is direct from condition a of the de�nition of B′′′ and axiom (3.2).

For the case m ∈ Σi, by the de�nition of 1t∗B′′,D stating that u ∈ 1t∗B′′,D(u) and by
Kleene algebra, it su�ces to prove

m 6 L
u

B′′′
u′

M .

By the de�nition of 1t∗B′′,D stating that u′ ∈ 1t∗B′′,D(u′), and by condition b of the
de�nition of B′′′,

[
u

m
u′

] ∈ (B′′,D)1 ⇒ [
u

m
u′

] ∈ (B′′′)1 .

So, by axiom (3.2), m 6 Lu B′′′ M
u′ .

For (B.25), we suppose [um ]v ∈ (B′′,D)1 and we prove that

m · (
∑

v′ | v ∈ 1t∗B′′,D(v′) : L
v′
B′′′

u′

M ) 6 (
∑

u′′ | u ∈ 1t∗B′′,D(u′′) : L
u′′
B′′′

u′

M ) .
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By Kleene algebra (distributivity of · over + and the law p1+p2 6 p3 ↔ p1 6 p3 ∧ p2 6
p3), it su�ces to prove independently that, for all v′ ∈ V ′ such that v ∈ 1t∗B′′,D(v′),

m · L
v′
B′′′

u′

M 6 (
∑

u′′ | u ∈ 1t∗B′′,D(u′′) : L
u′′
B′′′

u′

M ) .

Let us prove this by case analysis on m. The case m = 0 does not exist by the third
transformation (see Section B.9.1).

For the casem = 1, since [u 1 ]v ∈ (B′′,D)1 and v ∈ 1t∗B′′,D(v′), then, by the de�nition
of 1t∗B′′,D, u ∈ 1t∗B′′,D(v′). So, by Kleene algebra, it su�ces to prove

1 · L
v′
B′′′

u′

M 6 L
v′
B′′′

u′

M .

This is trivial by identity of ·.

For the case m ∈ Σi, by the de�nition of 1t∗B′′,D stating that u ∈ 1t∗B′′,D(u) and by
Kleene algebra, it su�ces to prove that

m · L
v′
B′′′

u′

M 6 L
u

B′′′
u′

M .

Since [um ]v ∈ (B′′,D)1 and v ∈ 1t∗B′′,D(v′), then, by condition b of the de�nition of B′′′,
[um ]v

′
∈ (B′′′)1. So, by axiom (3.2), m 6 Lu B′′′ M

v′ . Then, by Kleene algebra, it su�ces
to prove that

L
u

B′′′
v′

M · L
v′
B′′′

u′

M 6 L
u

B′′′
u′

M .

This is direct from axiom (3.4).

For (B.26), by Kleene algebra (distributivity of · over + and the law p1 +p2 6 p3 ↔
p1 6 p3 ∧ p2 6 p3), it su�ces to prove independently that, for all c ∈ Σc, r ∈ Σr and
z, z′, w ∈ V ′ such that [u c ↓z ↑

w r ]u
′
∈ (B′′,D)2 and z ∈ 1t∗B′′,D(z′),

c · L
z′
B′′′

w

M · r 6 (
∑

u′′ | u ∈ 1t∗B′′,D(u′′) : L
u′′
B′′′

u′

M ) .

By the de�nition of 1t∗B′′,D stating that u ∈ 1t∗B′′,D(u) and by Kleene algebra, it su�ces
to prove that

c · L
z′
B′′′

w

M · r 6 L
u

B′′′
u′

M . (B.28)

Since [u c ↓z ↑
w r ]u

′
∈ (B′′,D)2 and z ∈ 1t∗B′′,D(z′) by hypotheses, and u′ ∈ 1t∗B′′,D(u′) by

the de�nition of 1t∗B′′,D, then, by condition c of the de�nition of B′′′, [u c ↓z′ ↑
w r ]u

′
∈

(B′′′)2. So, inequation (B.28) is proved by axiom (3.3).
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For (B.27), by Kleene algebra (distributivity of · over + and the law p1 +p2 6 p3 ↔
p1 6 p3 ∧ p2 6 p3), it su�ces to prove independently that, for all c ∈ Σc, r ∈ Σr and
z, z′, w, v, v′ ∈ V ′ such that [u c ↓z ↑

w r ]v ∈ (B′′,D)2, z ∈ 1t∗B′′,D(z′) and v ∈ 1t∗B′′,D(v′),

c · L
z′
B′′′

w

M · r · L
v′
B′′′

u′

M 6 (
∑

u′′ | u ∈ 1t∗B′′,D(u′′) : L
u′′
B′′′

u′

M ) .

By the de�nition of 1t∗B′′,D stating that u ∈ 1t∗B′′,D(u) and by Kleene algebra, it su�ces
to prove that

c · L
z′
B′′′

w

M · r · L
v′
B′′′

u′

M 6 L
u

B′′′
u′

M . (B.29)

Since [u c ↓z ↑
w r ]v ∈ (B′′,D)2, z ∈ 1t∗B′′,D(z′) and v ∈ 1t∗B′′,D(v′) by hypotheses, then, by

condition c of the de�nition of B′′′, [u c ↓z′ ↑
w r ]v

′
∈ (B′′′)2. So, by axiom (3.3),

c · L
z′
B′′′

w

M · r 6 L
u

B′′′
v′

M .

Then, to prove inequation (B.29), by Kleene algebra, it su�ces to prove that

L
u

B′′′
v′

M · L
v′
B′′′

u′

M 6 L
u

B′′′
u′

M .

This is direct from axiom (3.4).

Proof of the case > of (B.23): First, note that the following results hold. For every
z, z′, z′′ ∈ V ′ such that z ∈ 1t∗B′′,D(z′),

` 1 6 L
z

B′′,D
z′

M , (B.30)

` L
z′
B′′,D

z′′

M 6 L
z

B′′,D
z′′

M . (B.31)

We prove (B.30). By the hypothesis z ∈ 1t∗B′′,D(z′) and the de�nition of 1t∗B′′,D, there
exists at least a n ∈ N such that z ∈ 1tnB′′,D(z′). Let k be that number. In the case that
k = 0, then, by the de�nition of 1t0

B′′,D, z = z′ and so

` 1 6 L
z

B′′,D
z

M

since [z 1 ]z ∈ D1 and axiom (3.2). In the case that k > 1, take b1b2 . . . bk a correct
travelling starting with z, ending with z′ in which each bi is a unary block of the form
[wi

1 ]wi+1 for i ∈ {1, 2, . . . , k} and wi, wi+1 ∈ V ′. Of course, w1 = z and wk+1 = z′. It is
easy to see that such a travelling b1b2 . . . bk always exists by the fact that z ∈ 1tnB′′,D(z′).
So,
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1

= {{ Identity of ·, k − 1 times }}
1 · 1 · · · · · 1︸ ︷︷ ︸

total of k subexpressions

6 {{ Since each bi is a unary block of the form [wi
1 ]wi+1 for i ∈ {1, 2, . . . , k} and

wi, wi+1 ∈ V ′, then 1 6 Lwi
B′′,D Mwi+1 by axiom (3.2). & Monotonicity of

· }}
Lw1
B′′,D Mw2 · Lw2

B′′,D Mw3 · · · · · Lwk
B′′,D Mwk+1︸ ︷︷ ︸

total of k subexpressions

6 {{ Axiom (3.4), k − 1 times & Monotonicity of · }}
Lw1
B′′,D Mwk+1

= {{ By de�nition, w1 = z and wk+1 = z′ }}
Lz B′′,D Mz

′
.

We now prove (B.31).

Lz′ B′′,D Mz
′′

= {{ Identity of · }}
1 · Lz′ B′′,D Mz

′′

6 {{ Hypothesis: z ∈ 1t∗B′′,D(z′) & Inequation (B.30) & Monotonicity of · }}
Lz B′′,D Mz

′
· Lz′ B′′,D Mz

′′

6 {{ Axiom (3.4) }}
Lz B′′,D Mz

′′

To prove the case > of (B.23), we use Kleene algebra to note that p1 + p2 6 p3 ↔
p1 6 p3 ∧ p2 6 p3. So, it su�ces to prove independently that

` L
x′
B′′′

y

M 6 L
xc

B′′,D
y

M

for all x′ ∈ V ′ such that xc ∈ 1t∗B′′,D(x′). Let x′′ be such a x′. By (B.31) and transitivity
of 6, it su�ces to prove that

` L
x′′
B′′′

y

M 6 L
x′′
B′′,D

y

M .
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We use (3.5) with s(u,u′) := Lu B′′,D Mu
′
for all u, u′ ∈ V ′. So, it su�ces to prove that,

for all u, u′ ∈ V ′,

(∧ m | [
u

m
u′

] ∈ (B′′′)1 : m 6 L
u

B′′,D
u′

M ) , (B.32)

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ (B′′′)2 : c · L
z

B′′,D
w

M · r 6 L
u

B′′,D
u′

M ) , (B.33)

(∧ v | v ∈ V ′ : L
u

B′′,D
v

M · L
v

B′′,D
u′

M 6 L
u

B′′,D
u′

M ) . (B.34)

For inequations (B.32), we suppose [um ]u
′
∈ (B′′′)1 and we prove

m 6 L
u

B′′,D
u′

M .

Let us prove this by case analysis on m. The case m = 0 does not exist by the de�nition
of B′′′.

For the case m = 1, by condition a of the de�nition of B′′′, it follows that u = u′.
By the de�nition of D, [u 1 ]u ∈ (B′′,D)1. So, the result follows by axiom (3.2).

For the casem ∈ Σi, by the hypothesis that [um ]u
′
∈ (B′′′)1 and by condition b of the

de�nition of B′′′, there exists u′′ ∈ V ′ such that [um ]u
′′
∈ (B′′,D)1 and u′′ ∈ 1t∗B′′,D(u′).

So,

m

= {{ Identity of · }}
m · 1

6 {{ Hypothesis: [um ]u
′′
∈ (B′′,D)1 & Axiom (3.2) & Monotonicity of · }}

Lu B′′,D Mu
′′
· 1

6 {{ Hypothesis: u′′ ∈ 1t∗B′′,D(u′) & Inequation (B.30) & Monotonicity of · }}
Lu B′′,D Mu

′′
· Lu′′ B′′,D Mu

′

6 {{ Axiom (3.4) }}
Lu B′′,D Mu

′
.

For inequations (B.33), we suppose [u c ↓z ↑
w r ]u

′
∈ (B′′′)2 and we prove

c · L
z

B′′,D
w

M · r 6 L
u

B′′,D
u′

M .
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By the hypothesis that [u c ↓z ↑
w r ]u

′
∈ (B′′′)2 and by condition c of the de�nition of

B′′′, there exists u′′, z′ ∈ V ′ such that [u c ↓z′ ↑
w r ]u

′′
∈ (B′′,D)2, z′ ∈ 1t∗B′′,D(z) and

u′′ ∈ 1t∗B′′,D(u′). So,

c · Lz B′′,D Mw · r
= {{ Identity of · }}

c · 1 · Lz B′′,D Mw · r · 1
6 {{ Hypotheses: z′ ∈ 1t∗B′′,D(z) and u′′ ∈ 1t∗B′′,D(u′) & Inequation (B.30) &

Monotonicity of · }}
c · Lz′ B′′,D Mz · Lz B′′,D Mw · r · Lu′′ B′′,D Mu

′

6 {{ Axiom (3.4) & Monotonicity of · }}
c · Lz′ B′′,D Mw · r · Lu′′ B′′,D Mu

′

6 {{ Hypothesis: [u c ↓z′ ↑
w r ]u

′′
∈ (B′′,D)2 & Axiom (3.3) & Monotonicity of

· }}
Lu B′′,D Mu

′′
· Lu′′ B′′,D Mu

′

6 {{ Axiom (3.4) }}
Lu B′′,D Mu

′
.

Inequations (B.34) are direct from axiom (3.4). �



Appendix C

Proof of the Elimination of

ε-Transitions (Theorem 4.7)

This proof is done by two successive transformations. First, we get rid of transitions
of the form (s, ε,⊥; s′,⊥) for all s, s′ ∈ S in Theorem C.1. Second, transitions of the
form (s, ε, d; s′,⊥) for all s, s′ ∈ S and d ∈ Γ are removed in Theorem C.2. Note that,
in our equations between matrices, we sometimes take the liberty of having di�erent
entry notation for the matrices. However, the correspondence between the notations
will always be clear from the context and, of course, the matrices will always be of the
same size.

C.1 Step 1: Elimination of ε-Transitions of the Form

(s, ε,⊥; s′,⊥) for All s, s′ ∈ S

Theorem C.1 (Elimination of ε-transitions of the form (s, ε,⊥; s′,⊥)). Let Σi, Σc

and Σr be three disjoint �nite sets such that at least one of them is nonempty. Let

A := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F ) be a semi-visibly pushdown automaton. Let

(
−→
I ,WM,Tc,T⊥, ε⊥, ε6⊥,

−→
F )

be the algebraic encoding of A. Then, there exists a S-VPA A′ := (S ′,Σi,Σc,Σr,Γ
′ ∪

{⊥}, δ′, I ′, F ′) having an algebraic encoding

(
−→
I ′ ,WM′,T′c,T

′
⊥, ε

′
⊥, ε

′
6⊥,
−→
F ′)
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such that δ′ does not contain ε-transitions of the form (s, ε,⊥; s′,⊥) for all s, s′ ∈ S ′
and

`
−→
I t • (T⊥+WM+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F

=
−→
I ′ t • (T′⊥+WM′+ ε′⊥+ (T′c •WM′)+ • ε′6⊥)? • (T′c •WM′)? •

−→
F ′ .

(C.1)

Also, A′ has at most twice the number of states of A.

Proof. De�ne the function εt∗A : S → 2S by

εt∗A(s) := {s′ ∈ S | ` ε?⊥[s′, s] = 1}

for all s ∈ S. This function simulates the re�exive transitive closure of transitions
of the form (t1, ε,⊥; t2,⊥), but reversed: an expression s′ ∈ εt∗A(s) means that it is
possible to start from state s′ and reach state s by using only ε-transitions of the form
(t1, ε,⊥; t2,⊥). Note that every entry (s′, s) of ε?⊥ can be reduced to 1 or 0 by the
de�nition of ε⊥, the de�nition of ?, zero of ·, identity of · and laws: 0∗ = 1 and 1∗ = 1.

The automaton has states of the form s⊥ and s 6⊥ for each s ∈ S. The idea is just to
encode in a state an information stating if the top of the stack is the bottom-of-stack
symbol (this is represented by s⊥) or not (this is represented by s 6⊥).

De�ne the semi-visibly pushdown automaton

A′ := ({s⊥, s6⊥ | s ∈ S},Σi,Σc,Σr, {d⊥, d6⊥ | d ∈ Γ} ∪ {⊥}, δ′, I ′, {f⊥, f6⊥ | f ∈ F})

where I ′ := {s⊥ | (∃ s′ | s′ ∈ I : s′ ∈ εt∗A(s))}, and

δ′ := {(s⊥, a, λ; s′⊥, λ) | a ∈ Σi ∧ (∃ s′′ | s′′ ∈ εt∗A(s′) : (s, a, λ; s′′, λ) ∈ δ)}
∪ {(s 6⊥, a, λ; s′6⊥, λ) | a ∈ Σi ∧ (s, a, λ; s′, λ) ∈ δ}
∪ {(s⊥, c, λ; s′6⊥, d⊥), (s 6⊥, c, λ; s′6⊥, d6⊥) | c ∈ Σc ∧ (s, c, λ; s′, d) ∈ δ}
∪ {(s 6⊥, r, d⊥; s′⊥, λ) | r ∈ Σr ∧ (∃ s′′ | s′′ ∈ εt∗A(s′) : (s, r, d; s′′, λ) ∈ δ)}
∪ {(s 6⊥, r, d 6⊥; s′6⊥, λ) | r ∈ Σr ∧ (s, r, d; s′, λ) ∈ δ}
∪ {(s⊥, r,⊥; s′⊥,⊥) | r ∈ Σr ∧ (∃ s′′ | s′′ ∈ εt∗A(s′) : (s, r,⊥; s′′,⊥) ∈ δ)}
∪ {(s 6⊥, ε, d 6⊥; s′⊥,⊥), (s 6⊥, ε, d⊥; s′⊥,⊥) | (∃ s′′ | s′′ ∈ εt∗A(s′) : (s, ε, d; s′′,⊥) ∈ δ)} .

The algebraic encoding of this automaton is([ −→
I • ε?⊥−→

0

]
,WM′,

[
0 Tc

0 Tc

]
,

[
T⊥ • ε?⊥ 0

0 0

]
,0,

[
0 0

ε 6⊥ • ε?⊥ 0

]
,

[ −→
F
−→
F

])
.

First, two results are given. Using these results, the proof of (C.1) is presented.
Then, the two results are proved.
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To ease the proof of (C.1), recall that the matrix WM is de�ned with respect to a
list of blocks B encoding the structure of the semi-visibly pushdown automaton (except
for ε-transitions). We �rst de�ne a list of blocks C over labels S ∪ {sc | s ∈ S} (where
each label sc is fresh) that is very similar to B but does not have unary blocks [s 1 ]s for
s ∈ S (and binary blocks are a little di�erent). In fact, the list of blocks C is de�ned
by the following propositions:

(a) [sc 1 ]sc ∈ C1 for all s ∈ S;

(b) [s a ]s
′
∈ C1 and [sc a ]s

′
c ∈ C1 for all s, s′ ∈ S, a ∈ Σi and [s a ]s

′
∈ B1;

(c) [s c ↓tc ↑
t′c r ]s

′
∈ C2 and [sc c ↓tc ↑

t′c r ]s
′
c ∈ C2 for all s, s′, t, t′ ∈ S, c ∈ Σc, r ∈ Σr and

[s c ↓t ↑
t′ r ]s

′
∈ B2.

Note that
`WM = I+WMc (C.2)

where WMc is a matrix of size |S| × |S| in which each entry (s, s′) ∈ S × S is exactly
Ls C Ms

′
.

Also, to ease the proof of (C.1), note that

`WM′ =

[
(WMc • ε?⊥)? 0

0 WM

]
. (C.3)

Now, it is possible to prove (C.1).

[ −→
I t • ε?⊥

−→
0
]
•

([
T⊥ • ε?⊥ 0

0 0

]
+WM′+ 0

+
([

0 Tc

0 Tc

]
•WM′

)+

•

[
0 0

ε 6⊥ • ε?⊥ 0

]?

•

([
0 Tc

0 Tc

]
•WM′

)?

•

[ −→
F
−→
F

]
= {{ Identity of + & Equation (C.3) }}
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[ −→
I t • ε?⊥

−→
0
]
•

([
T⊥ • ε?⊥ 0

0 0

]
+
[

(WMc • ε?⊥)? 0

0 WM

]

+
([

0 Tc

0 Tc

]
•

[
(WMc • ε?⊥)? 0

0 WM

])+

•

[
0 0

ε 6⊥ • ε?⊥ 0

]?

•

([
0 Tc

0 Tc

]
•

[
(WMc • ε?⊥)? 0

0 WM

])?

•

[ −→
F
−→
F

]
= {{ De�nition of •, + and ? & Kleene algebra }}[ −→

I t • ε?⊥
−→
0
]
•

([
T⊥ • ε?⊥ 0

0 0

]
+
[

(WMc • ε?⊥)? 0

0 WM

]

+
[
0 (Tc •WM)+

0 (Tc •WM)+

]
•

[
0 0

ε 6⊥ • ε?⊥ 0

])?

•

[
I (Tc •WM)+

0 (Tc •WM)?

]
•

[ −→
F
−→
F

]
= {{ De�nition of • and + }}[ −→

I t • ε?⊥
−→
0
]
•

[
T⊥ • ε?⊥+ (WMc • ε?⊥)?+ (Tc •WM)+ • ε 6⊥ • ε?⊥ 0

(Tc •WM)+ • ε 6⊥ • ε?⊥ WM

]?
•

[
I (Tc •WM)+

0 (Tc •WM)?

]
•

[ −→
F
−→
F

]
= {{ De�nition of ? & Kleene algebra }}

[ −→
I t • ε?⊥

−→
0
]
•


(T⊥ • ε?⊥+ (WMc • ε?⊥)?

+ (Tc •WM)+ • ε 6⊥ • ε?⊥)?
0

WM? • (Tc •WM)+ • ε 6⊥ • ε?⊥•
(T⊥ • ε?⊥+ (WMc • ε?⊥)?

+ (Tc •WM)+ • ε 6⊥ • ε?⊥)?
WM?


•

[
I (Tc •WM)+

0 (Tc •WM)?

]
•

[ −→
F
−→
F

]
= {{ De�nition of • & Kleene algebra }}[ −→

I t • ε?⊥ • (T⊥ • ε?⊥+ (WMc • ε?⊥)?+ (Tc •WM)+ • ε 6⊥ • ε?⊥)?
−→
0
]

•

[
(Tc •WM)? •

−→
F

(Tc •WM)? •
−→
F

]
= {{ De�nition of • & Kleene algebra }}

−→
I t • ε?⊥ • (T⊥ • ε?⊥+ (WMc • ε?⊥)?+ (Tc •WM)+ • ε 6⊥ • ε?⊥)? • (Tc •WM)? •

−→
F

= {{ Kleene algebra: (p∗ + q)∗ = (p+ q)∗ }}
−→
I t • ε?⊥ • (T⊥ • ε?⊥+WMc • ε?⊥+ (Tc •WM)+ • ε 6⊥ • ε?⊥)? • (Tc •WM)? •

−→
F

= {{ Distributivity of · over + }}
−→
I t • ε?⊥ • ((T⊥+WMc+ (Tc •WM)+ • ε 6⊥) • ε?⊥)? • (Tc •WM)? •

−→
F
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= {{ Denesting rule }}
−→
I t • (T⊥+WMc+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F

= {{ Kleene algebra: p∗ = (1 + p)∗ }}
−→
I t • (T⊥+ I+WMc+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F

= {{ Equation (C.2) }}
−→
I t • (T⊥+WM+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F �

C.1.1 Proof of (C.2)

It is routine to prove (C.2).

Proof of the case > of (C.2): It is trivial since I 6WM by Lemma 4.5, property i,
and WMc 6WM by (3.37) using the substitution function g : S ∪ {sc | s ∈ S} → S

de�ned by g(s) := s and g(sc) := s, and noting that ĝ(C) shrinked with idempotency
of blocks and swapping of blocks gives exactly B.

Proof of the case 6 of (C.2): First note that for all s, s′ ∈ S,

` L
s

C
s′

M 6 L
sc

C
s′c

M (C.4)

by (3.37) using the substitution function h : S ∪ {sc | s ∈ S} → S ∪ {sc | s ∈ S}
de�ned by h(s) := sc and h(sc) := sc, and noting that ĥ(C) shrinked with idempotency
of blocks and swapping of blocks gives a sublist of C. So, inequation (C.4) follows
by (3.26) and (3.30).

To prove the case 6 of (C.2) we use (3.5) with

s(u,u′) :=

{
Lu C Mu

′
if u 6= u′,

1 + Lu C Mu
′

otherwise,

for all u, u′ ∈ S. It su�ces to prove that, for all u, u′ ∈ S such that u 6= u′,

(∧ m | [
u

m
u′

] ∈ B1 : m 6 L
u

C
u′

M ) , (C.5)

(∧ m | [
u

m
u

] ∈ B1 : m 6 1 + L
u

C
u

M) , (C.6)
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(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u′

] ∈ B2 ∧ z 6= w : c · L
z

C
w

M · r 6 L
u

C
u′

M ) , (C.7)

(∧ c, z, r | [
u

c ↓
z

z

↑ r
u′

] ∈ B2 : c · (1 + L
z

C
z

M) · r 6 L
u

C
u′

M ) , (C.8)

(∧ c, z, r, w | [
u

c ↓
z

w

↑ r
u

] ∈ B2 ∧ z 6= w : c · L
z

C
w

M · r 6 1 + L
u

C
u

M) , (C.9)

(∧ c, z, r | [
u

c ↓
z

z

↑ r
u

] ∈ B2 : c · (1 + L
z

C
z

M) · r 6 1 + L
u

C
u

M) , (C.10)

(∧ v | v ∈ S ∧ v 6= u ∧ v 6= u′ : L
u

C
v

M · L
v

C
u′

M 6 L
u

C
u′

M ) , (C.11)

(1 + L
u

C
u

M) · L
u

C
u′

M 6 L
u

C
u′

M , (C.12)

L
u

C
u′

M · (1 + L
u′
C
u′

M ) 6 L
u

C
u′

M , (C.13)

(1 + L
u

C
u

M) · (1 + L
u

C
u

M) 6 1 + L
u

C
u

M . (C.14)

For inequations (C.5), we suppose [um ]u
′
∈ B1 and we prove

m 6 L
u

C
u′

M .

Since u 6= u′ by hypothesis, then, by the de�nition of B, m ∈ Σi. So, by condition b of
the de�nition of C, [um ]u

′
∈ C1. Then, the proof follows from axiom (3.2).

For inequations (C.6), we suppose [um ]u ∈ B1 and we prove

m 6 1 + L
u

C
u

M .

Let us prove this by case analysis on m. The case m = 0 does not exist by the
de�nition of B. The case m = 1 is trivial by Kleene algebra (after all, 1 6 1). For the
case m ∈ Σi, by condition b of the de�nition of C, [um ]u ∈ C1. Then, the proof follows
from axiom (3.2).

For inequations (C.7), we suppose [u c ↓z ↑
w r ]u

′
∈ B2 and z 6= w, and we prove

c · L
z

C
w

M · r 6 L
u

C
u′

M .

By (C.4) and Kleene algebra, it su�ces to prove that

c · L
zc

C
wc

M · r 6 L
u

C
u′

M .
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Since [u c ↓z ↑
w r ]u

′
∈ B2 by hypothesis, then, by condition c of the de�nition of C,

[u c ↓zc ↑
wc r ]u

′
∈ C2. So, the proof follows from axiom (3.3).

For inequations (C.8), we suppose [u c ↓z ↑
z r ]u

′
∈ B2, and we prove

c · (1 + L
z

C
z

M) · r 6 L
u

C
u′

M .

By (C.4) and Kleene algebra, it su�ces to prove that

c · (1 + L
zc

C
zc

M) · r 6 L
u

C
u′

M .

Since [zc 1 ]zc ∈ C1 by condition a of the de�nition of C, then 1 6 Lzc C Mzc by axiom (3.2).
So, by de�nition of 6, it su�ces to prove that

c · L
zc

C
zc

M · r 6 L
u

C
u′

M .

Since [u c ↓z ↑
z r ]u

′
∈ B2 by hypothesis, then, by condition c of the de�nition of C,

[u c ↓zc ↑
zc r ]u

′
∈ C2. So, the proof follows from axiom (3.3).

For inequations (C.9), we suppose [u c ↓z ↑
w r ]u ∈ B2 and z 6= w, and we prove

c · L
z

C
w

M · r 6 1 + L
u

C
u

M .

By Kleene algebra, it su�ces to prove that

c · L
z

C
w

M · r 6 L
u

C
u

M .

The proof of this result is similar to the proof of (C.7).

For inequations (C.10), we suppose [u c ↓z ↑
z r ]u ∈ B2, and we prove

c · (1 + L
z

C
z

M) · r 6 1 + L
u

C
u

M .

By Kleene algebra, it su�ces to prove that

c · (1 + L
z

C
z

M) · r 6 L
u

C
u

M .

The proof of this result is similar to the proof of (C.8).

Inequations (C.11) are proved easily with axiom (3.4).

For (C.12),
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(1 + Lu C Mu) · Lu C Mu
′

= {{ Distributivity of · over + & Identity of · }}
Lu C Mu

′
+ Lu C Mu · Lu C Mu

′

= {{ Axiom (3.4) and de�nition of 6 }}
Lu C Mu

′
.

The proof of (C.13) is similar to the proof of (C.12).

For (C.14),

(1 + Lu C Mu) · (1 + Lu C Mu)
= {{ Distributivity of · over + }}

1 · 1 + 1 · Lu C Mu + Lu C Mu · 1 + Lu C Mu · Lu C Mu

= {{ Identity of · & Idempotency of + }}
1 + Lu C Mu + Lu C Mu · Lu C Mu

= {{ Axiom (3.4) and de�nition of 6 }}
1 + Lu C Mu .

C.1.2 Proof of (C.3)

To prove (C.3), �rst note that the list B′ ofWM′ is de�ned by the following propositions:

a. [s⊥ 1 ]s⊥ ∈ (B′)1 and [s6⊥ 1 ]s6⊥ ∈ (B′)1 for all s ∈ S;

b. [s⊥ a ]s
′
⊥ ∈ (B′)1 for all s, s′ ∈ S and a ∈ Σi such that there exists a s′′ ∈ S such that

s′′ ∈ εt∗A(s′) and [s a ]s
′′
∈ B1;

c. [s 6⊥ a ]s
′
6⊥ ∈ (B′)1 for all s, s′ ∈ S and a ∈ Σi such that [s a ]s

′
∈ B1;

d. [s⊥ c ↓t6⊥ ↑
t′6⊥ r ]s

′
⊥ ∈ (B′)2 for all s, s′, t, t′ ∈ S, c ∈ Σc and r ∈ Σr such that there

exists s′′ ∈ S such that s′′ ∈ εt∗A(s′) and [s c ↓t ↑
t′ r ]s

′′
∈ B2;

e. [s 6⊥ c ↓t6⊥ ↑
t′6⊥ r ]s

′
6⊥ ∈ (B′)2 for all s, s′, t, t′ ∈ S, c ∈ Σc and r ∈ Σr such that [s c ↓t ↑

t′ r ]s
′

∈ B2.
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It is also useful to note that for all s, s′ ∈ S,

` L
s

B
s′

M = L
sc

C
s′c

M . (C.15)

For the case 6 of (C.15), we use (3.37) with the substitution function h1 : S → S∪{sc |
s ∈ S} de�ned by h1(s) := sc, and we note that ĥ1(B) shrinked with idempotency of
blocks and swapping of blocks gives a sublist of C. So, the case 6 of (C.15) follows
by (3.26) and (3.30).

For the case > of (C.15), we use (3.37) with the substitution function h2 : S ∪ {sc |
s ∈ S} → S de�ned by h2(s) := s and h2(sc) := s, and we note that ĥ2(C) shrinked
with idempotency of blocks and swapping of blocks gives exactly B.

Proof of the case 6 of (C.3): We use axiom (3.14) with

s(s⊥,s
′
⊥) := (WMc • ε?⊥)?[s, s′] ,

s(s⊥,s
′
6⊥) := 0 ,

s(s 6⊥,s
′
⊥) := 0 ,

s(s 6⊥,s
′
6⊥) := Ls B Ms

′
,

for all s, s′ ∈ S. So, using also the de�nition of B′, it su�ces to prove, for all s, s′ ∈ S,

(∧ m | [
s⊥

m
s′⊥

] ∈ (B′)1 : m 6 (WMc • ε?⊥)?[s, s′]) , (C.16)

(∧ m | [
s 6⊥

m
s′6⊥

] ∈ (B′)1 : m 6 L
s

B
s′

M) , (C.17)

(∧ m, v | [
s⊥

m
v⊥

] ∈ (B′)1 : m · (WMc • ε?⊥)?[v, s′] 6 (WMc • ε?⊥)?[s, s′]) , (C.18)

(∧ m, v | [
s⊥

m
v⊥

] ∈ (B′)1 : m · 0 6 0) , (C.19)

(∧ m, v | [
s 6⊥

m
v 6⊥

] ∈ (B′)1 : m · 0 6 0) , (C.20)

(∧ m, v | [
s 6⊥

m
v 6⊥

] ∈ (B′)1 : m · L
v

B
s′

M 6 L
s

B
s′

M) , (C.21)

(∧ c, z, r, w | [
s⊥

c ↓
z 6⊥

w6⊥

↑ r
s′⊥

] ∈ (B′)2 : c · L
z

B
w

M · r 6 (WMc • ε?⊥)?[s, s′]) , (C.22)

(∧ c, z, r, w | [
s 6⊥

c ↓
z 6⊥

w6⊥

↑ r
s′6⊥

] ∈ (B′)2 : c · L
z

B
w

M · r 6 L
s

B
s′

M) , (C.23)
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(∧ c, z, r, w, v | [
s⊥

c ↓
z 6⊥

w6⊥

↑ r
v⊥

] ∈ (B′)2 : c · L
z

B
w

M · r · (WMc • ε?⊥)?[v, s′]

6 (WMc • ε?⊥)?[s, s′]) , (C.24)

(∧ c, z, r, w, v | [
s⊥

c ↓
z 6⊥

w6⊥

↑ r
v⊥

] ∈ (B′)2 : c · L
z

B
w

M · r · 0 6 0) , (C.25)

(∧ c, z, r, w, v | [
s 6⊥

c ↓
z 6⊥

w6⊥

↑ r
v6⊥

] ∈ (B′)2 : c · L
z

B
w

M · r · 0 6 0) , (C.26)

(∧ c, z, r, w, v | [
s 6⊥

c ↓
z 6⊥

w6⊥

↑ r
v6⊥

] ∈ (B′)2 : c · L
z

B
w

M · r · L
v

B
s′

M 6 L
s

B
s′

M) . (C.27)

For inequations (C.16), we suppose [s⊥m ]s
′
⊥ ∈ (B′)1 and we prove

m 6 (WMc • ε?⊥)?[s, s′] .

Let us prove this by case analysis on m. The case m = 0 does not exist by the de�nition
of B′.

For the case m = 1, by condition a of the de�nition of B′, s⊥ = s′⊥. So, it su�ces
to prove that

1 6 (WMc • ε?⊥)?[s, s] .

This is direct by Kleene algebra stating that I 6 A? for any square matrix A and by
the de�nition of I.

For the case m ∈ Σi, by Kleene algebra, it su�ces to prove

m 6 (WMc • ε?⊥)[s, s′] .

By the de�nition of •, it su�ces to prove

m 6 (
∑

t | t ∈ S : WMc[s, t] · ε?⊥[t, s′]) .

By the de�nition of WMc, it su�ces to prove

m 6 (
∑

t | t ∈ S : L
s

C
t

M · ε?⊥[t, s′]) .

By the de�nition of ε?⊥, each entry of this matrix is either 1 or 0 (modulo the axioms of
Kleene algebra). So, by the de�nition of εt∗A(s′) and Kleene algebra, it su�ces to prove

m 6 (
∑

t | t ∈ εt∗A(s′) : L
s

C
t

M) .
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By condition b of the de�nition of B′, there exists a s′′ ∈ S such that s′′ ∈ εt∗A(s′) and
[sm ]s

′′
∈ B1. So, [sm ]s

′′
∈ C1 by condition b of the de�nition of C. Then, the proof

follows from axiom (3.2) and Kleene algebra.

For inequations (C.17), we suppose [s 6⊥m ]s
′
6⊥ ∈ (B′)1 and we prove

m 6 L
s

B
s′

M .

Let us prove this by case analysis on m. The case m = 0 does not exist by the de�nition
of B′. For the case m = 1, by condition a of the de�nition of B′, s 6⊥ = s′6⊥, and by the
de�nition of B, [s 1 ]s ∈ B1. So, the proof follows from axiom (3.2). For the case
m ∈ Σi, by condition c of the de�nition of B′, [sm ]s

′
∈ B1. Then, the proof follows

from axiom (3.2).

For inequations (C.18), we suppose [s⊥m ]v⊥ ∈ (B′)1 and we prove

m · (WMc • ε?⊥)?[v, s′] 6 (WMc • ε?⊥)?[s, s′] . (C.28)

We �rst prove that

(WMc • ε?⊥)?[s, v] · (WMc • ε?⊥)?[v, s′] 6 (WMc • ε?⊥)?[s, s′] . (C.29)

We are able to prove it.

(WMc • ε?⊥)?[s, s′]

= {{ Kleene algebra (p∗ = p∗p∗) }}
((WMc • ε?⊥)? • (WMc • ε?⊥)?)[s, s′]

= {{ De�nition of • }}
(
∑

t | t ∈ S : (WMc • ε?⊥)?[s, t] · (WMc • ε?⊥)?[t, s′])

> {{ Hypothesis: v ∈ S & Kleene algebra }}
(WMc • ε?⊥)?[s, v] · (WMc • ε?⊥)?[v, s′]

We now prove (C.28). By (C.29) and Kleene algebra (mainly, monotonicity of ·), it
su�ces to prove

m 6 (WMc • ε?⊥)?[s, v] .

The proof follows from inequations (C.16).

Inequations (C.19) and (C.20) are direct from zero of · and re�exivity of 6.
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For inequations (C.21), we suppose [s6⊥m ]v6⊥ ∈ (B′)1 and we prove

m · L
v

B
s′

M 6 L
s

B
s′

M .

Let us prove this by case analysis on m. The case m = 0 does not exist by the de�nition
of B′. For the case m = 1, by condition a of the de�nition of B′, s 6⊥ = v6⊥. So, it su�ces
to prove

1 · L
s

B
s′

M 6 L
s

B
s′

M .

This is direct by Kleene algebra. For the case m ∈ Σi, by condition c of the de�nition
of B′, [sm ]v ∈ B1. By axiom (3.2) and Kleene algebra, it su�ces to prove

L
s

B
v

M · L
v

B
s′

M 6 L
s

B
s′

M .

This is direct by axiom (3.4).

For inequations (C.22), we suppose [s⊥ c ↓z 6⊥ ↑
w6⊥ r ]s

′
⊥ ∈ (B′)2 and we prove

c · L
z

B
w

M · r 6 (WMc • ε?⊥)?[s, s′] .

By Kleene algebra, it su�ces to prove

c · L
z

B
w

M · r 6 (WMc • ε?⊥)[s, s′] .

By the de�nition of •, it su�ces to prove

c · L
z

B
w

M · r 6 (
∑

t | t ∈ S : WMc[s, t] · ε?⊥[t, s′]) .

By the de�nition of WMc and (C.15), it su�ces to prove

c · L
zc

C
wc

M · r 6 (
∑

t | t ∈ S : L
s

C
t

M · ε?⊥[t, s′]) .

By the de�nition of ε?⊥, each entry of this matrix is either 1 or 0 (modulo the axioms of
Kleene algebra). So, by the de�nition of εt∗A(s′) and Kleene algebra, it su�ces to prove

c · L
zc

C
wc

M · r 6 (
∑

t | t ∈ εt∗A(s′) : L
s

C
t

M) .

Since [s⊥ c ↓z 6⊥ ↑
w6⊥ r ]s

′
⊥ ∈ (B′)2, by condition d of the de�nition of B′, there exists s′′ ∈ S

such that s′′ ∈ εt∗A(s′) and [s c ↓z ↑
w r ]s

′′
∈ B2. So, [s c ↓zc ↑

wc r ]s
′′
∈ C2 by condition c of

the de�nition of C. Then, the proof follows from axiom (3.3) and Kleene algebra.
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For inequations (C.23), we suppose [s6⊥ c ↓z 6⊥ ↑
w6⊥ r ]s

′
6⊥ ∈ (B′)2 and we prove

c · L
z

B
w

M · r 6 L
s

B
s′

M .

By condition e of the de�nition of B′, [s c ↓z ↑
w r ]s

′
∈ B2. So, the proof follows from

axiom (3.3).

For inequations (C.24), we suppose [s⊥ c ↓z 6⊥ ↑
w6⊥ r ]v⊥ ∈ (B′)2 and we prove

c · L
z

B
w

M · r · (WMc • ε?⊥)?[v, s′] 6 (WMc • ε?⊥)?[s, s′] .

By (C.29) and Kleene algebra (mainly, monotonicity of ·), it su�ces to prove

c · L
z

B
w

M · r 6 (WMc • ε?⊥)?[s, v] .

The proof follows from inequations (C.22).

Inequations (C.25) and (C.26) are direct from zero of · and re�exivity of 6.

For inequations (C.27), we suppose [s 6⊥ c ↓z 6⊥ ↑
w6⊥ r ]v6⊥ ∈ (B′)2 and we prove

c · L
z

B
w

M · r · L
v

B
s′

M 6 L
s

B
s′

M .

By condition e of the de�nition of B′, [s c ↓z ↑
w r ]v ∈ B2. So, by axiom (3.3) and Kleene

algebra, it su�ces to prove

L
s

B
v

M · L
v

B
s′

M 6 L
s

B
s′

M .

This is direct by axiom (3.4).

Proof of the case > of (C.3): First note that, for all s, s′ ∈ S,

` 0 6WM′[s⊥, s
′
6⊥] and ` 0 6WM′[s 6⊥, s

′
⊥]

by the fact that 0 is the minimum of the algebra. Also, for all s, s′ ∈ S,

` L
s

B
s′

M 6 L
s 6⊥

B′
s′6⊥

M
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since the function g : S → {t⊥, t6⊥ | t ∈ S} de�ned by g(t′) := t′6⊥ for all t′ ∈ S is such
that ĝ(B) gives a sublist of B′ (by de�nition of B′, conditions a, c and e), and so

` L
s

B
s′

M 6 L
s 6⊥

ĝ(B)
s′6⊥

M

by (3.37), and

` L
s 6⊥

ĝ(B)
s′6⊥

M 6 L
s 6⊥

B′
s′6⊥

M

by (3.26) and (3.30).

LetWM′′ be the quadrant matrix ofWM′ for the entries {t⊥ | t ∈ S}×{t⊥ | t ∈ S}.
In other words, for all t, t′ ∈ S,

WM′′[t⊥, t
′
⊥] := WM′[t⊥, t

′
⊥] .

To �nish the proof of the case > of (C.3), it remains to prove that

` (WMc • ε?⊥)? 6WM′′ .

By ∗-induction and Kleene algebra, it su�ces to show independently that

` I 6WM′′ and `WMc • ε?⊥ •WM′′ 6WM′′ .

The �rst inequation is trivial by Lemma 4.5, property i. For the second inequation,
note that the proof is direct if it can be proved that

`WMc • ε?⊥ 6WM′′ . (C.30)

An example of such a proof is

WMc • ε?⊥ •WM′′

6 {{ Inequation (C.30) & Monotonicity of · }}
WM′′ •WM′′

= {{ Lemma 4.5, property ii }}
WM′′ .

It remains to prove (C.30). So, for all s, s′ ∈ S, we prove that

` (WMc • ε?⊥)[s, s′] 6WM′′[s⊥, s
′
⊥] .
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By de�nition of •, εt∗A, WMc and WM′′, and Kleene algebra, it su�ces to prove
independently that

` L
s

C
t

M 6 L
s⊥

B′
s′⊥

M

for each t ∈ εt∗A(s′). By (3.37) with g′ : S ∪ {uc | u ∈ S} → {u⊥, u6⊥ | u ∈ S} de�ned by
g′(u) := u⊥ and g′(uc) := u 6⊥ for all u ∈ S,

` L
s

C
t

M 6 L
s⊥

ĝ′(C)
t⊥

M .

Furthermore,

Ls⊥ ĝ
′(C) Mt⊥

= {{ Equation (3.25) & De�nition of C, g′ and ĝ′ }}
(
∑

m | m ∈ Σi ∧ [s⊥m ]t⊥ ∈ (ĝ′(C))1 : m)

+(
∑

m, v | m ∈ Σi ∧ [v⊥m ]t⊥ ∈ (ĝ′(C))1 : Ls⊥ ĝ
′(C) Mv⊥ · m)

+(
∑

c, z, r, w | [s⊥ c ↓z 6⊥ ↑
w6⊥ r ]t⊥ ∈ (ĝ′(C))2 : c · Lz 6⊥ ĝ

′(C) Mw6⊥ · r)
+(
∑

c, z, r, w, v | [v⊥ c ↓z 6⊥ ↑
w6⊥ r ]t⊥ ∈ (ĝ′(C))2 : Ls⊥ ĝ

′(C) Mv⊥ · c · Lz 6⊥ ĝ
′(C) Mw6⊥ · r)

6 {{ By de�nition of C, B′ and ĝ′, the list ĝ′(C) is a sublist of B′.
& Inequations (3.26) and (3.30) & Monotonicity of · and + }}

(
∑

m | m ∈ Σi ∧ [s⊥m ]t⊥ ∈ (B′)1 : m)

+ (
∑

m, v | m ∈ Σi ∧ [v⊥m ]t⊥ ∈ (B′)1 : Ls⊥ B
′ Mv⊥ · m)

+ (
∑

c, z, r, w | [s⊥ c ↓z 6⊥ ↑
w6⊥ r ]t⊥ ∈ (B′)2 : c · Lz 6⊥ B

′ Mw6⊥ · r)
+ (
∑

c, z, r, w, v | [v⊥ c ↓z 6⊥ ↑
w6⊥ r ]t⊥ ∈ (B′)2 : Ls⊥ B

′ Mv⊥ · c · Lz 6⊥ B
′ Mw6⊥ · r)

6 {{ Hypothesis: t ∈ εt∗A(s′) & De�nition of B′: if m ∈ Σi, [v⊥m ]t⊥ ∈ (B′)1

and t ∈ εt∗A(s′), then [v⊥m ]s
′
⊥ ∈ (B′)1. Also, if [v⊥ c ↓z 6⊥ ↑

w6⊥ r ]t⊥ ∈ (B′)2

and t ∈ εt∗A(s′), then [v⊥ c ↓z 6⊥ ↑
w6⊥ r ]s

′
⊥ ∈ (B′)2.

& Quanti�cation laws }}
(
∑

m | [s⊥m ]s
′
⊥ ∈ (B′)1 : m)

+ (
∑

m, v | [v⊥m ]s
′
⊥ ∈ (B′)1 : Ls⊥ B

′ Mv⊥ · m)

+ (
∑

c, z, r, w | [s⊥ c ↓z 6⊥ ↑
w6⊥ r ]s

′
⊥ ∈ (B′)2 : c · Lz 6⊥ B

′ Mw6⊥ · r)
+ (
∑

c, z, r, w, v | [v⊥ c ↓z 6⊥ ↑
w6⊥ r ]s

′
⊥ ∈ (B′)2 : Ls⊥ B

′ Mv⊥ · c · Lz 6⊥ B
′ Mw6⊥ · r)

= {{ Equation (3.25) }}
Ls⊥ B

′ Ms
′
⊥ .



Appendix C. Proof of the Elimination of ε-Transitions 217

C.2 Step 2: Elimination of ε-Transitions of the Form

(s, ε, d; s′,⊥) for All s, s′ ∈ S and d ∈ Γ

Theorem C.2 (Elimination of ε-transitions of the form (s, ε, d; s′,⊥)). Let Σi, Σc

and Σr be three disjoint �nite sets such that at least one of them is nonempty. Let

A := (S,Σi,Σc,Σr,Γ ∪ {⊥}, δ, I, F ) be a semi-visibly pushdown automaton such that δ

does not contain ε-transitions of the form (s, ε,⊥; s′,⊥) for all s, s′ ∈ S. Let

(
−→
I ,WM,Tc,T⊥, ε⊥, ε6⊥,

−→
F )

be the algebraic encoding of A. Then, there exists a semi-visibly pushdown automaton

A′ := (S ′,Σi,Σc,Σr,Γ
′ ∪ {⊥}, δ′, I ′, F ′) having an algebraic encoding

(
−→
I ′ ,WM′,T′c,T

′
⊥, ε

′
⊥, ε

′
6⊥,
−→
F ′)

such that δ′ does not contain ε-transitions of the form (s, ε, d; s′,⊥) for all s, s′ ∈ S ′

and d ∈ Γ′ ∪ {⊥} and

`
−→
I t • (T⊥ +WM+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F

=
−→
I ′ t • (T′⊥ +WM′ + ε′⊥ + (T′c •WM′)+ • ε′6⊥)? • (T′c •WM′)? •

−→
F ′ .

(C.31)

So, A′ is a visibly pushdown automaton and A′ has at most thrice the number of states
of A.

Proof. The automaton has states of the form sa⊥ , sa6⊥ and sp6⊥ for each s ∈ S. The idea
is just to encode in a state an information stating if the stack is �allowed� to be read
normally and is empty (this is represented by sa⊥) or if the stack is �allowed� to be read
normally and is nonempty (this is represented by sa6⊥) or if it must be �protected� when
reading symbols from the nonempty stack (this is represented by sp6⊥). A state sp6⊥
protecting the reading of the stack is just a way to say that the values of the symbols
on the stack are irrelevant. A value of a symbol on the stack becomes irrelevant when
simulating a transition of the form (t, ε, d; t′,⊥) which protects the stack from being
read. The idea is that any transition of the form (t, r,⊥; t′,⊥) is simulated in tp6⊥ by
saturation of the transitions over the possible stack symbols.

De�ne the visibly pushdown automaton

A′ := ({sa⊥ , sa6⊥ , sp6⊥ | s ∈ S},Σi,Σc,Σr, {a⊥, a6⊥, p 6⊥} × Γ ∪ {⊥}, δ′, {ia⊥ | i ∈ I},
{fa⊥ , fa6⊥ , fp6⊥ | f ∈ F})
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where

δ′ = {(sa⊥ , a, λ; s′a⊥ , λ), (sa6⊥ , a, λ; s′a6⊥ , λ), (sp6⊥ , a, λ; s′p6⊥ , λ) | a ∈ Σi

∧ (s, a, λ; s′, λ) ∈ δ}
∪ {(sa6⊥ , a, λ; s′p6⊥ , λ) | a ∈ Σi

∧ (∃ s′′ | (∀ d | d ∈ Γ : (s′′, ε, d; s′,⊥) ∈ δ) : (s, a, λ; s′′, λ) ∈ δ)}
∪ {(sa⊥ , c, λ; s′a6⊥ , (a⊥, d)), (sa6⊥ , c, λ; s′a6⊥ , (a6⊥, d)), (sp6⊥ , c, λ; s′a6⊥ , (p6⊥, d)) | c ∈ Σc

∧ (s, c, λ; s′, d) ∈ δ}
∪ {(sa⊥ , c, λ; s′p6⊥ , (a⊥, d)), (sa6⊥ , c, λ; s′p6⊥ , (a6⊥, d)), (sp6⊥ , c, λ; s′p6⊥ , (p6⊥, d)) | c ∈ Σc

∧ (∃ s′′ | (s′′, ε, d; s′,⊥) ∈ δ : (s, c, λ; s′′, d) ∈ δ)}
∪ {(sa6⊥ , r, (a⊥, d); s′a⊥ , λ), (sa6⊥ , r, (a 6⊥, d); s′a6⊥ , λ), (sa6⊥ , r, (p6⊥, d); s′p6⊥ , λ) | r ∈ Σr

∧ (s, r, d; s′, λ) ∈ δ}
∪ {(sa6⊥ , r, (a6⊥, d); s′p6⊥ , λ) | r ∈ Σr

∧ (∃ s′′ | (∀ d′ | d′ ∈ Γ : (s′′, ε, d′; s′,⊥) ∈ δ) : (s, r, d; s′′, λ) ∈ δ)}
∪ {(sa⊥ , r,⊥; s′a⊥ ,⊥) | r ∈ Σr ∧ (s, r,⊥; s′,⊥) ∈ δ}
∪ {(sp6⊥ , r, (a⊥, d); s′a⊥ , λ) | r ∈ Σr ∧ d ∈ Γ ∧ (s, r,⊥; s′,⊥) ∈ δ}
∪ {(sp6⊥ , r, (a6⊥, d); s′p6⊥ , λ), (sp6⊥ , r, (p6⊥, d); s′p6⊥ , λ) | r ∈ Σr ∧ d ∈ Γ

∧ (s, r,⊥; s′,⊥) ∈ δ} .

The algebraic encoding of this automaton is

−→
I
−→
0
−→
0

 ,WM′,

 0 Tc Tc • ε 6⊥
0 Tc Tc • ε 6⊥
0 Tc Tc • ε 6⊥

 ,
 T⊥ 0 0

0 0 0

0 0 0

 ,0,0,

−→
F
−→
F
−→
F


 .

First, note that the list B′ of WM′ is de�ned by the following propositions:

a. [sa⊥
1 ]sa⊥ ∈ (B′)1, [sa6⊥

1 ]sa6⊥ ∈ (B′)1 and [sp 6⊥
1 ]sp 6⊥ ∈ (B′)1 for all s ∈ S;

b. [sa⊥
a ]s

′
a⊥ ∈ (B′)1, [sa 6⊥

a ]
s′a6⊥ ∈ (B′)1 and [sp 6⊥

a ]
s′p6⊥ ∈ (B′)1 for all s, s′ ∈ S, a ∈ Σi

and [s a ]s
′
∈ B1;

c. [sa6⊥
a ]

s′p 6⊥ ∈ (B′)1 for all s, s′ ∈ S and a ∈ Σi such that there exists a s′′ ∈ S such

that ` ε 6⊥[s′′, s′] = 1 and [s a ]s
′′
∈ B1;

d. [sa⊥
c ↓ta 6⊥ ↑

t′a6⊥ r ]s
′
a⊥ ∈ (B′)2, [sa 6⊥

c ↓ta 6⊥ ↑
t′a 6⊥ r ]

s′a6⊥ ∈ (B′)2 and [sp 6⊥
c ↓ta6⊥ ↑

t′a 6⊥ r ]
s′p 6⊥ ∈

(B′)2 for all s, s′, t, t′ ∈ S, c ∈ Σc and r ∈ Σr such that [s c ↓t ↑
t′ r ]s

′
∈ B2;

e. [sa⊥
c ↓ta6⊥ ↑

t′p 6⊥ r ]s
′
a⊥ ∈ (B′)2 for all s, s′, t, t′ ∈ S, c ∈ Σc and r ∈ Σr such that

` Tc[s, t] > c and ` T⊥[t′, s′] > r;
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f. [sa6⊥
c ↓ta 6⊥ ↑

t′p6⊥ r ]
s′p6⊥ ∈ (B′)2 and [sp6⊥

c ↓ta6⊥ ↑
t′p6⊥ r ]

s′p 6⊥ ∈ (B′)2 for all s, s′, t, t′ ∈ S,

c ∈ Σc and r ∈ Σr such that ` Tc[s, t] > c and ` T⊥[t′, s′] > r;

g. [sa6⊥
c ↓ta6⊥ ↑

t′a6⊥ r ]
s′p 6⊥ ∈ (B′)2 for all s, s′, t, t′ ∈ S, c ∈ Σc and r ∈ Σr such that there

exists a s′′ ∈ S such that ` ε 6⊥[s′′, s′] = 1 and [s c ↓t ↑
t′ r ]s

′′
∈ B2;

h. [sa⊥
c ↓tp6⊥ ↑

t′a6⊥ r ]s
′
a⊥ ∈ (B′)2, [sa6⊥

c ↓tp 6⊥ ↑
t′a 6⊥ r ]

s′a6⊥ ∈ (B′)2 and [sp 6⊥
c ↓tp6⊥ ↑

t′a 6⊥ r ]
s′p 6⊥ ∈

(B′)2 for all s, s′, t, t′ ∈ S, c ∈ Σc and r ∈ Σr such that there exists a t′′ ∈ S such
that ` ε 6⊥[t′′, t] = 1 and [s c ↓t′′ ↑

t′ r ]s
′
∈ B2;

i. [sa⊥
c ↓tp6⊥ ↑

t′p 6⊥ r ]s
′
a⊥ ∈ (B′)2 for all s, s′, t, t′ ∈ S, c ∈ Σc and r ∈ Σr such that there

exists a t′′ ∈ S such that ` ε 6⊥[t′′, t] = 1, ` Tc[s, t
′′] > c and ` T⊥[t′, s′] > r;

j. [sa 6⊥
c ↓tp6⊥ ↑

t′p 6⊥ r ]
s′p 6⊥ ∈ (B′)2 and [sp 6⊥

c ↓tp6⊥ ↑
t′p 6⊥ r ]

s′p 6⊥ ∈ (B′)2 for all s, s′, t, t′ ∈ S,

c ∈ Σc and r ∈ Σr such that there exists a t′′ ∈ S such that ` ε 6⊥[t′′, t] = 1,
` Tc[s, t

′′] > c and ` T⊥[t′, s′] > r;

k. [sa 6⊥
c ↓tp6⊥ ↑

t′a 6⊥ r ]
s′p 6⊥ ∈ (B′)2 for all s, s′, t, t′ ∈ S, c ∈ Σc and r ∈ Σr such that there

exists s′′, t′′ ∈ S such that ` ε 6⊥[s′′, s′] = 1, ` ε 6⊥[t′′, t] = 1 and [s c ↓t′′ ↑
t′ r ]s

′′
∈ B2.

Now, some results are given. Using these results, the proof of (C.31) is presented.
Then, the remaining results are proved.

Note that

`WM′ =

 A 0 0

0 WM B

0 0 C

 , (C.32)

where, for all s, s′ ∈ S,

A[sa⊥ , s
′
a⊥

] := L
sa⊥

B′
s′a⊥

M ,

B[sa6⊥ , s
′
p6⊥

] := L
sa6⊥

B′
s′p 6⊥

M ,

C[sp6⊥ , s
′
p6⊥

] := L
sp6⊥

B′
s′p6⊥

M .
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Note also that the following equations hold:

` A = C , (C.33)

` (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

= (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? .
(C.34)

Using these results, we are able to prove (C.31).

[ −→
I t −→0 −→

0
]
•


 T⊥ 0 0

0 0 0

0 0 0

+WM′+ 0

+


 0 Tc Tc • ε 6⊥

0 Tc Tc • ε 6⊥
0 Tc Tc • ε 6⊥

 •WM′


+

• 0


?

•


 0 Tc Tc • ε 6⊥

0 Tc Tc • ε 6⊥
0 Tc Tc • ε 6⊥

 •WM′


?

•


−→
F
−→
F
−→
F


= {{ Zero of · & Identity of + }}[ −→

I t −→0 −→
0
]
•


 T⊥ 0 0

0 0 0

0 0 0

+WM′


?

•


 0 Tc Tc • ε 6⊥

0 Tc Tc • ε 6⊥
0 Tc Tc • ε 6⊥

 •WM′


?

•


−→
F
−→
F
−→
F


= {{ Equation (C.32) }}[ −→

I t −→0 −→
0
]
•


 T⊥ 0 0

0 0 0

0 0 0

+
 A 0 0

0 WM B

0 0 C



?

•


 0 Tc Tc • ε 6⊥

0 Tc Tc • ε 6⊥
0 Tc Tc • ε 6⊥

 •
 A 0 0

0 WM B

0 0 C



?

•


−→
F
−→
F
−→
F


= {{ De�nition of • and + & Kleene algebra }}[ −→

I t −→0 −→
0
]
•

 T⊥+A 0 0

0 WM B

0 0 C


?

•

 0 Tc •WM Tc •B+Tc • ε 6⊥ •C
0 Tc •WM Tc •B+Tc • ε 6⊥ •C
0 Tc •WM Tc •B+Tc • ε 6⊥ •C


?

•


−→
F
−→
F
−→
F
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= {{ De�nition of ? & Kleene algebra }}[ −→
I t −→0 −→

0
]
•

 (T⊥+A)? 0 0

0 WM? WM? •B •C?

0 0 C?



•


I

((Tc •B+Tc • ε 6⊥ •C)?

• Tc •WM)+
((Tc •WM)?

• (Tc •B+Tc • ε 6⊥ •C))+

0
((Tc •B+Tc • ε 6⊥ •C)?

• Tc •WM)?
((Tc •WM)?

• (Tc •B+Tc • ε 6⊥ •C))+

0
((Tc •B+Tc • ε 6⊥ •C)?

• Tc •WM)+
((Tc •WM)?

• (Tc •B+Tc • ε 6⊥ •C))?


•


−→
F
−→
F
−→
F


= {{ De�nition of • & Kleene algebra }}[ −→

I t • (T⊥+A)?
−→
0
−→
0
]
•

 (Tc •WM+Tc •B+Tc • ε 6⊥ •C)? •
−→
F

(Tc •WM+Tc •B+Tc • ε 6⊥ •C)? •
−→
F

(Tc •WM+Tc •B+Tc • ε 6⊥ •C)? •
−→
F


= {{ De�nition of • & Kleene algebra }}

−→
I t • (T⊥+A)? • (Tc •WM+Tc •B+Tc • ε 6⊥ •C)? •

−→
F

= {{ Denesting rule }}
−→
I t • (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •C))? • (Tc •WM)? •

−→
F

= {{ Equation (C.33) }}
−→
I t • (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? • (Tc •WM)? •

−→
F

= {{ Equation (C.34) }}
−→
I t • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •

−→
F

= {{ Hypothesis: A is a semi-visibly pushdown automaton such that δ does
not contain ε-transition of the form (s, ε,⊥; s′,⊥) for all s, s′ ∈ S. So,
ε⊥ = 0. }}−→

I t • (T⊥+WM+ ε⊥+ (Tc •WM)+ • ε 6⊥)? • (Tc •WM)? •
−→
F �

C.2.1 Proof of (C.32)

Proof of the case > of (C.32): All inequations are trivial except

WM[s, s′] 6 L
sa6⊥

B′
s′a 6⊥

M (C.35)

for every s, s′ ∈ S. This inequation follows from (3.37) using the substitution function
g : S → {sa⊥ , sa6⊥ , sp6⊥ | s ∈ S} de�ned by g(s) := sa6⊥ for all s ∈ S, and noting that
ĝ(B) is a sublist of B′.
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Proof of the case 6 of (C.32): We �rst show that

` A 6 C . (C.36)

This is direct from (3.37) using the substitution function h : {sa⊥ , sa6⊥ , sp6⊥ | s ∈ S} →
{sa⊥ , sa6⊥ , sp6⊥ | s ∈ S} de�ned by

h(sa⊥) := sp6⊥ ,

h(sa6⊥) := sa6⊥ ,

h(sp6⊥) := sp6⊥ ,

for all s ∈ S, and noting that ĥ(B′) shrinked with idempotency of blocks is a sublist of
B′.

We now prove the case 6 of (C.32). We use (3.5) with1

s(sa⊥ ,s
′
a⊥ ) := Lsa⊥ B

′ Ms
′
a⊥ , s(sa⊥ ,s

′
a6⊥ ) := 0, s(sa⊥ ,s

′
p 6⊥ ) := 0,

s(sa 6⊥ ,s
′
a⊥ ) := 0, s(sa6⊥ ,s

′
a6⊥ ) := Ls B Ms

′
, s(sa 6⊥ ,s

′
p 6⊥ ) := Lsa 6⊥ B

′ Ms
′
p 6⊥ ,

s(sp 6⊥ ,s
′
a⊥ ) := 0, s(sp6⊥ ,s

′
a6⊥ ) := 0, s(sp 6⊥ ,s

′
p 6⊥ ) := Lsa⊥ B

′ Ms
′
a⊥ .

So, noting that each block of B′ having as starting label a ta⊥ (respectively, tp6⊥) must
also have as ending label a t′a⊥ (respectively, t′p6⊥) where t, t

′ ∈ S, and each block of B′
having as starting label a ta6⊥ must also have as ending label a t′a6⊥ or t′p6⊥ where t, t′ ∈ S,
it su�ces to prove, for all s, s′ ∈ S,

(∧ m | [
sa⊥

m
s′a⊥

] ∈ (B′)1 : m 6 L
sa⊥

B′
s′a⊥

M ) , (C.37)

(∧ m | [
sa 6⊥

m

s′a 6⊥

] ∈ (B′)1 : m 6 L
s

B
s′

M) , (C.38)

(∧ m | [
sa 6⊥

m

s′p 6⊥

] ∈ (B′)1 : m 6 L
sa6⊥

B′
s′p 6⊥

M ) , (C.39)

(∧ m | [
sp 6⊥

m

s′p 6⊥

] ∈ (B′)1 : m 6 L
sa⊥

B′
s′a⊥

M ) , (C.40)

(∧ c, z, r, w | [
sa⊥

c ↓
z

w

↑ r
s′a⊥

] ∈ (B′)2 : c · s(z,w) · r 6 L
sa⊥

B′
s′a⊥

M ) , (C.41)

(∧ c, z, r, w | [
sa 6⊥

c ↓
z

w

↑ r
s′a 6⊥

] ∈ (B′)2 : c · s(z,w) · r 6 L
s

B
s′

M) , (C.42)

1Note that we de�ned s(sp 6⊥ ,s′p 6⊥
) := Lsa⊥

B′ Ms
′
a⊥ instead of s(sp 6⊥ ,s′p 6⊥

) := Lsp 6⊥
B′ Ms

′
p 6⊥ . This is

su�cient by (C.36) and Kleene algebra. This particular solution is used to ease the proof of (C.33).
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(∧ c, z, r, w | [
sa 6⊥

c ↓
z

w

↑ r
s′p 6⊥

] ∈ (B′)2 : c · s(z,w) · r 6 L
sa 6⊥

B′
s′p6⊥

M ) , (C.43)

(∧ c, z, r, w | [
sp 6⊥

c ↓
z

w

↑ r
s′p 6⊥

] ∈ (B′)2 : c · s(z,w) · r 6 L
sa⊥

B′
s′a⊥

M ) , (C.44)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa⊥ ,v) · s(v,s′a⊥ ) 6 L
sa⊥

B′
s′a⊥

M ) , (C.45)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa⊥ ,v) · s(v,s′a6⊥ ) 6 0) , (C.46)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa⊥ ,v) · s(v,s′p6⊥ ) 6 0) , (C.47)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa 6⊥ ,v) · s(v,s′a⊥ ) 6 0) , (C.48)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa 6⊥ ,v) · s(v,s′a6⊥ ) 6 L
s

B
s′

M) , (C.49)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa 6⊥ ,v) · s(v,s′p6⊥ ) 6 L
sa 6⊥

B′
s′p6⊥

M ) , (C.50)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sp 6⊥ ,v) · s(v,s′a⊥ ) 6 0) , (C.51)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sp 6⊥ ,v) · s(v,s′a6⊥ ) 6 0) , (C.52)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sp 6⊥ ,v) · s(v,s′p6⊥ ) 6 L
sa⊥

B′
s′a⊥

M ) . (C.53)

The proofs of inequations (C.37) are direct by axiom (3.2).

For inequations (C.38), we suppose [sa6⊥
m ]

s′a6⊥ ∈ (B′)1 and we prove

m 6 L
s

B
s′

M .

By the de�nition of B′, conditions a and b, and the de�nition of B, [sm ]s
′
∈ B1. So,

the proof follows from axiom (3.2).

The proofs of inequations (C.39) are direct by axiom (3.2).

For inequations (C.40), we suppose [sp6⊥
m ]

s′p6⊥ ∈ (B′)1 and we prove

m 6 L
sa⊥

B′
s′a⊥

M .

By the de�nition of B′, conditions a and b, [sa⊥
m ]s

′
a⊥ ∈ (B′)1. So, the proof follows

from axiom (3.2).
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For inequations (C.41), we suppose [sa⊥
c ↓z ↑w r ]s

′
a⊥ ∈ (B′)2 and we prove

c · s(z,w) · r 6 L
sa⊥

B′
s′a⊥

M . (C.54)

First, let us prove that

s(z,w) 6 L
z

B′
w

M . (C.55)

By the de�nition of B′, conditions d, e, h and i, z ∈ {z′a6⊥ , z
′
p6⊥
| z′ ∈ S} and w ∈

{w′a6⊥ , w
′
p6⊥
| w′ ∈ S}. If z = z′a6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then

s(z′a 6⊥ ,w
′
a 6⊥ ) = Lz′ B Mw

′
. The proof of (C.55) follows from (C.35). If z = z′a6⊥ for a z′ ∈ S

and w = w′p6⊥ for a w′ ∈ S, then s(z′a6⊥ ,w
′
p6⊥ ) = Lz′a 6⊥ B

′ Mw
′
p 6⊥ . The proof of (C.55) follows

from re�exivity of 6. If z = z′p6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then
s(z′p6⊥ ,w

′
a 6⊥ ) = 0. The proof of (C.55) follows from the fact that 0 is the minimum of the

algebra. If z = z′p6⊥ for a z′ ∈ S and w = w′p6⊥ for a w′ ∈ S, then s(z′p 6⊥ ,w
′
p 6⊥ ) = Lz′a⊥ B

′ Mw
′
a⊥ .

The proof of (C.55) follows from (C.36).

We now prove (C.54). The proof follows from (C.55), Kleene algebra and ax-
iom (3.3).

For inequations (C.42), we suppose [sa6⊥
c ↓z ↑w r ]

s′a6⊥ ∈ (B′)2 and we prove

c · s(z,w) · r 6 L
s

B
s′

M . (C.56)

By the de�nition of B′, conditions d and h, z ∈ {z′a6⊥ , z
′
p6⊥
| z′ ∈ S} and w ∈ {w′a6⊥ | w

′ ∈
S}. If z = z′a6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then s(z′a6⊥ ,w

′
a 6⊥ ) = Lz′ B Mw

′
and

[s c ↓z′ ↑
w′ r ]s

′
∈ B2. So, the proof of (C.56) follows from (3.3). If z = z′p6⊥ for a z′ ∈ S

and w = w′a6⊥ for a w′ ∈ S, then s(z′p 6⊥ ,w
′
a 6⊥ ) = 0. The proof of (C.56) follows from zero

of · and the fact that 0 is the minimum of the algebra.

For inequations (C.43), we suppose [sa6⊥
c ↓z ↑w r ]

s′p6⊥ ∈ (B′)2 and we prove

c · s(z,w) · r 6 L
sa 6⊥

B′
s′p6⊥

M . (C.57)

First, let us prove that

s(z,w) 6 L
z

B′
w

M . (C.58)

By the de�nition of B′, conditions f, g, j and k, z ∈ {z′a6⊥ , z
′
p6⊥
| z′ ∈ S} and w ∈

{w′a6⊥ , w
′
p6⊥
| w′ ∈ S}. If z = z′a6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then
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s(z′a6⊥ ,w
′
a 6⊥ ) = Lz′ B Mw

′
. The proof of (C.58) follows from (C.35). If z = z′a6⊥ for a z′ ∈ S

and w = w′p6⊥ for a w′ ∈ S, then s(z′a6⊥ ,w
′
p6⊥ ) = Lz′a 6⊥ B

′ Mw
′
p 6⊥ . The proof of (C.58) follows

from re�exivity of 6. If z = z′p6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then
s(z′p6⊥ ,w

′
a 6⊥ ) = 0. The proof of (C.58) follows from the fact that 0 is the minimum of the

algebra. If z = z′p6⊥ for a z′ ∈ S and w = w′p6⊥ for a w′ ∈ S, then s(z′p 6⊥ ,w
′
p 6⊥ ) = Lz′a⊥ B

′ Mw
′
a⊥ .

The proof of (C.58) follows from (C.36).

We now prove (C.57). The proof follows from (C.58), Kleene algebra and ax-
iom (3.3).

For inequations (C.44), we suppose [sp6⊥
c ↓z ↑w r ]

s′p6⊥ ∈ (B′)2 and we prove

c · s(z,w) · r 6 L
sa⊥

B′
s′a⊥

M .

By the de�nition of B′, conditions d, e, f, h, i and j,

[
sp6⊥

c ↓
z

w

↑ r
s′p 6⊥

] ∈ (B′)2 ⇔ [
sa⊥

c ↓
z

w

↑ r
s′a⊥

] ∈ (B′)2 .

So, the proof follows from (C.41).

For inequations (C.45), there are two possible cases for v. If v = v′a⊥ for a v′ ∈ S,
then it must be proved that

L
sa⊥

B′
v′a⊥

M · L
v′a⊥

B′
s′a⊥

M 6 L
sa⊥

B′
s′a⊥

M .

This is direct by axiom (3.4). If v ∈ {v′a6⊥ , v
′
p6⊥
| v′ ∈ S}, then it must be proved that

0 · s(v,s′a⊥ ) 6 L
sa⊥

B′
s′a⊥

M .

This is direct by zero of · and the fact that 0 is the minimum element of the algebra.

For inequations (C.46), there are two possible cases for v. If v = v′a⊥ for a v′ ∈ S,
then it must be proved that

L
sa⊥

B′
v′a⊥

M · 0 6 0 .

This is direct by zero of · and the re�exivity of 6. If v ∈ {v′a6⊥ , v
′
p6⊥
| v′ ∈ S}, then it

must be proved that
0 · s(v,s′a 6⊥ ) 6 0 .
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This is direct by zero of · and the re�exivity of 6.

The proofs of (C.47) are similar to the proofs of (C.46).

For inequations (C.48), there are two possible cases for v. If v = v′a⊥ for a v′ ∈ S,
then it must be proved that

0 · L
v′a⊥

B′
s′a⊥

M 6 0 .

This is direct by zero of · and the re�exivity of 6. If v ∈ {v′a6⊥ , v
′
p6⊥
| v′ ∈ S}, then it

must be proved that
s(sa6⊥ ,v) · 0 6 0 .

This is direct by zero of · and the re�exivity of 6.

For inequations (C.49), there are two possible cases for v. If v = v′a6⊥ for a v′ ∈ S,
then it must be proved that

L
s

B
v′

M · L
v′
B
s′

M 6 L
s

B
s′

M .

This is direct by axiom (3.4). If v ∈ {v′a⊥ , v
′
p6⊥
| v′ ∈ S}, then it must be proved that

s(sa6⊥ ,v) · 0 6 L
s

B
s′

M .

This is direct by zero of · and the fact that 0 is the minimum element of the algebra.

For inequations (C.50), there are three possible cases for v. If v = v′a⊥ for a v′ ∈ S,
then it must be proved that

0 · 0 6 L
sa 6⊥

B′
s′p 6⊥

M .

This is direct by zero of · and the fact that 0 is the minimum element of the algebra.
If v = v′a6⊥ for a v′ ∈ S, then it must be proved that

L
s

B
v′

M · L
v′a6⊥

B′
s′p6⊥

M 6 L
sa6⊥

B′
s′p6⊥

M .

This is direct by (C.35), Kleene algebra and axiom (3.4). If v = v′p6⊥ for a v′ ∈ S, then
it must be proved that

L
sa6⊥

B′
v′p 6⊥

M · L
v′a⊥

B′
s′a⊥

M 6 L
sa6⊥

B′
s′p 6⊥

M .
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This is direct by (C.36), Kleene algebra and axiom (3.4).

The proofs of (C.51) and (C.52) are similar to the proofs of (C.46).

For inequations (C.53), there are two possible cases for v. If v = v′p6⊥ for a v′ ∈ S,
then it must be proved that

L
sa⊥

B′
v′a⊥

M · L
v′a⊥

B′
s′a⊥

M 6 L
sa⊥

B′
s′a⊥

M .

This is direct by axiom (3.4). If v ∈ {v′a⊥ , v
′
a6⊥
| v′ ∈ S}, then it must be proved that

0 · s(v,s′p 6⊥ ) 6 L
sa⊥

B′
s′a⊥

M .

This is direct by zero of · and the fact that 0 is the minimum element of the algebra.

C.2.2 Proof of (C.33)

Equation (C.33) is shown in the case 6 of the proof of (C.32). The case 6 is ex-
actly (C.36). The case > is showed in page 222 when using the axiom (3.5) with
solutions s(sp 6⊥ ,s

′
p 6⊥ ) := Lsa⊥ B

′ Ms
′
a⊥ for every s, s′ ∈ S. This states that Lsp6⊥ B

′ Ms
′
p 6⊥ 6

Lsa⊥ B
′ Ms
′
a⊥ for every s, s′ ∈ S.

C.2.3 Proof of (C.34)

First, some results are given. Using these results, the proof of (C.34) is presented.
Then, the remaining results are proved.

Note that the following equations and inequations hold:

`WM 6 A , (C.59)

` A •A = A , (C.60)

` A? = A , (C.61)

`WM •B = B , (C.62)

` B •C = B , (C.63)
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`WM • ε 6⊥ 6 B+ ε 6⊥ , (C.64)

` Tc •B •T⊥ 6 A , (C.65)

` Tc •B •T⊥ 6 B , (C.66)

` Tc • ε 6⊥ •A •T⊥ 6 A , (C.67)

` Tc • ε 6⊥ •A •T⊥ 6 B , (C.68)

` A 6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? , (C.69)

` B 6 (WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? . (C.70)

We now prove (C.34).

Proof of the case > of (C.34): We are able to prove it.

(T⊥+A)? •
(

(Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A)
)?

6 {{ Inequations (C.69) and (C.70) & Monotonicity of · and + }}(
T⊥+ (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

)?
•
(

(Tc •WM)? •
(
Tc • (WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

+Tc • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?
))?

= {{ Kleene algebra: T⊥ 6 (T⊥ +WM+ (Tc •WM)+ • ε 6⊥)?, de�nition of
6 and (p∗)∗ = p∗ & Identity of · }}

(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

•
(

(Tc •WM)? •
(
Tc • (WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

+Tc • I • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?
))?

6 {{ Denesting rule & Lemma 4.5, properties i and iii & Kleene algebra }}
(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

•
(

(Tc •WM)? •Tc •WM• (Tc •WM)? •ε 6⊥ • (T⊥+WM+ (Tc •WM)+ •ε 6⊥)?

+ (Tc •WM)? •Tc •WM • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?
)?

= {{ Sliding rule & Kleene algebra: p∗p∗ = p∗ & De�nition of + }}
(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

•
(

(Tc •WM)+ • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

+ (Tc •WM)+ • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?
)?

6 {{ Kleene algebra (including idempotency of +) }}
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(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

•
(

(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?
)?

= {{ Kleene algebra: (p∗)∗ = p∗ and p∗p∗ = p∗ }}
(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

Proof of the case 6 of (C.34): Using ∗-induction and Kleene algebra, it su�ces to
show that

` I

6 (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? ,
(C.71)

` (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? •T⊥
6 (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? ,

(C.72)

` (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? •WM

6 (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? ,
(C.73)

` (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))?

• (Tc •WM)+ • ε 6⊥
6 (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? .

(C.74)

Inequation (C.71) is direct from Kleene algebra.

For inequation (C.72),

(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? •T⊥
= {{ Kleene algebra }}

(T⊥+A)? •T⊥
+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? • (Tc •WM)? • (Tc •B •
T⊥+Tc • ε 6⊥ •A •T⊥)

6 {{ Kleene algebra }}
(T⊥+A)? • (T⊥+A)?

+ (T⊥+A)?•((Tc•WM)?•(Tc•B+Tc•ε 6⊥•A))?•(Tc•B•T⊥+Tc•ε 6⊥•A•T⊥)

+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? • (Tc •WM)? •Tc •WM•
(Tc •B •T⊥+Tc • ε 6⊥ •A •T⊥)

6 {{ Inequations (C.65), (C.66), (C.67) and (C.68) & Kleene algebra }}
(T⊥+A)?

+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? •A
+ (T⊥+A)?•((Tc•WM)?•(Tc•B+Tc•ε 6⊥•A))?•(Tc•WM)?•Tc•WM•B

6 {{ Equation (C.62) & Kleene algebra }}



Appendix C. Proof of the Elimination of ε-Transitions 230

(T⊥+A)?

+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? •A
+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))?

= {{ Kleene algebra & Equations (C.63), (C.33) and (C.60) }}
(T⊥+A)? • ((Tc •WM)? • (Tc •B •A+Tc • ε 6⊥ •A •A))? •A
+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))?

= {{ Denesting rule & Equation (C.61) & Distributivity of · on + }}
(A •T⊥)? •A • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A) •A)? •A
+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))?

= {{ Sliding rule & Equation (C.60) }}
(A •T⊥)? • (A • (Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? •A
+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))?

= {{ Sliding rule & Equation (C.61) & Denesting rule }}
(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A) •A)?

+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))?

= {{ Distributivity of · over + & Equations (C.63), (C.33) and (C.60) }}
(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))?

+ (T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))?

= {{ Idempotency of + }}
(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? .

For inequation (C.73),

(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? •WM

= {{ Denesting rule & Equations (C.63), (C.33), (C.60) and (C.61) }}
(A •T⊥)? •A • ((Tc •WM)? • (Tc •B •A+Tc • ε 6⊥ •A •A))? •WM

= {{ Distributivity of · on + & Sliding rule }}
(A •T⊥)? • (A • (Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? •A •WM

6 {{ Inequation (C.59) & Monotonicity of · and + & Equation (C.60) }}
(A •T⊥)? • (A • (Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? •A

= {{ Sliding rule & Equation (C.61) & Denesting rule & Distributivity of · on
+ & Equations (C.63), (C.33) and (C.60) }}

(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? .

For inequation (C.74),

(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? • (Tc •WM)+ • ε 6⊥
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= {{ De�nition of + }}
(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? • (Tc •WM)? •Tc •WM• ε 6⊥

6 {{ Inequation (C.64) & Monotonicity of · }}
(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? • (Tc •WM)? •Tc • (B+ ε 6⊥)

6 {{ Identity of · & Fact: I 6 A & Monotonicity of · and + }}
(T⊥+A)?•((Tc•WM)?•(Tc•B+Tc•ε 6⊥•A))?•(Tc•WM)?•Tc•(B+ε 6⊥•A)

= {{ Distributivity of · over + }}
(T⊥+A)?•((Tc•WM)?•(Tc•B+Tc•ε 6⊥•A))?•(Tc•WM)?•(Tc•B+Tc•ε 6⊥•A)

6 {{ Kleene algebra: p∗p 6 p∗ & Monotonicity of · }}
(T⊥+A)? • ((Tc •WM)? • (Tc •B+Tc • ε 6⊥ •A))? .

C.2.4 Proof of (C.59)

For inequation (C.59), �rst recall that a list of blocks C over labels S ∪{sc | s ∈ S} was
used in the proof of Theorem C.1 such that a matrix WMc de�ned by WMc[s, s

′] :=

Ls C Ms
′
for s, s′ ∈ S is such that

`WM = I+WMc . (C.75)

Here, it is possible to do the same. So, it su�ces to show that I+WMc 6 A. By a
proof similar to Lemma 4.5, property i, I 6 A. It remains to prove that WMc 6 A.
This inequation follows easily from (3.37) using the substitution function g2 : S ∪ {sc |
s ∈ S} → {sa⊥ , sa6⊥ , sp6⊥ | s ∈ S} de�ned by g2(s) := sa⊥ and g2(sc) := sa6⊥ for all s ∈ S,
and noting that ĝ2(C) is a sublist of B′.

C.2.5 Proofs of (C.60) and (C.61)

The proofs of (C.60) and (C.61) are similar to the proof of Lemma 4.5, properties ii
and iii.

C.2.6 Proofs of (C.62) and (C.63)

We �rst show that
`WM •B •C 6 B . (C.76)

For all s, s′ ∈ S,
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(WM •B •C)[sa6⊥ , s
′
p6⊥

]

= {{ De�nition of • }}
(
∑

t, t′ | t, t′ ∈ S : WM[s, t] ·B[ta6⊥ , t
′
p6⊥

] ·C[t′p6⊥ , s
′
p6⊥

])

= {{ De�nition of WM, B and C & Equation (C.32) }}
(
∑

t, t′ | t, t′ ∈ S : Lsa 6⊥ B
′ Mta 6⊥ · Lta6⊥ B

′ Mt
′
p6⊥ · Lt′p 6⊥ B

′ Ms
′
p 6⊥ )

6 {{ Axiom (3.4) & Monotonicity of · and + }}
(
∑

t, t′ | t, t′ ∈ S : Lsa 6⊥ B
′ Ms
′
p 6⊥ )

= {{ Idempotency of + }}
Lsa 6⊥ B

′ Ms
′
p 6⊥

= {{ De�nition of B }}
B[sa6⊥ , s

′
p6⊥

] .

We now prove (C.62). By Kleene algebra and Lemma 4.5, property i,

B = I •B 6 WM •B .

Also, by Kleene algebra, the fact that I 6 A, and (C.33) and (C.76),

WM •B = WM •B • I 6 WM •B •A = WM •B •C 6 B .

We now prove (C.63). By Kleene algebra, the fact that I 6 A, and (C.33),

B = B • I 6 B •A = B •C .

Also, by Kleene algebra, Lemma 4.5, property i, and (C.76),

B •C = I •B •C 6 WM •B •C 6 B .

C.2.7 Proof of (C.64)

For inequation (C.64), we use the matrix WMc like for the proof of inequation (C.59).
So, using (C.75), distributivity of · over + and identity of ·,

WM • ε 6⊥ = (I+WMc) • ε 6⊥ = ε 6⊥+WMc • ε 6⊥ .

Obviously, ε 6⊥ 6 ε 6⊥. So, to prove (C.64), it su�ces to show that, for all s, s′ ∈ S,

` (WMc • ε 6⊥)[s, s′] 6 B[sa6⊥ , s
′
p6⊥

] .
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By the de�nition of • and ε 6⊥ and Kleene algebra, it su�ces to prove that, for all
s, s′, s′′ ∈ S such that ` ε 6⊥[s′′, s′] = 1,

` L
s

C
s′′

M 6 L
sa 6⊥

B′
s′p 6⊥

M .

Easily,

Ls C Ms
′′

= {{ De�nition of C & Equation (3.25) }}
(
∑

m | m ∈ Σi ∧ [sm ]s
′′
∈ C1 : m)

+ (
∑

m, t | m ∈ Σi ∧ [tm ]s
′′
∈ C1 : Ls C Mt · m)

+ (
∑

c, z, r, w | [s c ↓zc ↑
wc r ]s

′′
∈ C2 : c · Lzc C Mwc · r)

+ (
∑

c, z, r, w, t | [t c ↓zc ↑
wc r ]s

′′
∈ C2 : Ls C Mt · c · Lzc C Mwc · r)

6 {{ Hypothesis: ` ε 6⊥[s′′, s′] = 1 & De�nition of C and B′, conditions c and g:
ifm ∈ Σi∧[tm ]s

′′
∈ C1 and ` ε 6⊥[s′′, s′] = 1, then [ta 6⊥

m ]
s′p 6⊥ ∈ (B′)1, and if

[t c ↓zc ↑
wc r ]s

′′
∈ C2 and ` ε 6⊥[s′′, s′] = 1, then [ta 6⊥

c ↓za 6⊥ ↑
wa 6⊥ r ]

s′′p 6⊥ ∈ (B′)2.

& Kleene algebra }}
(
∑

m | [sa6⊥ m ]
s′p6⊥ ∈ (B′)1 : m)

+ (
∑

m, t | [ta6⊥ m ]
s′p6⊥ ∈ (B′)1 : Ls C Mt · m)

+ (
∑

c, z, r, w | [sa 6⊥ c ↓za6⊥ ↑
wa6⊥ r ]

s′p 6⊥ ∈ (B′)2 : c · Lzc C Mwc · r)
+ (
∑

c, z, r, w, t | [ta 6⊥ c ↓za 6⊥ ↑
wa 6⊥ r ]

s′p 6⊥ ∈ (B′)2 : Ls C Mt · c · Lzc C Mwc · r)
6 {{ Facts: WMc 6WM and Lzc C Mwc 6 Lz B Mw & Equation (C.32): Lu B Mu

′
=

Lua6⊥ B
′ Mu
′
a6⊥ for u, u′ ∈ S & Kleene algebra }}

(
∑

m | [sa6⊥ m ]
s′p6⊥ ∈ (B′)1 : m)

+ (
∑

m, t | [ta 6⊥ m ]
s′p 6⊥ ∈ (B′)1 : Lsa 6⊥ B

′ Mta6⊥ · m)

+ (
∑

c, z, r, w | [sa 6⊥ c ↓za6⊥ ↑
wa6⊥ r ]

s′p 6⊥ ∈ (B′)2 : c · Lza6⊥ B
′ Mwa6⊥ · r)

+ (
∑

c, z, r, w, t | [ta6⊥ c ↓za 6⊥ ↑
wa 6⊥ r ]

s′p6⊥ ∈ (B′)2 : Lsa6⊥ B
′ Mta 6⊥ · c · Lza 6⊥ B

′ Mwa 6⊥ · r)
6 {{ Kleene algebra: p1 6 p1 + p2 & Equation (3.25) }}

Lsa6⊥ B
′ Ms
′
p 6⊥ .

C.2.8 Proofs of (C.65) and (C.66)

For inequations (C.65) and (C.66), we prove, for all s, s′ ∈ S,

` (Tc •B •T⊥)[s, s′] 6 A[sa⊥ , s
′
a⊥

] ,
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` (Tc •B •T⊥)[s, s′] 6 B[sa6⊥ , s
′
p6⊥

] .

Using the de�nition of •, A, B, Tc and T⊥ and Kleene algebra, it su�ces to prove, for
all c ∈ Σc, r ∈ Σr and s, s′, t, t′ ∈ S such that ` Tc[s, t] > c and ` T⊥[t′, s′] > r,

` c · L
ta6⊥

B′
t′p 6⊥

M · r 6 L
sa⊥

B′
s′a⊥

M ,

` c · L
ta 6⊥

B′
t′p 6⊥

M · r 6 L
sa 6⊥

B′
s′p 6⊥

M .

This is direct from the de�nition of B′, conditions e and f, and axiom (3.3).

C.2.9 Proofs of (C.67) and (C.68)

For inequations (C.67) and (C.68), we prove, for all s, s′ ∈ S,

` (Tc • ε 6⊥ •A •T⊥)[s, s′] 6 A[sa⊥ , s
′
a⊥

] ,

` (Tc • ε 6⊥ •A •T⊥)[s, s′] 6 B[sa6⊥ , s
′
p6⊥

] .

Using (C.33), the de�nition of •, A, B, C, Tc, ε 6⊥ and T⊥ and Kleene algebra, it
su�ces to prove, for all c ∈ Σc, r ∈ Σr and s, s′, t, t′, t′′ ∈ S such that ` ε 6⊥[t′′, t] = 1,
` Tc[s, t

′′] > c and ` T⊥[t′, s′] > r,

` c · L
tp6⊥

B′
t′p6⊥

M · r 6 L
sa⊥

B′
s′a⊥

M ,

` c · L
tp 6⊥

B′
t′p 6⊥

M · r 6 L
sa 6⊥

B′
s′p 6⊥

M .

This is direct from the de�nition of B′, conditions i and j, and axiom (3.3).
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C.2.10 Proofs of (C.69) and (C.70)

For inequations (C.69) and (C.70), we prove that

`WM′ 6



(T⊥+WM

+ (Tc •WM)+ • ε 6⊥)?
0 0

0 WM

(WM+Tc)
? • ε 6⊥

• (T⊥+WM

+ (Tc •WM)+ • ε 6⊥)?

0 0
(T⊥+WM

+ (Tc •WM)+ • ε 6⊥)?


.

We use (3.5) with

s(sa⊥ ,s
′
a⊥ ) := (T⊥ +WM+ (Tc •WM)+ • ε 6⊥)?[s, s′] ,

s(sa⊥ ,s
′
p 6⊥ ) := 0 ,

s(sa⊥ ,s
′
a 6⊥ ) := 0 ,

s(sa 6⊥ ,s
′
a⊥ ) := 0 ,

s(sa 6⊥ ,s
′
a 6⊥ ) := Ls B Ms

′
,

s(sa 6⊥ ,s
′
p 6⊥ ) := ((WM+Tc)

? • ε 6⊥ • (T⊥ +WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′] ,

s(sp 6⊥ ,s
′
a⊥ ) := 0 ,

s(sp 6⊥ ,s
′
a 6⊥ ) := 0 ,

s(sp 6⊥ ,s
′
p 6⊥ ) := (T⊥ +WM+ (Tc •WM)+ • ε 6⊥)?[s, s′] .

So, noting that every block of B′ having as starting label a ta⊥ (respectively, tp6⊥) must
also have as ending label a t′a⊥ (respectively, t′p6⊥) where t, t

′ ∈ S, and every block of B′
having as starting label a ta6⊥ must also have as ending label a t′a6⊥ or t′p6⊥ where t, t′ ∈ S,
it su�ces to prove, for all s, s′ ∈ S,

(∧ m | [
sa⊥

m
s′a⊥

] ∈ (B′)1 : m 6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′]) , (C.77)

(∧ m | [
sa 6⊥

m

s′a 6⊥

] ∈ (B′)1 : m 6 L
s

B
s′

M) , (C.78)

(∧ m | [
sa 6⊥

m

s′p 6⊥

] ∈ (B′)1 : m

6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′]) , (C.79)

(∧ m | [
sp 6⊥

m

s′p 6⊥

] ∈ (B′)1 : m 6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′]) , (C.80)
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(∧ c, z, r, w | [
sa⊥

c ↓
z

w

↑ r
s′a⊥

] ∈ (B′)2 : c · s(z,w) · r

6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′]) , (C.81)

(∧ c, z, r, w | [
sa6⊥

c ↓
z

w

↑ r
s′a 6⊥

] ∈ (B′)2 : c · s(z,w) · r 6 L
s

B
s′

M) , (C.82)

(∧ c, z, r, w | [
sa6⊥

c ↓
z

w

↑ r
s′p 6⊥

] ∈ (B′)2 : c · s(z,w) · r

6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′]) , (C.83)

(∧ c, z, r, w | [
sp6⊥

c ↓
z

w

↑ r
s′p 6⊥

] ∈ (B′)2 : c · s(z,w) · r

6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′]) , (C.84)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa⊥ ,v) · s(v,s′a⊥ )

6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′]) , (C.85)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa⊥ ,v) · s(v,s′a6⊥ ) 6 0) , (C.86)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa⊥ ,v) · s(v,s′p6⊥ ) 6 0) , (C.87)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa 6⊥ ,v) · s(v,s′a⊥ ) 6 0) , (C.88)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa 6⊥ ,v) · s(v,s′a6⊥ ) 6 L
s

B
s′

M) , (C.89)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sa 6⊥ ,v) · s(v,s′p6⊥ )

6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′]) , (C.90)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sp 6⊥ ,v) · s(v,s′a⊥ ) 6 0) , (C.91)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sp 6⊥ ,v) · s(v,s′a6⊥ ) 6 0) , (C.92)

(∧ v | v ∈ {v′a⊥ , v
′
a6⊥
, v′p6⊥ | v

′ ∈ S} : s(sp 6⊥ ,v) · s(v,s′p6⊥ )

6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′]) . (C.93)

For inequations (C.77), we suppose [sa⊥
m ]s

′
a⊥ ∈ (B′)1 and we prove

m 6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′] .

By Kleene algebra, it su�ces to prove

m 6WM[s, s′] .

By the de�nition of WM, it su�ces to prove

m 6 L
s

B
s′

M .
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By the de�nition of B′, conditions a and b, and the de�nition of B, [sm ]s
′
∈ B1. So,

the proof follows from axiom (3.2).

For inequations (C.78), we suppose [sa6⊥
m ]

s′a 6⊥ ∈ (B′)1 and we prove

m 6 L
s

B
s′

M .

By the de�nition of B′, conditions a and b, and the de�nition of B, [sm ]s
′
∈ B1. So,

the proof follows from axiom (3.2).

For inequations (C.79), we suppose [sa6⊥
m ]

s′p6⊥ ∈ (B′)1 and we prove

m 6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′] .

By Kleene algebra, it su�ces to prove

m 6 (WM • ε 6⊥)[s, s′] .

By the de�nition of •, it su�ces to prove

m 6 (
∑

t | t ∈ S : WM[s, t] · ε 6⊥[t, s′]) .

By the de�nition of WM, it su�ces to prove

m 6 (
∑

t | t ∈ S : L
s

B
t

M · ε 6⊥[t, s′]) .

We now use the hypothesis [sa6⊥
m ]

s′p6⊥ ∈ (B′)1. By the de�nition of B′, condition c,

there exists a s′′ ∈ S such that ` ε 6⊥[s′′, s′] = 1 and [sm ]s
′′
∈ B1. So, using axiom (3.2),

Kleene algebra and hypothesis ` ε 6⊥[s′′, s′] = 1, it su�ces to prove

L
s

B
s′′

M · ε 6⊥[s′′, s′] 6 (
∑

t | t ∈ S : L
s

B
t

M · ε 6⊥[t, s′]) .

This is direct by Kleene algebra (p1 6 p1 + p2).

The proofs of inequations (C.80) are similar to the proofs of (C.77).

For inequations (C.81), we suppose [sa⊥
c ↓z ↑w r ]s

′
a⊥ ∈ (B′)2 and we prove

c · s(z,w) · r 6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′] . (C.94)

By the de�nition of B′, conditions d, e, h and i, z ∈ {z′a6⊥ , z
′
p6⊥
| z′ ∈ S} and w ∈

{w′a6⊥ , w
′
p6⊥
| w′ ∈ S}.
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If z = z′a6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then, by condition d of the

de�nition of B′, [s c ↓z′ ↑
w′ r ]s

′
∈ B2. Also,

s(z′a 6⊥ ,w
′
a6⊥ ) = L

z′
B
w′

M .

So, using axiom (3.3) and the de�nition of WM,

c · s(z′a 6⊥ ,w
′
a6⊥ ) · r = c · L

z′
B
w′

M · r 6 L
s

B
s′

M = WM[s, s′] .

Then, inequation (C.94) is trivial by Kleene algebra (p1 6 (p1 + p2)∗).

If z = z′a6⊥ for a z′ ∈ S and w = w′p6⊥ for a w′ ∈ S, then, by condition e of the
de�nition of B′, ` Tc[s, z

′] > c and ` T⊥[w′, s′] > r. Also,

s(z′a6⊥ ,w
′
p6⊥ ) = ((WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[z′, w′] .

Then, inequation (C.94) is possible to prove.

c · s(z′a 6⊥ ,w
′
p 6⊥ ) · r

= {{ De�nition of s(z′a 6⊥ ,w
′
p 6⊥ ) }}

c · ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[z′, w′] · r

6 {{ Hypotheses: ` Tc[s, z
′] > c and ` T⊥[w′, s′] > r }}

Tc[s, z
′] · ((WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[z′, w′] ·T⊥[w′, s′]

6 {{ Kleene algebra & De�nition of • }}
(Tc • (WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? •T⊥)[s, s′]

= {{ Denesting rule & Lemma 4.5, property iii }}
(Tc •WM • (Tc •WM)? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? •T⊥)[s, s′]

= {{ De�nition of + }}
((Tc •WM)+ • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? •T⊥)[s, s′]

6 {{ Kleene algebra: p1 6 (p1 + p2)∗ & Monotonicity of · & Kleene algebra:
p∗ = p∗p∗ }}

(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′]

If z = z′p6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then s(z′p6⊥ ,w
′
a6⊥ ) = 0. So, the proof

of (C.94) follows from zero of · and the fact that 0 is the minimum of the algebra.

If z = z′p6⊥ for a z′ ∈ S and w = w′p6⊥ for a w′ ∈ S, then, by condition i of the
de�nition of B′, there exists a t ∈ S such that ` ε 6⊥[t, z′] = 1, ` Tc[s, t] > c and
` T⊥[w′, s′] > r. Also,

s(z′p 6⊥ ,w
′
p6⊥ ) = (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[z′, w′] .
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Then, inequation (C.94) is possible to prove.

c · s(z′p 6⊥ ,w
′
p6⊥ ) · r

= {{ De�nition of s(z′p 6⊥ ,w
′
p6⊥ ) }}

c · (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[z′, w′] · r
= {{ Identity of · }}

c · 1 · 1 · (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[z′, w′] · r
6 {{ Hypotheses: ` ε 6⊥[t, z′] = 1, ` Tc[s, t] > c and ` T⊥[w′, s′] > r &

Lemma 4.5, property i & De�nition of I }}
Tc[s, t] ·WM[t, t] · ε 6⊥[t, z′] · (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[z′, w′] ·T⊥[w′, s′]

6 {{ Kleene algebra & De�nition of • }}
(Tc •WM • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? •T⊥)[s, s′]

6 {{ Kleene algebra: p 6 p+ & Monotonicity of · }}
((Tc •WM)+ • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? •T⊥)[s, s′]

6 {{ Kleene algebra: p1 6 (p1 + p2)∗ & Monotonicity of · & Kleene algebra:
p∗ = p∗p∗ }}

(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′]

For inequations (C.82), we suppose [sa 6⊥
c ↓z ↑w r ]

s′a 6⊥ ∈ (B′)2 and we prove

c · s(z,w) · r 6 L
s

B
s′

M . (C.95)

By the de�nition of B′, conditions d and h, z ∈ {z′a6⊥ , z
′
p6⊥
| z′ ∈ S} and w ∈ {w′a6⊥ | w

′ ∈
S}. If z = z′a6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then s(z′a 6⊥ ,w

′
a6⊥ ) = Lz′ B Mw

′
and

[s c ↓z′ ↑
w′ r ]s

′
∈ B2. So, the proof of (C.95) follows from (3.3). If z = z′p6⊥ for a z′ ∈ S

and w = w′a6⊥ for a w′ ∈ S, then s(z′p6⊥ ,w
′
a6⊥ ) = 0. The proof of (C.95) follows from zero

of · and the fact that 0 is the minimum of the algebra.

For inequations (C.83), we suppose [sa 6⊥
c ↓z ↑w r ]

s′p 6⊥ ∈ (B′)2 and we prove

c · s(z,w) · r 6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′] . (C.96)

By the de�nition of B′, conditions f, g, j and k, z ∈ {z′a6⊥ , z
′
p6⊥
| z′ ∈ S} and w ∈

{w′a6⊥ , w
′
p6⊥
| w′ ∈ S}.

If z = z′a6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then, by condition g of the

de�nition of B′, there exists a t ∈ S such that ` ε 6⊥[t, s′] = 1 and [s c ↓z′ ↑
w′ r ]t ∈ B2.
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Also,

s(z′a 6⊥ ,w
′
a6⊥ ) = L

z′
B
w′

M .

So, inequation (C.96) is possible to prove.

c · s(z′a 6⊥ ,w
′
a6⊥ ) · r

= {{ De�nition of s(z′a 6⊥ ,w
′
a6⊥ ) }}

c · Lz′ B Mw
′
· r

6 {{ Hypothesis: [s c ↓z′ ↑
w′ r ]t ∈ B2 & Axiom (3.3) }}

Ls B Mt

= {{ De�nition of WM & Identity of · }}
WM[s, t] · 1

= {{ Hypothesis: ` ε 6⊥[t, s′] = 1 }}
WM[s, t] · ε 6⊥[t, s′]

6 {{ Kleene algebra & De�nition of • }}
(WM • ε 6⊥)[s, s′]

6 {{ Kleene algebra: p1 6 (p1 + p2)∗ & Monotonicity of · & Identity of · }}
((WM+Tc)

? • ε 6⊥ • I)[s, s′]
6 {{ Kleene algebra: 1 6 p∗ & Monotonicity of · }}

((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′]

If z = z′a6⊥ for a z′ ∈ S and w = w′p6⊥ for a w′ ∈ S, then, by condition f of the
de�nition of B′, ` Tc[s, z

′] > c and ` T⊥[w′, s′] > r. Also,

s(z′a6⊥ ,w
′
p 6⊥ ) = ((WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[z′, w′] .

Then, inequation (C.96) is possible to prove.

c · s(z′a6⊥ ,w
′
p6⊥ ) · r

= {{ De�nition of s(z′a6⊥ ,w
′
p6⊥ ) }}

c · ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[z′, w′] · r

6 {{ Hypotheses: ` Tc[s, z
′] > c and ` T⊥[w′, s′] > r }}

Tc[s, z
′] · ((WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[z′, w′] ·T⊥[w′, s′]

6 {{ Kleene algebra & De�nition of • }}
(Tc • (WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? •T⊥)[s, s′]

6 {{ Kleene algebra: p1 6 (p1 + p2)∗ & Monotonicity of · & Kleene algebra:
p∗ = p∗p∗ }}
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((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? •T⊥)[s, s′]

6 {{ Kleene algebra: p1 6 (p1 + p2)∗ & Monotonicity of · & Kleene algebra:
p∗ = p∗p∗ }}

((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′]

If z = z′p6⊥ for a z′ ∈ S and w = w′a6⊥ for a w′ ∈ S, then s(z′p 6⊥ ,w
′
a 6⊥ ) = 0. So, the proof

of (C.96) follows from zero of · and the fact that 0 is the minimum of the algebra.

If z = z′p6⊥ for a z′ ∈ S and w = w′p6⊥ for a w′ ∈ S, then, by condition j of the
de�nition of B′, there exists a t ∈ S such that ` ε 6⊥[t, z′] = 1, ` Tc[s, t] > c and
` T⊥[w′, s′] > r. Also,

s(z′p 6⊥ ,w
′
p 6⊥ ) = (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[z′, w′] .

Then, inequation (C.96) is possible to prove.

c · s(z′p6⊥ ,w
′
p6⊥ ) · r

= {{ De�nition of s(z′p6⊥ ,w
′
p6⊥ ) }}

c · (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[z′, w′] · r
= {{ Identity of · }}

c · 1 · (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[z′, w′] · r
6 {{ Hypotheses: ` ε 6⊥[t, z′] = 1, ` Tc[s, t] > c and ` T⊥[w′, s′] > r }}

Tc[s, t] · ε 6⊥[t, z′] · (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[z′, w′] ·T⊥[w′, s′]

6 {{ Kleene algebra & De�nition of • }}
(Tc • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? •T⊥)[s, s′]

6 {{ Kleene algebra: p1 6 (p1 + p2)∗ & Monotonicity of · }}
((WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)? •T⊥)[s, s′]

6 {{ Kleene algebra: p1 6 (p1 + p2)∗ & Monotonicity of · & Kleene algebra:
p∗ = p∗p∗ }}

((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′]

For inequations (C.84), we suppose [sp6⊥
c ↓z ↑w r ]

s′p6⊥ ∈ (B′)2 and we prove

c · s(z,w) · r 6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′] .

By the de�nition of B′, conditions d, e, f, h, i and j,

[
sp6⊥

c ↓
z

w

↑ r
s′p6⊥

] ∈ (B′)2 ⇔ [
sa⊥

c ↓
z

w

↑ r
s′a⊥

] ∈ (B′)2 .
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So, the proof follows from (C.81).

For inequations (C.85), there are two possible cases for v. If v = v′a⊥ for a v′ ∈ S,
then it must be proved that

(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, v′] · (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[v′, s′]

6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′] .

By Kleene algebra and the de�nition of •, it su�ces to prove that(
(T⊥+WM+ (Tc •WM)+ • ε 6⊥)? • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

)
[s, s′]

6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′] .

This is trivial since p∗ = p∗p∗ by Kleene algebra. If v ∈ {v′a6⊥ , v
′
p6⊥
| v′ ∈ S}, then it must

be proved that

0 · s(v,s′a⊥ ) 6 (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, s′] .

This is direct by zero of · and the fact that 0 is the minimum element of the algebra.

For inequations (C.86), there are two possible cases for v. If v = v′a⊥ for a v′ ∈ S,
then it must be proved that

(T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[s, v′] · 0 6 0 .

This is direct by zero of · and the re�exivity of 6. If v ∈ {v′a6⊥ , v
′
p6⊥
| v′ ∈ S}, then it

must be proved that
0 · s(v,s′a6⊥ ) 6 0 .

This is direct by zero of · and the re�exivity of 6.

The proofs of (C.87) are similar to the proofs of (C.86).

For inequations (C.88), there are two possible cases for v. If v = v′a⊥ for a v′ ∈ S,
then it must be proved that

0 · (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[v′, s′] 6 0 .

This is direct by zero of · and the re�exivity of 6. If v ∈ {v′a6⊥ , v
′
p6⊥
| v′ ∈ S}, then it

must be proved that
s(sa6⊥ ,v) · 0 6 0 .

This is direct by zero of · and the re�exivity of 6.
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For inequations (C.89), there are two possible cases for v. If v = v′a6⊥ for a v′ ∈ S,
then it must be proved that

L
s

B
v′

M · L
v′
B
s′

M 6 L
s

B
s′

M .

This is direct by axiom (3.4). If v ∈ {v′a⊥ , v
′
p6⊥
| v′ ∈ S}, then it must be proved that

s(sa6⊥ ,v) · 0 6 L
s

B
s′

M .

This is direct by zero of · and the fact that 0 is the minimum element of the algebra.

For inequations (C.90), there are three possible cases for v. If v = v′a⊥ for a v′ ∈ S,
then it must be proved that

0 · 0 6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′] .

This is direct by zero of · and the fact that 0 is the minimum element of the algebra.
If v = v′a6⊥ for a v′ ∈ S, then it must be proved that

Ls B Mv
′
· ((WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[v′, s′]

6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′] .

By the de�nition of WM, by Kleene algebra and by the de�nition of •, it su�ces to
prove that

(WM • (WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′]

6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′] .

This is trivial since p1 · (p1 +p2)∗ 6 (p1 +p2)∗ by Kleene algebra. If v = v′p6⊥ for a v′ ∈ S,
then it must be proved that

((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, v′]

· (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?[v′, s′]

6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′] .

By Kleene algebra and by the de�nition of •, it su�ces to prove that(
(WM+Tc)

? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?

• (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?
)

[s, s′]

6 ((WM+Tc)
? • ε 6⊥ • (T⊥+WM+ (Tc •WM)+ • ε 6⊥)?)[s, s′] .

This is trivial since p∗ = p∗p∗ by Kleene algebra.

The proofs of (C.91) and (C.92) are similar to the proofs of (C.86).

The proofs of (C.93) are similar to the proofs of (C.85).



Appendix D

Proof of the Determinization of VPA

(Theorem 4.8)

The construction used here is a simpli�cation of Alur and Madhusudan's construc-
tion [1]. The deterministic automaton A′ uses states of the form T where T ⊆ S × S
is a binary relation between states of A. Intuitively, the range of the relation T rep-
resents the current set of reachable states of S. This is the �standard� component of
the usual subset construction of �nite automata. On the other hand, the domain of T
represents the set of states reached just after reading the last possibly pending call in

the current run (except for the initial state in which an identity function of I is used).
The component T is used to postpone the evaluation of push actions on the stack until
their associated pop action occurs (if there is such a pop action). Note that only the
evaluation of the push action on the stack is postponed and not the reading of the call
action. Note also that if there is no pop action associated to a push action, then the
evaluation of this push action on the stack is not important since it is a pending call
(it will never be used).

To understand the component T more clearly, take a word w = a1a2 . . . ai . . . aj . . . ak
where ai is a call action and aj is its associated return action. Since A′ is a deterministic
pushdown automaton, there is one and only one run of A′ on w. Suppose that we stop
the run just after the action aj. Name the state of A′ just after the action aj by Tj+1.
Each pair (s, s′) ∈ Tj+1 represents that it is possible to start A in the state s with an
empty stack (⊥), run A on the a�x ai . . . aj and end the run in the state s′ of A with
an empty stack (⊥).
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We now express this construction formally. Let

S ′ := 2S×S,

ran(T ) := {s′ ∈ S | (∃ s |: (s, s′) ∈ T )} for T ⊆ S × S,
IdR := {(s, s) ∈ S × S | s ∈ R} for R ⊆ S.

Construct the following deterministic visibly pushdown automaton:

A′ := (S ′,Σi,Σc,Σr, S
′ × Σc ∪ {⊥}, δ′, {IdI}, {T ∈ S ′ | ran(T ) ∩ F 6= ∅})

where δ′ is de�ned by the set of all the following transitions:

• a transition (T, a, λ;T ′, λ) for each a ∈ Σi and T ∈ S ′ where

T ′ := {(s, s′) ∈ S × S | (∃ s′′ | (s, s′′) ∈ T : (s′′, a, λ; s′, λ) ∈ δ)} ;

• a transition (T, a, λ; IdR′ , (T, a)) for each a ∈ Σc and T ∈ S ′ where

R′ := {s′ ∈ S | (∃ s, d | s ∈ ran(T ) ∧ d ∈ Γ : (s, a, λ; s′, d) ∈ δ)} ;

• a transition (T, a,⊥;T ′,⊥) for each a ∈ Σr and T ∈ S ′ where

T ′ := {(s, s′) ∈ S × S | (∃ s′′ | (s, s′′) ∈ T : (s′′, a,⊥; s′,⊥) ∈ δ)} ;

• a transition (T, a, (T ′′, b);T ′, λ) for each a ∈ Σr, T ∈ S ′ and (T ′′, b) ∈ S ′ × Σc

where

T ′ := {(s, s′) ∈ S × S | (∃ s′′ | (s, s′′) ∈ T ′′ : (s′′, s′) ∈ Update)}

and

Update := {(s, s′) ∈ S × S | (∃s1, s2, d | (s1, s2) ∈ T ∧ d ∈ Γ :

(s, b, λ; s1, d) ∈ δ ∧ (s2, a, d; s′, λ) ∈ δ)} .

We now show (4.23). To do this, we use a projection between states of 2S×S and
states of S. The projection is in fact the composition of two simple projections X and
Y expressed as matrices. Let X be a matrix of size |2S×S| × |S × S| de�ned for each
T ⊆ S × S and s, s2 ∈ S by

X[T, (s2, s)] :=

{
1 if (s2, s) ∈ T,
0 otherwise.

Let also Y be a matrix of size |S × S| × |S| de�ned for each s, s′, s2 ∈ S by

Y[(s2, s), s
′] :=

{
1 if s = s′,

0 otherwise.
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The projection X •Y is split in two because it helps a lot, for well-matched words, to
have an �intermediate� level in which the component T is �explicit�.

The projection X •Y is useful since it su�ces to prove that

`
−→
I ′ t •X •Y =

−→
I t , (D.1)

`
−→
F ′ = X •Y •

−→
F , (D.2)

` T′c •X •Y = X •Y •Tc , (D.3)

` T′⊥ •X •Y = X •Y •T⊥ , (D.4)

`WM′ •X •Y = X •Y •WM , (D.5)

and (4.23) follows easily,

−→
I ′ t • (T′⊥+WM′)? • (T′c •WM′)? •

−→
F ′

= {{ Equation (D.2) }}
−→
I ′ t • (T′⊥+WM′)? • (T′c •WM′)? •X •Y •

−→
F

= {{ By (D.5) and (D.3), it is direct that T′c•WM′•X•Y = X•Y•Tc•WM.
& Kleene algebra: Bisimulation rule }}−→

I ′ t • (T′⊥+WM′)? •X •Y • (Tc •WM)? •
−→
F

= {{ By (D.5), (D.4) and Kleene algebra, it is direct that (T′⊥+WM′)•X•Y =

X •Y • (T⊥+WM). & Kleene algebra: Bisimulation rule }}−→
I ′ t •X •Y • (T⊥+WM)? • (Tc •WM)? •

−→
F

= {{ Equation (D.1) }}
−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F .

So, it remains to prove (D.1) to (D.5).

D.1 Proof of (D.1)

It su�ces to show that for all s ∈ S,

(
−→
I ′ t •X •Y)[1, s] =

−→
I t[1, s] .

(
−→
I ′ t •X •Y)[1, s]

= {{ De�nition of • }}
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(
∑

T, s2, s
′ | T ⊆ S × S ∧ s2, s

′ ∈ S :
−→
I ′ t[1, T ] ·X[T, (s2, s

′)] ·Y[(s2, s
′), s])

= {{ De�nition of Y and X & Zero of · & Identity of · and + & One-point rule
of
∑
}}

(
∑

T, s2 | T ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T :
−→
I ′ t[1, T ])

= {{ De�nition of
−→
I ′ : The only entry containing a 1 is exactly the entry IdI &

Zero of · & Identity of · and + }}
(
∑

T, s2 | T = IdI ∧ s2 ∈ S ∧ (s2, s) ∈ T : 1)

= {{ One-point rule of
∑
}}

(
∑

s2 | s2 ∈ S ∧ (s2, s) ∈ IdI : 1)

= {{ De�nition of IdI & By de�nition, I ⊆ S & De�nition of ⊆ }}
(
∑

s2 | s = s2 ∧ s ∈ I : 1)

= {{ De�nition of
−→
I }}

(
∑

s2 | s2 = s :
−→
I t[1, s])

= {{ One-point rule of
∑
}}

−→
I t[1, s]

D.2 Proof of (D.2)

It su�ces to show that for all T ⊆ S × S,
−→
F ′[T, 1] = (X •Y •

−→
F )[T, 1] .

(X •Y •
−→
F )[T, 1]

= {{ De�nition of • }}
(
∑

s, s2, s
′ | s, s2, s

′ ∈ S : X[T, (s2, s
′)] ·Y[(s2, s

′), s] ·
−→
F [s, 1])

= {{ De�nition of Y and X & Zero of · & Identity of · and + & One-point rule
of
∑
}}

(
∑

s, s2 | s, s2 ∈ S ∧ (s2, s) ∈ T :
−→
F [s, 1])

= {{ De�nition of
−→
F & Zero of · & Identity of · and + }}

(
∑

s, s2 | s, s2 ∈ S ∧ (s2, s) ∈ T ∧ s ∈ F : 1)

= {{ Quanti�cation laws & Kleene algebra }}
(
∑

s | s ∈ S ∧ (∃ s2 |: s2 ∈ S ∧ (s2, s) ∈ T ) ∧ s ∈ F : 1)

= {{ Set theory & De�nition of ran(T ) }}
(
∑

s | s ∈ ran(T ) ∧ s ∈ F : 1)

= {{ De�nition of ∩ }}
(
∑

s | s ∈ ran(T ) ∩ F : 1)
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= {{ Kleene algebra and quanti�cation laws: (
∑

s | s ∈ ran(T ) ∩ F : 1) = 1 if

and only if ran(T ) ∩ F 6= ∅ & De�nition of
−→
F ′ }}−→

F ′[T, 1]

D.3 Proof of (D.3)

It su�ces to show that for all T ⊆ S × S and s ∈ S,

(T′c •X •Y)[T, s] = (X •Y •Tc)[T, s] .

First, by De�nition 4.3 of T′c and Tc, these two matrices can be expressed by the
following summations:

Tc = (
∑

a, d | a ∈ Σc ∧ d ∈ Γ : Ta,d
c ),

T′c = (
∑

a, b, T ′ | a, b ∈ Σc ∧ T ′ ⊆ S × S : (T′c)
a,(T ′,b)),

where each matrix Ta,d
c is of size |S| × |S| and contains only entries of the form 0 or a

and each matrix (T′c)
a,(T ′,b) is of a size |2S×S| × |2S×S| and contains only entries of the

form 0 or a. These matrices are a particular form of simple matrices as used by Kozen
in [25]. Note also that, by de�nition of A′, for all T, T ′, T ′′ ⊆ S × S and a, b ∈ Σc,

(T′c)
a,(T ′′,b)[T, T ′] =

{
a if a = b ∧ T ′ = Id{t∈S|(∃ s′,d|s′∈ran(T )∧d∈Γ:(s′,a,λ;t,d)∈δ)} ∧ T = T ′′,

0 otherwise,

and for all s′, t ∈ S,

Ta,d
c [s′, t] =

{
a if (s′, a, λ; t, d) ∈ δ,
0 otherwise.

Using these de�nitions, we are able to prove it.

(T′c •X •Y)[T, s]

= {{ De�nition of • }}
(
∑

T ′, s2, s
′ | T ′ ⊆ S × S ∧ s2, s

′ ∈ S : T′c[T, T
′] ·X[T ′, (s2, s

′)] ·Y[(s2, s
′), s])

= {{ De�nition of Y and X & Zero of · & Identity of · and + & One-point rule
of
∑
}}

(
∑

T ′, s2 | T ′ ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T ′ : T′c[T, T ′])
= {{ De�nition of T′c }}
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(
∑

T ′, s2 | T ′ ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T ′ : (
∑

a, b, T ′′ | a, b ∈ Σc ∧ T ′′ ⊆
S × S : (T′c)

a,(T ′′,b))[T, T ′])
= {{ De�nition of + }}

(
∑

T ′, s2 | T ′ ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T ′ : (
∑

a, b, T ′′ | a, b ∈ Σc ∧ T ′′ ⊆
S × S : (T′c)

a,(T ′′,b)[T, T ′]))
= {{ De�nition of (T′c)

a,(T ′′,b)[T, T ′] & Identity of + }}
(
∑

T ′, s2 | T ′ ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T ′ : (
∑

a, b, T ′′ | a, b ∈ Σc ∧ T ′′ ⊆
S × S ∧ a = b ∧ T ′ = Id{t∈S|(∃ s′,d|s′∈ran(T )∧d∈Γ:(s′,a,λ;t,d)∈δ)} ∧ T = T ′′ : a))

= {{ One-point rule of
∑
}}

(
∑

T ′, s2 | T ′ ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T ′ : (
∑

a | a ∈ Σc ∧ T ′ =

Id{t∈S|(∃ s′,d|s′∈ran(T )∧d∈Γ:(s′,a,λ;t,d)∈δ)} : a))

= {{ Nesting & One-point rule of
∑
}}

(
∑

s2, a | s2 ∈ S ∧ (s2, s) ∈ Id{t∈S|(∃ s′,d|s′∈ran(T )∧d∈Γ:(s′,a,λ;t,d)∈δ)} ∧ a ∈ Σc : a)

= {{ Set theory }}
(
∑

s2, a | s2 ∈ S ∧ s2 = s ∧ s ∈ S ∧ (∃ s′, d | s′ ∈ ran(T ) ∧ d ∈ Γ : (s′, a, λ; s, d) ∈
δ) ∧ a ∈ Σc : a)

= {{ Hypothesis: s ∈ S & One-point rule of
∑
}}

(
∑

a | a ∈ Σc ∧ (∃ s′, d | s′ ∈ ran(T ) ∧ d ∈ Γ : (s′, a, λ; s, d) ∈ δ) : a)

= {{ Quanti�cation laws & Kleene algebra }}
(
∑

s′, a, d | s′ ∈ ran(T ) ∧ a ∈ Σc ∧ d ∈ Γ ∧ (s′, a, λ; s, d) ∈ δ : a)

= {{ De�nition of ran(T ) & Set theory }}
(
∑

s′, a, d | s′ ∈ S ∧ (∃ s2 | s2 ∈ S : (s2, s
′) ∈ T )∧ a ∈ Σc ∧ d ∈ Γ∧ (s′, a, λ; s, d) ∈

δ : a)
= {{ Quanti�cation laws & Kleene algebra }}

(
∑

s2, s
′, a, d | s2, s

′ ∈ S ∧ (s2, s
′) ∈ T ∧ a ∈ Σc ∧ d ∈ Γ ∧ (s′, a, λ; s, d) ∈ δ : a)

= {{ Nesting & De�nition of Ta,d
c [s′, s] & Identity of + }}

(
∑

s2, s
′ | s2, s

′ ∈ S ∧ (s2, s
′) ∈ T : (

∑
a, d | a ∈ Σc ∧ d ∈ Γ : Ta,d

c [s′, s]))

= {{ De�nition of + }}
(
∑

s2, s
′ | s2, s

′ ∈ S ∧ (s2, s
′) ∈ T : (

∑
a, d | a ∈ Σc ∧ d ∈ Γ : Ta,d

c )[s′, s])

= {{ De�nition of Tc }}
(
∑

s2, s
′ | s2, s

′ ∈ S ∧ (s2, s
′) ∈ T : Tc[s

′, s])

= {{ De�nition of Y and X & Zero of · & Identity of · and + & One-point rule
of
∑
}}

(
∑

s2, s
′, s′′ | s2, s

′, s′′ ∈ S : X[T, (s2, s
′)] ·Y[(s2, s

′), s′′] ·Tc[s
′′, s])

= {{ De�nition of • }}
(X •Y •Tc)[T, s]
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D.4 Proof of (D.4)

It su�ces to show that for all T ⊆ S × S and s ∈ S,

(T′⊥ •X •Y)[T, s] = (X •Y •T⊥)[T, s] .

First, by De�nition 4.3 of T′⊥ and T⊥, these two matrices can be expressed by the
following summations:

T⊥ = (
∑

a | a ∈ Σr : Ta
⊥) ,

T′⊥ = (
∑

a | a ∈ Σr : (T′⊥)a) ,

where each matrix Ta
⊥ is of size |S| × |S| and contains only entries of the form 0 or

a and each matrix (T′⊥)a is of a size |2S×S| × |2S×S| and contains only entries of the
form 0 or a. These matrices are a particular form of simple matrices as used by Kozen
in [25]. Note also that, by de�nition of A′, for all T, T ′ ⊆ S × S and a ∈ Σr,

(T′⊥)a[T, T ′] =

{
a if T ′ = {(t, s′) ∈ S × S | (∃ s′′ | (t, s′′) ∈ T : (s′′, a,⊥; s′,⊥) ∈ δ)},
0 otherwise,

and for all s′, t ∈ S,

Ta
⊥d[s′, t] =

{
a if (s′, a,⊥; t,⊥) ∈ δ,
0 otherwise.

Using these de�nitions, we are able to prove it.

(T′⊥ •X •Y)[T, s]

= {{ De�nition of • }}
(
∑

T ′, s2, s
′ | T ′ ⊆ S × S ∧ s2, s

′ ∈ S : T′⊥[T, T ′] ·X[T ′, (s2, s
′)] ·Y[(s2, s

′), s])

= {{ De�nition of Y and X & Zero of · & Identity of · and + & One-point rule
of
∑
}}

(
∑

T ′, s2 | T ′ ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T ′ : T′⊥[T, T ′])

= {{ De�nition of T′⊥ }}
(
∑

T ′, s2 | T ′ ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T ′ : (
∑

a | a ∈ Σr : Ta
⊥)[T, T ′])

= {{ De�nition of + }}
(
∑

T ′, s2 | T ′ ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T ′ : (
∑

a | a ∈ Σr : Ta
⊥[T, T ′]))

= {{ De�nition of (T′⊥)a[T, T ′] & Identity of + }}
(
∑

T ′, s2 | T ′ ⊆ S × S ∧ s2 ∈ S ∧ (s2, s) ∈ T ′ : (
∑

a | a ∈ Σr ∧ T ′ = {(t, s′) ∈
S × S | (∃ s′′ | (t, s′′) ∈ T : (s′′, a,⊥; s′,⊥) ∈ δ)} : a))

= {{ Nesting & One-point rule of
∑
}}
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(
∑

s2, a | a ∈ Σr ∧ s2 ∈ S ∧ (s2, s) ∈ {(t, s′) ∈ S × S | (∃ s′′ | (t, s′′) ∈ T :

(s′′, a,⊥; s′,⊥) ∈ δ)} : a)
= {{ Set theory }}

(
∑

s2, a | a ∈ Σr ∧ s2 ∈ S ∧ (s2, s) ∈ S ×S ∧ (∃ s′′ | (s2, s
′′) ∈ T : (s′′, a,⊥; s,⊥) ∈

δ) : a)
= {{ By de�nition, s ∈ S ∧ s2 ∈ S ⇒ (s2, s) ∈ S × S & De�nition of ⇒ }}

(
∑

s2, a | a ∈ Σr ∧ s2 ∈ S ∧ (∃ s′′ | (s2, s
′′) ∈ T : (s′′, a,⊥; s,⊥) ∈ δ) : a)

= {{ Kleene algebra & Quanti�cation laws & By de�nition, (s2, s
′′) ∈ T ⇒

s′′ ∈ S & De�nition of ⇒ }}
(
∑

s2, s
′′, a | a ∈ Σr ∧ s2, s

′′ ∈ S ∧ (s2, s
′′) ∈ T ∧ (s′′, a,⊥; s,⊥) ∈ δ : a)

= {{ Nesting & De�nition of Ta
⊥[s′′, s] & Identity of + }}

(
∑

s2, s
′′ | s2, s

′′ ∈ S ∧ (s2, s
′′) ∈ T : (

∑
a | a ∈ Σr : Ta

⊥[s′′, s]))

= {{ De�nition of + }}
(
∑

s2, s
′′ | s2, s

′′ ∈ S ∧ (s2, s
′′) ∈ T : (

∑
a | a ∈ Σr : Ta

⊥)[s′′, s])

= {{ De�nition of T⊥ }}
(
∑

s2, s
′′ | s2, s

′′ ∈ S ∧ (s2, s
′′) ∈ T : T⊥[s′′, s])

= {{ De�nition of Y and X & Zero of · & Identity of · and + & One-point rule
of
∑
}}

(
∑

s2, s
′, s′′ | s2, s

′, s′′ ∈ S : X[T, (s2, s
′)] ·Y[(s2, s

′), s′′] ·T⊥[s′′, s])

= {{ De�nition of • }}
(X •Y •T⊥)[T, s]

D.5 Proof of (D.5)

It su�ces to show that for all T ⊆ S × S and s ∈ S,

(WM′ •X •Y)[T, s] = (X •Y •WM)[T, s] .

We prove it.

(WM′ •X •Y)[T, s]

= {{ De�nition of • }}
(
∑

s2, s
′ | s2, s

′ ∈ S : (
∑

T ′ | T ′ ⊆ S × S : WM′[T, T ′] · X[T ′, (s2, s
′)]) ·

Y[(s2, s
′), s])

= {{ De�nition of Y & Zero of · & Identity of · and + & One-point rule of∑
}}

(
∑

s2 | s2 ∈ S : (
∑

T ′ | T ′ ⊆ S × S : WM′[T, T ′] ·X[T ′, (s2, s)]))

= {{ De�nition of WM′ }}
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(
∑

s2 | s2 ∈ S : (
∑

T ′ | T ′ ⊆ S × S : LT B′ M
T ′ · X[T ′, (s2, s)]))

= {{ Equation (D.6) (see below) }}
(
∑

s2 | s2 ∈ S : (
∑

s′ | s′ ∈ S : X[T, (s2, s
′)] · Ls′ B Ms))

= {{ De�nition of WM }}
(
∑

s2 | s2 ∈ S : (
∑

s′ | s′ ∈ S : X[T, (s2, s
′)] ·WM[s′, s]))

= {{ Kleene algebra & Quanti�cation laws }}
(
∑

s′ | s′ ∈ S : (
∑

s2 | s2 ∈ S : X[T, (s2, s
′)]) ·WM[s′, s])

= {{ De�nition of Y & Zero of · & Identity of · and + & One-point rule of∑
}}

(
∑

s′ | s′ ∈ S : (
∑

s2, s
′′ | s2, s

′′ ∈ S : X[T, (s2, s
′′)] ·Y[(s2, s

′′), s′]) ·WM[s′, s])

= {{ De�nition of • }}
(X •Y •WM)[T, s]

To �nish the proof of (D.5), it remains to prove that for all T ⊆ S×S and s, s2 ∈ S,

` (
∑

T ′ | T ′ ⊆ S × S : L
T

B′
T ′

M · X[T ′, (s2, s)])

= (
∑

s′ | s′ ∈ S : X[T, (s2, s
′)] · L

s′
B
s

M) .
(D.6)

We �rst explicitly describe the list of blocks of B′ with respect to B:

a. The set of labels 2S×S is de�ned.

b. For all T ⊆ S × S,

[
T

1
T

] ∈ (B′)1 .

c. For all internal actions a ∈ Σi and T, T ′ ⊆ S × S,

[
T

a
T ′

] ∈ (B′)1 ⇔ T ′ = {(s, s′) ∈ S × S | (∃ s′′ | (s, s′′) ∈ T : [
s′′
a
s′

] ∈ B1)} .

d. For all call actions c ∈ Σc, return actions r ∈ Σr and T1, T2, T3, T4 ⊆ S × S,

[
T1

c ↓
T2

T3
↑ r

T4

] ∈ (B′)2

⇔ T2 = Id{s′∈S|(∃ s,d|s∈ran(T1)∧d∈Γ:(s,c,λ;s′,d)∈δ)}

∧ T4 = {(s, s′) ∈ S × S |

(∃ s′′, s1, s2 | (s, s′′) ∈ T1 ∧ (s1, s2) ∈ T3 : [
s′′
c ↓
s1

s2
↑ r

s′

] ∈ B2)} .
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D.5.1 Proof of the Case > of (D.6)

We now show the case > of (D.6). By Kleene algebra, it su�ces to show independently
that for all T ⊆ S × S and s, s2, s

′ ∈ S,

X[T, (s2, s
′)] · L

s′
B
s

M 6 (
∑

T ′ | T ′ ⊆ S × S : L
T

B′
T ′

M ·X[T ′, (s2, s)]) .

By (3.16), it su�ces to show that

• for all s′1 ∈ S, T1 ⊆ S × S and [s1 m ]s4 ∈ B1,

X[(T1, (s
′
1, s1))] ·m 6 (

∑
T4 | [

T1

m
T4

] ∈ (B′)1 : m ·X[T4, (s
′
1, s4)]) , (D.7)

• for all s′1 ∈ S, T1 ⊆ S × S and [s1 c ↓s2 ↑
s3 r ]s4 ∈ B2,

X[T1, (s
′
1, s1)] · c 6 (

∑
T2, T3, T4 | [T1 c ↓T2 ↑

T3 r ]T4 ∈ (B′)2 :

X[T1, (s
′
1, s1)] · c ·X[T2, (s2, s2)] ·X[T2, (s2, s2)])) ,

(D.8)

• for all s′1 ∈ S, T1, T2, T
′
3 ⊆ S × S and [s1 c ↓s2 ↑

s3 r ]s4 ∈ B2,

(
∑

T3, T4 | [T1 c ↓T2 ↑
T3 r ]T4 ∈ (B′)2 :

X[T1, (s
′
1, s1)] · c ·X[T2, (s2, s2)] · LT2 B

′ MT
′
3 · X[T ′3, (s2, s3)] · r)

6 (
∑

T4 | [T1 c ↓T2 ↑
T ′3 r ]T4 ∈ (B′)2 : c · LT2 B

′ MT
′
3 · r ·X[T4, (s

′
1, s4)]) .

(D.9)

We �rst show (D.7). To do this, we show a stronger result: for all T1 ⊆ S × S,
s′1, s4 ∈ S and m ∈ Σi ∪ {0, 1},

(
∑

s′′1 | [
s′′1

m
s4

] ∈ B1 : X[(T1, (s
′
1, s
′′
1))] ·m)

= (
∑

T4 | [
T1

m
T4

] ∈ (B′)1 : m ·X[T4, (s
′
1, s4)]) .

(D.10)

Let us prove this by case analysis on m. For the case m = 0, by the de�nition of B and
B′, there is no unary block containing 0 as operand. So, the empty range rule can be
applied for both sides of the equation, yielding the same result.

For the case m = 1, by condition B of the de�nition of B, s′′1 = s4. Also, by
condition b of the de�nition of B′, T4 = T1. So, using the one-point rule of

∑
for both

sides of the equation, we have to show that

X[(T1, (s
′
1, s4))] · 1 = 1 ·X[T1, (s

′
1, s4)] .
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This is trivial by the identity of ·.

For the case m ∈ Σi,

(
∑

T4 | [T1 m ]T4 ∈ (B′)1 : m ·X[T4, (s
′
1, s4)])

= {{ De�nition of X & Zero of · & Identity of · and + }}
(
∑

T4 | [T1 m ]T4 ∈ (B′)1 ∧ (s′1, s4) ∈ T4 : m)

= {{ Hypotheses: m ∈ Σi and B′ is deterministic & De�nition of B′, condition
c }}

(
∑

T4 | T4 = {(s, s′) ∈ S × S | (∃ s′′1 | (s, s′′1) ∈ T1 : [s′′1
m ]s

′
∈ B1)} ∧ (s′1, s4) ∈ T4 :

m)
= {{ Quanti�cation laws & Kleene algebra & Set theory }}

(
∑

s′′1 | (s′1, s′′1) ∈ T1 ∧ [s′′1
m ]s4 ∈ B1 : m)

= {{ De�nition of X & Zero of · & Identity of · and + }}
(
∑

s′′1 | [s′′1 m ]s4 ∈ B1 : X[(T1, (s
′
1, s
′′
1))] ·m) .

Then, inequation (D.7) is proved by noting that, by hypothesis [s1 m ]s4 ∈ B1 and
Kleene algebra,

X[(T1, (s
′
1, s1))] ·m 6 (

∑
s′′1 | [

s′′1

m
s4

] ∈ B1 : X[(T1, (s
′
1, s
′′
1))] ·m) ,

and equation (D.10).

We now show (D.8). In the case that (s′1, s1) /∈ T1, the proof is trivial since
X[T1, (s

′
1, s1)] = 0. So, suppose that (s′1, s1) ∈ T1. To prove (D.8), by the de�nition of

X and identity of · and +, it su�ces to show that

c 6 (
∑

T2, T3, T4 | [
T1

c ↓
T2

T3
↑ r

T4

] ∈ (B′)2 ∧ (s2, s2) ∈ T2 : c) .

To prove the previous inequation, by Kleene algebra, it su�ces to prove that there
exists at least one T2, T3, T4 ⊆ S×S such that [T1 c ↓T2 ↑

T3 r ]T4 ∈ (B′)2 and (s2, s2) ∈ T2.

First, since (s′1, s1) ∈ T1 and [s1 c ↓s2 ↑
s3 r ]s4 ∈ B2 by hypothesis, it is easy to see

that (∃ s, d | s ∈ ran(T1) ∧ d ∈ Γ : (s, c, λ; s2, d) ∈ δ). In other words,

(s2, s2) ∈ Id{s′∈S|(∃ s,d|s∈ran(T1)∧d∈Γ:(s,c,λ;s′,d)∈δ)} . (D.11)

We will see that the set Id{s′∈S|(∃ s,d|s∈ran(T1)∧d∈Γ:(s,c,λ;s′,d)∈δ)} is the wanted T2.
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Second, by the fact that B′ is deterministic and the de�nition of B′, condition d,
for every T ′1, T3 ⊆ S × S, there exists one and only one T2, T4 ⊆ S × S such that
[T ′1
c ↓T2 ↑

T3 r ]T4 ∈ (B′)2. In particular, if T ′1 is T1, then T2 is

Id{s′∈S|(∃ s,d|s∈ran(T1)∧d∈Γ:(s,c,λ;s′,d)∈δ)} .

By the fact that 2S×S is nonempty and by the previous reasonings, we have that there
exists at least one T2, T3, T4 ⊆ S × S such that [T1 c ↓T2 ↑

T3 r ]T4 ∈ (B′)2 and T2 =

Id{s′∈S|(∃ s,d|s∈ran(T1)∧d∈Γ:(s,c,λ;s′,d)∈δ)}. Then, the result follows from (D.11).

We now show (D.9). By Kleene algebra and the de�nition of X, it su�ces to prove
that, for all s′1 ∈ S, T1, T2, T3, T

′
3, T4 ⊆ S × S and [s1 c ↓s2 ↑

s3 r ]s4 ∈ B2 such that
[T1 c ↓T2 ↑

T3 r ]T4 ∈ (B′)2, (s′1, s1) ∈ T1, (s2, s2) ∈ T2 and (s2, s3) ∈ T ′3,

c · L
T2

B′
T ′3

M · r 6 (
∑

T ′4 | [
T1

c ↓
T2

T ′3
↑ r

T ′4

] ∈ (B′)2 ∧ (s′1, s4) ∈ T ′4 : c · L
T2

B′
T ′3

M · r) .

By Kleene algebra, it su�ces to prove that there exists a T ′4 such that [T1 c ↓T2 ↑
T ′3 r ]T

′
4 ∈

(B′)2 and (s′1, s4) ∈ T ′4. We show that T ′4 is exactly

{(s, s′) ∈ S × S | (∃ s′′1, s′2, s′3 | (s, s′′1) ∈ T1 ∧ (s′2, s
′
3) ∈ T ′3 : [

s′′1

c ↓
s′2

s′3
↑ r

s′

] ∈ B2)} .

To show that [T1 c ↓T2 ↑
T ′3 r ]T

′
4 ∈ (B′)2, by the de�nition of B′, it su�ces to prove

that
(T1, c, λ;T2, (T1, c)) ∈ δ′ ∧ (T ′3, r, (T1, c);T

′
4, λ) ∈ δ′ .

The formula (T1, c, λ;T2, (T1, c)) ∈ δ′ is immediate from the hypothesis [T1 c ↓T2 ↑
T3 r ]T4

∈ (B′)2 and the de�nition of B′ which state together that

(T1, c, λ;T2, (T1, c)) ∈ δ′ ∧ (T3, r, (T1, c);T4, λ) ∈ δ′ .

We now prove that (T ′3, r, (T1, c);T
′
4, λ) ∈ δ′. This is immediate from the de�nition of

T ′4 and the de�nition of B′ of page 245.

We now show that (s′1, s4) ∈ T ′4. By the de�nition of T ′4 and set theory, it su�ces
to prove that

(∃ s′′1, s′2, s′3 | (s′1, s′′1) ∈ T1 ∧ (s′2, s
′
3) ∈ T ′3 : [

s′′1

c ↓
s′2

s′3
↑ r

s4

] ∈ B2) .

This is easily proved by using s1 as s′′1, s2 as s′2 and s3 as s′3 along with the hypotheses
(s′1, s1) ∈ T1, (s2, s3) ∈ T ′3 and [s1 c ↓s2 ↑

s3 r ]s4 ∈ B2.
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D.5.2 Proof of the Case 6 of (D.6)

We now show the case 6 of (D.6). By Kleene algebra, it su�ces to show independently
that for all T, T ′ ⊆ S × S and s, s2 ∈ S,

L
T

B′
T ′

M · X[T ′, (s2, s)] 6 (
∑

s′ | s′ ∈ S : X[T, (s2, s
′)] · L

s′
B
s

M) .

By de�nition of X, the only way that X[T ′, (s2, s)] = 1 is when (s2, s) ∈ T ′. Otherwise,
X[T ′, (s2, s)] = 0 and the proof is trivial. So, suppose (s2, s) ∈ T ′. Then, any expression
LT B′ M

T ′ that will be used is such that T ′ 6= ∅. We �rst remove from B′ every unary
and binary blocks containing ∅ as their ending label since they cannot reach T ′. Let B′′
be such a list (the list B′ without every unary and binary blocks containing ∅ as their
ending label). We show that

` L
T

B′
T ′

M = L
T

B′′
T ′

M (D.12)

when T ′ 6= ∅. The case > is direct by (3.26) and (3.30). For the case 6, we �rst note
that any block containing a label ∅ in any position (starting, ending, call or return) also
has an ending label ∅. In fact, by the de�nition of B′, it is easy to see that

• if a unary block of B′ is of the form [∅ a ]T4 , then T4 = ∅;

• if a binary block of B′ is of the form [T1 c ↓∅ ↑
T3 r ]T4 , then T4 = ∅;

• if a binary block of B′ is of the form [∅ c ↓T2 ↑
T3 r ]T4 , then T2 = ∅ and so T4 = ∅;

• if a binary block of B′ is of the form [T1 c ↓T2 ↑
∅ r ]T4 , then T4 = ∅.

So, the set B∗B′({(T, T ′)}) does not contain pairs of the form (T1, ∅) for every T1 ⊆
S×S. To prove the case 6 of (D.12), use axiom (3.15) with s(T1,T2) := LT1 B

′′ MT2 for all
T1, T2 ⊆ S × S, then simply use axioms (3.2), (3.3) and (3.4) appropriately.

To prove the case 6 of (D.6), by (D.12), it su�ces to show independently that for
all T ⊆ S × S, T ′ ∈ 2S×S\{∅} and s, s2 ∈ S,

L
T

B′′
T ′

M · X[T ′, (s2, s)] 6 (
∑

s′ | s′ ∈ S : X[T, (s2, s
′)] · L

s′
B
s

M) .

Let us prove this by case analysis on T . For the case T = ∅, since no block of B′′ has ∅
as starting label (otherwise its ending label would also be ∅, which is impossible), then,
L∅ B′′ M

T ′ = 0 and so the inequation is proved.
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It remains to show the case where T ∈ 2S×S\{∅}. By axiom (3.17), it su�ces to
show that:

• for all s′1, s4 ∈ S and [T1 m ]T4 ∈ (B′′)1,

m ·X[T4, (s
′
1, s4)] 6 (

∑
s1 | [

s1

m
s4

] ∈ B1 : X[(T1, (s
′
1, s1))] ·m) , (D.13)

• for all s′1, s4 ∈ S and [T1 c ↓T2 ↑
T3 r ]T4 ∈ (B′′)2,

r ·X[T4, (s
′
1, s4)]

6 (
∑

s1, s2, s3 | [
s1

c ↓
s2

s3
↑ r

s4

] ∈ B2 : X[T3, (s2, s3)] ·X[T1, (s
′
1, s1)] · r) ,

(D.14)

• for all s′1 ∈ S, [T1 c ↓T2 ↑
T3 r ]T4 ∈ (B′′)2 and [s1 c ↓s2 ↑

s3 r ]s4 ∈ B2,

(
∑

s′′ | s′′ ∈ S : c ·X[T2, (s2, s
′′)] · L

s′′
B
s3

M · X[T1, (s
′
1, s1)] · r)

6 X[T1, (s
′
1, s1)] · c · L

s2

B
s3

M · r .
(D.15)

For inequation (D.13), �rst note that

m ·X[T4, (s
′
1, s4)] 6 (

∑
T ′4 | [

T1

m
T ′4

] ∈ (B′)1 : m ·X[T ′4, (s
′
1, s4)]) ,

by Kleene algebra, by the fact that (B′′)1 ⇒ (B′)1 and by quanti�cation laws. So,
inequation (D.13) follows from the previous result and equation (D.10).

We now show (D.14). In the case that (s′1, s4) /∈ T4, the proof is trivial since
X[T4, (s

′
1, s4)] = 0. So, suppose that (s′1, s4) ∈ T4. By the previous hypothesis, by the

de�nition of X and by Kleene algebra, it su�ces to prove that

r 6 (
∑

s1, s2, s3 | [
s1

c ↓
s2

s3
↑ r

s4

] ∈ B2 ∧ (s′1, s1) ∈ T1 ∧ (s2, s3) ∈ T3 : r) .

To prove this, it su�ces to prove that there exists s1, s2, s3 ∈ S such that [s1 c ↓s2 ↑
s3 r ]s4

∈ B2, (s′1, s1) ∈ T1 and (s2, s3) ∈ T3. This is exactly the following result: by de�nition of
B′′, condition d, by hypotheses [T1 c ↓T2 ↑

T3 r ]T4 ∈ (B′′)2 and (s′1, s4) ∈ T4, and set theory,
there exists s1, s2, s3 ∈ S such that (s′1, s1) ∈ T1, (s2, s3) ∈ T3 and [s1 c ↓s2 ↑

s3 r ]s4 ∈ B2.

We now show (D.15).
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(
∑

s′′ | s′′ ∈ S : c ·X[T2, (s2, s
′′)] · Ls′′ B Ms3 · X[T1, (s

′
1, s1)] · r)

= {{ De�nition of X & Identity of · & Zero of · }}
(
∑

s′′ | s′′ ∈ S ∧ (s′1, s1) ∈ T1 ∧ (s2, s
′′) ∈ T2 : c · Ls′′ B Ms3 · r)

6 {{ Hypothesis [T1 c ↓T2 ↑
T3 r ]T4 ∈ (B′′)2 & De�nition of B′′, condition d &

De�nition of Id. So, (s2, s
′′) ∈ T2 ⇒ s′′ = s2 }}

(
∑

s′′ | s′′ ∈ S ∧ (s′1, s1) ∈ T1 ∧ s′′ = s2 : c · Ls′′ B Ms3 · r)
= {{ De�nition of X & Identity of · & Zero of · }}

(
∑

s′′ | s′′ ∈ S ∧ s′′ = s2 : X[T1, (s
′
1, s1)] · c · Ls′′ B Ms3 · r)

= {{ One-point rule of
∑
}}

X[T1, (s
′
1, s1)] · c · Ls2 B Ms3 · r



Appendix E

Proof of the Synchronization of Two

Deterministic VPA (Theorem 4.9)

Without loss of generality, suppose that Γ1 6= ∅ and Γ2 6= ∅. The idea of the construction
is to use the synchronous product of visibly pushdown automata.

De�ne the �rst deterministic visibly pushdown automaton by

(S1 × S2,Σi,Σc,Σr,Γ1 × Γ2 ∪ {⊥}, δ, I1 × I2, F1 × S2)

and the second one by

(S1 × S2,Σi,Σc,Σr,Γ1 × Γ2 ∪ {⊥}, δ, I1 × I2, S1 × F2) ,

where δ is de�ned as the set of all the following transitions:

• a transition ((s, s′), a, λ; (t, t′), λ) for all pairs (s, s′) ∈ S × S ′, internal actions
a ∈ Σi and transitions (s, a, λ; t, λ) ∈ δ1 and (s′, a, λ; t′, λ) ∈ δ2;

• a transition ((s, s′), a, λ; (t, t′), (d, d′)) for all pairs (s, s′) ∈ S × S ′, call actions
a ∈ Σc and transitions (s, a, λ; t, d) ∈ δ1 and (s′, a, λ; t′, d′) ∈ δ2;

• a transition ((s, s′), a, (d, d′); (t, t′), λ) for all pairs (s, s′) ∈ S × S ′, return actions
a ∈ Σr, stack symbols d ∈ Γ1, d′ ∈ Γ2 and transitions (s, a, d; t, λ) ∈ δ1 and
(s′, a, d′; t′, λ) ∈ δ2;

• a transition ((s, s′), a,⊥; (t, t′),⊥) for all pairs (s, s′) ∈ S × S ′, return actions
a ∈ Σr and transitions (s, a,⊥; t,⊥) ∈ δ1 and (s′, a,⊥; t′,⊥) ∈ δ2.
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We only show (4.29), because the proof of (4.30) is similar.

To do this, we use a projection between states of S1 × S2 and states of S1. The
projection is expressed as a matrix. Let X be a matrix of size |S1 × S2| × |S1| de�ned
for each s, t ∈ S1 and s′ ∈ S2 by

X[(s, s′), t] :=

{
1 if s = t,

0 otherwise.

The projection X is useful since it su�ces to prove that

`
−→
I t •X =

−→
I1
t , (E.1)

`
−→
F ′1 = X •

−→
F1 , (E.2)

` Tc •X = X •Tc1 , (E.3)

` T⊥ •X = X •T⊥1 , (E.4)

`WM •X = X •WM1 . (E.5)

and (4.29) follows easily,

−→
I t • (T⊥+WM)? • (Tc •WM)? •

−→
F ′1

= {{ Equation (E.2) }}
−→
I t • (T⊥+WM)? • (Tc •WM)? •X •

−→
F1

= {{ By (E.5) and (E.3), it is direct that Tc •WM •X = X •Tc1 •WM1. &
Kleene algebra: Bisimulation rule }}−→

I t • (T⊥+WM)? •X • (Tc1 •WM1)? •
−→
F1

= {{ By (E.5) and (E.4) and Kleene algebra, it is direct that (T⊥+WM)•X =

X • (T⊥1 +WM1). & Kleene algebra: Bisimulation rule }}−→
I t •X • (T⊥1 +WM1)? • (Tc1 •WM1)? •

−→
F1

= {{ Equation (E.1) }}
−→
I1
t • (T⊥1 +WM1)? • (Tc1 •WM1)? •

−→
F1 .

So, it remains to prove (E.1) to (E.5).

E.1 Proof of (E.1)

It su�ces to show that for all s ∈ S1,

(
−→
I t •X)[1, s] =

−→
I1
t[1, s] .



Appendix E. Proof of the Synchronization of Two Deterministic VPA 261

(
−→
I t •X)[1, s]

= {{ De�nition of • }}
(
∑

t, t′ | t ∈ S1 ∧ t′ ∈ S2 :
−→
I t[1, (t, t′)] ·X[(t, t′), s])

= {{ De�nition of X & Zero of · & Identity of · and + & One-point rule of∑
}}

(
∑

t′ | t′ ∈ S2 :
−→
I t[1, (s, t′)])

= {{ De�nition of
−→
I }}

(
∑

t′ | t′ ∈ S2 ∧ s ∈ I1 ∧ t′ ∈ I2 : 1)

= {{ By de�nition of S2 and I2: I2 ⊆ S2 & Set theory }}
(
∑

t′ | s ∈ I1 ∧ t′ ∈ I2 : 1)

= {{ De�nition of
−→
I1 }}

(
∑

t′ | t′ ∈ I2 :
−→
I1
t[1, s])

= {{ Hypothesis: The automaton A2 is deterministic & De�nition of deter-
minism: there is one and only one initial state }}−→

I1
t[1, s]

E.2 Proof of (E.2)

It su�ces to show that for all s ∈ S1 and s′ ∈ S2,

−→
F ′1[(s, s′), 1] = (X •

−→
F1)[(s, s′), 1] .

(X •
−→
F1)[(s, s′), 1]

= {{ De�nition of • }}
(
∑

t | t ∈ S1 : X[(s, s′), t] ·
−→
F1[t, 1])

= {{ De�nition of X & Zero of · & Identity of · and + & One-point rule of∑
}}−→

F1[s, 1]

= {{ De�nition of
−→
F ′1 }}−→

F ′1[(s, s′), 1]
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E.3 Proof of (E.3)

It su�ces to show that for all s, t ∈ S1 and s′ ∈ S2,

(Tc •X)[(s, s′), t] = (X •Tc1)[(s, s
′), t] .

First note that, by De�nition 4.3 of Tc and Tc1 , these two matrices can be expressed
by the following summations:

Tc1 = (
∑

a, d | a ∈ Σc ∧ d ∈ Γ1 : Ta,d
c1

) ,

Tc = (
∑

a, d, d′ | a ∈ Σc ∧ d ∈ Γ1 ∧ d′ ∈ Γ2 : T
a,(d,d′)
c ) ,

where each matrix Ta,d
c1

is of size |S1| × |S1| and contains only entries of the form 0 or a

and each matrix T
a,(d,d′)
c is of size |S1 × S2| × |S1 × S2| and contains only entries of the

form 0 or a. These matrices are a particular form of simple matrices as used by Kozen
in [25]. Note also that, by de�nition of the construction, for all s, t ∈ S1, s′, t′ ∈ S2,
a ∈ Σc, d ∈ Γ1 and d′ ∈ Γ2,

Ta,(d,d′)
c [(s, s′), (t, t′)] =

{
a if (s, a, λ; t, d) ∈ δ1 and (s′, a, λ; t′, d′) ∈ δ2,

0 otherwise.

In other words, for all s, t ∈ S1, s′, t′ ∈ S2, a ∈ Σc, d ∈ Γ1 and d′ ∈ Γ2,

Ta,(d,d′)
c [(s, s′), (t, t′)] =

{
a if Ta,d

c1
[s, t] = a and (s′, a, λ; t′, d′) ∈ δ2,

0 otherwise.

Using these de�nitions, the proof is possible.

(Tc •X)[(s, s′), t]

= {{ De�nition of • }}
(
∑

u, u′ | u ∈ S1 ∧ u′ ∈ S2 : Tc[(s, s
′), (u, u′)] ·X[(u, u′), t])

= {{ De�nition of X & Zero of · & Identity of · and + & One-point rule of∑
}}

(
∑

u′ | u′ ∈ S2 : Tc[(s, s
′), (t, u′)])

= {{ De�nition of Tc }}
(
∑

u′ | u′ ∈ S2 : (
∑

a, d, d′ | a ∈ Σc ∧ d ∈ Γ1 ∧ d′ ∈ Γ2 : T
a,(d,d′)
c )[(s, s′), (t, u′)])

= {{ De�nition of + & Quanti�cation laws }}
(
∑

a, d | a ∈ Σc ∧ d ∈ Γ1 : (
∑

u′, d′ | u′ ∈ S2 ∧ d′ ∈ Γ2 : T
a,(d,d′)
c [(s, s′), (t, u′)]))

= {{ Hypothesis: The automaton A2 is deterministic & De�nition of determin-
ism: there is one and only one stack symbol d′ ∈ Γ2 and state u′ reachable
from s′ by reading a ∈ Σc such that (s′, a, λ;u′, d′) ∈ δ2 & De�nition of
the construction }}
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(
∑

a, d | a ∈ Σc ∧ d ∈ Γ1 : Ta,d
c1

[s, t])

= {{ De�nition of + }}
(
∑

a, d | a ∈ Σc ∧ d ∈ Γ1 : Ta,d
c1

)[s, t]

= {{ De�nition of Tc1 }}
Tc1 [s, t]

= {{ One-point rule of
∑
}}

(
∑

u | u ∈ S1 ∧ s = u : Tc1 [u, t])

= {{ De�nition of X & Zero of · & Identity of · and + }}
(
∑

u | u ∈ S1 : X[(s, s′), u] ·Tc1 [u, t])

= {{ De�nition of • }}
(X •Tc1)[(s, s

′), t]

E.4 Proof of (E.4)

It su�ces to show that for all s, t ∈ S1 and s′ ∈ S2,

(T⊥ •X)[(s, s′), t] = (X •T⊥1)[(s, s
′), t] .

First note that, by De�nition 4.3 of T⊥ and T⊥1 , these two matrices can be expressed
by the following summations:

T⊥1 = (
∑

a | a ∈ Σr : Ta
⊥1

) ,

T⊥ = (
∑

a | a ∈ Σr : Ta
⊥) ,

where each matrix Ta
⊥1

is of size |S1| × |S1| and contains only entries of the form 0 or
a and each matrix Ta

⊥ is of size |S1 × S2| × |S1 × S2| and contains only entries of the
form 0 or a. These matrices are a particular form of simple matrices as used by Kozen
in [25]. Note also that, by de�nition of the construction, for all s, t ∈ S1, s′, t′ ∈ S2 and
a ∈ Σr,

Ta
⊥[(s, s′), (t, t′)] =

{
a if (s, a,⊥; t,⊥) ∈ δ1 and (s′, a,⊥; t′,⊥) ∈ δ2,

0 otherwise.

In other words, for all s, t ∈ S1, s′, t′ ∈ S2 and a ∈ Σr,

Ta
⊥[(s, s′), (t, t′)] =

{
a if Ta

⊥1
[s, t] = a and (s′, a,⊥; t′,⊥) ∈ δ2,

0 otherwise.

Using these de�nitions, the proof is possible.
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(T⊥ •X)[(s, s′), t]

= {{ De�nition of • }}
(
∑

u, u′ | u ∈ S1 ∧ u′ ∈ S2 : T⊥[(s, s′), (u, u′)] ·X[(u, u′), t])

= {{ De�nition of X & Zero of · & Identity of · and + & One-point rule of∑
}}

(
∑

u′ | u′ ∈ S2 : T⊥[(s, s′), (t, u′)])

= {{ De�nition of T⊥ }}
(
∑

u′ | u′ ∈ S2 : (
∑

a | a ∈ Σr : Ta
⊥)[(s, s′), (t, u′)])

= {{ De�nition of + & Quanti�cation laws }}
(
∑

a | a ∈ Σr : (
∑

u′ | u′ ∈ S2 : Ta
⊥[(s, s′), (t, u′)]))

= {{ Hypothesis: The automaton A2 is deterministic & De�nition of deter-
minism: there is one and only one state u′ reachable from s′ by reading
a ∈ Σr such that (s′, a,⊥;u′,⊥) ∈ δ2 & De�nition of the construction }}

(
∑

a | a ∈ Σr : Ta
⊥1

[s, t])

= {{ De�nition of + }}
(
∑

a | a ∈ Σr : Ta
⊥1

)[s, t]

= {{ De�nition of T⊥1 }}
T⊥1 [s, t]

= {{ One-point rule of
∑
}}

(
∑

u | u ∈ S1 ∧ s = u : T⊥1 [u, t])

= {{ De�nition of X & Zero of · & Identity of · and + }}
(
∑

u | u ∈ S1 : X[(s, s′), u] ·T⊥1 [u, t])

= {{ De�nition of • }}
(X •T⊥1)[(s, s

′), t]

E.5 Proof of (E.5)

It su�ces to show that for all s, t ∈ S1 and s′ ∈ S2,

(WM •X)[(s, s′), t] = (X •WM1)[(s, s′), t] .

By de�nition of •, WM and WM1, it su�ces to show that for all s, t ∈ S1 and s′ ∈ S2,

(
∑

u, u′ | u ∈ S1 ∧ u′ ∈ S2 : L
(s,s′)

B
(u,u′)

M · X[(u, u′), t])

= (
∑

u | u ∈ S1 : X[(s, s′), u] · L
u

B1

t

M) .

(E.6)

We �rst explicitly describe the list of blocks of B with respect to B1 and B2.
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a. The set of labels {(si, s′j) | si ∈ S1 ∧ s′j ∈ S2} is de�ned.

b. For all si ∈ S1 and s′j ∈ S2,

[
(si,s′j)

1
(si,s

′
j)

] ∈ B1 .

c. For all internal actions a ∈ Σi, si, sk ∈ S1 and s′j, s
′
l ∈ S2,

[
(si,s′j)

a
(sk,s

′
l)

] ∈ B1 ⇔ [
si

a
sk

] ∈ B1
1 ∧ [

s′j

a
s′l

] ∈ B1
2 .

d. For all call actions c ∈ Σc, return actions r ∈ Σr, si, sk, sm, so ∈ S1 and s′j, s
′
l, s
′
n, s
′
p ∈

S2,

[
(si,s′j)

c ↓
(sm,s′n)

(so,s′p)

↑ r
(sk,s

′
l)

] ∈ B2 ⇔ [
si

c ↓
sm

so
↑ r

sk

] ∈ B2
1 ∧ [

s′j

c ↓
s′n

s′p

↑ r
s′l

] ∈ B2
2 .

We now show the case 6 of (E.6). By the de�nition of X, by Kleene algebra and
by quanti�cation laws, it su�ces to prove that for all s, t ∈ S1 and s′ ∈ S2,

(
∑

u′ | u′ ∈ S2 : L
(s,s′)

B
(t,u′)

M ) 6 L
s

B1

t

M . (E.7)

By Kleene algebra, it su�ces to prove independently that for all s, t ∈ S1 and s′, u′ ∈ S2,

L
(s,s′)

B
(t,u′)

M 6 L
s

B1

t

M .

Using (3.37) with the projection function f : S1 × S2 → S1 de�ned, for all v ∈ S1 and
v′ ∈ S2, by

f((v, v′)) := v ,

it can be proved that

L
(s,s′)

B
(t,u′)

M 6 L
f((s,s′))

f̂(B)
f((t,u′))

M = L
s

f̂(B)
t

M .

Note now that f̂(B) is a sublist of B1. This is direct from the de�nition of B, conditions
a to d. So, the result follows from (3.26) and (3.30).

We now show the case > of (E.6). By Kleene algebra, it su�ces to show indepen-
dently that, for all s, t, u ∈ S1 and s′ ∈ S2,

X[(s, s′), u] · L
u

B1

t

M 6 (
∑

u′, u′′ | u′ ∈ S1 ∧ u′′ ∈ S2 : L
(s,s′)

B
(u′,u′′)

M · X[(u′, u′′), t]) .
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By (3.16) using b(v2,v)
v′ := X[v′, v] for all v2, v ∈ S1 and v′ ∈ S1 × S2, it su�ces to prove

independently that

• for all (t1, u1) ∈ S1 × S2 and [s1 m ]s4 ∈ B1
1,

X[((t1, u1), s1)] ·m 6 (
∑

t4, u4 | [
(t1,u1)

m
(t4,u4)

] ∈ B1 : m ·X[((t4, u4), s4)]) , (E.8)

• for all (t1, u1) ∈ S1 × S2 and [s1 c ↓s2 ↑
s3 r ]s4 ∈ B2

1,

X[(t1, u1), s1] · c

6 (
∑

t2, u2, t3, u3, t4, u4 | [
(t1,u1)

c ↓
(t2,u2)

(t3,u3)

↑ r
(t4,u4)

] ∈ B2 :

X[(t1, u1), s1] · c ·X[(t2, u2), s2] ·X[(t2, u2), s2]) ,

(E.9)

• for all (t1, u1), (t2, u2), (t′3, u
′
3) ∈ S1 × S2 and [s1 c ↓s2 ↑

s3 r ]s4 ∈ B2
1,

(
∑

t3, u3, t4, u4 | [
(t1,u1)

c ↓
(t2,u2)

(t3,u3)

↑ r
(t4,u4)

] ∈ B2 :

X[(t1, u1), s1] · c ·X[(t2, u2), s2] · L
(t2,u2)

B
(t′3,u

′
3)

M · X[(t′3, u
′
3), s3] · r)

6 (
∑

t4, u4 | [
(t1,u1)

c ↓
(t2,u2)

(t′3,u
′
3)

↑ r
(t4,u4)

] ∈ B2 :

c · L
(t2,u2)

B
(t′3,u

′
3)

M · r ·X[(t4, u4), s4]) .

(E.10)

We �rst show (E.8). For the case s1 6= t1, then X[(t1, u1), s1] = 0 and so the
inequation is trivial since 0 is the minimum of the algebra. For the case s1 = t1, then
X[(t1, u1), s1] = 1. Let us prove this by case analysis on m. The case m = 0 is trivial
by Kleene algebra.

For the case m = 1, by condition B of the de�nition of B1, s1 = s4. Also, by
condition b of the de�nition of B, (t4, u4) = (t1, u1). So, using the one-point rule of

∑
for the right-hand side of the inequation, we have to show that

X[((t1, u1), s1)] · 1 6 1 ·X[((t1, u1), s1)] .

This is trivial by the identity of ·.
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For the case m ∈ Σi, by the de�nition of X, Kleene algebra and the one-point rule
of
∑
, we have to prove that

m 6 (
∑

u4 | [
(s1,u1)

m
(s4,u4)

] ∈ B1 : m) .

By Kleene algebra, it su�ces to prove that there exists u4 ∈ S2 such that [(s1,u1) m ](s4,u4)

∈ B1. By condition c of the de�nition of B, it su�ces to prove that there exists a u4 ∈ S2

such that [s1 m ]s4 ∈ B1
1 and [u1 m ]u4 ∈ B1

2. By the hypothesis stating that [s1 m ]s4 ∈ B1
1

and by the de�nition of B2, it su�ces to prove that there exists a u4 ∈ S2 such that
(u1,m, λ;u4, λ) ∈ δ2. This is always the case since the automaton A2 is deterministic
by hypothesis. In other words, by the de�nition of determinism, for every u1 ∈ S2

and m ∈ Σi, there exists u4 ∈ S2 reachable from u1 by reading m, that is to say
(u1,m, λ;u4, λ) ∈ δ2.

We now show (E.9). For the case s1 6= t1, then X[(t1, u1), s1] = 0 and so the
inequation is trivial since 0 is the minimum of the algebra. For the case s1 = t1, then
X[(t1, u1), s1] = 1. By the de�nition of X, Kleene algebra and the one-point rule of

∑
,

we have to prove that

c 6 (
∑

u2, t3, u3, t4, u4 | [
(s1,u1)

c ↓
(s2,u2)

(t3,u3)

↑ r
(t4,u4)

] ∈ B2 : c) .

By Kleene algebra, it su�ces to prove that there exists t3, t4 ∈ S1 and u2, u3, u4 ∈ S2

such that [(s1,u1) c ↓(s2,u2) ↑(t3,u3) r ](t4,u4) ∈ B2. By condition d of the de�nition of B
and quanti�cation laws, it su�ces to prove that there exists t3, t4 ∈ S1 such that
[s1 c ↓s2 ↑

t3 r ]t4 ∈ B2
1 and there exists u2, u3, u4 ∈ S2 such that [u1 c ↓u2 ↑

u3 r ]u4 ∈ B2
2.

By hypothesis, [s1 c ↓s2 ↑
s3 r ]s4 ∈ B2

1, so there exists at least one t3, t4 ∈ S1 such that
[s1 c ↓s2 ↑

t3 r ]t4 ∈ B2
1. It remains to prove that there exists u2, u3, u4 ∈ S2 such that

[u1 c ↓u2 ↑
u3 r ]u4 ∈ B2

2. By the de�nition of B2, it su�ces to prove that there exists
u2, u3, u4 ∈ S2 and d′ ∈ Γ2 such that (u1, c, λ;u2, d

′) ∈ δ2 and (u3, r, d
′;u4, λ) ∈ δ2. By

the hypothesis that the automatonA2 is deterministic and the de�nition of determinism,
for every u1 ∈ S2 and c ∈ Σc, there exists d′ ∈ Γ2 and a state u2 ∈ S2 reachable from u1

by reading c such that (u1, c, λ;u2, d
′) ∈ δ2 and for every u3 ∈ S2, r ∈ Σr and d′ ∈ Γ2,

there exists a state u4 ∈ S2 reachable from u3 by reading r when having d′ as top symbol
of the stack, that is to say, (u3, r, d

′;u4, λ) ∈ δ2. Since S2 6= ∅ by hypothesis, there is at
least one u3 ∈ S2.

We now show (E.10). By Kleene algebra, the de�nition of X and the one-point rule
of
∑
, it su�ces to prove that for all [(s1,u1) c ↓(s2,u2) ↑(t3,u3) r ](t4,u4) ∈ B2,

c · L
(s2,u2)

B
(s3,u′3)

M · r 6 (
∑

u′4 | [
(s1,u1)

c ↓
(s2,u2)

(s3,u′3)

↑ r
(s4,u′4)

] ∈ B2 : c · L
(s2,u2)

B
(s3,u′3)

M · r) .
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By Kleene algebra, it su�ces to prove that there exists a u′4 ∈ S2 such that the binary
block [(s1,u1) c ↓(s2,u2) ↑(s3,u′3) r ](s4,u

′
4) is in B2. By condition d of the de�nition of B,

it su�ces to prove that there exists a u′4 ∈ S2 such that [s1 c ↓s2 ↑
s3 r ]s4 ∈ B2

1 and

[u1 c ↓u2 ↑
u′3 r ]u

′
4 ∈ B2

2. By hypothesis, [s1 c ↓s2 ↑
s3 r ]s4 ∈ B2

1, so it remains to prove that

there exists a u′4 ∈ S2 such that [u1 c ↓u2 ↑
u′3 r ]u

′
4 ∈ B2

2. By the de�nition of B2, it su�ces
to prove that there exists a u′4 ∈ S2 and a d′ ∈ Γ2 such that (u1, c, λ;u2, d

′) ∈ δ2 and
(u′3, r, d

′;u′4, λ) ∈ δ2. By the hypothesis [(s1,u1) c ↓(s2,u2) ↑(t3,u3) r ](t4,u4) ∈ B2, by condition
d of the de�nition of B and by the de�nition of B2, there exists a d′′ ∈ Γ2 such that
(u1, c, λ;u2, d

′′) ∈ δ2. So, it su�ces to show that for this d′′, there exists a u′4 ∈ S2 such
that (u′3, r, d

′′;u′4, λ) ∈ δ2. This is immediate from the hypothesis that the automaton
A2 is deterministic. In other words, by the de�nition of determinism, for every u′3 ∈ S2,
r ∈ Σr and d′′ ∈ Γ2, there exists a state u′4 ∈ S2 reachable from u′3 by reading r when
having d′′ as top symbol of the stack, that is to say, (u′3, r, d

′′;u′4, λ) ∈ δ2.



Appendix F

Proofs of Three Results on the

Function mb_vpre_suffixesθ
(Lemmas 5.5 to 5.7)

We prove that Lemmas 5.5 to 5.7 are valid.

F.1 Proof of Lemma 5.5

The proof is done by structural induction on [[xm ]]y. For the base case where [[xm ]]y is
such that m ∈ Σi ∪TestsB, then, by the de�nition of mb_vpre_suffixesθ and mb_vpreθ,

(mb_vpre_suffixesθ([[
x

m
y

]]))(x) = m = mb_vpreθ(m) .

For the base case where [[xm ]]y is a metablock [[x(c↓z ↑
w r) ]]y, by the de�nition of

mb_vpre_suffixesθ and mb_vpreθ,

(mb_vpre_suffixesθ([[
x

(c↓
z

w

↑ r)
y

]]))(x) = c · θ(z, w) · r = mb_vpreθ((c↓
z

w

↑ r)) .

For the inductive case where [[xm ]]y is a metablock [[x p · q ]]
y, we suppose that z is
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the fresh label used by mb_vpre_suffixesθ. So, we suppose that

(mb_vpre_suffixesθ([[
x

p
z

]]))(x) = mb_vpreθ(p) , (F.1)

(mb_vpre_suffixesθ([[
z

q
y

]]))(z) = mb_vpreθ(q) , (F.2)

and we must prove that

(mb_vpre_suffixesθ([[
x

p · q
y

]]))(x) = mb_vpreθ(p · q) .

Note that inductive hypothesis (F.1) states that

(x 7→ mb_vpreθ(p)) ∈ mb_vpre_suffixesθ([[
x

p
z

]]) .

By the previous reasoning and the de�nition of mb_vpre_suffixesθ, we have that

(mb_vpre_suffixesθ([[
x

p · q
y

]]))(x) = mb_vpreθ(p) · (mb_vpre_suffixesθ([[
z

q
y

]]))(z) .

Using inductive hypothesis (F.2), we have that

(mb_vpre_suffixesθ([[
x

p · q
y

]]))(x) = mb_vpreθ(p) ·mb_vpreθ(q) .

So, the result follows from the de�nition of mb_vpreθ for the case ·.

For the inductive case where [[xm ]]y is a metablock [[x p+ q ]]y, we suppose that

(mb_vpre_suffixesθ([[
x

p
y

]]))(x) = mb_vpreθ(p) , (F.3)

(mb_vpre_suffixesθ([[
x

q
y

]]))(x) = mb_vpreθ(q) , (F.4)

and we must prove that

(mb_vpre_suffixesθ([[
x

p+ q
y

]]))(x) = mb_vpreθ(p+ q) .

We are able to prove it.

(mb_vpre_suffixesθ([[x p+ q ]]y))(x)

= {{ De�nition of mb_vpre_suffixesθ }}
(mb_vpre_suffixesθ([[x p ]]

y))(x) + (mb_vpre_suffixesθ([[x q ]]
y))(x)

= {{ Induction hypotheses (F.3) and (F.4) }}
mb_vpreθ(p) + mb_vpreθ(q)

= {{ De�nition of mb_vpreθ }}
mb_vpreθ(p+ q)
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For the inductive case where [[xm ]]y is a metablock [[x p
∗ ]]y, we suppose that

(mb_vpre_suffixesθ([[
x

p
y

]]))(x) = mb_vpreθ(p) , (F.5)

and we must prove that

(mb_vpre_suffixesθ([[
x

p∗
y

]]))(x) = mb_vpreθ(p
∗) .

We are able to prove it.

(mb_vpre_suffixesθ([[x p
∗ ]]y))(x)

= {{ De�nition of mb_vpre_suffixesθ }}
((mb_vpre_suffixesθ([[x p ]]

y))(x))∗

= {{ Induction hypothesis (F.5) }}
(mb_vpreθ(p))

∗

= {{ De�nition of mb_vpreθ }}
mb_vpreθ(p

∗)

F.2 Proof of Lemma 5.6

The proof is done by structural induction on [[xm ]]y. For the base case where [[xm ]]y is
such that m ∈ Σi ∪ TestsB, then mb([[xm ]]y)1 = {[xm ]y} and mb([[xm ]]y)2 = ∅. So, we
have to prove that

m 6 (mb_vpre_suffixesθ([[
x

m
y

]]))(x) .

This is trivial by the de�nition of mb_vpre_suffixesθ.

For the base case where [[xm ]]y is a metablock [[x(c↓u ↑
u′ r) ]]y, then we have

mb([[
x

m
y

]])1 = ∅ and mb([[
x

m
y

]])2 = {[
x

c ↓
u

u′

↑ r
y

]} .

So, we have to prove that

c · θ(u, u′) · r 6 (mb_vpre_suffixesθ([[
x

m
y

]]))(x) .

This is trivial by the de�nition of mb_vpre_suffixesθ.
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For the inductive case where [[xm ]]y is a metablock [[x p · q ]]
y, we suppose that u is

the fresh label used by mb. So, we suppose that

mb([[
x

p · q
y

]]) = mb([[
x

p
u

]]), mb([[
u

q
y

]]) .

Then, the inductive hypotheses for this case are that every unary blocks [u′m
′′ ]u ∈

mb([[x p ]]
u)1 and [u′′m

′′′ ]y ∈ mb([[u q ]]
y)1, and every binary blocks [t c

′ ↓v ↑v
′
r′ ]u ∈

mb([[x p ]]
u)2 and [t′ c

′′ ↓v′′ ↑v
′′′
r′′ ]y ∈ mb([[u q ]]

y)2 are such that

m′′ 6 (mb_vpre_suffixesθ([[
x

p
u

]]))(u′) , (F.6)

m′′′ 6 (mb_vpre_suffixesθ([[
u

q
y

]]))(u′′) , (F.7)

c′ · θ(v, v′) · r′ 6 (mb_vpre_suffixesθ([[
x

p
u

]]))(t) , (F.8)

c′′ · θ(v′′, v′′′) · r′′ 6 (mb_vpre_suffixesθ([[
u

q
y

]]))(t′) . (F.9)

Note that, by de�nition of mb and the fact that u 6= y, no block of mb([[x p ]]
u) can

have y as its ending label. So, it is mandatory that the wanted unary block [zm
′ ]y and

binary block [z′ c ↓w ↑
w′ r ]y are respectively in mb([[u q ]]

y)1 and mb([[u q ]]
y)2. By inductive

hypotheses (F.7) and (F.9), we have that

m′ 6 (mb_vpre_suffixesθ([[
u

q
y

]]))(z) , (F.10)

c · θ(w,w′) · r 6 (mb_vpre_suffixesθ([[
u

q
y

]]))(z′) . (F.11)

To prove (5.13) and (5.14), we just have to prove that

(mb_vpre_suffixesθ([[
x

p · q
y

]]))(z) = (mb_vpre_suffixesθ([[
u

q
y

]]))(z) ,

(mb_vpre_suffixesθ([[
x

p · q
y

]]))(z′) = (mb_vpre_suffixesθ([[
u

q
y

]]))(z′) .

This is direct by the de�nition of mb_vpre_suffixesθ which states that

mb_vpre_suffixesθ([[
u

q
y

]]) ⊆ mb_vpre_suffixesθ([[
x

p · q
y

]]) .

For the inductive case where [[xm ]]y is a metablock [[x p+ q ]]y, by the de�nition of
mb we have that

mb([[
x

p+ q
y

]]) = mb([[
x

p
y

]]), mb([[
x

q
y

]]) .
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Then, the inductive hypotheses for this case are that every unary blocks [um
′′ ]y ∈

mb([[x p ]]
y)1 and [u′m

′′′ ]y ∈ mb([[x q ]]
y)1, and every binary blocks [t c

′ ↓v ↑v
′
r′ ]y ∈

mb([[x p ]]
y)2 and [t′ c

′′ ↓v′′ ↑v
′′′
r′′ ]y ∈ mb([[x q ]]

y)2 are such that

m′′ 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(u) , (F.12)

m′′′ 6 (mb_vpre_suffixesθ([[
x

q
y

]]))(u′) , (F.13)

c′ · θ(v, v′) · r′ 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(t) , (F.14)

c′′ · θ(v′′, v′′′) · r′′ 6 (mb_vpre_suffixesθ([[
x

q
y

]]))(t′) . (F.15)

We just prove (5.13) since the proof of (5.14) is similar. Let us do a proof by case
analysis on z. If z = x, then the wanted unary block [zm

′ ]y is either in mb([[x p ]]
y)1 or

in mb([[x q ]]
y)1 (or both sets). So, by inductive hypotheses (F.12) and (F.13), we have

that either

m′ 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(z)

or

m′ 6 (mb_vpre_suffixesθ([[
x

q
y

]]))(z)

is true (or both are true). By Kleene algebra, we have that

m′ 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(z) + (mb_vpre_suffixesθ([[
x

q
y

]]))(z) .

So, inequation (5.13) follows from the hypothesis that z = x and by the de�nition of
mb_vpre_suffixesθ which states that

(mb_vpre_suffixesθ([[
x

p+ q
y

]]))(x)

= (mb_vpre_suffixesθ([[
x

p
y

]]))(x) + (mb_vpre_suffixesθ([[
x

q
y

]]))(x) .

On the other hand, if z 6= x, then the wanted unary block [zm
′ ]y is either in

mb([[x p ]]
y)1 or in mb([[x q ]]

y)1, but not in both sets. So, by inductive hypotheses (F.12)
and (F.13), we have that either

m′ 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(z)

or

m′ 6 (mb_vpre_suffixesθ([[
x

q
y

]]))(z)
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is true. For the case that [zm
′ ]y ∈ mb([[x p ]]

y)1, inequation (5.13) follows from the
hypothesis that z 6= x and by the de�nition of mb_vpre_suffixesθ which states that

(mb_vpre_suffixesθ([[
x

p+ q
y

]]))(z) = (mb_vpre_suffixesθ([[
x

p
y

]]))(z) .

For the case that [zm
′ ]y ∈ mb([[x q ]]

y)1, inequation (5.13) follows from the hypothesis
that z 6= x and by the de�nition of mb_vpre_suffixesθ which states that

(mb_vpre_suffixesθ([[
x

p+ q
y

]]))(z) = (mb_vpre_suffixesθ([[
x

q
y

]]))(z) .

For the inductive case where [[xm ]]y is a metablock [[x p
∗ ]]y, we suppose that u is the

fresh label used by mb. So, we suppose that

mb([[
x

p∗
y

]]) = [
x

1
y

], mb([[
x

p
y

]]), mb([[
x

p
u

]]), mb([[
u

p
u

]]), mb([[
u

p
y

]]) .

Then, some of the inductive hypotheses for this case1 are that every unary blocks
[u′m

′′ ]y ∈ mb([[x p ]]
y)1 and [u′′m

′′′ ]y ∈ mb([[u p ]]
y)1, and every binary blocks [t c

′ ↓v ↑v
′
r′ ]y

∈ mb([[x p ]]
y)2 and [t′ c

′′ ↓v′′ ↑v
′′′
r′′ ]y ∈ mb([[u p ]]

y)2 are such that

m′′ 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(u′) , (F.16)

m′′′ 6 (mb_vpre_suffixesθ([[
u

p
y

]]))(u′′) , (F.17)

c′ · θ(v, v′) · r′ 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(t) , (F.18)

c′′ · θ(v′′, v′′′) · r′′ 6 (mb_vpre_suffixesθ([[
u

p
y

]]))(t′) . (F.19)

Note that, by de�nition of mb and the fact that u 6= y, no block of mb([[x p ]]
u) and

mb([[u p ]]
u) can have y as its ending label. So, it is mandatory that the wanted unary

block [zm
′ ]y (respectively, binary block [z′ c ↓w ↑

w′ r ]y) is in {[x 1 ]y} or in mb([[x p ]]
y)1

or in mb([[u p ]]
y)1 (respectively, in mb([[x p ]]

y)2 or in mb([[u p ]]
y)2).

We just prove (5.13) since the proof of (5.14) is similar. Let us do a proof by case
analysis on z and m′. If z = x and m′ = 1, then the wanted unary block [zm

′ ]y is in
{[x 1 ]y} and maybe in mb([[x p ]]

y)1. For this case, we must prove that

1 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(x) .

1Some inductive hypotheses are not necessary for the proof, so they are omitted.
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By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

1 6 ((mb_vpre_suffixesθ([[
x

p
y

]]))(x))∗ .

This is trivial by Kleene algebra.

If z = x and m′ 6= 1, then the wanted unary block [zm
′ ]y is in mb([[x p ]]

y)1. Then,
by inductive hypothesis (F.16), we have that

m′ 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(x)

is true. By Kleene algebra, we have that

m′ 6 ((mb_vpre_suffixesθ([[
x

p
y

]]))(x))∗ .

So, inequation (5.13) follows from the hypothesis that z = x and by the de�nition of
mb_vpre_suffixesθ which states that

(mb_vpre_suffixesθ([[
x

p∗
y

]]))(x) = ((mb_vpre_suffixesθ([[
x

p
y

]]))(x))∗ .

If z = u, then the wanted unary block [zm
′ ]y is in mb([[u p ]]

y)1. Then, by inductive
hypothesis (F.17), we have that

m′ 6 (mb_vpre_suffixesθ([[
u

p
y

]]))(u)

is true. By Kleene algebra, we have that

m′ 6 ((mb_vpre_suffixesθ([[
u

p
u

]]))(u))∗ · (mb_vpre_suffixesθ([[
u

p
y

]]))(u) .

So, inequation (5.13) follows from the hypothesis that z = u and by the de�nition of
mb_vpre_suffixesθ which states that

(mb_vpre_suffixesθ([[
x

p∗
y

]]))(u)

= ((mb_vpre_suffixesθ([[
u

p
u

]]))(u))∗ · (mb_vpre_suffixesθ([[
u

p
y

]]))(u) .

If z 6= x and z 6= u, then the wanted unary block [zm
′ ]y is either in mb([[x p ]]

y)1 or in
mb([[u p ]]

y)1, but cannot be in both sets. So, by inductive hypotheses (F.16) and (F.17),
we have that either

m′ 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(z)
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or

m′ 6 (mb_vpre_suffixesθ([[
u

p
y

]]))(z)

is true. For the case that [zm
′ ]y ∈ mb([[x p ]]

y)1, inequation (5.13) follows from the
hypothesis that z 6= x and by the de�nition of mb_vpre_suffixesθ which states that

(mb_vpre_suffixesθ([[
x

p∗
y

]]))(z) = (mb_vpre_suffixesθ([[
x

p
y

]]))(z) .

For the case that [zm
′ ]y ∈ mb([[u p ]]

y)1, inequation (5.13) follows from the hypothesis
that z 6= u and by the de�nition of mb_vpre_suffixesθ which states that

(mb_vpre_suffixesθ([[
x

p∗
y

]]))(z) = (mb_vpre_suffixesθ([[
u

p
y

]]))(z) .

F.3 Proof of Lemma 5.7

The proof is done by structural induction on [[xm ]]y. For the base case where [[xm ]]y is
such that m ∈ Σi ∪ TestsB, there is nothing to prove since there cannot exist a unary
block or a binary block such that their ending label is not y.

For the base case where [[xm ]]y is a metablock [[x(c↓u ↑
u′ r) ]]y, there is nothing to

prove since there cannot exist a unary block or a binary block such that their ending
label is not y.

For the inductive case where [[xm ]]y is a metablock [[x p · q ]]
y, we suppose that v is

the fresh label used by mb. So, we suppose that

mb([[
x

p · q
y

]]) = mb([[
x

p
v

]]), mb([[
v

q
y

]]) .

Then, the inductive hypotheses for this case are that every unary blocks [t1 m
′′ ]t
′
1 ∈

mb([[x p ]]
v)1 and [t2 m

′′′ ]t
′
2 ∈ mb([[v q ]]

y)1 such that t′1 6= v and t′2 6= y, and binary blocks

[t′′1
c′ ↓w1

↑w′1 r′ ]t
′′′
1 ∈ mb([[x p ]]

v)2 and [t′′2
c′′ ↓w2

↑w′2 r′′ ]t
′′′
2 ∈ mb([[v q ]]

y)2 such that t′′′1 6= v

and t′′′2 6= y, are such that

m′′ · (mb_vpre_suffixesθ([[
x

p
v

]]))(t′1) 6 (mb_vpre_suffixesθ([[
x

p
v

]]))(t1) , (F.20)

m′′′ · (mb_vpre_suffixesθ([[
v

q
y

]]))(t′2) 6 (mb_vpre_suffixesθ([[
v

q
y

]]))(t2) , (F.21)

c′ · θ(w1, w
′
1) · r′ · (mb_vpre_suffixesθ([[

x

p
v

]]))(t′′′1 )

6 (mb_vpre_suffixesθ([[
x

p
v

]]))(t′′1) ,
(F.22)
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c′′ · θ(w2, w
′
2) · r′′ · (mb_vpre_suffixesθ([[

v

q
y

]]))(t′′′2 )

6 (mb_vpre_suffixesθ([[
v

q
y

]]))(t′′2) .
(F.23)

We just prove (5.15) since the proof of (5.16) is similar. Note that, by de�nition
of mb and the fact that v 6= x and v 6= y, the wanted unary block [zm

′ ]z
′
is either in

mb([[x p ]]
v)1 or in mb([[v q ]]

y)1, but cannot be in both sets. Let us do a proof by case
analysis. If [zm

′ ]z
′
∈ mb([[x p ]]

v)1 and z′ = v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p · q
y

]]))(v) 6 (mb_vpre_suffixesθ([[
x

p · q
y

]]))(z) .

By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
v

q
y

]]))(v)

6 (mb_vpre_suffixesθ([[
x

p
v

]]))(z) · (mb_vpre_suffixesθ([[
v

q
y

]]))(v) .

By the monotonicity of ·, it su�ces to prove that

m′ 6 (mb_vpre_suffixesθ([[
x

p
v

]]))(z) .

This is direct from Lemma 5.6, inequation (5.13).

If [zm
′ ]z
′
∈ mb([[x p ]]

v)1 and z′ 6= v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p · q
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p · q
y

]]))(z) .

By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
v

]]))(z′) · (mb_vpre_suffixesθ([[
v

q
y

]]))(v)

6 (mb_vpre_suffixesθ([[
x

p
v

]]))(z) · (mb_vpre_suffixesθ([[
v

q
y

]]))(v) .

By the monotonicity of ·, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
v

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p
v

]]))(z) .

This is direct from inductive hypothesis (F.20).

If [zm
′ ]z
′
∈ mb([[v q ]]

y)1, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p · q
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p · q
y

]]))(z) .
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By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
v

q
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
v

q
y

]]))(z) .

This is direct from inductive hypothesis (F.21) since z′ 6= y by hypothesis.

For the inductive case where [[xm ]]y is a metablock [[x p+ q ]]y, we have that

mb([[
x

p+ q
y

]]) = mb([[
x

p
y

]]), mb([[
x

q
y

]]) .

Then, the inductive hypotheses for this case are that every unary blocks [t1 m
′′ ]t
′
1 ∈

mb([[x p ]]
y)1 and [t2 m

′′′ ]t
′
2 ∈ mb([[x q ]]

y)1 such that t′1 6= y and t′2 6= y, and every binary

blocks [t′′1
c′ ↓w1

↑w′1 r′ ]t
′′′
1 ∈ mb([[x p ]]

y)2 and [t′′2
c′′ ↓w2

↑w′2 r′′ ]t
′′′
2 ∈ mb([[x q ]]

y)2 such that
t′′′1 6= y and t′′′2 6= y, are such that

m′′ · (mb_vpre_suffixesθ([[
x

p
y

]]))(t′1) 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(t1) , (F.24)

m′′′ · (mb_vpre_suffixesθ([[
x

q
y

]]))(t′2) 6 (mb_vpre_suffixesθ([[
x

q
y

]]))(t2) , (F.25)

c′ · θ(w1, w
′
1) · r′ · (mb_vpre_suffixesθ([[

x

p
y

]]))(t′′′1 )

6 (mb_vpre_suffixesθ([[
x

p
y

]]))(t′′1) ,
(F.26)

c′′ · θ(w2, w
′
2) · r′′ · (mb_vpre_suffixesθ([[

x

q
y

]]))(t′′′2 )

6 (mb_vpre_suffixesθ([[
x

q
y

]]))(t′′2) .
(F.27)

We just prove (5.15) since the proof of (5.16) is similar. Note that, by de�nition of
mb and the fact that z′ 6= y, the wanted unary block [zm

′ ]z
′
is either in mb([[x p ]]

y)1 or
in mb([[x q ]]

y)1, but cannot be in both sets. Note also that z′ 6= x. Let us do a proof by
case analysis. If [zm

′ ]z
′
∈ mb([[x p ]]

y)1 and z = x, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p+ q
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p+ q
y

]]))(x) .

By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
y

]]))(z′)

6 (mb_vpre_suffixesθ([[
x

p
y

]]))(x) + (mb_vpre_suffixesθ([[
x

q
y

]]))(x) .
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By Kleene algebra, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(x) .

This is direct from inductive hypothesis (F.24).

If [zm
′ ]z
′
∈ mb([[x p ]]

y)1 and z 6= x, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p+ q
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p+ q
y

]]))(z) .

By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(z) .

This is direct from inductive hypothesis (F.24).

If [zm
′ ]z
′
∈ mb([[x q ]]

y)1 and z = x, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p+ q
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p+ q
y

]]))(x) .

By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

q
y

]]))(z′)

6 (mb_vpre_suffixesθ([[
x

p
y

]]))(x) + (mb_vpre_suffixesθ([[
x

q
y

]]))(x) .

By Kleene algebra, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

q
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

q
y

]]))(x) .

This is direct from inductive hypothesis (F.25).

If [zm
′ ]z
′
∈ mb([[x q ]]

y)1 and z 6= x, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p+ q
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p+ q
y

]]))(z) .

By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

q
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

q
y

]]))(z) .

This is direct from inductive hypothesis (F.25).
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For the inductive case where [[xm ]]y is a metablock [[x p
∗ ]]y, we suppose that v is the

fresh label used by mb. So, we suppose that

mb([[
x

p∗
y

]]) = [
x

1
y

], mb([[
x

p
y

]]), mb([[
x

p
v

]]), mb([[
v

p
v

]]), mb([[
v

p
y

]]) .

Then, the inductive hypotheses for this case are that every unary blocks [t1 m
′′ ]t
′
1 ∈

mb([[x p ]]
y)1, [t2 m

′′′ ]t
′
2 ∈ mb([[x p ]]

v)1, [t3 m
′′′′ ]t

′
3 ∈ mb([[v p ]]

v)1 and [t4 m
′′′′′ ]t

′
4 ∈

mb([[v p ]]
y)1 such that t′1 6= y, t′2 6= v, t′3 6= v and t′4 6= y, and every binary blocks

[t′′1
c′ ↓w1

↑w′1 r′ ]t
′′′
1 ∈ mb([[x p ]]

y)2, [t′′2
c′′ ↓w2

↑w′2 r′′ ]t
′′′
2 ∈ mb([[x p ]]

v)2, [t′′3
c′′′ ↓w3

↑w′3 r′′′ ]t
′′′
3 ∈

mb([[v p ]]
v)2 and [t′′4

c′′′′ ↓w4
↑w′4 r′′′′ ]t

′′′
4 ∈ mb([[v p ]]

y)2 such that t′′′1 6= y, t′′′2 6= v, t′′′3 6= v

and t′′′4 6= y, are such that

m′′ · (mb_vpre_suffixesθ([[
x

p
y

]]))(t′1) 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(t1) , (F.28)

m′′′ · (mb_vpre_suffixesθ([[
x

p
v

]]))(t′2) 6 (mb_vpre_suffixesθ([[
x

p
v

]]))(t2) , (F.29)

m′′′′ · (mb_vpre_suffixesθ([[
v

p
v

]]))(t′3) 6 (mb_vpre_suffixesθ([[
v

p
v

]]))(t3) , (F.30)

m′′′′′ · (mb_vpre_suffixesθ([[
v

p
y

]]))(t′4) 6 (mb_vpre_suffixesθ([[
v

p
y

]]))(t4) , (F.31)

c′ · θ(w1, w
′
1) · r′ · (mb_vpre_suffixesθ([[

x

p
y

]]))(t′′′1 )

6 (mb_vpre_suffixesθ([[
x

p
y

]]))(t′′1) ,
(F.32)

c′′ · θ(w2, w
′
2) · r′′ · (mb_vpre_suffixesθ([[

x

p
v

]]))(t′′′2 )

6 (mb_vpre_suffixesθ([[
x

p
v

]]))(t′′2) ,
(F.33)

c′′′ · θ(w3, w
′
3) · r′′′ · (mb_vpre_suffixesθ([[

v

p
v

]]))(t′′′3 )

6 (mb_vpre_suffixesθ([[
v

p
v

]]))(t′′3) ,
(F.34)

c′′′′ · θ(w4, w
′
4) · r′′′′ · (mb_vpre_suffixesθ([[

v

p
y

]]))(t′′′4 )

6 (mb_vpre_suffixesθ([[
v

p
y

]]))(t′′4) .
(F.35)

We just prove (5.15) since the proof of (5.16) is similar. Note that the wanted unary
block [zm

′ ]z
′
cannot be in {[x 1 ]y}, because z′ 6= y by hypothesis. Note also that, by

de�nition of mb and the fact that v 6= x and v 6= y, the wanted unary block [zm
′ ]z
′
is

either in mb([[x p ]]
y)1, in mb([[x p ]]

v)1, in mb([[v p ]]
v)1 or in mb([[v p ]]

y)1, but cannot be in
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two sets at the same time. Let us do a proof by case analysis. If [zm
′ ]z
′
∈ mb([[x p ]]

y)1

and z = x, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(x) .

By the fact that z′ cannot be x and by the de�nition of mb_vpre_suffixesθ, it su�ces
to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
y

]]))(z′) 6 ((mb_vpre_suffixesθ([[
x

p
y

]]))(x))∗ .

By Kleene algebra, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(x) .

This is direct from inductive hypothesis (F.28) since z′ 6= y by hypothesis.

If [zm
′ ]z
′
∈ mb([[x p ]]

y)1 and z 6= x, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z) .

By the fact that z′ cannot be x, by the hypothesis that z 6= x and by the de�nition of
mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p
y

]]))(z) .

This is direct from inductive hypothesis (F.28).

If [zm
′ ]z
′
∈ mb([[x p ]]

v)1, z = x and z′ 6= v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(x) .

By the fact that z′ cannot be x or v and by the de�nition of mb_vpre_suffixesθ, it
su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
v

]]))(z′) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 ((mb_vpre_suffixesθ([[
x

p
y

]]))(x))∗ .
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By the hypothesis z′ 6= v, by the inductive hypothesis (F.29) and by Kleene algebra, it
su�ces to prove that

(mb_vpre_suffixesθ([[
x

p
v

]]))(x) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 ((mb_vpre_suffixesθ([[
x

p
y

]]))(x))∗ .

By Lemma 5.5, it su�ces to prove that

mb_vpreθ(p) · (mb_vpreθ(p))
∗ ·mb_vpreθ(p) 6 (mb_vpreθ(p))

∗ .

This is trivial by Kleene algebra.

If [zm
′ ]z
′
∈ mb([[x p ]]

v)1, z = x and z′ = v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(v) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(x) .

By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

m′ · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗ · (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 ((mb_vpre_suffixesθ([[
x

p
y

]]))(x))∗ .

By Lemma 5.6, inequation (5.13), it su�ces to prove that

(mb_vpre_suffixesθ([[
x

p
v

]]))(x) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 ((mb_vpre_suffixesθ([[
x

p
y

]]))(x))∗ .

By Lemma 5.5, it su�ces to prove that

mb_vpreθ(p) · (mb_vpreθ(p))
∗ ·mb_vpreθ(p) 6 (mb_vpreθ(p))

∗ .

This is trivial by Kleene algebra.

If [zm
′ ]z
′
∈ mb([[x p ]]

v)1, z 6= x and z′ 6= v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z) .



Appendix F. Proofs of Three Results on the Function mb_vpre_suffixesθ 283

By the fact that z and z′ cannot be x or v and by the de�nition of the function
mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
v

]]))(z′) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 (mb_vpre_suffixesθ([[
x

p
v

]]))(z) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .

By the monotonicity of ·, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
x

p
v

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p
v

]]))(z) .

This is direct from inductive hypothesis (F.29).

If [zm
′ ]z
′
∈ mb([[x p ]]

v)1, z 6= x and z′ = v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(v) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z) .

By the fact that z cannot be x or v and by the de�nition of mb_vpre_suffixesθ, it
su�ces to prove that

m′ · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗ · (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 (mb_vpre_suffixesθ([[
x

p
v

]]))(z) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .

By the monotonicity of ·, it su�ces to prove that

m′ 6 (mb_vpre_suffixesθ([[
x

p
v

]]))(z) .

This is direct from Lemma 5.6, inequation (5.13).

If [zm
′ ]z
′
∈ mb([[v p ]]

v)1, z = v and z′ 6= v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(v) .
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By the fact that z′ cannot be x or v and by the de�nition of mb_vpre_suffixesθ, it
su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
v

p
v

]]))(z′) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗ · (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .

By the hypothesis z′ 6= v, by the inductive hypothesis (F.30) and by Kleene algebra, it
su�ces to prove that

(mb_vpre_suffixesθ([[
v

p
v

]]))(v) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗ · (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .

This is trivial by Kleene algebra.

If [zm
′ ]z
′
∈ mb([[v p ]]

v)1, z = v and z′ = v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(v) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(v) .

By the de�nition of mb_vpre_suffixesθ, it su�ces to prove that

m′ · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗ · (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗ · (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .

By Lemma 5.6, inequation (5.13), and by Kleene algebra, it su�ces to prove that

(mb_vpre_suffixesθ([[
v

p
v

]]))(v) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗ · (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .

This is trivial by Kleene algebra.

If [zm
′ ]z
′
∈ mb([[v p ]]

v)1, z 6= v and z′ 6= v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z) .
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By the fact that z and z′ cannot be x or v and by the de�nition of the function
mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
v

p
v

]]))(z′) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 (mb_vpre_suffixesθ([[
v

p
v

]]))(z) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .

By monotonicity of ·, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
v

p
v

]]))(z′) 6 (mb_vpre_suffixesθ([[
v

p
v

]]))(z) .

This is direct from inductive hypothesis (F.30).

If [zm
′ ]z
′
∈ mb([[v p ]]

v)1, z 6= v and z′ = v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(v) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z) .

By the fact that z cannot be x or v and by the de�nition of mb_vpre_suffixesθ, it
su�ces to prove that

m′ · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗ · (mb_vpre_suffixesθ([[
v

p
y

]]))(v)

6 (mb_vpre_suffixesθ([[
v

p
v

]]))(z) · ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗

· (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .

By monotonicity of ·, it su�ces to prove that

m′ 6 (mb_vpre_suffixesθ([[
v

p
v

]]))(z) .

This is direct from Lemma 5.6, inequation (5.13).

If [zm
′ ]z
′
∈ mb([[v p ]]

y)1 and z = v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(v) .

By the fact that z′ cannot be x or v and by the de�nition of mb_vpre_suffixesθ, it
su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
v

p
y

]]))(z′)

6 ((mb_vpre_suffixesθ([[
v

p
v

]]))(v))∗ · (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .
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By Kleene algebra, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
v

p
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
v

p
y

]]))(v) .

This is direct from inductive hypothesis (F.31) since z′ 6= y by hypothesis.

If [zm
′ ]z
′
∈ mb([[v p ]]

y)1 and z 6= v, then we have to prove that

m′ · (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
x

p∗
y

]]))(z) .

By the fact that z and z′ cannot be x or v and by the de�nition of the function
mb_vpre_suffixesθ, it su�ces to prove that

m′ · (mb_vpre_suffixesθ([[
v

p
y

]]))(z′) 6 (mb_vpre_suffixesθ([[
v

p
y

]]))(z) .

This is direct from inductive hypothesis (F.31) since z′ 6= y by hypothesis.
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