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Résumé court

Les travaux de recherche effectués au coursde cette thèse ont mené au développement

d'un modèle numérique permettant de décrire le déplacement simultané de plusieurs

ions dans le réseau poreux de matériaux cimentaires. Le modèle tient compte de la

diffusion des ions, du couplage électrique en^re les ions et de l'activité chimique. Lorsque

le matériau n'est pas saturé, le déplacement de l'eau sous l'effet de forces capillaires

et son influence sur le transport des ions apparaît dans le modèle. Plusieurs réactions

chimiques sont également prises en compte: dissolution de la portlandite, décalcification

des C-S-H, dissolution des monosulfoalumir>ates, formation d'ettringite, de gypse et de

chloroaluminates. L'effet de la dissolution ou de la précipitation de ces phases solides

sur les propriétés de transport du matériau est également considéré.



Résumé

Les travaux de recherche effectués au cours de cette thèse ont mené au développement

d'un modèle numérique permettant de décrire le déplacement simultané de plusieurs

ions dans le réseau poreux de matériaux ciiaentaires. L'algorithme sépare le transport

des ions des réactions chimiques selon une approche SNIA (Sequential Non Iterative

Approach). Dans la partie consacrée au transport, le déplacement des ions dans un mi-

lieu non saturé est basé sur la résolution de l'équation de Nernst-Planck étendue tenant

compte de la diffusion, du couplage électrique entre les ions et de l'activité chimique.

Un terme d'advection est ajouté à cette équation afin de considérer le transport des ions

sous l'effet du mouvement du fluide dans le réseau poreux en présence de gradients de

teneur en eau. Ces équations de transport sont discrétisés dans l'espace par la méthode

des éléments finis. Elles sont résolues pou: sept espèces ioniques de manière couplée

en utilisant la méthode de Newton-Raphson. Un module d'équilibre chimique corrige

ensuite les profils de concentration obtenu> à l'étape de transport. Dans ce module

chimique, les phases solides considérées sont la portlandite, les C-S-H, les monosulfoa-

luminates, l'ettringite, le gypse et les chloroaluminates. Certaines de ces phases solides

sont soient dissoutes, soient précipitées afin de retrouver l'équilibre entre la pâte de

ciment hydraté et la solution dans les pores du matériau. L'effet de la dissolution ou

de la précipitation de ces phases solides sui:'les propriétés de transport du matériau est

également considéré, en fonction des variations de porosité. Le modèle donne comme

résultats les profils de concentrations en solution et la teneur en tout point du matériau
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de chacune des phases solides. Les applicati)ns présentées à la fin du mémoire montrent

l'utilisation du modèle pour des' cas d'attaque aux sulfates. Une méthode permettant

de déterminer le coefficient de diffusion des ions dans les matériaux cimentaires suite

à une analyse des résultats de l'essai de migration a également été développée dans le

cadre de ces travaux de recherche.
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Je tiens tout d'abord à remercier mon directeur de thèse Jacques Marchand. Au mo-

ment de commencer cette étude, je n'avais pas grand chose à offrir à Jacques, si ce n'est

mes connaissances au niveau numérique. J'étais de ceux qui disent ciment en pensant
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travaux. De plus, Yannick est l'une des rares personnes pouvant témoigner que j'ai

déjà préparé un mélange de béton. Je lui dois donc beaucoup . . .



Ce travail m'a également donné l'occasion de rencontré Pierre, Rémi, Annick et
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Introduction

La dégradation des structures en béton sous l'efFet d'attaques chimiques est devenue

l'une des principales préoccupations des ingénieurs civils oeuvrant dans le domaine

du béton. Les exemples les plus courants de dégradation chimique sont la corrosion

des armatures provoquée par le contact de la structure avec du chlore, les attaques

aux sulfates, la réaction alcalis-granulat, et la carbonatation. Pour le seul cas de la

corrosion des armatures, on estime à 20 milliards de dollars le coût de la réfection des

structures exposées à ce problème aux États-Unis.

Tous ces exemples de dégradation prématurée des structures trouvent leur origine

dans les échanges ioniques entre le matériau et son environnement. La corrosion des

armatures est causée principalement par la

poreux du béton. Les réactions chimiques

l'acier d'armature vont causer l'apparition

à terme, faire éclater le recouvrement de bé

même principe. Dans ce cas, ce sont les io:

Dénétration de chlore externe dans le réseau

se produisant lorsque le chlore réagit avec

le produits de corrosion expansifs qui vont,

ton. L'attaque aux sulfates est basée sur le

is sulfates, souvent présent dans le sol, qui

vont pénétrer dans les pores du matériau. Si les conditions chimiques dans la structure

sont propices, ces ions pourront être à l'origine de la formation d'ettringite et de gypse.

Si la quantité d'ettringite et de gypse formée est importante, le matériau peut se fissure

et perdre ainsi une partie de son intégrité s,ructurale.

A l'opposé, une partie des ions se trouvant dans le matériau lors de sa mise en place

peut se retrouver dans le milieu extérieur en contact avec la structure. Par exemple,



une structure en contact avec de l'eau verra une partie des ses ions hydroxydes le

quitter, entraînant une baisse de pH dans.le béton. Cette chute de pH va entraîner

la dissolution de la portlandite et la décalcification des C-S-H, deux phases minérales

donnant au matériau sa résistance mécanique. II y aura donc dans ce cas également

une perte d'intégrité structurale de la structure.

Le transport des ions dans les matériaux cimentaires peut donc avoir des con-

séquences extrêmement importantes sur les structures et les ouvrages d'art. Ces con-

séquences prennent une proportion d'autant plus grande que le béton est aujourd'hui

le matériau de construction le plus utilisé dans le monde.

De toute évidence, une bonne connaissance des mécanismes de transport des ions

dans les matériaux cimentaires ainsi que l'implantation de ces connaissances dans un

modèle numérique permettrait de mieux évaluer l'impact de ces échanges ioniques sur

la durée de vie des structures en béton. L'utilisation d'un modèle fiable permettrait

d'évaluer le temps à partir duquel des réparations doivent être envisagées et d'estimer

la durée de vie résiduelle des ouvrages. Ur tel outil pourrait aussi intervenir à l'étape

du design de la structure, en permettant de sélectionner le matériau le plus approprié

pour résister aux conditions environnementales locales.

L'industrie du béton prend de plus en plus au sérieux l'utilisation de modèle pour

prédire la durée de vie des ouvrages. Le code de calcul Life-365 montre bien cet

enthousiasme entourant les modèles de transport ionique. II est né d'une collaboration

entre l'American Concrete Institute, la Silica Fume Association et Master Builders

Technologies, qui sont tous des acteurs imp<ortants dans cette industrie. II permet de

modéliser la pénétration du chlore dans des structures en béton, afin de prédire la durée

de vie d'un ouvrage en béton armé.

Malgré tout cela, très peu de nouveaux développements sont apparus récemment

sur le plan scientifique dans ce domaine. La plupart des modèles sont toujours basés

sur la simple loi de Fick et leur utilisation est difficilement envisageable pour en ar-

river à faire des prédictions à long terme. Ce travail de recherche a donc pour ob-

jectif de développer un modèle de transport des ions dans les matériaux cimentaire

qui, tout en considérant les travaux de recherche les plus récents, incorpore égale-

ment certains phénomènes physiques qui sont habituellement mentionnés mais négligés



faute d'algorithmes numériques appropriés, tels le couplage électrique entre les ions et

l'activité chimique.

Le mémoire de thèse est le regroupement des articles qui ont été écrits au cours de

ce travail de recherche. Le format de ces articles a été légèrement modifié par rapport

à la version publiée afin de faciliter la lecture du document. Ainsi, les équations, les

dans le but de s'enchaîner d'un article à

m des articles a été regroupée à la fin du

figures et les tableaux ont été renuméroté;

l'autre. De plus, la bibliographie de chac

mémoire pour former une bibliographie globale à l'ensemble du document.



Chapitre 1

Mise en contexte

1.1 Revue des modèles de transport ionique

L'intérêt pour la modélisation du transport ionique dans les milieux poreux est né

dans les années 70. La prise de conscience des problèmes environnementaux a mené au

développement de modèles dont l'objectif etait de prédire l'étendue de la pénétration

de contaminants dans le sol. L'hydrogéologie a donc été le premier domaine scientifique

à s'intéresser aux modèles de transport ionique.

Les premiers modèles consistaient en une seule équation de transport, permettant

de calculer le profil de concentration d'une seule espèce ionique. Ces modèles simplifiés

tenaient compte de la diffusion, de la dispersion, de l'advection et, de façon très rudi-

mentaire, des réactions chimiques subies par l'ion. Une brève description de chacun de

ces phénomènes est donnée dans les paragraphes suivants.



Le transport de particules en solution par diffusion est le résultat de leur agitation

thermique. Cette agitation produit une suite de collisions aléatoires entre les particules

qui a pour effet de les disperser vers des régions de la solution où la concentration

est plus faible. Dans le cas des ions, leur charge électrique influence ce comportement

diffusif. Celui-ci sera modifié par le couplage électrique entre les ions et également par

l'activité chimique de la solution [85, 213]. Ces phénomènes sont modélisés par la loi

de Nernst-Planck étendue, qui donne le flux de l'ion i selon [85]:

jfiff = -Agradé) - %^-Qgrad(^) - A^grad(ln^) (1.1)
v ' κι * 'diffusion T** ! activité chimique

couplage elect.

où Di est le coefficient de diffusion de l'ion i, c¿ est la concentration, Ζχ est la valence

de l'ion, F est la constante de Faraday, R est la constante des gaz parfaits, T est la

température, φ est le potentiel électrochimique et η%- est l'activité chimique. Dans les

premiers modèles toutefois, le couplage électrique et l'activité chimique sont négligés.

La dispersion est un phénomène lié à l'écoulement de l'eau dans le sol sous l'effet d'un

gradient de pression ou de charge hydraulique. Elle est associée à des variations locales

de vitesse d'écoulement à l'échelle du pore [.18]. On nomme dispersion hydrodynamique

la combinaison de la diffusion et de la dispersion [18]. Le phénomène de dispersion est

important pour les fortes valeurs de vitesses d'écoulement [18]. Lorsque les vitesses

d'écoulement sont faibles, la diffusion est dominante. Dans beaucoup de modèle de

transport de contaminants, on néglige la diffusion au profit de la dispersion. II est

possible d'exprimer le flux dispersif de manière similaire au flux diffusif [18]:

jfsp = -D*>grad{*) (1.2)

où DD est le coefficient de dispersion. On peut donc définir un coefficient de dispersion

hydrodynamique comme : DfH = Όχ + DD.

L'advection, soit le transport des ions résultant du mouvement du milieu aqueux

lui-même, peut de façon très large être divisée en deux classes. Dans un cas, le transport

du fluide se fait sous l'action d'un gradient de pression ou de charge hydraulique sur

le matériau poreux. C'est le cas des barrages, par exemple. Le fluide obéit alors à la

loi de Darcy [58, 74]. Les matériaux soumis à ce type de comportement demeurent

saturés [74]. Dans l'autre cas, le transport du fluide se fait sous l'action de forces

capillaires [74, 135], qui sont présentes dans le matériau lorsqu'il n'est pas saturé. Le



niveau de saturation du matériau peut-être modifié tout au long de sa vie en fonction

des différents cycles de mouillage et de séchage auxquels il sera exposé. La portion du

fiux ionique reliée à l'advection est donnée par:

JÎdv - c,v (1.3)

où v est la vitesse du fluide.

Les réactions chimiques qui affectent les ions peuvent être divisées en deux groupes

principaux [149]: les réactions homogènes et les réactions hétérogènes. Les réactions

homogènes se produisent exclusivement dans la solution. II s'agit le plus souvent de

réactions de complexation, où deux ions se combinent pour en former un troisième.

Les réactions hétérogènes impliquent la phase solide du matériau poreux. II peut s'agir

d'interactions avec la surface du matériau (on parle alors de sorption ou d'échange ion-

ique) ou d'interaction avec la phase solide en entier. Cette dernière catégorie comprend

les réactions de dissolution/précipitation. Les réactions chimiques impliquent générale-

ment plusieurs ions à la fois. Cependant, dans les premiers modèles de transport

ionique, elles étaient modélisées de manière très simplifiée à partir du comportement

d'un seul ion.

Avec l'avènement d'ordinateurs plus p

d'une deuxième génération de modèles, plu;

uissants, les années 80 ont vu l'apparition

complexes, où le transport de plusieurs ions

était pris en compte. Le transport des ions s'est ainsi vu couplé à des modèles chimiques

pouvant reproduire plusieurs types de réactions. Ces modèles ont d'abord consisté à

résoudre de manière couplée la chimie et le transpoi

problèmes de transport ionique en milieux réactifs se n )mme DSA (Direct Substitution

Approach). Un article de Miller et Benson paru en '. 983 [127] est souvent cité pour

illustrer ce type d'algorithme.

Mais un article de Yeh et Tripathi publié en 1989 [ 207] allait changer considérable-

ment la façon d'aborder ces problèmes. Ces auteurs o

est plus intéressant de découpler le transport et la ch

importante le temps de calcul. Cela ouvrait ainsi la porte à la résolution de problèmes

encore plus complexes. Depuis, la très grande majorit

dans le domaine de l'hydrogéologie sont basés sur des

transport et de chimie sont découplées. Ces algorithmes sont connus sous le nom de

t. Cette façon de résoudre les

at montré dans leur article qu'il

mie, afin de réduire de manière

: des articles publiés sur le sujet

algorithmes où les équations de
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SIA (Sequential Iterative Approach). Ils consistent à résoudre séparément le transport

et la chimie, en faisant des itérations entre ces deux étapes de calcul jusqu'à atteindre la

convergence. A l'intérieur des algorithmes de type SIA, la méthode SNIA (Sequential

Non Iterative Approach) consiste à résoudre séparément le transport et la chimie, mais

sans itérer entre ces deux étapes. L'article de Yeh et Tripathi a été critiqué par Saaltink

& al. [151] car les études de temps de calcul publiées dans l'article sont théoriques et

ne reflètent pas, selon eux, la réalité. Ils ont de leur côté montré que dans bien des cas,

l'algorithme DSA est plus économique. Par contre, pour les problèmes de très grande

taille, les méthodes SIA sont avantageuses. De plus, les méthodes SIA sont beaucoup

plus faciles à implanter dans un modèle numérique et permettent d'utiliser des codes

d'équilibre chimique déjà existants.

Le formalisme utilisé en hydrogéologie dans les modèles de transport ionique en mi-

lieux réactifs a été résumé dans un article de Kirkner et Reeves [96]. Ils ont exprimé les

équations de transport de trois manières différentes, selon le type de réaction chimique

en jeu. Ces formulations (A, B et C) sont exposées brièvement dans les paragraphes qui

suivent. Les N espèces chimiques réactives en solution sont divisées en Nc composants

et Nx complexes, avec N = Nc + Nx. Les complexes sont le résultat de réactions chim-

iques entre les composants. Les équations gouvernant le transport des Nc composants

et Nx complexes sont:

ir •
/ \ j -ι

= rc i = 1 Ν (1 4Ì
I u i » y^-j τ γ-*_- o * w^^y j I j J X j . . . j 1 V C y X .~tJ

= rf i = l,...,iVx (1.5)
0¿

où Cj est la concentration du composant j , x¡ est la concentration du complexe i, v est

la vitesse du fluide, φ est la porosité, D est le tenseur de dispersion hydrodynamique,

r | est le taux de réaction du composant j , et rf est le taux de réaction du complexe i.

Les auteurs considèrent que D est le même pour toutes les espèces chimiques. Cette

approximation est valide lorsque la vitesse, d'écoulement du fluide est importante par

rapport à la diffusion.

Les auteurs introduisent ensuite la co:icentration soluble totale de chaque com-

posant:
Nx

uj = cjj ~^~ / AijXi (1-6)

i=\



où Aij est une matrice de coefficients stoechiométriques permettant de relier les com-

posants aux complexes. Les taux de réactions r¿ sont définis comme:

c c{aq) , c(s) . c(p) ιΛ «\
r] = r + r + r ( 1 7 )

où:

taux de réaction de j dû à la complexation (1.8)
t = l

r
c\s) _ ^ j . taux de réaction de j dû à la sorption ou à l'échange ionique

(1.9)

rf = -• Y~̂  Bij^r- taux de réaction de j dû à la précipitation/dissolution
¿ = 1

(1.10)

Dans les équations (1.8) à (1.10), Sj correspond au composant j sorbé, p¿ est la con-

centration du précipité i, Np est le nombre d'espèces immobiles (solides), et B^ est une

matrice de coefficients stoechiométriques. Le terme Sj peut généralement être exprimé

comme une fonction (implicite ou explicite) de la concentration des composants:

_CSC 1 \ {^1 l̂ T \

Sj = Jj {Ci, C2, • · . , Cp4c) \l.li)

et peut à son tour être exprimé comme une fonction de of uy.

Sj = f;u(uuu2,...,uNc) (1.12)

En combinant les équations (1.4) et (1.5) avec l'aide de la relation (1.6), et en consi-

dérant les expressions (1.7) à (1.12), il est possible d'écrire:

^ +L{u¡) = 0 , _ ! Nc (!.!3)
fc=l

où L{.) est l'opérateur linéaire de dispersion-convection:

L(.) = div[(.)v - 0Dgrad(.)] (1.14)

L'équation (1.13) est à la base de nombreux.modèle de transport multiionique dans le

domaine de l'hydrogéologie. Elle correspond à la Formulation A de Kirkner et Reeves.



II est possible de simplifier davantage les équations de transport en introduisant la

concentration totale Wj du composant j comme variable primaire:

Np

Wj = u3 + Sj + Σ BkjPk j = 1, · · •, Nc (1.15)
fc=l

De l'équation (1.15), il est possible d'écriré les expressions suivantes:

v
Np

Wj = / " c (c i , • • •, CNC) + ίΓ(°ΐ' • • · > cNc) + y ^ Bk¡Pk / --l,--,Nc (1.16)
fc=l

Cj = / f ( ^ i , . . . , w j v J j = l,...,Nc (1.17)

Pi = fjW{^h) · · · j ̂ 7vc) J ~ 1) · · · ; ̂ p (1.18)

/
'UKJ / λ • 1 Λ Γ ( 1 Τ Λ \

.· (Wi,...,WA[) 7 = i , . . . , i V c i . l 9
J V J- ! 1 ' v c y j j ; c ν /

Sj = f°w(wu ..., wN ) j = 1 , . . . , iVc (1.20)
J •' 1 V J- > 1 i v c I J ' ) <- \ 1

En utilisant ces relations, il est possible de transformer l'équation (1.13):

(wx,..., wNc)} = 0 Formulation B (1.21)

ou
O / , X iVp
o{<pWj) . . ^-^ pu l /
— hL(u^) = L\fjWyW],... ,WN )]+ / BkjL[fu {Wi,... ,wpj)] Formulat ion C

dt ^
(1.22)

Tel que spécifié dans l'article de Kirkner et Reeves, le choix de la formulation dépend

essentiellement du type de réactions chimiques en jeu. Avant le développement des

algorithmes SIA et SNIA, La formulation A était la plus souvent utilisé lorsque les

réactions de dissolution/précipitation étaient absentes. Le tableau 1.1 passe en revue

des modèles de transport ionique développés pour prédire le transport d'espèces chim-

iques dans les eaux souterraines. Le choixde la formulation adoptée par les auteurs

est indiqué. Tous les modèles présentés dans le tableau sont basés sur un opérateur de

transport linéaire, ce qui permet de simplifier grandement la formulation mathématique

du problème (voir l'équation 1.13). Une telle simplification ne serait pas possible avec

un modèle de transport basé sur la loi de Ñernst-Planck étendue (équation 1.1).

Les premiers modèles de transport ionique dans le domaine du béton sont nés à peu

près à la même époque que les modèles de transport de contaminants dans les sols.
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Table 1.1: Revue de modèles de transport ioniques dans le domaine de l'hydrogéologie.

Auteurs

Miller,
Benson [127]

Walsh et al.

[187]

Cederberg,
Street,
Leckie [34]

Lewis,
Voss,
Rubin [102]

Liu,
Narasimhan [108]

Yeh,
Tripathi [208]

Engesgaard,
Kipp [61]

Zysset,
Stauffer,

Dracos [215]

Année

1983

1984

1985

1987

1989

1991

1992

1994

Transport

ID, saturé,
adv., diff./disp.,

D const., L(.) lin.,
DF, Euler imp.

ID, saturé,
adv. seule, disp.

num. pour éviter les

oscillations, L{.) lin.,
DF, Euler exp.

ID, saturé,
disp. seule, L(.) lin.,

MEF, Crank-Nich.

ID, saturé,

adv., disp.,
D const-, L(.) lin.,

2D, saturé,

adv., disp.,
D const., L(.) lin.,

DF intégrales.,
Euler exp.

2D, non-sat.,
adv., disp.,

D const., L(.) Un.,
MEF, rés. temp.:

schémas Θ.

ID, saturé,
adv., disp.,

D const., L(.) lin.,
DF, Euler exp.

ID, saturé,
adv., disp.,

D const., L(.) lin.,
MEF, Crank-Nich..

Compì.

χ

X

χ

χ

X

χ

X

X

Ech. ion.,

sorption

X

χ

X

χ

Préc,
diss.

χ

X

X

X

X

Autres

redox

redox

redox,

redox

Notes

Formulation A sans le terme

de diss./préc, sorption modélisée
selon un modèle d'échange ionique,

CEC constant, algo DSA: résolution
couplée des équations différentielles

et algébriques.

Formulation A, algorithme SNIA,

le schéma explicite permet de
résoudre directement pour la

concentration totale Cj dans
le pas de transport.

Formulation A et SNIA pour les

composants sans adsorption, formulation
Β et SIA pour les composants avec

adsorption mais schéma explicite pour
ces équations (solution dépend de wt

et ^t+At/2' CEC et pH constant
pour le modèle d'échange ionique.

Formulation A, algo. SNIA pour
les composants soumis seulement à la

complexation, SIA pour les autres,
CEC constant pour le modèle d'échange

ionique,isotherme linéaire exprimée

comme f(ui),

Formulation A, termes d'échange
solide/solution éliminés, SNIA,

mentionnent que 99.9% du temps CPU
est dans la chimie pour les

problèmes présentés.

Formulation C, algorithme SIA,
donnent des exemples avec une

comparaison SIA, SNIA.

Formulation A, algo. SIA:
le terme source est mis â zéro

à la première itération; aux itérations

suivantes dcf/dt est
évalué en fonction de la variation du

solide aux itérations précédentes,

Formulation A à la base, modifiée
pour tout exprimer en fonction de
la concentration totale WJ et d'un

facteur de retard pj, algo. SIA:
résoiution des éq. de transport pour
les composants conservatifs; ensuite,

itérations entre le transport des
éléments non-conservatifs et la chimie.

Abbreviations: adv.: advection - disp.: dispersion — const.: constant — lin.: linéaire — MEF: méthode des éléments finis -
CEC: Cation Exchange Capacity — diff.: diffusion — DF: différences finies — imp.: implicite - exp.: explicite -
Nich.: Nicholson ~ rés.: résolution - temp.: temporelle - redox: réactions d'oxydo-réduction.
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Table 1.1: (suite) Revue de modèles de transport ioniques dans le domaine de

l'hydrogéologie.

Auteurs

Simunek,
Suarez [169]

Walter,
Frind,
Blowes,
Ptacek,
Molson [198]

Xu,
Samper,
Ayora,
Manzano,
Custodio [206]

Saaltink,
Carrera,
Ayora [151]

Année

1994

1994

1999

2001

Transport

2D, non-saturé,
adv., disp.,

D const., -L(.) lin.,
MEF.

2D, 3D, saturé,
adv., disp.,

D const., L(.) lin-,
MEF, Crank-Nich.

2D, non-saturé,
adv., disp.,

D const., £(.) lin,,

MEF, conduction.

2D, saturé,
adv,, disp.,

D const., L(.) lin.,
MEF, Crank-Nich.

Compì.

χ

χ

X

χ

Ech. ;·οη.,

sorption

χ

Χ

χ

χ

Préc ,
diss.

χ

χ

χ

χ

Autres

diss. de gaz,

chimie du

C O 2

redox

redox,

diss. de gaz

Notes

Formulation A, algo. SIA où les
termes de diss./préc. sont nuls à

la première itération et mis à
jour par la suite,

Formulation A, algo. SIA et SNIA,
SIA: les termes sources sont évalués
au temps intermédaire à partir des

résultats à l'itération précédente,
SNIA: les termes sources sont éliminés,
comparaison S1A-SNIA: les différences

sont si faibles que l'approche SNIA
est privilégiée.

Formulation A, a.lgo. SIA où les
termes de diss./préc. sont nuls à la
première itération et mis à jour par

la suite, comparaison SIA-SNIA: SIA
prend de 2 â 4 fois plus de temps

CPU selon les cas testés, la
différence entre les deux est faible

pour les nombres de Courant faibles,

Formulation A, algo. SIA, les
termes de sorption et de diss./préc.
sont traités comme un terme source

calculé avec les données des itérations
précédentes, comparaison avec

Talgo DSA.

Abbreviations; adv.: advection - disp.: dispersion - const.: constant - lin.: linéaire - MEF: méthode des éléments finis -
CEC: Cation Exchange Capacity — difF.: diffusion — DF: différences finies — imp.: implicite — exp.: explicite —
Nich.: Nicholson - rés.: résolution - temp.: temporelle - redox; réactions d'oxydo-réduction.
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Leurs caractéristiques étaient tout à fait similaires. II s'agissait de modèles simplifiés

ne tenant compte que d'un seul ion et où les réactions chimiques étaient basées sur

une approche aussi très simplifiée. L'ion en question était le plus souvent le chlore,

afin de déterminer le temps nécessaire pour initier la corrosion des armatures dans les

structures de béton armé.

Cependant, les modèles dans ce domaine n'ont pas connu de deuxième génération

similaire à ce qui s'est fait en hydrogéologie. L'augmentation de la puissance de calcul

des ordinateurs n'a pas amené le développement de modèles multiioniques faisant inter-

venir des réactions chimiques complexes. Les raisons derrière cette absence d'évolution

significative sont difficiles à expliquer. II est vrai que le béton est un matériau fortement

chargé en ion, contrairement aux sols, et par conséquent les termes de couplage élec-

trique et d'activité chimique dans l'équation de Nernst-Planck étendue (1.1) sont plus

difficilement négligeables. Un opérateur dc transport non-linéaire complique grande-

ment la résolution des problèmes de transport, ce qui peut en partie expliquer que la

très grande majorité des modèles proposés encore aujourd'hui sont simplifiés.

Ainsi, les modèles de transport ionique dans les matériaux cimentaires sont encore

pour la plupart basés sur la loi de diffusion de Fick. C'est le cas par exemple dans

les travaux de Gospodinov et al. [72], Hansen et Saouma [76], Martin-Pérez [120],

Nagesh et Bhattacharjee [130], Saetta et al. [152], et Swaddiwudhipong et al. [178|.

On note cependant de plus en plus de travaux où le couplage électrique entre les ions

fait partie du modèle. C'est le cas notamment des travaux de Masi et al. [122] et Truc

et al. [189]. Les modèles considérant l'activité chimique sont encore plus rares. Li et

Page [103] l'ont inclus dans leur modèle, en plus du couplage électrique. Leur modèle

n'est cependant applicable que pour un échantillon de matériau cimentaire exposé à un

courant électrique.

L'advection causée par la présence de gradients d'humidité dans une structure est

considérée dans certains modèles. Dans les modèles cités précédemment, ceux de

Martin-Pérez [120], Nagesh et Bhattacharjee [130], Saetta et al. [152], et Swaddi-

wudhipong et al. [178] considèrent l'effet des forces capillaires dans les matériaux

cimentaires non saturés sur le déplacement des ions.

La diffusion et l'advection entraînent les ,ons à travers le réseau poreux du béton. Ils
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sont alors susceptibles du subir des réactions chimiques avec la pâte de ciment hydratée.

A titre d'exemples, la pénétration dans un matériau cimentaire d'ions sulfates (SO4~)

donne lieu à des réactions chimiques pouvant mener à la création d'ettringite et de

gypse, alors que le chlore est à la base de la création de chloroaluminates. Des études

menées sur des systèmes cimentaires simplifiés ont montré le caractère multiionique de

ces réactions. Les réactions chimiques impliquant les sulfates sont couplés aux ions

Ca2+, OH~, et Al(OH)4^ [49, 199]. La formation de chloroaluminates d'autre part

dépend aussi du niveau de concentration des ions Ca2+, OH~, et Al(OH)^ en plus

évidemment de la concentration en chlore [1, 20]. De plus, que ce soit pour la formation

d'ettringite ou de chloroaluminates, la présence d'ions Na+ et K+ en solution influence

les réactions chimiques, même s'ils n'y prennent pas directement part [47, 48].

Tous les modèles cités précédemment incluent les réactions chimiques. Ils utilisent

tous, sans exception, un modèle simplifié de réactions chimiques ne faisant appel qu'à

un seul ion. II s'agit de la méthode des isothermes d'interaction [183], dans laquelle une

courbe expérimentale relie la quantité d'ions liés à la pâte de ciment, à la concentration

en ion en solution. La plupart du temps, le chlore est l'ion étudié. Cette méthode est

utilisée aussi bien dans les modèles à un seul ion que dans les modèles multiioniques

cités auparavant. S'il permet de reproduin le comportement du chlore, par exemple,

l'isotherme d'interaction ne permet pas de tenir compte des réactions chimiques qui

peuvent se produire simultanément, telle que la dissolution de la portlandite et la

décalcification des C-S-H. L'utilisation d'un modèle simple limite donc la possibilité de

modéliser certaines réactions chimiques susceptibles d'affecter de façon importante une

structure exposée à un environnement agressif.

Certains modèles multiioniques sont apparus récemment. II s'agit entre autre des

travaux de Adenot [3] et Planel [139]. Dany ces modèles, la modélisation des réactions

de dissolution et de précipitation se fait seion les équations d'équilibres des différentes

phases solides de la pâte de ciment hydraié. Cela constitue une grande amélioration

par rapport à la méthode des isothermes qui est couramment utilisée. Cependant, les

opérateurs de transport servant à décrire h déplacement des ions sont linéaires et ne

considèrent ni le couplage électrique entre les ions ni les effets de l'activité chimique.
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1.2 Objectif de la recherche

Comme l'a montré la brève revue bibliographique précédente, la tendance actuelle dans

le domaine de la modélisation du transport ionique dans les matériaux cimentaires est

toujours aux modèles à un seul ion. Cette approche simplifiée est cependant de plus

en plus remise en question, comme en témoigne les rares modèles multiioniques qui

commencent à apparaître.

L'objectif de la thèse est de développer un modèle numérique de transport des ions

dans les matériaux cimentaires tenant compte de plusieurs ions et de l'interaction entre

ces derniers. Le modèle se devra d'être multiionique autant au niveau du transport,

en tenant compte du couplage électrique entre les ions et de l'activité chimique, qu'au

niveau des réactions chimiques. L'effet des forces capillaires sur la solution des pores

dans le cas où le matériau est non saturé sera également considéré.

Le travail fait au cours de la recherche est exposé de la façon suivante. Le chapitre 2

est consacré au développement mathématique d'un modèle de transport des ions dans

un milieu poreux non saturé applicable aux matériaux cimentaires. Par la suite, les

différents algorithmes développés dans le but de résoudre le système d'équations non

linéaires sont décrits en détail au chapitre 3. Finalement, des exemples d'application

du modèle sont donnés au chapitre 4.

1.3 Description du matériau

Les matériaux cimentaires désignent en général les matériaux faits avec du ciment et

de l'eau, auxquels on ajoute des granulats de tailles diverses afin d'en augmenter les

performances mécaniques. Le matériau obtenu à partir du mélange eau - ciment se

nomme pâte de ciment. Si le seul type de granulat ajouté au ciment et à l'eau est du

sable, on parle alors de mortier. Les bétons sont quant à eux un mélange de ciment,

d'eau, de sable, et de granulats plus grossiers.

Dans les ouvrages de génie civil, le ciment le plus couramment utilisé est le ciment

Portland. II est obtenu à la suite de la cuisson à très haute température d'un mélange

de chaux vive (CaO) et de divers autres oxydes tels le S1O2, le Al2O3, et le Fe2O3. La
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cuisson de ces composés donne le clinker, formé de particules ayant un diamètre de

l'ordre du centimètre. Le clinker est ensuite broyé pour donner les grains de ciment.

Le ciment Portland est formé de clinker broyé auquel on ajoute environ 5% de gypse.

Le clinker est composé majoritairement des quatre phases suivante1 [185]:

• C3S (3CaO.SiO2)
y

• C2S (2CaO.SiO2)

• C3A (3CaO.Al2O3)

• C4AF (4CaO.Al2O3.Fe2O3)

Dans les grains de ciment, le C3S et le C2S forment des particules compactes reliées

entre elles par une phase interstitielle composée des phases alumineuses C3A et C4AF.

Lorsqu'ils sont mis en contact avec de l'ëau, les grains de ciment subissent une série

de réactions chimiques exothermiques qui va mener à la pâte de ciment hydratée. Le

C3S et le C2S réagissent de la façon suivante avec l'eau:

2C3S + 6H2O ^ 3CaQ.2SiO2.3H2O+3Ca(OH)2 (1.23)

C-S-H portlandite

2C3S + 4H2O ^ 3CaO.2SiO2.3H2Q + Ca(OH)2 (1.24)

C-S-H portlandite

L'hydratation du C3S et du C2S produit les deux composés de base de la pâte hydratée,

soient les C-S-H et la portlandite. La composition des C-S-H donnée aux équations

(1.23) et (1.24) constitue une approximation. La formulation exacte des C-S-H est très

variable et dépend entre autre du rapport calcium/silice qui entre dans leur composition

[3]. Les C-S-H ainsi formés constituent un gel mal cristallisé formé d'un assemblage de

particules très fines, dont la taille est de l'ordre du micron [185]. La portlandite quant à

elle est formée de cristaux ayant une composition bien définie (voir les équations (1.23)

et (1.24)).

L'hydratation du C3A en présence d'eau et de gypse donne de l'ettringite selon la
1Selon la notation des cimentiers, C=CaO, S=SiO2, A=Al2O3, F=Fe2O3.
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réaction suivante:

C3A + 3CaSO4.2H2O+26H2O ^ v3CaO.Al2O3.3CaSO4.32H2Q (1.25)
gypse ettringite

Lorsque la source de gypse s'épuise, on rapporte que l'ettringite devient instable et se

transforme en monosulfoaluminates (3CaO.Al2O3.CaSO4.i2H2O). Cependant, l'étude

de l'hydratation du système CaO - A12O3 - CaSO4 - H2O a révélé que la phase sulfatique

stable est l'ettringite [48, 49].

La réaction du C3A avec le gypse n'épuise qu'une partie du C3A. Le reste va réagir

pour former divers aluminates de calcium hydratés: C4AH43, C2AH8, C3AH6. L'étude

du système CaO - Al2O3 - CaSO4 - H2O a montré que le C3AH6 (hydrogrenat) est la

forme stable qui apparaîtra dans une pâte parfaitement hydratée [48, 49].

L'hydratation du C4AF a fait l'objet de beaucoup moins d'étude et est encore

relativement méconnue. Des études faites sur l'hydratation de C4AF pur en présence

ou non de gypse ont révélé qu'elle est très semblable à celle du C3A [185]. II y a

donc production, d'ettringite, de monosulfoaluminates et d'hydrogrenat, sans compter

certaines phases intermédiaires comme le C^AHs.

La pâte hydratée forme un milieu poreux contenant une solution fortement chargée

en ions OH", Na+ et K+ ayant un pH de l'ordre de 13.5 [141]. On y retrouve égale-

ment en concentration plus réduite les ions SO4~, Ca2+ et Al(0H)4~ [141]. En fonction

du rapport eau/ciment de la pâte et des conditions d'hydratation (éprouvettes scel-

lées, immersion dans l'eau), une partie du ciment restera anhydre. Des pores pour-

ront également être non saturés, toujours selon le rapport eau/ciment et les conditions

d'hydratation [77]. La figure 1.1 montre les proportions de pâte hydratée, de pâte an-

hydre, de capillaires et de capillaires vide en fonction du rapport eau/ciment pour deux

conditions d'hydratation différentes, selon i.e modèle de Powers [77].

Une étude de porosimétrie au mercure sur des pâtes de ciment hydratées [194] révèle

deux classes de porosité distinctes (voir la figure 1.2). Une partie de la porosité provient

des pores capillaires, dont le rayon est de l'ordre de Ο.Ιμηα. Elle correspond au volume

capillaire illustré sur la figure 1.1. L'autre classe de porosité correspond à des pores

ayant un rayon beaucoup plus fin, de l'ordre de 10nm. On parle alors des pores de gel,

puisqu'ils sont associés à l'espace interfeuillet du gel de C-S-H. Le modèle de Powers
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Figure 1.1: Proportion de pâte hydratée, de pâte anhydre, de capillaires et de capillaire

vides dans une pâte de ciment parfaitement hydratée, selon le modèle de Powers [77].

La figure (a) correspond à une pâte de ciment hydratée en immersion continue dans

l'eau. La figure (b) correspond à une pâte de ciment hydratée dans des conditions

scellées.

[77] permet d'évaluer la proportion de chacune des classes de porosité dans une pâte

de ciment en fonction de son degré d'hydratation et du rapport eau/ciment. La figure

1.3 montre la porosité capillaire et la porosité de gel d'une pâte de ciment ayant atteint

son degré d'hydratation maximal en fonction du rapport eau/ciment.

1.4 Hypothèses de base

Le transport ionique dans les matériaux cimentaires implique une gamme très vaste de

phénomènes physiques. Dans l'état actuel de la recherche dans ce domaine, tant au

niveau de la compréhension de ces différents phénomènes que des algorithmes dévelop-

pés afin de résoudre efficacement les équations en jeu, il est impensable d'envisager

un modèle global de transport. Des simplifications sont nécessaires afin de limiter le

champ d'étude. Le modèle obtenu dans ces conditions pourra toujours par la suite être
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Figure 1.2: Courbe de distribution de la porosité, d'après [194]

amélioré.

La première hypothèse concerne la température. Le modèle développé dans cette

thèse suppose que le transport ionique s'efFectue dans des conditions isothermes. Les

éventuels efFets d'une variation de température aussi bien sur le transport des ions que

sur la distribution d'eau et les réactions chimiques dans une matrice non saturée sont

négligés.

On néglige également les efFets que pourraient avoir les contraintes mécaniques sur

le transport des ions. Des fissures peuvent apparaître dans les zones en traction d'une

structure, ce qui Facilite la progression des ions. A l'inverse, des zones en compression

pourraient voir les fissures se refermer, ralentissant du même coup les ions. Les fissures

peuvent aussi être une conséquence directe de la dissolution ou de la précipitation de

certaines phases solides comme la portlandite ou l'ettringite. Elles sont aussi négligées.

On ne tient pas compte non plus des fissures induites par le séchage de la structure.

Toute ces hypothèse reviennent à considérer une pâte homogène.

L'autre hypothèse de base touche plutôt la partie numérique du projet. Même si le

modèle mathématique est développé de façon générale pour des cas en trois dimensions,
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Figure 1.3: Les différentes classes de porosité selon le modèle de Powers [77]. Les calculs

sont faits en supposant une pâte de ciment parfaitement hydratée.

le modèle numérique ainsi que tous les exemples présentés dans le chapitre 4 sur les

applications sont unidimensionnelles.

Finalement, même si plusieurs type de réactions chimiques ont lieu dans le matériau,

les travaux ont été limités aux réactions de dissolution et de précipitation. On s'at-

tardera plus particulièrement aux cas d'attaques aux sulfates et d'exposition à l'eau

pure.

Les hypothèses énoncées précédemment permettent de cerner le cadre général du

travail effectué pour cette recherche. D'autres hypothèses furent utilisées pour dévelop-

per certains points spécifiques du modèle mathématique ou de l'algorithme numérique.

Elles seront clairement énoncées dans les chapitres suivants.



Chapitre 2

Modèle mathématique

2.1 Introduction

Ce chapitre est consacré à l'écriture mathématique du modèle de transport des ions

en milieu non saturé, dans les cadre des hypothèses qui ont été évoquées au chapitre

précédent, soient des conditions isothermes et une pâte homogène. La technique em-

ployée pour écrire le modèle s'appelle l'homogénéisation. Elle consiste d'abord à écrire

les équations dans la phase liquide au niveau du pore dans un Volume Elémentaire

Représentatif (VER). Les équations sont ensuite intégrées au niveau de ce volume élé-

mentaire, ce qui donne les équations de tranpsort à l'échelle macroscopique.

Quatre articles sont présentés x. Le premier article consiste en une introduction à

la technique de l'homogénéisation. La méthode est appliquée à une loi de diffusion très
1La référence exacte de ces articles est donnée dans la bibliographie à la fin du mémoire.
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simple, la loi de Nernst-Planck, sans tenir compte des forces capillaires ou des réactions

chimiques. On y jete les bases mathématiques de la méthode. Les résultats, même

s'ils sont partiels compte tenu du modèle de transport simple, mettent en évidence une

définition claire du coefficient de diffusion des ions.

Le modèle mathématique complet est exposé dans le deuxième article. On y dévelop-

pe les lois de transport des ions ainsi que l'équation de transport du fluide sous l'effet

de forces capillaires.

Les matériaux cimentaires ont la particularité de porter dans leurs pores une solu-

tion très fortement concentrée. Pour des concentrations aussi fortes, les effets d'activité

chimique sont susceptibles d'avoir une importance non négligeable. Toutefois, les mod-

èles actuels pour calculer les coefficients d'activité ne sont pas adaptés à des solutions

si chargées. Le troisième article présente les travaux entrepris afin de développer une

loi simple d'activité permettant de combler cette lacune.

Le dernier article de ce chapitre se veut une revue bibliographique des modèles

permettant de tenir compte de différents types de réactions chimiques dans les équations

de transport ionique. On y discute de l'application des méthodes exposées au cas des

matériaux cimentaires. Le choix de l'algorithme sera fait au chapitre suivant concernant

les méthodes numériques.

2.2 Describing ion diffusion mechanisms in cement-

based materials using the homogeneization tech-

nique

E. Samson12, J. Marchand12, J.J. Beaudoin3

Centre de recherche interuniversitaire sur le béton,
Université Laval, Québec, Canada, GlK 7P4

2SIMCO Technologies inc.,
1400, boul. du Parc Technologique, Québec, Canada, GlP 4R7
3Materials Laboratory - Institute for Research in Construction,

National Research Council, Ottawa, Canada, KlA 0R6
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Abstract

The application of the homogeneization technique to the mathematical de-

scription of the diffusion mechanisms in saturated cement-based materials is

discussed. According to this approach, the transport and mass conservation

equations are first written at the microscopic scale in order to describe the

movement ofparticles in the fluid phase ofthe material. These equations are

then averaged over the entire volume ofthe material. An example ofthe ap-

plication of the homogeneization technique is given. The homogeneization

technique is used to describe the diffusion of ions in cement-based systems.

The various equations are written inorder to consider the charged nature

of the ionic particles and the coupling between the various ionic fluxes. The

numerous advantages of this technique for the modeling of mass transport

mechanisms in cement-based materials are discussed.

2.2.1 Introduction

Concrete structures are exposed to various types of aggression during their service

life. Deterioration mechanisms generally involve the penetration of external ions into

the cement system pore structure. This results in chemical and physical interaction

with the binder solids including leaching of chemical species. In many cases, these

phenomenons occur simultaneously. The durability of the material is therefore often

directly controlled by its ability to act as an impervious barrier that can effectively

impede, or at least slow down, the mass transport processes.

Although capillary absorption and permeation (i.e. the transport of a fluid under

a pressure gradient) can, in certain cases, be of significant importance, numerous stud-

ies have clearly indicated that ions are mainly transported through the concrete pore

structure and microcracks by a diffusion process [125, 131, 148]. This is the reason

why the mechanisms of diffusion in saturated cement-based materials have received

considerable attention [115].

Literature review [115] has recently indicated that despite the relative agreement on

the parameters that afl'ect the ionic diffusion mechanisms in saturated cement systems
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(mixture characteristics, length and type of curing, ...), a lack of concensus on how to

characterize the diffusion properties of these materials exists. Some authors choose to

consider the diffusion coefficient as an intrinsic characteristic of the overall material.

Others prefer to treat it as a property of the liquid phase. Unfortunately, there appears

to be no definitive agreement on the mathematical procedure to convert one coefficient

into another.

An attempt to clarify the mathematical treatment of diffusion mechanisms in sat-

urated cement systems is presented. The mass transport equations are derived using

the homogeneization technique. The fundamental assumptions implicit in the applica-

tion of this technique lie in the theoretical treatment of the porous system. The later

is considered as comprised of the sum of solid, liquid and eventually gaseous phases.

Although there can be exchanges of mass between them (through chemical reactions

or any physical interaction phenomena), each individual phase is treated as a distinct

entity.

The first step of the homogeneization technique consists in writting the transport

and mass conservation equations at the microscopic scale. These equations are then

averaged over the entire volume of the material. The various aspects of the averaging

technique are well described in the text. The application of this approach to the

description of ionic diffusion mechanisms in cement-based materials is discussed.

2.2.2 Description ofthe ionic diffusion mechanisms in the liquid

phase

The application of the homogeneization technique first requires writing the mass and

transport equations at the microscopic scale. For the particular case of ion diffusion in

saturated cement-based materials, the assumption that transport occurs predominantly

in the liquid phase is required. The application of the mass conservation equation for

an ionic species diffusing in the liquid phase yields:

Λ«

liv&) = 0 (2.1)
dt V J /

where C{ is the concentration of the considered species in solution and ji is the flux of

the same species in the liquid phase. It should be emphasized that equation (2.1) has
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to be repeated for each and every ionic species present in solution. Also, no chemical

reactions appears in this equation. At the pore scale, they are modeled by boundary

conditions.

In order to reliably describe the flux of a given species, one has to account for the
I

particularities of ionic diffusion mechanisms in liquids. Contrary to molecules, ions are

charged particles. In addition to the viscous-drag force exerted by their environment,

drifting ions will also be subjected to various electrical forces. For instance, the charged

nature of the ionic particles is at the origin of various interactions between the drifting

particles (ion/ion interactions and ion/solvent interactions). These so-called activity

effects quickly become important as the concentrations of the various ions in solution

increase. The electrical charge of the particles may also contribute to generate specific

ion/solid interactions that can be both physical or chemical in nature. More information

on these two phenomena can be found in references [115] and [117].

Despite the relative importance of activity effects and ion/solid interaction phenom-

ena, it is emphasized that the most important feature which distinguishes ion diffusion

from molecular diffusion is the electrical coupling ofthe various ionic flows [36, 115, 158].

In an ionic solution, the local electroneutrality shall be preserved at any point. The

conservation of electroneutrality requires that the flows of all diffusing species should

be coupled. During the diffusion process, all ions are not drifting at the same speed.

Some ions tend to diffuse at a higher rate. However, any excess charge transferred by

the faster ions builds up a local electric field (called the diffusion potential) which slows

down the faster ions, and reciprocally accelerates the slower ions.

It can be shown that the mechanisms of ionic diffusion in solution can be reliably

described on the basis ofthe following equation [85, 115, 117]:

D?zF
ji = -AVad(c i ) - ^ r ^ g r a d ^ ) - Dfc igrad(ln7i) (2.2)

where R is the ideal gas constant (J/mol/°K ), F the Faraday constant (C/mol), T the

temperature (°K ) and z¿ the valence of the ion.

The coefficient Df appearing in the equation is the diffusion coefficient in the liquid

phase, i.e. at the microscopic scale. It represents the diffusion coefficient in an ideal

solution, i.e. in a very dilute solution. The value of D? for chloride ions is 2.032 x 10~9

m2/s [43|.
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The variable 7¿ appearing in equation (2.2) is the chemical activity coefficient of

the chemical species in solution. For concentrated solutions, it can be calculated using

various semi-empirical equations [115, 158].

Finally, the variable φ in equation (2.2) stands for the diffusion potential (Volt)

set up by the drifting ions. This local potential can be calculated on the basis of the

Poisson equation [85, 115]:

V2V> + - = 0 (2.3)

Where p stands for the electrical charge density (C/m3) and e refers to the dielectric

constant of the medium (F/m). The charge density is related to the concentration of

the N ionic species through the following relationship :

N

id (2.4)

In electrochemistry, equation (2.2) is known as the extended Nernst-Planck equa-

tion. In order to keep the following mathematical derivations as simple as possible, the

homogeneization technique will only be applied to a simplified version of the Nernst-

Planck equation in which chemical activity effects are neglected:

D?z-F
^ d ( V ) (2.5)

The possible chemical reactions occuring in cement-based materials will also be

neglected in this paper for simplicity.

2.2.3 Averaging over the Representative Elementary Volume

(REV)

Having established the transport equations at the microscopic scale, one faces various

alternatives to describe the diffusion properties of the porous material at the macro-

scopic scale. Numerous authors have chosen to model the pore structure of cement

systems on the basis of microstructural information such as that provided by mercury

intrusion porosimetry [114]. Given the intrinsic complexity ofthe pore structure ofmost

cement-based systems, the effective application of these data constitutes a formidable

task [18]. In most cases, these models rely on "material" parameters (determined on
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Figure 2.1: The Representative Elementary Volume (REV)

the basis of simplified assumptions which may not physically represent the system well)

to fully describe the intricate nature of the microporous solid.

Another solution is to simply average the variables of interest over a representative

elementary volume (REV). The main advantage of this approach (called the homo-

geneization technique) is that it does not require any detailed knowledge of the mate-

rial inner structure. Another significant advantage is that the new averaged variables

appearing in the equations can easily be measured in practice.

The notion ofthe REV forms the basis ofthe homogeneization technique. The REV

should be large enough so that its physical characteristics (porosity, paste fraction, ...)

are reprentative of the material. The REV can be characterized by various parameters

(figure 2.1). Vo indicates the entire volume of material, V^ the volume occupied by the

liquid phase, S^s the boundaries between the liquid and the solid phases and S^L is

the liquid in contact with the external boundary of the REV [18].

The variable of interest for discussion of the mechanisms of ionic diffusion in porous

media is the concentration. The volumetric phase average of c, is given by:

1 /
v, L

\ dV (2.6)

It is important to note that the new variable c¿ is defined over the entire volume Vo.

Another useful definition is the volumetric intrinsic phase average, in which the

averaging process is performed over a single specific phase, in our case the liquid phase:

1
c¡L = T77 / °i dV

V L ίΛΓΊ
V Q J V^>

(2.7)
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where V^ is the volume of liquid phase in the REV. As with c¿, c.¿L is defined over the

entire volume of the REV [201]. This value corresponds to the concentration that one

might measure experimentally in a multi-phase system.

One should also define a quantity called the volume fraction ofthe liquid phase [18]:

VL

Θ = £ - (2.8)
It corresponds to the water content of the material. For a fully saturated material, it

is equivalent to the porosity. The two averages defined in equations (2.6) and (2.7) are

related to each other through the volume fraction as :

c¡ = Θ c¡L (2.9)

The fact that both averages c¡ and c¡L are defined over the REV has direct and

important implications on the interpretation of the results provided by the application

of the homogeneization procedure. By averaging over the REV, the different phases

found in various areas of the entire volume are replaced by overlapping continua evenly

distributed over the entire domain [18, 81, 201].

Having established the above definition, the averaging procedures can be applied to

the mass conservation law equation (2.1) and constitutive equation equation (2.5). The

average of the conservation law over all the REV (volumetric phase average) is given

by:

X
Utilizing the fact that the average of a sum equals the sum of the averages [18, 81],

equation (2.10) can be developed as:

v i 7iïdV + vf dM*)d^ = 0 (2.ll)
Vo JyL Ot Vo JyL

Using the definition ofthe volumetric phase average (equation 2.6), equation (2.11) can

be modified as:

dt
Combining equation (2.12) with equation (2.9), one finds:

___ j^

i) = 0 (2.12)

Mv(j/ = 0 (2.13)



It is necessary to calculate the average of a time derivative, the average of a divergence
ι

and the average of a gradient to complete the homogeneization procedure. They will

be given without the appropriate demonstrations. More information on these mathe-

matical operations can be found in references [18] and [81].

• The average of a time derivative is given by:

dt VLe

dt dt

where SLS designates the surface of the solid/liquid interface (see figure 1), n is

a vector normal to the surface SLS and pointing outward, and u is the velocity

of the surface. In the case of the diffusion of ions in concrete, u = 0. One can

therefore write:
L

The average of the divergence is given by:

= div(0j¡L) + ¿ / ji • n dS (2.16)

The last term on the right-hand side of equation (2.16) describes the exchange

between the liquid and the solid phase by a flux through the surface S^s. In most

practical cases, this term can be usedto account for chemical reactions between

the solid and the drifting ions. However, for our present simplified case, this term

can be neglected, leaving:

~f = div(tf^) (2.17)

• The average of a gradient is given by:

= I — / n&xdS)gvaa{cf) + jjT| gx&d{ci)-ndS (2.18)
\ Vo JskL J Vo JSLS

where SLL designates the surface of the liquid phase in contact with the liquid

phase of the adjacent REVs (see figure 1) and x is the position of a point on

SçL relative to the center of the REV. The term within the first parenthesis on

the right hand side of equation (2.18) corresponds to the tortuosity of the pore

system, r [18]. It is a second rank tensor and gives information on the complexity
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of the shape of the porous network. It should be emphasized however that the

evaluation of the tortuosity on the basis of this expression is difficult.

The last term in equation (2.18) accounts for the exchange by diffusion between

the liquid and the solid phases. In the case of concrete, it can be neglected since

the diffusion in the solid phase is insignificant. The exchange between the two

phases, when it occurs, should be modeled using the last term in equation (2.16).

With all these considerations, the final expression for the average of a gradient is:

g r a d ( c / = rgrad(c^) (2.19)

The average of a product is given by:

L
rL + Ci grad(^) (2.20)

o

where the terms c¿ and grad(^) are the deviations of the given variable around

the average value. They can be neglected [18], thus leaving:

k —L L

By substituting equations (2.15) and (2.17) in equation (2.13), the average ofthe mass

conservation equation can be expressed as:

div(0^L) (2.22)
υι

As can be seen in the last equation, one should finally develop an expression for the

average value of the ionic flux. Following equation (2.5), one can write:

J¡LJ¡L = - D ^ d f c f - 4^c i grad(V0X (2-23)

Combining equation (2.23) with equations (2.19) and (2.21), the final expression ofthe

flux is given by:

J¡L = -Dfrgrad(c^) - ^ ^ V g r a d ( V ^ ) (2.24)

A new diffusion coefficient is defined as:

Di = Dfr (2.25)

It corresponds to the diffusion coefficient al the macroscopic scale. It is important to

remember that this new parameter is nothing more than the ionic diffusion coefficient
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at microscopic scale (i.e. the liquid phase), modified by a purely geometrical factor

accounting for the complexity of the porous system.

The variable φ appearing in equation (2.24) represents the value of the electrical

potential φ in the liquid phase averaged over the REV.

Expressing equations (2.24) and (2.25) in the averaged form of the mass conserva-

tion law (equation 2.22), the diffusion model based on an averaged concentration c¡L

becomes:

^ p = div(-0Agrad(cf) - 0^Vgrad(/)) (2.26)

This equation can be used to model the diffusion of ions in a porous media where

activity effects and chemical binding are neglected.

For the particular case of a fully saturated concrete with no variation in water

content Θ, equation (2.26) can be written as:

^p (ĉ  ^ n= div(-Agrad(c^) - ^ c f g r a d C n ) (2.27)

This is Nernst-Planck equation at the macroscopic scale. It describes an ionic species by

the average concentration in the liquid phase. The diffusion is controlled by u¿, which

hides the effects of the complex geometry of the porous network of the concrete. This

law is often use to model ionic diffusion in concrete, but without the homogeneization

technique, it is difficult to understand the meaning of each parameter in the equation.

It should be emphasized that the diffusion coefficient D{ (as defined in the last

equations) is a property of the porous netwc>rk and of the ionic species under consider-

ation, while the tortuosity coefficient τ is a characteristic of the solid solely. From an

engineering point of view, the determination of the tortuosity coefficient on the basis

of experimental tests is quite important since it provides information on the ability of

the solid to impede ion transport.

To complete the model, the averaging procedure is performed on the Poisson equa-

tion (see equations 2.3 and 2.4). It gives:

F ( N \
div(0rgrad(V^)) + Θ- ^ Zlc¡L = 0 (2.28)

It should also be underlined that neither the tortuosity coefficient nor the diffusion

coefficient should be influenced by parameters such as the type and the number of



31

coexisting ions or the concentrations of the external solutions in contact with the solid.

As previously discussed, the Nernst-Planck/Poisson set of equations already takes into

account the interaction between the various ionic fluxes that may take place during

the difl'usion process. The system of equations can be easily modified to account for

chemical activity effects or the chemical interactions of the ionic species with the solid

phases.

2.2.4 Concluding remarks

Is has been demonstrated that the homogeneization technique, based on the averaging

of the conservation law and constitutive equation at microscopic scale, can describe

the transport of ions at the material scale. The technique was applied to the case of

a very simple constitutive equation (Nernst-Planck). More complex constitutive laws,

for example the extended Nernst-Planck equation, could be used in the model and

averaged over the REV through the same procedure.

2.3 Modeling ion and fluid transport in unsaturated

cement systems for isothermal conditions

E. Samson12, J. Marchand12, K.A. Snyder3, J.J. Beaudoin4

1Centre de recherche interuniversitaire sur le béton,
Université Laval, Québec, Canada, GlK 7P4

2SIMCO Technologies inc.,
1400, boul. du Parc Technologique, Québec, Canada, GlP 4R7

3Building and Fire Research Laboratory,
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

4Materials Laboratory - InstituLe for Research in Construction,
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Abstract

A description of ionic transport in unsaturated porous materials due to
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gradients in the electro-chemical potential and the moisture content is de-

veloped by averaging the relevant microscopic transport equations over a

representative volume element. The complete set of equations consist of a

time-dependent equations for both the concentration of ionic species within

the pore solution and the moisture content within the pore space. The elec-

trostatic interactions are assumed to occur instantaneously and the resulting

electrical potential satisfies Poisson's equation. Using the homogenization

technique, moisture transport due to both the liquid and vapor phases is

shown to obey Richards' equation, and a precise definition of the moisture

content is found. The final transport equations contain transport coeffi-

cients that can be unambiguously related to experimental quantities. The

approach has the advantage of making the distinction between microscopic

and bulk quantities explicit.

2.3.1 Introduction

Over the past decade, a great deal of effort has been specifically devoted to the in-

vestigation of ion transport mechanisms in unsaturated cement systems. The topic is

important since, in many cases, concrete structures exposed to ionic solutions are also

frequently subjected to wetting and drying cycles. The coupled transport of moisture

and ions often tends to accelerate physical and chemical degradation mechanisms and

reduce the service life ofthe material [7, 62, 93].

Reports recently published on the subject have largely contributed to clarify some

fundamental aspects of ion transport mechanisms in unsaturated concrete. Many in-

vestigations have also emphasized the intricate nature of these phenomena. If most of

the difficulties related to the description of transport processes in concrete are linked

to the intrinsic complexity of the material, it appears that part of them also lies with

the fact that authors have used many different approaches to study these processes.

For instance, the definition of the state variables used to describe the various transport

processes tend to vary significantly from one study to another. This is most unfortunate

since the lack of a unified approach often contributes to confuse the issue.

This paper is an attempt to clarify some fundamental aspects of the problem. The
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transport mechanisms are described using a well established mathematical procedure,

the homogenization technique. The technique has been recently used to investigate the

diffusion ofions in saturated systems [156]. According to this approach, the transport

equations are first written at the pore scale. They are then averaged over the scale of

the material. The main advantage of the homogenization technique lies in the clear

definition of the state variables.

The paper first addresses the process ofmoisture transport in an unsaturated porous

material. For the completely coupled transport of ions in an unsaturated media, dy-

namical equations are required to express the moisture content as a function of time.

This is achieved by averaging microscopical· equations for both liquid and water vapor

transport. The mathematical development yields Richard's equation, and the moisture

content and the transport coefficients are well-defined.

The second part of the paper is devoted to the coupled transport of ions and mois-

ture in the system. Here, the field quantity is the concentration of the ions within

the pore solution. The homogenization technique is applied to a microscopic equation

for both diffusive and convective transport. While diffusive equations already exist,

reformulating the bulk equations using homogenization ensures that the transport co-

efficients are well defined (pore space versus microscopic quantities) and can, therefore,

be unambiguously related to experimental quantities.

2.3.2 Water transport in unsaturated porous materials

The first objective is to develop an equation to characterize the mass transport ofwater

in an unsaturated porous material. Richards [147] was among the first authors to study

the mechanisms ofwater transport in unsaturated porous solids. In 1931, he proposed

the following equation to describe the flow of water under capillary suction:

^ - div(iigradr) = 0 (2.29)

οι

where Θ is the water content, K is the permeability of the porous material, and Γ is

the capillary potential.

This relationship, known as Richards' equation, was later modified to express the

transport ofmass solely as a function ofthe gradient in water content. This modification
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is based on the assumption that the capillary potential Γ is a differentiable function of

the moisture content Θ:

r = /(0) (2.30)

This allows to write:

gradr = ^ g r a d # (2.31)
ao

Substituting (2.31) into (2.29), one finds: ,

~ - div(A,grad#) (2.32)

where Dg = K(dT/d0) is the nonlinear water diffusivity coefficient. Equation (2.32)

is widely used to model the evolution of water content in a porous material kept in

isothermal conditions. Equation (2.32) is also known as Richards' equation.

While Richard's equation is commonly accepted among scientists, its use over the

past decades has contributed to some confusion on how to describe moisture transport

mechanisms in unsaturated porous materials. Richards originally wrote the equation

with the water content expressed in cubic centimeters ofwater per gram ofdry material.

Over the years, some authors have preferred to define water content in kilograms of

moisture per kilogram of dry material [53] or in kilograms of water per cubic meter

of material [54, 167]. However, most authors have traditionally chosen to express the

variable in cubic meter ofwater per cubic meter of material [32, 44, 51]. To add to the

confusion, many authors tend to define the moisture content as the sum of liquid water

and vapor while some others only consider the liquid phase.

2.3.2.1 General considerations

In an attempt to clarify these concepts, Richards' equation will be derived using the

homogenization technique. In order to simplify the problem, the derivation is based

on the assumptions that the isotropic porous material is an infinitely rigid solid (no

significant deformations) kept under isothermal conditions (i.e. the transport of water

is solely due to capillary suction). Other assumptions will arise during the development

of the model.

The mathematical rules of the averaging technique can be found in textbooks [12,

18]. Only the basic definitions will be exposed in the following paragraphs. More



35

s

Solid

^jfi^ J

olid \ y

Solid

as

vn

Figure 2.2: The Representative Elementary Volume (REV)

information on the technique can also be found in reference [156]. The technique is

outlined here because it is at the core of development of all the transport equations.

As previously mentioned, the homogenization technique starts with a conservation

and a transport equation at the microscopic level (i.e., at the scale ofthe pore). These

equations are then integrated over a Representative Elementary Volume (REV), such

as the one depicted in Figure 2.2. The size of the volume depends on the intrinsic

properties of the material. For instance, for concrete and mortar mixtures, the size

of the REV depends on the maximum diameter of the aggregate particles. For the

hydrated cement paste, the REV is typically a few cubic centimeters.

The total volume of the REV is given by V0. The volume occupied by the liquid

phase is designated by V^. The volumetric fraction of liquid 6L is the ratio of the liquid

volume to the total volume:

θτ. = K
Vn

(2.33)

The gaseous phase occupies a volume V^. It is a mixture of air and water vapor. It is

assumed that both air and the water vapor fill the whole gaseous phase volume. As for

the liquid phase, the volumetric fraction of gas θο is the ratio of the gas volume to the

total volume:

<b - f (2.34)

In the remainder of the text, the subscripts L and G will designate the liquid and

gaseous phases, respectively. Furthermore, the subscript V will represent the water

vapor phase within the total gaseous phase.
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Let aa denote the amount per unit volume of some extensive quantity A in the phase

a, either solid, liquid or gas. Concentration or mass density can serve as examples for

aa. Two averages can be defined. The volumetric phase average is given by:

o^ = ¿- / aa dV (2.35)
'o JV&

The volumetric intrinsic phase average is defined as:

a^a = \ f aa dV (2.36)

The two values are related by the following relationship:

Λ Q¿ /pv Q^7\

aa = Uaaa {z.oi)

2.3.2.2 Transport of liquid water

The continuity equation for liquid water is given by [101, 202]:

^ + div[pLvL) = 0 (2.38)

where p¿ is the mass of liquid water per unit volume of liquid phase, and v¿ is the

velocity ofwater. The bulk equation is obtained by averaging Equation (2.38) over the

REV:

ΤΓ Í (^T + &v(PLVL)) dV = 0 (2.39)
Vo JyL \ Ot J

This integral can be divided in two parts:

— / 4r- dV + — / div(pLvL) dV = 0 (2.40)
VoJvL dt VoJyL

Using the definition of the volumetric phase average (equation 2.35), one can write:

dt

The average of the time derivative gives [12, 18]:

°PL , J :../_ λ _ 0 ^i)

νί S+±[ PLu.nLSdS (2.42)
Vo JSLG V0 JSLS

where S^G is the surface ofthe liquid/gas interface, S^s is the surface ofthe liquid/solid

interface, u is the velocity of the interface, n ¿ c is a unit vector pointing outward the
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liquid phase at the liquid/gas interface, and n^s is a unit vector pointing outward the

liquid phase at the liquid/solid interface. Since it is assumed that the deformations of

the solid matrix could be neglected, the last integral on the right-hand side of equation

(2.42) can be dropped, which leaves:

ί Α PLu-nLCdS (2.43)
V J

The average of the divergence in equation (2.41) is given by [12, 18]:

^ZZL)) / d — / pLvL-nLSdS (2.44)
Vo JSLS

At the solid/liquid interface, it is assumed that the liquid velocity is zero (the so-called

no-slip condition of fluid mechanics [129]). Hence, the last integral on the right-hand

side of equation (2.44) can be neglected, which leaves:

div(pLvL) = div(0L(pYvZL)) + — / pLVL • nLG dS (2.45)

Substituting equations (2.43) and (2.45) in equation (2.41), one finds:

div(9L(pZvIL)) + ~ [ pL(vL - u) • nLG dS = 0 (2.46)
v jLG

^ f + div(9L(pZvI)) +
at v0

According to Whitaker [202], the integral in equation (2.46) corresponds to the rate

of vaporization per unit volume of the liquid phase at the liquid/gas interface, and is

denoted by rh. Also, the average value pTL corresponds to the density of the liquid p¿,

which can be assumed constant. Equation (2.46) can thus be simplified:

pL^r + PLdiv(eLvZL) + ήι = 0 (2.47)

The next step consists of determining the average value of the liquid velocity. The

starting point is the Darcy equation [58]:

vZ=- -(gradP + pip) (2.48)
μ

The quantity ñ¿ is the bulk velocity ofthe liquid, K is the permeability ofthe material,

/i is the viscosity of the fluid, P is the pressure on the liquid, and g is gravitational

acceleration. Darcy originally derived this equation to describe the transport of water
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through the material at the macroscopic scale. Furthermore, Whitaker [202] showed

that in materials having very small pores the capillary forces are dominant:

k
vJj=—:#kgradp^ (2.49)

μ

The quantity pc is the capillary pressure and k is the permeability of the liquid-filled

pore space.

Equation (2.49) is based on the assumptions that gravity effects are negligible and

that the pressure is uniform throughout the liquid and gaseous phases. It should also

be emphasized that the validity of the equation also rests on the hypothesis that the

liquid phase is continuous. The latter assumption will be further discussed in the last

section of this report.

The bulk velocity of the liquid v~¿ can be related to its intrinsic average counterpart

through:

vZ = 6LvIL (2.50)

Substituting equations (2.49) and (2.50) into equation (2.47) gives:

PL^~ - pLdiv (-0Lgraap^ + m = 0 (2.51)

Since p~c = f(9L) [202], the chain rule allows to write:

gradp^ = (~^λ gvad9L (2.52)

The substitution ofequation (2.52) in equation (2.51) gives:

Έ = 0 (2.53)
μ aU

Let

DL = **M (2.54)
μ d9L

Equation (2.53) is now expressed as a function of a single field quantity θι to give a

complete description of liquid water transport:

βη

- Pidiv (Digrad0i) + m = 0 (2.55)
PL^¿ot

Since equation (2.55) is expressed in the form of a diffusion equation, Di can be as-

similated to a water diffusion coefficient. However, it should be emphasized that the



39

movement of liquid water considered in this section arises by capillary suction. It is

not, per se, a diffusive phenomenon.

With the definition of DL given in equation (2.54), combined with equation (2.52),

the velocity of the liquid phase (equation 2.49) can now be written as:

vZ = -DLgrad0L (2.56)

2.3.2.3 Transport of water vapor

The treatment of the gas transport phenomenon is more complicated since two phases

have to be considered: air and water vapor. However, the problem can be simplified

by considering the following assumptions. As mentioned in the previous section, the

development of equation (2.49) rests on the hypothesis that pressure is uniform over

the gaseous phase. This implies that there is no bulk movement of air in the gaseous

phase. Consequently, there will be no convective transport of water vapor within the

material pore structure. Still, there can be movement of molecules in the gaseous phase

as a result of their thermal agitation. The other assumption is that gravity does not

have any significant effect on the behavior of the water vapor.

The continuity equation for water vapor component of a gaseous phase is the fol-

lowing [202]:

^ + div(pyw) = 0 (2.57)

The quantity pv is the mass of water vapor per unit volume of gaseous phase, and vy

is the velocity of water vapor. The water vapor will be in movement as a result of

its thermal agitation. It is therefore a diffusive process. According to Daian [44], the

water vapor fiux is given as:

= -..Dgradpy (2.58)

where D is the self-diffusion coefficient of water vapor in the gaseous phase. By com-

bining equations (2.57) and (2.58), one gets:

^~- - div(Dgradpy) = 0 (2.59)
(J ''

The bulk equation is calculated from the integration of equation (2.59) over the
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REV:

~ [ (^f- - div(Dgmdpv)) dV = 0 (2.60)
Vo Jv? \ <Jl J

This integral can be divided in two parts, which yields:

TF Í ^ T dV - TF Í div(Dgrady9y) dV = 0 (2.61)
Vo Jvp (Λ "o Jv°

According to the definition ofthe volumetric phase average (equation 2.35), equation

(2.61) can be written as:
dp V

dt

The average of the time derivative is given by:

- div(Dgradpy) = 0 (2.62)

ψ ψ + ν ί PvunGLdS + [ pyunasdS (2.63)
at at V0 JSGL Vo Jsas

where SfL is the surface of the liquid/gas interface, S^3 is the surface of the gas/solid

interface, u is the velocity of the interface, riGL is a unit vector pointing outward the

gaseous phase at the liquid/gas interface, and ncs is a unit vector pointing outward

the gaseous phase at the gas/solid interface. Since it is assumed that the deformations

of the solid matrix are negligible, the last integral on the right-hand side of equation

(2.63) can be neglected, which leaves:

9{θαΡνα) ~dpv 1 f

m2 = W + vJs?^
u-noíds (2-64)

The average of the divergence gives:

div(Dgradpy) = div(^G(JDgradpv' )) +

1 f 1 /'
— / Dgradpy · nGS dS + — / Dgradpy · nGL dS (2.65)
vo Js°s Vo Js°L

The first integral on the right-hand side of equation (2.65) is neglected since there is

no exchange of water vapor between the solid and the gaseous phases. Accordingly,

equation (2.65) can be simplified as:

G ι f
div(Dgradpy) = div(#G(Dgradpy )) + — / Dgradpv • nGL dS (2.66)

Κ Js%L

Furthermore, by assuming that the coefficient D is constant, equation (2.66) can be

written as:
η i r

div(Dgradpv) = div(6»GDgradpy ) + — / Dgradpy · nGL dS (2.67)
' Vo Js?L
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The average o f t h e gradient is given by [12, 18]:

1 Ρ Λ P

gradpy = rGgradp7G + — / x (gradpy · nGS) dS + — / x (gradpy · nGL) dS
Vo JsGS Vo Js§L

(2.68)

The quantity r is referred to by Bachmat and Bear [12] as the tortuosity ofthe material.

Conceptually, it is the ratio ofthe macroscopic system length to the shortest path length

through the pore (liquid or gas) space. As such, it is a quantity that strictly equal to or

less than one. The parameter x is defined as x — x — xo, where x is a position vector

within the REV and xo is the position vector ofthe center ofthe REV. The first integral

on the right-hand side of equation (2.68) involves the solid/gas interface. Except for

the very low water content conditions, there will be no direct contact between these

two phases because water will be adsorbed on the surface of the solid. Accordingly, the

integral can be neglected. It is assumed that the term (gradpy · n c i ) in the second

integral on the right-hand side of equation (2.68) varies very slightly over the surface

S^L. Under this assumption, it leaves an integral of a position vector times a scalar

over a closed surface, which gives zero. Equation (2.68) is thus simplified as:

gradpv = rGgradp7G (2.69)

Replacing equations (2.64), (2.67) and (2.69) into equation (2.62) gives:

^ - div(#GJDrGgradp7G) + ¿- / pgradpy - Pvu) • nGL dS = 0 (2.70)
V Jat

Substituting equation (2.58) in equation (2.70), one finds:

} - div(£GJDTGgradp^G) - ~ / pv(vv - u) • nGL dS = 0 (2.71)
v0 j

Whitaker [202] showed that the integral in equation (2.71) has the same value as the

one in equation (2.46). It represents the rate of condensation per unit volume of the

water vapor phase at the liquid/gas interface. Therefore, equation (2.71) can be written

as:
d^GQt

V ^ - div(#GJDrGgradp7G) - Έ = 0 (2.72)

It is possible to express the gradient in equation (2.72) as a function of 6L since

Pv = Ϊ{θι) [44]. Applying the chain rule, it gives:

div ^aDra^,m,) - S = 0 (2.73)
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The quantities preceding the gradient within the parenthesis can be lumped together

to form a single vapor diffusion coefficient:

Dv = 9GDrG (2.74)

Equation (2.73) can be written succinctly: •

dJMfl _ div (Dv &L gracWt) - S = 0 (2.75)
dt \ d6L J

2.3.2.4 Total moisture transport

In the previous sections, the transport equations for the liquid and the vapor phases

were considered separately (equations 2.55 and 2.75). In order to get a complete de-

scription of the transport, both equations should be added together:

¿(pL0L + θορϊ°) - div ( (pLDL + ̂ - Dv ) grad#L ) = 0 (2.76)
dt \\ dOL J J

As the density of water vapor has a much lower value than the one of liquid water

(pvG <C pL) and 6G « θι, equation (2.76) can be simplified as:

- 0 (2.77)
ub \ \ uuL j /

Let
pLDL + *Zfc- Dy

De = ^ (2.78)

Substituting equation (2.78) into (2.77) gives:

— div (Z^grad#i) = 0 (2.79)
at

This is Richards' equation. As can be seen, the equation fully describes the movement

ofboth vapor and liquid water on the basis ofa single variable 0L. The influence ofboth

phases is taken into account through the function De, which contains a term associated

to the vapor transport and a second one related to the transport of the liquid phase.

The demonstration also indicates that the variable Θ of the original equation (2.32)

stands for the volumetric liquid water content, which is expressed in cubic meter of

water per cubic meter of material.
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2.3.2.5 Determination of the moisture transport properties of hydrated

cement systems

The description of moisture transport mechanisms on the basis of equation (2.79) re-

quires the determination of the function Dg. An interesting discussion of the variation

of this function with the water content of the material has recently been published by

Martys [121]. The author clearly emphasizes the non-linear character of this function.

Measurements made on model porous material found in reference [42] show that

when the humidity in the medium is higher than 4% (by weight), the contribution of

the vapor phase to the overall moisture transfer is negligible. In that case, one can

assume that Dg = DL.

Over the years, numerous experimental techniques have been used to determine the

moisture transport properties of hydrated cement systems. A thorough discussion of

this subject is beyond the scope of this paper. Comprehensive critical reviews of this

problem can be found in references [135, 100].

2.3.3 Ionic transport in unsaturated porous materials

Several mathematical models have been developed to predict the movement of ions in

cement-based materials. Most of these approaches are single-ion models, considering

only chloride and its detrimental effect on the durability of the material. Most of

the time, such models consider the transport of ions under the effect of diffusion and

advection (fluid flow). Also considered is the effect of the chemical reactions involving

the considered species, although in a very simple way. For example, Saetta et al. [152],

Nagesh and Bhattacharjee [130], and Gospodinov et al. [72] published such models.

However, these models oversimplify some basic physical phenomena. For instance,

the electrical coupling between the ions [85] and its effect on their movements is often

overlooked. This is particularly true for cement-based materials since they contain

concentrated porous solution. The electrical coupling between the ions for concentrated

solutions was recently put in evidence in two papers by Snyder [171, 172] that report

on diffusion experiments through non reactive ceramic frits. Multiionic models taking

into account electrical coupling were recently published by Masi el al. [122] and Truc
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Unfortunately, as it was the case with Richards' equation, there is a lack of agree-

ment with regard to the definition and the use of some parameters in these models. For

example, the diffusion coefficient is sometimes called the intrinsic diffusion coefficient,

the apparent diffusion coefficient, or the effective diffusion coefficient. Once again, the

averaging procedure is used to generate an ionic transport model. The method will

clarify some of the basic concepts behind the modeling of ionic transport. Such a work

was previously published [156] but was applied only to non-reactive saturated materials.

The model presented in the following sections is more general.

2.3.3.1 Transport of ions in the liquid phase

The transport model is based on the observation that the transport of ions only occurs

in the liquid phase. Hence, no equation has to be developed for the solid or gaseous

phases. The conservation equation for an ionic species i in the liquid phase at pore

scale is given by the following microscopic equation [18]:

Br-

?g + divfo) + r% = 0 (2.80)

The quantity c¿ is the concentration, j¿ is the ionic flux and r¿ is a term accounting

for the chemical reactions between the ions in the solution. The bulk equation is

obtained from averaging this equation over the REV, following the procedure that lead

to equations (2.41) and (2.62):

+ div(ji) + ñ = 0 (2.81)

The average of the time derivative leads to:

= #L^7 + 77 / c,u-nLsdS+~- / CiU-nLGdS (2.82)
at v0 jSLs v0

The first integral on the right-hand side ofequation (2.82) contains a term that accounts

for the velocity of the solid/liquid interface. While this interface may possibly move as

a result of some dissolution/precipitation chemical reactions, it will do so very slowly.

It can thus be neglected. The other integral involves the movement of the liquid/gas

interface. It is similar to the first integral in equation (2.42). While it was used in the
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mathematical development of the moisture transport, it is assumed that it has only

a small effect on the ionic transport, and can thus be neglected, simplifying equation

(2.82):

d(OLc¡L) a WiL

dt u dt

The average of the divergence is given by:

(2.83)

div(ji) = div(eLjiL) + ¿- [ ji • nLS dS + ¿- / U • nLG dS (2.84)

The last integral on the right-hand side of equation (2.84) accounts for the ionic flux

crossing the liquid/gaseous interface. The value of this flux is zero since ions do not

go into the gaseous phase. The other integral, related to the flux of ions across the

solid/liquid interface, will be used to model the various chemical reactions involving

those phases. Accordingly, equation (2.84) can be reduced to:

+ ¿- [ ji • nLS dS (2.85)
V J

Substituting equations (2.83) and (2.85) in equation (2.81) and averaging the term r¿,

one finds:

^ ^ L) + eLñL + ¿r / ji • nLS dS = 0 (2.86)
V J

The next step consists of writing the proper flux expression at the microscopic level

(ions in bulk electrolyte) and averaging it over the REV. Due to the charged nature

of ions, this expression has to consider the electrical coupling between ionic particles.

Furthermore, since the pore solution of cement-based materials is highly concentrated,

it deviates from the ideal behavior of a dilute solution, requiring consideration of the

chemical activity. Finally, the movement of the fluid itself will have an impact on the

movement of ions. All these physical phenomena can be taken into account through

the extended Nernst-Planck model to which is added an advection term [85]:

DÎiziF3i = -Ofgradci ^ - Q g r a d ^ - J9fQgrad(ln7,) + avL (2.87)
iil

The quantity Df is the self-diffusion coefficient [128] of species i in diluted, free water

conditions, 7¿ is the chemical activity coefficient, φ is the electrical potential, Z{ is the

valence number of the ion, F is the Faraday constant, R is the ideal gas constant and

T is the absolute temperature. The terms on the right-hand side of equation (2.87) are
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associated with diffusion, electrical coupling between the ions, chemical activity effects

and water transport, respectively.

The integration of the flux over the REV, similar to the procedure followed in

equations (2.37) and (2.39) to (2.41), leads to:

^ L _ μ L D^ZiF L μ , rL L

The next steps consist of averaging the various gradients and variables in equation

(2.88).

The average of the concentration gradient is given by [12, 18]:

T 1 / O , , N , ~ 1 / (
/ x(gradcinLS)dS + / x(gTadCinLG)dS (2.89)

Vo JsLS Vo JG

For a description of the parameter x the readers are referred to equation (2.68). The

quantity r¿ is the tortuosity of the aqueous phase. It is a purely geometrical factor

accounting for the complexity of the paths the ions must travel through in liquid space.

It is a function of the water content 0L, since it is related to the volume of liquid in

the pore space, and its value is less than one [l2]. This definition of the tortuosity

has been adopted in the following references [18, 106, 123, 169, 200]. Other authors

[11, 22, 60, 154, 163, 209] are proposing the following definition for the tortuosity

parameter:
Όμ

A = ^ - (2.90)
rL

To evaluate the surface integrals in equation (2.89), one has to refer to the double

layer theory [26]. Figure 2.3 shows the cross-section of a pore and the schematic shape

of the concentration profile along its radius. The solid bears an electrical surface charge

ŝoiid- It is neutralized by charges of the opposite sign in two different zones, the Stern

and the diffuse layers, bearing respectively a s t e r n and σ,^Ά charge per unit area. The

electrical balance respects the following expression:

<?solid = ^stern + °diff (2.91)

The external limit of the Stern layer, called the outer Helmholtz plane or the shear

plane, separates the solid from the aqueous phase, in which ionic diffusion occur. The

aqueous phase is divided in the diffuse layer and the free water zone, where ions do
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Figure 2.3: Concentration and potential profile across a pore near the solid/liquid

interface according to the double layer theory.

not feel the effect of the solid/liquid interface. A recent study by Revil [146] showed

that ionic transport may occur in the Stern layer. But it was also mentioned in the

paper that this phenomenon is negligible with respect to transport in the bulk pore when

the pore solution is highly concentrated, as it is the case in cement-based materials.

Consequently, only the ionic transport in the aqueous phase is considered in this paper.

Finally, the description of the cross-section of the pore is complete by considering a

gaseous phase at the center of the pore, when the latter is not saturated [204].

Given a weak rate of evaporation of the liquid phase, it is assumed that the con-

centration profiles at the liquid/gas interface is flat (see figure 2.3). Consequently, the

second integral in equation (2.89) is negligible since there is no concentration gradi-

ent along the radius at the liquid/gas interface. The situation is different for the first

integral because of the concentration gradient along the radius at the solid/liquid in-

terface caused by the electric charge at the surface of the solid. Simple double layer

calculations made with the Gouy-Chapman model [26] are shown on figure 2.4. They

emphasize that increasing the ionic strength of a solution in the vicinity of a charged

surface decreases dramatically the thickness of the double layer. Since cementitious

materials bear a highly charged solution, the double layer extends over a very small re-

gion. Outside this region, the concentration profile is unaffected by the surface charge.
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Figure 2.4: Concentration profiles ofa 1-1 electrolyte near a charged surface calculated

with the Gouy-Chapman double layer model. The calculations were made with a surface

potential of 25 mV. The Debye length K~1 is indicated.

Following this, the term /x(gradCj · nLs)dS in equation (2.89) is neglected, leaving:

grade, = rLgradc¿ (2.92)

Then one needs to average the term in equation (2.88) concerned with the electrical

coupling between the ions. According to the procedure for averaging a product [12, 18],

one can write:
L

^rL
L o

where the quantities topped by o, called deviations, are defined as:

(2.93)

(2.94)

It is assumed that the deviations lead to small terms, which allows to neglect the

deviation product in equation (2.93):

X j -£

Cjgrad^ = Cj grad^ (2.95)

Following the same procedure as the one used for the concentration gradient, the average

of the potential gradient gives:
1

grad^ =Tigrad^ + ¿ - A x(gTad^-nLG)dS(2.96)
Κ JsLG

Figure 2.3 shows a potential profile across the section ofa pore. According to the double

layer models [26], it has a shape similar to the concentration profile, i.e. it is disturbed



49

near the solid/liquid interface but tends to a flat profile toward the center of the pore.

Accordingly, the integrals are neglected, assuming again that the electrical phenomena

near the interface do not affect ionic movement, and, hence, equation (2.96) simplifies:

grad^ = TigradV' (2.97)

Substituting equation (2.97) into (2.95) gives:

(2.98)

The same approach is used to average the chemical activity term in equation (2.88).

The same assumptions concerning the deviations, as well as those concerning the effect

of the electrical phenomena at the solid/liquid interface lead to:

c igrad(ln7i) =VYLgrad(to7i ) (2.99)

It is assumed that the term lnji corresponds to the chemical activity coefficients

cal·
by

calculated with the average concentrations c¿L. For simplicity, ln7j is approximated

c¿grad(ln7í)L = c^7igrad(ln7^) (2.100)

Finally, the advection term in equation (2.88) is averaged as:

qvL = c~iLvL + CiV (2.101)

The term in equation (2.101) containing the deviations is called the dispersive flux

[18, 19]. It is shown in the previous references that it can be written under a Fickian

form:
L

CiV = -Ddiapgtadc¡L (2.102)

where Ddisp is called the coefficient of advective dispersion, and is due to fingering,

not diffusion. Consequently, this term can be added to the ionic diffusion term that

would then exhibit a new diffusion coefficient being the sum ofthe classical one plus the

coefficient of advective dispersion. When the fluid is in movement under the effect of a

water content gradient, as described in the preceding section, the velocity is relatively

weak. In that case, the dispersion term can be neglected [168], leading to:

c?vL = c¡LvL (2.103)
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Substituting equations (2.92), (2.98), (2.100), and (2.103) in equation (2.88), gives

the average flux expression:

eJ^ = -Dffegradc^ - ^Z^rLQLgrad^L - Dftecfgrad(ln7f) + 9Lc¡LvL

K1

(2.104)

The diffusion coefficient at the macroscopic level A is defined as:

A = TLD? (2.105)

To simplify the expression, let:

Ci = c¡L (2.106)

Φ = φ1 (2.107)

Substituting equations (2.105) to (2.107) in equation (2.104) gives:

) + eLCtv
L (2.108)

Equation (2.108) is now inserted in the averaged mass conservation equation (2.86)

to yield the macroscopic ionic transport equation:

Dii

— div A#igradCj +dt

+ 0LñL + TT / 3i • nLSdS = 0 (2.109)
IS£S

In order to simplify this equation, the integral must be expressed in a manner that is

more friendly to a further numerical analysis. The term (ji • nz,s) gives the amount of

ions crossing the solid/aqueous phase interface, as a result of dissolution/precipitation

or ion exchange reactions. It is possible to express it differently by performing the

averaging operation on the ions in the solid phase [18]. The conservation equation at

the microscopic scale for the ions in solid phase is:

(2.110)

where the subscript s designates the solid phase. Contrary to equation (2.80), it is

assumed that no chemical reactions occur within the solid phase, since all precipi-

tation/dissolution phenomena are taking place at the solid/aqueous phase interface.

Averaging equation (2.110) over the REV leads to:

^ + d i v ( E ^ ) + 1 / jis • nsL dS = 0 (2.111)
Ot Vo JSSL
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where θ8 is the volumetric fraction ofsolid phase and nsL l s a n outward (to the S-phase)

unit vector on the solid/aqueous phase interface (designated as SSL). The integral in

equation (2.111) has the same value as the one in equation (2.109) but with an opposite

sign since the ions coming out of the aqueous phase are being bound by the solid phase.

Furthermore, the flux jis within the solid is zero since there is no ionic movement in

this phase. This allows one to write:

d(0sCis) 1 f . 1 f .
^ / 3 n d S = - 3i-rtLsdS (2.112)

V J

5r 77/ 3isnsLdS
at V0 JssL V0

Substituting equation (2.112) in equation (2.109) gives:

divO/ " * ' 1 " i " h o * " " ^ i ' DT~1 u

+ i ^ + * ^ > = 0 (2.113)

This is the general expression for the ionic transport in porous materials under isother-

mal conditions.

2.3.3.2 Coupling water and ionic transport

To model the transport of ions under the influence of capillary suction, it would seem

straightforward to substitute equation (2.56) in (2.113). However, the development of

the water transport equations was made for the case of pure water in a porous material.

When ions are in solution, the vapour pressure above a solution is lower than in pure

water [99]. This effect is quantified through Raoult's law. Accordingly, the relationship

Pc — f{^i) should instead be written as:

p; = f{6L,Ci) (2.114)

since the presence of ions in solution is likely to disturb the equilibrium between the

aqueous and gaseous phases in a pore. To evaluate in what extent the presence of ions

will affect the vapor pressure of water, one can use Raoult's law to calculate the vapor

pressure change between pure water and a 500 mmol/L NaCl solution with water as

solvent. According to Raoult's law [99], the vapor pressure change is given as:

°v (2-115)
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where Xsoiute is the molar fraction of solute (NaCl) in the solution and p° is the vapor

pressure of pure water. At 25°C , the vapor pressure of bulk water is 3.17 kPa [99].

Knowing that in one liter of water there are 56 moles:

0.5 mole NaCl
X s o l u t e - 0.5 mole NaCl + 56 moles water ~ °·°° 9 ( 2 ' 1 1 6 )

This gives a change in vapor pressure of Apv = 0.03 kPa, which is obviously very weak.

According to the result of this simple calculation, the effect of ionic concentration on

the capillary pressure is neglected. It was also neglected in the models presented in

references [72, 122, 130, 152].

Substituting equation (2.56) in equation (2.113) gives:

+ A ^ Q g r a d ( l n ^ ) + C

^) (2.117)

This equation can be used to model the transport of ions in unsaturated cement-based

materials when the pore fluid is in movement because of capillary suction. To complete

the model, an equation must be considered to evaluate the potential Φ, as well as an

expression to calculate the chemical activity coefficients. These topics are addressed in

the following sections.

2.3.3.3 Calculation of the potential

The electrical potential in equation (2.117) arises in the material to enforce the elec-

troneutrality condition. If two species are diffusing in a material with one of the species

having a greater self-diffusion coefficient. To maintain a neutral solution, the potential

created slows the fastest ions and accelerates the slowest ones.

The mathematical relationship that relates electrical potential to electrical charges

in a given media is given by Poisson's equation [85]

V2^ + - = 0 (2.118)

where p is the electrical charge density and e is the medium permittivity. The charge

density can be related to the ionic concentration through:

N

n — F ^ ^ ^ 7O- (9 11 QÌ
|J — 1 7 A/^ L-2 1 ώ . J. ± U \

i=\
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where JV is the number ofionic species. Substituting equation (2.119) in (2.118) gives:

F N

V2*0 + : - X ^ c ¿ = ° (2-120)
î—1

It may seem awkward to have an equation from electrostatics in a model where the ions

are moving through time. However, since the electromagnetic signal is moving much

more rapidly than the ions, Poisson's equation is perfectly suitable.

To use equation (2.120) in the transport model, it has to be averaged over the REV.

As it was done previously, it is assumed that the boundary effects at the liquid/solid

and liquid/gas interfaces are negligible. Following the same average rules as in the

previous sections, we get the following relationship:

F N

div (0LrLgradW) + BL- J^ zid = ° (2.121)
i=l

2.3.3.4 Evaluation of chemical activity coefficients

The models to calculate the chemical activity coefficients are numerous. The first ones

developed are the Debye-Hückel and extended Debye-Hückel models [133]. From purely

electrostatic considerations, they relate the chemical activity coefficients of ionic species

to the ionic strength of a solution. They are valid for ionic strengths up to 10 and 100

mmol/L respectively.

In cement-based materials, the ionic strength is much higher. To suit this particular

situation, a chemical activity relationship was developed recently by Samson et al. [155]

which gives good results for highly concentrated solutions:

/)^7

where / is the ionic strength of the solution, and A and B are temperature depen-

dent parameters. The parameter a¿ in equation (2.122) varies with the ionic species

considered.

2.3.3.5 Evaluation of the ionic transport properties

Two different transport parameters appear in equation (2.117). There is the diffusion

coefficient £)¿ associated with the diffusion process and the liquid water diffusivity D¿
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to characterize the effect of the fluid velocity on the ionic transport. A discussion of

DL was already given in section 2.3.2.5.

The diffusion coefficient is evaluated with the migration experiment test. It consists

of accelerating chloride ions with an applied external potential through a disk of cement-

based materials glued between two cells filled with ionic solutions. The analysis of the

results yields the diffusion coefficients. Two main analysis methods are found in the

literature. The first is based on steady state measurements of chloride having crossed

the sample [8, 212]. The other [184] is based on measuring non-steady state chloride

profiles by grinding the sample after a short exposure.

Both these methods are performed in saturated conditions. As shown in equation

(2.105), the diffusion coefficient Di depends, through r¿, on the saturation condition.

No method could be found in the literature to evaluate this parameter for unsaturated

conditions. However, it is possible that Z)¿ raight not be affected by the saturation state

of the material above a given saturation level, the latter being defined as s = θί/φ,

where φ is the porosity. Revil [146] showed that for shaly sand, the diffusion of the ions

is almost unaffected for a water saturation above 0.6. We thus infer that for concrete

structures exposed to high relative humidity environment, the diffusion coefficient is

independent of the water content.

In the flux equation (2.104), the recurring quantity τχ,θι, which could also be written

r¿s^, is analogous to a saturation-dependent formation factor for the liquid phase ofthe

pore system. The saturation s results from the averaging over the REV. The tortuosity

TL is also a function of the saturation and reflects the connectedness of the moisture

phase. At a critical moisture content sc, the liquid phase is no longer connected, the

tortuosity r¿ goes to zero, the transport within the liquid phase ceases.

The remaining question is the dependence of the tortuosity rL on the saturation.

Although no precise data exist for cementitious systems, there exists qualitative data

from which inferences can be made. These data typically express the relative total

conduction as a function of the saturation s. The relative total conduction σ/σ0 is

analogous to the product of the saturation and the relative tortuosity:

σ ( 5 ) s rL(s) _ s TL
—. — — ; 7T- — {¿.1ZÓ

a(s = 1) TL[s = 1) TLo

Therefore, dividing these results by s will yield the relative change in the tortuosity.
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The work of Martys [121] suggests that for a preferentially wetting liquid being

displaced by a non-wetting one, the limiting behavior of r¿ near saturation can be

approximated by the dilute effective medium theory result:

^ = l-hl-s) + hl-s)2 e^l (2.124)
2 2

(Here, the more exact coefficient of 0.558 for the quadratic term has been roughly

approximated by 1/2.) The relative tortuosity can be solved for algebraically:

~ = i + l (2.125)
2 2

Therefore, a decrease to 80 % saturation will result in a 10 % change in the tortuosity.

Given that transport coefficients can routinely change by orders of magnitude, a 10 %

change in the tortuosity is relatively quite minor. Since this result is only approximate

near saturation, further reductions in saturation would have a far greater effect.

2.3.4 Conclusion

The mathematical model developed in this paper is first summarized. For materials

where the water transport occurs as a result of capillary suction, the water content

profile can be calculated with Richards' equation (2.79). The ions will move in the

material under the combined effect of diffusion (including electrical and activity effects)

and water movement according to equation (2.117). The electrical potential, arising

from the electrical coupling between the ions in order to maintain a neutral solution,

is calculated with Poisson's equation (2.121). Finally, chemical activity coefficients,

for the highly charged pore solution of cement-based materials, can be evaluated with

expression (2.122).

The use of the averaging technique clearly helps to clarify the meaning of some

important parameters in the model. According to this technique, the water content in

Richards' model corresponds to a volumetric water content. The water diffusivity was

clearly shown to be a contribution of both liquid water and vapor transport. The diffu-

sion coefficient, the parameter that characterize the ionic diffusion process, is directly

related to the geometrical properties of the material through a parameter called the

tortuosity.
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The averaging technique proved to be a powerful mathematical tool to lay the

foundation of transport models in porous media.

2.4 Modeling chemical activity effects in strong ionic

solutions

E. Samson12, G. Lemaire1, J. Marchand12, J.J. Beaudoin3

*Centre de recherche interuniversitaire sur le béton,
Université Laval, Québec, Canada, GlK 7P4

2SIMCO Technologies inc.,
1400, boul. du Parc Technologique, Québec, Canada, GlP 4R7
3Materials Laboratory - Institute for Research in Construction,

National Research Council, Ottawa, Canada, KlA 0R6

Abstract

A new simple mathematical model for calculating the chemical activity

coefficients of ions in electrolytic solutions is presented. The model was

developed to account for the particular behavior of concentrated solutions

for which short-range and long-range interactions between ions are impor-

tant. The new model is essentially a modified version of the Davies equa-

tion. Given its simple mathematical form, it can be easily implemented

in a numerical code aimed at modeling ionic transport phenomena in sat-

urated porous materials. The transport equations of charged particles in

concentrated solutions are also presented. Numerical results are shown and

compared with experimental results. Applications of the model to ionic

diffusion problems in saturated porous media are also shown.

2.4.1 Introduction

It has been clearly established that the behavior of porous materials is often directly af-

fected by the thermodynamic characteristics of their pore solutions. It has been shown,

for instance, that the swelling of clays is predominantly controlled by the presence of
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certain ionic species in the interlayer spaces [41]. It is also well known that the pore

solution thermodynamic properties have a significant influence on various engineering

problems such as the filtration of electrolytes by ion-exchange membranes. Finally,

the composition and the ionic strength of electrolytes may affect the chemical stability

of numerous building materials (such as rocks and cement-based materials) and the

transport ofions and pollutants through engineering barriers [85, 115, 175].

In many practical cases, the electrolytic solutions of porous solids tend to be highly

concentrated. This is the case of cement-based materials and ion-exchange membranes

for which the ionic strength of their pore solutions is usually over 500 mmol/L [38,

40, 85, 109, 115, 141]. The high ionic strength ofthe pore solution chiefly complicates

the prediction of the evolution of the engineering properties of the porous materials.

This is particularly the case when the overall behavior of the solid is controlled by the

transport of ions through the material pore structure. Equations for ionic transport in

porous media tend to be highly non-linear and their resolution often requires intricate

numerical schemes [18, 157, 164].

Complications related to the high ionic concentrations of the pore solutions mainly

arise from the fact that the thermodynamic properties of an electrolyte tend to vary in

a non-linear fashion with its ionic strength. As the ionic strength increases, ion/ion and

ion solvent interactions become more significant and the thermodynamic properties of

the electrolyte gradually deviate from that of an ideal (very dilute) solution [2, 26, 38,

103].

Numerous semi-empirical models have been developed to account for the influence

of ionic strength on the thermodynamic properties of electrolytic solutions. As will

be seen in the following subsection, the validity of most of these models is limited to

electrolytic solutions for which the ionic strength is less than 500 mmol/L, and cannot

therefore be applied to many practical cases. The Pitzer model [136, 137] appears to

be the only one that can reliably predict the thermodynamic behavior of concentrated

electrolytic solutions. Unfortunately, its mathematical formulation is much too intricate

to be implemented in a numerical model designed to predict the transport of ions in

porous media.
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A brief critical analysis of existing models that predict the thermodynamic prop-

erties of electrolytes and of their implication on the modeling of ionic transport in

saturated porous media was conducted. A new simple mathematical model for calcu-

lating the chemical activity coefficients of ions in concentrated solutions is presented.

The model was developed to account for the particular behavior of concentrated elec-

trolytic solutions. It can be easily implemented in a numerical code used to model ionic

transport phenomena in saturated porous materials.

2.4.2 Different models for chemical activity

In a solution, the electrochemical potential of an ionic species μ» (J/mol) which can be

calculated using the following equation μ^.

μί = μ° + ηΤϊη(^οί)+ζίΓφ (2.126)

where μ° is the standard potential, R is the ideal gas constant (8.3143 J/mol °K ), T

is the temperature (°K ), ̂ /i is the chemical activity coefficient, q is the concentration

of the ionic species i (mmol/1), z¿ is the valence number, F is the Faraday constant

(9.64846 x 104 C/mol), and φ is the electrical potential (Volt). According to this

equation, the electrochemical potential μ^ of an ionic species in solution is not a sole

function of its ionic concentration but also depends on the activity coefficient 7¿ and

on the local electrical potential φ.

The activity coefficients of ionic species in an ideal (very dilute) solution are equal

to 1. However, as the concentration of the ionic solution is increased, the value of the

activity coefficient will first tend to be reduced to reach a pessimum value that can

be significantly different than 1 [26, 38, 141]. Once this critical value is reached, any

subsequent increase in the solution ionic strength will contribute to an increase of the

activity coefficient.

It should be emphasized that the activity coefficient is only a mathematical rep-

resentation of the various interactions that take place in an ionic solution. Electro-

chemists usually distinguish two different t3^pes of interaction arising mainly from the

fact that ions are, in reality, charged particles [26, 141]: ion/solvent interactions (the

electrophoretic effect) and ion/ion interactions (the relaxation effect).
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The first type of interaction arises from the fact that the kinetic unit of the solute

in solution is an ion with several relatively firmly attached solvent (water) molecules

[26, 38, 45]. As they move in solution, ions tend to drag numerous solvent molecules

with them. This phenomenon may contribute to a marked decrease in the ionic mobility

[38, 141].

Ion/ion interactions arise due to the electric charge carried by these particles in so-

lution. On a time-averaged basis, an ion of a given charge is usually surrounded by ions

of opposite charge. This arrangement reduces the mobility of the particles in solutions

since ions cannot move independently of one another. The relaxation effect tends to

increase with the solution concentration which reduces the mean distance between ions

[26, 141]. Usually, electrochemists distinguish numerous types of specific interactions

including short-range and long-range electrostatic forces, London's dispersion forces

and the net effect of solvation.

Numerous models have been derived to calculate single ion activity coefficients.

The conventional model, still at the basis of the more recent and more sophisticated

equations, is the Debye-Hiickel model [133]. It relates the ionic strength / = 0.5 Y^,zfq,

(mmol/1) of the solution to the activity coefficient through the following relationship:

(2.127)

where the parameter A is given by:

A -

In the last equation, e0 stands for the electronic charge (1.602 x 10^~19 C) and e = ere0 is

the permittivity of the medium, given by the dielectric constant times the permittivity

of the vacuum. For the sake of simplicity, all the calculations presented in the following

paragraphs will be carried out assuming the solvent to be water at 25°C , for which

er = 80. The value of e0 is 8.854 x 10"12 F/m.

The basic assumption behind this model is that a cloud of ions bearing the same

charge but opposite sign surrounds the central ion. Furthermore, all ions are considered

as point charges, having no radii. In that respect, the model only accounts for long-

range electrostatic interactions.



60

ln

-0.2

-0.4

-0.6

-0.8

Pitzer

xtended Debye-Hückel

200 400 600 800 1000
Ionic strength (mmol/1)

1200 1400

Figure 2.5: Comparison of NaOH activity coefficients for different models

It has been shown that the Debye-Hiickel model can efficiently calculate the activity

coefficients of a 1-1 solution with an ionic strength of 10 mmol/1 or less [103]. The

reliability of the model at predicting the single ion activity coefficient is illustrated

in figure 2.5. In the figure, the activity coefficient of a NaOH solution measured at

various ionic strengths is compared to the values yielded by the model [43]. In this

specific case, the activity coefficients are the same for both species. The agreement is

not satisfactory.

The Debye-Hiickel model was subsequently modified to account for the radii of

the central ions a, (m). The extended Debye-Hiickel model is given by the following

relationship:

where:

ln 7i = -

B =

(2.129)

(2.130)

As can be seen in figure 2.5, this correction extends the validity of the model to an ionic

strength of 100 mmol/1 [2]. All values appearing in the figure were calculated assuming

that the radius of all species was 3A.

Despite this significant improvement, the extended model cannot be used in most

practical cases. Furthermore, the radius a¿ is a quantity that is not easily determined.
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It has become a parameter with little physical meaning that is mainly used to fit the

model to the experimental values. In some cases, the parameter a¿ has to take a negative

value in order to reliably represent the experimental data [69].

Despite the obvious advantage of the extended Debye-Hückel equation, the modifi-

cation of the term a¿ cannot account for the increase in the activity coefficients often

observed at high concentrations. According to Bockris [26], this behavior can be ex-

plained by the fact that as the ionic concentration increases, more water molecules are

used to solvate the ions in solutions, leaving less and less free water molecules. The

"effective" concentrations of the various species in solution are therefore increased by

the reduction in the number of free solvent molecules which yields a net increase in the

activity coefficient.

Numerous models have been developed to account for this phenomenon. Most of

these models possess two terms [103]. The first term is usually very similar (or derived

from) to the Debye-Hückel equation. The second part of these models is a composite

term (proportional to the ionic strength of the solution) which accounts for all other

phenomena including the solvation and short-range interactions [103, 133].

Probably, the most well-known of these models is the Davies equation:

ln7i = ^tL - + ̂ f f i with c^o.2 (2.131)
l + (3xl0- 1 0 )B^? V̂ ÔÔÔ

In this model, the mean radius of all ions is fixed at 3A. As can be seen in figure 2.5,

the Davies equation can usually predict the behavior of an electrolytic solution up to

a ionic strength of 500 mmol/L [133].

More recently, Li and Page [103] have proposed the following equation for the mean

natural logarithm activity coefficient to account for the solvation effect:

( ^ ) (2.132)

where n is the number of ionic species, /cr is the critical ionic strength at which the

value of the mean natural logarithm activity coefficient starts to increase and a is a

fitting parameter.

Despite these significant improvements, most of these models cannot account for

the phenomenon of ionic association [26, 69, 80]. In an electrolytic solution, ions are in
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closer proximity as the ionic strength increases. At some point ions are so close that

their thermal agitation is not sufficient to separate them from one another; they are

trapped in each other's electrostatic field. The new pairs of ions formed according to

this process have no net charge, and their presence cannot therefore by accounted for in

the calculation ofthe activity coefficients according to the Debye-Hückel based models.

Bjerrum [26] has evaluated the proportion of ions that are likely to form pairs in

a concentrated electrolytic solution, and modified the Debye-Hückel law accordingly.

In Bjerrum's approach, the formation of ionic pairs is essentially the same whatever

the species found in solution. Unfortunately, this assumption is not supported by

experimental data.

Many recent investigations have clearly demonstrated that chemical activity effects

in concentrated electrolytes can be accurately described by the semi-empirical model

developed by Pitzer and his co-workers [136, 137]. As shown in figure 2.5, the model

is valid for ionic strengths higher than 1 mol/L. The Pitzer equations for the single

ion activity coefficients consist of a Davies core to which are added a series of terms

that contain the various ion interaction parameters. These terms account for the ionic

strength dependence ofthe short-range forces in electrolyte solutions, and the formation

ofpairs and even triplets and quadruplets. In order to run the model, some experimental

values (specific to the type of ions and the interaction considered) are required.

According to the Pitzer model, the activity coefficient of a cation M in solution can

be calculated by:

Na Nc / Na

= z2
MF + ^2 ma(2BMa + ZCMa) + J ^ mc ί 2Φ Μ ε + ̂  ηιαψΜοα

α=1 c=l \ α=1

Να,-1 Να Nc Να Nn

Σ Σ πι^τηα'Φαα'Μ + \%u\ ^ ^ mcmaCca + ̂  mn(2XnM)
a=l a'=a+l c=l α=1 n = l

(2.133)
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For an anion, the equation is:

Nc

= z\F +

mn(2XnX)
c=l c'=c+l c=l α=1 ra=l

(2.134)

In these two equations, M and X indicate the cation and anion for which the activity

coefficient calculations are carried out. The subscript c and a refer to the other cations

and anions. The Davies core is hidden in the parameter F. The other parameters

are used to account for the ionic association. The reliability of the Pitzer model at

predicting activity coefficients can be clearly visualized in figure 2.5.

2.4.3 Chemical activity effects on the mathematical treatment

of ionic diffusion mechanisms in saturated porous media

According to equation (2.126), the electrochemical potential (or the free energy) ofan

ionic species at a given location in solution is directly related to its concentration. Thus

according to equation (2.126), iftwo points in a solution are at different concentrations,

there exists between them a gradient of free energy. By applying the second principle of

thermodynamics (the energy dissipation due to the movement of ions is always positive

or equal to zero), the macroscopic diffusion flow ji (mol/m2s) of an ionic species i in a

solution can be expressed by the following equation [85, 115, 157]:

ji = -B a grad(< + RT\n(jiCi) + ζ^φ) (2.135)

where B is a phenomenological parameter that mainly describes the ability of the ion

to move in an ideal solution. This parameter is a characteristic of the ion. B is linked

to the diffusion coefficient of the species Ζλ (m2/s) through the following equation :

B = ^ (2.136)

For a given ionic species, the coefficient D¿ is a constant and corresponds to the diffusion

coefficient of the ion in a very dilute solution. In open solutions, L>¿ is therefore an

intrinsic property of the ionic species. In a porous media, Di has to be corrected by



(y\

some geometrical factors that account for the tortuosity and the porosity of the pore

system [18].

Substituting equation (2.136) in equation (2.135), one finds :

ji= - ^ C i g r a d ( K + i?Tln(7lCi) + ^FVO (2.137)

Equation (2.137) includes the particular feature that accounts for the ionic diffusion

mechanisms. As previously discussed, ions are, contrary to molecules, charged parti-

cles. The most important feature which distinguishes ionic diffusion from molecular

diffusion is the electrical coupling of the various ionic flows [85, 115, 157]. In an ionic

solution, the local electroneutrality should be preserved at any point. The conservation

of electroneutrality requires that the flows of all diffusing species should be coupled.

During the diffusion process, all ions are not drifting at the same speed. Some ions

tend to diffuse at a higher rate. However, any excess charge transferred by the faster

ions builds up a local electric field (called the diffusion potential) which slows down

the faster ions, and reciprocally accelerates the slower ions. This local potential can be

calculated on the basis ofthe Poisson equation [115, 157]:

V V + - = 0 (2.138)

Where p stands for the electrical charge density (C/m3) and e refers to the dielectric

constant of the medium (F/m). The charge density is related to the concentration of

the various ionic species through the following relationship :

p = F^Zid (2.139)

Equation (2.137) can be expanded in two different ways. First, the effect ofthe variation

of the chemical activity can be explicitly expressed in the flux equation. The resulting

expression is the well known extended Nernst-Planck equation:

( ZiF \
-Di ( grad(cj) + ^^Qgrad(^) + c¿grad(ln7¿) I (2.140)

As can be seen, the explicit account of the influence of the chemical activity variation

simply adds a correction term to the transport equation.

Moreover, the influence ofthe chemical activity variation can be implicitly accounted

for in the transport equation:

ji = -D*(c)gmd(c,) - ^~c ,grad^) (2.141)
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The effect of the activity is hidden in a non-linear diffusion coefficient Df and the last

term ofequation (2.140) is eliminated. The value ofthis non-linear diffusion coefficient

is related to that of the diffusion coefficient D¿ through the following equation :

The complete description of the diffusion process in saturated porous materials can be

made through the extended Nernst-Planck/Poisson set of equations, i.e. on the basis

ofequations (2.140) or (2.141) (that should be written for each ionic species present in

solution) and equation (2.138). The resolution of this system of non-linear differential

equations can be quite difficult particularly for systems made of numerous polyvalent

species. Over the years, numerous analytical solutions have been developed for simple

cases (electrolytic solutions made ofmonovalent ions, ...). However, the treatment of

most practical cases requires the development of numerical solutions. The inherent

difficulties of the numerical integration of these equations are discussed in [157].

It should be underlined that most of the numerical solutions of the Nernst-Planck/

Poisson set of equations do not account for chemical activity effects [157]. Most of

the available numerical models have been developed for ideal electrolytes and cannot

therefore be applied to most practical cases. The limited number of numerical solu-

tions specifically adapted to the treatment of ionic diffusion problems in concentrated

electrolytes can be explained by the relativecomplexity ofthe semi-empirical equations

devoted to the calculation of chemical activity coefficients. It can be easily understood

that the implementation of the Pitzer equation in a numerical solution of the extended

Nernst-Planck/Poisson set of equations presents some inherent difficulties.

2.4.4 Modification of the Davies law

Recently, a few attempts to develop simple equations to accurately calculate single ac-

tivity coefficients ofconcentrated electrolytic solutions have been made. In that respect,

the model proposed by Li and Page [103] is a good example of this new generation of

equations. The model presented in the following paragraph presents another approach

to the problem. This new model is essentially a modified version ofthe Davies equation

(equation 2.131). As will be seen, the range of validity of this new model is similar
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to that ofthe Pitzer equation (equations 2.133 and 2.134). However, its mathematical

formulation is much simpler.

As previously discussed, the Davies equation (equation 2.131) can accurately predict

single ion activity coefficients when the ionic strength of the electrolytic solution is

below 500 mmol/L. It can be easily shown that the ability of the model at predicting

the activity coefficient ofions in concentrated solutions can be significantly improved by

reducing the parameter C appearing in the second term of the equation. For instance,

the reduction ofC from 0.2 to 0.15 tends to expand the validity ofthe model to solutions

at ionic strengths up to 1200 mmol/L. Unfortunately, this simple operation contributes

to detrimentally affect the accuracy of the model at low ionic strengths.

In order to improve the accuracy of the Davies equation over a wide range of ionic

strengths, it was decided to change the constant appearing in the second term of the

equation for a variable whose value would decrease as the ionic strength of the solution

is increased. For an ideal solution, for which the ionic strength is near zero, the value

of C is 0.2 and it decreases linearly to 0.15 for an ionic strength of 1500 mmol/L. This

modifies the Davies equation as follows:

.iM-"*i<rW2M*?J ( 2 . 1 4 3 )
i + (3 χ io-10)#y7

The figure 2.6 shows a comparison between the results obtained with the Pitzer equation

and those yielded by the modified version of the Davies model for a sodium hydroxide

solution at various ionic strengths. In all calculations made with the modified Davies

equation, it was assumed that the ionic radius of all ions was equal to 3 A. As can be

seen, the slight modification made to the model significantly improves its accuracy at

high concentrations without any detrimental influence on the performance of the model

at low ionic strengths.

The accuracy of the modified model was also tested for various solutions containing

monovalent and divalent ions such as Na+, K+, OH~, SO4~ and C1~. The values of the

activity coefficients obtained with the modified Davies equation were compared to those

yielded by the Pitzer model. These comparisons showed that the predictions given by

the modified equation for a few specific ions could deviate significantly from those of

the Pitzer equation. To improve the reliability of the modified model, the numerical

simulations were made by varying the radii of these ions as suggested by some authors
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ln
Experimental data

Davies modified

200 400 600 800 1000
Ionic strength (mmol/l)

1200 1400

Figure 2.6: Comparison between Pitzer and the modified Davies model

[26, 69]. It was found that results yielded by the Pitzer model could be fairly well

predicted by the modified Davies equation when the radii of K+, C1~̂ , SO4~ were fixed

at 3.3A, 2A and lA respectively.

This last version of the modified Davies model was also tested for ten different

electrolytic solutions. The compositions of these solutions are presented in table 2.1.

All concentrations appearing in the table are given in (mmol/l). The results yielded by

the modified model are presented in tables 2.2 to 2.6 along with those obtained with

Pitzer equation.

The results presented in tables 2.2 to 2.6 clearly indicate that the modified version

of the Davies equation can accurately predict single ion activity coefficients of concen-

trated electrolytic solutions made of monovalent and divalent ions. According to these

results, the modified model appears to yield reliable values for ionic strengths ranging

from 0 to 1200 mmol/L.
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Table 2.1: Compositions ofthe electrolytic solutions

Na+ K+ SO?^ C\- OH" I

42
42

42

201

219

236

253

286

319

352

.0

.1

.1

.0

.0

.0

.0

.0

.0

.0

47
121

270

502

536

570

603

670

737

804

.6

.0

.0

.0

.0

.0

.0

.0

.0

.0

10.0

10.0

10.0

50.2

50.2

50.2

50.2

50.2

50.2

50.2

5
10

20

50

100

•151

201

301

402

502

.0

.0

.0

.2

.0

.0

.0

.0

.0

.0

64.6

133.0

272.0

553.0

554.0

554.0

554.0

554.0

554.0

553.0

99
173

322

753

804

855

905

1005

1106

1205

.(>

.1

.1

.5

.9

.!)

.9

.9

A

.9

Table 2.2: Activity coefficients for Na+

I Pitzer Davies modified % diff

99.

173.

322.

753.

804.

855.

905.

1005.

1106.

1205.

fi

1

1

5

9

9

9

9

4

Í)

.7730

.7380

.6973

.6482

.6458

.6437

.6419

.6390

.6369

.6355

.7764

.7411

.7060

.6763

.6752

.6743

.6736

.6725

.6718

.6713

0.4

0.4

1.2

4.3

4.5

4.8

4.9

5.2

5.5

5.6
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Table 2.3: Activity coefficients for K+

I

99.6

173.1

322.1

753.5

804.9

855.9

905.9

1005.9

1106.4

1205.9

Pitzer

.7831

.7346

.7290

.6992

.6932

.6877

.6826

.6734

.6654

.6583

Davies modified

.7813

.7482

.7162

.6924

.6918

.6914

.6912

.6911

.6913

.6915

%diff

0.2

1.9

1.8

1.0

0.2

0.5

1.3

2.6

3.9

5.0

Table 2.4: Activity coefficients for SO2 -

I

99.6

173.1

322.1

753.5

804.9

855.9

905.9

1005.9

1106.4

1205.9

Pitzer

.3114

.2339

.1597

.0872

.0828

.0788

.0752

.0682

.0636

.0590

Davies modified

.2995

.2229

.1527

.0867

.0830

.0796

.0766

.0711

.0665

.0624

%diff

3.8

4.7

4.4

0.6

0.2

1.0

1.9

4.3

4.6

5.8
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Table 2.5: Activity coefficients for Cl"

I

99.6

173.1

322.1

753.5

804.9

855.9

905.9

1005.9

1106.4

1205.9

Pitzer

.7581

.7137

.6579

.5795

.5767

.5741

.5719

.5679

.5647

.5621

Davies modified

.7584

.7149

.6674

.6138

.6105

.6075

.6048

.5999

.5956

.5917

%diff

0.04

0.2

1.4

6.4

6.3

6.2

5.8

5.6

5.5

5.3

Table 2.6: Activity coefficients for OH~

I

99.6

173.1

322.1

753.5

804.9

855.9

905.9

1005.9

1106.4

1205.9

Pitzer

.7734

.7481

.7257

.6878

.6859

.6843

.6829

.6808

.6792

.6783

Davies modified

.7764

.7411

.7060

.6763

.6752

.6743

.6736

.6725

.6718

.6713

%diff

0.4

0.9

2.7

1.7

1.6

1.5

1.4

1.2

1.1

1.0
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2.4.5 Application of the modified Davies equation to a case of

ionic transport

Two typical cases of ionic diffusion in a saturated porous membrane were selected

to illustrate the application of the modified Davies equation. In the first case, the

concentrations across the membrane were selected to comply with the limit of validity of

the extended Debye-Hiickel model. Concentrated electrolytic solutions were considered

for the second case. In both cases, the thickness of the membrane was fixed at 1 cm,

the relative permittivity in the membrane was assumed to be equal to that of water

(80) and the temperature of the system was kept constant at 295°K . Furthermore,

the system was assumed, in both cases, to be comprised of four different ionic species:

K+, C1~, SO4~ and OH~. In both cases, the diffusion coefficient of each species is:

5.0 x 10~12 for OH~, 1.3 x 10"12 for Na+, 1.0 x 10"12 for SO^^, and 1.9 x 10"12 for CT.

For the weak ionic strength case, the membrane initialy contains the following

species, with their respective concentrations: 80 mmol/1 of OH~, 100 mmol/1 of Na+,

and 10 mmol/1 ofSO4~. On the left side ofthe membrane, a concentration of30 mmol/1

of NaOH and 50 mmol/1 of NaCl is maintained. On the right side, 30 mmol/1 of NaOH

are present.

For the high ionic strength case, the membrane initialy contains the following

species, with their respective concentrations: 490 mmol/1 of OH~, 590 mmol/1 of Na+,

and 50 mmol/1 of SO4~. On the left side of the membrane, a concentration of 300

mmol/1 of NaOH and 500 mmol/1 of NaCl is maintained. On the right side, 300

mmol/1 of NaOH are present.

All simulations were made using a numerical solution of the extended Nernst-

Planck/Poisson set of equations. More information on the numerical model can be

found in references [157, 158]. The calculations were carried using 100 linear two-nodes

elements. The simulations are performed over a period of 30 days and are reached after

30 steps of 86400 seconds.

The results show that for this case, the activity has little effect on the concentration

profiles. It has however a stronger effect on the potential for the high ionic strength

case.
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Figure 2.7: Concentrations across the membrane for the weak ionic strength case
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Figure 2.8: Potentials across the membrane for the weak ionic strength case
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Figure 2.9: Concentrations across the membrane for the strong ionic strength case
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Figure 2.10: Potentials across the membrane for the strong ionic strength case
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2.4.6 Conclusions

A new mathematical model for calculating the chemical activity coefficients of ions in

electrolytic solutions is presented. The model was developed to account for the particu-

lar behavior of concentrated solutions for which short-range and long-range interactions

between ions are important. The model is essentially a modified version of the Davies

equation.

The main advantage of the new model lies in its simple mathematical formulation.

Given its relative simplicity, the model can be easily implemented in a numerical code

designed to model ionic transport phenomena in saturated porous materials.

2.5 Modeling the influence of chemical reactions on

the mechanisms of ionic transport in porous ma-

terials : an overview

E. Samson12, J. Marchand12, J.J. Beaudoiri3

1Centre de recherche interuniversitaire sur le béton,
Université Laval, Québec, Canada, GlK 7P4

2SIMCO Technologies inc.,
1400, boul. du Parc Technologique, Québec, Canada, GlP 4R7
3Materials Laboratory - Institute for Research in Construction,

National Research Council, Ottawa, Canada, KlA 0R6

Abstract

This paper attempts to critically review various approaches developed to

model the effects of chemical reactions on the mechanisms of ionic trans-

port in porous media. A comprehensive overview of the various types of

chemical reactions that can occur in reactive porous solids is first presented.

Methods to model each of these chemical reactions are then described and

analyzed. The ability of each of the proposed algorithms to predict the

behavior of hydrated cement systems is discussed. The implementation of

these algorithms in an ionic transport numerical model is also discussed.
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2.5.1 Introduction

Concrete is a porous material made of a rigid solid skeleton and a liquid (or aqueous)

phase. The solid is a composite mixture of ill-crystallized hydrated calcium silicates

and other more crystalline phases. The liquid phase is a highly charged ionic solution

containing mainly OH", K+, Na+, SO4~ and Ca2+ions. Once the initial stages of

hydration are completed, the liquid phase can be considered to be in a metastable state

of thermodynamic equilibrium with the various solid phases.

During the service-life of the concrete structure, the chemical composition of the

material pore fluid can be modified by the penetration ofexternal ions and/or the leach-

ing of ions already present in the pore solution. These ionic species can be transported

by simple ionic diffusion or by a coupled process of capillary suction and diffusion. The

modification of the pore solution chemical composition readily perturbs the local ther-

modynamic equilibrium of the system. A series of dissolution/precipitation reactions

can occur to restore the equilibrium state.

An example reaction is the dissolution ofcalcium hydroxide, Ca(OH)2. The reaction

is initiated when the hydrated cement paste pore solution, initially at a pH of about

13.5, is in contact with an external solution at a lower pH. Hydroxyl ions in the mate-

rial pore solution will tend to be leached out of the system under the electrochemical

potential gradient. In order to restore the local equilibrium, calcium hydroxide will

dissolve, thus releasing OH" and Ca2+ ions in solution. Numerous concrete structures

are exposed to this simple form of chemical degradation.

Concrete structures, such as bridges, harbors and offshore platforms, exposed to

chloride solutions are also likely to suffer from another form of degradation. As a

result of the concentration gradient between the hydrated cement paste pore solution

and the external solution, chloride ions will penetrate into the material pore structure.

The presence of chloride readily disturbs the equilibrium conditions between the pore

solution and the paste. As a result, and under certain conditions, new solid phases, eg.

Friedel's salt, will precipitate to maintain equilibrium. Similar reactions can occur in

hydrated cement systems exposed to sulfate and magnesium solutions. For instance,

ettringite and gypsum are phases that can precipitate in hydrated cement systems

exposed to sulfate solutions.
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The proper modeling of these different chemical reactions is a problem of paramount

importance for civil engineers and concrete technologists [37]. An adequate ionic and

fluid transport model could predict the degradation of concrete structures with time.

This would help engineers to properly design new structures and also allowing good

planning of maintenance programs. This aspect is particularly important since contrac-

tors are increasingly required to guarantee the durability of their structures for periods

often as long as 90 years.

This paper attempts to critically review various approaches developed to model

chemical reactions in porous media. The ability of each of the proposed algorithms to

predict the behavior of hydrated cement systems is discussed.

2.5.2 Types of chemical reactions

In a comprehensive review on the modeling of chemical reactions in porous media,

Rubin [149] distinguishes two main categories: sufficiently fast and reversible, and

insufficiently fast and/or irreversible. If the rate of reaction is large with respect to the

ionic and fluid transport processes, then it belongs to the sufficiently fast category [149].

In this particular case, the assumption is made that the local chemical equilibrium is

preserved throughout the porous system. Only this first kind of chemical reaction will

be considered in the following paragraphs. As emphasized by Barbarulo and al. [14],

in most practical cases involving the diffusion of ions in fluid saturated systems, the

local chemical equilibrium assumption is usually valid.

All reactions falling under the sufficiently fast category are modeled through chemi-

cal equilibrium equations [149], which are algebraic, as opposed to the partial differential

equations used in transport models. Since the equilibrium is, in most cases, expressed

through chemical activity, algebraic relations giving the chemical activity coefficients

must also be considered while modeling the chemical reactions. The resolution of a

transport problem involving chemical reactions is thus called a mixed problem, because

it involves algebraic and partial differential equations.

According to Rubin [149], the chemical reactions are then divided into two sub-

categories: homogeneous and heterogeneous. The homogeneous reactions are those

involving a single phase. This sub-category includes all the complexation reactions, i.e.
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the formation of products occurring in the aqueous phase. For example, the reaction:

Ca2+
(aq) + OH-(aq) # CaOH+(aq) (2.144)

is a homogeneous reaction since it only occurs in the aqueous phase.

As opposed to those falling in the previous category, the heterogeneous reactions

involve at least two phases [149]. Rubin distinguishes two types ofheterogeneous reac-

tions: surface and classical ones [149]. Surface reactions are either adsorption, in which

ions are attracted to the surface of the pore network under the influence of electrostatic

forces [25], or ion exchange, in which two or more ionic species are exchanged between

the surface of the solid and the aqueous phase [149]. The classical reactions are pre-

cipitation, dissolution, oxidation and reduction. The dissolution of calcium hydroxide,

described in the introduction, belongs to this category since it involves the aqueous and

the solid phase:

Ca2+
(aq) f2OH- ( a q ) ^Ca(OH) 2 ( s ) (2.145)

2.5.3 Coupling chemical reactions to ionic transport in a

saturated porous medium

In the following subsections, each of the previous sub-categories of chemical reactions

will be treated in greater detail from the point of view of their implementation in an

ionic transport model. In all the forthcoming examples, we will assume that the porous

medium is kept in isothermal and fluid saturated conditions. For simplicity, we will

assume that the ionic diffusion process can be described by Fick's law, which can be

written in one dimension as:

where c¿ is the concentration of the species i and D¿ is the diffusion coefficient. This

approximation is made to enable the reader to focus on the modeling of the chemical

reactions. However, it is emphasized that Fick's law cannot accurately describe the

ionic diffusion process in hydrated cement systems [179].
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2.5.4 Treatment of homogeneous chemical reactions

The treatment of homogeneous chemical reactions is reviewed first. Consider the aque-

ous phase of a porous network in which the ions Ca2+, OH~, Na+ and C1~ undergo,

for example, the following reactions:

Ca2+
(aq) + OH-(aq) # CaOH+

(aq) (2.147)

Ca2+
(aq) + Cr ( a q ) # CaCl+(aq) (2.148)

Let us define c\ as the concentration of Ca2f , c^ as the concentration of OH^~, c¡ as the

concentration of C1~ and c4 as the concentration of Na+. Following that, the complexes

are expressed as c12 for CaOH+ and Ci3 as CaCl+. The equilibrium relations for each

of these chemical reactions are given by [149]:

Kl = ^ ^ (2.149)
7l2Cl2

K2 = ^ ^ (2.150)
7C

where the 7¿'s are the chemical activity coefficients. These coefficients can be calculated

with various models, eg. Debye-Hiickel or Davies, depending on the ionic strength of

the pore solution [26]. For the specific case of cement-based materials, which contain

a highly charged pore solution, the previous models are inadequate. The following

expression, a modification of Davies' relationship, was found to yield good results [155]:

1 + Bft VW0
where / is the ionic strength of the solution:

N

z*Ci (2.152)
i=l

Zi being the valence number of a given ionic species and iV is the total number of

ionic species in the aqueous solution. In equation (2.151), A and B are temperature

dependent parameters, given by:

B = \ ~ (2.154)
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where F is the Faraday constant, e0 is the electrical charge of one electron, e = ere0 is

the permittivity of the medium, given by the dielectric constant times the permittivity

of the vacuum, R is the ideal gas constant and T is the temperature. Finally, the

parameter a¿ in equation (2.151), often compared to an ionic radius, is specific to the

ionic species. Its value (in meters) is 3 x 10~10 for OH^, 3 x 10^10 for Na+, 2 x 10^10

for CI" and 1 x 10^13 for Ca2+[155].

Following this set of algebraic equations for the chemical equilibrium, mass con-

servation equations have to be considered for the transport of each ionic species. As

previously stated, we will assume that the ionic diffusion process can be described by

Fick's law (equation 2.146). Because of the complexation reactions, a reaction rate

term r is added to the mass conservation equations, which yield, for each ionic species:

D ( 2 - 1 5 5 )

dc12

l t

. O (2.157)

* = ° <2·188>
=0 (2'159)

where for example r̂ i_,i2 accounts for the chemical reaction involving c\ forming Ci2.

The complete system of equations therefore consists of the two chemical equilibrium

equations (2.149) and (2.150), five chemical activity relations corresponding to equation

(2.151) (one for each species except for Na+, which does not appear in the chemical

equilibrium equations), and the six transport equations (2.155) to (2.160), a total of

13 equations. There are 17 unknowns, the six concentrations and five chemical activity

coefficients (again, one for each species except Na+) along with the different chemical

reaction terms r¿s.

To have a closed system, i.e. a system in which there is the same number of un-

knowns as there are equations, it is possible to reduce the number of equations by
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noting the following relationships must hold true during the chemical reactions in or-

der to respect mass conservation:

n^>12 = ~n2^1,2 (2.161)

r2^12 = -ria_!,a (2.162)

ri_>i3 = -rx3-i,3 (2.163)

r3^13 = -ri3_,i,3 (2.164)

Adding the appropriate equations in order to eliminate the chemical reaction terms

leads to:

dcidci2 dc13 nd
2

Cl d2cn n d2c13 , 0 , „ , ,

ΊΪ + ^ T + ^f = D l ^ + D l 2 ^ + D l 3 ^ (2-165)

dc2 dc12 d2C2 d2C12 ίθΛΡα\
+ ^ + ^ (2.166)^ r + Sat at

These four transport equations, combined with the two chemical equilibrium relations

and the five chemical activity relationships, form a set of 11 equations, matching the

six concentrations and five chemical activity coefficients.

Two different techniques are used to solve this system of equations. In the first one,

the algebraic and partial differential equations are solved altogether [92, 96, 127]. This

technique is called the coupled method. The discretization of this system of equations

with either the finite difference or the finite element technique will lead to very large

systems of equations because of the large number of unknowns at each nodal point.

In the second technique, the partial differential equations and the algebraic ones

are uncoupled [34, 96]. This is performed first by introducing a new set of variables

[96, 149]:

u = οχ Λ- c12 + c13 (2.169)

v = c2 + c 1 2 (2.170)

w = c3 + c13 (2.171)

Since the operators d(.)/dt and d2(.)/dx2 are linear, and assuming a constant diffusion

coefficient D for all the species, it is possible to substitute equations (2.169,2.170,2.171)
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in equations (2.165,2.166,2.167) to yield the following equations:

d v nd2y /ο

m = Dd^ ( 2 '
D ^ (2

Combined with equation (2.168), this constitutes a set ofindependent equations, which

can be solved separately [149]. Once u, v and w are known at a given time t and for

any position x, a system of ten algebraic nonlinear equations, i.e. equations (2.149)

and, (2.150), five equations (2.151) for chemical activity coefficients and Equations

(2.169)-(2.171), is solved at given locations. These locations could be nodal points if a

numerical method like finite differences or finite elements is used.

The strong argument in favor of this second technique is a reduction of the size of

the system of equations to solve, a reduction which is more dramatic as the size of the

problem considered is increased. However, it suffers from two important drawbacks.

The operators controlling the transport of the ions have to be linear. It thus prevents

the use ofa more sophisticated model, like the extended Nernst-Planck equation [157],

which takes into account the electrical coupling between each ion and the chemical

activity effects. Furthermore, the assumption that all species must have the same

diffusion coefficient may not always be valid.

2.5.5 Treatment of surface chemical reactions

The second class of chemical reactions reviewed concerns heterogeneous reactions in-

volving surface phenomena. This means that ions are exchanged between the solution

and the surface of the solid phase. Consider a solid phase X(s) on which a given num-

ber of sites are available for cations. Taking the same ions in aqueous phase as in the

homogeneous example, OH", Ca 2 +, Na+ and C1~, this means that Ca 2 + and Na+ will

compete for the available sites. The exchange between Na+, Ca 2 + and the solid phase

can be written as [149]:

2Na+

( a q ) + CaX(s) ^ Ca 2 +

( a q ) + 2NaX(s) (2.175)
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where the subscript (s) stands for the solidphase. For that kind ofchemical reaction,

the equilibrium constant is given by [149, 192]:

\ 2

(2.176)

The other algebraic equation required to describe the chemical reaction is given by the

definition of the ion-exchange capacity c^ [150, 192], which gives the total amount of

sites available on the solid for exchanges with the aqueous phase:

c —
%=1

where n is the number of exchanging ions. The ion-exchange capacity is assumed to

be a constant fixed value [150]. For the particular example corresponding to equation

(2.176), the ion exchange capacity is given by:

cP = c^+c{^ (2.178)

To this set of algebraic equations, the transport equations must be added. Since

ions 2 and 3 (OH~ and C1~) do not participate in the ion exchange described here,

equations (2.156) and (2.157) can be solved independently to find concentrations c2

and c3. For Na+ and Ca 2 +, a term is added in the transport equation to account for

the exchange between the aqueous and thesolid phase [18]:

< 2 · 1 8 ° )
where φ is the porosity of the material, assumed constant.

The combination ofthe two transport equations (2.179) and (2.180) with the alge-

braic equation (2.176) and (2.178) give a system offour equations and four unknowns.

But it is possible to reduce that number to two equations and two unknowns [150, 192]

by first combining the two algebraic equations, which will give a relation of the form:

4s)=f(ci,c2,...,Cn) for i = l,2,..,,n (2.181)

This expression is called an exchange (or interaction) isotherm. It can be substituted

in the proper transport equation by applying the chain rule to the time derivative of
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the solid concentration:

^— = ητ — + — — H ^~^~~^r for i = l,2,...,n (2.182)

This technique, applied to the example described by equations (2.176) and (2.178) leads

to:

CiS) = ~ 2 ^ ¡ ± W ^ ? + ^ r (2'183)

Depending on the values of the parameters in this relationship, only one root will have

a physical meaning [192]. Equation (2.183) can be substituted into equation (2.179)

through the chain rule. By finding a similar expression for c 4 , the initial system of

four equations is reduced to two equations and two unknowns.

Before concluding this discussion on heterogeneous surface reactions, it is worth

mentioning a special case. In some specific cases, the sum of the concentrations of the

various ions in the aqueous phase involved in the ion-exchange process is a constant. For

the case of two monovalent ions involved in such a situation, the following expression

can be written:

cT = Cl + c2 (2.184)

where c^ has a known constant value. For this case, the equilibrium constant and the

ion exchange capacity would be:

K=°ir% (2·185)
Ss) — Áa) 1 Js) (O 1 Qf\\
Lsrp L-j T^ L-o Ιώ.ΐυυ)

The combination of these three expressions gives the following relationship:

c ( s ) = _ M _ Ai-_^t a n d B = ^zl ( 2 1 8 7 )
1 1 + Bci cT cT

One can recognize in this expression the familiar single-component Langmuir isotherm

[18, 192]. It is sometimes used to model the chemical reactions involving chloride ions

in cement-based materials [122].

It should be emphasized that the previous approach is based on the assumption that

the exchange capacity of the surface remains constant. Although it might be verified in

certain instances, this hypothesis is unrealistic in most practical cases that involve the
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transport of OH ions through the material pore structure. The reduction in the pH of

the pore solution is known to have a stronginfluence on the composition and structure

of the C-S-H gel [63]. Evidence of interactions between ions and C-S-H gel reported

in the literature suggest the ion-solid sorption binding coefficient depends on both the

Ca:Si ratio within the C-S-H and the composition of the pore solution [30, 88, 196].

Numerous more sophisticated approaches (such surface protonation models) have

been developed to describe surface exchange mechanisms [24, 175]. The main problem

with these models is that the interaction mechanisms are described at the very local

scale. These equations are usually difficult to homogenize over the scale of the porous

solid.

2.5.6 Treatment of dissolution/precipitation reactions

The last category concerns the heterogeneous chemical reactions involving precipita-

tion, dissolution, oxidation or reduction processes. In this paper, only dissolution and

precipitation are considered. Such a reaction was already described by equation (2.145).

The algebraic chemical equilibrium equation used to model these reactions is similar to

those ofthe homogeneous or heterogeneous surface reactions, equations (2.149), (2.150)

and (2.176). For the chemical reaction (2.145), the relationship is [96, 97]:

K = ΊιοιΊΙο\ (2.188)

But the similarity with the other chemical equilibrium relationships hides huge differ-

ences. For equations (2.149), (2.150) and (2.176), the relationship between the various

components of the chemical reactions always applies. Furthermore, all components in-

volved in the chemical reaction are considered in the equilibrium relationship. For the

heterogeneous dissolution/precipitation process, the solid phase concentration does not

appear in equation (2.188). Furthermore, when there is no solid, the product of the

activity (equation 2.188) can be lower than K. So it is more precise to express it as an

inequality [97]:

I = K if the precipitate is present
(2.189)

< K if there is no precipitate

This inequality allows the precipitate concentration to be discontinuous in the material

[96]. Suppose the usual ions (Ca2 +, OH~, Na+ and C1~) are initially in equilibrium
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with a material containing the solid Ca(OH)2 and are allowed to leach out of the porous

network. Initially the concentration of Ca 2 + and OH~ obeys the relationship (2.188)

since the solid phase is present. At the surface of the material, the product 71C17|c2

will eventually be lower than its initial value. The solid will thus dissolve, putting back

Ca 2 + and OH~ ions in solution to reach equilibrium again, until there is no more solid

at this location. Subsequently, the same process will occur right next to the previous

location. The solid concentration will thus behave like a moving boundary [149], in this

case moving in the direction opposite to the leaching of the ions.

The mass conservation equations will be affected by the discontinuous behavior

of this type of chemical reaction. Ions CI~ and Na+, associated with concentrations

e-i and c4, are not affected by the reaction. Hence their transport can be modeled

with equations (2.157) and (2.158) at any location in the material. For ions Ca2 +

and OH~, the situation is different. In the zone where the precipitate concentration is

zero, the transport ofthese species obeys the equations (2.155) and (2.156). Elsewhere,

precipitate is present and Ca 2 + follows the equation (2.179). For OH~, the equation is

similar:

Three techniques have been developed to solve this type ofproblem. The first, fully

described in references [104, 105], separates the porous material into k zones ofconstant

mineralogical properties and solves the transport equations in each zone with the proper

conservation equations at the moving boundary interfaces. The mathematics of this

technique is described in the following paragraphs.

First, let us define the function ζ as:

1 if x is in zone k
(2.191)

0 elsewhere

For unidimensional cases, k also designates one ofthe interfaces adjacent to a given zone.

Next, the variables appearing in the transport equations, namely the concentrations in

both the aqueous and the solid phase, are expressed as functions of ζ:

c% (2.192)
fc=l



where iV= is the total number ofzones. The derivative ofC introduces jumps or disconti-

nuities in the transport equations. For the concentrations, which have to be continuous

at the interfaces, these jumps are set to zero, which yields for example:

But certain quantities, like fluxes, are allowed to show some discontinuity at the inter-

faces. For example, the space derivative of a flux is given by:

f ^/f]^-^) (2.194)f ^
k=l k=l

where [.. .]k represents the jump of the function in the square brackets across a given

interface, Xk is the position of the interface and δ(χ — Xk) is the Dirac delta function,

defined as:

Í
1 if x = Xk

(2.195)
0 if χ φ Xk

The transformations applied to the transport equations in order to consider the dis-

solution or the precipitation reactions at various interfaces introduces a new variable:

the position Xk of these interfaces.

To take into account this new variable, another equation has to be introduced in

the system. It is obtained by performing mass conservation across a given interface.

The resulting relationship is called the generalized Rankine-Hugoniot equation [105]:

ΦΆ = hs}k^ (2.196)

presented here for a case where the porosity φ is considered constant.

The complete system of equations is thus made up from the proper transport equa-

tions within each zone of constant mineraiogical properties, to which are added the

Rankine-Hugoniot equations at the various interfaces.

Although mathematically sound, this technique creates complications from a nu-

merical point of view. Not only does it add a new variable and the corresponding

equation to the transport model, but the division of the material into zones of constant

chemical properties requires the storage of a large amount of information since the
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Rankine-Hugoniot equation must be solved at each interface. The transport equations

are also different depending on the zone in which they are applied. This requires a very

complex algorithm.

The second technique used to solve dissolution/precipitation problems combines

the algebraic equations for chemical equilibrium with the partial differential transport

equations to form a global system of equations [97], in a manner similar to that for

the first technique involving homogeneous reactions. In such a system, there are two

equations for transport (equations 2.179 and 2.190), the chemical equilibrium equation

(2.188) and two equations similar to (2.151) for the chemical activity coefficients, a

total of five equations. Correspondingly, there are six unknowns: two concentrations in

aqueous phase c\ and c2, two concentrations in solid phase, cf and c%, and the two

chemical activity coefficients 71 and j2- One unknown is eliminated by knowing that

in the solid Ca(OH)2, 4 = 2 q , closing the system. Finally, the chemical equilibrium

relationship is presumed not to be in effect initially, and it is checked at each node

every iteration and is either "turned-on" or "turned-off" appropriately [97].

The last technique consists in uncoupling the transport and the chemical reactions

[73]. In the first step of calculation, the concentration profiles of the various species

are calculated with a transport model, such as the Fick or the extended Nernst-Planck

models. The calculation is performed without taking into account chemical reactions,

i.e. the term (1 — 0)^f- is not considered. After that step, the concentrations at a

given node are checked to see if they violate the chemical equlibrium relationships of

the various chemical reactions considered. If this is the case, they are brought back

to equilibrium with a separate chemical code. If dissolution or precipitation occurs,

the solid phases are modified appropriately. This procedure is repeated for every nodal

point. After that operation, the modified concentration profiles serve as a starting point

for the calculation of the next time step.

This algorithm is interesting because it allows for the use of very complex chemical

equilibrium codes. The main problem of this model is that in order for the dissolution

or the precipitation of the solid phases to show moving fronts, the time steps used in

the calculation must be short. If they are too large, the reactions will occur on a wide

area, and not on thin fronts.



2.5.7 Discussion and concluding remarks

This completes the review on the modeling of the three main types of chemical re-

actions that can occur in a porous material under the local equilibrium assumption.

Even though they were presented separately, they occur simultaneously in most real

life situations. Most of the models found in the literature consider complexation and

adsorption, but overlook the dissolution/precipitation reactions [34, 92, 98, 127, 166].

This is easily understandable since the latter reactions are much more complicated

to model, because of the discontinuous aspect of the chemical equilibrium equation.

Nevertheless, some models consider the three types of reactions, as those in references

[65, 73, 97]. But in these three cases, only one solid phase is taken into account.

Finally, it is worth mentioning that all the models previously discussed were developed

by geochemists and hydrogeologists.

Very little research has been specifically focused on the treatment of chemical reac-

tions in hydrated cement systems. This is most unfortunate since these materials are

quite different from other porous solids. For instance, cement-based materials are char-

acterized by the relatively high ionic strength of their pore solution [141]. This has an

important influence on the transport, since the contact with the external environment

will often induce very strong concentration gradients. Ions like OH~ and Ca2+ which

have very different diffusion coefficients, 5.273xlO"9 m2/s and 0.792xl0~9 m2/s in free

water respectively, are very likely to experience an internal electrical potential that will

arise to maintain electroneutrality by slowing the fast ions and accelerating the slow

ones [85]. Hence, the simple Fick's law is no longer appropriate and more complex

models, like the Nernst-Planck or extended Nernst-Planck equations [156, 157] should

be used.

Cement-based materials are also characterized by the high reactivity of the hy-

drated cement paste. Aside from the dissolution of portlandite, which has already

been described, other chemical reactions will occur, for example the decalcifiation of

the C-S-H, the formation of ettringite under external sulfate attack or the formation of

Friedel's salt upon chloride penetration in the porous network. Over the past decades,

numerous reports have clearly emphasized the significant influence of these dissolu-

tion/precipitation reactions on the durability of hydrated cement systems. Although



complexation and ion adsorption phenomena can occur in a cement paste, they are

likely to have a lesser influence on the ionic transport and on the degree of degradation

of cement-based materials.

Over the past decade, researchers in the field of ionic transport have relied on

simple models to treat chemical reactions in cement systems. Chemical reactions are

usually modeled using chemical interaction isotherms. This technique is essentially an

adaptation of the mathematical approach used to treat heterogeneous surface reactions

(see equation 2.181).

Recently, the isotherm technique has been mainly used to model the chemical re-

actions on-going during the penetration of chloride in concrete. The experimental

procedure, described in reference [183], shows that all types of reaction, i.e. dissolu-

tion/precipitation, complexation, and adsorption are described by one isotherm. The

latter is then used in a single-ion transport model to yield chloride profiles in the ma-

terial. For instance, Masi & al. [122] modeled the chloride interaction with a Langmuir

isotherm (see equation 2.187), whereas Saetta & al. [152] modeled the same reaction

with the linear isotherm c ^ = Ac. The main interest in this method lies in its sim-

plicity. However, it is also its main drawback, since it is nearly impossible to correctly

model complicated reactions involving multiple ionic species while considering only one

ion. This is supported by the fact that, in the two papers mentioned previously, the

same chemical reaction is modeled differently.

One attempt has been made by Adenot [3] to model dissolution/precipitation re-

actions in cement-based materials using a technique developed by Lichtner [104, 105],

where the material is divided into zones of constant mineralogical properties. While

it is an important improvement over the isotherm method, the heavy mathematics of

this approach usually requires a simplification of the transport model. In his work,

Adenot used Fick's law as the transport model, with all ions having the same diffusion

coefficient. Furthermore, the equations are solved over a lD semi-infinite domain.



Chapitre 3

Modèle numérique

3.1 Introduction

La première phase des travaux concernant la résolution numérique des équations de

transport a été consacrée au couplage électrique entre les ions, modélisé par l'équation

de Nernst-Planck. Une revue bibliographique a montré que très peu de méthodes

permettent de résoudre cette équation pour un nombre quelconque d'ions et pour des

problèmes en une, deux ou trois dimensions. Le premier article présenté dans ce chapitre

décrit les travaux effectués dans le but de résoudre cette équation de la manière la plus

générale possible.

Par la suite, le niveau de complexité de la loi de comportement a été augmenté en

ajoutant l'activité chimique au couplage électrique, ce qui donne l'équation de Nernst-

Planck étendue. Le second article montre de quel façon cette équation a été résolue.

90
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Le troisième article donne les détails numériques du modèle présenté dans ce mé-

moire de thèse. Le modèle incorpore les développements présentés dans les deux arti-

cles précédents, auxquels viennent s'ajouter l'advection et les réactions chimiques. Le

modèle est validé par une comparaison de la solution numérique à des résultats expéri-

mentaux. Ces derniers proviennent d'essais de lixiviation et de pénétration de sulfates

sur des pâtes de ciment hydraté. Des simulations à long terme sont ensuite effectuées

afin d'analyser la sensibilité du modèle en fonction de certains paramètres tels que la

longueur du pas de temps et la densité du maillage.

3.2 Modeling ion diffusion mechanisms in porous me-

dia

E. Samson12, J. Marchand12, J.L. Robert1

1Centre de recherche interuniversitaire sur le béton,
Université Laval, Québec, Canada, GlK 7P4

2SIMCO Technologies inc.,
1400, boul. du Parc Technologique, Québec, Canada, GlP 4R7

Abstract

The main features of a numerical model aiming at predicting the drift of

ions in electrolytic solutions are presented. The mechanisms of ionic diffu-

sion are described by solving the Nernst-Planck system of equations. The

electrical coupling between the various ionic fiuxes is accounted for by the

Poisson equation. Two algorithms using the finite element method for spa-

tial discretization are compared for simple test cases. One is based on the

Picard iteration method while the other is based on the Newton-Raphson

scheme. Test results clearly indicate that the range of application is broader

for the algorithm based on the Newton-Raphson method. Selected exam-

ples of the application of the algorithm to more complex l-D and 2-D cases

are given.
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3.2.1 Introduction

In many engineering problems, the behavior of porous materials is directly affected by

the transport of ions under a concentration gradient. For instance, it has been shown

that the swelling of clays is predominantly controlled by the penetration of ions by

diffusion in their interlayer spaces [56]. Given their influence on various phenomena

such as the filtration by ion exchange membranes and the transport of pollutants in

soils, the mechanisms of ionic diffusion in porous media has also received a great deal

of attention from chemical and geological engineers [85, 216]. The process of ionic

diffusion remains of primary importance in many civil engineering problems since the

long-term durability of many building materials, such as concrete, is directly affected

by the transport ofchemical species[115].

Over the years, it has been established that the mechanisms of ionic diffusion can

be adequately modeled by the Nernst-Planck/Poisson set ofequations [85, 115]. These

equations take into account the electrical coupling between the different ions present

in an ideal solution (i.e. no chemical activity effects are considered). According to this

model, the drift of an ionic species strongly influences that of all other ions dissolved

in the electrolytic solution.

Although the electrical coupling between the various ionic fluxes is well known to

electrochemists and engineers, most existing models aiming at describing the mech-

anisms of ionic diffusion tend to neglect this phenomenon [18, 216]. Furthermore, a

comprehensive bibliographical review has recently shown that the proposed analytical

or numerical ionic transport models are unsatisfactory, all of them being limited to

unidimensional and steady-state cases. A summary of this literature survey is given in

the following subsection.

In order to extent the application of the Nernst-Planck/Poisson set of equations,

two algorithms were tested. The first one is based on the Picard iteration method.

The second algorithm uses a Newton-Raphson scheme. Both rely on the finite element

method for spatial discretization.

After this comparison, selected examples of calculations are presented to illustrate

the application of the second algorithm to the treatment of steady-state and transient

problems involving an important number of multivalent ionic species. An example of
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application of the algorithm to the resolution of 2D cases (axisymmetrical geometries)

is also given.

3.2.2 Mathematical model

The Nernst-Planck model, which describes the flux of an ionic species i in solution, is

given by:

ji = -[Di} fgrad(c,) + ^ c i g r a d ( ^ ) j (3.1)

where ji stands for the flux of the species i, {Di\ is the diffusion coefficient tensor of

the species, c¿ is the ionic concentration of the species, Zj is the valence number of the

species, F is the Faraday constant, R is the perfect gas constant, T is the temperature,

and φ is the electrical potential that is locally induced in the electrolytic solution by

the movement of all ionic species.

It should be emphasized that the presence of this electrical potential is probably the

most important feature that distinguishes ionic diffusion from molecular diffusion. In

an ionic solution, the local electroneutrality shall be preserved at any point. The con-

servation of electroneutrality requires that the transport of all diffusing species should

be coupled. During the diffusion process, all ions are not drifting at the same speed.

Some ions tend to diffuse at a higher rate. However, any excess charge transferred by

the faster ions builds up a local electric field (φ - also called the diffusion potential)

which slows down the faster ions, and reciprocally accelerates the slower ionic particles.

The diffusion potential has to be accounted for even in cases where an external electri-

cal field is applied to the system. In that case, the diffusion potential is superimposed

to the external field.

It should also be underlined that equation (3.1) does not consider any chemical

activity effects or the transport of ions by convection of the liquid phase in the pore

system. The influence of activity phenomena on the mathematical treatment of the

diffusion problem is discussed elsewhere [158]. A detailed discussion on the limits of

equation (3.1) is given by Helfferich [85].

For each of the ionic species present in solution, the mass conservation law is given
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^ + d i v O i ) = 0 (3.2)

This equation does not account for any chemical or physical interactions that can

develop between the solid and the various ionic species in solution. A comprehensive

discussion of the influence of chemical reactions and physical interaction phenomena

on the mathematical treatment of ionic diffusion problems is given by [96, 143].

By replacing equation (3.1) in equation (3.2), one finds the complete Nernst-Planck

equation:

'^ - div ^[Di] (grad(Q) + ^ q g r a d ( ^ ) ) ) = 0 (3.3)

In order to complete this system of equations, one has to define one last relation-

ship that will couple the transport of all ionic species to one another. Over the past

decades, numerous authors have chosen to simplify the problem by assuming that the

electroneutrality of the solution is preserved at any points:

N

Σ zi°i + w = ° (3-4)
i=l

where iV is the number of species and w is a fixed charge density over the domain.

For most porous materials, the fixed charge density is not a relevant parameter. It is,

however, often used in the description of biological systems like thin membranes.

In many cases, it is also assumed that the global flow ofall ions across the membrane

yields a nil current:
N

However, as will be discussed in the following subsection, these assumptions are not

always valid. A more rigorous way to treat the problem [85] is to define the variation of

the electric potential according to the spatial distribution of the electric charges. This

relationship is given by the Poisson equation:

V 2 ?M - = 0 (3.6)

where p is the electrical charge density and e is the dielectric constant of the surrounding

medium. The electrical charge density is a function of the concentration of the various

ions in solution and can be calculated using the following equation:

P = F (Σ z^ + w
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3.2.3 Numerical models for solving the Nernst-Planck/ Poisson

system of equations

3.2.3.1 Bibliographical review

Over the past decades, numerous authors have tried to develop solutions for the Nernst-

Planck equation. The first solution was obtained in 1890 by Planck himself [138].

He studied the case of steady-state unidimensional ionic diffusion of two monovalent

species (+1 and -1) through a membrane. In the problem considered by Planck, fixed

concentration and potential were imposed on both sides of the domain. The solution

was obtained using the electroneutrality and nil current assumptions. The geometry

and boundary conditions of this problem, although simple and very idealized, still

remain about the only ones for which an analytical solution is possible.

Later on, Schlogl [165], Helfferich [85] and Teorell [186] developed other solutions

for the treatment of unidimensional steady-state problem. Schlògl [165] derived an

analytical solution using the same boundary conditions as Planck. Schlògl's solution

was developed in such a way that it could account for any number of ions, whatever

their valence number. Once again, the electroneutrality and nil current assumptions

were at the basis of the development of his solution.

The application of all previous analytical solutions was limited to steady-state cases.

Always using the electroneutrality and nil current assumptions Conti and Eisenman [40]

proposed a different solution that could be applied to the treatment of unsteady-state

problems. They developed an expression for the variation of the electrical potential

through a membrane but could not obtain neither the concentration nor the electrical

potential profiles. Furthermore, the validity of their solution was solely restricted to

electrolytic solutions made of monovalent ions.

It should also be emphasized that all the previous analytical solutions were de-

veloped on the basis of the electroneutrality and nil current assumptions. In 1943,

Goldman [70] presented a solution for the steady-state case assuming a constant elec-

tric field across the membrane(i.e. a linear variation of the electrical potential across

the system). This simplification ofthe probiem allowed the author to integrate directly

the Nernst-Planck equation.
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The considerable difficulty ofdevelopinganalytical solutions for this system ofequa-

tions has led researchers to use numerical methods. In 1965, Cohen and Cooley [39]

presented an algorithm that allows solving the Nernst-Planck equation for transient

cases. Their solution was obtained using a predictor-corrector scheme. But the predic-

tor step uses Planck's analytical solution, thus limiting the application of the algorithm

to very simple cases.

More recently, Hwang and Helfferich [89] developed an algorithm that can be used

to solve the Nernst-Planck equation for any number of ions, for any valence number,

and for transient problems, with a finite-difference discretization. The discretization

is not directly performed on the equation (3.3). The system of equations first has to

be transformed according to the electroneutrality and nil current hypotheses. This

transformation introduces two new terms that are used as iteration coefficients in the

algorithm. However, after being transformed, the equations become very complex,

which makes the conversion in two or three dimensions extremely difficult. Moreover,

the transformation of the equations complicates the treatment of the boundary condi-

tions. Pátzay [134] modified the approach by using three iteration coefficients instead

of two. In this case, no modification in the treatment of the boundary conditions is

required.

Harden and Viovy [79], who worked on membranes subjected to a current ofvariable

intensity, have directly discretized the conservation equation (3.3) using the finite-

difference method. An explicit Euler scheme is used for time discretization. For a case

with N ionic species, the concentration profiles of N — 1 ions are calculated using the

concentration and potential calculated at the preceding time step. For the remaining

species, the concentration is calculated using the electroneutrality condition. The new

electric field is determined knowing that the current introduced in the membrane must

be equal to the internal current. The advantage of this method, compared to all those

previously described, is that it can be easily transposed in two or three dimensions.

This solution, however, still relies on the electroneutrality assumption.

All the previous numerical models are based on the assumption that the coupling of

the Nernst-Planck equation with either the electroneutrality condition or the constant

field relationship yields a reliable description of the ionic diffusion mechanisms. Even if

these hypotheses may constitute a good choice in some practical cases, Helfferich [85]
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mentions that the Poisson equation should be used in a more rigorous approach of the

problem. MacGillivray and Hare [110, 111] have demonstrated that the electroneu-

trality and constant field hypotheses are, in fact, nothing but particular applications

of the Poisson equation. The electroneutrality assumption is applicable only when

the concentrations are high while the constant field hypothesis is rather valid for low

concentrations.

Some researchers have tried to couple the Nernst-Planck equation to the Poisson

equation. For instance, James et al. [91] coupled both equations to the Stokes equation

to model the flow of a liquid containing charged particles in a cylinder. Their analysis

was limited to steady-state cases. The conservation equations were discretized using

the finite element method and a Galerkin residual weighting. The algorithm consists in

solving the equations one after the other starting from an initial concentration profile

(Picard iterations), the values obtained being used as starting points for the following

iterations, until convergence is reached.

Kato [95] has proposed a numerical method to solve the Nernst-Planck/Poisson

system of equations for unidimensional steady-state cases. Knowing that, once the

steady state is reached, the fluxes are constant, a first analytical integration of the

Nernst-Planck equation can be performed. The solution obtained has to be discretized

afterwards by the finite-difference method. The numerical scheme used is similar to

that of James et al. [91], the main difference being that the starting point is a potential

profile, which is subsequently used to calculate the concentrations.

As can be seen, the development of numerical solutions clearly appears to be the

most promising approach for the treatment of the Nernst-Planck/Poisson system of

equations. It should however be emphasized that transient problems with any number

of species for lD or 2D cases with a finite element discretization have never been

investigated. As previously discussed, all attempts to develop numerical solutions for

this set ofequations were limited to simpler cases. The object ofthis paper is to compare

the ability of two numerical algorithms to treat complex ionic diffusion problems using

the Nernst-Planck/Poisson equations.
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3.2.3.2 First algorithm: uncoupled equations

The first algorithm proposed is based on the Picard iteration technique, also known as

the successive substitution technique [142]. It is a first order method, thus having a

low rate of convergence. The algorithm is similar to the numerical resolution proposed

by James et al. [91] and Kato [95], in which the equations are solved one after another.

The equations are discretized separately following the standard finite element

method. The results are thus presented without much detail. The weighted residual

form of the Nernst-Planck equation (3.3) over the domain Ω is given by:

W = |j - div ([A] (grad(c dii = 0 (3.8)

where δ is the weighting function. From that point on, an axisymmetrical case with an

orthotropic material is considered. Performing an integration by parts on W yields the

following weak form:

W =
'il at

dr dz [A]
1,2

RTC
Vv
Ψ,ζ

r dr dz (3.9)

The boundary terms are omitted, since all the simulations will be performed considering

Dirichlet conditions. Equation (3.9) is discretized according to the Galerkin method.

The unknown c¿ is interpolated at the nodes, as is δ, according to:

Ci = (N){cin}

δ = {Ν){δη}

(3.10)

(3.11)

where (N) are the shape functions and the subscript n indicates node values. The

elementary matrices are written as:

[Kf] = [ [Bf[Di][B) + [Bf[Ei][NN] r dr dz
Jna

[Mf] = / {N} (N) r dr dz
J

(3.12)

(3.13)

where \Ej\ is the matrix coupling the concentration of each species to the electrical

potential. It is written as:

>riZjb Οψ Q

RT dr U

n DzjZjF αφ
υ RT dz J

(3.14)
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The matrices [B} and [NN] are defined as:

= \&(N)
[B} =

[NN] =
(N)

{N)

(3.15)

(3.16)

The various integrals are calculated using a Gaussian quadrature method. The

terms ^ and ^ in the matrix [Ei\ are evaluated at the integration points.

The Poisson equation is discretized using the same technique. The elementary

matrices are:

[Ke] = f [Bf[B] r dr dz (3.17)

{Fe} = / {Ar} ^ Z i C i r dr dz (3.18)

{Fs

e} = / {N}- r dr dz (3.19)

Jne e

where {F^} is the solicitation vector coming from the fixed charge density w. The

concentrations in equation (3.18) are calculated at the integration points.

The resolution steps for a steady-state problem are presented. For a transient

problem, a standard Θ method [142] could be used.

1. An initial concentration is assumed for each ionic species.

2. The Poisson equation is solved using the concentration of the previous iteration

level.

3. A loop is performed on all the ionic species:

(a) The gradient potential is calculated on the integration points from the nu-

merical solution of the Poisson equation. The results are used to build the

matrix

(b) The solution of the Nernst-Planck equation is obtained for the species i using

the elementary matrices (3.12) and (3.13).
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4. The L2 norm of the vector Au = {c\ Co • • • Φ) — (c\ c2 . . . φ) ~̂1 is calculated where

k stands for the iteration level.

5. If the norm is higher than a tolerance threshold e, go back to step 2 by using

the concentration just calculated. The loops are performed until convergence is

reached.

The main advantage ofthis algorithm is that the same calculation code can be used,

whatever the number of ionic species. Only the number of loops (step 3) is different.

3.2.3.3 Second algorithm: coupled equations

In the second algorithm, the Nernst-Planck and Poisson equations are coupled and

solved simultaneously. A classical Newton-Raphson method [142, 214] is used to solve

the nonlinear set of equations. As it is a second order scheme, convergence is expected

to be faster than what is obtained for Picard iteration method. Once again, the dis-

cretization follows the standard finite element procedure.

The weighted residual form is written as [214]:

W = f (δι δ2 . . . ) <
Ju

ña dü = 0 (3.20)

where the i?¿s are the residuals associated to each of the equations and the ¿¿s are the

corresponding weighting functions. For each of the ionic species, the residual is:

Ri = ^ - div (-[Di] ^grad(Q) + ^ g r a d ( V o ) ) (3.21)

and for the Poisson equation:

9 F /v^ \
Ώ . — V 7 i A A I > 7P- 4- i/) I (^ 9 9 ^

1 {j^h V Kis \ 1 7 Aj^ L·^ | UJ I • 1 O É ¿j Zj J

For a case limited to ionic species, the integration by parts leads to the following weak
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form:

W = (¿cl ¿c2 ¿ψ) ¿2 r dr d'¿

(¿cl,r ¿cl,z ¿c2,r ¿c2,z ¿ψ,Γ ¿Vv

>rlZlF
ffp U| ψίΤ

Dz\C\,z H z¿r UJ-^.^

Dr2C2tr + ΟτχτΡ02φ,τ

~v~ f?n~1 2 T^ 2:

^,r

^ *

r dr dz

/Ω
(¿cl ¿c2 ¿ψ) r dr dz

(¿cl ¿c2 ¿ψ) r dr dz (3.23)

The weak form can be discretized using a Galerkin weighting. The vector of the

unknown variables is written as:

C\

Φ

(3.24)

[N] =

ΛΊ N2

{Un) = (Cu C21 . . . φι

N
2

• • Φ 2

OOO

OOO

OOO

OOO

000

NG

C2G · · · Φθ)

(3.25)

(3.26)

where G is the number of nodes in the element. The small dots (...) indicate the terms

to add when considering more ionic species, whereas the big dots (ooo) stand for the

missing shape function terms. The subscripts i and j designate the species i and the



node j . The elementary matrices can thus be expressed as:

102

[Ke {Bf[D,]{B} + [N]T[D2}[N] + [Bf[D,}[NN] r dr dz (3.27)

[Me] = / [N}T[D4][N}rdrdz

[N]T

0

0

Ρω

r dr dz

(3.28)

(3.29)

The matrix [Ke] is divided in three parts. The first part, [K^], includes all the diffusion

terms. The two other parts are related to the coupling between the concentration and

the electrical potential. The matrix [Kp} comes from the discretization of the Poisson

equation (the third line in equation 3.23) and [K<^_p] is related to the coupling between

the concentration and the electrical potential gradient in the Nernst-Planck equation.

The [NN} matrix is given by:

[NN] =

Ni

N,

N
2

N
2

N
2

N
2

N
2

N
2

ooo

ooo

ooo

ooo

ooo

ooo

ooo

N
G

N
G

N
G

N
G

N
G

N
G

(3.30)

For an axisymmetrical case, the matrix {B] corresponds to:

ooo iVGia

ooo

NllX

NltX

ooo

ooo

ooo

000

000

NG,X

N G,x

(3.31)
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The matrices [Di} through [D4} are given by:

Drl

I) ZÌ

,Dr,7-2

/λ

DnziFdip
RT dr

RT dz

0

0

-FZ!
e

Dr2Z2F dip
RT dr

RT dz

0

(3.32)

(3.33)

(3.34)

(3.35)

The tangent matrix is obtained by calculating the first variation of the weak form

W (equation 3.20) [214]:

AW = [ (5i ¿2 · • ·) <
Jn

Ai?o > dQ = 0 (3.36)

For a transient case solved with an implicit Euler scheme (Θ = 1), the elementary

tangent matrix is given by:

[K}] = [Me] + At[Ke] + At f [BT}[D5][B] r dr dz
J

(3.37)
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0 0 0 0 . . .

RT

0

0

0
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0

RT

0

fiT

0

0

(3.38)

In contrast to the preceding numerical scheme, the characteristics of the various

matrices tend to vary with the number of ionic species accounted for. Furthermore,

larger matrices have to be stored.

3.2.4 Comparison of the two algorithms

In order to compare both algorithms, an example first presented by Kato [95] will be

used. It is an unidimensional steady-state problem involving two ionic species. The

development of the elementary matrices for lD cases is not presented but is straight-

forward starting from the matrices of the axisymmetrical case. The equations are first

rewritten in a non-dimensional form by stating:

RT~
φ =

r
x = Lx

Di = DiDr.

3i =
L

C% CoCi

~3i

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

where the subscript "o" designates a reference value and L is the length ofthe domain.

Equation (3.1) and (3.6) are rewritten as:

dc%

dx

άφ

Dn I dx
(3.44)

άφ p

dx2 a2
(3.45)
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with

P = Σ *Ci + (w/c0) (3.47)

In the domain 0 < x < 1. The value of the parameter a2 is determined mainly by the

scale of the problem under consideration. For a medium kept at 25°C (298°K ) and

saturated with an ionic solution having a concentration of 1 mmol/1 and a permittivity

of 7.0832 x 10"10C/Vm, a2 ~ 2 x 10^1 6/^2. For biological membranes that have

thickness around Ιμΐη, a2 ~ 0.0002. For porous construction materials like concrete,

the characteristic length is in the order of about 1 cm and thus a2 ~ 2 x 10^12. For

two problems having the same characteristic length L, a variation in a2 corresponds to

a variation in the level of concentration involved.

For this specific example, it is assumed that two monovalent species are present in

solution {z\ = +1 and z2 = —1). For both species, D¿ = 1 and c0 = w = 1. It is also

assumed that both species have a dimensionless concentration of 1.0 at x = 0 and 1.5

at x = 1. The dimensionless potential is set at 0.0 at x = 0 and 1.0 at x = 1.

To solve this problem, both algorithms were used with a linear two-node element.

3.2.4.1 Results obtained with the first algorithm

To begin the calculations, initial concentrations were considered to vary linearly across

the system. Figure 3.1 shows the solution obtained with a2 = 0.5 and computed

with twenty elements. Twelve iterations were needed to perform the calculations. The

difference with the solution obtained by Kato [95] does not exceed two per cent.

The next set of simulations consists in varying the value of a2 while keeping the

same boundary conditions. It appeared that under a2 = 0.25, no convergence could be

obtained. Figure 3.2 clearly shows the variation of the convergence rate as a function

of a2. All simulations were made with 20 elements. In order to rectify this situation,

different solutions were tested: a variation in the numbers of elements, an increase in

the order of the interpolation polynomials, and a modification in the initial solution

introduced to the algorithm. Results revealed that all this work was done in vain. A

modification ofthe algorithm was also made, by updating the solution after a calculation
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Figure 3.1: First algorithm: solution for a = 0.5.

step according to the following procedure:

M*"1

M*"1 =
{u} fc-2

(3.48)

This modification allowed us to break the 0.25 limit, but only to find the same problem

for a value of about 0.15. For such values of a2, only thin membranes problems can

be solved. This is what justified the development of the coupled equation algorithm,

in an attempt to broaden the field of application of the Nernst-Planck/Poisson set of

equations.

3.2.4.2 Results obtained with the second algorithm

The same tests were carried out for the second algorithm, and proved to provide much

better results. For the second algorithm, there is no evidence of a critical value of a2

for which divergence occurs. The number of required iterations is lower and limited to

approximately four. Furthermore, this number varies very little according to a2.

To illustrate the superior behavior of the second algorithm, the same problem was

solved, but this time with a2 = 0.0001. The results are shown on figure 3.3, and were

obtained with 100 elements. More elements are needed to avoid oscillations near the
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0.0001

Number of iterations

Figure 3.2: First algorithm: norm vs. number of iterations for different values of a2.

boundaries, due to high gradient values. Comparisons with the results of Kato [95] are

impossible since the author did not perform any tests for low values of a2.

Following these results, it is clear that the second algorithm is much more robust.

It was used to obtain the results that will be presented afterwards.

Various other cases were considered to test the second algorithm. The first example

was inspired from Helfferich [85]. It consists, in a lD steady-state problem where four

species are present: Mg2+, SO2", Na+ and K+. Dimensionless variables were used in

the treatment of the problem. The diffusion coefficients were 1.0 for SO4~, Mg2+ and

Na+, and 1.67 for K+. At x = 0, the boundary conditions were 1.0 for SO2", 0.5 for

Mg2+ and zero for the other species. At x.~ 1, the conditions were 0.8345 for SO4~",

0.0 for Mg2+, 0.169 for Na+ and 0.5 for K+. The potential was established at 0.0 at

x = 0 and 5.0 at x = 1. The fixed charge density in the membrane, w/c0, was equal to

1.0. The only remaining unknown variable was the value of a2.

The solution obtained analytically by Helfferich [85] for that same problem was de-

veloped on the basis ofthe electroneutrality hypothesis. Considering that MacGillivray

and Hare [110, 111] have demonstrated that the validity ofthis assumption is restricted

to very low values of a2, the calculations were performed with a2 = 1 x 10~^10.
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Figure 3.3: Second algorithm: solution for a2 = 0.0001.

The solution, computed with 50 elements, is shown on figure 3.4. The difference

with the analytical solution presented by Helfferich [85] is about 3%, which confirms

the results of MacGillivray and Hare [110, 111] concerning the value of a2.

The other example concerns a transient diffusion problem. It was selected to evalu-

ate the influence of the a2 parameter for a fixed length domain. The calculations were

performed using an implicit Euler scheme. The dimensionless variables were once again

used with the addition of t = Dot/L2 as a time variable. Two species were considered,

with z\ = +1 and D\ = 3 for the first one, and z2 = —lj D2 = 1 for the second. Ini-

tially, the concentrations were set equal to zero over the entire domain, which consisted

of a bar of length 1. At t = 0, a unit concentration was imposed at x = 0 for both

species. The concentrations were set at zero at x — 1.

Two simulations were performed for values of a2 equal to 1 x 10~2 and 1 x 10~4

respectively. This implies that, for a given domain length, the concentrations involved

in the second case were a hundred times higher than in the first one. Results are given

in figures 3.5 and 3.6. These results were obtained at t = 0.01 and reached after 200

steps of 5 x 10~5. All calculations were performed with 50 elements. As a comparative

basis, the solutions computed without taking into account any electrostatic effect, thus

derived on the sole basis of Fick's law, are also given in figures 3.5 and 3.6.
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Figure 3.4: Concentration profiles for the Helfferich problem.

In figure 3.5, the influence of the electrical coupling between the species is clearly

noticeable. On the one hand, results indicate that the progression of the fastest ion

is slowed down by the electrical potential. On the other hand, the slowest ion, with

a diffusion coefficient being three times lower, is accelerated. In the case of higher

concentration (figure 3.6), this phenomenon is even more obvious. Both concentration

profiles are so close that they became superposed.

These results confirm, once more, the conclusion ofMacGillivray and Hare [110, 111]

who suggested that the electroneutrality is gradually approached as the value of a2

decreases. Figure 3.7 shows that the electrical charge density p tends toward zero as

o? is reduced.

The last example shows the use of this numerical scheme for a transient problem

with an axisymmetrical geometry. The simulations were performed to investigate the

effect of the presence of electrical charges on the inner surface of a pore. In this case,

ions are diffusing in and out of the pore space. The pore, presented in figure 3.8, has

a radius of 1 μνα. and a length of 10 μπι.

Five ions were considered in the simulations: OH~, Na+, K+, SO4~̂ , and C1~. Their

respective diffusion coefficients (in m2/s) are: 5.273 x 10' 9, 1.334 x 10~9, 1.957 x 10"9,
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Figure 3.5: Concentration profiles at t = 0.01, a2 = 0.01.

1.065 x 10~9, and 2.032 x 10"9.

The initial concentrations in the pore were fixed at: 690 mmol/1 ofOH~, 286 mmol/1

of Na+, 500 mmol/1 of K+, 48 mmol/1 of SO^~, and 0 mmol/1 of C1~.

The boundary conditions, at the entrance of the pore, were fixed at 500 mmol/1

of C1~, 800 mmol/1 of Na+, and 300 mmol/1 of OH". For the electrical (diffusion)

potential, the initial value was set at 0.

Two cases were investigated. In the first case, it was assumed that no electrical

charges were present on the inner surface of the pore. In this case, the electrical

potential was set at 0 at the entrance of the pore, since a reference value has to be

fixed at some point. In the second case, the electrical potential on the inner surface of

the pore was set equal to -10mV as shown on figure 3.9. The system was considered

to remain in isothermal conditions (i.e. at 22°C ) over the entire duration of the

process. The dielectric constant of the system was fixed at 7.0823 x 10~10C/Vm. The

two simulations were performed in five time steps of 0.0002 second. For the spatial

discretization, a regular mesh of 10 x 50 linear three-node triangles was used, as shown

on figure 3.8.

According to the numerical simulations, the potential on the inner surface of the
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Figure 3.6: Concentration profiles at t = 0.01, a = 0.0001.

pore has no significant efi'ect on the concentration profiles. Its influence is limited to

a small region at the vicinity of the surface. Hence, the flux of ions in the pore is the

same for both simulations.

For the electrical potential, the situation is however different. The potential on the

inner surface tends to lower the difference of potential between both ends of the pore.

For the case without any electrical charges on the pore wall, this difference has a value

of 5 mV. In the other case, this value drops to 3.1 mV.

3.2.5 Conclusion

The comparison between a numerical scheme based on the Picard iteration technique

and another scheme based on the Newton-Raphson method has clearly showed that the

former, even tough it has already been used in some recent papers, cannot be used to

solve the Nernst-Planck/Poisson system of equations for all cases.

By coupling all the equations and using the Newton-Raphson method, the Nernst-

Planck/Poisson system of equations could be solved for problems with a high number

of ionic species with different valence number, either for steady state or transient cases.
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Furthermore, the numerical scheme works for lD geometry as well as 2D and axisym-

metrical ones, and could easily be extended for 3D cases.

This work opens the way for the treatment of complex multiionic species models

of transport in porous media involving chemical reactions between the species and the

solid matrix, while considering the electrical coupling.
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Abstract

The main features of a numerical model aiming at predicting the drift of ions

in an electrolytic solution upon a chemical potential gradient are presented.

The mechanisms of ionic diffusion are described by solving the extended

Nernst-Planck system of equations. The electrical coupling between the

various ionic fluxes is accounted for by the Poisson equation. Furthermore,

chemical activity effects are considered in the model. The whole system

of non-linear equations is solved using the finite-element method. Results

yielded by the model for simple test cases are compared to those obtained

using an analytical solution. Applications of the model to more complex

problems are also presented and discussed.

3.3.1 Introduction

The phenomenon of ionic diffusion in concentrated electrolytic solutions has received a

great deal of attention over the past decade. The large body ofresearch on the subject

has clearly emphasized the complexity of the mechanisms involved. Ions in solution

are subjected to various types of interaction that readily complicate the mathematical

treatment of the problem. This is the reason why many authors have traditionally

chosen to neglect chemical activity effects while predicting the transport of ions in

strong electrolytes. A comprehensive overview of the mathematical treatment of the

ionic diffusion process can be found in reference [157].
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In the following paragraphs, a new approach to model the diffusion of ions in elec-

trolytic solutions is presented. The main originality ofthis approach lies in the fact that

the coupling between the various ionic fluxes is taken into account and that chemical

activity effects are considered. In this model, the set of non-linear equations is solved

using the finite element method. Results yielded by the model for simple test cases are

compared to those obtained using an analytical solution. Applications of the model to

more complex problems are also presented and discussed.

3.3.2 Mathematical model

In a non-ideal ionic solution, the extended Nernst-Planck model which describes the

flux of each species is given by [85]:

ji = -[Di] igrad(ci) + ^ c ; g r a d ( ^ ) + Qgrad(ln7¿) 1 (3.49)

where j¿ is the flux of the ionic species i, [Dt] is the diffusion coefficient tensor, c¿ is

the concentration of the species i, Ζχ is its valence number, F is the Faraday constant,

R is the ideal gas constant, T is the temperature, φ is the electrical potential and η%· is

the chemical activity coefficient.

For each ionic species, the law of mass conservation can be applied:

Br-

^ = 0 (3.50)

To complete the system of equations, another relation is needed to account for the

electrical potential that is locally induced by the movement of all ions. Various authors

[89, 134, 144] have relied on the electroneutrality (equation 3.51) and null current

(equation 3.52) assumptions to determine the numerical value of the potential in the

simplified Nernst-Planck model (i.e. equation 3.49 without the chemical activity term):

N

electroneutrality : V^^Ci + to = O (3.51)
i=l

N

nullcurrent : Y ^ i ji = 0 (3.52)
i=l

In equation (3.51) and (3.52), N stands for the total number of ionic species and

w is a fixed charge density in the domain. As emphasized by MacGillivray and Hare
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[110, 111], the validity ofthese assumptions is limited to specific cases. In a more general

model, the Poisson equation, which relates the electrical potential to the electrical

charge in space, should be used [85]:

? Í N \

(3.53)

This validity of this equation is based on the assumption that the electromagnetic

signal travels much more rapidly than ions in solutions.

Over the past decades, numerous semi-empirical equations have been developed to

calculate the chemical activity coefficients of ions in concentrated electrolytic solutions.

The most well known is the Debye-Hückel model [26, 133]. According to this model,

the chemical activity coefficient of a given ionic species % can be calculated by:

(3.54)

Where / is the ionic strength of the solution:

1 = \ Σ W « + w ) (3-55)

and A is a temperature-dependant parameter that can be calculated as:

V2 F 2e 0
A = ΜΊπφ ( 3 · 5 6 )

One of the main features of the Debye-Hückel model is that ions are considered to be

dimensionless (point-charge assumption). The extended Debye-Hückel equation adds

a correction to the previous model by considering the radius of the various ions in

solution:

d £ ^ (3.57)

Where a¿ is the radius of ion i and B is a parameter given by:

Figure 3.10 illustrates, for different valence values, the difference between the two mod-

els. Laboratory experiments have shown that the Debye-Hückel model is valid for ionic

strength lower than 10 mmol/1 while the extended Debye-Hückel model is valid for

concentrations up to 100 mmol/1 [115].
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3.3.3 Numerical model

The numerical model used to solve the extended Debye-Hückel model is based on an

algorithm tested by the authors [157]. In this model, the equations are fully coupled

and discretized using the finite-element method. The application of this model to

the resolution of the Nernst-Planck-Poisson system of equations (for which chemical

activity effects are neglected) has been found to yield very good results.

The variational form of coupled equations is written as [214]:

W = [ (δ1 δ2
Jn

dfl = (3.59)

Where the i?¿'s are the residuals of the equations in the model, the ¿¿'s are the

corresponding weighting functions and Ω is the domain of integration. For the sake of

simplicity, the model is shown for the uni-dimensional case. However, the extension to

two or three dimensions is straightforward.

Inserting the equations of the extended Debye-Hückel model (3.49) and Poisson
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(3.53) in the variational form (3.59) gives:

W = 6c2 • • • δψ) <
dt

+ j

dx = 0

(3.60)

In this equation, the dots indicate the terms that should be added in order to

consider more ionic species. The weak form of this system of equations is obtained by

performing an integration by parts. The contour terms are omitted since only Dirichlet-

type boundary conditions will be considered in the numerical examples:

(3.61)

- . . . - Si>^w dx = 0
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Figure 3.11: L2 element for the two-species case.

This equation is organized in a matrix form, which gives:

W = ¡L (Sd Sc2 ... δφ)

\dx lhT "'
3δψ\

+ JL {5cx ôc2 .. • δφ)

δδφ\
dx dx ' dx I

— JL (¿Ci ôc2 ... δφ) <

0

0

C\

¿2

Φ

x = 0

dx

D1z1F
RT

D2z2F
RT

^ i - b - z 2 . . . 0

C]

C 2

Φ,χ

dx

dx

(3.62)

C l

ri.x

The spatial discretization of this expression is performed using the finite element

method with a classical Galerkin weighting [214]. As shown in figure 3.11, a simple

two-nodes linear element is used. The unknown variables are described on each element
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in terms of their nodal values as:

{U} =

C]

c 2

φ

(3.63)

[N] =

N2

N2

C 2 1 . . . φι Ci2 C 2 2 . . .

(3.64)

(3.65)

Where Νχ and iV2 are the shape functions associated with the element shown in figure

3.11. The subscripts i and j in Cy stand for the ion i at node j in a given element. The

elementary matrices are obtained by replacing equation (3.63) in the integrals (3.63)

evaluated at the elementary level:

[Me] = i[NY{Hr\[N]dx (3.66)
Ji*

-[Nf[Hs}[N] + [Bf[H,][N]) dx (3.67)

{F'} = [[Nf<
Ji*

0

0
> dx = 0 (3.68)
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where Ie is the length of the element and

[B] =

[Hi] =

*2,x

><2,x

D2

^.
ΗΓ
2z2
RT

. . . 0

Di

0

N,2,x

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

The assembly of those elementary matrices leads to the following system of equations:

[M}{U} + [K}{U} = {F} (3.74)

The time discretization is performed using an implicit Euler scheme:

(3.75)

Where the subscript t stands for the actual time step and t — At the previous one.

Defining the matrices:

[K} = [M]+At[Kt]

{F} [M}{Ut.At}

(3.76)

(3.77)
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the system of equations can be written as:

= {F} (3.78)

This non-linear system of equations is solved using the Newton-Raphson method

[142, 214] which can be summarized as:

1. Calculating the variation of the solution AU with:

2. Updating the solution:

{Uk} = {U*~1} + {AUk}

3. Repeating the preceeding steps until convergence is reached.

(3.79)

(3.80)

{R} = ([M] + At[Kt]){Ut}-[M]{Ut-At}

{AR} = ([M}+At[Kt}){AUt}

In that brief description of the algorithm, the subscript k stands for the iteration level,

{R} is the residual of the equation system, and [Κτ] is called the tangent matrix. It is

given by the discretization of the variation of the residual {AR}:

(3.81)

(3.82)

The term [AKt]{Ut} is evaluated, at the elementary level, by calculating the vari-

ation of the matrices [H2], [H3] and [H4]. So, the elementary tangent matrix is given

by:

[Ke

T] = [Me] + At[Ke] + AtJa ([B]T[H2nl}[N] + [B]T[HMi][N] + [B]T[H4nl2][B}) dx

(3.83)

where
Di.Zi.Fdj)

RT dx
D2z2F dj)

RT dx

0

(3.84)

The matrices [#4^1] and [#4^2] depend on the model used to calculate the chemical

activity coefficients.
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For the Debye-Hückel model, these matrices are given by:

A
16/ 3 / 2 V *

ζ 2 — 2

dx

A

4V7

+ ϊ
J

~ Dlzic

D2z1z2

0

L>i^d L

O2z\zlc2

0

L Oxz\z\cx

"2 D2Z¡C2

0

0

0

C2

0

0

0

0

0

0

0

0

0

For the extended Debye-Hückel, the matrices are:

·„ , 2A
'4nil V X dx + 4

H

dx
Βαχ

X

O,z\z\d Ba\

(l+Ba2VJ)2
Ba,2 Ba2

0

A

A\il

D1zfc1 D\z\z\c\

0 0

. . . 0

... 0

··. 0

0 0

(3.85)

(3.86)

... 0

... 0

•·. 0

0 0

(3.87)

(3.88)

Obviously, the implementation of these matrices in a computer code involves a lot

of calculation time. Furthermore, numerical simulations have shown that convergence

is hard to reach when these matrices taken into account: it requires more nodes and

smaller time steps. In order to reduce the required calculation time, these matrices are

therefore not taken into account in the tangent matrix calculation, which is simplified

to the following expression:

[Ke

T] = [Me] + At[Ke] + At [ [B}T[H2nl][N] dx (3.89)
Jle
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Table 3.1: Data for the numerical simulations.

Ion

sor
Mg2+

Na+

K+

Zi

-2

2

1

1

A
(mVs)

3xl0"1 0

3xl0"1 0

3xl0"1 0

5xl0~10

(Angstrom)

6

8

4

3

Low concentration

c(x = 0) c(x = 1)

High concentration

c(x = 0)

(mmol/L) (mmol/L) (mmol/L)

5.0

2.5

0.0

0,0

4.173

0.0

0.845

2.5

50.0

25.0

0.0

0.0

c(x -= 1)

(mmol/L)

41.725

0.0

8.45

25.0

3.3.4 Numerical simulations

Numerical results are presented to compare the effect of the choice of the chemical

activity model on ionic profiles. The test case, inspired from HelfTerich [85], is an

ion transport problem across a charged membrane with an applied electric field. The

simulations are performed for two cases: low and high concentration levels. In the

low concentration level case, both models are expected to work properly. But for the

second case (stronger concentrations), the Debye-Hückel model is out of its range of

application.

Contrary to the dimensionless case considered by Helfferich [85], we chose, for prac-

tical purposes, to set the thickness of the membrane to 1 cm. Similarly to the problem

treated by Helfferich [85], the simulations involve four different ionic species: SO4~,

Mg2+, Na+ and K+. Their characteristics are given in table 3.1. The boundary condi-

tions of the two considered cases are also defined in table 3.1.

The charge concentration of the membrane was fixed at 5 mmol/L for the low-

concentration case, and at 50 mmol/L for the high concentration level. The intensity

of the applied electric field was fixed at 13 V/m, directed from the left side of the

system to the right. The dielectric constant in the membrane was assumed to be equal

to that ofwater, i.e. 7.0832 x 10~10 C/Vm. Finally, the temperature was kept constant

at 300°K .

The calculations were performed using a 50-element regular mesh. For the case

without any activity effects, the solution is reached within 5 iterations. At the low

concentration level, 12 iterations are needed for the Debye-Hückel model, compared
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Figure 3.12: Stationnary solution for the low concentration case without activity.
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to 10 with the extended Debye-Hückel. For the high concentration level, 35 and 12

iterations are required for each case respectively.

As for Helfferich [85], the results presented in the following paragraphs are limited

to the steady-state case. When compared to the dimensionless data obtained using the

analytical solution developed by the author, the results yielded by the numerical model

for the two cases differ from less than 3%. Comparisons are solely restricted to the

cases for which the activity coefficients were assumed to be equal to 1 since Helfferich

[85] did not consider any activity effects in the treatment of his problem.

Figure 3.12 gives the four concentration profiles for the low concentration case with-

out activity. Activity effects were then considered in a second series of simulations using

both the Debye-Hückel and extended Debye-Hückel equations. Considering the low con-

centration level, the influence of the activity was found to be quite limited. Of the four

ionic species, it is the SO4~ ion that experiences the strongest deviation from its ideal

behavior.

The SO4~ profiles for the three cases, i.e. no activity, Debye-Hiickel and extended

Debye-Hückel model, are presented in figure 3.13. The strongest deviation comes from

the Debye-Huckel model. This result is in good agreement with figure 3.10, that shows
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Figure 3.13: SO4 profiles with different models for the low concentration case.

a higher value for its chemical activity coefficient.

The same simulations were performed for the high concentration case, which is well

out of the range of application of the Debye-Hückel model. As for the low concentration

case, the concentration profiles without considering activity are first presented (see

figure 3.14). The comparison of the various models is given for the SO4~ in figure

3.15 and for Mg2+ in figure 3.16. As can be seen in those figures, the results obtained

for the Debye-Hückel model are very far from those yielded by extended Debye-Hückel

equation.

Finally, a simulation involving a non-stationary case was performed using the ex-

tended Debye-Hückel model. It corresponds to the high concentration case presented

previously, except this time, no external electrical field is applied on the system. The

initial solution in the membrane is formed of 25 mmol/L of SO4~" combined with the

50 mmol/L present as fixed charge. All the other conditions are the same as those

presented in table 3.1. Even ifthere is no external electric field, at least one boundary

condition is needed for the potential, to serve as a reference level. It is set equal to

zero at x — 0. The results are presented in figures 3.17 and 3.18 for the sulfate and

electrical potential profiles, at 2.5 and 5 hours.
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Figure 3.14: Stationnary solution for the high concentration case without activity.

The effect on the concentration profiles is not very important. So one could be

tempted to neglect chemical activity and use solely the Nernst-Planck model, keeping

in mind that there is just a slight error in doing so. But as shown on figure 3.18,

the effect of chemical activity coefficients is very important from the potential point of

view. The total membrane potential is two times larger when considering the chemical

activity, so it is not to be neglected.
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Figure 3.15: SO4 profiles with different models for the high concentration case.

25

20

15 -
Conc.

(mmol/1)

10 -

5 -

I I Γ 1

_̂ Without chemical activity,
Extended Debye-Hückel model

>- Debye-Hiickel model

J I I I L

0.2 0.4 0.6
Position (cm)

0.8

Figure 3.16: Mg2+ profiles with different models for the high concentration case.
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Figure 3.17: SO4 profiles for the non-stationnary case.
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Figure 3.18: Electrical potential profiles for the non-stationnary case.
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3.3.5 Conclusion

The numerical model presented in this paper is a very powerful tool. It allows to cal-

culate the concentration and potential profiles for very complex transport cases while

considering the chemical activity and without having to make a priori assumptions

such as electroneutrality or null current. There is no limitation in the number of ions

considered, nor there is a restriction on the valence number of those species. Further-

more, the lD model presented in this paper can easily extended to 2D cases. Finally,

various equations to calculate the chemical activity coefficients can be implemented in

the numerical code.

3.4 Modeling the transport of ions in unsaturated

cement-based materials

E. Samson12, J. Marchand12

1Centre de recherche interuniversitaire sur le béton,
Université Laval, Québec, Canada, GlK 7P4

2SIMCO Technologies inc.,
1400, boul. du Parc Technologique, Québec, Canada, GlP 4R7

Abstract

This paper gives the details of a multiionic transport model intended to de-

scribe the degradation of cement-based materials exposed to aggressive en-

vironments. The main algorithm is based on an operator splitting approach.

The first part of the calculations is dedicated to solving the transport equa-

tions without considering the chemicai reactions. The concentration profile

of each ionic species is calculated by taking into account diffusion, electrical

coupling between the ions, chemical activity effects and advection caused

by a capillary suction flow. In the second part, a chemical code corrects

the concentration profiles to enforce the equilibrium between the pore solu-

tion and the various solid phases of an hydrated cement paste. The model

is compared to experimental results of hydrated cement pastes exposed to
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pure water and sodium sulfate solutions. Long term simulations were also

performed to analyze the behavior of the algorithm.

3.4.1 Introduction

Concrete and other cementitious materials· are very reactive media that may be sig-

nificantly altered from the contact with an aggressive environment. These materials

are made of three main phases in equilibrium: aqueous, solid, and gaseous. The aque-

ous phase, occupying a portion of the porous space, is a highly charged ionic solution

containing mainly the following species: O H , Na+, K+, SO4~and Ca2+. The solid

phase is a composite mixture of ill-crystallized hydrated calcium silicates (C-S-H) and

other crystalline phases like portlandite (Ca(OH)2). The aqueous and solid phases are

in equilibrium; when the pore solution is disturbed, an amount of one or more solid

phases will be either dissolved or precipitated in order to reach back the equilibrium

state. The solid phase can also incorporate aggregates of different sizes. These aggre-

gates are generally much less reactive than the hydrated cement paste. Consequently,

their effect on the equilibrium between the paste and the aqueous solution is neglected.

The gaseous phase is a mixture ofdry air and water vapor. It contains no ions. Upon

drying of the materials, the pressure difference between the gaseous and the aqueous

phase, called the capillary pressure, will give rise to capillary suction. The resulting

movement of water will result in an advection effect on the ions of the pore solution.

The previous description could be applied to most porous materials. What distin-

guishes cement-based materials is first and foremost the high level of concentration of

the ions in the pore solution, which means that the electrical coupling between the

ions and chemical activity effects can hardly be neglected. Furthermore, it was already

mentionned that the solid phase is very reactive; some phases are very soluble. Con-

sequently, the sustained contact of a concrete structure with water can lead to a fast

deterioration of the material, caused by the leaching of the ions in the pore solution.

Also, the presence ofaluminum in the hydrated cement paste combined with the contin-

uous penetration of external ions like sulfate or chloride will result in the precipitation

of aluminum-based solid phases that can be very detrimental to structures during their

service-life.
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This paper presents a multiionic transport model in unsaturated materials dedicated

specifically to cementitious materials. Beside accounting for the classical Fick's diffusion

mechanism, it also considers the electrical coupling between the various ions as well as

chemical activity effects. Furthermore, as mentioned earlier, the advection phenomenon

due to capillary suction is also considered. Finally, several chemical reactions typical

to cement-based materials are taken into account.

The model was written under the hypothesis of a constant temperature. The solid

phase is assumed non-deformable. External mechanical forces are thus not considered.

Hydration of the cement is not considered in the calculations. It implies that the

composition of the hydrated cement paste provided to the model as an input parameter

will only change through time as a result of chemical reactions caused by the external

environment. Finally, the hydrated products forming the solid skeleton are assumed

to be uniformly distributed throughout the material. The model is presented for the

lD case. All exemples presented in the paper are related to external sulfate attack or

calcium and hydroxide leaching.

3.4.2 Transport model

To model the transport of ions occuring in the liquid (aqueous) phase, the equations

were first written at the microscopic scale. They were then integrated over a Representa-

tive Elementary Volume (REV, see Figure 3.19) using the homogeneization (averaging)

technique, to yield the equations at the macroscopic scale. Details of this technique

can be found in references [18, 156].

The macroscopic equation for the transport of ionic species % is based on the ex-

tended Nernst-Planck equation with an advection term [85]. Once integrated over the

REV, it gives: [162]

diffusion electrical coupling chemical activity advection

where c¿ is the concentration of the species i in solution, c\ is the concentration in solid

phase, 6S is the volumetric solid content, Θ is the volumetric water content, D¿ is the
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Vapor

Solid

Figure 3.19: The Representative Elementary Volume

diffusion coefficient, z% is the valence number of the species, F is the Faraday constant,

R is the ideal gas constant, T is the temperature of the material, φ is the electrical

potential, 7¿ is the chemical activity coefficient, Vx is the average velocity of the fluid

in the pore system under the action of capillary suction, and r¿ is a source/sink term

accounting for the creation of the ion % in solution as a result of chemical reactions.

This equation is very different from the classical diffusion model where only the

term bearing the "diffusion" label in equation (3.90) usually appears. This term models

the movement of the ions as a result of their thermal agitation. It is best known as

Fick's law.

But ions in solution bears electrical charges. As ions have different drifting veloc-

ities, the fastest ions tends to separate frora the slower ones. However, since charges

of opposite signs mutually attract each other, the faster ions are slowed down and the

slowest ones are accelerated, in order to bring the system near the electroneutral state.

This creates an electrical potential φ in tbe material. This term is labeled "electrical

coupling" in equation (3.90). Measurements ofdiffusion potential in cemetitious mate-

rials were performed by Zhang and Buenfeld [210]. To take this potential into account,

Poisson's equation is added to the model [85]. It is given here after being averaged over

the REV [156]:

r — ( Θ— ] H Θ I V^ ZiCi ) = 0 (3.91)

where r is the tortuosity of the porous network, e is the dielectric permittivity of the

solution and N is the total number of ionic species. The validity of this equation is
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based on the assumption that the electromagnetic signal travels much more rapidly than

ions in solutions. This allows to consider an equation from electrostatics in a transient

problems. The dielectric permittivity of pure water is considered in the calculations.

The next term in equation (3.90) that differs from a classical diffusion model is

related to chemical activity. To calculate the chemical activity coefficients 7¿s, several

models are available. However, well-known models such as Debye-Hiickel or Davies

[133] are not adapted to the specific case ofcementitious materials, which bear a highly

charged pore solution. A modification of Davies' relationship was found to yield good

results [155]:

ln7l = - - 4 z , V 7 i 0 . 2 4 . 1 7 x 2 0 / ) ^ J
1 + aiBfl v^ÜÜÜ

where / is the ionic strength of the solution:

1 N

T — - V ^ 72r- (3 Q3Ì
i — 2_jZic% {o.yo}

2 i=i

calculated in mmol/L. In equation (3.92), A and B are temperature dependant param-

eters, given by:

. /o z?2 „
(3.94)

(3.95)

where e0 is the electrical charge of one electron, e = ereo is the permittivity of the

medium, given by the dielectric constant times the permittivity of the vacuum. Finally,

the parameter a¿ in equation (3.92) depends on the ionic species. Its value is 3 x 10^10

for OH", 3 x 10"10 for Na+, 3.3 x 10"10 for K+, 1 x 10"10 for SO^~, 2 x 10"10 for C1"

and 1 x lCT13 for Ca2+[155].

Modeling of the movement of water in the pore network under the effect of capillary

suction is performed with Richard's equation [162, 44, 202]. This equation is devel-

oped under the following main assumptions: isothermal conditions, isotropic material,

non-deformable solid matrix, negligible gravitational effect, and water movement slow

enough to have equilibrium between the liquid and the gaseous phase. The equation is

given by:
Pifí F> / F)ft \

(3.96)
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where Dg is the moisture diffusivity coefficient. It is the sum ofthe diffusivity coefficient

of vapor and water. An expression is also needed for the average speed of the liquid

phase, which appears in equation (3.90). It is given [44] by:

V, = -DLfx (3.97)

where D¿ is the water diffusivity coefficient. Equation (3.97) allows to transform equa-

tion (3.90) as:

d{6c,)

dt dt

There are two terms remaining in the model that need to be discussed. The first

one on the left hand side of equation (3.98) involves cf, the concentration of species i

in solid phase. This term is used to describe the exchange between the solid and the

aqueous phase [18]. The other term is r¿, which is a source/sink term in the aqueous

to model the creation or removal of ion i. They will be considered in the next section.

3.4.3 Modeling the chemical reactions

There are several types of chemical reactions (see reference [149] for a comprehensive

review). The homogeneous reactions are those occuring solely in the aqueous phase, like

the formation or the dissociation of acids. The heterogeneous reactions involves more

than one phase, like the solid and aqueous ones, for example. They can be divided in two

groups: surface and classical reactions. The surface reactions occur at the solid/liquid

interface. Adsorption of ions, i.e. the capture of ions by the surface of the solid as a

result of electrostatic forces, falls in this category. Finally the dissolution/precipitation

reactions are part of the classical category. Dissolution and/or precipitation occur when

a solid is no longer in equilibrium with the solution with which it is in contact. If the

activity product of the ions in solution involved in the reaction is above the equilibrium

constant, some ofthe ions will precipitate in order to reach equilibrium. In the inverse

situation, dissolution will occur. In equation (3.98), the term d(6sc¡)/dt corresponds

to heterogeneous chemical reactions whereas the term rt corresponds to homogeneous

ones.
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Different techniques have been used to include chemical reactions in ionic transport

problems. In early models (see for instance Miller and Benson [127]) the equations that

model the chemical reactions were solved simultaneously with the transport relation-

ships. The current trend in reactive transport modeling is to split the transport part

of the process from the chemical reactions. This method gained a lot of popularity

after the publication of a paper by Yeh and Tripathi in 1989 [207] which showed that

important CPU times could be saved by using such an uncoupled approach. Models by

Grove and Wood [73], Yeh and Tripathi [208], Walter et al. [198] and Xu et aI. [206]

are all based on this operator splitting approach.

The operator splitting approach is divided in two main classes. First, it is possible

to iterate between the transport and chemical reaction set of equations within a time

step until convergence is reached. This is called the sequential iterative approach (SIA).

Another algorithm consists in solving the transport and chemical reaction part of the

model without iterations between these two modules. It is called the sequential non

iterative approach (SNIA). The papers cited previously [73, 208, 198, 206] are all based

on the SNIA.

The operator splitting procedure introduces a numerical error in the resolution of a

reactive transport problem. Systematic analyses were performed on simple models to

evaluate this error. Herzer and Kinzelbach [87] studied the equation:

where 9S is the solid volumetric constant, φ is the porosity, c is the concentration, D

is the diffusion coefficient, v is the fluid velocity and k¿ relates c and the concentration

cs in solid phase: cs = k¿c. The difference between the exact solution and the solution

calculated by separating transport and chemistry is given by:

(R - 1) vAt
err = ^ ^ ~ (3.100)

where R = 1 + kd9s/4> and Δί is the time step. The error is thus proportional to Δί

and tends to zero as the time step is decreased. Valocchi and Malmstead [193] studied

the equation:

| ^ * + f c _ O (3.101)
dx

where k characterizes a radioactive decay process. The numerical error introduced in
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Table 3.2: Analysis of the accuracy of the operator splitting scheme on various simple

models (from reference [17]).

Case Model Accuracy Notes

A s = g, k = 0, r = 0 O(At2)

B à = kc, r = 0, g = 0 O(At)

O(At2) homog. bound, conditions

C s = r[(R-l)c-s],g = 0, O(At)

k = r(R-l)

D s = (R ~ l)c, r ^> oo in case C O(At)

O{At2) homog. bound, conditions

the solution due to operator splitting is given by:

err = cov (h\ - e~kAt) - Δί e ~ ^ ^ (3.102)

where co is related to the flux boundary condition as: (vc — DctX)\x-o — vc0. Again, the

error goes to zero as the time step is reduced. Kaluarachchi and Morshed [94] studied

the same case as Valocchi and Malmstead but with the following boundary condition:

^ ·
where λ = 0 and λ -^ oo correspond to continuous and pulse boundary conditions,

respectively. The conclusions are the same, the error being reduced as Δί is reduced.

Barry et al. [17] studied the more general case:

dc ds _ d2c dc , ds , . .
+ D + U t h

 Wt-kc-rs + 9 (3.104)

with both homogeneous and inhomogeneous boundary conditions. The results are

summarized in Table 3.2. The results are in agreement with those presented previously.

Except for the unusual homogeneous boundary condition case, the error introduced by

the operator splitting procedure is of the order of the time step value.

Reducing the time step leads to an increase in calculation time. On the opposite, the

SIA does not require time steps as small as in the SNIA, because the iterations between
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transport and chemistry reduce the splitting error [87]. But iterations within a time

step increase CPU time. Walter et al. [198] studied both approaches to determined

which is the most efficient. They modeled a test-case that illustrates the controlling

geochemical processes occuring in a carbonate aquifer under the impact of acidic mine

tailings effluent. Simulations were performed with both SIA and SNIA algorithms.

They involved complexation, dissolution/precipitation, redox and gas exchange chemi-

cal reactions. The various profiles calculated with both algorithms showed less than a

2% difference in position, calculated with regard to the position of the source of con-

taminant. However, the CPU load was 3.5 times more important for the SIA model.

Following these results, we chose to work with the SNIA algorithm.

The transport model considered in references [73, 208, 198, 206] is a simplified

version of equation (3.98). It assumes that the fiuid flow is strong enough to neglect

diffusion to the profit of dispersion effects (see reference [18]). Other phenomena like

electrical coupling between the ions and chemical activity (see equation 3.98) are also

neglected, which leaves the linear transport operator:

L{ci) = -Dgrad(q) + c¿v (3.105)

where D is the dispersion tensor and v is the fluid velocity, both indépendant on the

ionic species i. This allows to rewrite the transport equations in order to eliminate the

terms r¿ (this topic is discussed in paper [159]). Accordingly the treatment of homo-

geneous reactions is greatly simplified. These simplifications are common to almost all

ionic transport models applied to geochemical processes.

Such simplifications are not possible for a nonlinear transport model like equation

(3.98), which complicates the chemical reg,ction modeling. However, heterogeneous

reactions are more important than homogeneous one in cementitious materials. For ex-

ample the penetration of sulfate ions may lead to the formation of ettringite and gypsum

in concrete in such a quantity that the materials sustains physical damage. Portlandite,

which occupies more than 5% of the total volume of the material, is highly soluble; its

rapid dissolution can have important effect on the overall strength of a concrete struc-

ture. Accordingly, the homogeneous reactions are neglected in the present model, which

allows to eliminate the term r¿ from equation (3.98). Only dissolution/precipitation re-

actions will be considered.
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Table 3.3: Solid phases in hydrated cement

Narae Chemical formula Expression for equilibrium Value of equilibrium

constant (-log Ksp)

Portlandite Ca(OH)2 Ksp = {Ca}{OH}2 5.2

C-S-H 1.65CaO.SiO2.(2.45)H2O
 f Ksp = {Ca}{OH}2 ( 6.2 *

Ettringite 3CaO.Al2O3.3CaSO4.32H2O Ksp = {Ca}e{OH}4{SO4}
3{Al(OH)4}

2 44.0

Monosulfates 3CaO.Al2O3.CaSO4.12H2O Ksp = {0a}4{0H}4{SO4}{Al(OH)4}
2 29.1

Gypsum CaSO4.2H2O Ksp = {Ca}{SO4} 4.6

Mirabilite Na2SO4.10H2O Ksp = {Na}2{SO4} 1.2

{. . . } indicates chemical activity

t The C-S-H is considered having a C/S ratio of 1.65

* The C-S-H decalcification is modeled as the portlandite dissolution with a lower solubility

Within the framework of the SNIA algorithm, the term involving c| is removed from

equation (3.98), which leave the following equation to solve during the transport step:

a i n 7 < 3θ\
+ D C ) ° ( 3 · 1 0 6 )

This equation still has to be coupled to equations (3.91) and (3.96). The transport part

ofthe process is thus closed. The unknows are φ, Θ, and iV times c¿, i.e. a concentration

for each ionic species taken into account. There is accordingly iV equations (3.106),

one for each ionic species, equation (3.91) to solve the electrical potential and equation

(3.96) for the water content. The other parameters are either physical constants, like

T, F, R, Zi, e0, e, or material parameters that have to be determined experimentally:

Di, τ, Dg, DL. At the end of this calculation step, ionic profiles are known for each

ionic species.

After the transport step, the concentrations may not be in equilibrium with the

solids. They will be corrected in the chemical reaction step, by adjusting the solid

phases properly. This is achieved by enforcing the algebraic relationship describing the

equilibrium state of each solid phase present at a given location. This relationship is

written in a general form as [206]:

N

Km = Π <™7jmÌ W Ì t h m = !> · · · ' M (3-107)
t = l

where M is the number of solid phases, iV is the number of ions, Km is the equilibrium

constant (or solubility constant) of the solid m, c¿ is the concentration of the ionic

species i, 7¿ is its chemical activity coefficient, and vmi is the stoichiometric coefficient

ofthe ¿th ionic species in the mth mineral. The right-hand side of equation (3.107) is

called the ion activity product.



140

To illustrate the chemical modeling, we consider a problem where portlandite (CH),

ettringite (AFt) and gypsum (G) are involved (see Table 3.3). The chemical equilibrium

equation for each solid is:

#CH = 7ca7âH[Ca][OH]2 (3.108)

î AFt = 7ea7¿H7s3o47L(OH)4[Ca]6[0H]4[S04]
3[Al(0H)4]

2 (3.109)

#G = 7ca7so4[Ca][SO4] (3.110)

where the square brackets represent the concentrations. If the concentrations in solu-

tion do not respect the equilibrium equations (3.108) to (3.110), solids will either be

dissolved or precipitated until these algebraic relationships are satisfied. Let's assume

that the concentrations c° (e.g. [Ca°], [OH0], [SO4], [Al(OH)4]) are the output ofthe

previous tranport calculation step and do not respect equilibrium. The equilibrium

concentrations can be expressed as:

M

Ci = c° + J2umiXm (3.111)
m=l

where the Xms represent the amount of a given solid that has to dissolve in order to

reach the equilibrium state. Following this, the system of equations (3.108) to (3.110)

is rewritten as:

XCH + 6XAFt -|- XG][OH° + 2XCH + 4XA F t]
2 (3.112)

6XAFt + XGf

x [OH° + XCB + 4XAFt]
4[SO°4 + XG + 3XAFt]

3[Al(OH)° + 2XA F t]
2 (3.113)

î G = 7ca7sojCa0 + XcH + 6XAFt + XG][SO° + XG + 3XAFt] (3.114)

This nonlinear system of equations is solved for the Xms. Following the convention

adopted previously, a positive Xm means dissolution and a negative one indicates the

precipitation of solid m. At the end of the chemical equilibrium calculation, each solid

phase S is adjusted according to the following relationship:

Sl = S^-9XmTjp with m = l , . . . , M (3.115)

where Sm is the amount of a given solid phase (in g/kg of material), t indicates the

time step, Fm is the molar mass of the solid m and p is the density of the material. The
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ionic concentrations are also adjusted following the chemical equilibrium calculation,

according to equation (3.111).

The solids considered in this paper are listed in Table 3.3, along with their equi-

librium constant. They are portlandite, C-S-H, ettringite, monosulfates, gypsum and

mirabilite. The C-S-H is treated in a particular way. This solid phase exhibits an incon-

gruent behavior [23], which means that the dissolution rate ofthe ions composing this

mineral does not follow the stoichiometric coefficient. As a consequence, the composi-

tion of the C-S-H varies as the dissolution progresses. According to reference [23], the

calcium to silicate ratio of the C-S-H (C/S) starts at about 1.65 in the sound hydrated

cement paste and decreases as calcium is lost. Berner modeled the incongruent behav-

ior of the C-S-H by assuming that it is composed of two different solids, Ca(OH)2 and

CaH2SiO4, each having its own equilibrium constant that depends on the C/S ratio.

The part associated to portlandite dissolves first. The remaining CaH2SiO4 dissolves

very slowly [23]. Studies have shown that C-S-H exposed to pure water for a long time

keeps a C/S ratio between 0.8 and one in the decalcified zone [86]. Considering this,

we model the dissolution of C-S-H by considering only the Ca(OH)2 part. Berner's

approach is further simplified by assuming that this fraction of the C-S-H dissolves

with a constant equilibrium value. Its value is an average of the solubility constant of

Ca(OH)2 at C/S=1.65 and C/S=1.0. It is given in Table 3.3.

The chemical reactions, beside capturing or releasing ions as solid phases are pre-

cipitated or dissolved, will have an effect on the transport properties by affecting the

porosity of the material. If for example gypsum is formed at some location, the local

porosity will decrease, thus reducing the area across which ions are able to diffuse.

This will reflect on their diffusion coefficient. This effect can be taken into account if a

relationship between the diffusion coefficient and the porosity is known. In the present

paper, the following relationship is used:

Don = 4.83xlO-x%aste - 7.79xlO^11 (3.116)

where ç6paste is the total porosity of the paste in the cementitious material and L>oH is

the diffusion coefficient ofthe OH~ ion. Equation (3.116) was obtained from migration

tests (see reference [161] for details on this test method) made on various cementi-

tious materials made with ASTM Type 10 cement at different water to cement ratio.

The total porosity of each sample was evaluated from the ASTM C642 procedure and
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converted to a paste porosity by dividing by the paste volume of the mixture. Upon

chemical modification to the material, the porosity of the paste is calculated as:

M

0paste = Cs\e + E O C " - K n ) (3.117)
m=l

where Vs is the volume of a given solid phase, per unit volume of cement paste, and M

is the total number of solid phases. Based bn this model, the correction factor G that

multiplies the diffusion coefficients Di of each ionic species is calculated as follow :

7^Damaged paste

Initial paste
G =

 nInitial paste (3.118)

3.4.4 Numerical model

This section is divided in two parts. First, the numerical algorithm for the transport

model, i.e. equations (3.106), (3.91) and (3,96), is presented. Then, the details on the

resolution of the equilibrium problem in the chemical part of the model are given.

The numerical algorithms for the Nernst-Planck/Poisson model, i.e. the diffusion

of ions taking into account the electrical coupling but not the chemical activity nor the

capillary suction, has already been studied [157]. The authors tested two algorithms

using the finite element method. The first one, with the equations uncoupled and

solved by succesive iterations, was found to converge only for very small concentrations.

This algorithm is not suitable for cement-based materials since their porous network

is filled with an highly charged aqueous solution. In the other algorithm, equations

were solved simultaneously with the Newton-Raphson method. The results in this case

were not limited to a given concentration level. The same algorithm was later used

to solve the extended Nernst-Planck model [158], which takes into account chemical

activity gradients. Following these results, the coupled algorithm will be used with the

current model, which adds a convection term to the extended Nernst-Planck equation.

Numerical tests will be performed to assess>the validity of this approach.

To ease the writing, the numerical model will be shown for a two ion case in lD.

But the model can easily be extended to take into account more species. The numerical

examples that will be presented later involve six ions.
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The weighted residual form ofthe set ofequations (3.106), (3.91) and (3.96), upon

integration by parts, is given as:

W= / (¿Φ)
JL
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where Wext includes the boundary integrals associated to the flux boundary conditions

and (¿>Φ) is the vector of the weighting function, defined as:

(¿Φ) = (5 c l 5c2 δθ δφ)

The correction factor G is directly included in fo:

with the solid phases evaluated at the previous time

The weak form is discretized using the Galerki:i method with a standard linear

two-nodes element (see reference [142] for a complete text on the method). The ap-

proximation of the solution on each element is written as :

(3.120)

mulation (3.119). It is calculated

step.

C\

C2

0

Φ

(3.121)
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[Ν]

/Vi
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0
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(3.122)

(3.123)21 οχ ψχ Ci2 C2 2 u2

where Νχ and N2 are the shape functions. The subscripts i and j for the concentrations

in the vector (Un) (equation 3.123) designate the species i at the node j of one element.

The elementary matrices are thus expressed as :

[Ke] = / ([Bf[Dx}[B] + [Bf[D,}[N} + [Nf[D,] dx

with

[Me] = / [N]T[C}[N] dx
Ji*
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(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

(3.130)
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The assembly of elementary matrices [Xe] and [Me] leads to the following system

of equations:

[M]{U} + [K]{U} = {F**} (3.131)

The time discretization is performed using the implicit Euler scheme:

+ [Kt]{Ut} = {FT^} (3.132)

where Δί is the time step. The subscript t stands for the actual time step and t — Δί

the previous one. Defining the matrices

(3.133)

*t} (3.134)

the system of equations can be written as:

[K]{Ut} = {F} (3.135)

This nonlinear system of equations is solved at each time step with the modified

Newton-Raphson method. Numerical simulations have shown that the convergence

rate with a tangent matrix calculated without the nonlinear terms arising from the

coupling between the various variables in the model is almost the same as the one

with a complete tangent matrix. However, the calculation time is reduced since less

terms need to be calculated. Furthermore, its wider radius of convergence makes this

algorithm even more interesting. The elementary tangent matrix is thus given as:

[K%\ = [M*] + &t[K*] (3.136)

The elementary matrices in equations (3.124) and (3.125) are evaluated through

Gauss numerical integration method. Accordingly, the variables appearing in the ma-

trices [Di], [D2], [D3], and [C] are calculated at the integration points. To calculate

the terms d(ln^fi)/dx in (3.128), the ionic strength (equation 3.93) is calculated at each

nodes. Then the (ln7j)s are calculated for each species and at each nodes with equation

(3.92). The value oid(ln^/i)/dx can then b? evaluated at every integration points.

After solving the transport equation, the concentrations are used as input in the

chemical equilibrium module. The numerical method is illustrated using the nonlinear
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system ofequations (3.112) to (3.114). Newton's algorithm is used to solve the system

of equations:

f ^ ^ * 1 ) } (3.137)

(3.138)

where [Κχ] is the tangent (or Jacobian) matrix, Δ.Χ is a variation calculated at each

iteration, {R} is the residual vector, and k indicates the iteration level. The residuals

are given by:

° + XCR + 6XA F t + XG][OE° + 2XCÏÎ + 4XAFt]
2 - (3.139)

x [OH0 + 2XcH + 4XAFt]
4[SO^ + XG + 3XAFt]

3[Al(OH)° + 2XAFt]
2 - KAFt (3.140)

RG = 7ca7so4[Ca° + XcH + 6XAFt + ^o][SO" + XG + 3XAFt] - KG (3.141)

The jacobian matrix is given by:

Kr =
dR dRG

(3.142)

The calculation of each term in this matrix is made by considering the activity coeffi-

cient constant. The latter are updated after each iteration from the updated concen-

trations (see equation 3.111). For example the term ^ C I i in the Jacobian matrix is

given by:

= 7ca7oH lW^}dx^ + φκ]ω^\ (3-143)

where the concentrations [Ca] and [OH] are calculated according to equation (3.111).

The calculation ofequation (3.143) thus gi^es:

= 7ca7^H [[OH]2 + 4[Ca][OH]] (3.144)

All terms in the Jacobian matrix are calculated with values found at the previous

iteration level.

The system ofequation is solved by iterating over equations (3.137) and (3.138).

This calculation procedure is repeated two times. The first time, the chemical equi-

librium calculation is made only for solids that are present at a given node. During
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Table 3.4: Chemical and mineralogical composition of the CSA Type 10 cement.

Oxide

SiO2

CaO

A12O3

Fe 2 O 3

SO3

MgO

K2O

Na 2O

LOI

19.

62.

4.

3.

3.

2.

0.

0.

2.

%

78

04

39

00

20

84

91

32

41

Compound

C3S
/~1 Q
v_y2o

Ρ Λ

C4AF

%

59.3

12.0

6.6

9.1

the second step, the calculation is made for solid present at the node and also for the

solids for which the ion activity product is greater than the equilibrium constant. This

procedure allows to avoid the impossible situation where dissolution of a non-existing

solid occurs at a given location.

3.4.5 Experimental validation

Cement pastes were prepared at a water/cement ratio of0.6 using an ordinary Portland

cement (Canadian CSA Type 10). The chemical and mineralogical compositions ofthe

cement are given in Table 3.4. The mixture proportions are listed in Table 3.5. The

mixture was prepared using deionized water and without any chemical admixture. It

was batched under vacuum (at 10 mbar) to prevent the formation of air void during

mixing. It was then cast in plastic cylinders (diameter = 7 cm; height = 20 cm). Molds

were sealed and rotated for the first 24 hours to prevent bleeding. Cylinders were then

demolded and sealed with an adhesive aluminum foil for at least 12 months at room

temperature.

After the hydration period, the cylinders were sawn in disks for testing, in order to

determine the different parameters needed for the ionic transport simulations. Prior to

testing, the disks were vacuum saturated in a 300 mmol/L NaOH solution during 24
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hours.

The porosity of the paste was determined according to the ASTM C642 standard

procedure. A value of 52.2% was measured. Since the ionic transport during the

validation tests occurs in saturated condition, the water content is assumed constant

in the material and has the same value as the porosity.

The pore solution was extracted following the experimental procedure described

in reference [16]. It allows to determine the concentration of these ions: OH~, Na+,

K+, SO4~, and Ca 2 + . Because of experimental error, the solution did not respect

electroneutrality. The concentration in OH~ was adjusted to make sure that the positive

and negative charges are equal. The concentration of A1(OH)J is evaluated with the

chemical equilibrium code described in the previous section in order to have a solution

in equilibrium with portlandite, ettringite and monosulfates.

The ionic diffusion coefficients and tortuosity were determined from migration tests.

A complete description of the testing method is given in reference [161]. The test was

made on two 20 mm disks. All these measured materials parameters are listed in Table

3.5. They will be used in the numerical simulations to reproduce the tests.

The table also include the initial amount of each solid phase in the material: port-

landite (CH), C-S-H, ettringite (AFt) and monosulfates (AFm). It is calculated from

the cement composition (CaO, SiO2, Al2O3 and SO3) by solving the following set of

equation:

+ 1.65^Sch + 6 ^ 5 A F t + 4 ^ 5 A P m = 10 C a O ^ (3.145)
CH J- csh L AFt J- AFm J- CaO

:ι ' (3.146)
csh

= 10 Α 1 2 Ο 3 ΐ ? ^ - (3.147)^ 5 A F t + 2 ^ S A F m + 2£A 12O 3 Î^S c s h 10 Α12Ο3ΐ?
AFt J- AFm J- A12O3 1 A12O3

^ ^ = 10 S O 3 ^ (3.148)
J- AFt J- AFm J- SO3

where the r¿s are the different molar masses. The term Âi2O3 is an amount of Al2O3

that substitutes in the C-S-H. According to reference [139], that substitution rate varies

between 2% and 5%. The value of 2% is used for the calculations. To account for the

hydration degree of the material, the quantity of CaO, S1O2, Al2O3 and SO3 should

be multiplied by the appropriate factor, i.e. multiply each quantity by 0.9 for a 90%
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Table 3.5: Parameters for the numerical simulations on the cement paste submitted to

the degradation tests.

Parameter

Cement type

w/c

Paste mixture

Cement

Water

Density

Porosity

Initial pore solution

OH-

Na+

K+

SO^-

Ca2+

Al(OH)4

Tortuosity

Value

10

0.6

(kg/m3)

1088.8

653.3

1742.1

0.522

(mmol/L)

429.29

111.07

327.00

5.57

1.29

0.21

0.0305

Parameter

Initial solid phases

Portlandite

C-S-H

Ettringite

Monosulfates

Diffusion coefficient

OH"

Na+

K+

so2-
Ca 2 +

Al(OH)4

Τ

F

R

e (pure water)

e0

Value

(g/kg)

195.5

89.1

30.7

94.3

(m2/s)

16.1xl0^^11

4.1xl0"1 1

6.0xl0"1 1

3.3xl0~11

2.4xl0"1 1

1.7xl0"11

25°C

96488.46 C/mol

8.3143 J/mol/°K

6.94xl0"1 0 C/V/m

1.602xl0"19 C
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hydration degree. This value was used for the calculations on the cement paste.

The remaining disks were submitted to a degradation test. It consists in exposing

the pastes to different controlled environments. The 20 mm disks were first sealed on

the side and on one face with silicon. They were then immersed in 30 L of aggressive

solution for a minimum of three months. Two different solutions were used: deionized

water and a 50 mmol/L Na2SO4 solution. In the case of the Na2SO4 solution, disks

were also exposed during six months and one year. During the exposure period, the

solution were renewed on a weekly basis in order to maintain uniform conditions.

After the test, small prisms (20 mm x 3 mm x 12 mm) were cut from the disk and

immersed in isopropylic alcohol for two weeks. They were then dried under vacuum

for a week. The samples were finally impregnated with an epoxy resin, polished and

coated with carbon. After the conditioning was completed, the samples were analysed

with a microprobe (Cameca SX-100 operating at 15 kV and 20 nA), which allows to

determine their degradation state. The analysis was performed over 1000 points along

the length of the sample. Profiles of calcium and sulfur were measured and compared

to the numerical model. The microprobe profiles are expressed in count/sec.

The simulations were performed with the parameters listed in Table 3.5. The bound-

ary conditions are ofthe Dirichlet type. For the deionized water case, all concentrations

are set to zero at x = 0. The water content is set to the porosity value of 0.522 at

x = 0. Finally, the potential φ is also set to zero at x — 0. No boundary conditions are

applied at x = L. The spatial discretization was performed with a uniform 100 element

mesh over a 20 mm domain. Time steps of 900 second were used.

The output of the model consists in the profiles of the variables, i.e. the N con-

centrations along with the water content and the electrical potential, as well as the

profiles of the M solid phases. The total caloium content is obtained from the addition

of the calcium in each solid phase. It is then converted in grams of calcium per kg of

dry material. The same procedure is followed for sulfur. The comparison between the

numerical simulations and the microprobe measurements is shown in Figures 3.20 to

3.22.

Figure 3.20 shows the comparison of the model with the experiment for the case

of the cement paste exposed three months to water. The experimental profile show
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Figure 3.20: Validation test - Comparison of the model with the calcium profile for

the paste exposed to water for three months. The boundary x = 0 corresponds to the

exposed surface.

high peaks of calcium starting at about 2 mm and going deeper toward x = L. They

correspond to portlandite. At around 2 mm, these peaks disappear, which indicates

the dissolution of portlandite. A plateau isobserved between 0.8 and 2 mm, followed

by a drop of calcium near the surface of the material. This drop in calcium content

is associated with the decalcification of C-S-H. The plateau indicates that the decalci-

fication of C-S-H does not start immediately after the dissolution of portlandite. The

model was able to reproduce with accuracy the main features of the microprobe profile.

As shown in Figure 3.20, the predicted dissolution of portlandite begins at around 2

mm. The simulations shows the presence of a plateau and matches very well Avith the

experiment for the calcium drop near the surface.

The model is then compared to the sulfur profiles measured on the paste exposed to

sodium sulfate at three different time interval on Figure 3.21. Following the x axis from

10 mm to the surface, the measurements show a low level of sulfate, corresponding to

the level in the sound paste. At some point, the level of sulfate increases. This increase

is located roughly at 4.5 mm after 3 months, 5.5 mm after 6 months and 8 mm after a
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Figure 3.21: Validation test - Comparison of the model with the sulfur profiles for the

paste exposed to sodium sulfate.
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year. It corresponds to the penetration of an ettringite front in the material, as a result

of the exposure to sodium sulfate. Finally, an important peak of sulfur is observed near

the surface, corresponding to gypsum formation. Figure 3.21 shows that the model

reproduces very well the experimental profiles. The penetration of the ettringite front

is accurately followed, as well as the position of the gypsum peak. Furthermore, the

model also predicts the widening of the gypsum peak through time.

The same analyis is done for the calcium profiles at 3, 6 and 12 months for the paste

exposed to sodium sulfate. The results are shown on Figure 3.22. In all cases, the model

predicts accurately the dissolution of portlandite. On Figures 3.22(b) and 3.22(c), it

was observed that the plateau of calcium between the dissolution of portlandite and

the decalcification of C-S-H is higher than in Figure 3.20. This can be attributed to

the gypsum peak, which forms right next to the portlandite dissolution front. The

model predicts this higher calcium plateau. The only discrepancy between the model

and the measurements is observed in Figure 3.22(a). The model predicts the presence

of a calcium plateau occuring after the dissolution of portlandite. But it can not be

observed on the experimental measurement. So far, no explanation could be found for

this.

Another series of simulations was performed to evaluate the impact of the electri-

cal coupling and the chemical activity effect on the numerical results. The case of

the cement paste exposed to sodium sulfate was considered. The first simulation was
i

performed with the materials properties listed in Table 3.5, but with the electrical cou-

pling and chemical activity terms neglected. This gives concentration profiles that do

not respect the electroneutrality requirement. Another simulation was performed using

the average of the diffusion coefficients in Table 3.5 for each ionic species. This allows

to maintain a neutral solution throughout the calculations. Simulations made while

neglecting only the chemical activity term showed very little influence of this term.

However, the same can not be said about the electrical coupling term, as shown on

Figure 3.23. It clearly shows that neglecting the electrical coupling leads to very differ-

ent results that do not match with the experimental measurements. In the simulation

made with the average Di, the formation of a gypsum peak is not even predicted.
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3.4.6 Long-term simulation

Other simulations are performed to investigate the behavior of the SNIA algorithm

used in the model, as well as the effect of a gradient in water content on the ionic

transport. The case considered consists in a 15 cm thick concrete slab lying on a soil

bearing a high concentration of sodium sulfate. The concrete has a water/cement ratio

of 0.5 and is made with a CSA type 50 cement. The soil is at a relative humidity of

85%. The top of the slab is exposed to air at a 70% relative humidity. This gradient

in relative humidity will create a flow of water directed upward that will contribute,

along with diffusion, to move the SO4~ ions into the material. The simulations were

all performed at a 25°C temperature.

The material properties are listed in Table 3.6. They were obtained from tests made

on several concrete samples. The evaluation ofporosity, initial pore solution, diffusion

coefficients, tortuosity and initial solid content was described in the previous section.

The value of the parameters F, R, e and e0 are given in Table 3.5.

To perform a simulation in unsaturated conditions, one needs to translate the rel-

ative humidity of the environment into water content, in order to apply the proper

boundary conditions. A water desorption isotherm was determined from the climate

box method [15]. It consists in exposing small hydrated paste samples to different rel-

ative humidity in tightly closed boxes. The different relative humidities are controlled

with saturated salt solutions. Once equilibrium is reached, the water content of the

sample is calculated from a mass measurement. The desorption isotherm is shown on

Figure 3.24. The water contents for the paste are converted to concrete values by mean

ofthe paste volume ofthe concrete. The water content at 70 and 85% relative humidity

are given in Table 3.6.

The transport parameters D$ (equation 3.96) and D^ (equation 3.106) are needed

to model the transport of water in the concrete slab. It was shown in reference [42]

that for high values of relative humidity, which approximately means 70% and above,

De ~ Di. This parameter is nonlinear and is generally expressed as an exponential

function for construction materials [74]: Dg = Aem. It was evaluated from moisture

transport tests performed on materials exposed on one side to water and on the other

side to different relative humidities. The tests are performed until the steady state is
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Table 3.6: Data for the numerical simulations

Properties

Cement type

w/c

Concrete mixture

Cement

Water

Agregates

Density

Initial pore solution

OH-

Na+

K+

sof-
C a 2 +

Al(OH)4

Rei. humidity (%)

70

85

Porosity

Tortuosity

Value

CSA50

0.50

(kg/m3)

350

175

1800

2325

(mmol/L)

215.1

98.2

114.6

1.0

2.2

0.1

θ (m3/m3)

0.0597

0.0852

0.121

0.0368

Properties

Cement composition

CaO

SiO2

A12O3

SO3

Initial solid phases

C-S-H

Portlandite

Ettringite

Monosulfates

Diffusion coefficients

OH-

Na+

K+

so2"
Ca 2 +

A1(OH)7

Water diffusivity

Temperature

Value

63.5

22.5

3.0

2.0

(g/kg)

24.4

48.9

7.6

9.7

K/s)
19.4xl0~11

4.9xl0~11

7.2xl0~11

3.9xl0"11

2.9xl0"11

2.0xl0~11

(m2/s)

2.1xlO-loe8·20

25°C
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Figure 3.24: Desorption isotherm measured on a CSA Type 50 hydrated cement paste

at a w/c ratio of 0.5

reached. The steady state moisture flows allow to obtain the following parameter value:

D e = 2.1xl0~10e8-2i9.

The boundary conditions in x = 0 corresponds to the ionic concentration in the

groundwater. For this particular simulation, the groundwater bears a 50 mmol/L

Na2SO4 concentration. Accordingly, concentrations in Na+ of 100 mmol/L and of

50 mmol/L for SO4~ are imposed through Dirichlet-type conditions. All other concen-

trations are set to zero. In x = 0.15, the material is in contact with air. A null flux is

imposed for all the species at this location.

The water content on both side of the slab was discussed previously. It is applied

with a convection condition:

<7conv = h(9 - ¿ U (3.149)

where h is the convection coefficient and θ^ ».s the water content corresponding to either

70% or 85% relative humidity. The value of h for the simulations is 5xlO~8 m/s. The

slab is assumed saturated initially; the water content thus corresponds to the porosity.

For the electrical potential ψ, a value of zero is set at x = 0.
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Figure 3.25: Solid phasedistribution after 20 years.

Before showing any simulation results, a few words should be written on the ability

of the chosen algorithm to handle the water flowing through the material as a result

of capillary suction. The relative importance of the water flow compared to diffusion

can be evaluated with the Peclet number (Pe). It is given by VL/D, where V is the

velocity of the flow, L is the length of the domain and D is the diffusion coefficient. In

the present case, V can be calculated with equation (3.97), with the gradient ofwater

content evaluated from the analytical solution of equation (3.96) in steady-state. It

gives 6.5xlO~11 m3/m2/s. D is taken as the average diffusion coefficient, 6.7xlO~11

m2/s. This results in a low Peclet number of 0.15. The problems commonly associated

with convection-dominated problems, like strong oscillations, are not likely to occur at

such low values of Pe. Even for a very high gradient of relative humidity such as 95%

- 60%, Pe is 0.36, still well below values expected to lead to numerical oscillations.

All the simulations were performed over a twenty year period. The first simulation

was performed with time steps of one day over a 100 element mesh. The solid phase

profiles are shown on Figure 3.25. It shows that the presence of sulfate in the ground-

water leads to the penetration of an ettringite front in the concrete slab as well as the

propagation of a gypsum peak toward the top of the structure. These features wera
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Figure 3.26: Effect of time steps on the position of the ettringite front after 20 years.

The simulations were made with 100 elements.

also observed experimentally on the microprobe analyses of the previous section. The

position of the ettringite front matches with the dissolution front of monosulfates. The

model also predicts the dissolution of portlandite and the decalcification of C-S-H, as

a result of OH~ and Ca2+ leaching in the groundwater. This phenomenon was also

observed on the hydrated cement paste submitted to the degradation tests. Finally,

it is interesting to observe the presence of ettringite formation on the top of the slab

(x = 15 cm). This is caused by the drying process, which leads to an increase of all

concentrations as the volume of liquid water is reduced.

The sensitivity of the model to time discretization was tested by doing the same

simulation with different time steps: 0.01, 0.02, 0.05, 0.1, 0.25, 0.5, 1, 2, 5 and 10 days.

The results are shown on Figure 3.26. All simulations were made with 100 elements.

It clearly shows the influence ofreducing the time steps on the solution. The ettringite

front is spread over a wide area for large time steps. As the latter decreases, the front

gets sharper. The figure also shows the convergence of the front as the time steps gets

smaller.

A similar sensitivity analysis was performed for the spatial discretization. Figure
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Figure 3.27: Effect of the mesh density on the position of the ettringite front after 20

years. The simulations were made with time steps of 86400 sec. (1 day).

3.27 shows the ettringite front location calculated with various mesh densities. A time

step of one day (86400 sec.) was used. It clearly shows that this parameter has not a

large influence on the numerical solution, contrary to the time step.

The last series ofsimulations was madeto show the influence ofthe water transport

on the chemical alteration of the material. The simulation made with 100 elements and

a time step of one day is compared to the same simulation without any gradient of water

content. In that case, the material remain saturated. The comparison for the ettringite

and portlandite fronts is showed on Figure 3.28. The ettringite front penetrates faster

in the material under the influence of a water content gradient. The water flow adds

to the diffusion flow in the case of the SO4~ ions, which contributes to accelerating the

penetration of the ettringite front. On the contrary, the dissolution of portlandite is

slowed. In that case, the water flow is opposed to the diffusion flux of OH~ and Ca 2 +

ions which tend to leach out of the material. As a consequence, the outside flux for

these ions is reduced, thus slowing the dissolution process of portlandite.
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3.4.7 Conclusion

The numerical model presented is based on the SNIA algorithm, in which the transport

and chemical parts of the ionic diffusion process are solved separately without iterations

between the two. Contrary to similar models existing in hydrology, the transport

equations take into account the electrical coupling between the ions and the chemical

activity effects. These effects are considered because cement-based materials bear a

highly charged pore solution.

The model was compared to experimental results, showing a good match with the

measurements. The model was able to reproduce simultaneous chemical effect like the

precipitation of ettringite and gypsum, as well as the dissolution of portlandite and

decalcification of C-S-H. Comparison with the experimental results emphasized the

importance of electrical coupling. Simulations made without considering this term in

the model showed large discrepancies with *̂ ,he measurements.

Another series of simulations were used to test the sensitivity of the algorithm to

various numerical parameters, namely mesh density and time steps. While the mesh
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density clearly showed no major influence on the numerical solution, the situation is

different for the time step. The simulations showed that a small time step is needed

in order to have a reliable result. Large time steps tend to produce wide, undefined

fronts. As the time step gets smaller, the solution converge to a unique sharp front.
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Chapitre 4

Application du modèle

4.1 Introduction

Ce chapitre présente différentes utilisations du modèle de transport ionique présenté

au chapitre précédent. Un premier article montre l'utilisation du modèle dans le but

d'analyser les résultats de l'essai de migration. Cette technique est couramment utilisée

dans le domaine du béton afin déterminer les coefficients de diffusion des différentes

espèces ioniques.

Le deuxième article présenté dans ce chapitre montre l'application du modèle à

l'analyse d'une dalle de béton reposant sur un sol dont la solution interstitielle porte

une faible teneur en sulfate. Cette analyse avait pour but de montrer qu'au-delà de la

formation d'ettringite, de faibles teneurs en sulfate peuvent aussi être à l'origine de la

formation de gypse. De plus, le faible pH du sol peut causer la dissolution de certaines

phases de la pâte de ciment.
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Abstract

Migration tests are now commonly used to estimate the diffusion coeffi-

cients of cement-based materials. Over the past decade, various approaches

have been proposed to analyze migration test results. In many cases, the

interpretation of test data is based on a series of simplifying assumptions.

However, a thorough analysis of the various transport mechanisms that take

place during a migration experiment suggests that some of them are proba-

bly not valid. Consequently, a more rigorous approach to analyze migration

test results is presented. The test procedure is relatively simple and con-

sists in measuring the evolution of the electrical current passing through the

sample. Experimental results are then analyzed using the extended Nernst-

Planck-Poisson set of equations. A simple algorithm is used to determine

for each experiment the tortuosity factor that allows to best reproduce the

current curve measured experimentally. The main advantage of this ap-

proach resides in the fact that the diffusion coefficients of all ionic species

present in the system can be calculated using a single series ofdata. Typical

examples ofthe application ofthis method are given. Results indicate that

the diffusion coefficients calculated using this approach are independent of

the applied voltage and depends only slightly on the concentration level and

the chemical make-up of the upstream cell solution.



166

4.2.1 Introduction

Concrete durability is a growing concern that continues to consume an increasing

amount of public funds allocated for repairing civil engineering infrastructures through-

out the world. In this context, service life modeling has become a subject of focused

research activity. Considerable effort has been expended in the development of service

life models for predicting the long-term behavior ofconcrete structures. These models

have been developed to improve concrete performance and to facilitate future repair

planning strategies.

One approach to service life modeling of concrete structures is based on the detailed

description of ionic transport mechanisms and chemical equilibrium within the hydrated

cement paste fraction of the material [119. 173]. Models to predict the transport of

ions in concrete pore solution and the corresponding chemical reactions are complex.

Consequently, accurate transport models require a sound understanding of the various

physical and chemical phenomena involved. Accordingly, research on the subject has

flourished and experimental methods to properly evaluate the various parameters found

in the mathematical models have been significantly improved.

For the majority of field concrete failure mechanisms, the critical chemical reaction

depends upon the diffusive transport of ionic species. Therefore, one of the critical

parameters characterizing the movement ofions is the diffusion coefficient. Historically,

this parameter was determined using the divided cell diffusion set-up (see Figure 4.1)[64,

113]. Unfortunately, diffusion experiments tend to be very time consuming. In many

instances, ions may take several months (even up to a year in certain cases) to penetrate

a 1 cm thick disc of mortar [113, 131].

Over the past decades, numerous attempts to design accelerated test procedures

have been made. In most cases, an experimental set-up similar to the one utilized for

a diffusion experiment (see Figure 4.1) is used but the transport of ions through the

samples is accelerated by the application of an electrical potential to the system. These

accelerated diffusion experiments, currently called migration tests, are now commonly

used to characterize the ionic diffusion properties of hydrated cement systems.

Various versions of the migration test have been developed. These different proce-

dures can be divided into two categories, ln steady-state migration experiments, the
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Figure 4.1: Typical set-up for the migration test.

evolution of the concentration of a given ionic species (in many cases chloride ions)

in the downstream compartment of the cell is monitored for a few days [59, 190]. In

non-steady state migration tests, the depth of ion penetration within the sample (or

alternatively the current passing through the sample) is measured after a given period

[177, 181, 184].

Despite these variations, all migration tests share some common features. Experi-

ments are usually performed on fully saturated samples, and test solutions are typically

maintained at a pH over 12.5 in order to preserve, as much as possible, the microstruc-

ture ofthe material during the test. In addition, the electrical potential applied on the

system ranges from 400 to 1200 V/m. Comprehensive critical reviews of the various

migration test procedures used to investigate the transport properties of concrete can

be found in references [115, 180].

Numerous aspects of the migration tests have been investigated. For instance, it is

now well established that the transport of ions (hence migration test results) is quite

sensitive to temperature variations ofthe cell [115, 107, 174]. These investigations have

clearly emphasized the importance of conducting migration experiments under isother-

mal conditions. Various approaches to calculate diffusion coefficients on the basis of

migration test results have also been proposed [115]. Although these studies have im-

proved knowledge on the fundamental mechanisms involved in a migration experiment,

some of them have also raised questions on the relative influence of parameters such
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as the nature and concentration of the test solution and the intensity of the electri-

cal potential applied on the cell during the experiment. However, recent numerical

developments have cast some doubts on the hypotheses at the basis of some of these

calculation methods. This paper attempts to shed some new light on the analysis of

isothermal migration test results.

4.2.2 Description ofionic transport mechanisms in reactive porous

media

In (unsaturated) porous materials, the movement ofions takes place in the liquid phase

that occupies a fraction of the total poroùs volume. It occurs as a combination of

diffusion and advection (i.e. fluid movement). Since ions are charged particles, their

movements in solution is affected by the presence of other ionic species through an

electrical coupling. The transport of ions may also be affected by the various chemical

reactions that may occur within the material. Ions can react with other species present

in the pore solution to form new compounds. They can also interact with other ions

found in the double layer at the surface of the pores, or eventually be bound to the

various solid phases forming the skeleton of the porous material.

In hydrated cement systems, all the above phenomena are bound to occur. Electrical

effects tend to be particularly significant since the pore solution is highly concentrated.

The chemical reactions can also be very important since some of the solid phases of the

cement paste are very reactive, particularlythe ones that are alumina-based [185, 170].

4.2.2.1 Mathematical treatment of transport phenomena

Previous work has shown that it is possible to model the transport of ions by averaging

the extended Nernst-Planck equation with an advection term [85] over a Representative

Elementary Volume (REV). Details on the averaging technique can be found elsewhere

[18, 156]. This yields the following transport equation [113] (given here for lD cases)

that should be written for each ionic species present in the system:

β , < g + e % £ c 5 + mc3j^ c x _ 0

d t ' d t dx V d x ' R T l d x l l d x
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Table 4.1: Diffusion coefficient ofvarious species in free water.

Species

OH-

Na+

K+

soj-
Ca2 +

ci-
Mg2+

(IO"9 m2/s)

5.273

1.334

1.957

1.065

0.792

2.032

0.706

The uppercase symbols represent averaged quantities: C¿ is the concentration of the

ionic species i, C¿s is the concentration ofthe species i in solid phase, 6S is the volumetric

solid content of the material, Θ is the volumetric water content in the pores, Φ is the

electrical potential, Di is the diffusion coefficient, z% is the valence number ofthe species,

F is the Faraday constant, R is the ideal gas constant, T is the absolute temperature

of the liquid, 7¿ is the chemical activity coefficient and Vx is the bulk velocity of the

fluid. The bulk ionic flux J¿ is given by:

dCi 0DiZiFcm 0DCdln7ilCV i4 2ilCV i4 2i

In equations (4.1) and (4.2), the diffusion coefficient D¿ is defined as:

A = rDf (4.3)

where r is the tortuosity ofthe material and D? is the diffusion coefficient ofthe species i

in free water, which values can be found in physics handbooks (see for instance reference

[43]). Values of D? for the most common species found in cement-based materials are

given in Table 4.1. The values of D? appearing in Table 4.1 are constant and represent

the diffusion coefficients in very dilute conditions.

The tortuosity appears in the model as a result ofthe averaging procedure [18, 156].

It characterizes the intricacy ofthe path that ions must travel in a given porous material.

Equation (4.3) has very important implications. For instance, it shows that if the

diffusion coefficient D¿ of one ionic species is known, r is also known and, accordingly,

the diffusion coefficient of each of the other ionic species can be easily calculated. It
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also shows that as long as the tortuosity of the material remains unchanged, each Di

is constant.

To evaluate the electrical potential Φ, Poisson's equation [85, 90] must be solved

simultaneously with equation (4.1). Poisson's equation relates the electrical potential

Φ to the electrical charge ^V FziCi in solution. It is given here in its averaged form

[156, 113]:

where N is the total number of ionic species and e is the dielectric permittivity of the

media. In this study, the permittivity is assumed to be the same as that of water.

To calculate the chemical activity coefficients, several approaches are available.

Models such as those proposed by Debye-Hückel or Davies are unable to reliably de-

scribe the thermodynamic behavior of highly concentrated electrolytes such as the

hydrated cement paste pore solution. A modification of the Davies equation was found

to yield good results [155]:

^ ( 0 2 4 1 7 x M - / ) > b ? /

where / is the ionic strength of the solution, and A and B are temperature dependent

parameters. The parameter a¿ in equation (4.5) varies with the ionic species considered.

As noted previously, the variable Vx appearing in equation (4.1) stands for the ve-

locity of the fluid phase. In cement-based materials, the fluid will often be in movement

as a result of capillary forces arising from the wetting and drying cycles to which the

material is exposed. In these cases, the velocity ofthe fluid can be expressed as [44]:

BÑ
V, = -DLTx (4.6)

where D¿ is the non-linear liquid water diffusivity coefficient. The use of equation (4.6)

is interesting since it involves the volumetric water content Θ, a variable already used

in equation (4.1). Water content profiles in the material can be evaluated on the basis

of Richard's equation [44], which is given by:

d9 d / d9

Έ Tx [D'"TX) ° (47)

where Dw is the global water diffusivity coefficient, taking into account water molecules

under both vapor and liquid phase.
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4.2.2.2 Mathematical treatment of chemical reactions

In hydrated cement systems, chemical reactions are bound to occur during the transport

of ions, whether there is an applied field or not. If there is no electrical field, the rate

of transport of ions is slow compared to the kinetics of the various chemical reactions

[14]. Since the evolution of the microstructure of the material is essentially controlled

by the rate of transport of ions, the equilibrium of the system is considered to be locally

maintained.

If the local equilibrium is maintained, several methods for modeling the chemical

reactions can be used, as reviewed in reference [159]. A technique often used is to

experimentally determine an interaction isotherm that gives a relationship between the

solids concentrations C¿s and solute concentration C¿ [183]. This relationship is then

directly inserted in equation (4.1). Although relatively straightforward, this method is

limited by the fact that it can hardly take into account the influence of numerous ionic

species on the equilibrium of a given solid phase with the surrounding pore solution.

This is the reason why many authors have elected to rely on a different approach and

model chemical reactions using a chemical equilibrium code [113, 159, 46, 48].

During a migration test, the situation is significantly different. A dimensional analy-

sis of the problem indicates that the local chemical equilibrium is usually not respected

during a migration experiment [13]. This can be explained by the fact that the ap-

plication of a difference in potential of 400 V/m results in a rate of ionic transport

that is much faster than the kinetics of chemical reaction. The dimensional analysis

also demonstrates that, in most migration experiments, chemical reactions have little

influence on the local ionic concentration within the test sample x.

Since the local equilibrium is not maintained during migration experiments, the

models reviewed in reference [159] are no longer appropriate. Relatively little research

has been dedicated to the treatment of these non-equilibrium problems in hydrated

cement systems. Rubin [149] gives a general framework to model these reactions. Ac-

cording to this approach, the non equilibrium reaction for a solid M\M2 in contact with
1These conclusions are valid for ordinary concrete mixtures for which the water/binder ratio is 0.40

or higher. These conclusions are probably not valid for high-performance concrete mixtures.
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the ions M\ and M2) found in concentrations c\ and c2 respectively, is expressed as:

MXM2 r* Mx H- M2 (4.8)

where ka and fcb are the reaction rate coefficients associated with the dissolution and

precipitation, respectively. The rate of formation of ions M\ and M2 into solid phases

can be expressed as [149]:

dcls dc2s , , . .

^ T = ^dT = " fcaClC2 + fc6 ( 4 9 )

which could be inserted directly in equation (4.1). The problem, however, is to deter-

mine ka and &&, which are likely to be related to the solute concentration and to the

applied external voltage, since it determines the velocity ofthe ions. To our knowledge,

no systematic data on this topic have been published. Recent work by Castellote et al.

[33] has emphasized the complexity of these problems.

4.2.3 Modeling of ionic transport during migration tests

The mathematical model described previously can be used to model the transport

of ions in various cases (e.g. external chemical attack, leaching problems, ...). For

the specific case of the migration test, some simplifications can be made. Migration

tests are performed in saturated conditions, and no pressure gradient is applied on the

liquid phase. Accordingly, the advection term in equation (4.1) can be dropped, as

well as Richard's equation (equation 4.7). Furthermore, the fact that the material is

maintained in saturated conditions allows simplifying the expression relating porosity

φ and volumetric water content Θ:

Θ = φ (4.10)

9S = 1 - φ (4.11)

These assumptions may be used to simplify equation (4.1):

1• ψ 1
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Similarly, the ionic flux of equation (4.2) can now be written as:

In most papers dealing with the analysis of migration test data, it is assumed that

chemical reactions can be neglected. This hypothesis is, at least partially, justified by

the fact that non steady-state migration tests have a shorter duration than steady-state

experiments. In addition, as previously discussed, the high velocity of the ions being

transported through the pore structure of the material tends to greatly attenuate the

influence ofchemical reactions. Neglecting the chemical reactions also implies that there

is no change to the microstructure of the paste during the duration of the test, which

is equivalent to assuming that the porosity and tortuosity remain constant. Following

this assumption, equation (4.12) can be simplified as:

?£i _ A (D.?£i + £^iLCi— + A C i ^ l = o (4.i4)
\ /

These assumptions also yields a simplified version of the averaged Poisson's equa-

tion:

¿2Φ F A
^ + τ Σ ^ = ° (4· 1 5)

i=l

The set of N equations (4.14), combined with equation (4.15) for the electrical

potential and equation (4.5) for the chemical activity coefficients, has to be solved in

order to model the transport ofions in saturated materials during a migration test. This

coupled system of equation can be solved using the finite element method. Information

on a numerical algorithm that has been specifically developed for the resolution of these

problems can be found in references [157, 158].

4.2.4 A further simplication - The constant field assumption

Despite the various simplifications discussed in the previous section, solving the previous

system of equations can be relatively complicated. This is the reason why numerous

attempts have been made to further simplify the analysis of migration test results. The

various approaches proposed in the literature can be roughly divided into two groups:

those directly related to the treatment of steady-state migration test results and those
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associated to the analysis of non steady-state test data 2. Consequently, these two

different families of simplifications will be reviewed separately.

4.2.4.1 Steady-state migration experiments

During a transport experiment, the steady-state regime is reached when the concentra-

tion of the species under consideration (e.g. chloride) in the downstream compartment

of the cell (see Figure 4.1) varies linearly with respect to time. This indicates a con-

stant flux, which is the basic definition of the steady-state. It implies that all chemical

reactions are completed. As previously emphasized, in classical diffusion experiments

performed on representative concrete samples, it usually takes a very long time to es-

tablish the steady-state. However, in migration tests, the constant flux is often reached

in a few days.

From the standpoint of modeling, the treatment of steady-state problems is rela-

tively simple since all time-dependent terms appearing in equation (4.14) are set equal

to zero. This is equivalent to solving the fiux equation (equation 4.13) with J¿ being

constant.

To further simplify the analysis, it is assumed that the external voltage is sufficiently

strong to overwhelm all the other terms in the flux equation [8, 124, 188, 212]. This

means that the diffusion, chemical activity effects and electrochemical coupling between

the ions are neglected. This simplification allows to consider a linear variation of the

electrical potential in the sample:

^r- = — ^ - = —E'ext = constant (4.16)
ox L

where ΔΦεχί is the difference in voltage applied across the sample, L is the thickness

ofthe specimen, and Eext is the corresponding constant electric field. Equation (4.16)

is known as the constant field assumption. In that case, equation (4.13) reduces to:

xDjZ%F

where J¿ is a constant since steady-state is reached.
2This last category includes most conduction experiments for which the test period is limited to a

few hours.
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The knowledge ofthe chloride flux allows to calculate D¿ from equation (4.17). This

approach was used in references [8,124, 188, 212]. In reference [212], an equation similar

to (4.17) is used, but an empirical correction factor accounting for activity effects is

applied.

4.2.4.2 Non steady-state migration experiments

In an attempt to determine chloride diffusion coefficient, Tang and Nilsson [184] pro-

posed an analysis of migration test results based on non steady-state measurements.

According to Tang and Nilsson's approach [184], the potential gradient across the sam-

ple is assumed to be constant and corresponds to the externally applied electrical field.

Chemical activity effects are also neglected. Followingthese hypotheses, equation (4.12)

reduces to:
d {dQ DiZiF \

D U E = 0 (4.18)dt dx V * dx RT

For semi-infinite media, the analytical solution ofequation (4.18) with a constant D

is:

C Γ /
f~1 * ^ O I t*

2 \2xfD~t 2RT

where Co is the boundary condition at x = 0.

According to this approach, the value L>i is obtained by fitting the chloride profile

calculated numerically (i.e. from equation (4.18)) to the one measured during the

migration test. Experimental chloride profiles are usually obtained by milling at the

end of the experiment the test sample over several depth increments3. The powder

samples are then tested for acid-soluble chlorides in accordance with ASTM C1152.

Alternatively, the test sample can be splitted into two pieces. The total depth of

penetration is then estimated using a colorimetric method (see for instance reference

[184]).

3Each increment is typically a few millimeters in depth.
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Figure 4.2: Influence of voltage determination on diffusion coefficients: comparison of

two analysis methods (data from reference [124]).

4.2.4.3 Discussion on the validity ofthe constant field hypothesis

Over the years, numerous authors have investigated the use of equations (4.17) and

(4.18) to calculate diffusion coefficients on the basis of migration test data. Many

authors have found the diffusion coefficients derived from both equations to be sensitive

to the boundary conditions. For instance, in a very comprehensive analysis of steady-

state chloride migration experiments, Hauck [82] observed quite significant variations

of Di according to the concentration of the test solution in the upstream compartment.

Similar results were later reported by Zhang and Gjorv [212].

In another series of migration experiments performed on samples of a 0.5 wa-

ter/cement ratio concrete, McGrath and Hooton [124] investigated the influence of

voltage on both the steady-state and non steady-state regimes. Their results are sum-

marized in Figure 4.2. As can be seen, the a,pplied potential was found to have a strong

influence of the values of D^. This is particularly the case for the diffusion coefficients

calculated using equation (4.18), i.e. those obtained for the non steady-state migration

experiments for which D¿ values were found to vary by a factor of two.



177

The apparent sensitivity ofdiffusion coefficient values calls into question the validity

of equations (4.17) and (4.18). As previously mentioned, Di should be an instrinsic

property of the material (and of the ionic species considered). Accordingly, its value

should be independent of the boundary conditions used during the test (at least for

migration experiments performed under isothermal conditions).

The significant variations of D^ with the concentration of the test solution and the

voltage applied to the system can be, at least partially, explained by the fact that

equations (4.17) and (4.18) were both developed on the basis of the constant field

assumption. Although the validity of this hypothesis has been discussed by various

authors in the past [10, 182, 9, 205], the question has apparently never been settled.

In order to validate the constant field assumption, a sample problem is studied.

It consists in calculating the penetration of chloride ions within a sample during a

migration test with three different transport models:

• Extended Nernst-Planck equation coupled with Poisson's equation (equations 4.14

and 4.15)

• Nernst-Planck equation coupled with Poisson's equation (equation 4.14 without

the chemical activity term and equation 4.15)

• Constant field assumption without chemical activity effects (equation 4.19)

In all cases, it was assumed that a 35 mm thick concrete sample was subjected to a

electrical potential of 14 V. The data needed to perform the calculations are given in

Table 4.2. All calculations were done over a 20 h period.

The electrical potential distributions obtained from the resolution of the three dif-

ferent sets of equations after 20 h of test are shown in Figure 4.4. The figure reveals

only slight differences between the potential profile predicted by the constant field as-

sumption (i.e. equation (4.18)) and that predicted by the two versions ofthe extended

Nernst-Planck equations (i.e. equations (4.14) with and without the chemical activity

term). However, the slight differences in potential profiles lead to significant differ-

ences in chloride concentration profiles, as shown in Figure 4.3. As can be seen, the

constant field assumption has not only a significant influence on the total depth of

chloride penetration but it also markedly influences the distribution of ions across the
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Table 4.2: Data for the non steady-state chloride migration simulation.

Properties

Thickness

Diffusion coefficients

OH-

Na+

K+

so2-
Ca2+

ci-

Initial conditions

OH-

Na+

K+

so 2-
Ca2+

ci-

Φ

Temperature

Values

35 mm

(10~11 m2/s)

5.27

1.33

1.96

1.06

0.79

2.03

400.0 mmol/L

100.0 mmol/L

320.0 mmol/L

11.0 mmol/L

1.0 mmol/L

0.0 mmol/L

0.0 V

25 °C

Properties

Tortuosity

Porosity

Bound, cond. {x = 0)

OH" 300.0

Na+ 800.0

K+ 0.0

s o 2 - o.o
Ca2+ 0.0

CI" 500.0

Φ

Bound, cond. (χ = L)

OH" 300.0

Na+ 300.0

K+ 0.0

SO2," 0.0

Ca2+ 0.0

CI" 0.0

Φ

Values

0.01

0.11

mmol/L

mmol/L

mmol/L

mmol/L

mmol/L

mmol/L

0.0 V

mmol/L

mmol/L

mmol/L

mmol/L

mmol/L

mmol/L

14.0 V
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Figure 4.3: Sample problem - Comparison of the chloride profiles in the material after

20 h for the different models: extended Nernst-Planck (eq. 4.14), Nernst-Planck (eq.

4.14 without the activity term), constant field assumption (eq. 4.19).

entire sample. According to equation (4.19), chloride ions do penetrate the sample as

a relatively sharp front, while the two profiles predicted by equations (4.14) and (4.15)

are much more similar to those observed for a simple diffusion experiment. Results

appearing in Figure 4.3 also indicate that chemical activity effects have little influence

on the concentration profile during a non steady-state migration test.

Typical non steady-state migration test results previously reported by Tang and

Nilsson [181] are given in Figure 4.5. These profiles are similar in shape to those

usually found in the literature for non steady-state migration tests (see for instance

reference [184]). The comparison of these two profiles to those appearing in Figure

4.3 illustrates the inherent difficulty of calculating difl'usion coefficients using equation

(4.19). As mentioned in the previous section, the value D¿ is obtained by fitting the

chloride profile calculated numerically to the one measured during the migration test.

Given the marked difference between the shapes of the two curves, it is hard to see how

the resolution of equation (4.18) can yield reliable diffusion coefficient values.

A comparison was also made between the steady-state flux calculated with the
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Figure 4.5: Chloride profile measured by Tang and Nilsson [181] on two different

cement-based mixtures after a 24 h migration test.
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Table 4.3: Steady-state flux calculation for three different ionic transport model.

Model Flux

(mol/m2/s)

ExtendedNernst-Planck 7.5xlO^6

Nernst-Planck 7.6xlCT6

τ _ xOjZjFfi A»e x t ι 7yin-5
J% — ψ ^jji L/j £ 1 . I Λ _LU

extended Nernst-Planck model (equation 4.14), Nernst-Planck model (equation 4.14

without the chemical activity term), and the simplified steady state model (equation

4.17). Results are given in Table 4.3. On the one hand, the steady-state results show

that the chemical activity gradient has only a minor influence on the transport of ions

during the test. On the other hand, the simplified steady-state model overestimates the

kinetics of transport of ions. The flux of chlorides calculated with the simplified model

is 2.7 times higher than the one calculatec with the extended Nernst-Planck model.

These results are in good agreement with the observations made by various authors

who found that diffusion coefficients calculated using a constant-field assumption are

usually higher than those derived from the analysis of simple diffusion experiments

[184, 67, 68].

4.2.5 An alternative approach to calculate diffusion coefficients

using migration test results

The numerous advantages of using the Nernst-Planck/Poisson set of equations to an-

alyze migration test results have been cleaily illustrated in the previous section. Over

the past years, a more systematic application ofthis approach has been developed and

tested on both laboratory and field concrete samples. This method is briefly described

in the following sections.

4.2.5.1 Description of the experimental procedure

The experimental method used to test the samples is essentially a non steady-state

migration experiment and can be considered as a modified version of the ASTM C
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1202 procedure. Two representative samples (100 mm in diameter) are usually tested

per mixture. The thickness of the samples rànges from 25 mm for mortars to 50 mm for

concrete mixtures. The samples are vacuunrsaturated in a 300 mmol/L NaOH solution

prior to testing. The disks are then glued to plastic rims that fit between the upstream

and the downstream cell (see Figure 4.1), leaving an exposed diameter of about 76 mm.

Both compartments of the migration cell are filled with a sodium hydroxide solution

prepared at a pH of 13.5. As previously mentioned, the high pH of the test solutions

contributes to minimize the risk of microstructural alterations during the experiment.

The upstream compartment also contains another salt, like NaCl or Na2SO4. The

transport of ions through the sample is accelerated by applying an electrical poten-

tial (usually 500 V/m) across the two surfaces of the sample. The current passing

through the system and the chloride concentration of the downstream compartment

are monitored during approximately 120 h. Electrical current measurements are easier

to perform and less labor intensive than the determination of chloride profiles usually

performed for non steady-state migration experiments. Current measurements are also

inherently more precise due to modern instrumentation.

4.2.5.2 Description of the calculation method

The current values are analyzed with the coupled extended Nernst-Planck-Poisson set

ofequations, i.e. equations (4.14) and (4.15):

0 i \

= 0 with Di = rDf
dt dx

f
i = l

The boundary conditions correspond to the concentrations in both cells as well as

the imposed potential difference across thesample. The short duration of the experi-

ment, and the corresponding small total flux of species, allows for the assumption that

concentrations in both the upstream and downstream reservoirs remain constant. As

suggested earlier, the chemical reactions are neglected.

The initial conditions are determined by the pore solution chemistry and the poros-

ity of the sample prior to the test. The total pore volume of the material can easily
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be determined according to ASTM C 642, Information on the chemical make-up of

the pore fluid can be obtained by performing a pore solution extraction experiment

according to the procedure described by Barneyback and Diamond (see reference [16]).

A special extraction cell specifically designed to accommodate concrete samples is used.

Solution samples collected during the tests are analyzed by ion chromatography.

With these data, the equations are solved with different tortuosity values. The

numerical current J"um is calculated at the measurement times according to [85]:

N

I™m = SFj2ziJi (4.20)
i=l

where S is the exposed surface area of the sample and J¿ is the ionic flux given by

equation (4.13):

For each tortuosity value, the error between the model and the measurements is calcu-

lated as:

error =
\

M

^r rmes _ rnum\2
"c,k 1c,k I

fc=l

where M is the total number of measurements, and /™es and I™m are the measured

and predicted currents, respectively. The tortuosity value leading to the smallest error

with the measurements yields the best estimate ofthe diffusion coefficient for each ionic

species in the material considered. This analysis procedure is automated in a numerical

code which yields the diffusion coefficients of OH~, Na+, K+, SO4~, Ca2+ and C1~ that

minimize the error with the measured currents.

4.2.5.3 Experimental validation of tb.e method

For the purpose of this study, the method was tested on a series of mortar samples.

The mortar mixture was prepared at a water/cement ratio of 0.5 with a CSA Type

10 cement and a standard (ASTM C109 Ottawa) sand. The volume proportion of

the sand was 50 %. The specimens were cast in 100 mm diameter, 200 mm long

cylindrical molds under vacuum to avoid air-void formation. The day after casting, the

samples were demoulded and sealed in aluminum foil for 18 months. After the curing
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Table 4.4: Pore solution extraction and porosity measurement. The extracted concen-

tration showed are adjusted to respect the electroneutrality requirement.

Ions Concentration (mmol/L)

OH" 515.6

Na+ 176.6

K+ 354.8

SO|~ 9.0

Ca2+ 1.1

Porosity 0.184

period, the foil was removed and the cylinders were sawn into 25 mm thick disks. The

samples to be tested were saturated in a 300 mmol/L NaOH solution for 24 h. An

additional disk was saturated in the same conditions. It was then subjected to a pore

pressing experiment in order to measure the ionic content of the pore solution. Finally,

another sample was used to determine the porosity of the material. The porosity and

pore solution measurements are given in Table 4.4. The measured concentrations were

adjusted to respect the electroneutrality requirement. Otherwise, problems with the

numerical model could occur.

The samples were then tested according to the non steady-state migration proce-

dure described in the previous section. In order to validate the approach, the samples

were subjected to different test conditions, which are summarized in Table 4.5. For

each test condition, two disks were tested. The potentials cited in Table 4.5 are those

applied to the whole migration cell (see Figure 4.1). During the experiment, a small

drop of potential typically occurs in both compartments. So throughout the test, the

potential difference across the sample Vs was measured regularly. The error estima-

tion corresponds to the standard deviation over all the potential measurements made

during a test. The small value of this error indicates stable conditions throughout the

experiment. The value of Vs corresponds to the boundary condition of the potential at

x = L in the numerical code. The tests lasted 114 h for the first four samples and 121

h for the remaining ones. Six current measurements are made during the tests.

The numerical model is then used to analyze the measured currents. The tortuosity

and chloride diffusion coefficient found for each disk tested are given in Table 4.5. Even
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Table 4.5: Results of the migration test. Vs stands for the potential difference at the

sample's boundaries. The uncertainty attributed to Vs corresponds to the standard

deviation of the set of measurements performed during a test.

Conditions

500 mmol/L

12 V

500 mmol/L

6 V

100 mmol/L

12 V

200 mmol/L

12 V

NaCl,

NaCl,

NaCl,

Na2SO4

Disks

1

2

1

2

1

2

1

2

10.3

10.3

5.1

5.2

10.6

10.4'

10.6

10.9

±

±
±
±
±
±
±

Vs

(V)

0.2

0.2

0.1

0.1

0.1

0.2

0.1

0.1

Tortuosity

(1)

0.0303

0.0283

0.0245

0.0273

0.0233

0.0248

0.0214

0.0197

Da

(10"11 m2/s)

6.17

5.74

4.97

5.55

4.74

5.05

4.36

4.01

Average: 0.0250 5.07

Standard dev.: 0.0036 0.72

ifthe method gives the diffusion coefficient for all species present in the system, only the

value for chloride is given. Equation (4.3), in combination with the diffusion coefficient

in free water, must be used in order to have the diffusion coefficient values for the other

species. The results listed in Table 4.5 have an average value of (5.07 ± 0.72)xl0~11

m2/s. The error value corresponds to the standard deviation. A typical current curve,

showing the comparison between the measurements and the numerical results, is shown

in Figure 4.6.

4.2.5.4 Discussion

The proposed method avoids the applied electrical potential dependency exhibited by

other analysis procedures found in the literature. The constant field assumption, which

neglects the internal coupling among the ions during a migration test, was identified

as a possible cause for this behavior. The results for the 500 mmol/L NaCl in the

upstream cell with 12 V and 6 V (see Table 4.5, the four first rows), show only a slight

dependency upon the applied potential. The average value of the chloride diffusion



186

100

90

80

70

< 60

J,
¥ 50
g
U 40

30

20

10

0

Measurements +
Numerical simulations

20 40 60

Time (hours)

80 100 120

Figure 4.6: Comparison of the measured current with the numerical model for the case

with 500 mmol/L NaCl in the upstream cell, 12 V applied, disk 1.

coefficient for the four disks is (5.61 ± 0.50)xl0~11 m2/s, the uncertainty (standard

deviation) being smaller than the uncertainty for the whole set ofexperiments (±0.72).

The migration tests performed with 100 mmol/L NaCl and 200 mmol/L Na2SO4

gave results that, although in the same range ofvalues as the other results, are smaller.

These results exhibit the effects of the concentration level and/or the migrating salt

in the upstream cell on the diffusion coefficient. Since it was shown in Figure 4.3

that the chemical activity gradient has virtually no effect on the concentration profile,

these variations related to the concentration could come from the neglected chemical

reactions.

It is interesting to note that the current drop measured at the beginning of the

test is also predicted by the model (see Figure 4.6). Upon closer examination, this

behavior is to be expected. To transport chloride and sulfate ions out of the upstream

reservoir, the electric field points from the downstream to the upstream reservoir. At

the upstream interface, the chloride concentration in the sample is increasing, but the

hydroxyl concentration is decreasing faster because the hydroxyl ions are more mobile.

At the downstream interface, 0.3 mol/L sodium ions are replacing 0.18 mol/L sodium



187

and 0.35 mol/L potassium ions. Moreover, because the potassium ion has a greater

mobility than sodium, the downstream interface is becoming depleted of cations. As a

net result, the ionic strength at both ends ofthe sample decrease, decreasing the overall

conductivity, leading to a reduction in the current. For one-dimensional transport, even

a thin layer of low conductivity material can have a dramatic effect on the overall bulk

conductivity.

4.2.6 Conclusion

This study demonstrated that the commonly used constant field hypothesis should not

be used to model the migration experiment. Instead, a multiionic model considering

the electrical coupling among the ions should be applied.

The proposed approach is based on a non-steady-state analysis of the migration

test with the extended Nernst-Planck/Poisson set of equations. The chemical reactions

are neglected from the analysis. Although the complete method requires a more so-

phisticated calculation than that typically employed, it also offers some advantages: It

is based on current measurements that are less expensive and easier to perform than

the chloride concentration evaluations that are frequently used with the migration test.

The method gives the diffusion coefficient of each ionic species in the material, accord-

ing to the theory of homogenisation used to develop the mathematical model. The tests

have shown that it is not dependent on the external potential applied to the sample.

Finally, it is slightly dependent on the concentration level in the upstream cell as well

as on the type of electrolyte in this cell.

4.3 Theoretical analysis of the efFect of weak sodium

sulfate solutions on the durability of concrete

J. Marchand12, E. Samson12, Y. Maltais12, J.J. Beaudoin3

1Centre de recherche interuniversitaire sur le béton,
Université Laval, Québec, Canada, GlK 7P4

2SIMCO Technologies inc.,
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Abstract

A theoretical analysis of the detrimental influence of weak sodium sulfate

solutions (Na2SO4) on the durability of concrete is presented. It was con-

ducted using a numerical model that takes into account the coupled trans-

port of ions and liquid and the chemical equilibrium of solid phases within

the (partially) saturated system. Numerous simulations were performed to

investigate the influence of various parameters such as water/cement ratio

(0.45, 0.65 and 0.75), type of cement (CSA Type 10 and Type 50), sulfate

concentration (0 to 30 mmol/L of SO4) and the gradient in relative humid-

ity across the material. All input data related to the properties of concrete

were obtained by testing well-cured laboratory mixtures. Numerical results

indicate that exposure to weak sulfate solutions can result in a significant

reorganization of the microstructure of concrete. The penetration of sulfate

ions into the material is not only at the origin of the precipitation of sulfate

bearing phases (such as ettringite and eventually gypsum) but also results in

calcium hydroxide dissolution and C-S-H décalcification. Data also clearly

emphasize the fact that water/cement ratio remains the key parameter that

controls the durability of concrete to sulfate attack.

4.3.1 Introduction

Concrete subjected to sulfate attack can undergo a progressive and profound reorganiza-

tion ofits internal microstructure [176, 185]. These alterations have direct consequences

on the engineering properties ofthe material. For instance, concrete undergoing sulfate

attack is often found to suffer from swelling, spalling and cracking [83, 132, 176, 170].

There is also overwhelming evidence to show that the degradation also contributes to a

significant reduction ofthe mechanical properties ofconcrete [27, 170]. Many structures

affected by sulfate degradation often need to be repaired or, in the most severe cases,

partially reconstructed.
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Table 4.6: Recommendations for protecting concrete exposed to sulfate contaminated

environments (from references [4, 5, 31, 191])

Exposure Water soluble Sulfate (SO4)

sulfate (SO4) in in water, ppm

soil, percent

Cement Water-cement

ratio, maximum

Mild 0.00- 0.10 0-150

Moderate 0.10- 0.20 150 - 1500 Type II,

IP (MS),

IS (MS),

0.50

Severe

Very severe

0.20-

Over

2.00

2.00

1500-

Over

10000

10000

TypeV

Type V +

pozzolan or slag

0.45

0.45

Given the deleterious effects of sulfate attack, building codes have traditionally

specified precautionary measures to protect concrete against this type of degradation.

Typical measures contained in North American building codes [4, 5, 191, 31] are sum-

marized in table 4.6. As can be seen, the choice of cement (ASTM Type I, Type II,

Type V or the equivalent) and the selection of water/cement ratio vary according to

the severity of the exposure conditions.

It should be emphasized that recommendations concerning concrete exposed to

negligible sulfate concentrations (i.e. soils containing less than 0.10% ofwater soluble

sulfate or solutions for which the SO4 concentration is less than 150 ppm) are relatively

vague. Although building codes usually emphasize the importance of limiting the per-

meability of concrete to prevent the penetration of moisture and ions 4, none of them

contains any specific limit concerning the maximum water/cement ratio that should

be selected for the production of concrete elements to be exposed to negligible levels

of sulfate (see table 4.6). This is unfortunate since, as emphasized by many authors,

potentially destructive conditions may exist even though analyses indicate the ground

water or soil to have a low sulfate content [50, 75, 78]. According to DePuy [50], this

4For instance, the Canadian Standard [31] limits the water/cement ratio of concrete exposed to salts

without any freezing and thawing to 0.55. Similariv, in its Concrete Craftsman Series, the American

Concrete Institute (ACI) [6] recommends to limit water/cement ratio to 0.7 for concrete to be used

for the construction of slabs on grade.
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is apparently often the case when concrete is exposed to wetting and drying cycles.

The present study was conducted to provide additional information on the po-

tentially deleterious effects of weak sulfate solutions on the behavior of concrete. A

numerical model, called STADIUM5, was used to investigate the mechanisms ofdegra-

dation. This model takes into account the coupled transport of ions and liquid and the

chemical equilibrium of solid phases within the (partially) saturated system. Previous

studies have indicated that numerical results yielded by the model for hydrated cement

systems subjected to sulfate attack and calcium leaching compare favorably to those

measured experimentally [112].

4.3.2 Description of the numerical model

4.3.2.1 Description of the various transport processes

STADIUM has been developed to predict the transport of ions in unsaturated porous

media. As will be discussed in the following section, the model also accounts for the

effect of dissolution/precipitation reactions on the transport mechanisms.

The description of the various transport mechanisms relies on the homogenization

technique. This approach first requires writing all the basic equations at the pore scale.

These equations are then averaged over a Representative Elementary Volume (REV) in

order to describe the transport mechanisms at the macroscopic scale. More information

on the transport equations at the pore scale and the averaging technique can be found

in references [18, 156].

In the model, ions are considered to be either free to move in the liquid phase or

bound to the solid phase. The transport of ions in the liquid phase at pore scale is

described by the extended Nernst-Planck equation to which an advection term is added

[85]. After integrating this equation over the REV, the transport equation becomes:

d((9sCis) d{eCi) d 8 b ^ _ _
dt ' dt dx\~~ldx " RT ~ldx "~*~* dx l \

(4.22)

In equation (4.22), 6S is the solid content of the material, C¿ is the concentration of
5STADIUM stands for Software for Transport And Degradation In (Un)saturated Materials.
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the species i in the aqueous phase, C¿s is the concentration of the solid phase, Θ is the

volumetric water content, D¿ is the diffusion coefficient, z¿ is the valence number of the

species, F is the Faraday constant, R is the ideal gas constant, T is the temperature of

the liquid, Φ is the electrical potential, 7¿ is the chemical activity coefficient and Vx is

the velocity of the fluid.

Equation (4.22) has to be written for each ionic species present in the system. The

behavior of hydrated cement materials (in chloride and magnesium free environments)

can be reliably described by considering six different ionic species: OH~, Na+, K+,

SOl~, Ca2+ and Al(OH)4.

To calculate the chemical activity coefficients, several approaches are available.

However, classical models such as those proposed by Debye-Hückel or Davies are un-

able to reliably describe the thermodynamic behavior of highly concentrated electrolytes

such as the hydrated cement paste pore solution [133]. A modification of the Davies

equation was found to yield good results [155]:

4!7><^/)^/

where / is the ionic strength of the solution:

I=\Y,%Ci (4.24)
¿ = 1

and A and B are temperature-dependent parameters. The parameter a¿ in equation

(4.23) depends on the ionic species. Its value (in meters) is 3xlO~10 for OH^ ,̂ 3x

10~10 for Na+, 3.3xlO"10 for K+, lxlCT10 for SO^ , 2xlO"10 for C1" and lxlO"1 3 for

Ca2+[155].

A last relation is required to complete the system of equations and calculate the

electrical potential Φ appearing in equation (4.22). This can be done using the Poisson

equation, which relates the electrical potential to the concentration of each ionic species

[157, 158]. The equation is given here in its averaged form:

where N is the total number of ionic species, e is the dielectric permittivity of the

medium, in this case water, and r is the tortuosity of the porous network. The physical

meaning of the tortuosity coefficient is discussed in references [18, 156].
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The velocity of the fluid, appearing in equation (4.22) as Vx, can be described by

a diffusion equation when the driving force for the movement of water is linked to the

capillary forces arising in the porous solid during drying/wetting cycles [135]:

ΒΘ
Vx = ~DW— (4.26)

where Dw is the non-linear water diffusion coefficient. This parameter varies according

to the water content ofthe material [135].

To complete the model, the mass conservation on the liquid phase must be taken

into account [135]:

iaW)
As can be seen, moisture transport is described in terms of a variation of the (liquid)

water content of the material. It should be emphasized that the choice of using the

material water content as the state variable for the description of this problem has an

important implication on the treatment of the boundary conditions. Since the latter

are usually expressed in terms of relative humidity, a conversion has to be made. This

can be done using an adsorption/desorption isotherm [135].

The system of non-linear equations has to be solved numerically. Information on

the numerical resolution of the problem using the finite element method can be found

in references [157, 158].

4.3.2.2 Chemical equilibrium step

The first term on the left-hand side ofequation (4.22) (in which Cis appears), accounts

for the ionic exchange between the solution and the solid. It can be used to model the

influence of precipitation/dissolution reactions on the transport process. However, in

the algorithm used in STADIUM, this term is eliminated and the chemical reactions are

considered in a separate chemical equilibrium module [73]. The chemical equilibrium

of the various solid phases present in the material is verified at each node of the finite

element mesh by considering the concentrations of all ionic species at this location.

If the equilibrium condition is not respected, the concentrations and the solid phase

content are corrected accordingly.
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Table 4.7: Equilibrium constants for solid phases in hydrated cement systems

Name Chemical composition Expression for equilibrium Value of equilibrium

constant (-log Ksp)

Portlandite Ca(OH)2 Ksp = {Ca}{OH}2 5.2

C-S-H 1.65CaO.SiO2.(2.45)H2O
 f Ksp = {Ca}{OH}2 * 5.6 »

Ettringite 3CaO.Al2O3.3CaSO4.32H2O Ksp = {Ca}6{OH}4{SO4}
3{Al(OH)4}

2 44.0

Hydrogarnet 3CaO.Al2O3.6H2O Ksp = {Ca}3{OH}4{Al(OH)4}
2 23.0

Gypsum CaSO4.2H2O Ksp = {Ca}{SO4} 4.6

{... } indicates chemical activity

t C-S-H is assumed to have a C/S ratio of 1.65

ί The C-S-H décalcification is modeled as the portlandite dissolution with a lower solubility

For instance, the equilibrium constant ofcalcium hydroxide (or portlandite) is given

by:

Ksp = {Ca}{OH}2 (4.28)

where the curly brackets {...} indicate chemical activity. As previously mentioned,

equation (4.28) must be verified at each node within the system. If, due to the transport

process, the solution is locally supersaturated or undersaturated, the concentration in

ions are corrected to restore the chemical equilibrium. This procedure is applied at

each node to each solid phase present in the system.

The behavior of hydrated cement systems exposed to relatively weak sodium sul-

fate (Na2SO4) solutions is described by considering five different solid phases, namely:

portlandite, C-S-H, ettringite, hydrogarnet, and gypsum. These phases are listed in

table 4.7, along with their equilibrium constant [141].

Obviously, the treatment of an ill-crystallized phase such as the C-S-H presents

some difficulties. As can be seen in table 4.7, an apparent equilibrium constant is

attributed to the C-S-H. The value of this constant was established on the basis of

previous published reports on the thermodynamic stability of hydrated cement systems

[3, 23]. The dissolution of C-S-H (the so-called decalcification process) is assumed to

proceed by the release of calcium and hydcoxide ions (in a proportion of one Ca2+to

two OH~in order to maintain the electroneutrality of the solution) leaving behind a

silica gel. This approach is in good agreement with the observation of Faucon [63] who

could analyze the composition of decalcified C-S-H using nuclear magnetic resonance

(NMR) spectroscopy and Mossbauer spectroscopy (such as NMR).

Chemical reactions can also modify the transport properties of the material by
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affecting its pore structure. For instance, the precipitation of gypsum may contribute

to locally reduce the porosity of the material, thus decreasing the section across which

ions are able to diffuse. This may have an effect on the diffusion coefficient of the

material. This effect is taken into account using the equation proposed by Garboczi

and Bentz [66]:

^ = 0.001 + O.O70L, + 1.8 x Η(φΕΆρ - O.18)(0cap - 0.18)2 (4.29)
cap

^^i

where 0 c a p is the capillary porosity of the paste, Df is the diffusion coefficient of the

ionic species i in free solution (as opposed to its diffusion coefficient in the porous

solid) and H is the Heaviside function such that H{x) = 1 for x > 0 and H{x) — 0

for x < 0. The initial capillary porosity of the material can be calculated using the

following relationship [140]:
.nit _ (w/c) - 0.36a

r c a p (w/c) + 0.32

where w/c is the water/cement ratio of the paste and a is the degree of hydration of

cement (0 < a < 1). The influence of chemical reactions on the capillary porosity of

the material can be calculated as follows:

M

s=l

where Vs is the volume of a given solid phase, per unit volume of cement paste, and M

is the total number of solid phases. According to this approach, the correction factor

G that multiplies the diffusion coefficients D¿ of each ionic species is given by:

G =
i Modified paste i, qoN

* Initial paste

The application of equations (4.31) and (4.32) to description of the influence of the

C-S-H decalcification process on the diffusion properties of hydrated cement systems

presents some obvious problems. Within the framework of this investigation, the value

of the correction factor G has been arbitrarily fixed at 10 for fully decalcified systems.

Sensitivity analyses have indicated that the value of this factor (for the decalcified

C-S-H) has little influence on the kinetics of degradation.



195

Table 4.8: Characteristics of the concrete mixtures

Cement (kg/m3)

Water (kg/m3)

Sand (kg/m3)

Coarse aggregate

Volumetric paste

(kg/m3)

content (%)

W/C=0.45

380.0

171.0

719.0

1127.0

29.2

W/C=0.65

280.0

182.0

833.0

1065.0

27.1

W/C=0.75

250.0

187.5

931.0

972.7

26.7

4.3.3 Characteristics of the materials
\

In order to obtain the input data required to run the model, six different concrete

mixtures were cast and tested. Test variables included type of cement (CSA Type 10

and CSA Type 50) and water/cement ratio (0.45, 0.65 and 0.75). The characteristics

of the six concrete mixtures are given in table 4.8 and the chemical and mineralogical

compositions of the two cements are summarized in table 4.9.

All mixtures were prepared with a natural siliceous sand and a crushed granitic

stone. The maximum size ofthe coarse aggregates used to prepare the concrete mixture

was 14 mm.

All mixtures were prepared in a counter-current pan mixer (capacity = 0.1 m3).

The aggregates (coarse and fine) and the cement were first introduced in the mixer,

and mixed for one minute to homogenize the materials. Water was then added to

the dry materials over a period of 30 seconds. Concrete was initially mixed for three

minutes. After a pause of three minutes, concrete was mixed for another two minutes.

The concrete was then periodically mixed for thirty seconds every five minutes over a

20-minute period in order to simulate continuous mixing.

The fresh concrete mixtures were cast in plastic moulds (diameter = 100 mm and

height = 200 mm). The moulds were filled in three layers in accordance with the

requirements of CSA A23.2-3C (the Canadian version of ASTM C192/C 192M-95).

Samples were demolded approximately 24 hours after casting, and sealed in an alu-

minum foil for 91 days in order to avoid any exchange of moisture with the surrounding
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Table 4.9: Chemical and mineralogical analyses ofthe cements

Oxides

SiO2

AI2O3

Fe2O3

CaO

MgO

SO3

Na2O

K2O

Na2O eq.

Free CaO

Loss on ignition

Insoluble residue

Bogue analysis

C3S

C2S

C3A

C4AF

Type 10

20.4

4.3

3.0

62.1

2.8

3.2

n/d

n/d

0.8

1.0

2.0

0.6

55.4

16.7

6.3

9.1

Type 50

22.5

3.0

3.7

63.5

3.2

2.0

0.2

0.4

0.4

0.8

1.1

0.2

56.3

22.0

1.7

11.3
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Applied electrical
iotentlal

Saturated sample

Figure 4.7: Experimental set-up for the migration test

environment.

At the end of the curing period, 25-mm thick disks were cut and tested for chloride

migration. Migration tests were used to determine the diffusion coefficients of the ionic

species in the various mixtures. Prior to testing, all samples were first immersed in a 300

mmol/L NaOH solution and vacuum saturated for about 48 hours. After this saturation

period, samples were mounted on a migration cell consisting in two compartments

(individual capacity of 3L) as shown in figure 4.7. The upstream compartment was

filled with a solution of 300 mmol/L NaOH and 500 mmol/L NaCl, while a 300 mmol/L

NaOH solution was placed in the downstream compartment. The high pH of the test

solutions contributes to minimize the risk of microstructural alterations during the

experiment. An electrical potential of about 12 Volt was then applied on the migration

set-up in order to accelerate the transport of chlorides through the sample. A constant

temperature of 23 °C was maintained during the entire duration of the test.

The current circulating through the system was regularly measured during the test,

which lasted for about five days. A special version of STADIUM, called STADIUM-

ACC, was used to analyze the migration test data and calculate the diffusion coeffi-

cients. Results are summarized in tables 4.10 and 4.11.

The pore solution of each mixture was also extracted and analyzed according to

the procedure described by Longuet et al. [109] and Diamond [52]. Samples were

placed in an extraction cell and crushed at a pressure of approximately 300 MPa.

Typically, 2 to 5 ml ofpore solution were extracted. The solution was delivered through
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a drain ring and channel, and recovered with a syringe in order to limit exposure to the

atmosphere. Chemical analyses of the pore solution were carried out shortly after the

extraction test. The composition of the solution was then adjusted in order to respect

the electroneutrality condition. Slight deviations from electroneutrality can arise due

to the experimental error associated with the extraction procedure. The adjusted pore

solution data are given in tables 4.10 and 4.11.

Another series ofsamples were used for porosity measurements, which were carried

out according to the requirements ofASTM C 642. Results are also presented in tables

4.10 and 4.11.

The water diffusion properties of the six mixtures were estimated on the basis of

Nuclear Magnetic Resonance Imaging (NMRI) measurements performed on companion

mortar mixtures [84]. The diffusion coefficients of water used in the simulations are

summarized in tables 4.10 and 4.11.

In order to run the model, one has to know the initial amount of each solid phase

in the material. The initial amounts of calcium hydroxide and C-S-H were calculated

assuming a complete hydration (α = 1) of the C2S and C3S contained in the cement

(see table 4.7), and using the following equations:

+ 6H2O ^ 3CaO.2SiO2.3H2O + 3(CaO.H2O) (4.33)

2(2CaO.SiO2) + 4H2O ^ 3C&O.2SiO2.3H2O + CaO.H2O (4.34)

The initial amount of ettringite (3CaO.Al2O3.3CaSO4.32H2O) was calculated by con-

sidering that all the gypsum added to the unhydrated cement had reacted with the C3A.

The remaining C3A, and 50% of the alumina contained in the C4AF, was assumed to

have reacted to form hydrogarnet (3CaO.Al2O3.6H2O). The calculated quantities are

given in tables 4.10 and 4.11.

4.3.4 Description of the numerical simulations

4.3.4.1 General information

The typical case of a concrete slab resting on a sulfate contaminated soil was considered

in all the numerical simulations. In all cases, the thickness of the slab was fixed at 15
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Table 4.10: Materials properties used to perform the numerical simulations - CSA Type

10 mixtures

Properties

Diffusion coefficients (m2/s)

OH-

Na+

K+

SOl-

Ca2+

Al(OH)4

Water diffusivity (m2/s)

Initial pore solution (mmol/L)

OH-

Na+

K+

so2"
Ca2+

Al(OH)4

Porosity (%)

Tortuosity

Initial solid phases (g/kg)

Portlandite

C-S-H

Ettringite

Hydrogarnet

W/C=0.45

Type 10 cement

10.8e-ll

2.7e-ll

4.0e-ll

2.2e-ll

1.6e-ll

l.le-11

3.42xl0-"e 4 0 9

427.97

185.00

266.50

12.97

1.25

0.08

12.6

0.020

48.5

92.2

26.5

11.7

W/C=0.65

Type 10 cement

19.5e-ll

4.9e-ll

7.2e-ll

3.9e-ll

2.9e-ll

2.0e-ll

3.34xl0-1 2e7 5 e

269.42

133.50

140.10

3.77

1.70

0.05

13.0

0.037

36.3

69.0

19.8

8.7

W/C=0.75

Type 10 cement

29.4e-ll

7.4e-ll

10.9e-ll

5.9e-ll

4.4e-ll

3.0e-ll

3.33xl0-12e77e

268.94

133.10

137.80

2.95

2.00

0.04

14.7

0.056

32.6

62.1

17.9

7.9
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Table 4.11: Materials properties used to perform the numerical simulations - CSA Type

50 mixtures

Properties

Diffusion coefficients (m2/s)

OH~

Na+

K+

sor
Ca2+

A1(OH)7

W/C=0.45

Type 50 cement

17.0e-ll

4.3e-ll

6.3e-ll

3.4e-ll

2.6e-ll

1.7e-ll

W/C=0.65

Type 50 cement

25.8e-ll

6.5e-ll

9.6e-ll

5.2e-ll

3.9e-ll

2.7e-ll

W/C=0.75

Type 50 cement

33.5e-ll

8.5e-ll

12.4e-ll

6.8e-ll

5.0e-ll

3.4e-ll

Water difTusivity (m2/s) 3.34xl0-12e750 3.33xlO-12e7™

Initial pore solution (mmol/L)

OH-

Na+

K+

so2-
Ca2+

A1(OH)7

Porosity (%)

Tortuosity

Initial solid phases (g/kg)

Portlandite

C-S-H

Ettringite

Hydrogarnet

224.47

107.10

116.50

1.88

2.33

0.03

12.2

0.032

51.0

101.7

16.6

5.7

183.42

71.40

108.90

1.17

2.74

0.03

13.6

0.049

38.1

76.1

12.4

4.3

98.96

55.50

34.30

0.30

4.89

0.02

15.3

0.064

34.3

68.5

11.2

3.8
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cm and the bottom part of the slab was considered to be directly in contact with the

soil (containing Na~*̂ and SO4~1ons). Furthermore, it was assumed that the top surface

of the slab was free of any barrier and directly in contact with the external environment.

All simulations were performed assuming that the concrete slab was kept in isother-

mal conditions at 25 °C . Furthermore, the effects of carbonation were not taken into

account in the numerical simulations.

4.3.4.2 Boundary conditions

In all the numerical simulations, the boundary conditions were kept constant during

the entire service-life of the concrete. Two types of exposure conditions were taken into

consideration. In the first case, the bottom surface of the (saturated) concrete slab was

assumed to be in direct contact with a fully saturated soil (relative humidity equal to

100%). The air above the slab was also maintained at 100% relative humidity. In this

initial case, ions were essentially transported by diffusion, the flux of water by capillary

suction being nil.

In the second series of simulations, the bottom portion of the slab was assumed to

be in contact with a partially saturated soil (relative humidity equal to 90%) and the

air above the slab was kept at 75% relative humidity. In this second case, ions were

transported by diffusion and advection (capillary suction) in the partially saturated

concrete.

In all cases, the soil in contact with the concrete slab was considered to be contam-

inated with a sodium sulfate solution. Simulations were run for five different concen-

trations in SO4 ranging from from 0 to 30 mmol/L (i.e. from 0 to 60 mmol/L of Na+).

The concentration of all other ions (except Na+and SO4~) was assumed to be equal to

zero. In all simulations, the ionic flux near the upper part of the slab was considered

to be zero.

4.3.4.3 Initial conditions

In all the simulations, the concrete was considered to be initially undamaged. The initial

value of the potential Φ was fixed at zero everywhere in the material. The potential
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Figure 4.8: Distribution of the solid phases after 20 years for the 0.65 water/cement

ratio concrete made with the CSA Type 50 cement and exposed to 10 mmol/L of

sulfates - Saturated conditions

was also maintained at zero on the lower part of the slab during the simulations, in

order to establish a reference point. The initial composition of the pore solution and

the porosity of all mixtures are given in table 4.8.

4.3.5 Results of the numerical simulations

Numerical simulations indicate that the exposure of concrete to weak sodium sulfate

solutions can result in an important reorganization of its internal microstructure. A

typical example is shown in figure 4.8 where the distribution in calcium hydroxide (port-

landite), C-S-H, ettringite, hydrogarnet and gypsum is given for a 0.65 water/cement

ratio concrete made of a CSA Type 50 cement and that had been exposed in saturated

conditions to 10 mmol of sulfate for 20 years. As indicated in the figure, the left-hand

side of the graph corresponds to the surface of the slab in direct contact with the soil

(bottom portion).

Figure 4.8 indicates that the reorganization of the internal microstructure of con-

crete is characterized by the presence of degradation fronts that penetrate from the
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external (bottom) surface of the slab towards the center of the slab. These results are

also in good agreement with most investigations that the microstructure of concrete

subjected to external sulfate attack is usually characterized by a succession of layers

(or zones) starting from the outer surface of the material [3, 185].

As shown in figure 4.8, the exposure to the sodium sulfate solution has resulted in

the formation of additional ettringite. It is important to note that even if the external

concentration in SO4~ was relatively weak:, the model also predicts the formation of

gypsum. This result is in good agreement with field observations [78, 126, 176].

The precipitation of new sulfate-bearing phases is also accompanied by the dissolu-

tion of calcium hydroxide and hydrogarnet and by the decalcification of C-S-H. These

phenomena are usually observed for laboratory and field concrete mixtures exposed

to sulfate solutions [28, 29, 176, 185]. During the degradation process, hydrogarnet is

mainly consumed by a series of dissolution/precipitation reactions leading to the forma-

tion of ettringite. As can be seen in the figure, the initial amount of hydrogarnet limits

the quantity of ettringite that can be formed during the degradation process. Once all

the hydrogarnet is dissolved, the source of aluminum has vanished, which impedes the

further precipitation of ettringite.

The dissolution of portlandite and the decalcification of C-S-H mainly occur due to

the leaching of Ca2+and OH~ions that are diffusing out of the system (see the second

dissolution front in figure 4.9). To supply the amount of calcium for the formation of

ettringite, a slight portion ofportlandite is also consumed ahead ofthe main dissolution

front (see the first dissolution front in figure 4.9).

As previously mentioned, there is overwhelming evidence to show that the mi-

crostructural alterations resulting from sulfate attack contribute to significantly reduce

the mechanical properties ofconcrete [27, 170]. SEM observations tend to indicate that

this reduction is, at least in part, associated with the local development of microcracks

induced by the formation of new sulfate-bearing phases. Over the past decades, nu-

merous studies have also clearly emphasized the detrimental influence of portlandite

dissolution on the mechanical properties of hydrated cement systems [118, 153, 187].

It should be noted that the decalcification of the C-S-H is, most probably, the most

severe degradation that can happen to a concrete mixture. As previously mentioned,
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Figure 4.9: Calcium hydroxide profiles after 20 years for the concrete mixtures made

with the CSA Type 10 cement and exposed to 10 mmol/L of sulfates - Saturated

conditions

the gradual leaching of calcium from the C-S-H leaves a residual silica gel. This gel is

extremely porous and permeable and has no binding capacity.

Numerical simulations also indicate that the kinetics of degradation is mainly con-

trolled by the diffusion coefficient ofthe material (see figures 4.9 to 4.12). These results

clearly emphasize the importance of limiting the water/cement ratio below a certain

critical value. As can be seen, while the two mixtures prepared at a water/cement ratio

of 0.45 do not exhibit any significant degradation after 20 years of exposure, the more

porous mixtures are markedly affected by the exposure to the sulfate solution. It is

noteworthy that the reduction of the water/cement ratio does not modify the mecha-

nisms of deterioration but simply reduces the kinetics of attack. The profiles for the

0.45 type 10, and 0.65 type 10 concrete mixtures shown in the four figures are very

similar, despite very different diffusion coefficients.

It is emphasized that the use of a sulfate-resisting cement is not a sufficient measure

to protect concrete against degradation, even when the structure is exposed to weak

concentrations of SO4~. These results are in good agreement with the observations of

many authors [78, 126, 176]. In the present study, the slightly detrimental influence
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Figure 4.12: Ettringite profiles after 20 years for the concrete mixtures made with the

CSA Type 50 cement and exposed to 10 mmol/L of sulfates - Saturated conditions

of the sulfate-resisting cement on the kinetics of degradation might be attributed to

its effect on the diffusion coefficient of concrete. As can be seen in table 4.8, the use

of the CSA Type 50 cement has contributed to increase the diffusion coefficient of all

concrete mixtures whatever the water/cement ratio. This phenomenon is discussed in

more detail in reference [112].

As shown in figure 4.13, an increase of the SO4~ concentration of the external

solution (from 5 to 30 mmol/L) contributes only to a slight acceleration of the kinetics

of penetration of the ettringite front. It is also interesting to note that the model

predicts the formation of a weak peak of ettringite for the 0 mmol/L case, i.e. the

case without any external sulfate. Its presence is due to the dissolution of ettringite

near the bottom of the slab. As a result of diffusion and the electrical coupling, the

A1(OH)J ions move deeper in the material after this dissolution and precipitate to form

this peak.

The external SO4~ concentration has a more significant effect on the kinetics of

portlandite dissolution (see figure 4.14). An increase in the SO4~ concentration tends

to slightly accelerate the initial dissolution of calcium hydroxide. Subsequently, the

formation of ettringite contributes to reduce the progression of the main portlandite
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dissolution front. This phenomenon is linked to the fact that the precipitation of et-

tringite results in a local reduction of porosity of the material. However, these results

should be considered with caution. The influence of microcracks (induced by the for-

mation of ettringite and gypsum) is not taken into account by the model.

Finally, numerical results clearly indicate that the detrimental influence of weak

sodium sulfate solutions is not predominantly due the suction of SO4~1ons by capillary

forces. As can be seen in figures 4.15 and 4.16, the transport of water by capillary

suction does not seem to have any significant effects on the behavior of concrete. These

results are in good agreement with SEM observations and microprobe analyses recently

made on a series of laboratory mixtures [112]. It should however be borne in mind that

wetting and drying cycles may result in cracking and spalling especially for porous

concrete mixtures [83, 132].
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4.3.6 Concluding remarks

Numerical simulations indicate that the exposure to weak sodium sulfate solutions may

yield to a significant reorganization of the internal microstructure of concrete. In addi-

tion to the formation of the new sulfate-bearing products, the penetration of external

ions markedly accentuates the dissolution of calcium hydroxide and the decalcification

of C-S-H.

The detrimental effects of weak sodium sulfate solutions do not appear to be linked

to capillary suction effects.

Numerical simulations confirm that tht quality of the concrete put in place is, by

far, the main parameter that controls the deterioration process.



Conclusion

Les travaux effectués dans le cadre de cette thèse ont mené au développement d'un

modèle de transport ionique dans les matériaux cimentaires non saturés. II s'agit d'un

modèle mutiionique dont la structure générale est de type SNIA (Sequential Non It-

erative Approach). Cet algorithme permet de résoudre les problèmes de transport en

milieu réactif en découplant le transport et la chimie, sans itérer entre ces deux phases

de calcul.

Le modèle comporte certaines caractéristiques qui le distingue des modèles simi-

laires que l'on retrouve dans le domaine de l'hydrogéologie ainsi que des rares modèles

multiioniques à avoir été publiés dans le domaine du béton. Tout d'abord, le mod-

èle considère le couplage électrique entre les différents ions présents en solution. Ce

couplage est modélisé par l'équation de Nerast-Planck, qui introduit un potentiel élec-

trique dans les équations de transport afin de maintenir l'électroneutralité de la solution

dans le milieu poreux. Ce couplage entre les ions alourdit considérablement le modèle.

Cependant, ce choix s'est trouvé justifié dans les simulations visant à reproduire les

essais faits en laboratoire ; en négligeant ce terme, il n'est pas possible de reproduire

correctement les profils de calcium et de sulfate mesurés sur des pâtes exposées à de

l'eau pure ainsi qu'à différentes solutions de Na2SO4. Le couplage électrique s'avère

donc un élément essentiel de la modélisation du transport ionique dans les matériaux

cimentaires, en raison principalement de la solution fortement basique présente dans

210
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leurs pores. Une partie du travail a été consacrée exclusivement à l'étude d'un algo-

rithme permettant de résoudre le problème du couplage électrique pour des solutions

fortement chargées. La conclusion en a été qu'une résolution itérative de type Picard

ne permet pas d'atteindre cet objectif. La méthode choisie fait la résolution couplée

des équations de transport et de l'équation de Poisson, qui relie le potentiel électrique

aux différents profils de concentration.

Le modèle tient également compte de l'activité chimique dans le modèle de trans-

port, ce qui correspond au modèle de Nernst-Planck étendu. Les tests numériques

effectués sur ce terme ont montré que son influence sur la solution du modèle, aussi

bien au niveau des profils de concentration qu'au niveau des phases solides, est faible.

Cependant, comme le poids numérique de ce terme n'est pas important, il est conservé

dans le modèle.

Toujours concernant l'activité chimique, des travaux ont été menés afin de déter-

miner une loi simple permettant de calculer ce paramètre pour des solutions très con-

centrées, ayant une force ionique se situant autour de 1 mol/L. Le résultat de ces

travaux est la loi de Davies modifiée. Prenant pour point de départ la loi de Davies,

le terme empirique de cette dernière à été remodelé afin de calculer l'activité chimique

des différentes espèces ioniques présentes dans la solution interstitielle des matériaux

cimentaires. Ce modèle est employé dans le modèle autant par la partie transport que

pour les calculs d'équilibre chimique.

Une autre particularité du modèle se situe dans le traitement des réactions chim-

iques. Le modèle s'éloigne des isothermes d'interactions couramment utilisées dans le

domaine du béton. II propose plutôt l'utilisation d'un module d'équilibre chimique

séparé des équations de transport. II est ainsi possible, comme l'ont montré les sim-

ulations de dégradation de pâtes de ciment exposées à des solutions sulfatiques, de

reproduire des phénomènes simultanés tels que la dissolution de la portlandite et la

précipitation de gypse. Le code d'équilibre chimique greffé au modèle ne traite pour

l'instant que les réactions chimiques de dissolution et de précipitation. Les autres réac-

tions chimiques telles que la complexation et l'échange ionique ne sont pas considérées.

En effet, l'utilisation d'une loi de comportement non linéaire pour modéliser le trans-

port rend difficile de considérer l'ensemble des phénomènes chimiques se produisant

dans une structure en béton. Cependant, en privilégiant les réactions de dissolution et
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de précipitation, il a été possible de mettre en évidence les principaux mécanismes de

l'attaque aux sulfates et de l'exposition à l'eau pure.

Un autre aspect important du travail de recherche a consisté à développer une

nouvelle méthode d'analyse de l'essai de migration. La méthode proposée consiste à

trouver les coefficients de diffusion qui permettent de reproduire les courants électriques

mesurés tout au long de l'essai. Les méthodes généralement utilisées pour l'analyse de

cet essai font l'hypothèse d'un découplage entre les ions dû au fort champ électrique

externe. Selon cette hypothèse, le profil de chlore dans une éprouvette de béton soumise

à un champ électrique aurait la forme d'un front similaire à la solution de l'équation

de transport-advection: u —Duxx + vux = 0. Une analyse numérique effectuée avec

le présent modèle a montré que cette hypothèse n'est pas valable; malgré le potentiel

électrique appliqué à un disque de béton, le couplage électrique entre les ions ne peut

être négligé. Cela permet d'expliquer la forme générale des profils mesurés sur des

disques de béton soumis à cet essai, qui n'ont pas la forme d'un front. La méthode

est indépendante des solutions utilisées pendant l'essai et de l'intensité du voltage: les

coefficients de diffusion obtenus sont donc bien une caractéristique du matériau, et ne

sont pas influencés par les conditions expérimentales. Les simulations ayant servi à

valider le modèle ont tiré leurs coefficients de diffusion d'essais de migration analysés

avec cette méthode.

La structure du modèle proposé permet facilement d'envisager plusieurs amélio-

rations. Tout d'abord, en ayant un module séparé pour les réactions chimiques, il est

possible d'ajouter rapidement la formation ou la dissolution de solides supplémentaires.

On pense tout d'abord aux chloroaluminates (sels de Friedel) qui sont formés lorsque

du chlore pénètre dans une structure en béton et réagit avec l'aluminium de la pâte

de ciment. Ou alors la brucite, qui peut se former par réaction entre le magnésium

et les ions OH~ présents dans le matériau; cette réaction est susceptible de se pro-

duire en présence d'eau de mer, fortement chargée en magnésium. II est également

possible d'envisager la modélisation d'autres types de réactions chimiques, telles que

l'échange ionique et la formation de complexe. Dans ce cas, l'emploi d'un opérateur

de transport non linéaire ne permettrait pas le genre de simplifications généralement

employées dans les modèles multiioniques de transport de contaminants dans les sols.
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Néanmoins, comme dans le cas des réactions de dissolution/précipitation, il serait pos-

sible d'éliminer les termes de réaction des équations de transport pour ensuite corriger

les profils de concentration avec le code d'équilibre chimique.

Une autre amélioration à envisager du point de vue de la chimie est l'implantation

d'un modèle de dissolution incongruente pour les C-S-H. Le modèle actuel simplifie la

décalcification des C-S-H en les considérant comme de la portlandite avec une constante

de dissolution plus faible. II serait intéressant de voir si l'emploi d'un modèle tel que

celui proposé par Berner [23] permettrait d'améliorer le comportement du modèle dans

les cas où il y a dissolution de la pâte.

Certains aspects numériques pourraient faire l'objet de modifications. La plus év-

idente consisterait à transformer le modèle lD pour résoudre des problèmes en deux

ou trois dimensions. La version actuelle du modèle utilise la méthode de largeur de

bande pour stocker les matrices globales calculées lors du calcul par éléments finis.

Cette méthode convient très bien aux problèmes en une dimension. Afin de réduire les

besoins en mémoire du modèle, il faudrait passer vers une méthode de stockage plus

efficace, telle que la méthode par ligne de ciel, pour accommoder les problèmes 2D et

3D.

Ensuite, il serait intéressant de tester un algorithme SIA (Sequential Iterative Ap-

proach), dans lequel des itérations sont effectuées entre les phases transport et chimie

du calcul. Cela permettrait de voir s'il est possible de réduire les temps de calcul en

allongeant les pas de temps, en dépit des itérations supplémentaires que cela entraîn-

erait dans le calcul de l'équilibre chimique. Liu et Narasimhan [108] ont mentionné que

99.9% du temps de calcul est consacré à la chimie dans leur modèle de transport de

contaminant dans les sols. Cette proportion est sûrement beaucoup faible dans le cas

de notre modèle, puisque les équations de transport non linéaires sont plus lourdes à

résoudre que l'équation linéaire de transport/diffusion. II serait ainsi possible de ré-

duire le temps CPU pour les calculs en deux ou trois dimensions en trouvant un pas de

temps optimal.

II serait possible d'élargir le champ d'application du modèle en prenant en compte

des phénomènes physiques supplémentaires. Ainsi, on pourrait considérer les effets

de la température sur le transport ionique en ajoutant l'équation de conduction de
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la chaleur au modèle. Cela impliquerait de connaître l'effet de la température sur la

diffusion des ions. II serait possible d'atteindre cet objectif en faisant une série d'essais

de migration sur différents matériaux cimentaires à différentes températures. Le même

type d'analyse devrait être fait pour quantifier l'effet de la température sur la diffusivité

de l'eau. Les constantes d'équilibre chimique, quant à elles, sont reliées à la température

via l'équation de Van't Hoff.

Le modèle serait également valorisé par ]:'ajout des équations nécessaires aux calculs

de transport d'ions sous forme gazeuse. On pourrait ainsi évaluer la profondeur de la

carbonatation sur des structures en béton en fonction du temps. II faudrait pour cela,

en plus des équations de transport dans la phase gazeuse, modifier le module chimique

afin de considérer la dissolution de molécules dans l'air vers la solution de pores du

béton.

Les méthodes numériques choisies dans le cadre de ce travail de recherche, soit la

méthode des éléments finis pour résoudre les équations de transport et la séparation

transport/chimie, ont permis de créer une plate-forme qui peut servir de point de départ

pour des modèles de transport de plus en plus complets. Ce travail ouvre la porte à

la création d'outils numériques qui pourront servir aussi bien à la recherche qu'à la

consultation en génie civil.
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