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Résumé

Due à la complexité des mécanismes typiquement requis pour contraindre l’aile d’une turbine à aile

oscillante à suivre des mouvements spécifiques, cette thèse étudie la possibilité de bénéficier de mou-

vements non contraints, dits passifs. En pratique, cela implique que l’aile est attachée à la structure

de la turbine à l’aide de supports élastiques indépendants en pilonnement et en tangage, formés de

ressorts et d’amortisseurs. Par conséquent, seul un contrôle indirect des mouvements est possible en

ajustant adéquatement les paramètres structuraux affectant la dynamique de l’aile, tels que les para-

mètres d’inertie, d’amortissement et de raideur de l’aile et de ses supports élastiques.

En premier lieu, un prototype ayant des mouvements passifs autant en pilonnement qu’en tangage,

et donc étant complètement passif, a été conçu et testé dans un canal à surface libre. Cette première

phase du présent travail de recherche a confirmé la faisabilité et le potentiel de ce concept en per-

mettant d’extraire une quantité significative d’énergie de l’écoulement d’eau. Cependant, l’efficacité

maximale atteinte est demeurée inférieure à ce qui peut être obtenu en contraignant l’aile à suivre des

mouvements précis.

Suite à ces expériences, un algorithme résolvant la dynamique du solide a été implémenté et couplé

au logiciel résolvant la dynamique du fluide gouverné par les équations de Navier-Stokes. Des simu-

lations numériques ont été réalisées afin d’analyser plus en détail la dynamique de chacun des deux

degrés de liberté de l’aile. Plutôt que de poursuivre notre étude du concept complètement passif im-

médiatement, un concept de turbine semi-passive caractérisée par un mouvement de tangage passif

et un mouvement de pilonnement contraint a été considéré. Des efficacités de l’ordre de 45% ont été

atteintes, se comparant ainsi aux meilleures performances rapportées dans la littérature concernant les

turbines à ailes oscillantes complètement contraintes. En plus de révéler le fort potentiel de ce concept

de turbine semi-passive, cette étude nous a permis de nous concentrer sur certains aspects spécifiques

concernant la dynamique d’une aile attachée par des ressorts en tangage. Cette analyse plus détaillée

de la physique en jeu a été facilitée par le nombre réduit de paramètres structuraux en jeu par rapport à

une turbine pour laquelle le mouvement de pilonnement est lui aussi passif. L’une des découvertes im-

portantes est que le centre de masse doit être situé en aval du point de pivot afin de générer un transfert

d’énergie du mouvement de pilonnement vers le mouvement de tangage par l’entremise du couplage

inertiel entre les deux degrés de liberté. Ce transfert d’énergie est crucial puisque les mouvements

de tangage optimaux nécessitent de l’énergie en moyenne pour être soutenus. De plus, un paramètre

iii



combinant les effets liés au moment d’inertie de l’aile par rapport à son point de pivot et à la raideur en

tangage a été proposé. Ce paramètre permet de bien caractériser la dynamique du mouvement de tan-

gage passif de la turbine semi-passive. Il permet aussi de déterminer la raideur requise pour différentes

valeurs du moment d’inertie afin de maintenir une performance optimale de la turbine.

Utilisant les connaissances acquises concernant la dynamique des mouvements de tangage passifs,

le concept de turbine à aile oscillante complètement passive a été revisité. Les meilleures efficacités

obtenues avec la turbine semi-passive ont été égalées et ont même été surpassées puisque qu’une effi-

cacité de 53.8% a été atteinte. Les résultats ont aussi démontré qu’une performance optimale pouvait

être maintenue sur de larges plages de valeurs en ce qui concerne la masse en pilonnement ainsi que le

moment d’inertie par rapport au point de pivot, pourvu que les raideurs en pilonnement et en tangage

soient ajustées correctement.
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Abstract

Due to the complexity of the mechanisms typically required when designing a flapping-foil turbine to

prescribe specific heave and pitch motions, this thesis investigates the possibility of benefiting from

unconstrained motions. In practice, this means that the foil is attached to the turbine structure with in-

dependent elastic supports in heave and in pitch, which consist in springs and dampers. Consequently,

only an indirect control over the foil motions is possible through an adequate adjustment of the struc-

tural parameters affecting the foil dynamics, namely the inertial, damping and stiffness characteristics

of the elastically-supported foil. Such motions are referred to as passive motions.

As a first step, a turbine prototype with passive heave and pitch motions, thus being fully-passive,

has been designed and tested in a water channel. This first phase of the present research work has

confirmed the feasibility and the potential of this concept to extract a significant amount of energy

from a fluid flow. However, the maximum efficiency that has been obtained is smaller than what can

be achieved when prescribing specific foil motions.

Following these experiments, a solid solver has been implemented and coupled with a Navier-Stokes

fluid solver. Numerical simulations have been carried out to analyze the dynamics of both degrees

of freedom in more details. Instead of immediately pursuing our study of the fully-passive flapping-

foil turbine, a semi-passive concept, with a passive pitch motion and a prescribed heave motion, has

been considered. Efficiencies of the order of 45% have been achieved, hence competing with the best

performance reported in the literature for flapping-foil turbines with prescribed motions. In addition

to revealing the great potential of this semi-passive turbine concept, this study has allowed us to focus

on some specific aspects of the dynamics of passive pitch motions. This more detailed analysis of the

physics at play has been facilitated by the reduced number of structural parameters affecting the foil

dynamics compared to a turbine for which the foil is also elastically-supported in heave. One of the

main findings is that the center of mass must be positioned downstream of the pitch axis in order to

generate a net transfer of energy from the heave motion to the pitch motion via the inertial coupling

between the two degrees of freedom. This energy transfer is crucial because optimal pitch motions

require energy on average to be sustained. Moreover, a parameter combining the effects of the moment

of inertia of the foil about the pitch axis and the pitch stiffness has been proposed. This parameter

effectively characterizes the pitch dynamics of the semi-passive turbine. It also allows properly scaling

the pitch stiffness when different moments of inertia are considered with the objective of maintaining
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an optimal turbine performance.

Having improved our knowledge about the dynamics of passive pitch motions, the fully-passive

flapping-foil turbine concept has been revisited. The best efficiencies obtained with the semi-passive

concept have been matched, and even exceeded since an efficiency of 53.8% has been reached. The

results have also demonstrated that an optimal performance can be maintained over large ranges of

values regarding the heaving mass and the moment of inertia when the heave and pitch stiffness coef-

ficients are adjusted adequately.
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Introduction

Conventional sources of energy relying on fossil fuels are finite and are the cause of many serious

environmental threats. Developing new sources of clean and renewable energy is therefore crucial in

a sustainable development perspective. Among the different possibilities, the energy extraction from

river or tidal currents by hydrokinetic turbines is rapidly drawing more and more attention nowadays.

This technology possesses several important advantages over wind turbines. First, the higher density

of water compared to air results in a higher energy density, hence resulting in smaller apparatus for the

same power output. Moreover, both the direction and the strength of river and tidal currents are more

predictable and more constant than wind, which greatly facilitates the electrical grid management.

Also, the electricity generated by hydrokinetic turbines could be produced where it is consumed since

large urban areas are often located near an important river or the ocean. This would minimize the

infrastructure needed for the energy transport and the losses associated to it. It would also not com-

pete with other uses of the land. However, this innovative renewable energy source remains almost

unexploited at the moment despite all these pros.

The recent developments in the field of hydrokinetic energy harvesting has drawn a renewed interest

for cross-flow turbines, especially in the context of shallow waters due to the rectangular area swept by

their blades (M. S. Güney and K. Kaygusuz, 2010; Kinsey et al., 2011; Young et al., 2014). This type

of turbine includes the well-known vertical-axis turbine (Paraschivoiu, 2002; Gosselin et al., 2016;

Boudreau and Dumas, 2017a) and the flapping-foil turbine (Xiao and Zhu, 2014; Young et al., 2014),

to which this thesis is devoted. The flapping-foil turbine, also known as the oscillating-foil turbine,

consists in a blade undergoing combined heave (translational) and pitch (rotational) motions, as shown

in Fig. 0.1. The energy extraction potential of this turbine technology has already been demonstrated

in the past with efficiencies of the same order as those obtained with the more established horizontal-

axis and vertical-axis turbines (Xiao and Zhu, 2014; Young et al., 2014).

In order to achieve this level of performance, the heave and pitch motions are generally constrained

in a way that allows one to prescribe specific motions. However, this control over the motions comes

at the cost of a complex mechanical design, which raises a few issues. Indeed, the more components

there are in the mechanical assembly required to couple and constrain both degrees of freedom, the

higher is the risk of failure of the device and the more costly it becomes. Moreover, the friction

between all the moving components can result in considerable energy losses. For example, 25% of the
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Figure 0.1: Typical foil motions of a flapping-foil turbine as a function of time with the fluid flowing
from left to right.

energy extracted from the flow by the flapping-foil turbine prototype tested by Kinsey et al. (2011) was

lost due to friction before being converted into electricity. A fundamental change therefore appears

unavoidable to fully benefit from the promising potential of this turbine technology.

One possible alternative is to make use of unconstrained motions, either in pitch, in heave or for

both degrees of freedom. This is achieved by elastically supporting the turbine blade with springs

and dampers. Consequently, the heave and pitch motions cannot be prescribed and rather result from

the interaction between the turbine blade, its elastic supports and the flow. This is what we refer to

as passive motions. The only way to indirectly control such motions is by adequately adjusting the

structural parameters that play a role in the turbine blade dynamics. The challenge of designing a

flapping-foil turbine with passive motions therefore consists in finding a set of structural parameters

that results in suitable motions to maximize the energy extraction from the flow.
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Chapter 1

Background

1.1 Constrained and/or passive motions

In order to avoid any confusion regarding the use of constrained or passive motions for flapping-foil

turbines, it is convenient to decompose the heave and pitch motions into 5 different motion parameters,

namely the shape and amplitude of the heave motion, the shape and amplitude of the pitch motion, the

frequency of the heave motion, the frequency of the pitch motion and the phase lag between the heave

and the pitch motions.

When all five motion parameters are constrained, we obtain what we refer to as a fully-constrained

turbine. Typically, a slider-crank linkage is used to convert the reciprocating heave motion to a rotat-

ing motion in order to use a typical electric generator to produce electricity. The electric generator is

usually connected to the heave motion because it is responsible for most of the energy extraction from

the flow (Kinsey and Dumas, 2008, 2014; Zhu, 2011). The use of a slider-crank linkage has the conse-

quence of constraining the shape and amplitude of the heave motion, but not its frequency. A constant

frequency can be obtained by using a controller with the electric generator. The shape and amplitude

of the pitch motion, its frequency and the phase lag between the heave and the pitch motions can be

constrained by making use of a motor and a controller for this degree of freedom. This corresponds

to a two-degree-of-freedom (2-DOF) fully-constrained flapping-foil turbine (e.g. Kim et al. (2017)).

Alternatively, mechanical linkages can be used to couple the heave and the pitch motions together in

order to obtain a specific relation between them. In other words, the pitch angle becomes a function

of the heave position, thereby constraining all five motion parameters and resulting in a one-degree-

of-freedom (1-DOF) fully-constrained flapping-foil turbine (e.g. McKinney and DeLaurier (1981);

Kinsey et al. (2011); Xu et al. (2017)). The slider-crank and coupling mechanisms are designed to

obtain specific motion shapes in heave and in pitch, which generally correspond to sinusoidal motions.

A fully-passive flapping-foil turbine is obtained when the five motion parameters describing the heave

and pitch motions are left free. This means that no slider-crank linkage, no coupling mechanism,

no controller and no motor in pitch are used. Instead, the foil is elastically-supported with springs
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and/or dampers while still being restricted to move in heave and in pitch only. The consequence

of not constraining the five motion parameters is that specific heave and pitch motions cannot be

prescribed. Indeed, the designer of a fully-passive turbine only has an indirect control over the motions

by adjusting the structural parameters playing a role in the turbine dynamics, as mentioned above. It is

worth mentioning that a linear electric generator must be used to produce electricity with this turbine

concept since the heave motion is not converted to a rotating motion. For example, such a linear

electric generator is used by Vortex Hydro Energy, Inc. to generate electricity from the vortex-induced

vibrations of cylinders (Vortex Hydro Energy).

In addition to these two limit cases, several other design options arise when constraining or not each

of the five motion parameters. These turbine concepts are referred to as semi-passive flapping-foil

turbines. A few of the different possibilities have already been proposed and studied in the literature,

and they will be briefly presented in Sec. 1.4.

1.2 Turbine dynamics

1.2.1 Fully-constrained flapping-foil turbine

In order to better understand the different dynamics experienced by the fully-constrained and fully-

passive flapping-foil turbine concepts, it is useful to analyze their respective equations of motion.

General equations of motion for the 1-DOF fully-constrained concept are given below:

Fy = mh ḧ+S
(
θ̈ cosθ − θ̇

2 sinθ
)
+Dh ḣ+Fgen +Flink , (1.1)

M = Iθ θ̈ +S ḧcos(θ)+Dθ θ̇ +Mlink , (1.2)

where the superscript (·) denotes a time derivative and the definitions of the variables appearing in

these equations are listed here:

• Fy: hydrodynamic force component in the heave direction;

• M: hydrodynamic moment about the pitch axis;

• h: heave position (vertical position of the pitch axis);

• θ : pitch angle;

• mh: mass of all the components undergoing the heave motion;

• Iθ : moment of inertia about the pitch axis;

• S: static moment;

• Dh: heave damping coefficient;

• Dθ : pitch damping coefficient;

• Fgen: force component in the heave direction stemming from the electric generator;

• Flink: force component in the heave direction stemming from the rigid links coupling both

degrees of freedom together;

• Mlink: moment about the pitch axis stemming from the rigid links coupling both degrees of

freedom together;

4



The static moment (S) corresponds to the product of the mass of all the components undergoing the

pitch motion (mθ ) with the distance between the center of mass (in pitch) and the pitch axis (xθ ):

S = mθ xθ . (1.3)

It is therefore equal to zero when the pitch axis, positioned at a distance xp downstream of the leading

edge, coincides with the center of mass. xθ is defined positive when the center of mass is located

downstream of the pitch axis, as shown in Fig. 1.1.

x

Figure 1.1: Schematic of the flapping-foil illustrating the pitch axis and center of mass locations.

The heave and pitch damping coefficients (Dh et Dθ ) stand for the presence of undesired friction in

a real turbine setup. Lastly, the gravitational acceleration does not appear in the equations of motion

because it is considered to act in a direction aligned with the pitch axis (z-direction in Fig. 1.1).

When designing a fully-constrained flapping-foil turbine, the objective is to prescribe specific func-

tions of time for the heave and pitch motions. This is achieved by properly designing the rigid links

that couple the heave and pitch degrees of freedom, in order to enforce a particular relation between

the pitch angle and the heave position, and by controlling the resistive force of the electric generator

(Fgen) in real time. In other words, Fgen must be controlled so that the solutions of Eqs. 1.1 and 1.2

correspond to the desired prescribed motions. Generally, sinusoidal motions are prescribed:

h = H0 sin(2π f t) , (1.4)

θ = Θ0 sin(2π f t−φ) , (1.5)

where H0 and Θ0 are the heave and pitch amplitudes, f is the frequency of the motions, t is time and

φ is the phase lag between the heave and pitch motions. When conducting numerical simulations, the

prescribed motions are usually directly imposed without solving the equations of motion (e.g. Kinsey

and Dumas (2008, 2014)), thus assuming that the electric generator would be properly controlled.

Eqs. 1.1 and 1.2 are useful to understand how the power is transferred from the flow to an electric

generator. The amount of power available at the generator is obtained by multiplying Eq. 1.1 with the
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heave velocity (ḣ). All the term appearing in the resulting equation are placed on the left hand side of

the equation, except the one involving Fgen, in addition to being normalized to obtain:

〈CPh〉+ 〈CPmh
〉+ 〈CPS,h〉+ 〈CPDh

〉+ 〈CPlink,h〉= 〈CPgen〉 , (1.6)

where the angle brackets indicate that the values are cycle-averaged. The same is done with Eq. 1.2

after multiplying it with the pitch velocity (θ̇ ):

〈CPθ
〉+ 〈CPIθ

〉+ 〈CPS,θ 〉+ 〈CPDθ
〉+ 〈CPlink,θ 〉= 0 . (1.7)

The different power coefficients appearing in Eqs. 1.6 and 1.7 are defined as:

〈CPh〉=
1
T

∫ ti+T

ti

(
Fy ḣ

0.5ρ U3
∞ bc

)
dt , (1.8)

〈CPmh
〉= 1

T

∫ ti+T

ti

(
−mh ḧ ḣ

0.5ρ U3
∞ bc

)
dt , (1.9)

〈CPS,h〉=
1
T

∫ ti+T

ti

(
−S ḣ

(
θ̈ cosθ − θ̇ 2 sinθ

)
0.5ρ U3

∞ bc

)
dt , (1.10)

〈CPDh
〉= 1

T

∫ ti+T

ti

(
−Dh ḣ2

0.5ρ U3
∞ bc

)
dt , (1.11)

〈CPlink,h〉=
1
T

∫ ti+T

ti

(
Flink ḣ

0.5ρ U3
∞ bc

)
dt , (1.12)

〈CPgen〉=
1
T

∫ ti+T

ti

(
Fgen ḣ

0.5ρ U3
∞ bc

)
dt , (1.13)

〈CPθ
〉= 1

T

∫ ti+T

ti

(
M θ̇

0.5ρ U3
∞ bc

)
dt , (1.14)

〈CPIθ
〉= 1

T

∫ ti+T

ti

(
−Iθ θ̈ θ̇

0.5ρ U3
∞ bc

)
dt , (1.15)

〈CPS,θ 〉=
1
T

∫ ti+T

ti

(
−S ḧ θ̇ cos(θ)
0.5ρ U3

∞ bc

)
dt , (1.16)

〈CPDθ
〉= 1

T

∫ ti+T

ti

(
−Dθ θ̇ 2

0.5ρ U3
∞ bc

)
dt , (1.17)
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〈CPlink,θ 〉=
1
T

∫ ti+T

ti

(
Mlink θ̇

0.5ρ U3
∞ bc

)
dt , (1.18)

where ti is the time at which a given foil oscillation starts, T is the period of this oscillation (T = 1/ f ),

ρ is the fluid density, U∞ is the freestream velocity, b is the blade span length and c is the chord length.

Note that unless otherwise indicated, the term power coefficient refers to a cycle-averaged value.

〈CPgen〉 is the power coefficient available at the electric generator and therefore measures the power

extraction performance of the turbine. The power transfers occurring between the foil and the flow for

each degree of freedom are computed with 〈CPh〉 and 〈CPθ
〉, which are respectively referred to as the

heave and pitch power coefficients. They are defined positive when the power is transferred from the

flow to the foil and negative when the motions require some power on average to be maintained. 〈CPmh
〉

and 〈CPIθ
〉 correspond to power transfers occurring between the foil motions and different forms of

potential energy. 〈CPDh
〉 and 〈CPDθ

〉 represent power losses, that would be dissipated as heat, associated

to the presence of viscous friction in heave and in pitch. They are thus necessarily negative. Note that

other forms of friction such as Coulomb friction (dry friction) could also be present on a real turbine,

but they have been omitted in Eqs. 1.1 and 1.2 for the sake of simplicity. 〈CPS,h〉 and 〈CPS,θ 〉 correspond

to the power transfers occurring between the heave motion and the pitch motion through the inertial

coupling terms in Eqs. 1.1 and 1.2, namely the terms involving the static moment. 〈CPlink,h〉 and

〈CPlink,θ 〉 are similar to 〈CPS,h〉 and 〈CPS,θ 〉 since they also represent power transfers occurring between

both degrees of freedom, but through the rigid mechanical links coupling both degrees of freedom

instead of the inertial coupling terms. These four power coefficients are defined positive when they

correspond to a power input in their respective equation and negative for a power output. For example,

when 〈CPS,h〉 is negative but 〈CPS,θ 〉 is positive, some power is transferred from the heave motion to the

pitch motion on average during one cycle1. Note that 〈CPS,h〉 and 〈CPS,θ 〉 are equal to zero when the

center of mass coincides with the pitch axis (see Eq. 1.3 and Fig. 1.1).

Typically, the prescribed motions of a fully-constrained flapping-foil turbine are periodic. As a result,

〈CPmh
〉 and 〈CPIθ

〉 vanish in Eqs. 1.1 and 1.2 because these terms are conservative (Veilleux, 2014).

Moreover, the pairs 〈CPS,h〉 and 〈CPS,θ 〉 as well as 〈CPlink,h〉 and 〈CPlink,θ 〉 are equal but opposite when the

motions are periodic (Veilleux, 2014):

〈CPS,h〉=−〈CPS,θ 〉 , (1.19)

〈CPlink,h〉=−〈CPlink,θ 〉 . (1.20)

Eqs. 1.6 and 1.7 can thus be combined to obtain:

〈CPh〉+ 〈CPθ
〉+ 〈CPDh

〉+ 〈CPDθ
〉= 〈CPgen〉 . (1.21)

This equation states that, on average, the power available at the electric generator is equal to the sum

of the power extracted from the flow through the heave and pitch motions minus the power losses due

to friction.
1Note that these definitions are slightly different than those presented in the paper of Veilleux and Dumas (2017) due to

a different sign convention used for θ .
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The efficiency is also commonly used to evaluate the performance of a flapping-foil turbine. It is

defined as:

η =
〈CPgen〉c

d
, (1.22)

where d is the overall extent of the foil motion, or, in other words, the distance between the maximum

and minimum positions reached by any point on the foil surface in the heave direction during one

complete foil oscillation. The efficiency defined by Eq. 1.22 is a measure of the ratio between the

power available for the electric generator of a turbine and the power available in the flow passing

through the turbine swept area. The power available for the turbine corresponds to the kinetic energy

flux passing through the area swept by the foil, i.e., the product of the overall extent of the foil motion

(d) with the blade span length (b). The efficiency defined by Eq. 1.22 can therefore be referred to as a

“water-to-generator” efficiency. A “water-to-wire” efficiency could be determined by also taking into

account the efficiency of the power conversion into electricity performed by the electric generator.

It is also useful to define an efficiency based on the power extracted from the flow that does not take

into account the losses due to friction:

ηhydro =

(
〈CPh〉+ 〈CPθ

〉
)

c

d
, (1.23)

which is referred to as the hydrodynamic efficiency by some authors (e.g. Kinsey et al. (2011)). The

corresponding hydrodynamic power coefficient is defined as:

〈CPhydro〉= 〈CPh〉+ 〈CPθ
〉 , (1.24)

These two metrics allow comparing the hydrodynamic performances of turbines with different me-

chanical designs, and thus different amount of friction, therefore remaining more general. For this

reason, the hydrodynamic efficiency is often preferred to the efficiency defined by Eq. 1.22 when nu-

merical simulations are conducted. It is worth mentioning that care should be taken when comparing

the efficiencies reported by different studies since different definitions are used in the literature. For

example, some authors normalize the power extracted with twice the heave amplitude (2H0) instead

of the overall extent of the foil motion (d).

1.2.2 Fully-passive flapping-foil turbine

In the case of the fully-passive flapping-foil turbine concept, no rigid links are used to couple the

heave and pitch degrees of freedom together. However, the foil can be attached to the turbine structure

with independent springs in heave and in pitch. Therefore, the general equations of motion of the

fully-passive flapping-foil turbine concept are:

Fy = mh ḧ+S
(
θ̈ cosθ − θ̇

2 sinθ
)
+Dh ḣ+ kh h+Fgen , (1.25)

M = Iθ θ̈ +S ḧcos(θ)+Dθ θ̇ + kθ θ , (1.26)
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where kh is the heave stiffness coefficient and kθ is the pitch stiffness coefficient. The derivation of

the fully-passive flapping-foil equations of motion is presented in the master thesis of Veilleux (2014).

Note however that the signs of the inertial coupling terms are different in his thesis because of a

different sign convention used for θ .

Since no controller is used with the electric generator, Fgen cannot be controlled in real time to ob-

tain specific solutions of Eqs. 1.25 and 1.26 and thus to prescribe the foil motions. Actually, the

uncontrolled electric generator connected to the heave motion is often modeled as a linear (viscous)

damper (Abiru and Yoshitake, 2011; Boudreau et al., 2018; Deng et al., 2015; Griffith et al., 2016;

Iverson, 2018; Peng and Zhu, 2009; Teng et al., 2016; Veilleux and Dumas, 2017; Wang et al., 2017;

Zhu, 2012). In that case, Fgen is idealized as:

Fgen = Dh ḣ , (1.27)

and Eq. 1.25 thus becomes

Fy = mh ḧ+S
(
θ̈ cosθ − θ̇

2 sinθ
)
+Dh ḣ+ kh h , (1.28)

where Dh is now the sum of two different contributions:

Dh = Dh,e +Dh,v , (1.29)

the desired energy sink (Dh,e), which corresponds to the energy that could be converted into electricity

by an electric generator, and the undesired viscous friction (Dh,v).

Unlike the fully-constrained flapping-foil turbine concept, the only control over the foil motions al-

lowed by the fully-passive concept is through the values of the different governing structural parame-

ters. Indeed, the heave and pitch motions result from the interaction of the foil with its elastic supports

and the flow. In other words, they are the solutions of Eqs. 1.26 and 1.28. These passive motions can

have different shapes that differ from pure sinusoids. In that context, the heave amplitude (H0), the

pitch amplitude (Θ0) and the phase lag between the heave and the pitch motions (φ ) are respectively

defined as:

H0 =
hmax −hmin

2
, (1.30)

Θ0 =
θmax −θmin

2
, (1.31)

φ =
360
T

(tθmax − thmax ) [degrees] , (1.32)

where hmax, hmin, θmax and θmin are the maximum and minimum heave and pitch positions reached

during a given foil oscillation and tθmax and thmax are the instants at which the maximum pitch and heave

positions are reached during this specific foil oscillation. The motions are also characterized by their

frequency, which is the same in heave and in pitch for cases that are suitable for a turbine application.

This will be discussed in more details in Paper III.
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Using the same procedure described above, equations for the power coefficients can be obtained from

Eqs. 1.25 and 1.26:

〈CPh〉+ 〈CPmh
〉+ 〈CPS,h〉+ 〈CPDh

〉+ 〈CPkh
〉= 〈CPgen〉 , (1.33)

〈CPθ
〉+ 〈CPIθ

〉+ 〈CPS,θ 〉+ 〈CPDθ
〉+ 〈CPkθ

〉〉= 0 , (1.34)

where:

〈CPkh〉=
1
T

∫ ti+T

ti

(
−kh hḣ

0.5ρ U3
∞ bc

)
dt , (1.35)

〈CPkθ
〉= 1

T

∫ ti+T

ti

(
−kθ θ θ̇

0.5ρ U3
∞ bc

)
dt . (1.36)

As will be shown in this thesis, periodic motions can still be obtained with a fully-passive flapping-foil

turbine even though they are not prescribed. When this is the case, Eq. 1.19 holds true and the terms

〈CPkh〉 and 〈CPkθ
〉 vanish like 〈CPmh

〉 and 〈CPIθ
〉 because they are also conservative. As a result, the

power coefficient at the generator is still given by Eq. 1.21. When the electric generator is modeled as

a linear damper, it becomes:

〈CPh〉+ 〈CPθ
〉+ 〈CPDh,v

〉+ 〈CPDθ
〉= 〈CPgen〉 , (1.37)

with:

〈CPgen〉= 〈CPDh,e
〉 , (1.38)

and:

〈CPDh,e
〉= 1

T

∫ ti+T

ti

(
−Dh,e ḣ2

0.5ρ U3
∞ bc

)
dt , (1.39)

〈CPDh,v
〉= 1

T

∫ ti+T

ti

(
−Dh,v ḣ2

0.5ρ U3
∞ bc

)
dt . (1.40)

Eq. 1.23 can still be used to compute the hydrodynamic efficiency in the case of a fully-passive

flapping-foil turbine. However, while the friction does not affect the prescribed motions of a fully-

constrained flapping-foil turbine because the resistive force of the electric generator (Fgen) can be

controlled accordingly, it does affect the motions of a fully-passive turbine, hence also affecting the

values of 〈CPh〉 and 〈CPθ
〉. Consequently, Eq. 1.23 does not maintain the same level of generality

for different mechanical designs of fully-passive turbines. Moreover, the difference between the effi-

ciencies defined by Eqs. 1.22 and 1.23 is not only related to the presence of undesired friction when

the motions are not periodic. Because of that, the efficiency defined by Eq. 1.22 is more often used

in the literature to characterize the power extraction performance of fully-passive turbines than the

hydrodynamic efficiency. Unless otherwise indicated, the efficiency defined by 1.22 is used in this

thesis.
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1.3 Dimensionless form of the governing equations

The fluid dynamics pertaining to the study of hydrokinetic turbines is governed by the incompressible

Navier-Stokes equations (see e.g. Panton (2013)):

∇ ·u = 0 , (1.41)

∂u
∂ t

+u ·∇u =− 1
ρ

∇p+
1
ν

∇
2u , (1.42)

where u is the velocity vector, ρ is the fluid density, p is the pressure and ν is the kinematic viscosity

of the fluid.

Using appropriate reference scales for length (Lref), velocity (Uref), time (tref) and pressure (pref):

Lref = c , (1.43)

Uref =U∞ , (1.44)

tref = Lref/Uref = c/U∞ , (1.45)

pref = ρ U2
∞ , (1.46)

where c is the chord length and U∞ is the freestream velocity, Eqs. 1.41 and 1.42 can be written in

dimensionless form:

∇ ·u∗ = 0 , (1.47)

∂u∗

∂ t∗
+u∗ ·∇∗u∗ =−∇

∗p∗+
1

Re
∇
∗2u∗ . (1.48)

The superscript ∗ indicates a dimensionless variable (e.g. t∗ = t/tref) and Re is the Reynolds number:

Re =
U∞ c

ν
. (1.49)

Considering also the following reference scales for the hydrodynamic force component in the heave

direction (Fy ref) and the hydrodynamic moment about the pitch axis (Mref):

θref = 1 , (1.50)

Fy ref =
1
2

ρ U2
∞ bc , (1.51)

Mref =
1
2

ρ U2
∞ bc2 , (1.52)

where b is the span length, the equations of motion of the fully-passive turbine can also be written in

a dimensionless form:

CFy/2 = m∗h ḧ∗ + S∗
(

θ̈
∗ cosθ − θ̇ ∗

2 sinθ

)
+ D∗h ḣ∗ + k∗h h∗ , (1.53)

CM/2 = I∗θ θ̈
∗ + S∗ḧ∗ cosθ + D∗θ θ̇

∗ + k∗θ θ , (1.54)

where:
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CFy =
Fy

0.5ρ U2
∞ bc

, CM =
M

0.5ρ U2
∞ bc2 , m∗h =

mh

ρ bc2 , I∗
θ
=

Iθ

ρ bc4 , S∗ =
S

ρ bc3 ,

D∗h =
Dh

ρ U∞ bc
, D∗

θ
=

Dθ

ρ U∞ bc3 , k∗h =
kh

ρ U2
∞ b

, k∗
θ
=

kθ

ρ U2
∞ bc2 ,

h∗ =
h
c

, ḣ∗ =
ḣ

U∞

, ḧ∗ =
ḧ c
U2

∞

, θ̇ ∗ =
θ̇ c
U∞

, θ̈ ∗ =
θ̈ c2

U2
∞

.

The same reference scales are also used to normalize the heave amplitude:

H∗0 =
H0

c
, (1.55)

and the frequency of the motion to obtain what we refer to as the reduced frequency:

f ∗ =
f c
U∞

. (1.56)

Note that the pitch amplitude defined according to Eq. 1.31 is already dimensionless since a reference

scale of one is used for θ (see Eq. 1.50).

This normalization is the same as the one used by Veilleux and Dumas (2017) and is analogous to

that used by Onoue et al. (2015) and by Shiels et al. (2001) for their respective study of an elastically-

supported pitching flat plate and a cylinder undergoing vortex-induced vibrations (VIV). Unlike other

traditional normalizations relying on the concept of natural frequency for the reference time scale, the

current normalization remains valid for any value of the inertial and stiffness properties characterizing

the elastically-supported foil, including zero.

1.4 Literature review

1.4.1 Proposed turbine concepts

The fully-constrained flapping-foil turbine was first investigated experimentally by McKinney and

DeLaurier (1981). Several other studies on a similar device have followed covering various aspects

of the technology such as the 3D effects (Kinsey and Dumas, 2012b; Deng et al., 2014; Kim et al.,

2017), the blockage effects (Gauthier et al., 2016), the impact of using non-sinusoidal motions (Deng

et al., 2014), multiple-foil configurations (Kinsey et al., 2011; Kinsey and Dumas, 2012a), the rela-

tion between the wake instability and the energy-extraction performance (Zhu, 2011) and the vorticity

dynamics in the wake (Boudreau and Dumas, 2017b). The interested reader is referred to the compre-

hensive review papers on the flapping-foil turbine concept conducted by Young et al. (2014) and by

Xiao and Zhu (2014) for more information. According to these reviews, high hydrodynamic efficien-

cies (see Eq. 1.23) exceeding 40% are usually obtained for reduced frequencies ranging between 0.10

and 0.25, with large pitch amplitudes (≈ 70−95°), a heave amplitude of about one chord length and

a phase lag of about 90° between the heave and the pitch motions when the pitch axis is located at the
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third-chord point (xp/c = 1/3). This phase lag between the heave and the pitch motions is a critical

parameter because it is responsible for the timing between the hydrodynamic force component acting

on the foil in the heave direction and the heave velocity. A suitable phase lag results in maximum

forces and velocities occurring at the same time, thereby maximizing the energy extraction from the

flow.

In addition to the fully-constrained flapping-foil turbine concept, there are several different designs of

flapping-foil turbines making use of passive motions that have been considered in the literature. Young

et al. (2013) investigated the possibility of linking both the pitch and the heave motions to a flywheel,

which is itself connected to a linear damper that models the energy extraction. Consequently, the

shapes and amplitudes of the heave and pitch motions and the phase lag between them are constrained,

but the frequency is not. Nonetheless, the frequency is necessarily the same for both motions. This

turbine concept resulted in interesting efficiencies reaching 30%. However, such a device is not much

simpler than a fully-constrained turbine since both a coupling mechanism between the heave and

the pitch motions and a slider-crank mechanism converting the reciprocating heave motion into a

rotational motion are still needed. Nevertheless, no controller is used and a simple energy-conversion

device could be used since no energy input is required throughout the foil oscillations. In the case of

a fully-constrained turbine, the electric generator usually has to act as an actuator during a fraction of

the foil oscillations. Young et al. (2013) referred to their concept as a fully-passive turbine but this

definition differs from the definition proposed in this thesis. Indeed, we define a fully-passive turbine

as a turbine for which the shapes, the amplitude and the frequencies of both motions as well as the

phase lag between them are all unconstrained.

The most studied flapping-foil turbine configuration making use of passive motions involves fewer

constraints. It consists in an elastically-mounted blade in heave with a prescribed pitch motion (Shimizu

et al., 2008; Zhu et al., 2009; Zhu and Peng, 2009; Abiru and Yoshitake, 2011, 2012; Huxham et al.,

2012; Wu et al., 2014; Deng et al., 2015; Sitorus et al., 2015; Wu et al., 2015; Teng et al., 2016; Der-

akhshandeh et al., 2016; Griffith et al., 2016; Zhan et al., 2017; Chen et al., 2018). In other words, the

shape, the amplitude and the frequency of the pitch motion of such a turbine are constrained while the

heave motion characteristics as well as the phase lag between both motions are free. Obviously, the

amount of power extracted from the flow must necessarily overcome the power required to drive the

prescribed pitch motion if the turbine is to generate electricity. Efficiencies of the order of 30% and

20% have respectively been obtained from two-dimensional (2D) numerical simulations (Deng et al.,

2015; Teng et al., 2016) and experiments (Abiru and Yoshitake, 2011, 2012; Huxham et al., 2012)

for this semi-passive turbine. Although this concept is simpler than the fully-constrained flapping-foil

turbine because no coupling mechanism is required between the heave and the pitch motion, it needs a

motor in pitch along with a control system to adequately prescribe this motion. As pointed out by Zhu

(2012), this therefore results in a more complex device than the fully-passive alternative.

Peng and Zhu (2009) were the first to consider a fully-passive flapping-foil turbine. Through 2D nu-

merical simulations using a Navier-Stokes solver, they studied the dynamics of a foil attached to a
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torsional spring in pitch and a linear damper in heave and assumed that the mass and inertia of the

foil were negligible. The resulting equations of motion are therefore greatly simplified compared to

the more general ones presented in this thesis (see Eqs. 1.25 and 1.26). For a given freestream flow,

they observed four different responses of the foil depending on the values of the structural parameters

characterizing the foil and its supports. Among these four responses, only one is suitable for a stable

energy extraction. It is characterized by periodic heave and pitch motions of large amplitudes, which

leads to efficiencies reaching 20% and power coefficients at the generator of about 0.3. The other ob-

served responses are either irregular, thus negatively affecting the predictability and the controllability

of the energy extraction, or damped, meaning that the foil remains steady at its equilibrium position

and does not extract any energy from the flow. Peng and Zhu (2009) also showed that the interesting

periodic responses are insensitive to the initial conditions unlike the irregular ones. As pointed out by

the authors, this suggests that an accurate prediction of the foil dynamics is crucial since even small

variations of the structural parameter values, from those characterizing an efficient turbine, could

lead to potentially hazardous irregular motions or to a significant reduction of the amount of energy

extracted.

Zhu (2012) used the same methodology than Peng and Zhu (2009), except that he also considered the

presence of shear in the freestream flow and a spring in heave to prevent the continuous transverse

shifting of the foil mean position in heave. He found that the presence of shear does not significantly

affect the best fully-passive turbine performance, but it results in the creation of two new types of

irregular motions. More importantly, it affects the size of the region covered by the interesting large-

amplitude periodic motions in the parametric space. Indeed, this region is significantly broadened

when a small shear rate is present in the oncoming flow compared to a uniform oncoming flow. How-

ever, this interesting region almost disappears as the shear rate is further increased. This suggests that

one should carefully choose the sites where fully-passive flapping-foil turbines will be deployed.

Veilleux (2014); Veilleux and Dumas (2017) and Wang et al. (2017) studied a more general version

of the fully-passive flapping-foil turbine than Peng and Zhu (2009) and Zhu (2012) by considering

springs and dampers for both degrees of freedom even though the energy is only extracted from the

heave motion. The general equations of motion solved by Veilleux (2014); Veilleux and Dumas (2017)

actually correspond to Eqs. 1.25 and 1.26, except for a different sign convention used for θ . The power

dissipated through the damper connected to the pitch motion is considered to be lost as heat and thus

does not contribute to the electricity generation. In the works of Veilleux (2014) and Veilleux and

Dumas (2017), the position of the pitch axis was fixed at the third-chord point (xp/c = 1/3). The

effects of varying the seven remaining dimensionless structural parameters (m∗h, I∗
θ

, S∗, D∗h, D∗
θ

, k∗h
and k∗

θ
) were investigated. As in the works of Peng and Zhu (2009) and Zhu (2012), Veilleux (2014)

and Veilleux and Dumas (2017) observed different responses of the foil including periodic motions

with large amplitudes. Following a brief optimization process, they obtained an efficiency of 29.1%

and a power coefficient at the generator of 0.935. The corresponding hydrodynamic efficiency and

power coefficient at the generator are respectively equal to 33.6% and 1.079. They pointed out that
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an adequate timing between the pitch and the heave motions is crucial for this turbine technology, as

in the case of the fully-constrained flapping-foil turbine concept (Xiao and Zhu, 2014; Young et al.,

2014). The difference is that the phase lag between the heave and the pitch motions cannot be enforced

in the case of the fully-passive flapping-foil turbine concept, but rather results from the fluid-structure

interaction.

1.4.2 Prototypes

A turbine prototype mounted on a pontoon boat was tested by Kinsey et al. (2011) and the maximum

hydrodynamic efficiency they obtained was estimated as being equal to about 40% for a dual-hydrofoil

turbine in tandem configuration. While this work confirmed the great potential of the fully-constrained

flapping-foil turbine technology, it also revealed the great complexity of the mechanisms needed to

link both oscillatory motions and to convert them to a rotating motion for the electric generator. The

hydrodynamic efficiency estimation was obtained by subtracting the estimated mechanical losses in

the system up to the gearbox where the torque measurements were made. These losses were found

to correspond to at least 25% of the average power extracted. A second generation prototype was

designed by the same research group with the aim of reducing these mechanical losses but it did

not reach the expectations (Kinsey, 2015). As mentioned in the introduction, the complexity of the

mechanism linking both degrees of freedom to the generator is one of the main drawback of the fully-

constrained version of the flapping-foil turbine.

A few semi-passive flapping-foil turbine prototypes, with a passive heave motion and a prescribed

pitch motion, have been built and tested. Abiru and Yoshitake (2011, 2012) designed such a turbine

with an eddy-current brake, which acts as a linear damper, to model the presence of an electric gen-

erator. The damping coefficient could be varied by shifting the position of three pairs of neodymium

magnets with respect to a copper plate sliding between them without making contact. They tested their

turbine prototype in a water channel and reported an efficiency reaching 22% at a Reynolds number

of about 90 000. Using similar facilities and at the same Reynolds number, Sitorus et al. (2015) tested

a semi-passive turbine with a pitch axis perpendicular to the gravitational acceleration so that the

buoyancy of the blade had an effect on its dynamics. They used a non-sinusoidal pitch motion and

an unidirectional gearbox to convert the reciprocating heave motion into a one-direction rotational

motion. The presence of the generator was simulated by applying a constant resistive torque, thus cor-

responding to a nonlinear damping coefficient. Unfortunately, they obtained very modest efficiencies

below 4%.

Huxham et al. (2012) tested a semi-passive flapping-foil turbine with a prescribed pitch motion and a

passive angular heave motion since the blade was attached to a lever arm. They obtained an efficiency

of 23.8% during their tests in a water tunnel at a Reynolds number of 45 000. The first ever flapping-

foil turbine developed by the industry was also a semi-passive turbine with a prescribed pitch motion

and a similar angular heave motion. This full-scale prototype called Stingray was developed by the

company Engineering Business Ltd. and was expected to produce 150 kW (Stingray, 2002). However,

15



it did not reach the expectations. This failure was later attributed to the fact that they had based their

design on a quasi-steady approach to estimate the hydrodynamic force, which led them to use small

pitch amplitudes (Xiao and Zhu, 2014; Young et al., 2014).

Lastly, fully-passive flapping-foil prototypes have also been built and tested by a few different research

groups, but these works did not focus on the energy extraction performance of the device (e.g. Aman-

dolese et al. (2013); Dimitriadis and Li (2009); Pigolotti et al. (2017); Poirel and Mendes (2014);

Šidlof et al. (2016)).

1.4.3 Dynamic stall and leading-edge vortices

The lift of a static foil is known to increase with the angle of attack (α) until a critical angle is reached,

above which it suddenly decreases due to the separation of the boundary layers near the leading edge

of the foil (Anderson, 1991). This phenomenon is known as stall. For a thin symmetric foil profile,

the moment about the quarter-chord point is around zero when the angle of attack is below its critical

value, but it becomes negative for larger angles of attack. The occurrence of stall also results in a

sudden increase of the drag.

When the flow is unsteady in the foil reference frame, either due to a motion of the foil or to variations

of the upstream flow, the relation between the forces and moment acting on the foil and the angle of

attack can significantly differ from the steady behavior. In particular, the foil can temporarily reach

much higher lift coefficients at large angles of attack before utimately stalling. This phenomenon is

known as dynamic stall. Qualitative representation of typical evolutions of the lift, drag and moment

coefficient as functions of the angle of attack are shown in Fig. 1.2 for a pitching foil. First, it shows

that the lift exceeds its maximum static value at angles of attack beyond the static stall angle. This

is due to a delay in the boundary layers separation and the suction associated to a vortex formed

near the leading edge of the foil (Corke and Thomas, 2015). This leading-edge vortex (LEV), is

also responsible for the large negative moment coefficient observed. Moreover, Fig. 1.2 shows that

the unsteadiness results in a significant hysteresis for the force and moment coefficients, which in

turn leads to a negative aerodynamic damping. In other words, this means that a net amount of

energy is transferred from the flow to the foil when it undergoes a cyclic pitch motion. Under such

conditions, a self-sustained pitch motion can therefore occur. Similar phenomena are observed for a

foil undergoing a cyclic heave motion or a combined pitch-heave motion. It is worth noting that the

above discussion only presents a general overview of the effects of unsteadiness. Dynamic stall is a

complex phenomenon that depends on several parameters, including the frequency and the amplitude

of the foil motion as well as the characteristics of the freestream flow. More detailed information on

this matter is provided in the works of Corke and Thomas (2015), McCroskey (1981, 1982) and Lee

and Gerontakos (2004).

Dynamic stall and the associated formation of leading-edge vortices (LEVs) is known to play a cru-

cial role regarding the performance of fully-constrained flapping-foil turbines (Kinsey and Dumas,
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Figure 1.2: Qualitative representation of typical evolutions of the lift, drag and moment coefficient
about the quarter-chord point as functions of the angle of attack for a steady foil and a pitching foil.
The sign convention illustrated in Fig. 1.1 is used so that the angle of attack and the moment coefficient
are positive in the counterclockwise direction. This figure is inspired from the work of Corke and
Thomas (2015).

2008; Young et al., 2014). For example, the comprehensive parametric study carried out by Kinsey

and Dumas (2008) showed that the enhanced force in the heave direction resulting from the LEVs

positively contribute to the power extraction from the flow when the timing between its formation and

the foil motions is adequate. The best hydrodynamic efficiencies (see Eq. 1.23) they achieved, with a

maximum of 34%, have been obtained with LEVs. This work was carried out at a low Reynolds num-

ber of the order of 1 000, as for the majority of the studies devoted to the flapping-foil turbine in the

literature (Young et al., 2014). Such a low Reynolds number is not representative of the operation of

a full-scale turbine. Since dynamic stall and the formation of LEVs are both related to the robustness

of the boundary layers, these phenomena are sensitive to the Reynolds number.

Kinsey and Dumas (2014) performed a parametric study similar to their previous one (Kinsey and

Dumas, 2008), but at a much larger Reynolds number of 500 000, which is of the same order as the

one characterizing the operation of the fully-constrained turbine prototype tested by the same research

group (Kinsey et al., 2011). They found that the efficiency is maximized when no LEVs are formed,

unlike what they had previously observed at a Reynolds number of 1 000 (Kinsey and Dumas, 2008).

In fact, the maximum efficiency obtained at a Reynolds number of 500 000 is 43% without LEVs and

around 35% with LEVs. Note that the absence of LEVs does not mean that the unsteadiness of the

flow in the foil reference frame is not important since angles of attack of the order of 30°, largely

above the static stall angle, are still reached for the optimal cases with no LEVs.

Understanding the effects of LEVs in the case of flapping-foil turbines with passive motions is far

from trivial and much remains unknown in that regard. They are expected to play an even more

important role in those cases than for fully-constrained flapping-foil turbines because of the coupling

between the foil motions and the hydrodynamic force and moment. This coupling is not present for

fully-constrained turbines because the resistive force of the electric generator (Fgen) can be adjusted
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to maintain the same desired heave and pitch motions even when the presence of LEVs affects the

hydrodynamic force and moment.

Studies conducted on a semi-passive flapping-foil with a passive heave motion, operating at a Reynolds

number of 1 000, have confirmed the crucial role of the LEVs regarding the foil dynamics (Zhu and

Peng, 2009; Deng et al., 2015). Zhu and Peng (2009) found that LEVs can both positively or nega-

tively contribute to the overall power-extraction performance of the turbine depending on the timing

between the formation of the LEVs and the foil motions. Like Kinsey and Dumas (2008), they ob-

served that the increase of the hydrodynamic force component in the heave direction stemming from

the suction associated to the presence of a LEV can result in a larger amount of power extracted from

the flow when this increase is well synchronized with the heave velocity. Zhu and Peng (2009) also

showed that the LEVs can generate a moment about the pitch axis in the same direction as the pitch

velocity when the pitch velocity is maximum, hence positively contributing to the power extraction.

However, this contribution remains small compared to that related to the heave motion.

If the positive contribution to the power extraction stemming from the LEVs observed by Kinsey and

Dumas (2008) and Zhu and Peng (2009) is such that the pitch motion does not require power on aver-

age during one complete cycle (〈CPθ
〉> 0), we can expect that a passive self-sustained pitch motion is

feasible. This is indeed what Veilleux and Dumas (2017) observed with their optimal fully-passive tur-

bine case. Wang et al. (2017) and Peng and Zhu (2009) also demonstrated the importance of the LEVs

for fully-passive turbines, but these two studies were conducted at low Reynolds numbers, namely

400 and 1 000 respectively. In comparison, the study of Veilleux and Dumas (2017) was carried

out at a Reynolds number of 500 000. The hydrodynamic efficiency of the optimal operating point

obtained by Veilleux and Dumas (2017), namely 33.6%, is of the same order as the best efficiency

obtained by Kinsey and Dumas (2014) for a fully-constrained flapping-foil turbine operating at the

same Reynolds number and with LEVs (≈ 35%). Based on the results of Kinsey and Dumas (2014)

regarding fully-constrained cases without LEVs, higher efficiencies could potentially be obtained with

passive motions if such a turbine could also operate without LEVs.

1.4.4 Inertial effects

When the prescribed heave and pitch motions are periodic, which is usually the case, the metrics com-

puted from cycle-averages, such as the efficiency and the various cycle-averaged power coefficients,

are independent of the mass and the moment of inertia of the turbine blade because the corresponding

terms in the equations of motion in heave and in pitch (see Eqs. 1.1 and 1.2) are conservative. How-

ever, the instantaneous values of the different terms appearing in these equations of motion, including

the instantaneous resistive force of the electric generator (Fgen), are affected by these two inertial

parameters. This means that in order to maintain the same desired prescribed motions for different

masses and moments of inertia, the resistive force of the electric generator (Fgen) must be adjusted

accordingly.
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Such a control is not possible with passive motions and they are therefore expected to be affected

by variations of the mass and moment of inertia. Yet, only a few studies on flapping-foil turbines

with passive motions have investigated these effects. Actually, a few studies even neglected these

inertial effects by considering a massless foil for a semi-passive flapping-foil turbine with a passive

heave motion and a prescribed pitch motion (e.g. Zhu et al. (2009) and Zhu and Peng (2009)) or a

fully-passive flapping-foil turbine (e.g. Peng and Zhu (2009) and Zhu (2012)).

The influence of the mass of the foil has been assessed by Deng et al. (2015) for a semi-passive

flapping-foil turbine with an elastically-supported foil in heave with a damper, modeling an electric

generator, but no spring. The pitch motion was prescribed and the turbine operated at a Reynolds

number of 1 000. Deng et al. (2015) varied the ratio between the density of the foil and the fluid density

from 0.125 to 100, while keeping the damping coefficient constant. It translates into dimensionless

heaving masses2 (m∗h) ranging from about 0.01 to 10. The efficiency was found to decrease linearly

from the smallest mass tested to m∗h ≈ 4, followed by a more gradual decrease for larger mass values.

They attributed this behavior to a continuous decrease of the phase lag between the heave and the

pitch motions (φ ) as m∗h is increased. However, the power coefficient was found to be less sensitive to

variations of the heaving mass, as long as m∗h remains below 1, because the increase of overall extent

of the foil motion is compensating for the efficiency decrease.

Zhu (2012) investigated the effects of the mass and the moment of inertia for a fully-passive flapping-

foil turbine at the same Reynolds number of 1 000. He tested two different values of the ratio between

the density of the foil and the fluid density, corresponding to m∗h ≈ 0.1 and m∗h ≈ 1. Three different

idealized cases were tested for the moment of inertia by considering that the mass is concentrated

at the pitch axis, at the mid-chord point or at the leading edge. Zhu (2012) observed an increase of

the efficiency with an increase of the moment of inertia. He attributed this result to a decrease of

the oscillation frequency and an increase of the pitch amplitude. However, he did not present the

equations of motion that were solved for the foil having nonzero mass and moment of inertia. More

specifically, he did not mentioned if gravity was acting in the direction of the motions or not and if

the inertial coupling terms, which arise when the pitch axis and the center of mass does not coincide,

were considered.

The mass and the moment of inertia have also been varied by Veilleux and Dumas (2017) when

optimizing a fully-passive flapping-foil turbine at a Reynolds number of 500 000. However, these

variations remained small and were accompanied with variations of all the other governing structural

parameters, thereby making it difficult to discriminate the effects of these two inertial parameters from

the effects of the other structural parameters. Veilleux (2014) presented a more systemic study of the

inertial effects in his master thesis by varying each parameter independently around their optimal

case characterized by m∗h = 3.036 and I∗
θ
= 0.095. When increasing m∗h from about 2 to 6, they

found that the heave amplitude is continuously increasing with the heaving mass while the pitch

2For a NACA0015 profile, the dimensionless heaving mass (m∗h) per unit span length is approximately equal to the ratio
between the density of the foil and the fluid density divided by 9.7.

19



amplitude is less affected. The efficiency rather decreases when the dimensionless heaving mass is

either increased or decreased from the value characterizing the optimal case. The same trend has

also been observed for the frequency of the motions. Unfortunately, Veilleux (2014) did not present

the effects of varying the heaving mass on the phase lag between the heave and the pitch motions

(φ ). Regarding the dimensionless moment of inertia (I∗
θ

), he found that the efficiency, the heave and

pitch amplitudes and the frequency were all varying by less than 2% when I∗
θ

is varied between 0.065

and 0.13. Veilleux (2014) and Veilleux and Dumas (2017) used an explicit fluid-structure coupling

algorithm (weak coupling), which prevented them from investigating cases with very low mass and

moment of inertia values.

1.4.5 Pitch axis and center of mass locations

The effects of varying the position of the pitch axis (xp/c) was investigated by Davids (1999) for a

fully-constrained flapping-foil turbine using an unsteady panel code. He found that the timing between

the hydrodynamic force and the foil motions is strongly affected by this parameter. Consequently, the

optimal phase lag between the heave and the pitch motions varies with xp/c. It is above 90° when the

pitch axis is located upstream of the third-chord point (xp/c < 1/3) and below 90° when it is located

downstream of the third-chord point (xp/c > 1/3). However, Davids (1999) restricted his study to

operating points with small effective angles of attack (< 10°) because of the limitations related to the

use of a potential flow solver.

Kinsey and Dumas (2008) conducted numerical simulations, using a Navier-Stokes solver, of a fully-

constrained flapping-foil turbine operating at a Reynolds number of 1 100 with three different pitch

axis locations, namely the quarter-chord, the third-chord and the mid-chord points. By doing so, they

confirmed that the timing between the hydrodynamic force and the foil motions is also affected by

a variation of xp/c when larger effective angles of attack are reached. Based on their results, they

decided to position the pitch axis at the third-chord point for the rest of their work and for their

following study conducted at a Reynolds number of 500 000 (Kinsey and Dumas, 2014).

The majority of the studies conducted on flapping-foil turbines making use of passive motions used

a pitch axis located at the third-chord point (e.g. Chen et al. (2018); Deng et al. (2015); Teng et al.

(2016); Veilleux and Dumas (2017); Wu et al. (2015)) or the quarter-chord point (e.g. Huxham et al.

(2012); Sitorus et al. (2015)). Only a very few of them considered more than one position of the pitch

axis.

Zhu and Peng (2009) tested different positions of the pitch axis, ranging from the leading edge to

the trailing edge, for a semi-passive flapping-foil turbine with a foil that was elastically-supported

in heave with a damper only (no spring) and a prescribed pitch motion. They found that the power

coefficient at the generator and the efficiency are maximized when the pitch axis is located between

xp/c = 0.3 and xp/c = 0.4, hence corroborating the choice of xp/c = 1/3 used in most studies. They

attributed this result to the fact that the power required to drive the pitch motion is minimal with these
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positions of the pitch axis.

In the case of a fully-passive flapping-foil turbine, the same authors showed that the pitch axis location

plays an important role regarding the foil stability (Peng and Zhu, 2009). As already mentioned in

Sec. 1.4.1, they observed four completely different types of response. They found that the transition

between the different responses depends on the position of the pitch axis and the pitch stiffness coef-

ficient. For a given pitch stiffness coefficient and as the position of the pitch axis is shifted from the

leading edge toward the trailing edge, the foil response is switching from a regime characterized by

damped motions (the foil remaining steady at its equilibrium position), periodic motions leading to

a significant energy extraction from the flow and two different types of irregular motions. Moreover,

the transition between these different responses is shifted toward the trailing edge as the pitch stiffness

coefficient is increased.

Unlike the results of Peng and Zhu (2009), Zhu and Peng (2009) and Zhu (2012), which were ob-

tained with a massless foil, Wang et al. (2017) considered a fully-passive flapping-foil turbine with a

foil having a nonzero mass operating at a Reynolds number of 400. They also observed different re-

sponses of the foil by varying the pitch axis location, with a fixed position of the center of mass. They

obtained an optimal performance with xp/c = 0.35. However, the general equations of motion of the

fully-passive flapping-foil turbine concept (see Eqs. 1.25 and 1.26) show that the important parameter

regarding the center of mass is its distance from the pitch axis (xθ ), not its position itself, since xθ

appears in the definition of the static moment (see Eq. 1.3). Consequently, Wang et al. (2017) were

also varying the value of the static moment when testing different positions of the pitch axis. In fact,

both the pitch axis location and the static moment are known to be important parameters regarding

the stability of a flapping foil (Dowell, 2004; Fung, 2008). For example, two well-known aeroelastic

instabilities, namely divergence and coupled-mode flutter, can respectively arise when the pitch axis

is located downstream of the point of application of the hydrodynamic force and when the center of

mass is located downstream of the pitch axis (S > 0). The interested reader is referred to the books of

Fung (2008) and Dowell (2004) for more information on this subject.

Lastly, Veilleux (2014) investigated the importance of the static moment for a fixed pitch axis location

(xp/c = 1/3) using a previously obtained optimal case as a baseline. For this specific case, he found

that it is best to keep the static moment close to zero to maximize the energy extraction.

1.4.6 Other types of aeroelastic energy harvesters

Semi-passive and fully-passive flapping-foil turbines are not the only possible aeroelastic energy har-

vesters. Other simple concepts have been proposed in the literature. The interested reader is referred

to the review of Abdelkefi (2016) on this subject. For example, electricity can be generated when a

piezoelectric material is connected to a flapping flag. However, the amount of power generated with

such an apparatus is limited. It is therefore intended to be used for powering small electronic devices

rather than providing electricity to an electrical grid.
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Another popular concept is to connect an elastically-supported cylinder undergoing vortex-induced

vibrations (VIVs) to an electric generator (e.g. Bernitsas et al. (2008)). While this one-degree-of-

freedom (1-DOF) device is simpler than a 2-DOF fully-passive flapping-foil turbine, it is not as ef-

ficient. In fact, the maximum efficiency achieved with an idealized two-dimensional cylinder un-

dergoing VIVs is of the order of 10% (Barrero-Gil et al., 2012; Paré-Lambert and Olivier, 2018)3

compared to maximum reported efficiency of about 30% for the fully-passive flapping-foil turbine

concept (Veilleux and Dumas, 2017). A fully-passive flapping-foil turbine can therefore either be

seen as a simplified flapping-foil turbine or an elaborate aeroeslastic energy harvester.

1.4.7 The use of passive motions with flapping foils for propulsion

The idea of using a flapping-foil with passive motions has also been considered for propulsion pur-

poses. A flapping-foil can achieve higher propulsive efficiencies than a foil undergoing a pure heave

or a pure pitch motion (Mackowski and Williamson, 2017). However, actuating both degrees of free-

dom require mechanisms having the same level of complexity than those required to prescribe the

motions of a fully-constrained flapping-foil turbine. A possible alternative is to use a semi-passive

flapping-foil by actuating only one degree of freedom and elastically-supporting the other. Both the

passive heave (Mackowski and Williamson, 2017) and the passive pitch (Thaweewat et al., 2018) ver-

sions have been tested. While Mackowski and Williamson (2017) reported a significant increase of

the propulsive efficiency for a foil actuated in heave with a passive pitch motion compared to a pure

heave motion, the efficiency remained far below the maximum efficiency that can be obtained when

actuating both degrees of freedom.

Note that in order to generate thrust, a motor needs to provide power to the actuated degree of freedom.

Consequently, it is impossible to generate thrust with a fully-passive flapping-foil since there is no way

to provide power to the foil with this concept.

1.5 Objectives

Although the best hydrodynamic efficiencies reported for the fully-passive flapping-foil turbine con-

cept (≈ 30%) are smaller than those reported for the fully-constrained concept (≈ 40%), the increased

mechanical simplicity of the fully-passive device could justify its selection over the fully-constrained

technology. However, several questions regarding the use of passive motions remain unanswered.

Flapping-foil turbines with passive motions operating at large Reynolds numbers have almost not

been investigated so far, as pointed out by Zhu (2012) and Xiao and Zhu (2014). In fact, only Veilleux

(2014); Veilleux and Dumas (2017) considered a Reynolds number above 100 000.

3This efficiency value is obtained using the definition presented in the work of Paré-Lambert and Olivier (2018) based
on the overall transverse extent reached by any point on the surface of the cylinder. It is therefore consistent with the
definition used in the present thesis.
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Furthermore, there is a lack of experimental work on turbines with passive motions in the literature,

especially regarding passive pitch motions. The efficiencies of the order of 30% reported for the

fully-passive turbine have been obtained from numerical simulations in idealized conditions, i.e., of-

ten neglecting friction and considering a two-dimensional foil (infinite span). Moreover, it might be

challenging to design a fully-passive turbine for which all the structural parameters match those char-

acterizing the best reported numerical cases, while still remaining simple in terms of the mechanical

design and being able to withstand the forces at play.

The parametric space characterizing the fully-passive turbine is vast and only a few regions have been

explored. For instance, most of the studies conducted on semi-passive and fully-passive flapping-foil

turbines have either considered a pitch axis coinciding with the center of mass (Abiru and Yoshitake,

2011, 2012; Deng et al., 2015; Griffith et al., 2016; Shimizu et al., 2008; Teng et al., 2016; Wu et al.,

2014, 2015; Zhan et al., 2017), thereby not involving any inertial coupling between the heave and

pitch degrees of freedom (S = 0), or even massless foils (Peng and Zhu, 2009; Zhu et al., 2009; Zhu

and Peng, 2009; Zhu, 2012).

Besides, some flapping-foil turbine concepts have not even been considered yet. This is the case, for

example, of a flapping-foil turbine with a prescribed heave motion and a passive pitch motion. Part

of the interest in such a device lies in the fact that the electric generator is expected to be connected

to the heave motion because most of the energy extracted by flapping-foil turbines comes from the

heave motion (Kinsey and Dumas, 2008, 2014; Zhu, 2011). Consequently, the heave motion can be

constrained while no pitch controller, no pitch actuator and no coupling mechanism between the heave

and pitch degrees of freedom are required. This turbine concept is therefore simpler in terms of the

mechanical design than the other already proposed semi-passive turbine alternative, with a passive

heave motion and a prescribed pitch motion.

In addition to the practical interest in such a semi-passive turbine, it also provides a convenient way to

improve our fundamental knowledge of the dynamics of passive pitch motions because the number of

structural parameters affecting this turbine dynamics is reduced compared to the dynamics of the fully-

passive flapping-foil turbine concept. This should therefore facilitate the process of finding optimal

operating points.

Following these observations, the main objective of the present thesis can be summarized by the

following question:

What is the power generation potential of flapping-foil turbines with passive motions and under
which conditions an optimal performance can be achieved with such devices?

More specifically, the current study aims at:

1. Proving the feasibility and testing the power generation performance of the fully-passive con-

cept experimentally;
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2. Investigating the potential of the semi-passive turbine concept with a passive pitch motion;

3. Improving our understanding of the dynamics of passive pitch motions;

4. Using this new knowledge to optimize flapping-foil turbines with passive motions.

Note that the optimization of the design of the turbine structure as well as the circuitry required to

convert the energy extracted from the flow into electricity is out of the scope of the current thesis, but

should be considered in future studies.

1.6 Outline

This section outlines the content of the four papers forming the present thesis. The context and the

main conclusions of each paper are repeated here even if they are already presented in the papers

in order to better highlight the direction and coherence of the thesis. Note that the full papers are

presented to ensure that they can be read individually without needing to read the whole thesis. I

therefore apologize for the redundancy of some sections, especially regarding the introductions, the

numerical methodology and the definitions of the performance metrics.

1.6.1 Paper I:
Experimental investigation of the energy extraction by a fully-passive flapping-foil
hydrokinetic turbine prototype

Context and objective

A few research groups have already revealed the potential of the fully-passive flapping-foil turbine

concept (Peng and Zhu, 2009; Zhu, 2012; Veilleux and Dumas, 2017; Wang et al., 2017) with max-

imum reported efficiencies of the order of 30%. However, their conclusions were only based on

two-dimensional numerical simulations. Although some experiments have also been performed with

fully-passive flapping foils (Amandolese et al., 2013; Pigolotti et al., 2017), the main focus of these

studies were not directed toward power generation. The main objective of this paper therefore consists

in designing, testing and evaluating the performance of a fully-passive flapping-foil turbine prototype.

Main conclusions

The experimental campaign has confirmed the feasibility and the potential of the fully-passive flapping-

foil turbine concept. After releasing the blade in the water channel, a permanent response character-

ized by large heave and pitch amplitudes and nearly sinusoidal motions is quickly reached, namely

after completing only about three foil oscillations. The periodicity and robustness of the motions are

notable and a maximum efficiency of 31% has been achieved. The sensitivity of the turbine perfor-

mance to seven structural and inflow parameters has been assessed, thereby revealing some valuable

information for the design of fully-passive turbines.
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The mechanism driving the fully-passive foil of this prototype is a divergence instability (Dowell,

2004; Fung, 2008). It is responsible for the rapid growth of the heave and pitch amplitudes following

the release of the blade, which are limited by the occurrence of deep dynamic stall and the formation

and ejection of strong leading-edge vortices (LEVs) for all the cases considered during the experi-

mental campaign.

Other remarks

More information regarding the eddy-current brake, the calibration of the load cell used to calibrate

the springs as well as the estimation of the uncertainties is provided in Appendix A.

The dimensionless equations of motion governing the fully-passive flapping-foil turbine prototype

presented in this paper are slightly different than Eqs. 1.53 and 1.54 because Coulomb friction is

considered.

The x-axis is reversed in Fig. 2.1 compared to Fig. 1.1 in order to be consistent with the photos and

videos of the turbine prototype accompanying Paper I.

1.6.2 Paper II:
Investigation of the energy-extraction regime of a novel semi-passive flapping-foil turbine
concept with a prescribed heave motion and a passive pitch motion

Context and objective

Although the results of the experiments presented in Paper I have confirmed that a fully-passive

flapping-foil can extract a significant amount of power from the flow, the best performance obtained is

still far from what can be achieved when constraining the foil motions to follow specific motions. For

example, Kinsey and Dumas (2014) reported a maximum efficiency of 43.3% for a two-dimensional

fully-constrained turbine operating at a Reynolds number of 500 000. They showed that the best effi-

ciencies are achieved when the foil motions are such that no LEVs are formed, unlike what is generally

accepted in the literature. Since the best efficiencies reported in Paper I as well as by Veilleux and Du-

mas (2017) were all obtained with strong LEVs, one may reasonably ask oneself if the performance

of the fully-passive flapping-foil turbine concept could be improved by avoiding the formation and

ejection of LEVs. The task of finding a set of structural parameters that would result in motions of the

foil satisfying this is however not so simple, partly due to the large number of parameters influencing

the foil dynamics.

A convenient way to reduce the number of parameters involved is to constrain one degree of freedom

while leaving the other free. Since the heave motion is responsible for most, if not all, of the energy

extracted from the flow, it is judicious to connect the electric generator to this degree of freedom

and to constrain it with the use of a controller. In addition to facilitating the study of the passive

pitch dynamics of a flapping-foil, it results in an innovative turbine concept which had never been

considered so far. The objectives of this second paper are therefore to investigate the potential of this
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new flapping-foil turbine concept as well as to increase our knowledge of the dynamics of passive

pitch motions.

Main conclusions

The results showed that it is possible to avoid deep dynamic stall and the formation of LEVs with

passive pitch motions. Under such conditions, a maximum efficiency of 45.4% was reached, thereby

competing with the fully-constrained turbine concept in terms of performance, but with a simpler

device. One of the keys to achieve this is to have the center of mass positioned downstream of the

pitch axis, which is itself located at the quarter-chord point (xp/c = 0.25). The reason is that the

passive pitch motion requires energy on average to be sustained (CPθ
< 0) in order to undergo the

types of motions that maximize the turbine performance. In the case of a fully-constrained turbine,

this energy is either transferred from the heave motion to the pitch motion through rigid links that

mechanically couple both degrees of freedom together or via a motor in pitch. An alternative way

of transferring energy to the pitch motion is needed when this degree of freedom is unconstrained

(passive). This can be achieved with the inertial coupling between the heave and pitch degrees of

freedom that arises when the static moment is not zero, i.e., when the center of mass does not coincide

with the pitch axis. A positive static moment is required for the energy to be transferred from the

heave motion to the pitch motion.

1.6.3 Paper III:
Free-pitching flapping-foil turbines with an imposed sinusoidal heave motion

Context and objective

Paper II demonstrated that the performance of a flapping-foil turbine with a passive pitch motion can

match the best performance reported in the literature for fully-constrained turbines. It also proved the

importance of the static moment to achieve this. However, this good performance was only obtained

for a few precise sets of structural parameters and the influence of some important parameters were

not investigated. More specifically, the position of the pitch axis and the moment of inertia were not

varied and the pitch stiffness coefficient was set so that pitch natural frequency was matching the

frequency of the prescribed heave motion for all the cases considered.

When designing and building such a semi-passive flapping-foil turbine, it may be challenging to match

a specific set of structural parameters known to provide good results while also ensuring that it can

withstand the forces at play and remains as simple and cheap as possible. This is especially true

regarding the moment of inertia and the static moment. With that in mind, the objective of this third

paper is to investigate how the findings of Paper II can be generalized. In other words, we look for

the required ingredients to maintain an optimal performance for different sets of structural parameters

and over a broad range of values.
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Main conclusions

The moment of inertia and the pitch stiffness coefficient can be collapsed into a single effective pa-

rameter, which we refer to as the effective pitch stiffness, λ ∗
θ

:

λ
∗
θ = k∗θ − (2π f ∗θ )

2I∗θ . (1.57)

because the passive pitch motion is nearly sinusoidal and its frequency is synchronized with the fre-

quency of the prescribed heave motion for the cases achieving a positive efficiency. Actually, the pitch

motion approaches a pure sinusoid as I∗
θ

increases. This reduces the number of parameters affecting

the foil dynamics and allows properly scaling the pitch stiffness coefficient for turbine designs with

different moments of inertia. Indeed, the efficiency is essentially unaffected by variations of I∗
θ

span-

ning two orders of magnitude when k∗
θ

is adjusted accordingly. However, the efficiency decreases as

I∗
θ

approaches zero even when k∗
θ

is properly scaled. This is because the pitch motion departs from a

sinusoid under such circumstances, thereby violating the condition that leads to the derivation of the

effective pitch stiffness λ ∗
θ

.

The results of this paper also show that an optimal turbine performance, with efficiencies exceeding

40%, can be obtained with different positions of the pitch axis, ranging from the leading edge to the

three-quarter-chord point. The key is to maintain similar motions of the foil surface across the various

pitch axis locations considered since this is what matters regarding the fluid dynamics. Recalling that

the heave motion is the transverse motion of the pitch axis (y direction in Fig. 1.1), this implies that

the phase lag between the heave and the pitch motion must vary with xp/c. As the dynamics of the

elastically-supported foil depends on the motion of the pitch axis along with the hydrodynamic force

and moment acting at this point, the values of the structural parameters must vary with xp/c in order

to maintain specific motions of the foil surface. More specifically, the static moment value required

when xp/c = 0.75 is around zero and it increases as the pitch axis is shifted toward the leading edge.

Regarding λ ∗
θ

, its optimal value is around zero when xp/c = 0.25, below zero when xp/c < 0.25 and

above zero when xp/c > 0.25. This implies that the frequency of the prescribed heave motion must be

close to the pitch natural frequency when xp/c = 0.25, larger than the pitch natural frequency when

xp/c < 0.25 and smaller than the pitch natural frequency when xp/c > 0.25.

Other remarks

Additional results and discussions about the work presented in Paper III are given in Appendix B.
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1.6.4 Paper IV:
A parametric study and optimization of the fully-passive flapping-foil turbine at high
Reynolds number

Context and objective

With the newly gained knowledge from the results presented in Papers II and III, the fully-passive

flapping-foil turbine concept is revisited in Paper IV in an attempt to match the performance obtained

with the semi-passive concept analyzed in the previous two papers, but with an even simpler device.

To that end, cases which are not subject to the divergence instability, but rather to the coupled-mode

flutter instability, are considered. The idea of benefiting from the coupled-mode flutter instability as

the driving mechanism for passive heave and pitch motions is corroborated by the results of Papers

II and III, which have shown that a positive static moment is required to achieve high efficiencies

when the pitch axis is upstream of the three-quarter-chord point. A positive static moment is indeed a

required condition to trigger the classical coupled-mode flutter instability.

Besides looking for an optimal performance, the objective of this fourth paper is also to test the

applicability of the inertial-stiffness scaling proposed in Paper III to characterize the heave and pitch

dynamics of a fully-passive flapping-foil. Furthermore, the effect of having a nonzero pitch damping

is investigated.

Main conclusions

The results prove that the fully-passive turbine concept can be as efficient as the best fully-constrained

turbines reported in the literature. Actually, the maximum efficiency obtained in this work is 53.8%,

which is even higher than the maximum efficiency of 43.3% reported by Kinsey and Dumas (2014)

for a fully-constrained turbine.

For all the cases considered in this work, the foil oscillates at the same frequency in heave and in pitch,

and it essentially follows the pitch natural frequency ( f ∗n,θ ):

f ∗n,θ =
1

2π

√
k∗

θ

I∗
θ

. (1.58)

Since the passive heave motions are nearly sinusoidal, the heave dynamics can be effectively char-

acterized with a parameter combining the heaving mass and the heave stiffness coefficient together,

which is not the heave natural frequency. This effective parameter is analogous to the parameter λ ∗
θ

proposed in Paper III to characterize the pitch dynamics of the semi-passive turbine concept. We refer

to it as λ ∗h :

λ
∗
h = k∗h− (2π f ∗h )

2m∗h . (1.59)

However, λ ∗
θ

is inappropriate to characterize the pitch dynamics of the fully-passive flapping-foil even

though the passive pitch motions are also nearly sinusoidal. The reason is that the frequency of the

foil motions is altered when I∗
θ

and k∗
θ

are varied, unlike what is observed for the semi-passive turbine
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concept. The other terms appearing in the equation of motion in pitch, namely the moment coefficient

and the inertial coupling term, are thus affected by variations of I∗
θ

and k∗
θ

. As a result, the pitch

dynamics of the fully-passive turbine is characterized by the pitch natural frequency instead of the

parameter λ ∗
θ

. An optimal energy-extraction performance can be maintained over large ranges of

values for m∗h and I∗
θ

, as long as k∗h and k∗
θ

are properly scaled to keep λ ∗h and f ∗n,θ constant.

The heave and pitch amplitudes as well as the efficiency considerably decrease when considering a

nonzero pitch damping coefficient (D∗
θ

). Beyond a critical value of D∗
θ

, the motions are even com-

pletely damped and the foil returns to its equilibrium position no matter if large perturbations are used

as the initial conditions. Nevertheless, the level of pitch damping present on a real turbine setup is

expected to be small enough to avoid a significant decrease of the turbine performance.
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Chapter 2

Paper I:
Experimental investigation of the energy
extraction by a fully-passive flapping-foil
hydrokinetic turbine prototype

2.1 Résumé

Des expériences ont été menées dans le but d’évaluer la performance d’une hydrolienne à aile oscil-

lante complètement passive, pour laquelle les mouvements auto-induits et auto-maintenus de l’aile

sont le résultat de l’interaction entre ses supports élastique (des ressorts et des amortisseurs) et

l’écoulement. Des études numériques antérieures ont démontré qu’une telle hydrolienne peut ex-

traire une quantité considérable d’énergie de l’écoulement tout en offrant la possibilité de simplifier

les mécanismes complexes qui sont généralement requis pour contraindre et coupler les mouvements

de tangage et de pilonnement dans le cas d’une hydrolienne à aile oscillante complètement contrainte

conventionnelle. Suite à ces résultats prometteurs, un prototype a été conçu et testé dans un canal à un

nombre de Reynolds basé sur la corde de 21 000. Des mouvements périodiques de grandes amplitudes

ont été observés et ont mené à une efficacité et un coefficient de puissance atteignant respectivement

31% et 0.86. La sensibilité de la dynamique de la turbine à sept différents paramètres caractérisant

la structure et l’écoulement a été évaluée expérimentalement autour d’un cas de référence perfor-

mant. Les résultats ont révélé que la turbine maintient une bonne performance sur une large plage de

paramètres.

2.2 Abstract

Experiments were conducted to assess the performance of a fully-passive flapping-foil hydrokinetic

turbine for which the self-induced and self-sustained blade motions are resulting from the interaction
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between the blade’s elastic supports (springs and dampers) and the flow field. Previous numerical

studies have shown that such a turbine can extract a substantial amount of energy from the flow while

offering the possibility to simplify the complex mechanical apparatus generally needed to constrain

and couple the blade pitching and heaving motions in the case of the conventional fully-constrained

flapping-foil turbine. Based on these promising numerical investigations, a prototype was designed

and tested in a water channel at a chord Reynolds number of 21 000. Robust and periodic motions of

large amplitudes were observed leading to an energy harvesting efficiency reaching 31% and a power

coefficient of 0.86. The sensitivity of the turbine dynamics to seven different structural and inflow pa-

rameters was evaluated experimentally around a baseline case achieving a high level of performance.

It was found that the turbine maintains a good performance over a large range of parameters.

2.3 Introduction

The flapping-foil turbine concept is one of the various innovative and promising sources of clean and

renewable energy that have received an increased attention during the last decade (Young et al., 2014;

Xiao and Zhu, 2014). It consists in one or multiple blades undergoing both pitching (rotational) and

heaving (translational) motions with a swept area that is perpendicular to the flow. Although it would

also be possible for these turbines to extract energy from the wind, they have mostly been developed

as hydrokinetic turbines, which extract energy from rivers or tidal currents. The flapping-foil turbine

concept has proven to be competitive with the horizontal-axis and vertical-axis turbine technologies,

with efficiencies exceeding 40% (Kinsey et al., 2011; Kinsey and Dumas, 2012, 2014; Young et al.,

2014; Xiao and Zhu, 2014).

In order to reach such a good level of performance, the designers have, in the past, mechanically

coupled and constrained the two motions through complex mechanisms, hence making the turbine a

single-degree-of-freedom (1-DOF) device (McKinney and DeLaurier, 1981; Kinsey et al., 2011; Xu

et al., 2017). This approach allows prescribing the amplitudes and the frequencies of the heaving and

pitching motions as well as the phase lag between them. However, several issues can arise from this

complexity. First, a significant amount of energy can be lost before being converted into electricity.

For example, Kinsey et al. (2011) reported that 25% of the power extracted from the flow by their fully-

constrained flapping-foil turbine was lost before reaching the electric generator due to the friction

between the different moving components forming the coupling mechanism. Moreover, complex

mechanical assemblies are usually prone to a higher risk of failure in addition to being more expensive.

Instead of optimizing the coupling mechanism, a more fundamental change has been proposed: the

mechanism can simply be removed! One possible way to achieve this is to use an independent actua-

tor for the pitching motion (Kim et al., 2017), making the concept a two-degree-of-freedom (2-DOF)

turbine. Let us recall here that efficient flapping-foil turbines usually require only a small amount

of energy to drive the pitching motion on a cycle-averaged basis, while the heaving motion accounts

for the net energy extraction (Kinsey and Dumas, 2008, 2014; Zhu, 2011). Such a 2-DOF turbine
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does not necessitate rigid mechanical links to couple the heaving and the pitching motions, but needs

a dedicated actuator for the pitching motion, controllers for both degrees of freedom and an electric

generator connected to the heaving motion. Moreover, the electric generator of such a turbine may

need to act as an actuator at some instants during the turbine blade cycle in order to prescribe the de-

sired heaving motion. Therefore, this motion-constrained strategy still results in a relatively complex

apparatus.

Several authors proposed a simplification to the aforementioned 2-DOF version of the flapping-foil

turbine by considering a free or passive heaving motion (Abiru and Yoshitake, 2011, 2012; Deng

et al., 2015; Derakhshandeh et al., 2016; Griffith et al., 2016; Huxham et al., 2012; Shimizu et al.,

2008; Sitorus et al., 2015; Teng et al., 2016; Wu et al., 2014, 2015; Zhan et al., 2017; Zhu et al., 2009;

Zhu and Peng, 2009). More specifically, this scenario involves a blade that is elastically supported in

heave instead of being connected to the turbine structure with rigid links. One consequence of this

simplification is that the heaving motion cannot be prescribed, but rather solely relies on the interaction

between the elastically-supported foil and the flow. The heaving motion is thus self-induced and

self-sustained. Two-dimensional (2D) numerical studies (Deng et al., 2015; Teng et al., 2016) and

experimental works (Abiru and Yoshitake, 2011, 2012; Huxham et al., 2012) reported efficiencies

exceeding 30% and 20%, respectively. This “semi-passive” turbine concept does not need a controller

in heave and a simpler form of energy-extracting device (generator) can be used. Indeed, since the

heaving motion is free, the energy-conversion device never has to act as an actuator. It corresponds in

this case to an energy sink throughout the turbine blade cycle. This device could still be an electric

generator in order to convert the energy extracted from the flow into electricity, but other possibilities

also arise, such as using the flapping-foil turbine concept as a reciprocating pump (Farthing, 2013).

However, both an actuator and a controller are still needed to prescribe the pitching motion.

A further simplification, for which both degrees of freedom are decoupled and elastically supported,

was first proposed by Peng and Zhu (2009). This is referred to as a fully-passive flapping-foil turbine.

For a given flow, they observed four different types of responses depending on the structural parame-

ters characterizing the elastically-supported foil. Among them, only one was suitable for a stable and

efficient energy extraction. This response was characterized by periodic pitching and heaving motions

with large amplitudes and it led to an efficiency of 20% and a power coefficient of about 0.3. The other

responses were either irregular, thereby negatively affecting the predictability and the controllability

of the energy extraction, or the foil remained stationary at its equilibrium position and did not extract

any energy from the flow. Zhu (2012) demonstrated that the presence of shear in the inflow could

lead to new undesired types of responses and, more importantly, could restrict the parameter range for

which useful large-amplitude periodic motions are observed. Wang et al. (2017) later found that this

parameter range is also affected by the pitch axis location and that a pitch axis located at 0.35 chord

length from the leading edge was optimal in their case.

The above-cited studies performed by Peng and Zhu (2009), Zhu (2012) and Wang et al. (2017) have

all been conducted in the laminar regime (Re = 1000 and Re = 400). Veilleux and Dumas (2017)
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carried out 2D numerical simulations at a much larger Reynolds number of 500 000 using the Spalart-

Allmaras URANS turbulence model (Spalart and Allmaras, 1994), which is more representative of the

operation of full-scale turbines. As in the works of Peng and Zhu (2009) and Zhu (2012), Veilleux and

Dumas (2017) observed different responses of the foil, including large-amplitude periodic motions.

Following an optimization process, they obtained a turbine efficiency reaching 29.1% and a power

coefficient of 0.935. Furthermore, they pointed out that an adequate synchronization between the

pitching and heaving motions is crucial for an optimal energy extraction by fully-passive flapping-foil

turbines, as is also the case for their fully-constrained counterparts (Xiao and Zhu, 2014; Young et al.,

2014).

While the aforementioned studies reported good results from 2D numerical simulations, the same

level of performance has yet to be observed experimentally with a fully-passive flapping-foil turbine

prototype. Similar devices have been studied previously but these works did not focus on the energy

extraction performance (Amandolese et al., 2013; Pigolotti et al., 2017). Such a prototype has there-

fore been designed for the present work and has been tested in a water channel with the objective of

proving the feasibility and confirming the potential of the fully-passive flapping-foil turbine concept.

The current study also evaluates the sensitivity of the turbine performance to the variation of sev-

eral governing parameters. The fully-passive concept, the experimental setup and the measurement

methodology are described in Section 2.4, while the analysis of a baseline case and the results of a

parametric study are presented in Section 2.5.

2.4 Methodology

2.4.1 The fully-passive flapping-foil turbine concept

The fully-passive flapping-foil turbine concept considered in this study is similar to the one described

in the work of Veilleux and Dumas (2017). As shown in Fig. 2.1, it consists in a rigid blade elastically

supported by springs in heave and in pitch as well as by a damper in heave. This damper models

the energy sink that would result, for example, from the energy conversion into electricity by an

electric generator. The blade is free to pitch (θ(t)) about a pitch axis located at a distance xp from the

leading edge and to heave (h(t)) in the y-direction. The motions are restricted to these two degrees of

freedom (DOF) and gravity acts in the span direction, or z-direction, hence playing no role in the blade

dynamics. Unlike the turbine analyzed by Veilleux and Dumas (2017), no pitch damper is explicitly

used in the current study. However, due to the inherent presence of friction in a real experimental

setup, some undesired viscous pitch damping (Dθ ,v) is inevitably present and must be considered in

addition to some viscous heave damping (Dh,v) as well as some Coulomb friction (dry friction) both in

heave (Fy Coulomb) and in pitch (M Coulomb). As a result, the total linear heave damping coefficient (Dh)

is the sum of the desired energy sink (Dh,e), corresponding to the energy that could be converted into

electricity, and the viscous damping stemming from the additional undesired friction in heave (Dh,v):

Dh = Dh,e +Dh,v , (2.1)
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x

Figure 2.1: Outline of the fully-passive flapping-foil turbine concept.

while the total linear pitch damping coefficient (Dθ ) simply corresponds to the undesired viscous

damping in pitch:

Dθ = Dθ ,v . (2.2)

Because of the presence of Coulomb friction in the experimental setup and the use of a different sign

convention for θ , the equations of motion are slightly different than those presented by Veilleux and

Dumas (2017). They are given here in their dimensionless form:

CFy/2 = m∗h ḧ∗ + S∗
(

θ̈
∗ cosθ − θ̇ ∗

2 sinθ

)
+ D∗h ḣ∗ + k∗h h∗ + CFy Coulomb/2 , (2.3)

CM/2 = I∗θ θ̈
∗ + S∗ḧ∗ cosθ + D∗θ θ̇

∗ + k∗θ θ + CM Coulomb/2 , (2.4)

where the superscript (·) denotes differentiation with respect to time and:

CFy =
Fy

0.5ρ U2
∞ bc

, CM =
M

0.5ρ U2
∞ bc2 , CFy Coulomb =

Fy Coulomb

0.5ρ U2
∞ bc

,

CM Coulomb =
M Coulomb

0.5ρ U2
∞ bc2 , m∗h =

mh

ρ bc2 , I∗
θ
=

Iθ

ρ bc4 , S∗ =
S

ρ bc3 ,

D∗h =
Dh

ρ U∞ bc
, D∗

θ
=

Dθ

ρ U∞ bc3 , k∗h =
kh

ρ U2
∞ b

, k∗
θ
=

kθ

ρ U2
∞ bc2 ,

h∗ =
h
c

, ḣ∗ =
ḣ

U∞

, ḧ∗ =
ḧ c
U2

∞

, θ̇ ∗ =
θ̇ c
U∞

, θ̈ ∗ =
θ̈ c2

U2
∞

.
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The definitions of all the parameters involved in the equations of motion as well as those shown in

Fig. 2.1 are provided in Table 2.1. Details about the derivation of the dimensionless equations can be

found in the work of Veilleux (2014).

Table 2.1: List of the parameters involved in the equations of motion.

Symbol Units Definition

b [m] Blade span length
c [m] Chord length
ρ [Kg/m3] Water density
U∞ [m/s] Freestream velocity
h [m] Heave position of the pitch axis (upward positive in Fig. 2.1)
θ [rad] Pitch angle (clockwise positive in Fig. 2.1)
t [s] Time
xp [m] Distance between the leading edge and the pitch axis
xθ [m] Distance between the pitch axis and the center of mass

(defined positive when the pitch axis is upstream of the center
of mass)

Fy [N] Hydrodynamic force component in the heave (y) direction
M [N·m] Hydrodynamic moment about the pitch axis
Fy Coulomb [N] Coulomb friction force component in the heave (y) direction
M Coulomb [N·m] Coulomb friction moment about the pitch axis
mh [Kg] Mass of all the components undergoing the heaving motion
Iθ [Kg·m2] Moment of inertia about the pitch axis
S [Kg·m] Static moment

(mass only undergoing the pitching motion times xθ )
Dh [N·s/m] Total linear heave damping coefficient
Dh,e [N·s/m] Linear heave damping coefficient of the eddy-current brake

(desired energy sink)
Dh,v [N·s/m] Linear heave damping coefficient of the heave bearings
Dθ [N·m·s/rad] Linear pitch damping coefficient of the pitch bearings
kh [N/m] Heave stiffness coefficient
kθ [N·m/rad] Pitch stiffness coefficient

The two nonlinear equations of motion (Eqs. 2.3 and 2.4) are coupled both via the coupling between

the hydrodynamic force and moment and the inertial coupling terms, i.e., the terms involving the static

moment S∗1. However, the inertial coupling terms only play a role when the static moment is not zero,

i.e., when the center of mass does not coincide with the pitch axis. It is worth recalling that there are

1This parameter was referred to as the static imbalance in the work of Veilleux (2014); Veilleux and Dumas (2017).
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no mechanical links between the heaving and the pitching motions that could enforce a particular

relation between these two degrees of freedom. In other words, the motion shapes, the amplitudes, the

frequencies and the phase lag between the heaving and the pitching motions are not imposed.

For a given flow, there are 9 structural parameters playing a role in the turbine dynamics explicitly

appearing in Eqs. 2.3 and 2.4, namely:

CFy Coulomb , CM Coulomb , m∗h, I∗
θ

, S∗, D∗h, D∗
θ

, k∗h and k∗
θ

,

in addition to the position of the pitch axis (xp/c) for a total of 10 governing structural parameters.

The challenge of designing a fully-passive flapping-foil turbine therefore consists in finding adequate

values for these 10 parameters that result in useful motions in terms of energy extraction, i.e., periodic

motions of large amplitudes, with a single frequency for both degrees of freedom and an appropriate

phase lag between the heaving motion and the pitching motion.

2.4.2 Experimental setup

The experiments were carried out in the water channel of the Fluid Mechanics Laboratory at the

University of Victoria, BC, Canada. Its test section has a cross section of 0.45 m by 0.45 m and a length

of 2.5 m. The fully-passive flapping-foil turbine prototype is composed of non-moving components,

components only undergoing the heaving motion and components undergoing both the heaving and

the pitching motions, indicated by different colors in Fig. 2.2. These different components can also be

observed in Fig. 2.3, which shows the blade at two different positions during a given test in the water

channel.

A carriage is mounted on linear guided roller bearings, thereby allowing it to move in the heave

(transverse) direction. The top end of the blade is attached to a shaft, which is itself free to rotate

while moving with the heaving carriage. The turbine blade is straight, its cross section corresponds to

a symmetric NACA0015 profile with a 50 mm chord length and the pitch axis is located at the third-

chord point (xp/c = 1/3). In order to minimize the tip losses, end plates are placed at both ends of the

blade. Moreover, the distance between the free extremity of the blade and the channel floor was set

to a very small gap of 5 mm, which corresponds to a tenth of the blade chord length. The blade span

length (b) is 0.38 m and the water level was set to 0.42 m at rest. As a result, the blade is completely

submerged during the tests, while all the other components are located above water, except for the end

plates and a fraction of the shaft holding the blade. This can be seen in Fig. 2.4.

The fully-passive flapping-foil turbine prototype presented in this work was designed based on the op-

timal case reported by Veilleux and Dumas (2017). However, several aspects differ from their optimal

2D numerical case due to practical design limitations, especially regarding the Reynolds number, the

static moment, the presence of Coulomb friction, the three-dimensionality of the flow, the blockage

and the presence of a free surface. Besides, the prototype allows us to independently vary the three in-

ertial properties, namely the heaving mass (mh), the moment of inertia about the pitch axis (Iθ ) and the
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Figure 2.2: 3D model of the turbine prototype showing the non-moving components in gray, the
components only undergoing the heaving motion in blue and the components undergoing both the
heaving and the pitching motions in red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

static moment (S), as well as the heave damping (Dh,e) and the heave and pitch stiffness coefficients

(kh and kθ ). More information about how these variations can be achieved is given in Appendix 2.A.

2.4.3 Measurement protocols

For each test, the blade is initially held in place at its equilibrium position, namely the middle of the

channel in heave (h/c = 0) with the blade chord line being aligned with the inflow velocity (θ = 0).

The water velocity is then set to a desired value before suddenly releasing the blade. The blade

positions in heave and in pitch are recorded at a sampling frequency of 83.3 Hz and during 120 sec-

onds, which roughly corresponds to 100 oscillations of the blade, with two rotary encoders generating

10 000 pulses per revolution. The digital signals provided by each encoder are converted into analog

signals (0-5 V) using a 14-bit digital-to-analog converter (DAC), and these analog signals are sampled

with a NI USB-6218 data-acquisition board connected to a laptop.

In order to convert the reciprocating heaving motion into a rotational motion that can be measured by

the heave encoder, a timing belt pulley is fixed to the shaft of the heave encoder and is in contact with

a timing belt glued to an aluminum plate undergoing the heaving motion, as shown in Fig. 2.5. Note

that the blade velocity components in heave and in pitch are computed using second-order central-

difference schemes.

The inflow velocity (U∞) is measured using Particle Image Velocimetry (PIV) on a vertical plane
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(a) h/c = 0 and θ = 0° (equilibrium position).

(b) h/c 6= 0 and θ 6= 0°.

Figure 2.3: Top view of the fully-passive flapping-foil turbine prototype with the blade at two different
positions during a given test in the water channel. The water is flowing from the bottom right corner of
the figure toward the top left corner, which is perpendicular to the heaving motion. A video showing
such a top view of the baseline case presented in Section 2.5.1 is available in the supplementary
material provided with the online version of this paper.

(xz) located 13 chord lengths upstream of the pitch axis and covering 0.8c in the streamwise (x)

direction and 4.2c in the spanwise (z) direction. The PIV measurements are carried out with a sampling

frequency of 100 Hz during 16 seconds, which roughly corresponds to between 15 and 20 blade cycles.

The turbulent intensity of the inlet flow based on the streamwise velocity fluctuations is below 1% and

the uniformity of the inflow has been verified by computing the standard deviations of the velocity

profiles in the spanwise (z) and transverse (y) directions, which are around 0.1% in both directions.

Since the friction in the pitch and heave bearings can change over time due to their slight wear, it

was estimated at the start and at the end of every series of experiments conducted in the channel.

A range of values is therefore given to characterize the different friction contributions for a specific

test. The methodology that has been used to estimate these friction contributions is presented in
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Figure 2.4: Side view showing the submerged turbine components, namely the blade, the end plates
and a fraction of the shaft holding the blade. The water is flowing from right to left. A video showing
such a side view of the baseline case presented in Section 2.5.1 is available in the supplementary
material provided with the online version of this paper.

Figure 2.5: Timing belt used to convert the reciprocating heaving motion into a rotational motion for
the heave encoder.

Appendix 2.B.4.

The ambient temperature as well as the temperature of the aluminum sliding plate of the eddy-current

brake are measured with a standard mercury thermometer and an infrared thermometer (Fluke 65),

respectively. The ambient temperature during a given test is used to determine the water properties,

namely its density and its dynamic viscosity, by interpolating the tabulated data available in the book

of Munson (2013). Regarding the temperature of the eddy-current brake’s sliding plate, it is used

to correct the values of the heave damping coefficient of the eddy-current brake, as described in

Appendix 2.B.4.
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2.4.4 Performance metrics

The motions of the different cases considered are compared in terms of the reduced frequency ( f ∗),

the phase lag between the heaving motion and the pitching motion (φ ) and the amplitudes in heave

(H∗0 ) and in pitch (Θ0). These metrics are defined as:

f ∗j =
f j c
U∞

, (2.5)

φ j =
360
Tj

(
tθmax j − thmax j

)
[degrees] , (2.6)

H∗0 j =
hmax j−hmin j

2c
, (2.7)

Θ0 j =
θmax j−θmin j

2
, (2.8)

where the subscript j stands for the jth turbine blade oscillation, f is the frequency of the motions,

which is always the same for both degrees of freedom for all the cases reported in this study, T is

the oscillation period (T = 1/ f ), hmax, hmin, θmax and θmin are the extreme heave and pitch positions

reached during a given turbine blade oscillation, and tθmax and thmax are the instants at which these

extreme positions are reached. Note that the value of φ obtained from Eq. 2.6 is given in degrees.

Two other metrics characterizing the energy extraction, namely the efficiency (ηe) and the power

coefficient in heave (CPh,e), both based on the cycle-averaged power dissipated in the eddy-current

brake which models the energy extraction, are also used to compare the different cases that have been

tested. They are defined as:

ηe j =
Ph,e j

1
2

ρ U3
∞ bd j

, (2.9)

where:

Ph,e j =
1
Tj

∫ t+Tj

t

(
Dh,e ḣ2) dt , (2.10)

and:

CPh,e j = ηe j
d j

c
. (2.11)

with b being the blade span length and d j being the overall transverse extent of the blade motion

during the jth turbine blade cycle (Kinsey and Dumas, 2008). In other words, d j corresponds to the

distance between the highest and the lowest points reached by any point on the blade surface during

the jth cycle.

Note that these definitions of the efficiency and the power coefficient must not be confused with the

definitions that are typically used for fully-constrained turbines (Kinsey and Dumas, 2014). Indeed,
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the efficiency and the power coefficient that are usually reported for fully-constrained turbine tech-

nology are based on the energy transferred from the flow to the turbine blade and do not take into

account the power transmission efficiency. With the present experimental setup, it is not possible to

directly compute the power transferred from the flow to the blade since the forces acting on the blade

are not measured. The power dissipated in the heave damper that is used to compute ηe and CPh,e is

necessarily smaller than the total power extracted from the flow because a fraction is inevitably lost

due the undesired friction in the moving components.

Lastly, all the results presented in the following sections have been obtained by computing average

values from 90 turbine blade cycles. For example:

f ∗ =
1
90

90

∑
j=1

f ∗j . (2.12)

2.5 Results

2.5.1 Baseline case

Following a preliminary series of tests, a case achieving a high efficiency has been selected as the

baseline case and is presented in this section. The parameters describing this baseline case as well as

some metrics characterizing its performance are given in Table 2.2, while time evolutions of the pitch

and heave positions are presented in Fig. 2.6. Moreover, two videos of this case are available in the

supplementary material provided with the online version of this paper.

Table 2.2: Baseline case description and performance.

Parameter Value Performance metric Averaged value

Re 21 000 f ∗ 0.133 ± 0.001
m∗h 3.36 ± 0.05 φ 99° ± 3°
I∗
θ

0.091 ± 0.001 H∗0 0.891 ± 0.002
S∗ 0.040 ± 0.001 Θ∗0 85.0° ± 0.9°
D∗h,e 1.23 ± 0.03 ηe 26.8% ± 0.7%
k∗h 1.91 ± 0.03 CPh,e 0.68 ± 0.02
k∗

θ
0

D∗h,v [0.047−0.074] ± 0.008
D∗

θ
[0.003−0.005] ± 0.003

CFy Coulomb [0.07−0.07] ± 0.04
CM Coulomb [0.015−0.021] ± 0.005

It is worth recalling again that the amplitudes, the frequency and the phase lag between the heaving

and the pitching motions are not constrained, but rather result from the structural and hydrodynamic
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(a)

(b)

(c)

Figure 2.6: Heave (a) and pitch (b) positions over time for the baseline case (see Table 2.2), shown in
solid blue and in dashed red respectively, with the blade released from its equilibrium position at t/T =
0, where t is the dimensional time and T is the dimensional oscillation period of the blade averaged
over 90 oscillations. A zoom of the shaded area in (a) and (b), which approximately corresponds to
one turbine blade oscillation, is shown in (c). The zoom area starts at an instant for which the pitch
angle is zero and the heave position is close to a minimum.

parameters characterizing a specific case. It is therefore impressive to notice that the kinematics of the

baseline case turn out to be very similar to the motions leading to the best performance achieved

with fully-constrained turbines. Indeed, previous studies devoted to the fully-constrained turbine

concept have shown that high efficiencies are usually observed when the turbine blade undergoes

large-amplitude motions in heave (on the order of one chord length) and in pitch (≈ 80°), at a reduced

frequency between 0.10 and 0.20 approximately and with a phase lag close to 90° (Kinsey and Dumas,

2014; Young et al., 2014; Xiao and Zhu, 2014).

Following the 2D numerical works of Veilleux and Dumas (2017) and Wang et al. (2017), who respec-

tively obtained efficiencies of 29.1% and 32% and power coefficients of 0.935 and 0.95, the current

experimental work further demonstrates that such performance can be obtained despite the presence

of some “real-life” effects such as the viscous and Coulomb friction contributions stemming from

the bearings, the tip losses, the drag of the submerged fraction of the shaft holding the blade and the

presence of a free surface. It is also interesting to note that since the undesired viscous damping in the

heave bearings is about 5% of the eddy-current brake damping for the baseline case (see Table 2.2),

the efficiency and the power coefficient would be both 5% larger if this undesired damping contribu-

tion was zero. An even larger increase would be expected if the viscous damping in pitch as well as

the Coulomb friction in heave and in pitch could also be eliminated.
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The regularity and the periodicity of the motions, once a permanent regime is reached, are notable. A

quantitative measure of this periodicity is given in Table 2.3 by providing the standard deviations of

the different performance metrics presented in Table 2.2. Considering that the ultimate objective of

this study is to develop a simple and reliable energy extraction device, this makes the baseline case

even more suitable for a turbine application.

Table 2.3: Averaged values and standard deviations of the performance metrics characterizing the
baseline case computed from 90 blade cycles.

Performance metric Averaged value Standard deviation

f ∗ 0.133 0.014
φ 99° 3°
H∗0 0.891 0.017
Θ∗0 85.0° 0.5°
ηe 26.8% 0.6%
CPh,e 0.68 0.02

It is interesting to note that the blade pitches passively even if k∗
θ
= 0 for the baseline case. By

analyzing the relative contributions of each term appearing in the governing equations of motion

(Eqs. 2.3 and 2.4), Veilleux and Dumas (2017) found that the dominant term responsible for limiting

the pitch amplitude and reversing the pitch velocity for their optimal case was the hydrodynamic

moment about the pitch axis for which a large peak was observed every half cycle. The contribution

of the pitch spring stiffness, although not zero in their case, was negligible. Veilleux and Dumas

(2017) have highlighted the fact that the large moment peak was related to the generation of a strong

leading-edge vortex following the deep stall of the blade. It was also responsible for a non-sinusoidal

pitching motion with smaller pitch velocities observed when the blade is approaching an extremum in

pitch than when the blade departs from an extremum.

Unfortunately, the experimental setup used for the current study does not allow measuring the hy-

drodynamic forces and moment acting on the blade, hence preventing us from performing a similar

analysis. However, PIV measurements have been carried out and a series of instantaneous vorticity

fields around the blade are presented in Fig. 2.7. This figure shows that the blade is subject to deep

stall and that a large leading-edge vortex is shed every half cycle in the case of the baseline operating

point, as for the optimal case of Veilleux and Dumas (2017). Furthermore, a similar non-sinusoidal

pitching motion has been obtained in the current study, as shown in Fig. 2.6c. Considering that the

flow fields and the time evolutions of the pitch angle are very similar in both studies and that the con-

tribution of the pitch spring is close or equal to zero in both cases, the hydrodynamic moment is most

likely responsible for limiting the pitch amplitude and reversing the pitch velocity for the baseline

case of the current study, as it was for the optimal case found by Veilleux and Dumas (2017).
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Even if the moment about the pitch axis cannot be directly measured, all the terms on the right hand

side of Eq. 2.4 can be computed, which allows estimating the moment coefficient by summing all

of them. The evolution of the terms appearing in Eq. 2.4 are shown in Fig. 2.8 over the same time

span as in Fig. 2.6c, which approximately corresponds to one complete blade cycle starting when

the pitch angle is zero and the heave position is close to a minimum. The results show that the

inertia term (I∗
θ

θ̈ ∗) is much larger than all the other terms appearing on the right hand side of Eq. 2.4.

This confirms the hypothesis that the pitching motion of the baseline case essentially results from the

balance between the moment generated by the fluid flow and the inertia term. By observing Figs. 2.6c,

2.7 and 2.8, one can notice that the large leading-edge vortex that is generated as the blade stalls results

in a large positive moment peak when θ < 0 (see the instants t/T = 0.4 in Fig. 2.7 and t/T ≈ 14.8

in Fig. 2.8), which in turn results in a large positive pitch acceleration that limits the pitch amplitude.

Once the leading-edge vortex is shed beyond the trailing edge, the moment quickly becomes negative

(see the instants t/T = 0.5 in Fig. 2.7 and t/T ≈ 14.9 in Fig. 2.8). A similar behavior was observed

by Veilleux and Dumas (2017) and is described in more details in their work. Note that the results

presented in Fig. 2.8 are a bit noisy because they involve the computation of the heave and pitch

accelerations from the position measurements. In order to limit the uncertainty of the results presented

in this figure, the sampling rate was reduced to half its nominal value of 83.3 Hz, used for the rest of

the current study, to 41.7 Hz. This results in an uncertainty of the inertia term corresponding to 5% of

its peak value.

A static instability, known as divergence, can occur when the restoring moment stemming from the

pitch springs is not large enough to counteract the hydrodynamic moment (Dowell, 2004). More

precisely, the theory predicts that the critical dimensionless pitch spring stiffness coefficient (k∗
θ crit) is

given by:

k∗θ crit =
π e
c

, (2.13)

where e is the distance between the point of application of the fluid force and the pitch axis and it is

defined positive when the point of application of the fluid force is located upstream of the pitch axis.

The blade is unstable when k∗
θ
< k∗

θ crit, which means that this instability can only occur if the pitch

axis is located downstream of the point at which the fluid force acts.

Based on the linear unsteady theory (Dowell, 2004; Fung, 2008) and considering a thin symmetric

foil, the fluid force is expected to act around the quarter-chord point. Since the pitch axis is located

further downstream, at the third-chord point, and because k∗
θ
= 0, the baseline case of the current

study is expected to be subject to the divergence instability. The fact that the blade starts to pitch

even when it is being held in place in the heave direction supports this inference. Indeed, this pitching

motion would not occur if the present turbine was rather driven by the coupled-mode flutter instabil-

ity, which is a coupled-mode instability that requires both degrees of freedom to be active in order to

arise. Moreover, the motions of the current turbine are always damped when using pitch springs with

too large stiffness coefficients, as shown in Section 2.5.2, which again suggests that the divergence

instability is the driving mechanism of this fully-passive flapping-foil prototype. The occurrence of
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Figure 2.7: Snapshots of the normalized spanwise vorticity field measured by PIV at different instants
during one representative blade cycle of the baseline case. The start of the cycle (t/T = 0) is defined
as an instant for which the pitch angle is zero and the heave position is close to a minimum. As a
result, the time t/T = 0 in this figure is similar to the time t/T = 14.4 in Figs. 2.6 and 2.8.
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Figure 2.8: Time evolutions of the terms on the right hand side of Eq. 2.4 for the baseline case over
the same time span as in Fig. 2.6c, i.e., approximately one turbine cycle. The sum of all the terms
(dashed black line) estimates CM/2.

this static instability can also explain why the transient period following the release of the blade is so

short, as observed in Figs. 2.6a and 2.6b. About only two oscillation periods (t/T ≈ 2) are required be-

fore the turbine reaches a permanent regime characterized by stable limit-cycle oscillations (LCO) of

large amplitudes. It is important to note that the theory leading to the divergence instability threshold,

given by Eq. 2.13, relies on the assumption of small displacements and a quasi-static approximation.

According to this theory, nothing limits the growth of the pitch amplitude when the blade is unstable.

This theory is therefore useful to explain why the pitching motion is initiated, which in turn drives the

heaving motion, but it does not apply when large amplitudes are reached in heave and in pitch because

the nonlinearities of the flow become important.

By releasing the turbine blade from different initial pitch angles, it has been found that the permanent

response of the baseline case is not affected by variations of the initial conditions. Moreover, tests con-

sisting of temporary increasing or decreasing the flow velocity above or below its nominal value were

conducted while the blade was oscillating in the water. The turbine response was always returning to

the same permanent regime following these perturbations. These observations corroborate the find-

ings of Peng and Zhu (2009), Amandolese et al. (2013) and Wang et al. (2017) for large-amplitude

and periodic limit-cycle oscillations. These studies also showed that, for other types of responses,

an oscillating blade could be significantly sensitive to the initial conditions and could be subject to

hysteresis, but this has not been observed during the current study.

2.5.2 Sensitivity of the turbine performance to the governing structural parameters

In this section, the impact of various structural parameters affecting the turbine blade dynamics is

analyzed. The effects of each structural parameter are investigated individually by keeping all the

other structural parameters constant with their baseline value (see Table 2.2).
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Unless otherwise specified, all the tests presented in this section were conducted with an inflow ve-

locity of 0.38 m/s, which corresponds to a Reynolds number of 21 000 based on the chord length.

Moreover, all the cases that are presented are similar to the baseline case in terms of the low sensi-

tivity to the initial conditions and to perturbations, the regularity of the permanent response and the

shortness of the initial transient period.

In the figures presented in the following sections, empty markers are used to identify the baseline case

and to discriminate it from the other cases (filled markers). For the sake of clarity, the uncertainties

are not shown in the figures, but they are available in the supplementary material provided with the

online version of this paper.

In order to evaluate the repeatability of the results, some experiments have been carried out twice

for a given set of structural parameters. More specifically, the same set of parameters was tested

before and after each series of experiments. The values obtained from these tests are included in

Figs. 2.9, 2.11, 2.13, 2.14 and 2.15. This explains why two markers can be observed for one specific

value of the structural parameter considered. The baseline parameter values were used to conduct

these repeatability tests except when studying the effects of k∗
θ

and U∞, for which k∗
θ
= 0.068 and

U∞ = 0.35 m/s were respectively used instead.

Heave stiffness

Fig. 2.9 shows the impact of the dimensionless heave stiffness (k∗h) on various performance metrics.

All the other structural parameters are kept constant except for the heaving mass (m∗h), which slightly

varies between the various cases because of the different number of heave springs used for each of

them, as indicated in the legend of Fig. 2.9.

The maximum efficiency, reduced frequency and pitch amplitude, namely 28.9%, 0.139 and 87.8°,

are all observed at the same operating point: k∗h = 2.54. While the efficiency and the power coefficient

follow the same trend, the largest power coefficient, with a value of 0.74, is obtained for a slightly

smaller dimensionless heave stiffness (k∗h = 1.91). This can be explained by the fact that the heave

amplitude is larger with k∗h = 1.91 than with k∗h = 2.54, hence allowing for more energy extraction.

However, the efficiency decreases from k∗h = 2.54 to k∗h = 1.91 because the kinetic energy flux passing

through the turbine extraction plane increases even more than the power extracted.

Another noteworthy observation is that large amplitude motions with a significant energy extraction

are even observed with no spring in heave and no spring in pitch (zero stiffness). The adequate

synchronization between the pitching and the heaving motions leading to a good performance for this

case, although not optimal, is therefore mainly due to the hydrodynamic force and moment acting on

the turbine blade. This has indeed been shown by Veilleux (2014) who analyzed in more details a

similar case with no spring in heave and no spring in pitch.

Furthermore, it is found that the pitch and heave amplitudes, the efficiency and the power coefficient
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(a) Reduced frequency (solid green) and phase lag between
the heaving and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude
(dashed red)

(c) Efficiency (solid black) and power coefficient (dashed
turquoise)

Figure 2.9: Various performance metrics as functions of the dimensionless heave stiffness (k∗h). Empty
markers are used to identify the baseline case and the uncertainties are provided in the supplementary
material along with the tabulated data used to produce this figure. m∗h = [3.34−3.38]; I∗

θ
= 0.091;

S∗ = 0.040; D∗h,e = 1.21; k∗
θ
= 0; D∗h,v = [0.047−0.074]; D∗

θ
= [0.003−0.005]; CFy Coulomb =

[0.07−0.07]; CM Coulomb = [0.015−0.021].

all quickly drop when k∗h exceeds approximately 3. This drop is related to the sudden transition from

a phase lag around 90° between the heaving motion and the pitching motion to a phase lag close to

180°. Indeed, it is known that a phase lag of 90° is close to optimal when the pitch axis is located at

the third-chord point (Xiao and Zhu, 2014) because the largest force acting on the blade in the heave

direction and the largest heave velocity occur approximately at the same time in this case. Conversely,

the force component in the heave direction is completely out of phase with the heave velocity when

the phase lag is 180°.

While the phase lag between the heaving and the pitching motions is considerably altered as the di-

mensionless heave stiffness is increased, the reduced frequency is not affected as much. Moreover, the

reduced frequency is neither directly correlated with the heave natural frequency ( f ∗n,h =
√

k∗h/m∗h/2π),
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as shown in Fig. 2.10, nor with the pitch natural frequency ( f ∗n,θ =
√

k∗
θ
/I∗

θ
/2π) since no pitch springs

are used for all the cases presented in Figs. 2.9 and 2.10, resulting in f ∗n,θ = 0. This suggests that the

reduced frequency is related to another time scale associated to the fluid flow around the turbine blade.

However, the heave natural frequency remains relevant since it is found that the point of maximum

efficiency and maximum pitch amplitude are obtained when the reduced frequency and the heave nat-

ural frequency coincide, which occurs when k∗h = 2.54. Furthermore, Fig. 2.10 shows that the reduced

frequency increases with the heave natural frequency until they coincide and then decreases as the

heave natural frequency further increases. It is also worthwhile to mention that the abrupt transition

of the phase lag from 90° to 180° occurs when the heave natural frequency becomes larger than the

reduced frequency.

Figure 2.10: Comparison of the reduced frequency ( f ∗ in solid green) and the reduced heave natural
frequency ( f ∗n,h in dashed black) as a function of the dimensionless heave stiffness (k∗h). Empty markers
are used to identify the baseline case.

Heaving mass

The effect of the dimensionless heaving mass is presented in Fig. 2.11. Due to the experimental

setup limitations, it is not possible to vary the dimensionless heaving mass to the same extent than

the dimensionless heave stiffness. It is therefore normal to observe smaller variations for the different

performance metrics in Fig. 2.11 than what is observed in Fig. 2.9.

It is found that increasing the dimensionless heaving mass by 45% from the minimum value tested

only results in a variation of 2.5% (absolute) in terms of the efficiency (see Fig. 2.11c). This means

that the manufacturer of a similar fully-passive flapping-foil turbine would have some useful freedom

regarding this structural parameter, which should greatly facilitate the design process. Regarding the

power coefficient, it is even less affected than the efficiency by variations of the heaving mass, as was

also observed by Deng et al. (2015) in the case of a flapping-foil turbine with a prescribed pitching

motion and an elastically-supported heaving motion.

The good performances reported here over the entire range of dimensionless heaving masses that have
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(a) Reduced frequency (solid green) and phase lag between
the heaving and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude
(dashed red)

(c) Efficiency (solid black) and power coefficient (dashed
turquoise)

Figure 2.11: Various performance metrics as functions of the dimensionless heaving mass (m∗h).
Empty markers are used to identify the baseline case and the uncertainties are provided in the
supplementary material along with the tabulated data used to produce this figure. I∗

θ
= 0.091;

S∗ = 0.040; D∗h,e = 1.21; k∗h = 1.91; k∗
θ
= 0; D∗h,v = [0.047−0.074]; D∗

θ
= [0.003−0.005];

CFy Coulomb = [0.07−0.07]; CM Coulomb = [0.015−0.021].

been tested is related to the fact that the phase lag between the heaving and the pitching motions re-

mains close to the optimal value of 90°. In the previous section, it was shown that the phase lag was

shifting toward 180° as the heave natural frequency was exceeding the reduced frequency. Figure 2.12

shows that the heave natural frequency remains below the reduced frequency when varying the di-

mensionless heaving mass. It is expected that the heave natural frequency would exceed the reduced

frequency with smaller dimensionless heaving mass and that the phase lag would then tend toward

180°, as is observed when increasing the dimensionless heave stiffness (see Figs. 2.9a and 2.10). As

mentioned earlier, it is unfortunately not possible to test smaller values of dimensionless heaving mass

with the current experimental setup.

It can be observed in Figs. 2.9 and 2.11 that the dimensionless heave stiffness and the dimensionless
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Figure 2.12: Comparison of the reduced frequency ( f ∗ in solid green) and the reduced heave natural
frequency ( f ∗n,h in dashed black) as a function of the dimensionless heaving mass (m∗h). Empty markers
are used to identify the baseline case.

heaving mass have opposite effects on the motions around the baseline case. Indeed, Fig. 2.9 shows

that, around the baseline dimensionless heave stiffness coefficient (k∗h = 1.91), the reduced frequency

and the pitch amplitude increase while the heave amplitude decreases as the dimensionless heave

stiffness is increased. The opposite behavior is observed in Fig. 2.11 for increasing values of the

dimensionless heaving mass. This is because the heaving motion is very close to a sine wave for all

the cases presented in Figs. 2.9 and 2.11. Consequently, the heave acceleration is also resembling a

sine wave, but in antiphase with the heave position. In other words, the inertia term (m∗h ḧ∗) and the

stiffness term (k∗h h∗), appearing in Eq. 2.3, have similar shapes as functions of time, but with opposite

signs.

Heave damping

For the sake of conciseness, the term dimensionless heave damping is used in this section to refer

to the dimensionless heave damping stemming only from the eddy-current brake (D∗h,e). The viscous

damping contribution coming from the bearings is therefore not included in the analysis. The reader

is referred to 2.B.4 for more details about the evaluation of the heave damping. Let us recall that the

energy dissipated in the eddy-current brake represents the energy extracted from the flow that could

be converted into electricity by an electric generator.

Fig. 2.13 presents the various performance metrics considered as functions of the dimensionless heave

damping. It is found that increasing the dimensionless heave damping does not significantly affect the

reduced frequency and the phase lag between the heaving and the pitching motions, but it results in a

considerable decrease of the heave amplitude, and, to a lesser extent, of the pitch amplitude. In spite

of these amplitude decreases, Fig. 2.13c shows that the efficiency remains relatively constant over the

range of dimensionless heave damping coefficients that have been tested. However, because of this

constant efficiency and the decreasing amplitudes, the power coefficient decreases when increasing
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the damping. These observations are very relevant in practice as they suggest that varying the dimen-

sionless heave damping allows controlling the turbine blade amplitudes in heave and in pitch without

affecting the efficiency too much. This could be especially useful when such turbines are deployed in

an environment restricted in space or if several turbines are positioned in close proximity.

(a) Reduced frequency (solid green) and phase lag between
the heaving and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude
(dashed red)

(c) Efficiency (solid black) and power coefficient (dashed
turquoise)

Figure 2.13: Various performance metrics as functions of the dimensionless eddy-current brake damp-
ing in heave (D∗h,e). Empty markers are used to identify the baseline case and the uncertainties are pro-
vided in the supplementary material along with the tabulated data used to produce this figure. m∗h =
3.36; I∗

θ
= 0.091; S∗ = 0.040; k∗h = 1.91; k∗

θ
= 0; D∗h,v = [0.047− 0.074];

D∗
θ
= [0.003−0.005]; CFy Coulomb = [0.07−0.07]; CM Coulomb = [0.015−0.021].

Pitch stiffness

A very different behavior is observed when increasing the dimensionless pitch stiffness. Indeed,

Fig. 2.14 shows that the motions are completely damped when k∗
θ
= 0.154 or k∗

θ
= 0.236. For these

two cases, the blade is always returning to its equilibrium position, both in heave and in pitch, even

if large heave positions and pitch angles are used as the initial condition. As mentioned in Sec. 2.5.1,

52



this supports the hypothesis that the blade is subject to the divergence instability, which only occurs

when the dimensionless pitch stiffness coefficient is below a given threshold (see Eq. 2.13).

(a) Reduced frequency (solid green) and phase lag between
the heaving and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude
(dashed red)

(c) Efficiency (solid black) and power coefficient (dashed
turquoise)

Figure 2.14: Various performance metrics as functions of the dimensionless pitch stiffness (k∗
θ

).
Empty markers are used to identify the baseline case and the uncertainties are provided in the supple-
mentary material along with the tabulated data used to produce this figure. m∗h = 3.36; I∗

θ
= 0.091;

S∗ = 0.040; D∗h,e = 1.21; k∗h = 1.91; D∗h,v = [0.069− 0.070]; D∗
θ
= [0.002− 0.002];

CFy Coulomb = [0.04−0.06]; CM Coulomb = [0.02−0.02].

Fig. 2.14 also shows that both the efficiency and the power coefficient could increase for non-zero

dimensionless pitch stiffness compared to the baseline case, for which the dimensionless pitch stiffness

is zero (no pitch springs). Indeed, the maximum efficiency and power coefficient values that have

been observed throughout this experimental campaign, namely 31.0% and 0.86, have been obtained

with k∗
θ
= 0.051. This is the operation point at which the reduced frequency and the pitch natural

frequency are the closest to each other, with a difference of about 5% between them. Once again,

this good performance is related to the fact that the phase lag between the heaving and the pitching

motions is close to the optimal value of 90°. It is worth mentioning that this high efficiency is obtained

even if the pitch amplitude considerably decreases when using non-zero dimensionless pitch stiffness
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coefficients.

Lastly, it is found that the reduced frequency does not follow the trend of the pitch natural frequency,

as it decreases for increasing pitch stiffness coefficients. This suggests once again that the reduced

frequency of the passive motions is related to a time scale of the fluid flow around the blade, as

mentioned in Section 2.5.2.

Moment of inertia and static moment

The turbine prototype used for the current study allows testing only two different values of the moment

of inertia (Iθ ) and three different values of the static moment (S). Moreover, with the current turbine

design, it is not possible to modify these parameters without slightly affecting the heaving mass, as

described in 2.A.2. Indeed, the heaving mass is increased by 4% compared to the baseline case when

Iθ or S are varied. Nevertheless, all the tests conducted to assess the effects of the static moment are

characterized with this same increased mass value.

The performance metrics of the different cases that have been tested are given in Tables 2.4 and 2.5.

One can notice that the variations of both the moment of inertia and the static moment do not sig-

nificantly affect the turbine permanent response. In the case of the dimensionless static moment, it

is found that a larger value results in slightly smaller pitch amplitudes, efficiencies and power coef-

ficients. In future works, it would be useful to extend the range covered by these two parameters to

better evaluate their full impact.

Table 2.4: Various performance metrics as functions of the dimensionless moment of inertia about the
pitch axis (I∗

θ
). The uncertainties are provided in the supplementary material. S∗ = 0.040; D∗h,e =

1.21; k∗h = 1.91; k∗
θ
= 0; D∗h,v = [0.047− 0.074]; D∗

θ
= [0.003− 0.005]; CFy Coulomb =

[0.07−0.07]; CM Coulomb = [0.015−0.021].

I∗
θ

m∗h f ∗ φ [deg] H∗0 Θ∗0 ηe CPh,e

0.091 m∗h = 3.36 0.131 100 0.911 84.6 26.7% 0.68
0.117 m∗h = 3.50 0.131 97 0.908 87.3 26.5% 0.68

Table 2.5: Various performance metrics as functions of the dimensionless static moment (S∗). The
uncertainties are provided in the supplementary material. m∗h = 3.50; I∗

θ
= 0.117; D∗h,e = 1.21;

k∗h = 1.91; k∗
θ
= 0; D∗h,v = [0.047−0.074]; D∗

θ
= [0.003−0.005]; CFy Coulomb = [0.07−0.07];

CM Coulomb = [0.015−0.021].

S∗ f ∗ φ [deg] H∗0 Θ∗0 ηe CPh,e

0.023 0.128 99 0.935 86.8 27.3% 0.70
0.040 0.131 97 0.908 87.3 26.5% 0.68
0.056 0.132 95 0.864 87.8 25.1% 0.63
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2.5.3 Effect of the inflow velocity on the turbine performance

So far, the effects of varying different dimensionless structural parameters have been presented. These

different cases correspond to different designs of the fully-passive flapping-foil concept. In this sec-

tion, we turn our attention to the effects of varying the inflow velocity (U∞) for a given set of dimen-

sional structural parameters. Consequently, some dimensionless structural parameters do not remain

constant since they vary with U∞ (see their definitions in Section 2.4.1). Fig. 2.15 therefore provides

some information about the response of a specific turbine design, with fixed structural parameters, to

different inflow velocities.

(a) Reduced frequency (solid green) and phase lag between
the heaving and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude
(dashed red)

(c) Efficiency (solid black) and power coefficient (dashed
turquoise)

Figure 2.15: Various performance metrics as functions of the inflow velocity (U∞). Empty markers
are used to identify the baseline case and the uncertainties are provided in the supplementary material
along with the tabulated data used to produce this figure. m∗h = 3.36; I∗

θ
= 0.091; S∗ = 0.040;

D∗h,e = 1.21; k∗h = 1.91; k∗
θ
= 0; D∗h,v = [0.063−0.072]; D∗

θ
= [0.003−0.007]; CFy Coulomb =

[0.04−0.05]; CM Coulomb = [0.01−0.01]; Re = 21000 at U∞ = 0.38 m/s (baseline case).

It is found that the phase lag is not significantly altered when the inflow velocity varies from approx-

imately 0.35 m/s to 0.62 m/s. As a result, large efficiencies and power coefficients are still obtained
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for all the inflow velocities that have been tested. Even though the efficiency decreases slightly when

increasing the inflow velocity, the power coefficient remains relatively constant because of the consid-

erable increase of the heave amplitude. This is a significant finding as this means that the power output

that could be converted into electricity by this specific turbine design would not be much affected by

the velocity perturbations that could occur in the river or the tidal current in which this turbine would

be deployed.

2.6 Conclusion

A fully-passive flapping-foil turbine prototype has been successfully designed and tested in a water

channel. This innovative concept may lead to significant simplifications of some previously tested

flapping-foil turbine designs, which should yield cheaper and more reliable devices. Large-amplitude

periodic motions have been observed and these self-induced and self-sustained motions have led to a

very good performance in terms of the efficiency and the power coefficient, which have respectively

reached 31.0% and 0.86. The present experimental demonstration therefore confirms the feasibility

and the great potential of the fully-passive concept.

Seven structural and inflow parameters have been independently varied around a baseline case. Good

performances have been achieved over a large range of parameter values, which is important in prac-

tice since this gives some flexibility to the designer of such turbines. Periodic motions of large ampli-

tudes leading to a high efficiency have even been observed with no pitch spring and no heave spring.

The phase lag between the heaving and the pitching motions has been found to be a critical factor

and it appears to be related to the ratio between the reduced frequency of the turbine blade motions

and the heave natural frequency. Moreover, the current results have shown that no sustained motions

could be obtained when the dimensionless pitch stiffness coefficient is larger than k∗
θ
= 0.154. This is

because the divergence instability is believed to be the driving mechanism of the current fully-passive

flapping-foil turbine prototype. Consequently, the position of the pitch axis is expected to play a sig-

nificant role as it is a crucial parameter for the divergence instability (Dowell, 2004; Fung, 2008). This

particular aspect should be investigated in future studies along with the effects of the tip losses.
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Appendix

2.A Structural parameters

2.A.1 Elastic supports

The heaving carriage is attached to the fixed structure of the turbine with extension springs. Two

different sets of extension springs can be used and the number of springs attached to the carriage can

also be varied from zero spring to a maximum of 6 pairs of springs (12 springs; see Fig. 2.3 where 3

pairs of springs can be seen). In pitch, the number of springs that can be used is limited to either zero

or two, but springs with four different stiffness coefficients have been tested. Note that the desired

torsional stiffness is obtained through the use of extension springs with one of their end fixed to the

carriage and the other end attached to a cable which is fastened to the shaft holding the blade, thereby

undergoing the pitching motion, as shown in Fig. 2.A.1. Both the heave springs and the pitch springs

can be seen in Fig. 2.3.

As mentioned earlier, a linear damper is used as an energy sink in heave. It consists of a thin aluminum

sliding plate which is undergoing the heaving motion and passing, without making contact, between

two magnets yoked together with 1020 carbon steel to form an eddy-current brake. This eddy-current

brake is shown in Fig. 2.A.2 and a schematic is presented in Fig. 2.A.3. This damper is similar in

principle to the one that has been used by Abiru and Yoshitake (2011, 2012) for their flapping-foil

turbine with a prescribed pitching motion and a passive heaving motion or by Pigolotti et al. (2017)

for their fully-passive flapping-plate setup.

Figure 2.A.1: Pitch springs attached to the shaft holding the turbine blade.
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Figure 2.A.2: Eddy-current brake used as the heave damper which provides the desired energy sink.

Figure 2.A.3: Schematic of the eddy-current brake. The aluminum sliding plate, the yoke and the
magnets are identified with the color varying from the lighter gray to the darker one.

In theory, the resistive force (Fdamper) acting on the sliding plate of an eddy-current brake is given

by (Wouterse, 1991):

Fdamper =

(
π D2

m t B2
0 K

4ρe

)
ḣ , (2.14)

where ρe is the electrical resistivity of the sliding plate material, namely aluminum, Dm is the magnet

diameter, t is the sliding plate thickness, B0 is the magnetic field in the middle of the gap (e) between

the magnets when the plate is not moving, ḣ is the heave velocity and K is a constant given by:

K =
1
2

[
1− π2 Dm

24w

]
, (2.15)

with w being the width of the plate. The theoretical heave damping coefficient of the eddy-current

brake (Dh,e theory) is then simply obtained by dividing the resistive force with the heave velocity:

Dh,e theory =
π D2

m t B2
0 K

4ρe
. (2.16)

58



Table 2.A.1: Design of the heave damper

Parameter Value

Dm 1 in
e 1/8 in
Magnet thickness 1/2 in
Magnet material Neodymium (N48)
w 50 mm
t 1/8 in
Plate material Aluminum

The various parameters characterizing the heave damper are given in Table 2.A.1.

In order to modify the heave damping coefficient, the distance between the center of the magnets

and the edge of the sliding plate (see lm in Fig. 2.A.3) can be varied by moving the yoke so that

the magnets can be shifted toward the edge of the sliding plate, thereby reducing the magnetic field

passing through the plate and, at the same time, the heave damping coefficient of the eddy-current

brake (see Eq. 2.16). A value of lm = 0 corresponds to the center of the magnets being aligned with

the edge of the aluminum sliding plate, which is close to what is observed in Fig. 2.A.2.

According to the theory (Gosline et al., 2006), the relation between the heave velocity and the resistive

force generated by the eddy-current damper is linear if the heave velocity remains below a critical

value. With 1/8 inch aluminum plates, this critical velocity is around 19 m/s and is well above the

maximum velocity reached with the prototype during the tests conducted in the water channel.

It is important to note that the theory presented above has only been used to design the damper. The

actual heave damping coefficient of the prototype has been determined following a calibration process

described in 2.B.4.

2.A.2 Inertial properties

The turbine has been designed to be as light as possible while being able to withstand the forces at

play and to limit the deflection of the blade. To increase the heaving mass, some steel bars simply have

to be added and fixed to the carriage undergoing the heaving motion. The moment of inertia and the

static moment can also be altered by adding components specifically designed for that purpose, which

are shown in black in Fig. 2.A.4. Care has been taken so that the modifications of the moment of

inertia and the static moment can be made independently. The moment of inertia can be increased by

28.6% with a variation of the static moment of less than 0.2% (left configuration in Fig. 2.A.4). Then,

from this increased moment of inertia value, the static moment can be reduced by 42.5% (middle

configuration) or increased by 40% (right configuration) without affecting the moment of inertia.

59



However, for all these cases, the heaving mass is increased by 4% since the components in black in

Fig. 2.A.4 need to be added to the setup.

Figure 2.A.4: Components undergoing the pitching motion.The light gray components are always
present while the black components are added to the setup when one wants to increase the moment of
inertia or to modify the static moment. Increased Iθ + same S (left); Increased Iθ + reduced S (middle);
Increased Iθ + increased S (right).

2.B Calibrations

2.B.1 Heave and pitch positions

The heave position is determined from the output voltage of the heave encoder using the following

linear relation:

h = Ah · (Eh−Ehi)+hi , (2.17)

where Ah is the slope of the relation between the heave position (h) and the output voltage (Eh), and hi

and Ehi respectively correspond to the initial heave position and the initial output voltage of the heave

encoder.

The equation giving the pitch angle is analogous to Eq. 2.17:

θ = Aθ · (Eθ −Eθi)+θi , (2.18)

where Aθ is the calibration constant relating the output voltage of the pitch encoder (Eθ ) to a pitch

angle (θ ), and θi and Eθi correspond to the initial pitch angle and the initial output voltage of the pitch

encoder, respectively.

In order to determine the value of the calibration constant Ah in Eq. 2.17, the heaving carriage has

been attached to the tool of a machining center (computer numerical control (CNC) milling machine),

which allowed us to prescribe two different known heave positions (±0.09 m) with great accuracy.
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The value of Ah has then been obtained using the relation:

Ah =

(
h2−h1

)(
Eh2−Eh1

) , (2.19)

where Eh is the output voltage of the heave encoder and the subscripts 1 and 2 correspond to the two

prescribed heave positions so that
(
h2−h1

)
= 0.18 m. The average voltage difference

(
Eh2−Eh1

)
has been computed from a total of 100 measurements and is equal to 3.3667 V. The resulting value of

Ah is therefore:

Ah = 0.05346 m/V . (2.20)

The value of Aθ in Eq. 2.18 has been evaluated using a similar method with the following relation:

Aθ =

(
θ2−θ1

)(
Eθ2−Eθ1

) . (2.21)

The blade has been successively held at 0° and 30° pitch angles so that
(
θ2−θ1

)
= 30°. This process

has been repeated 100 times in order to obtain an accurate estimation of
(
Eθ2−Eθ1

)
, which is 0.2543

V. The resulting value of Aθ is then found to be equal to:

Aθ = 118 degrees/V . (2.22)

Finally, note that the digital-to-analog converter has been set so that its resolution is the same as that

of the encoders. In other words, one state of the 14-bit DAC corresponds to one pulse of the encoders.

2.B.2 Springs

A machining center has also been used to determine the stiffness of the different springs. One end of

the springs was fixed to the machining center’s mill table while the other end was attached to a load

cell fastened to the machining center’s moving tool. By prescribing different vertical positions of the

tool and performing a linear regression analysis, the relation between the force measured with the load

cell and the spring elongation could be found:

F = k ∆+F0 , (2.23)

where k is the spring stiffness, ∆ is the spring elongation, i.e., the distance between the position of the

moving end of the spring (extended) and its initial position (not extended), F0 is the tension force in

the spring when the moving end is at its initial position and F is the tension force in the spring for a

given elongation. An example of the relation between the force in a spring and its elongation is shown

in Fig. 2.B.1. It confirms the linear behavior of the springs.

Since several heave springs could be used in parallel to attach the carriage undergoing the heaving

motion to the structure of the turbine, the resultant heave stiffness (kh) in N/m is given by:

kh =
Nh

∑
i=1

ki , (2.24)
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Figure 2.B.1: Measurements of the force (F) as a function of the elongation (∆) for a given spring (red
dots) along with the linear regression curve.

where Nh is the number of heave springs used for a given case and ki is the stiffness of the ith heave

spring.

Regarding the resultant pitch stiffness in N.m/rad, it is given by:

kθ = (k1 + k2)
D2

4
, (2.25)

where k1 and k2 are the stiffness coefficients of the two extension springs used in pitch and D is the

diameter of the groove in the component around which the cable linking both pitch springs is rotating,

as seen in Fig. 2.A.1.

Lastly, it is worth mentioning that some springs have been calibrated both before and after the experi-

mental campaign in order to confirm that their stiffness coefficients remained constant over time.

2.B.3 Mass, moment of inertia and static moment

Free vibration tests have been performed independently in heave and in pitch (with the other degree

of freedom fixed in place) at a sampling frequency of 5000 Hz to determine the mass undergoing the

heaving motion (mh) and the moment of inertia (Iθ ). These tests have been conducted in ambient

air so that the fluid forces are negligible compared to the friction in the bearings. The blade, the

end plate and the screws needed to fasten them together and to fix them to the shaft undergoing the

pitching motion were not in place during the free vibration tests in heave. As a result, only a fraction

of the total heaving mass has been evaluated using this method. The remaining mass fraction has been
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determined by weighing the other components individually and summing their masses. The reason for

not simply weighing all the components undergoing the heaving motion is that using free vibration

tests is a simple and straightforward method allowing us to evaluate the equivalent mass stemming

from the rotation of some components such as the linear guided roller bearings and that of the heave

springs which are not moving as rigid bodies with the carriage since one of their end is attached to the

fixed turbine structure.

The fraction of the heaving mass (mh free) present during the free vibration tests has been determined

using the following relation:

mh free = kh/ω
2
n,h free , (2.26)

where kh is the heave stiffness, which is known following the calibration described in 2.B.2, and

ωn,h free is the heave natural frequency of the components present during the free vibration tests. How-

ever, as there was some viscous friction in heave even if the heave damper was not present during

these tests due to presence of the linear guided roller bearings, the carriage did not exactly oscillate at

its natural frequency (ωn,h free), but rather at its damped natural frequency (ωd,h free):

ωn,h free =
ωd,h free√

1−ζ 2
h

, (2.27)

where ζh is the damping ratio in heave, whose evaluation is described in the next subsection. The

heaving mass of the components involved in the free vibration tests has therefore been computed

using the equation:

mh free =
kh T 2

h free

(
1−ζ 2

h

)
4π2 , (2.28)

where Th free is the oscillation period (Th free = 2π/ωd,h free).

The same procedure has been used to determine the moment of inertia (Iθ ), resulting in the equation:

Iθ =
kθ T 2

θ

(
1−ζ 2

θ

)
4π2 , (2.29)

Note that, unlike the heaving mass, all the components undergoing the pitching motion were in place

during the free vibration tests as the individual contribution of a single component to the total moment

of inertia cannot be easily estimated. The average period evaluated from 15 to 120 complete oscilla-

tions, recorded during a few free vibration tests, have been used to evaluate the period of oscillation

Th free, while 20 to 40 oscillations have been used for Tθ .

Determining the static moment using free vibration tests would have involved the computation of the

pitch and heave accelerations which would therefore have been much less accurate than the computa-

tion of the heaving mass and the moment of inertia. Consequently, the static moment has rather been

determined using a 3D computer model produced with a computer-aided design (CAD) software to

localize the center of mass of each components undergoing the pitching motion. Knowing the volume

of these components from the CAD and their mass using a weighing scale, their density could be

computed and set in the computer model. The position of the center of mass could then be accurately
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evaluated from the CAD software. In order to validate this procedure, the moment of inertia has been

computed from the CAD and compared to the value obtained from the free vibration tests. The dif-

ference between the values obtained from both methods is below 1% for all the different moment of

inertia values.

The static moment of each component undergoing the pitching motion has been found by multiplying

their mass with the distance between their center of mass and the pitch axis (xθ ) (see Fig. 2.1 and

Table 2.1 for the sign convention). The total static moment is then simply given by:

S =
Nθ

∑
i=1

(mi xθ , i) , (2.30)

where Nθ is the number of components involved in the pitching motion and mi is the mass of the ith

component undergoing the pitching motion.

2.B.4 Linear damping and Coulomb friction

The friction in heave and in pitch is considered to be a sum of linear (viscous) and Coulomb con-

tributions. A simplified model of the Coulomb friction is considered for which the friction force

( fy Coulomb) and moment (m Coulomb) are constant and acting in the opposite directions than the heave

and pitch velocities:

Fy Coulomb =− fy Coulomb sign(ḣ) , (2.31)

M Coulomb =−m Coulomb sign(θ̇) . (2.32)

Using this assumption and following the procedure described in the work of Feeny and Liang (1996),

the linear damping and Coulomb friction contributions of a given degree of freedom can be evaluated

from a single free vibration test with the other degree of freedom being held in place, as has been done

to evaluate the mass and the moment of inertia (see 2.B.3).

To determine the linear damping contribution, the parameter β has first been determined using:

β =− 1
π

ln
(
−(Xi+1−Xi−1)

(Xi−Xi−2)

)
, (2.33)

where Xi is the ith peak value in heave or in pitch of a free vibration test. This parameter is then used

to compute the damping ratio (ζ ) of a given degree of freedom:

ζ =
β√

1+β 2
, (2.34)

from which the linear damping coefficients in heave (Dh) and in pitch (Dθ ) can be evaluated:

Dh = 2ζh
√

kh mh , (2.35)

Dθ = 2ζθ

√
kθ Iθ . (2.36)
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Figure 2.B.2: Contribution of the eddy-current brake to the heave damping coefficient (Dh,e) as a
function of the distance between the center of the magnets and the edge of the sliding plate (lm). Note
that lm is zero when the center of the magnets is aligned with the edge of the sliding plate and is
positive when the magnets are shifted toward the center of the sliding plate (see Fig. 2.A.3).

Note that this method allows computing the total linear damping (Dh) and therefore includes both the

contribution of the eddy-current brake (Dh,e) and the friction in the heave bearings (Dh,v). The value

of Dh,v can be easily determined as it is equal to Dh when the eddy-current brake is removed from the

setup. As a result, the value of Dh,e can be evaluated for different positions of the magnets (lm) by

performing successive free vibration tests, including a case without the eddy-current brake:

Dh,e calib = Dh calib−Dh,v calib , (2.37)

and the results are presented in Fig. 2.B.2.

The different positions of the magnets tested during the calibration of the eddy-current brake have

been chosen to match those used during the tests conducted in the water channel. Nevertheless, the

positions of the magnets were not exactly the same and a linear interpolation has been performed to

obtain a more accurate value of the eddy-current brake damping during the tests in the channel for a

given position of the magnets (lm). Moreover, one can notice from the theory (see Eq. 2.16) that the

eddy-current brake damping varies with temperature since the magnets’ magnetic field (B0) and the

electrical resistivity of aluminum (ρe) are temperature dependent. The eddy-current brake damping

therefore needs to be corrected to take into account the temperature difference (∆T ) of the aluminum

sliding plate between the time at which a given test is conducted and the time at which the calibration

has been carried out. The eddy-current brake damping coefficient value for a given test is therefore

given by:

Dh,e =
(1+αB0 ∆T )2(

1+αρe ∆T
) Dh,e calib , (2.38)

with:

∆T = T −Tcalib , (2.39)

65



where T is the temperature of the aluminum sliding plate during a given test, Tcalib is its tempera-

ture during the calibration process (25.5 °C), Dh,e calib is the linearly interpolated eddy-current brake

damping coefficient evaluated during the calibration for a given position of the magnets, αB0 is the

temperature coefficient of the magnetic field given by (Pyrhonen et al., 2014):

αB0 =−0.0012 °C−1 , (2.40)

and αρe is the temperature coefficient of the electrical resistivity, which has a value of (Haynes, 2015):

αρe = 0.0044 °C−1 , (2.41)

around 24.85°C.

Note that the variations of the ambient temperature during the experimental campaign, which took

place over several weeks, have resulted in a maximum difference between the ambient temperature

during a test and the ambient temperature during the calibration of approximately 4 °C, which corre-

sponds to a variation of the damping coefficient by less than 3%.

Since most of the energy extracted from the flow is dissipated as heat in the aluminum sliding plate

of the eddy-current brake, an increase of the aluminum sliding plate temperature during a single test

would not have been surprising. However, the plate temperature has been measured with an infrared

thermometer at the beginning and at the end of every test conducted in the channel, each lasting 2

minutes, and the temperature difference was always equal or below 0.2 °C. Consequently, the eddy-

current brake damping can be considered to be constant during a given test since its variation due to

the temperature differences occurring during a single test is below 0.1%, which is smaller than the

damping coefficient uncertainty.

Regarding the Coulomb friction contributions, the constant friction force and moment (See Eqs. 2.31

and 2.32) are given by:

fy Coulomb =Ch kh , (2.42)

m Coulomb =Cθ kθ , (2.43)

where Ch and Cθ are Coulomb friction parameters that are evaluated using the following equation with

the corresponding variables in heave and in pitch:

C =

[
(Xi+1−Xi)+ e−β π (Xi−Xi−1)

]
2
(
1+ e−β π

) , (2.44)

These formulations eliminate the bias that would arise from nonzero equilibrium positions in heave

and in pitch since subtractions of successive positive and negative peak values are used in Eqs. 2.33

and 2.44. Moreover, these two equations have been generalized to consider all the peak values from

each free vibration tests instead of just two pairs of successive peaks. Lastly, the aerodynamic drag

of the turbine components located above the water has been found to be negligible compared to the

friction in the bearings, even when considering the largest velocities that have been reached during the

whole experimental campaign.
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2.C Validation of the calibrations

In order to validate the parameter values determined from the calibrations, the equations of motion

(Eqs. 2.3 and 2.4) have been solved numerically with second-order schemes and the results have

been compared with free vibration tests carried out with the experimental setup. These tests have

been conducted in ambient air and without the blade. Consequently, the numerical solver did not

need to solve the Navier-Stokes equations because the aerodynamic drag (in the air) of the remaining

moving components is negligible compared to the other contributions in the equations of motion.

First, the results from one-degree-of-freedom free vibration tests in heave and in pitch are presented

in Figs. 2.C.1 and 2.C.2.

Figure 2.C.1: Comparison between the experimental data (solid red line) and the numerical solution
(dashed black line) of a free vibration test in heave with the blade being held at θ = 0°. mh = 2.54 kg;
Dh = 9.4 N.s/m; kh = 503.4 N/m; fy Coulomb = 0.1 N.

Figure 2.C.2: Comparison between the experimental data (solid red line) and the numerical solution
(dashed black line) of a free vibration test in pitch with the blade being held at h/c = 0. Iθ = 2.23×
10−4 Kg.m2; Dθ = 1.28×10−4 N.m.s/rad; kθ = 0.0333 N.m/rad; m Coulomb = 9×10−4 N.m.

As the frequencies of the experimental signals agree well with those of the numerical solutions, one

can conclude that the evaluation of the heaving mass (mh), the heave stiffness (kh), the moment of
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inertia (Iθ ) and the pitch stiffness (kθ ) are accurate. Furthermore, the fact that the amplitudes also

agree well with each other validate that the estimations of the linear damping and Coulomb friction

contributions are also correct. This leaves the evaluation of the static moment which could not be

confirmed with a 1-DOF free vibration test since this parameter couples the heaving and the pitching

motions. A 2-DOF free vibration in the air has therefore been carried out and the results are presented

in Fig. 2.C.3. Once again, a good match between the experimental results and the numerical simulation

is observed for both degrees of freedom, hence confirming that all the structural parameters have been

correctly evaluated.

(a) Heave (b) Pitch

Figure 2.C.3: Comparison between the experimental data (solid red lines) and the numerical solution
(dashed black lines) of a free vibration test involving both degrees of freedom. mh = 2.54 kg, Iθ =
1.01× 10−4 Kg.m2, S = −0.00131 kg.m; Dh = 9.4 N.s/m; kh = 503.4 N/m; kθ = 0.0097
N.m/rad; Dθ = 3.8×10−5 N.m.s/rad; fy Coulomb = 0.1 N; m Coulomb = 9×10−4 N.m.
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Chapter 3

Paper II:
Investigation of the energy-extraction
regime of a novel semi-passive flapping-foil
turbine concept with a prescribed heaving
motion and a passive pitching motion

3.1 Résumé

Due à la complexité inhérente aux mécanismes requis pour imposer les mouvements de pilonnement

et de tangage des turbines à aile oscillante optimales, plusieurs groupes de recherche se sont tournés

vers l’utilisation de mouvements non contraints. L’amplitude, la phase et la fréquence de tels mou-

vements passifs dépendent de l’interaction de l’aile avec l’écoulement et ses supports élastiques, soit

des ressorts et des amortisseurs. Plus spécifiquement, ce travail propose un concept novateur de tur-

bine à aile oscillante semi-passive pour laquelle le mouvement de pilonnement est contraint alors que

le mouvement de tangage est passif. Des simulations numériques en deux dimensions ont été réal-

isées à un nombre de Reynolds de 3.9× 106 basé sur la corde avec un point de pivot situé au quart

de corde de l’aile. Une étude paramétrique a été menée en variant la valeur du moment statique, un

paramètre impliquant la distance entre les positions du centre de masse et du point de pivot, et la

fréquence du mouvement imposé en pilonnement. Plusieurs types de réponse ont été observés in-

cluant une réponse correspondant à un régime d’extraction d’énergie caractérisé par des mouvements

périodiques de grandes amplitudes avec un déphasage entre les mouvements de pilonnement et de

tangage se situant entre 90° et 105°. Une efficacité maximale de 45.4% a été atteinte, confirmant ainsi

le grand potentiel de ce concept de turbine. Ce travail démontre qu’une telle performance est obtenue

lorsque le centre de masse de l’aile est situé en aval du point de pivot et lorsque qu’aucun tourbillon
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de bord d’attaque n’est généré.

3.2 Abstract

Due to the inherent complexity of the mechanisms needed to prescribe the heaving and the pitching

motions of optimal flapping-foil turbines, several research groups are now investigating the potential

of using unconstrained motions. The amplitude, the phase and the frequency of such passive motions

are resulting from the interaction of the foil with the flow and its elastic supports, namely springs

and dampers. More specifically, this work proposes an innovative semi-passive flapping-foil turbine

concept with a prescribed sinusoidal heaving motion and a passive pitching motion. Two-dimensional

numerical simulations have been carried out at a Reynolds number of 3.9× 106 based on the chord

length with a foil having its pitch axis located at the quarter-chord point. A parametric study has been

conducted by varying the value of the static moment, which involves the distance between the center

of mass and the pitch axis, and the frequency of the prescribed heaving motion. Different responses

of the foil have been observed and one of them corresponds to an energy-extraction regime that is

characterized by periodic limit-cycle oscillations of large amplitudes with a phase lag between the

heaving and the pitching motions ranging between 90° and 105°. A maximum efficiency of 45.4%

has been reached, hence confirming the great potential of this turbine concept. This works shows that

such good performance is achieved when the center of mass of the foil is located downstream of the

pitch axis and when no leading-edge vortices are formed.

3.3 Introduction

3.3.1 Context

By constraining a foil to undergo combined heave (translational) and pitch (rotational) motions with

adequate kinematics, it is possible to extract a significant amount of energy from a fluid flow (Young

et al., 2014; Xiao and Zhu, 2014). This concept is known as the flapping-foil turbine and it has

primarily been developed with the objective of using it as a hydrokinetic turbine to extract energy from

rivers or tidal currents. Efficiencies exceeding 40% have been obtained when prescribing appropriate

heave and pitch motions (Kinsey and Dumas, 2014), which results in what we refer to as a fully-

constrained flapping-foil turbine. However, prescribing these motions presents several challenges

regarding the design of such a device. Indeed, the mechanisms that are used to achieve the desired

foil motions are complex, which can affect the costs and the reliability of the apparatus. Furthermore,

the complexity of these mechanisms can also result in significant power losses due to the friction

occurring in the large number of moving components involved, as reported by Kinsey et al. (2011).

An alternative consisting in a device for which only the pitch motion is prescribed has been pro-

posed (Abiru and Yoshitake, 2011, 2012; Chen et al., 2018; Deng et al., 2015; Derakhshandeh et al.,

2016; Griffith et al., 2016; Huxham et al., 2012; Shimizu et al., 2008; Sitorus et al., 2015; Teng et al.,
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2016; Wu et al., 2014, 2015; Zhan et al., 2017; Zhu et al., 2009; Zhu and Peng, 2009). The heave

motion is then said to be passive as the foil is elastically supported with springs and dampers for

this degree of freedom instead of being connected to the turbine structure with rigid links. As a re-

sult, the heave motion cannot be prescribed and rather results from the interaction of the pitching

foil with its elastic supports and the flow. The use of this simplified turbine concept, known in the

literature as the semi-passive flapping-foil turbine, allows getting rid of the complex coupling mech-

anisms linking both degrees of freedom that are needed in the case of the fully-constrained concept.

Efficiencies exceeding 30% were reported by Deng et al. (2015) and Teng et al. (2016), who carried

out 2D unconfined numerical simulations, while Abiru and Yoshitake (2011, 2012) and Huxham et al.

(2012) conducted experiments in water channels and measured efficiencies reaching 20%. Griffith

et al. (2016) evaluated the energy-extraction potential of a device for which the foil was replaced

by different elliptical cylinders having an aspect ratio ranging from 1 (circular cylinder) to 6. They

showed that the amount of energy extracted is increasing as the aspect ratio of the elliptical cylinder

is increased, hence suggesting that a foil geometry is optimal for this type of turbine and that turbines

solely relying on the vortex-induced vibration phenomenon are less efficient. While this semi-passive

flapping-foil turbine concept is simpler than its fully-constrained counterpart, it still requires an ac-

tuator and a controller in pitch in addition to an electric generator in heave, the latter being usually

modeled as a viscous damper.

A simpler device for which both degrees of freedom are independent and elastically supported has also

been proposed and is known as the fully-passive flapping-foil turbine concept (Peng and Zhu, 2009;

Veilleux and Dumas, 2017; Zhu, 2012; Wang et al., 2017; Boudreau et al., 2018). Again, no coupling

mechanism is needed with such a device but, unlike the semi-passive concept presented above, no

actuator and no controller are required in pitch. A few numerical studies showed that different types

of response can be observed by varying the values of the structural parameters governing the turbine

dynamics and the flow characteristics (Peng and Zhu, 2009; Veilleux and Dumas, 2017; Wang et al.,

2017). Among these different responses, only one is appropriate in an energy extraction perspective

and it is characterized by large amplitudes and periodic heave and pitch motions. This regular response

was also observed experimentally by Boudreau et al. (2018) using a fully-passive turbine prototype

in a water channel. The sensitivity of the turbine performance to seven different parameters affecting

the turbine dynamics was evaluated and a maximum efficiency of 31% was reported by the authors.

While this performance has confirmed the potential of the fully-passive turbine concept, it does not

match the best performance reported for the fully-constrained flapping-foil turbine yet.

The studies conducted on the fully-passive flapping-foil turbine have demonstrated that it is possible

to achieve a good level of performance with a passive pitch motion. Since most of the energy extracted

by flapping-foil turbines comes from the heave motion (Kinsey and Dumas, 2008, 2014; Zhu, 2011), it

is logical to connect an electric generator to this degree of freedom, thereby allowing one to constrain

this motion. Following this idea, the current work proposes a novel semi-passive flapping-foil turbine

concept for which the heave motion is prescribed and the pitch motion is passive. This results in a
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simpler device than the other semi-passive turbine version described above since no actuator and no

controller are required in pitch. The objective of this study consists in evaluating the potential of this

innovative flapping-foil turbine concept compared to the other turbine designs that have already been

proposed. Moreover, this work aims at developing a fundamental understanding of the dynamics of

passive pitch motions, which is not only relevant for the semi-passive flapping-foil turbine proposed

in this work, but also for the fully-passive flapping-foil turbine concept. This is achieved by varying

the static moment, which is a structural parameter involving the distance between the center of mass

and the pitch axis that has not received a lot of attention in the literature so far. Indeed, most of the

studies conducted on semi-passive and fully-passive flapping-foil turbines either considered a pitch

axis coinciding with the center of mass (Abiru and Yoshitake, 2011, 2012; Deng et al., 2015; Griffith

et al., 2016; Shimizu et al., 2008; Teng et al., 2016; Wu et al., 2014, 2015; Zhan et al., 2017) or

massless foils (Peng and Zhu, 2009; Zhu et al., 2009; Zhu and Peng, 2009; Zhu, 2012). Moreover,

the present work is performed at a large Reynolds number of 3.9× 106 representative of full-scale

turbines, unlike most of the previous studies on flapping-foil turbine which rather considered low

Reynolds numbers of the order of 1 000 (Young et al., 2014; Xiao and Zhu, 2014).

More information about the use of passive or prescribed motions is given in Sec. 3.3.2. The semi-

passive turbine concept considered in this study is described in Sec. 3.4.1. The fluid and solid solvers

that are used, their validation and the definition of different performance metrics are presented in

Secs. 3.4.2 to 3.4.5. A description of the different types of response that have been observed in this

study is then given in Sec. 3.5.1 followed by an analysis of the role of the electric generator for this

turbine concept in Sec. 3.5.2.

3.3.2 Additional information regarding the use of passive or prescribed motions

The motions undergone by the foil of a flapping-foil turbine can be characterized with 5 motion

parameters, namely the motion shape and amplitude in heave, the motion shape and amplitude in

pitch, the heave frequency, the pitch frequency and the phase lag between the heave and the pitch

motions. Each of these motion parameters can be left free or constrained depending on the specific

design of the flapping-foil turbine.

We refer to as a fully-constrained turbine when all the motion parameters are constrained. This can

be achieved by using three components: 1) a slider-crank linkage to convert the reciprocating heave

motion to a rotating motion and to connect the foil to an electric generator, hence constraining the

motion shape and amplitude in heave; 2) a controller to enforce a constant rotational velocity of

the electric generator’s rotor, which imposes the frequency of the heave motion; 3) rigid links to

mechanically couple both degrees of freedom together, thereby also constraining the motion shape

and amplitude and pitch, the frequency of the pitch motion and the phase lag between both degrees

of freedom. One example of such a fully-constrained turbine prototype is described in the work of

Kinsey et al. (2011).
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Another possibility is to leave all the motion parameters free to obtain what we refer to as a fully-

passive turbine. This has been done by Peng and Zhu (2009), Veilleux and Dumas (2017), Wang

et al. (2017) and Boudreau et al. (2018). Such a turbine concept is obtained when no slider-crank

linkage, no coupling mechanism and no controller are used. Nevertheless, springs and dampers can

be independently connected to the foil in heave and in pitch to allow an indirect control of the motions.

Moreover, such turbine is designed to restrict the motions to the heave and pitch degrees of freedom

only.

Several other “semi-passive” alternatives are possible between these two extreme cases by constrain-

ing or not each of the five motion parameters describing the flapping-foil motions. The most popular

semi-passive concept in the literature involves a passive heave motion and a prescribed pitch mo-

tion (Abiru and Yoshitake, 2011, 2012; Chen et al., 2018; Deng et al., 2015; Derakhshandeh et al.,

2016; Griffith et al., 2016; Huxham et al., 2012; Shimizu et al., 2008; Sitorus et al., 2015; Teng et al.,

2016; Wu et al., 2014, 2015; Zhan et al., 2017; Zhu et al., 2009; Zhu and Peng, 2009). More specif-

ically, an actuator and a controller allow constraining the motion shape and amplitude in pitch in

addition to the frequency of this motion while letting all the other motion parameters free because the

foil of such a device is elastically supported in heave. Young et al. (2013) have proposed another tur-

bine concept for which a slider-crank linkage and a coupling mechanism are present but no controller

is used. As a result, all the motion parameters are constrained except the frequency, which is however

constrained to be the same for both degrees of freedom due to the presence of the coupling mecha-

nism. It is worth mentioning that they have used the term fully-passive to describe this turbine concept

in their study, but their definition is different from the one proposed in the current work. Indeed, we

define a fully-passive turbine as one for which all the motion parameters are free.

As mentioned earlier, a novel semi-passive turbine concept with a prescribed heave motion and a pas-

sive pitch motion is proposed in this study. More specifically, this implies that the foil is elastically

supported with springs and dampers in pitch and that a slider-crank linkage is required to convert the

reciprocating heave motion to a rotating motion, hence constraining the motion shape and amplitude

in heave. This slider-crank linkage also connects the foil to an electrical generator, which is controlled

to enforce a constant rotational velocity and thus, a constrained frequency for the heave motion. How-

ever, no coupling mechanism is used, therefore leaving all the remaining motion parameters, namely

the motion shape and amplitude in pitch, the frequency of the pitch motion and the phase lag between

the heave and the pitch motions, free. For the sake of conciseness, we use the term semi-passive

turbine to refer to this heave-prescribed semi-passive turbine concept in this work. This should not be

confused with other semi-passive turbine concepts that have been studied in the literature.
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3.4 Methodology

3.4.1 Turbine description

The semi-passive flapping-foil turbine considered in this study, which is shown schematically in

Fig. 3.1, consists in a rigid NACA0015 foil that is elastically-supported in pitch (θ ) with a prescribed

heave motion (h). The pitch motion is entirely governed by the following equation of motion:

M = Iθ θ̈ +S ḧcos(θ)+Dθ θ̇ + kθ θ , (3.1)

where the superscript (·) denotes a time derivative, M is the moment about the pitch axis resulting

from the fluid loading, Iθ is the moment of inertia about the pitch axis, S is the static moment, which

corresponds to the pitching mass (mθ ) times the distance between the center of mass and the pitch

axis (xθ ) (see Fig. 3.1 for the sign convention):

S = mθ xθ , (3.2)

Dθ is the pitch damping coefficient and kθ is the pitch spring stiffness coefficient (rotational stiffness).

Note that the static moment is zero when the pitch axis coincides with the center of mass and that the

gravitational acceleration does not appear in the equation of motion because it is considered to act in

a direction aligned with the pitch axis (z-direction in Fig. 3.1).

x

Figure 3.1: Outline of the semi-passive flapping-foil turbine concept with a prescribed heave motion
and a passive pitch motion. Note that xθ is defined positive as shown in the figure, namely with the
center of mass being located downstream of the pitch axis.

In its dimensionless form, Eq. 3.1 becomes:

CM/2 = I∗θ θ̈
∗+S∗ ḧ∗ cos(θ)+D∗θ θ̇

∗+ k∗θ θ , (3.3)

with:

CM =
M

0.5ρ U2
∞ bc2 , I∗

θ
=

Iθ

ρ bc4 , S∗ =
S

ρ bc3 , D∗
θ
=

Dθ

ρ U∞ bc3 , k∗
θ
=

kθ

ρ U2
∞ bc2 ,
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h∗ =
h
c

, ḣ∗ =
ḣ

U∞

, ḧ∗ =
ḧ c
U2

∞

, θ̇ ∗ =
θ̇ c
U∞

, θ̈ ∗ =
θ̈ c2

U2
∞

,

where ρ is the fluid density, U∞ is the freestream velocity, c is the chord length and b is the span

length. Note that forces per unit span are always considered in this work, so that b is taken to be unity

(b = 1).

The heave motion is prescribed to be a sine wave with an amplitude growing linearly from zero to its

nominal value (H0) over the first three foil oscillations:

h = H0 min
( t

3T
, 1
)

sin(2π f t) , (3.4)

where t is time, f is the frequency of the prescribed heave motion and T is the period of one oscillation

or cycle (T = 1/ f ). This linear growth of the heave amplitude at the beginning of the simulations is

used in order to avoid imposing a shock in heave velocity or heave acceleration, therefore providing a

smooth initial condition.

Throughout the current study, the dimensionless heave amplitude (H0/c), the dimensionless moment

of inertia (I∗
θ

), and the dimensionless pitch damping coefficient (D∗
θ

) are all kept constant with the

values listed in Table 3.1. A heave amplitude of one chord length has been chosen based on the

study of the fully-constrained concept conducted by Kinsey and Dumas (2014) and because the best

efficiencies reported in the works of Veilleux and Dumas (2017), Wang et al. (2017) and Boudreau

et al. (2018) on fully-passive flapping-foil turbines have been obtained with a passive heave motion

having an amplitude of that order (1c). The dimensionless moment of inertia is set to 2, which is

similar to the mass ratio used in the work of Wang et al. (2017) on a fully-passive turbine. An idealized

turbine with no friction in pitch is considered. As a result, the pitch damping coefficient is set to zero.

This is justified by the fact that the pitch damping should be minimized in practice since it results in

undesired losses of energy. As a reference point, the pitch damping coefficient was of the order of

D∗
θ
= 0.005 for the fully-passive flapping-foil turbine prototype tested by Boudreau et al. (2018). For

all the cases considered in this study, the pitch axis is located at the quarter-chord point (xp/c = 0.25)

and the dimensionless pitch spring stiffness coefficient (k∗
θ

) is set so that the dimensionless pitch

natural frequency always matches the reduced frequency of the prescribed heave motion. This results

in:

k∗θ = (2π f ∗)2 I∗θ , (3.5)

where f ∗ is given by:

f ∗ = f c/U∞ . (3.6)

The Reynolds number is fixed at 3.9×106, based on the chord length, in order to characterize large-

scale turbines (e.g., Cape Sharp Tidal Venture Ltd. (2018)). It also ensures that the boundary layers

are turbulent, which allows us to solve them with a turbulence model in fully turbulent mode, as

stated in Sec. 3.4.2. The results of the present study are expected to be representative of turbines
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operating at different Reynolds numbers provided that they are large enough so that the boundary

layers remain turbulent. Moreover, this choice is consistent with previous works conducted on large-

scale hydrokinetic turbines (e.g., Boudreau and Dumas (2017); Sitorus and Ko (2019). The values

of the dimensionless static moment (S∗) and the reduced frequency of the prescribed heave motion

( f ∗) are respectively varied between 0 and 0.8 and between 0.10 and 0.30. These ranges have been

selected based on preliminary results and previous studies conducted on fully-constrained flapping-

foil turbines (Kinsey and Dumas, 2014; Young et al., 2014; Xiao and Zhu, 2014).

Table 3.1: Governing parameter values

Parameter Value

Re =U∞ c/ν 3.9×106

xp/c 0.25

H0/c 1

I∗
θ

2

D∗
θ

0

k∗
θ

(2π f ∗)2 I∗
θ

S∗ 0 to 0.8

f ∗ 0.10 to 0.30

3.4.2 Fluid and solid solvers

The semi-passive turbine concept proposed in this work is analyzed by carrying out two-dimensional

incompressible Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations using the Spalart-

Allmaras one-equation turbulence model with rotation correction (Dacles-Mariani et al., 1995, 1999;

Spalart and Allmaras, 1994). Kinsey and Dumas (2012) and Veilleux and Dumas (2017) have previ-

ously validated the use of this turbulence modeling approach for the study of flapping-foil turbines by

comparing their numerical results with experimental data. Siemens’ STAR-CCM+® software is used

as the fluid solver with second-order numerical schemes and a segregated approach making use of the

SIMPLE algorithm for the pressure-velocity coupling (Ferziger and Perić, 2002). The computational

domain is the same as the one used in the work of Veilleux and Dumas (2017) and it simply consists

in a square of 100 chord lengths by 100 chord lengths with the foil being located at the center. A

uniform and constant velocity together with a modified turbulent viscosity ratio of three (ν̃/ν = 3) is

imposed at the inlet boundary. The modified turbulent viscosity (ν̃) is the variable of interest in the

single equation of the Spalart-Allmaras turbulence model and it is related to the turbulent viscosity

(νt) through an empirical relation (Spalart et al., 1997). An inlet value of three for the modified tur-

bulent viscosity ratio has been chosen to ensure that the turbulence model is used in its fully turbulent
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mode, following the recommendation of Spalart and Rumsey (2007). At the outlet, a pressure of zero

is imposed and symmetry conditions are used for the two remaining boundaries. Regarding the initial

condition, the velocity and turbulent viscosity ratio values at the inlet along with the pressure value at

the outlet are imposed throughout the computational domain.

The overset mesh technique is used to handle the foil motions with two different meshes, one for the

background region and one for the foil region. A structured mesh is used near the foil surface with

a dimensionless normal wall distance (y+) of the order of one, a maximum growth factor of 1.2 and

approximately 500 nodes around the foil. The background mesh region is composed of hexagonal

cells for a total of about 78 614 cells. The time step corresponds to 0.003 convective time units for all

the simulations:
∆t U∞

c
= 0.003 . (3.7)

This results in a number of time steps per foil oscillation ranging between approximately 1 100 and

3 300 depending on the frequency of the prescribed heave motion.

In order to solve Eq. 3.1, it is discretized in time and written as:

Rn
θ = Iθ θ̈

n +S ḧn cos(θ n)+Dθ θ̇
n + kθ θ

n−Mn , (3.8)

where:

θ̈
n = c1 θ̇

n + c2 θ̇
n−1 + c3 θ̇

n−2 , (3.9)

θ̇
n = c1 θ

n + c2 θ
n−1 + c3 θ

n−2 , (3.10)

ḧn = c1 ḣn + c2 ḣn−1 + c3 ḣn−2 , (3.11)

ḣn = c1 hn + c2 hn−1 + c3 hn−2 , (3.12)

Rθ is the residual of the discretized version of Eq. 3.1, the superscript n denotes the current time step

to be solved, while n−1 and n−2 correspond to the two previous time steps, and c1, c2 and c3 are the

constants of the numerical scheme. In the current study, the temporal discretization of the solid solver

is chosen to match that of the fluid solver, namely a second-order backward difference scheme. This

results in:

c1 =
3

2∆t
, c2 =

−4
2∆t

, c3 =
1

2∆t
, (3.13)

where ∆t is the time step.

Considering Eqs. 3.8 to 3.13, the only unknowns on the right hand side of Eq. 3.8 are θ n and Mn since

the heave motion is prescribed. However, these two unknowns are not independent as the hydrody-

namic moment (M) is a function of the foil motion and thus of the pitch angle (θ ). The objective

therefore consists in finding the value of θ n which minimizes the absolute value of the residual Rn
θ

.

In other words, the solver has to find the roots of the function on the right hand side of Eq. 3.8 with

θ n as the independent variable. It achieves this task with the secant method. The resulting fluid-solid

coupling algorithm is written in pseudocode in Appendix 3.A.
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The formulation of the fluid-solid coupling algorithm is implicit since the value of the residual for the

current time step (Rn
θ

) is a function of both the pitch angle and the hydrodynamic moment at the same

time step (θ n and Mn). Consequently, the pitch angle is determined for a given time step by iterating

and updating its value a few times within this specific time step. These iterations are referred to as

outer loops in Appendix 3.A and they are indicated with subscripts. For each outer loop, the fluid

solver has to perform a few iterations with the updated pitch angle in order to determine the moment

(Mn
i ) corresponding to the ith outer loop. Fluid iterations are conducted until the difference between

the moment coefficient (CM) values obtained from two successive iterations falls below 10−5. Outer

loops are conducted until the difference between the pitch angle values in radians, estimated from the

two last outer loops and normalized with π/2, falls below a given convergence criterion (ε), which is

set to 10−8. Three or four outer loops are typically required to reach convergence for the pitch angle.

Once this is achieved, some additional fluid iterations are carried out to ensure that the fluid residuals

for the pressure, the streamwise and transverse momentums and the turbulent viscosity at least drop

by a factor of 10−4 for the first three residuals and 5×10−4 for the residual of the turbulent viscosity

for a given time step. When the pitch angle and the fluid residuals’ convergence criteria are all met,

the time step is incremented and the process starts over.

3.4.3 Power transfer and performance metrics

In order to evaluate the power extracted by the semi-passive turbine investigated in the current work,

it is useful to write a general equation of motion in heave:

Fy = mh ḧ+S
(
θ̈ cosθ − θ̇

2 sinθ
)
+Dh ḣ+Fgen , (3.14)

where Fy is the component of the hydrodynamic force acting on the foil in the heave direction, mh is

the mass of the components undergoing the heave motion, Dh is the heave damping coefficient, which

accounts for the possible presence of friction in heave, and Fgen corresponds to the force stemming

from the presence of an electric generator.

Eq. 3.14 should not be confused with Eq. 3.4. Indeed, Eq. 3.14 is not solved during the simulations

since the heave motion is rather prescribed according to Eq. 3.4. Nevertheless, Eq. 3.14 tells us that

in order to prescribe a sinusoidal heave motion, the generator must be controlled and might have to

act as an actuator during a fraction of the foil oscillations. In other words, on a real turbine setup,

Fgen would need to be adjusted in real time so that the solution of Eq. 3.14 corresponds to the desired

(imposed) heave motion given by Eq. 3.4.

The amount of power available at the generator is obtained by multiplying Eq. 3.14 with the heave

velocity (ḣ). After putting all the terms on the left hand side of this equation, except Fgen, normalizing

and cycle-averaging the result, one obtains the following relation for the different power coefficients:

〈CPh〉+ 〈CPmh
〉+ 〈CPS,h〉+ 〈CPDh

〉= 〈CPgen〉 , (3.15)
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where the angle brackets indicate the cycle-averaging process and 〈CPgen〉 is the power coefficient

available at the electric generator. Note that unless otherwise indicated, the term power coefficient

refers to a cycle-averaged value.

A similar procedure is used for the pitch motion by multiplying Eq. 3.1 with the pitch velocity (θ̇ ).

Again, after putting all the terms on the left hand side of the equation, normalizing and cycle-averaging

the result, the following relation is obtained:

〈CPθ
〉+ 〈CPIθ

〉+ 〈CPS,θ 〉+ 〈CPDθ
〉+ 〈CPkθ

〉= 0 . (3.16)

The different power coefficients appearing in Eqs. 3.15 and 3.16 are defined as:

〈CPh〉=
1
T

∫ ti+T

ti

(
Fy ḣ

0.5ρ U3
∞ bc

)
dt , (3.17)

〈CPmh
〉= 1

T

∫ ti+T

ti

(
−mh ḧ ḣ

0.5ρ U3
∞ bc

)
dt , (3.18)

〈CPS,h〉=
1
T

∫ ti+T

ti

(
−S ḣ

(
θ̈ cosθ − θ̇ 2 sinθ

)
0.5ρ U3

∞ bc

)
dt , (3.19)

〈CPDh
〉= 1

T

∫ ti+T

ti

(
−Dh ḣ2

0.5ρ U3
∞ bc

)
dt , (3.20)

〈CPgen〉=
1
T

∫ ti+T

ti

(
Fgen ḣ

0.5ρ U3
∞ bc

)
dt , (3.21)

〈CPθ
〉= 1

T

∫ ti+T

ti

(
M θ̇

0.5ρ U3
∞ bc

)
dt , (3.22)

〈CPIθ
〉= 1

T

∫ ti+T

ti

(
−Iθ θ̈ θ̇

0.5ρ U3
∞ bc

)
dt , (3.23)

〈CPS,θ 〉=
1
T

∫ ti+T

ti

(
−S ḧ θ̇ cos(θ)
0.5ρ U3

∞ bc

)
dt , (3.24)

〈CPDθ
〉= 1

T

∫ ti+T

ti

(
−Dθ θ̇ 2

0.5ρ U3
∞ bc

)
dt , (3.25)

〈CPkθ
〉= 1

T

∫ ti+T

ti

(
−kθ θ θ̇

0.5ρ U3
∞ bc

)
dt , (3.26)
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where ti is the time at which a given cycle starts, which is defined as the moment at which h = 0 and

ḣ > 0, and T is the period of one cycle (T = 1/ f ). The metrics 〈CPh〉 and 〈CPθ
〉 are the heave and

pitch power coefficients and they measure the power transfers occurring between the foil and the flow.

They are positive when the power is transferred from the flow to the foil. Conversely, a negative value

for one of these power coefficients means that some power is required to maintain the corresponding

motion. 〈CPmh
〉, 〈CPIθ

〉 and 〈CPkθ
〉 correspond to power transfers occurring between the foil motions

and different forms of potential energy. 〈CPDh
〉 and 〈CPDθ

〉 are necessarily negative and correspond to

power losses due to the presence of friction in heave and in pitch. Finally, 〈CPS,h〉 and 〈CPS,θ 〉 stand

for the power transfers occurring between the heave motion and the pitch motion through the inertial

coupling terms in Eqs. 3.1 and 3.14, namely the terms involving the static moment. They are defined

positive when they correspond to a power input in their respective equation (Eq. 3.15 or Eq. 3.16) and

negative for a power output. For example, when 〈CPS,h〉 is negative but 〈CPS,θ 〉 is positive, some power

is transferred from the heave motion to the pitch motion on a cycle-averaged basis1. They are equal

to zero when the center of mass coincides with the pitch axis (see Eq. 3.2 and Fig. 3.1).

Throughout the current investigation, no friction is considered in heave and in pitch. Consequently,

Dh = 0 and Dθ = 0, and thus 〈CPDh
〉 = 0 and 〈CPDθ

〉 = 0. Furthermore, when the foil motions are

periodic, 〈CPmh
〉, 〈CPIθ

〉 and 〈CPkθ
〉 vanish because these terms are conservative (Veilleux, 2014). This

is always true in the case of 〈CPmh
〉 since sinusoidal heave motions are prescribed. Under such condi-

tions, Eqs. 3.15 and 3.16 simplify to:

〈CPh〉+ 〈CPS,h〉= 〈CPgen〉 , (3.27)

〈CPθ
〉+ 〈CPS,θ 〉= 0 . (3.28)

Also, 〈CPS,h〉 and 〈CPS,θ 〉 are equal but opposite when the motions are periodic:

〈CPS,h〉=−〈CPS,θ 〉 . (3.29)

By combining Eqs. 3.27 to 3.29, one finally obtains:

〈CPgen〉= 〈CPh〉+ 〈CPθ
〉 . (3.30)

This last relation means that when the foil motions are periodic and no friction is considered, the

power coefficient at the generator is simply equal to the sum of the heave and pitch contributions of

the power transferred between the foil and the flow. In other words, all the power extracted from

the flow is available at the electric generator. Nevertheless, 〈CPgen〉 has been evaluated using Eq. 3.27

throughout this study to include the possibility of non-periodic pitch motions.

The results presented in this work are analyzed in terms of different performance metrics. Indeed,

each foil oscillation or cycle can be characterized by its efficiency:

η = 〈CPgen〉c/d , (3.31)
1Note that these definitions are slightly different than those presented in the paper of Veilleux and Dumas (2017) due to

a different sign convention used for θ .
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its pitch amplitude:

Θ0 =
θmax −θmin

2
, (3.32)

and its phase lag between the heave and the pitch motions, here given in degrees:

φ =
360
T

(tθmax − thmax ) , (3.33)

where d is the overall extent of the foil motion, i.e., the distance between the maximum and minimum

positions reached by any point on the foil surface in the heave direction during this specific cycle, θmax

and θmin are the maximum and minimum pitch angles reached during this same cycle and tθmax and

thmax are the instants at which the maximum pitch angle and the maximum heave position are attained.

In addition to these metrics, the streamwise and heave force coefficients are defined as:

CFx =
Fx

0.5ρ U2
∞ bc

, (3.34)

CFy =
Fy

0.5ρ U2
∞ bc

, (3.35)

where Fx and Fy are the streamwise and transverse (heave) components of the hydrodynamic force

acting on the foil.

The time-averaged values presented in this work have been determined by starting the averaging pro-

cess after reaching limit-cycle oscillations (LCO) in order to avoid the transient period at the beginning

of the simulations. A sufficient number of cycles have been completed in order to obtain converged

values while also making sure that a minimum of 10 cycles has been used. For example, the time-

averaged power coefficient at the generator is computed as:

CPgen =
1

Nend−Nstart +1

Nend

∑
j=Nstart

〈CPgen〉 j , (3.36)

where the subscript j stands for the jth cycle, Nstart is the cycle at which the averaging process begins,

Nend is the total number of completed cycles and 〈CPgen〉 j is the power coefficient at the generator for

the jth cycle.

3.4.4 Spatial and temporal resolution levels

In order to validate that the spatial and temporal resolution levels used to conduct the present study

are adequate, simulations with two other resolution levels have been carried out. More specifically,

both the time step and the spatial resolution of the mesh have been varied by 33%, while keeping

a dimensionless normal wall distance (y+) of the order of one at the foil surface, to obtain a fine

resolution case and a coarse resolution case. This results in 42 697, 78 614 and 135 789 cells for

the coarse mesh, the baseline mesh and the fine mesh, respectively. The time evolution of the pitch

angle as a function of time is presented in Fig. 3.2 for the three resolution levels at an operating point

characterized by f ∗ = 0.20 and S∗ = 0.65. As will be discussed in Section 3.5.1, this operating point
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corresponds to the best efficiency point. Fig. 3.2 shows that the differences between the cases with the

three resolution levels are negligible since the three curves are almost perfectly superimposed on each

other. This therefore confirms that the baseline resolution is adequate.

Figure 3.2: Time evolution of the pitch angle as a function of time during the first ten oscillations of
an operating point characterized by f ∗ = 0.20 and S∗ = 0.65 obtained with three different spatial and
temporal resolution levels: coarse (dashed blue line), baseline (solid black line) and fine (dotted red
line).

In order to make sure that the time step is also adequate for cases with a large reduced frequency,

some simulations have been conducted with time steps varying from 0.00225 to 0.01 convective time

units for a case with f ∗ = 0.30 and S∗ = 0.5. The time-averaged pitch amplitude and phase lag values

obtained with the different time steps are presented in Table 3.2. The maximum relative differences

obtained between the different pitch amplitude and phase lag values are both around 1%. Moreover,

the agreement between the time evolutions of the pitch angle obtained with the different time steps is

as good as in Fig. 3.2. This confirms that the time step value of 0.003 convective time units that has

been chosen to conduct this study is appropriate.

Table 3.2: Time-averaged pitch amplitude and phase lag values obtained with different temporal res-
olutions and the baseline mesh. These values are obtained from an operating point characterized by
f ∗ = 0.30 and S∗ = 0.5.

Time step Θ0 φ

(∆t U∞/c)

0.01 85.3° 104.8°

0.006 84.8° 104.3°

0.004 84.8° 104.3°

0.003 84.8° 104.2°

0.00225 85.8° 105.2°
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3.4.5 Validation

Some simulations of an elastically-supported cylinder undergoing vortex-induced vibrations (VIV)

with various spring stiffness coefficients have been conducted to validate our numerical methodology.

The benchmark case that has been chosen to perform this task was studied by Shiels et al. (2001), who

used a viscous vortex method as the fluid solver. It consists in a massless cylinder of diameter D with

no damping at a Reynolds number of 100. The equation of motion of such an elastically-supported

cylinder is given by:

Fy = k y , (3.37)

where Fy is the hydrodynamic force component normal to the freestream flow, y is the transverse

displacement of the cylinder and k is the spring stiffness coefficient. This benchmark case has been

chosen because such applications with large fluid-to-solid density ratios are known to be challenging

for fluid-solid coupling algorithms.

As shown in Fig. 3.3, the results obtained with the present methodology are in good agreement with

the results of Shiels et al. (2001). This confirms that our approach is not only accurate, but also stable

and not limited in terms of the inertial property of the rigid body involved in the fluid-solid interaction

problem to be solved.

Figure 3.3: Comparison between the benchmark results of Shiels et al. (2001) (dashed black curves)
and the results obtained with the present methodology (solid red curves) for a massless cylinder un-
dergoing vortex-induced vibrations. The results are compared in terms of the amplitude of motion
(A), the frequency of the motion ( f ) and the amplitude of the force component acting on the cylinder
in the transverse direction (Fy).

Furthermore, our methodology has also been used to simulate the optimal fully-passive flapping-foil

turbine case that was obtained by Veilleux and Dumas (2017) with their well-validated fluid-solid

solver. The time evolutions of the heave position and the pitch angle obtained with our methodology

are compared to their results in Fig. 3.4. It is found that our results agree well with those of Veilleux

and Dumas (2017), hence confirming that our numerical methodology is suitable for fluid-solid simu-

lations involving a flapping foil.
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Figure 3.4: Comparison between the motions of a fully-passive flapping-foil turbine over one cycle of
period T simulated with our numerical methodology (dashed lines) and as reported by Veilleux and
Dumas (2017) (solid lines) for their optimal case. The dimensionless heave position (h∗) is shown in
black and green while the pitch angle (θ ) is shown in blue and red.

3.5 Results

3.5.1 Classification of the different regimes of motion

As mentioned in Sec. 3.4, the values of the dimensionless static moment (S∗) and the reduced fre-

quency of the prescribed heave motion ( f ∗) are varied while all the other governing parameters are

kept constant. Different responses are observed and they are classified into five different regimes of

motion based on their time-averaged efficiency (η), pitch amplitude (Θ0) and phase lag (φ ) values as

well as the regularity of the motions. These regimes are represented with different colors and markers

in Fig. 3.1, with each marker corresponding to a different simulated operating point.

Typical time evolutions of the pitch angle for each regime are shown in Fig. 3.2 while the contours

of the time-averaged efficiency, the time-averaged pitch amplitude and the time-averaged phase lag

between the heave and the pitch motions are respectively presented in Figs. 3.3, 3.4a and 3.4b. The

white areas in Fig. 3.3 indicate a negative efficiency. Also, the time-averaged values are not presented

for the orange regime because of the irregularity of the response (see Fig. 3.2d). The corresponding

regions in these figures are colored in gray. Note that we are not interested in the details of the orange

regime since it is not suitable for a turbine application, as will be discussed below.

The green regime contains the operating points characterized by periodic limit-cycle oscillations, and

a positive energy extraction from the flow on a time-averaged basis, as seen in Fig. 3.3. This therefore

makes it the only regime that is suitable for a turbine application. The motions in the blue regime

rather require energy because it corresponds to a propulsion regime. The three other regimes, namely

the black, the orange and the red regimes, correspond to neither energy-extraction regimes nor propul-

sion regimes. Unlike the periodic motions characterizing the green and the blue regimes, the motions

characterizing these three other regimes are less regular (see Fig. 3.2) and they result in significant

87



Figure 3.1: Classification of 5 different regimes of motion observed in the parametric space. Each
marker corresponds to one simulated operating point.

(a) Green regime ( f ∗ = 0.20; S∗ = 0.65). (b) Blue regime ( f ∗ = 0.26; S∗ = 0).

(c) Black regime ( f ∗ = 0.16; S∗ = 0.70). (d) Orange regime ( f ∗ = 0.10; S∗ = 0.80).

(e) Red regime ( f ∗ = 0.24; S∗ = 0.75).

Figure 3.2: Typical time evolutions of the passive pitch motion as a function of time during the 30
first cycles for each regime of motion. Note that more than 30 cycles have been simulated and that the
operating point in the red regime has only reached a permanent response after completing 52 cycles.

variations of the efficiency, the pitch amplitude and the phase lag from cycles to cycles. In fact,
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Figure 3.3: Contours of the time-averaged efficiency. A maximum efficiency of 45.4% is obtained
when f ∗ = 0.20 and S∗ = 0.65. The white areas indicate negative values.

(a) Pitch amplitude. (b) Phase lag between the heave and the pitch motions.

Figure 3.4: Contours of the time-averaged values of two metrics characterizing the foil motions.

the efficiency of the operating points in these regimes can even alternate between positive and neg-

ative values. These large variations of the energy extraction occurring from cycles to cycles prevent

these operating points from being potential candidates for a turbine application. Moreover, the time-

averaged efficiency of these operating points is negative, except for a few exceptions for which the

time-averaged efficiency nevertheless remains small.

As observed in Fig. 3.4b, the different regimes of motion are characterized by time-averaged phase

lags (φ ) around 90°, above 90° and below 90°. When the phase lag is larger than 90°, the leading
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edge points outward when the maximum and minimum heave positions are reached. In other words,

a negative pitch angle is observed when the maximum heave position is reached, and vice versa. The

opposite behavior is observed when the phase lag is smaller than 90°. This is shown schematically in

Fig. 3.5 and it can also be observed in Fig. 3.6, which presents the limit-cycle oscillations of typical

operating points in three different regimes characterized with different time-averaged phase lag values.

Figure 3.5: Typical foil motions as a function of time for different phase lag values between the heave
and the pitch motions. The dashed line indicates the equilibrium position in heave (h = 0).

(a) Green regime.
( f ∗ = 0.20; S∗ = 0.65; φ = 95.4°)

(b) Black regime.
( f ∗ = 0.16; S∗ = 0.70; φ = 32.2°)

(c) Red regime.
( f ∗ = 0.24; S∗ = 0.75; φ = 140.1°)

Figure 3.6: Limit-cycle oscillations for three of the five different regimes of motion. The motions
follow counterclockwise trajectories.

Even though our main interest in this investigation is directed toward the energy-extraction regime

(green regime), the four other regimes are also described in the following sections in order to better

highlight the distinctive features of the energy-extraction regime. Lastly, note that for all the operating

points considered in this study, the dominant frequency component of the passive pitch motion is
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always synchronized with the frequency of the prescribed heave motion. The symbol f ∗ therefore

refers to the frequency of both motions.

Green regime (energy extraction)

As already mentioned, the pitch amplitude is almost constant from cycles to cycles in the green regime

(operating points denoted with green dots), except during the initial transient period. It is worth

recalling that the pitch motion is not prescribed and it rather solely results from the interaction of the

foil with the flow and its elastic supports (see Eq. 3.1). This “well-behaved” pitch motion has therefore

been obtained passively.

Fig. 3.4a shows that the pitch amplitude increases with an increase of the dimensionless static moment

(S∗) in the green regime. This behavior will be explained further below. Regarding the phase lag

between the heave and the pitch motions, it is found to remain relatively close to 90° for all the

operating points in this regime. More specifically, it ranges between approximately 90° and 105°.

Regarding the efficiency, it increases as S∗ increases (see Fig. 3.3) and the largest efficiencies are

observed for the operating points with the largest dimensionless static moment values reached in this

regime. These best efficiency points are obtained with intermediate prescribed frequencies.

More precisely, a maximum efficiency of 45.4% is achieved when f ∗ = 0.20 and S∗ = 0.65. This

is comparable to the best efficiencies reported for the fully-constrained turbine technology (Kinsey

and Dumas, 2014; Xiao and Zhu, 2014), therefore confirming the great potential of this semi-passive

turbine concept with a prescribed heave motion and a passive pitch motion. In the parametric study

conducted by Kinsey and Dumas (2014) on the fully-constrained turbine, a maximum efficiency of

43.3% was obtained by respectively prescribing the reduced frequency, the pitch amplitude and the

phase lag values to 0.18, 80° and 90° to a foil having its pitch axis located at the third-chord point

(xp/c = 1/3). In this study, for which xp/c = 1/4, the best operating point has a pitch amplitude of

84.7°, a phase lag of 95.4°, and it has been passively obtained with a prescribed reduced frequency of

0.20.

The efficiency alone is not sufficient to fully characterize the performance of a flapping-foil turbine

because it does not allow directly comparing the amount of power extracted by two operating points

with different overall extents of the foil motion (d). The time-averaged power coefficient at the gener-

ator (CPgen) is useful in that respect since it normalizes the power with a common length scale, namely

the chord length, instead of the overall extent of the foil motion in heave (d), which varies from an

operating point to another. Contours of this metric are presented in Fig. 3.7.

Recalling that the heave amplitude (H0) is constrained to one chord length for all the cases investigated

in this work, the differences between the values of d for the various simulated operating points is solely

due to the differences in pitch amplitude. The variations of d therefore remain relatively small between

the different operating points in the energy-extraction regime with a minimum value of 2.15, when

f ∗= 0.10 and S∗= 0.20, and a maximum value of 2.71, when f ∗= 0.18 and S∗= 0.70. Consequently,
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the topology is similar for the contours of the time-averaged efficiency (η) and the time-averaged

power coefficient at the generator (CPgen). The maximum CPgen of 1.21 is not observed at the maximum

efficiency point but rather when f ∗ = 0.20 and S∗ = 0.75. Nonetheless, this operating point is very

close to the maximum efficiency point and the value of CPgen at the maximum efficiency point is very

close to the maximum CPgen , with a value of 1.19.

Figure 3.7: Contours of the time-averaged power coefficient available at the generator. The white
areas indicate negative values.

One can notice that a positive static moment is required in order to obtain the high efficiencies reported

above. This means that the center of mass has to be located downstream of the pitch axis (see Eq. 3.2

and Fig. 3.1). In order to understand why this is needed, it is insightful to analyze the heave and

pitch contributions to the time-averaged power coefficient at the generator (CPgen), namely CPh and

CPθ
. As described in Sec. 3.4.3, the power coefficient at the generator is equal to the sum of the heave

and pitch contributions when the motions are periodic (see Eq. 3.30), which is the case for all the

simulated operating points in the energy-extraction regime. These two contributions are shown in

Fig. 3.8.

It is found that the time-averaged pitch power coefficient (CPθ
) is negative for all the operating points

considered in this study. This indicates that the pitch motion never extracts energy from the flow in

the mean but rather provides energy to the flow, hence acting as an energy sink in Eq. 3.16. This

in turn means that when an operating point has a positive efficiency, it must come from the heave

contribution. Indeed, the time-averaged heave power coefficient (CPh) is positive throughout the green

regime.

Since D∗
θ

has been set to zero and because the motions are periodic in the energy-extraction regime,

Eq. 3.16 simplifies to Eq. 3.28. This indicates that the power transfer from the foil pitch motion to

the flow (CPθ
) can only be balanced by the power transfer from the heave motion to the pitch motion
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(a) Heave power coefficient. (b) Pitch power coefficient.

Figure 3.8: Contours of the time-averaged heave and pitch power coefficients.

through the inertial coupling term involving the static moment (CPS,θ ). In other words, CPS,θ must

be positive to balance the negative value of CPθ
. Considering the prescribed heave motions and the

passive pitch motions that have been obtained in the energy-extraction regime, this can only happen if

the static moment is positive, thus implying that the center of mass has to be located downstream of

the pitch axis. It is also worth mentioning that Eq. 3.28 implies that when S∗ = 0, and thus CPS,θ = 0

(see Eq. 3.24), CPθ
must also be equal to zero.

CPθ
is also usually negative in the case of fully-constrained flapping-foil turbines with good levels

of performance (Campobasso et al., 2013; Kinsey and Dumas, 2014; Kim et al., 2017). With the

fully-constrained concept, a power transfer from the foil pitch motion to the flow (CPθ
< 0) can either

be balanced by the presence of some rigid links that mechanically couple both degrees of freedom

together, thereby allowing a transfer of power from the heave motion to the pitch motion to take place,

or by the presence of an actuator in pitch, which would provide the necessary power. However, neither

of these two possibilities is relevant in the case of the semi-passive turbine concept investigated in this

work, thus leaving the static moment contribution as the sole mechanism to achieve a power balance

for the pitch motion when CPθ
is negative.

It is still possible to extract energy from the flow with a positive value of CPθ
. This is the case, for

example, for the optimal operating point reported by Veilleux and Dumas (2017) with a fully-passive

flapping-foil turbine having an efficiency of 29.1%. Under such circumstances, no transfer of power

from the heave motion to the pitch motion is required. As a result, the dimensionless static moment can

be equal to zero or even be negative. In fact, the optimal operating point found by Veilleux and Dumas

(2017) had a dimensionless static moment of −0.029. Consequently, some of the power extracted

via the pitch motion was transferred from the pitch motion to the heave motion through the inertial
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coupling terms, but most of it was dissipated due to the presence of viscous friction in pitch. Veilleux

and Dumas (2017) showed that the positive value of CPθ
was attributed to the formation of leading-

edge vortices (LEVs) and their interaction with the foil motions. Indeed, the suction associated to

the presence of LEVs was found to generate a moment about the pitch axis in the same direction as

the pitch velocity, hence positively contributing to CPθ
. The same observation was made by Zhu and

Peng (2009) for a semi-passive flapping-foil turbine with a passive heave motion and a prescribed

pitch motion. Conversely, Kinsey and Dumas (2014) showed that CPθ
was always negative when no

LEVs were formed for a fully-constrained flapping-foil turbine undergoing sinusoidal heave and pitch

motions. In the literature, the presence of LEVs has been widely recognized as being responsible for

an enhanced performance (Young et al., 2014; Xiao and Zhu, 2014). However, most of the studies

that led to this conclusion were conducted at low Reynolds numbers of the order of 1 000. At a much

larger Reynolds number of 500 000, Kinsey and Dumas (2014) showed that the best efficiencies were

rather obtained without LEVs. Indeed, they obtained a maximum efficiency of 43.3% without LEVs

and a maximum efficiency of 35.1% with LEVs. This suggests that LEVs should be avoided at large

Reynolds numbers to maximize the energy extraction. Negative values of CPθ
are therefore expected,

which means that positive values of static moment are required.

In the present work, no leading-edge vortices are observed for any of the operating points in the

energy-extraction regime. For example, the time evolution of the vorticity field for the best efficiency

point is presented in Fig. 3.9. Moreover, the passive pitch motions are always very similar to sine

waves in this regime. The present study therefore demonstrates that it is possible to passively obtain a

pitch motion that is very close to the prescribed pitch motion characterizing the best fully-constrained

flapping-foil turbine case reported by Kinsey and Dumas (2014) by adequately positioning the center

of mass downstream of the pitch axis (S∗ > 0) in order to provide the power required by the pitch

motion (CPθ
< 0). It should thus not be surprising to observe that the semi-passive and the fully-

constrained flapping-foil turbines can achieve similar efficiencies.

The balance between the power transferred from the heave motion to the pitch motion (CPS,θ ) and the

power transferred to the flow via the foil pitch motion (CPθ
) explains why the pitch amplitude increases

with the dimensionless static moment (see Fig. 3.4a). Since the pitch motions are always similar to

sine waves with relatively large amplitudes, the terms θ̇ and θ̇ cos(θ), which respectively appear in

the definitions of CPθ
and CPS,θ , are both roughly proportional to the pitch amplitude. Considering that

the phase lag remains relatively constant throughout the energy-extraction regime, this means that an

increase of the dimensionless static moment or the amplitude of the heave acceleration (ḧ) has to be

balanced by an increase of the amplitude of the moment (M) generated by the fluid flow (see Eqs. 3.22

and 3.24). In this context and for a given prescribed frequency ( f ∗), and thus a given heave motion,

the amplitude of M can only increase if the pitch amplitude increases. Consequently, an increase of

S∗ results in an increase of CPS,θ and therefore allows for more negative values of CPθ
to occur, which

in turn happens when the pitch amplitude increases.

CPS,θ also increases with the reduced frequency ( f ∗) because ḧ is proportional to the square of the
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Figure 3.9: Time evolution of the dimensionless vorticity field (ω c/U∞) during one cycle of the semi-
passive turbine operating at its best efficiency point ( f ∗ = 0.20 and S∗ = 0.65).

frequency. The amplitude of M therefore also has to increase with f ∗ to respect the balance between

CPS,θ and CPθ
. Such an increase of the moment with the reduced frequency would occur even if the

pitch amplitude would remain constant due to larger pitch and heave velocities in the foil reference

frame for larger f ∗. Nevertheless, the pitch amplitude is still found to increase with f ∗.

The time-averaged heave power coefficient also increases with the reduced frequency, as observed in

Fig. 3.8a. The fact that it becomes more positive while CPθ
becomes more negative as the frequency
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is increased results in a power coefficient at the generator and an efficiency that are less sensitive to

the reduced frequency than CPh and CPθ
, as long as we remain in the energy-extraction regime.

Blue regime (propulsion)

The motions in the blue regime (operating points denoted with blue diamonds) are similar to those in

the green regime. Indeed, they are periodic (see Fig. 3.2b), no LEVs are formed and the phase lag

between the heave and the pitch motions is still around 90°, ranging between 80° and 100°, as observed

in Fig. 3.4b. The main difference between these two regimes is the pitch amplitude. More specifically,

Fig. 3.4a shows that the pitch amplitude continues to decrease when switching from the green regime

to the blue regime as the dimensionless static moment decreases down to zero. The consequence is that

the energy-extraction regime switches to a propulsion regime. Indeed, Fig. 3.10 presents the contours

of the time-averaged streamwise force coefficient (CFx) and shows that all the operating points are

characterized by a positive streamwise force coefficient (CFx > 0) except for most of the operating

points in the blue regime, which rather have a negative streamwise coefficient (CFx < 0) or, in other

words, a positive thrust coefficient. Consequently, these operating points require energy on a time-

averaged basis instead of generating some (η < 0 in Fig. 3.3). The cases with f ∗ = 0.26 and S∗ = 0.20

and with f ∗ = 0.30 and S∗ = 0.20 are two exceptions for which the streamwise force coefficient is

positive, but the efficiency is negative.

Figure 3.10: Contours of the time-averaged streamwise force coefficient.

Since the motions in the blue regime are periodic like in the green regime, the power coefficient at the

generator can still be expressed as the sum of the heave and pitch power coefficients (see Eq. 3.30).

As mentioned in the previous section, the time-averaged pitch power coefficient (CPθ
) is negative

throughout the current parametric study, thereby leaving the time-averaged heave power coefficient

(CPh) as the sole possible contributor to a positive energy extraction. In fact, it is found that CPh

changes sign between the green and the blue regimes. This is attributed to a change of sign of the
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heave force resulting from a change of sign of the effective angle of attack as the pitch amplitude

decreases below a specific threshold, which depends on the frequency of the motions (Kinsey and

Dumas, 2008). For example, time evolutions of the heave power coefficient (CPh), the dimensionless

heave velocity (ḣ∗) and the heave force coefficient (CFy) are shown over one cycle for an operating

point in the green regime and another one in the blue regime in Fig. 3.11. Note that the heave power

coefficient can be expressed as the product of the heave force coefficient with the dimensionless heave

velocity. This figure shows that the heave force coefficient is in phase with the dimensionless heave

velocity in the green regime (see Fig. 3.11a), while the two are about 180° out of phase in the blue

regime (see Fig. 3.11b) due to a change of sign of CFy . More information on the relation between the

pitch amplitude and the transition between an energy-extraction regime and a propulsion regime is

given in the works of Xiao and Zhu (2014) and Kinsey and Dumas (2008).

Lastly, it is worth noting that Mackowski and Williamson (2017) used their cyber-physical facility to

study a flapping foil with a prescribed pitch motion and a passive heave motion and they obtained

their best propulsion performances with the center of mass upstream of the pitch axis, i.e., a negative

static moment.

(a) Green regime ( f ∗ = 0.20; S∗ = 0.65). (b) Blue regime ( f ∗ = 0.26; S∗ = 0).

Figure 3.11: Time evolutions of the heave power coefficient (CPh), the dimensionless heave velocity
(ḣ∗) and the heave force coefficient (CFy) over one cycle for an operating point in the green regime
and another one in the blue regime. The instant t/T = 0 corresponds to a moment at which h = 0 and
ḣ > 0.

Black regime

The black regime (operating points denoted with black squares) is significantly different. During the

initial transient period, the operating points in this regime behave like those in the green regime. The

phase lag is initially around 90° and the pitch amplitude grows from cycles to cycles. For the operating

points in the green regime, Fig. 3.12a shows that the moment coefficient generated by the flow about

the pitch axis (CM) is negative and maximum (in absolute value) when the maximum positive pitch

velocity is reached, i.e., when the foil is at its maximum (positive) position in heave and θ = 0,

considering a phase lag of 90°. The opposite occurs around the minimum (negative) heave position.
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Fig. 3.12b shows that this behavior is also observed for the operating points in the black regime

at the beginning of the simulations. However, as the pitch amplitude keeps growing, the boundary

layers eventually separate near the leading edge and large leading-edge vortices are formed and alter

the hydrodynamic moment about the pitch axis, as shown in Fig. 3.13. They are formed before the

instant at which the maximum pitch velocity is reached and they have the time to travel past the

pitch axis before this specific instant due to the relatively low reduced frequency characterizing the

operating points in this regime. As a result, the suction associated to the LEVs generates a positive

contribution to the moment about the pitch axis when the pitch velocity is positive and maximum, and

vice versa. For instance, the LEV that is observed at the instant t/T = 5.83 in Fig. 3.13a generates a

negative contribution to the moment about the pitch axis when the pitch velocity is negative, as seen

in Fig. 3.13b.

As already mentioned, the same phenomenon was also observed by Veilleux and Dumas (2017) and

Zhu and Peng (2009). This modification of the hydrodynamic moment about the pitch axis then alters

the phase lag and the pitch amplitude, which both quickly drop to smaller values for the subsequent

foil oscillations. Following this series of events, a new limit-cycle oscillation regime is reached,

which is characterized by moderate pitch amplitudes, phase lag values below 90° and the formation

of LEVs. The occurrence of the boundary layers separation and the associated formation of LEVs are

responsible for the slight variations observed for the efficiency, pitch amplitude and phase lag values

from cycles to cycles (e.g., see Figs. 3.2c and 3.6b). Lastly, none of the operating points in the black

regime extracts energy on a time-averaged basis.

(a) Green regime ( f ∗ = 0.20; S∗ = 0.65). (b) Black regime ( f ∗ = 0.16; S∗ = 0.70).

Figure 3.12: Time evolutions of the dimensionless pitch velocity (θ̇ ∗) and the moment coefficient
(CM) over the six first foil oscillations for an operating point in the green regime and another one in
the black regime.

Orange regime

Even though the time evolution of the pitch angle appears to be very different in the orange regime

(operating points denoted with orange stars) than in the black regime (see Figs. 3.2c and 3.2d), these

two regimes are actually very similar. Indeed, the series of events leading to a new limit-cycle oscil-

lation regime that have been described in the previous section also happens in the case of the orange
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(a) Snapshots of the dimensionless vorticity field (ω c/U∞) at some specific instants.

(b) Time evolutions of the dimensionless pitch velocity (θ̇∗) and the moment coefficient
(CM) during the 6th foil oscillation. The vertical dashed lines indicate the instant at which the
different snapshots presented in Fig. 3.13a have been taken.

Figure 3.13: Influence of the formation of LEVs on the moment coefficient for a representative op-
erating point in the black regime ( f ∗ = 0.16 and S∗ = 0.70). The instant t/T = 0 corresponds to the
beginning of the simulation.

regime. Strong LEVs are formed and affect the moment about the pitch axis, as observed in Fig. 3.13.

This results in sudden drops of the pitch amplitude and the phase lag between the heave and the pitch

motions. The difference is that the drop in pitch amplitude is so important that the boundary layers

eventually reattach. Following that, the foil starts to behave as in the transient period of the green

regime again and the pitch amplitude restarts to grow until the boundary layers separate and LEVs are

formed once more. This process is repeated endlessly.

Since the operating points in the orange regime alternate between the motion characteristics specific

to the green and the black regimes, it is not surprising that the efficiency is found to oscillate between

positive and negative values. Indeed, the efficiency can reach values as high as 40% for a few con-

secutive cycles and then quickly drop to values as low as -90% before becoming positive again. As

mentioned earlier, such large variations make this regime inappropriate for a turbine application.
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Red regime

The last regime, the red one (operating points denoted with red triangles), is also resulting from

the formation of LEVs. The initial transient period is similar to the one in the green regime, like

for the black and orange regimes. Again, the growth of the pitch amplitude eventually leads to the

separation of the boundary layers near the leading edge and the formation of strong LEVs, which

alter the moment generated by the fluid flow about the pitch axis. The first difference is that the

formation of LEVs is delayed because the prescribed reduced frequencies are larger in this regime,

hence resulting in smaller effective angles of attack for given pitch amplitudes (Kinsey and Dumas,

2014). The larger reduced frequencies also result in faster pitch motions with respect to the speed

at which the LEVs travel downstream. Consequently, the LEVs do not have the time to travel past

the pitch axis before the maximum pitch velocity is reached, unlike what happens for the black and

orange regimes. Instead of generating a positive contribution to the moment about the pitch axis when

the pitch velocity is positive and maximum, the LEVs rather result in a negative moment contribution.

This strong dependence of the moment coefficient to the time at which the LEVs travel past the pitch

axis location as already been pointed out by Young et al. (2013, 2014). The outcome in the case of the

operating points in the red regime is that the growth of the pitch amplitude is extended and the phase

lag increases and exceeds 90° until a permanent limit-cycle oscillation regime is finally reached. More

than 50 complete foil oscillations can be needed before reaching these limit-cycle oscillations, which

is much more than for all the other regimes of motion presented in the previous sections. Strong LEVs

are still formed during this permanent response, which results in variations of the efficiency, the pitch

amplitude and the phase lag from cycles to cycles. Furthermore, the wake is not convected as fast with

respect to the foil motions in the red regime than in the black regime due to the fact that the reduced

frequencies are larger. The stronger interaction occurring between the flapping foil and its wake in the

red regime results in larger variations of the motions from cycles to cycles than in the black regime.

The difference between the black and the red regimes is subtle as it is only related to a different timing

between the pitch motion and the formation and convection of LEVs. The operating point character-

ized with f ∗ = 0.22 and S∗ = 0.80 has even behaved like the operating points in the red regime during

the first 50 cycles before finally switching to a limit-cycle oscillation regime characterizing the black

regime.

Lastly, a summary of the characteristics of each regime is given in Table 3.1.

Boundaries between the different regimes of motion

One can notice that some of the best operating points lie on the edge of the energy-extraction regime

(see Fig. 3.3). This means that a small change in the operating conditions of these points could lead to

a considerable drop in performance. For example, such a consequence could happen if the freestream

flow was perturbed, hence affecting the reduced frequency. The reason for this very abrupt drop in

performance is due to the sudden nature of separation.
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Table 3.1: Summary of the characteristics describing each regime of motion.

Regime η Θ0 φ

Green > 0 40° to 90° 90° to 105°

Blue < 0 15° to 60° 80° to 100°

Black < 0 55° to 70° 30° to 40°

Orange Alternate between the green and black regimes

Red < 0 105° to 110° 115° to 155°

As mentioned before, no leading-edge vortices (LEVs) are observed in this study for all the operating

points in the energy-extraction regime. Conversely, LEVs are formed for all the operating points in

the black, the orange and the red regimes. Extra care should therefore be taken when selecting an

operating point since the exact position of the boundaries between the green regime and the black,

orange and red regimes is expected to be sensitive to the specific characteristics of a given flow. More

specifically, every aspect of the flow that can affect the robustness of the boundary layers, such as the

Reynolds number and the turbulence level in the freestream flow, for example, is expected to affect the

locations of these boundaries. On the other hand, the performances achieved by the operating points

in the green regime are not expected to be significantly affected by these aspects.

This sensitivity of the semi-passive turbine performance to the occurrence of separation is more pro-

nounced than in the case of the fully-constrained turbine concept. A decrease of performance has also

been reported for such turbines when LEVs are formed, but not a sharp drop (Kinsey and Dumas,

2014). This is because the forces acting on the foil are affected by the LEVs, but not the motions since

they are prescribed rather than being passive. In the case of the semi-passive turbine studied in the

current work, not only the forces are affected, but also the motions.

3.5.2 Role of the electric generator

It is evident that the operating points requiring energy on a time-averaged basis to sustain the foil

motions (η < 0) require the electric generator to act as an actuator. However, the operating points in

the energy-extraction regime can also require that the electric generator acts as an actuator at some

instants during the foil oscillations. In other words, this means that even though the power coefficient

at the generator is positive on a cycle-averaged basis (〈CPgen〉 > 0), it can become negative at some

instants during one cycle. In order to explain this point, an instantaneous version of Eq. 3.15 is

analyzed:

CPh +CPmh
+CPS,h +CPDh

=CPgen . (3.38)
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If no friction is considered in heave, Dh = 0 and thus CPDh
= 0. However, CPmh

has to be considered

since it only becomes equal to zero on a cycle-averaged basis2. The best efficiency point ( f ∗ = 0.20

and S∗ = 0.65) is selected for the analysis and an arbitrary value of 1 is considered for mh. The

resulting values of CPmh
along with the values of the other terms appearing in Eq. 3.38 are shown over

one cycle in Fig. 3.14. The term CPDh
is not shown since it is equal to zero and the terms CPh and CPS,h

are combined together.

Figure 3.14: Time evolutions of the instantaneous power coefficient at the generator (CPgen) and its
contributions (see Eq. 3.38) over one cycle of the best efficiency point ( f ∗ = 0.20 and S∗ = 0.65). No
friction is considered in heave (Dh = 0) and an arbitrary value of 1 is considered for mh.

This figure shows that the term CPmh
oscillates between positive and negative values with a cycle-

averaged value of zero, as expected. This means that the value of mh does not affect the cycle-averaged

power coefficient at the generator, but it affects its instantaneous value. In order to avoid requiring

to use the electric generator as an actuator, CPgen would need to remain positive throughout the cycle.

However, it is found to be negative at different instants when mh = 1. Since this happens both at

moments when CPmh
is positive and negative, there is no value of mh that would allow CPgen to always

remain positive. Nevertheless, this is not problematic because a typical electric generator can act as

an actuator. Indeed, fully-constrained flapping-foil turbines also require the electric generator to act

as an actuator at some instants during the foil oscillations, such as in the case of the prototype that has

been designed and tested by Kinsey et al. (2011).

The semi-passive turbine concept proposed in this study also requires some power to reach the limit-

cycle oscillations that characterize the energy-extraction regime. Indeed, the pitch amplitude starts

from zero and has to pass through small pitch amplitudes that characterize the propulsion regime

(blue regime) before reaching the larger pitch amplitudes characterizing the energy-extraction regime

(green regime). This means that the semi-passive turbine concept is not self-starting.

2Considering that the heave motion is periodic
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3.6 Conclusion

Two-dimensional URANS simulations have been conducted to investigate the potential of a novel

semi-passive flapping-foil turbine with a prescribed heave motion and a passive pitch motion. Through-

out the parametric study, the Reynolds number has been set to 3.9×106 based on the chord length, the

pitch axis has been located at the quarter-chord point (xp/c = 0.25), the dimensionless heave ampli-

tude (H0/c), the dimensionless moment of inertia about the pitch axis (I∗
θ

) and the dimensionless pitch

damping coefficient (D∗
θ

) have been respectively set to 1, 2 and 0, and the dimensionless pitch spring

stiffness coefficient (k∗
θ

) has been chosen so that the pitch natural frequency matches the frequency of

the prescribed heave motion.

By varying the reduced frequency and the dimensionless static moment (S∗), five different regimes

of motion have been observed based on the time-averaged efficiency (η), pitch amplitude (Θ0) and

phase lag (φ ) values as well as the regularity of the motions. Among these different responses, one

corresponds to an energy-extraction regime and is characterized by periodic limit-cycle oscillations

with large pitch amplitudes and no formation of LEVs. It has been shown that the center of mass

needs to be located downstream of the pitch axis for such motions to occur in order to balance the

power required to sustain the pitch motion with a transfer of power from the heave motion to the pitch

motion via the inertial coupling terms in the equations of motion. In practice, this could be achieved

with the use of an asymmetric flywheel having the required mass distribution.

A maximum efficiency of 45.4% has been obtained with a pitch amplitude of 84.7° and a phase lag

of 95.4° when f ∗ = 0.20 and S∗ = 0.65. This performance confirms the great potential of the heave-

prescribed semi-passive flapping-foil turbine since this efficiency is of the same order as the best

efficiencies reported for the fully-constrained flapping-foil turbine concept (Kinsey and Dumas, 2014;

Xiao and Zhu, 2014), but it is obtained here with a simpler device in terms of the structural design.

Even though a considerable amount of energy can be extracted from the flow on a time-averaged

basis, the electric generator needs to act as an actuator at some instants during the foil oscillations

when limit-cycle oscillations are reached as well as to start the device.

Finally, it is worth mentioning that several important structural parameters (see Table 3.1) have not

been varied in this first investigation of the semi-passive flapping-foil turbine concept with a prescribed

heave motion and a passive pitch motion. Future works are therefore needed in that regard.
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Appendix

3.A Fluid-solid coupling algorithm in pseudocode

Beginning of the nth time step

1. Computation of the prescribed heave position, velocity and acceleration at the current time step (hn,

ḣn, ḧn);

2. Execution of the solid solver for the ith outer loop:

IF i = 1 (first outer loop) THEN

a. Initial guess for the pitch angle at the current time step (θ n) using the explicit second-order

Adams-Bashforth scheme:

θ
n
1 = θ

n−1 +
∆t
2
(
3θ̇

n−1− θ̇
n−2) ; (3.39)

ELSE IF i = 2 (second outer loop) THEN

a. Initial guess for the Jacobian:

Jn
2 = Jn−1 ; (3.40)

b. Computation of the new pitch angle:

θ
n
2 = θ

n
1 −

Rθ
n
1

Jn
2

; (3.41)

ELSE IF i > 2 (subsequent outer loops) THEN

a. Computation of the Jacobian:

Jn
i =

Rθ
n
i−1−Rθ

n
i−2

θ n
i−1−θ n

i−2
; (3.42)

b. Computation of the new pitch angle:

θ
n
i = θ

n
i−1−

Rθ
n
i−1

Jn
i

; (3.43)
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END IF

3. Foil rotation according to the updated pitch angle (θ n
i );

4. Check if the solid convergence criterion is met:

IF
( |θ n

i −θ n
i−1|

π/2
< ε AND i > 2

)
THEN

a. Execution of the fluid solver: perform fluid iterations until the fluid residuals convergence

criteria are met;

b. Incrementation of the time step and return to step 1.

ELSE THEN

a. Execution of the fluid solver: perform fluid iterations until the value of the moment with the

updated pitch angle (Mn
i ) is converged;

b. Computation of θ̇ n
i and θ̈ n

i using the updated pitch angle θ n
i with Eqs. 3.9 and 3.10;

c. Computation of the residual:

Rθ
n
i = Iθ θ̈

n
i +S ḧn cos(θ n

i )+Dθ θ̇
n
i + kθ θ

n
i −Mn

i ; (3.44)

d. Incrementation of the outer loop and return to step 2.

END IF
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Chapter 4

Paper III:
Free-pitching flapping-foil turbines with
an imposed sinusoidal heave motion

4.1 Résumé

Cette étude porte sur la dynamique d’une aile oscillante semi-passive, pour laquelle le mouvement de

pilonnement est contraint de suivre un mouvement sinusoïdal tandis que le mouvement de tangage est

passif, dans le but d’extraire l’énergie d’un écoulement de fluide auquel elle fait face. Cela implique

que le mouvement de pilonnement est contraint mécaniquement alors que des supports élastiques

sont utilisés en tangage. Le mouvement de tangage découle donc the l’interaction de l’aile avec

l’écoulement et ses supports élastiques, c’est-à-dire des ressorts et des amortisseurs. Des simulations

numériques ont été réalisées à un nombre de Reynolds de 3.9×106 basé sur la corde. Des efficacités

positives et des mouvements de tangage périodiques de grande amplitude sont obtenus lorsque la

fréquence du mouvement de tangage se synchronise à celle du mouvement de pilonnement. Les

conditions pour lesquelles cela se produit sont examinées. Les résultats de cette étude démontrent

qu’une performance optimale, sur le plan de la génération de puissance, peut être maintenue sur une

large plage de moments d’inertie et de raideur en tangage, à condition que ces paramètres soient

ajustés correctement. Cela peut être réalisé en combinant ces deux paramètres structuraux en un seul

paramètre effectif: la raideur effective en tangage. Par ailleurs, quatre positions différentes du point

de pivot sont testées, allant du bord d’attaque au trois-quart de corde. En ajustant adéquatement les

paramètres structuraux influençant la dynamique de l’aile, des efficacités supérieures à 40% ont été

atteintes pour chaque position du point de pivot, avec un maximum de 46% obtenu lorsque le point

de pivot est situé au quart de corde. Les résultats de cette étude révèle qu’un déphasage d’environ

90° entre les mouvements de pilonnement et de tangage n’est optimal seulement lorsque le point de

pivot est situé au quart de corde. Il doit plutôt être supérieur à 90° lorsque le point de pivot est situé

en amont du quart de corde et inférieur à 90° lorsque le point de pivot est plutôt situé en aval de cette
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position.

4.2 Abstract

This work investigates the dynamics of a semi-passive flapping-foil with a prescribed sinusoidal heave

motion and a passive pitch motion with the objective of extracting energy from an oncoming fluid

flow. This implies that the heave motion is mechanically driven while the foil is elastically supported

in pitch. The pitch motion therefore results from the interaction of the foil with the flow and its elastic

supports, namely springs and dampers. Numerical simulations have been conducted at a Reynolds

number of 3.9× 106 based on the chord length. Positive efficiencies and periodic pitch motions of

large amplitude are obtained when the frequency of the pitch motion synchronizes itself to the fre-

quency of the prescribed heave motion. The conditions under which it happens are explored. The re-

sults of this study demonstrate that an optimal power-generation performance can be maintained over

large variations of the moment of inertia and pitch stiffness, provided that they are properly scaled.

This is achieved by combining these two structural parameters into a single effective parameter: the

effective pitch stiffness coefficient. Moreover, four different positions of the pitch axis are considered,

ranging from the leading edge to the three-quarter-chord point. By adjusting the governing structural

parameters adequately, efficiencies exceeding 40% can be achieved with all four positions of the pitch

axis, with a maximum of 46.0% obtained when the pitch axis is located at the quarter-chord point. It

is found that a phase lag near 90° between the heave and the pitch motions is only optimal with this

specific position of the pitch axis. It needs to be larger than 90° when the pitch axis is located upstream

of the quarter-chord point and smaller than 90° when it is located downstream of this position.

4.3 Introduction

Typically, the heave (translational) and the pitch (rotational) motions of flapping-foil turbines are con-

strained to be two pure sinusoids with a specific phase lag between them (McKinney and DeLaurier,

1981; Kinsey and Dumas, 2008; Kinsey et al., 2011; Kinsey and Dumas, 2014; Zhu, 2011; Kim et al.,

2017). By adequately selecting the values of the kinematic parameters describing the motions of such

a turbine concept, which we refer to as a fully-constrained flapping-foil turbine, a considerable amount

of energy can be extracted from an oncoming fluid flow, with efficiencies approaching 45% (Kinsey

and Dumas, 2014). More specifically, and according to the comprehensive reviews of this technology

performed by Young et al. (2014) and by Xiao and Zhu (2014), an optimal performance is achieved

when the reduced frequency of the motions is between 0.10 and 0.25, the heave amplitude is of the

order of one chord length, the pitch amplitude is between 70° and 95° and the phase lag between

the heave and the pitch motions is around 90°. In addition to these kinematic parameters, Davids

(1999) showed that the position of the pitch axis, or pivot point, also plays a crucial role regarding

the flapping-foil turbine performance. He found that the optimal phase lag between the heave and

the pitch motions depends on the pitch axis location. Kinsey and Dumas (2008) also showed that the
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position of the pitch axis significantly affects the timing between the hydrodynamic force component

acting on the foil in the heave direction and the heave velocity, which is critical regarding the energy

extraction. Young et al. (2013) and Young et al. (2014) pointed out that, when a leading-edge vortex

(LEV) is formed, the time evolution of the hydrodynamic moment about the pitch axis is greatly in-

fluenced by the time at which the LEV travels past the pitch axis location during the foil oscillation.

As a result, the power transfer occurring between the foil and the flow that is attributed to the pitch

motion is highly dependent on the pitch axis location.

Design simplicity is a critical factor for maximizing the reliability of turbines while also minimizing

their manufacturing and maintenance costs. In this context, the use of passive, or unconstrained,

motions has recently started to draw a lot of interest for the design of flapping-foil turbines. This

simplification of the turbine design allows getting rid of the complex mechanisms that are typically

used to prescribe the heave and the pitch motions of such turbines (McKinney and DeLaurier, 1981;

Kinsey et al., 2011; Kim et al., 2017; Xu et al., 2017). Several alternatives, with different degrees of

complexity, are possible by constraining or not each of the parameters describing the turbine motions,

namely the motion shapes and amplitudes in heave and in pitch, the frequency in heave and in pitch and

the phase lag between both degrees of freedom. At one end of the spectrum, all the motion parameters

can be constrained, hence leading to what we refer to as a fully-constrained turbine (McKinney and

DeLaurier, 1981; Kinsey and Dumas, 2008; Kinsey et al., 2011; Kinsey and Dumas, 2014; Zhu, 2011;

Kim et al., 2017; Xu et al., 2017). On the other hand, all the motion parameters can be left free by

elastically supporting the foil in heave and in pitch with springs and dampers to obtain a fully-passive

flapping-foil turbine (Peng and Zhu, 2009; Zhu, 2012; Veilleux and Dumas, 2017; Wang et al., 2017;

Boudreau et al., 2018). While the fully-passive concept is simpler in terms of the structural design

than its fully-constrained counterpart, the best efficiencies that have been reported in the literature for

this technology remain smaller as they are of the order of 30% (Veilleux and Dumas, 2017; Wang

et al., 2017; Boudreau et al., 2018).

Another intermediate option consists in prescribing only one of the two motions while letting the

other free. The most popular option is to prescribe the pitch motion and to elastically support the

foil in heave (Abiru and Yoshitake, 2011, 2012; Chen et al., 2018; Deng et al., 2015; Derakhshandeh

et al., 2016; Griffith et al., 2016; Huxham et al., 2012; Shimizu et al., 2008; Sitorus et al., 2015; Teng

et al., 2016; Wu et al., 2014, 2015; Zhan et al., 2017; Zhu et al., 2009; Zhu and Peng, 2009). As for

the fully-passive concept, efficiencies of the order of 30% have been reported for this semi-passive

concept. Boudreau et al. (2019) proposed the other alternative more recently, with a prescribed heave

motion and a passive pitch motion. They reported a maximum efficiency of 45.4%, thereby competing

with the best fully-constrained turbines (Kinsey and Dumas, 2014). This performance is reached when

the reduced frequency of the prescribed heave motion is set to 0.20, while the pitch amplitude and the

phase lag between the heave and the pitch motions, both passively resulting from the interaction of

the foil with its elastic supports and the flow, are respectively equal to 84.7° and 95.4°.

When passive motions are considered, the number of governing parameters is typically larger than in
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the case of fully-constrained turbines. For example, both Veilleux (2014) and Boudreau et al. (2018)

investigated the sensitivity of the fully-passive flapping-foil turbine dynamics to seven different pa-

rameters with a fixed pitch axis location. Each of these parameters were varied while all the remaining

parameters were kept constant. Among their findings, they showed that the turbine performance is es-

pecially sensitive to the heave and pitch stiffness coefficients due to their role in the timing between

the heave and the pitch motions.

Peng and Zhu (2009) observed four completely different types of motion when modifying the position

of the pitch axis of a similar fully-passive flapping-foil turbine, but with a massless foil that is elasti-

cally supported in heave with a damper only (no spring). They found that for a given pitch stiffness

and as the position of the pitch axis is shifted from the leading edge toward the trailing edge, the foil

response is switching from damped motions (the foil remaining steady at its equilibrium position),

periodic motions leading to a net energy extraction from the flow and two different types of irregular

motions. The transition between these different responses is shifted toward the trailing edge as the

pitch stiffness is increased.

The influence of the mass of the foil was studied by Deng et al. (2015) for a semi-passive flapping-foil

turbine with a passive heave motion and a prescribed pitch motion. They varied the ratio between

the density of the foil and the fluid density from 0.125 to 100, while keeping the other structural

parameters constant. They observed a continuous decrease of the efficiency as the density ratio is

increased and attributed this result to a decrease of the phase lag between the heave and the pitch

motions.

Unfortunately, it is difficult to draw general conclusions from the literature due to the large number

of parameters involved and because the different studies available have been conducted with different

flapping-foil turbine designs and around different operating points. Moreover, most of the investiga-

tions performed on flapping-foil turbines have been carried out at low Reynolds numbers of the order

of 1 000 and with operating points for which the formation of leading-edge vortices (LEVs) plays a

important role (Young et al., 2014; Xiao and Zhu, 2014). Conversely, the best efficiencies reported for

the fully-constrained flapping-foil turbine concept and the semi-passive flapping-foil turbine concept,

with a prescribed heave motion and a passive pitch motion, have both been achieved without LEVs

and at a much larger Reynolds numbers, more representative of a full-scale hydrokinetic turbine ap-

plication (Kinsey and Dumas, 2014; Boudreau et al., 2019). It is therefore legitimate to question the

full applicability at large Reynolds numbers of the conclusions drawn from the literature.

Following the study of Boudreau et al. (2019), the present work focuses on the semi-passive turbine

concept with a prescribed heave motion and a passive pitch motion operating at a Reynolds number

of 3.9× 106. The objectives are to find what are the required features to achieve an optimal energy

extraction from the flow and how an optimal performance can be maintained over a broad range of

structural parameter values. For that purpose, we vary some important structural parameters that were

kept constant in our previous investigation of the proposed semi-passive turbine concept. More specif-

113



ically, the effects of the moment of inertia about the pitch axis and the pitch stiffness are investigated.

Instead of only evaluating their impact independently, as is often done, we propose a simple effective

parameter that combines them in an attempt to reduce the number of governing parameters. Moreover,

different pitch axis locations ranging from the leading edge to the three-quarter-chord point are tested.

The dynamics of the resulting semi-passive turbine cases are compared to the dynamics of optimal

fully-constrained turbine cases. Since only a few studies exist on flapping foils with passive pitch

motions, the results of the current study are a valuable addition to our knowledge of the dynamics of

such devices.

The description of the semi-passive turbine concept and the numerical methodology are presented

in Sec. 4.4. The relevance of combining the moment of inertia and the pitch stiffness into a single

effective parameter is analyzed in Secs. 4.5.1 to 4.5.3. The influence of the pitch axis location is then

investigated in Sec. 4.5.4, followed by the effect of varying the frequency of the prescribed heave

motion in Sec. 4.5.5 and a discussion about some practical considerations in Sec. 4.5.6.

4.4 Methodology

4.4.1 Semi-passive turbine concept

A flapping-foil turbine with a prescribed sinusoidal heave motion (h) and a passive pitch motion (θ ),

referred to as a semi-passive turbine, is considered in this work. This is achieved by supporting the

foil in pitch with elastic supports, i.e., springs and dampers. As a result, the pitch motion is governed

by the following equation of motion:

M = Iθ θ̈ +S ḧcos(θ)+Dθ θ̇ + kθ θ , (4.1)

where the superscript (·) denotes a time derivative, M is the hydrodynamic moment acting on the foil

about the pitch axis, Iθ is the moment of inertia about the pitch axis, S is the static moment, Dθ is

the pitch damping coefficient and kθ is the pitch stiffness coefficient (rotational stiffness). The static

moment is given by:

S = mθ xθ , (4.2)

where mθ is the mass of the components undergoing the pitch motion and xθ is the distance between

the center of mass and the pitch axis. This distance is defined positive when the center of mass is

located downstream of the pitch axis, as shown in Fig. 4.1. The foil consists in a rigid NACA0015

profile and its heave motion is prescribed to follow a sinusoidal motion with specific amplitude (H0)

and frequency ( fh):

h = H0 min
(

t
3Th

, 1
)

sin(2π fh t) , (4.3)

where t is time and Th is the period of one foil oscillation in heave (Th = 1/ fh). A linear growth of the

heave amplitude is imposed during the first three foil oscillations in order to provide a smooth initial

condition. Note that the heave position (h) corresponds to the position of the pitch axis.

114



x

Figure 4.1: Schematic of the semi-passive flapping-foil turbine concept with a prescribed heave mo-
tion and a passive pitch motion. Note that the gravitational acceleration acts in the z-direction, hence
not affecting the pitch dynamics.

The turbine technology considered in this study differs from another semi-passive turbine concept that

has been more commonly studied in the literature and for which the heave motion is passive while the

pitch motion is prescribed (Abiru and Yoshitake, 2011, 2012; Chen et al., 2018; Deng et al., 2015;

Derakhshandeh et al., 2016; Griffith et al., 2016; Huxham et al., 2012; Shimizu et al., 2008; Sitorus

et al., 2015; Teng et al., 2016; Wu et al., 2014, 2015; Zhan et al., 2017; Zhu et al., 2009; Zhu and

Peng, 2009). The interest in a semi-passive turbine with a passive pitch motion comes from the fact

that no actuator and no controller are needed to drive the pitch motion, hence resulting in a simple

device. Furthermore, it is logical to connect the electric generator to the heave motion since most of

the energy extracted from the flow by flapping-foil turbines occurs via this degree of freedom (Kinsey

and Dumas, 2008, 2014; Zhu, 2011). The addition of a controller allows prescribing the heave motion

to follow a desired function of time, namely a sinusoidal motion given by Eq. 4.3 in the present

case. More information about the different possibilities of passive motions for flapping-foil turbines

is provided in the work of Boudreau et al. (2019).

4.4.2 Dimensionless form of the governing equations

The fluid flow is governed by the incompressible Navier-Stokes equations (see e.g. Panton (2013)):

∇ ·u = 0 , (4.4)

∂u
∂ t

+u ·∇u =− 1
ρ

∇p+
1
ν

∇
2u , (4.5)

where u is the velocity vector, ρ is the fluid density, p is the pressure and ν is the kinematic viscosity

of the fluid.
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Considering the following reference scales for length (Lref), velocity (Uref), time (tref) and pressure

(pref):

Lref = c , (4.6)

Uref =U∞ , (4.7)

tref = Lref/Uref = c/U∞ , (4.8)

pref = ρ U2
∞ , (4.9)

where c is the chord length and U∞ is the freestream velocity, Eqs. 4.4 and 4.5 can be written in

dimensionless form:

∇ ·u∗ = 0 , (4.10)

∂u∗

∂ t∗
+u∗ ·∇∗u∗ =−∇

∗p∗+
1

Re
∇
∗2u∗ , (4.11)

with the superscript ∗ indicating a dimensionless operator or variable (e.g., t∗ = t/tref) and Re is the

Reynolds number:

Re =
U∞ c

ν
, (4.12)

which is set to 3.9×106, as in our previous investigation of the semi-passive turbine concept (Boudreau

et al., 2019).

In addition to the reference length scale (see Eq. 4.6) and time scale (see Eq. 4.8), the following

reference scale for the hydrodynamic moment about the pitch axis (Mref) is considered:

Mref =
1
2

ρ U2
∞ bc2 , (4.13)

where b is the span length. This additional reference scale allows deriving the dimensionless form of

the equation of motion in pitch (Eq. 4.1):

CM/2 = I∗θ θ̈
∗+S∗ ḧ∗ cos(θ)+D∗θ θ̇

∗+ k∗θ θ , (4.14)

where:

CM =
M

0.5ρ U2
∞ bc2 , (4.15)

I∗θ =
Iθ

ρ bc4 , (4.16)

S∗ =
S

ρ bc3 , (4.17)

D∗θ =
Dθ

ρ U∞ bc3 , (4.18)

k∗θ =
kθ

ρ U2
∞ bc2 , (4.19)

and:
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h∗ =
h
c

, ḣ∗ =
ḣ

U∞

, ḧ∗ =
ḧ c
U2

∞

, θ̇ ∗ =
θ̇ c
U∞

, θ̈ ∗ =
θ̈ c2

U2
∞

.

Note that the span length is considered to be equal to one (b= 1) since forces per unit span are obtained

from the two-dimensional (2D) simulations conducted in this study.

The reference scales used to derive the dimensionless form of the equation of motion in pitch lead to

the definitions of the dimensionless moment of inertia (I∗
θ

), pitch damping coefficient (D∗
θ

) and pitch

stiffness coefficient (k∗
θ

) presented above. These reference scales are the same than those used by

Onoue et al. (2015) and by Shiels et al. (2001) for their respective study of an elastically-supported

pitching flat plate and a cylinder undergoing vortex-induced vibrations (VIV). As pointed out by these

authors, such a normalization is relevant when considering strongly-coupled fluid-structure interac-

tions. Furthermore, it remains valid when the moment of inertia or the pitch stiffness coefficient ap-

proaches zero, unlike other traditional normalizations based on the natural frequency for the reference

time scale.

Lastly, the dimensionless form of the prescribed heave motion (see Eq. 4.3) is given by:

h∗ = H∗0 min
(

t∗

3T ∗h
, 1
)

sin(2π f ∗h t∗) , (4.20)

where H∗0 = H0/c and f ∗h is the heave reduced frequency:

f ∗h =
fh c
U∞

. (4.21)

4.4.3 Performance metrics

The equation of motion in pitch (Eq. 4.1) can be analyzed from a power balance perspective by putting

all the terms on the left hand side of the equation, multiplying each of them by the pitch velocity (θ̇ )

and then normalizing and cycle-averaging the result to obtain:

〈CPθ
〉+ 〈CPIθ

〉+ 〈CPS,θ 〉+ 〈CPDθ
〉+ 〈CPkθ

〉= 0 , (4.22)

where the angle brackets denote the cycle-averages. More specifically, these different power coeffi-

cients are defined as:

〈CPθ
〉= 1

Th

∫ ti+Th

ti

(
M θ̇

0.5ρ U3
∞ bc

)
dt , (4.23)

〈CPIθ
〉= 1

Th

∫ ti+Th

ti

(
−Iθ θ̈ θ̇

0.5ρ U3
∞ bc

)
dt , (4.24)

〈CPS,θ 〉=
1
Th

∫ ti+Th

ti

(
−S ḧ θ̇ cos(θ)
0.5ρ U3

∞ bc

)
dt , (4.25)

〈CPDθ
〉= 1

Th

∫ ti+Th

ti

(
−Dθ θ̇ 2

0.5ρ U3
∞ bc

)
dt , (4.26)
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〈CPkθ
〉= 1

Th

∫ ti+Th

ti

(
−kθ θ θ̇

0.5ρ U3
∞ bc

)
dt , (4.27)

where ti is the time at which a given cycle starts. It is defined as the instant at which h = 0 and

ḣ > 0. Note that unless otherwise indicated, the term power coefficient refers to a cycle-averaged

value throughout the current work.

When an idealized turbine with no friction is considered, Dθ is equal to zero and thus 〈CPDθ
〉 = 0.

Moreover, the power coefficients associated to the inertial and stiffness terms are zero on average

during one turbine cycle (〈CPIθ
〉= 0 and 〈CPkθ

〉= 0) when the pitch motion is periodic. In this context,

Eq. 4.22 simplifies to:

〈CPθ
〉+ 〈CPS,θ 〉= 0 . (4.28)

〈CPθ
〉 is the pitch power coefficient and it quantifies the power transfer occurring between the foil’s

pitch motion and the flow. It is positive when the pitch motion extracts power from the flow. Con-

versely, it is negative when the pitch motion provides power to the flow, or, in other words, requires

power from another source to be sustained. 〈CPS,θ 〉 is the power coefficient associated to the inertial

coupling term in Eq. 4.1. It is associated with the power transfer occurring between the heave and the

pitch motions when the static moment is not zero, i.e., when the pitch axis does not coincide with the

center of mass. It is positive when the heave motion provides power to the pitch motion.

A similar analysis can be carried out in heave using a general equation of motion for this degree of

freedom:

Fy = mh ḧ+S
(
θ̈ cosθ − θ̇

2 sinθ
)
+Dh ḣ+Fgen , (4.29)

where Fy is the component of the hydrodynamic force acting on the foil in the heave direction, mh

is the mass of the components undergoing the heave motion, Dh is the heave damping coefficient

and Fgen is the force associated to the presence of an electric generator. As for the pitch damping

coefficient (Dθ ), the heave damping coefficient (Dh) is associated to undesired losses of energy and is

considered to be zero in the current study. This means that all the energy extracted from the flow can

be transferred to the electric generator.

As mentioned in the work of Boudreau et al. (2019), Eq. 4.29 must not be confused with Eq. 4.3. The

heave motion is prescribed according to Eq. 4.3 while Eq. 4.29 is only used to analyze the results once

the simulations are completed. However, these two equations are related to each other because one

would need to control the value of Fgen so that the solution of Eq. 4.29 corresponds to Eq. 4.3 in order

to prescribe the heave motion to a specific sinusoidal motion with a real turbine prototype.

Eq. 4.29 can be reformulated by putting all the terms on the left hand side of the equation except

Fgen, multiplying each of them by the heave velocity (ḣ) and then normalizing and cycle-averaging the

result to obtain:

〈CPh〉+ 〈CPmh
〉+ 〈CPS,h〉+ 〈CPDh

〉= 〈CPgen〉 , (4.30)
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where:

〈CPh〉=
1
Th

∫ ti+Th

ti

(
Fy ḣ

0.5ρ U3
∞ bc

)
dt , (4.31)

〈CPmh
〉= 1

Th

∫ ti+Th

ti

(
−mh ḧ ḣ

0.5ρ U3
∞ bc

)
dt , (4.32)

〈CPS,h〉=
1
Th

∫ ti+Th

ti

(
−S ḣ

(
θ̈ cosθ − θ̇ 2 sinθ

)
0.5ρ U3

∞ bc

)
dt , (4.33)

〈CPDh
〉= 1

Th

∫ ti+Th

ti

(
−Dh ḣ2

0.5ρ U3
∞ bc

)
dt , (4.34)

〈CPgen〉=
1
Th

∫ ti+Th

ti

(
Fgen ḣ

0.5ρ U3
∞ bc

)
dt . (4.35)

Since the heave damping coefficient (Dh) is considered to be equal to zero, 〈CPDh
〉 = 0. Moreover,

〈CPmh
〉 is also equal to zero because the prescribed heave motion is periodic. This leaves:

〈CPh〉+ 〈CPS,h〉= 〈CPgen〉 . (4.36)

〈CPh〉 is the heave power coefficient. It is analogous to 〈CPθ
〉 and uses the same sign convention.

A positive value of 〈CPh〉 stands for a net power extraction from the flow via the heave motion on

average during one cycle, while a negative value means that the heave motion provides power to the

flow. 〈CPS,h〉 is similar to 〈CPS,θ 〉, it is related to the inertial coupling term involving the static moment

and is positive when the pitch motion provides power to the heave motion. Lastly, 〈CPgen〉 is the power

coefficient available at the electric generator and is therefore a measure of the turbine performance.

When the pitch motion is periodic, with the prescribed heave motion always being periodic, 〈CPS,h〉
and 〈CPS,θ 〉 are equal but opposite:

〈CPS,h〉=−〈CPS,θ 〉 . (4.37)

For example, when 〈CPS,h〉 is negative but 〈CPS,θ 〉 is positive, some power is transferred from the heave

motion to the pitch motion on average during one cycle.

In the context of periodic motions, Eqs. 4.28, 4.36 and 4.37 can be combined to give:

〈CPgen〉= 〈CPh〉+ 〈CPθ
〉 . (4.38)

This last equation states that the cycle-averaged power available at the generator is equal to the net

power extracted from the flow when no friction is considered in heave and in pitch and when the

motions are periodic. The previous parametric study conducted on the same semi-passive turbine

concept (Boudreau et al., 2019) has shown that the operating points with high efficiencies are indeed
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characterized by periodic pitch motions. Nevertheless, 〈CPgen〉 is evaluated using Eq. 4.36 throughout

this study to account for the possibility of non-periodic pitch motions.

In addition to the different power coefficients defined above, it is also useful to evaluate the turbine

performance in terms of its efficiency (η), which is given by:

η = 〈CPgen〉c/d , (4.39)

where d is the overall transverse extent of the foil motion. In other words, it corresponds to the

distance between the maximum and minimum positions reached by any point on the foil surface in

the heave direction during one foil oscillation.

Two other metrics are also useful to characterize a given cycle, namely the pitch amplitude:

Θ0 =
θmax −θmin

2
, (4.40)

and the phase lag between the heave and the pitch motions, here given in degrees:

φ =
360
Th

(tθmax − thmax ) [degrees] , (4.41)

where θmax and θmin are the maximum and minimum pitch angles reached during this specific cycle

and tθmax and thmax are the instants at which the maximum pitch angle and heave position are reached.

When time-averaged values are presented in this work, a minimum of 10 cycles is used to compute the

averages and a sufficient number of cycles are completed to obtain converged values. The averaging

process is only started after reaching limit-cycle oscillations (LCOs), i.e., a permanent response. For

example, the time-averaged efficiency is computed as:

η =
1

Nend−Nstart +1

Nend

∑
j=Nstart

η j , (4.42)

where the subscript j stands for the jth cycle, Nstart is the cycle number at which the averaging process

begins, Nend is the total number of completed cycles for a given simulation and η j is the efficiency of

the jth cycle. Finally, the standard deviation is measured as:

ση =

√√√√ 1
Nend−Nstart

Nend

∑
j=Nstart

(η j−η)2 . (4.43)

Error bars are used in several figures appearing in the current work to indicate the standard deviation

of a specific metric. They are only shown when the standard deviation exceeds 0.01 for η and 1° for

Θ0 and φ for the sake of clarity. The same convention is used throughout this work.

4.4.4 Numerics

The numerical methodology is the same as the approach used by Boudreau et al. (2019). This method-

ology has been validated by performing comparisons with benchmark cases and by making sure that
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the results are independent of the spatial and temporal resolutions levels that are used. The reader is

referred to the work of Boudreau et al. (2019) for more information about this validation. The com-

putational fluid dynamics (CFD) simulations are conducted in 2D with the incompressibility assump-

tion using Siemens’ STAR-CCM+® software and the rotation-correction version of the one-equation

Spalart-Allmaras turbulence model (Dacles-Mariani et al., 1995, 1999; Spalart and Allmaras, 1994).

The governing equations are discretized with second-order schemes and the SIMPLE algorithm is

used to handle the pressure-velocity coupling (Ferziger and Perić, 2002).

The turbine operates in a square domain of 100 chord lengths by 100 chord lengths with the foil

located at the center. Two different meshes are used for the background and the foil regions. The

mesh of the foil region is allowed to move with respect to the background mesh using the overset

mesh technique. The background mesh is composed of hexagonal cells while a structured mesh

composed of rectangular cells is used for the foil region. The cell size at the foil surface results

in a dimensionless normal wall distance (y+) of the order of one and around 500 nodes around the

foil. A maximum growth factor of 1.2 is used in the normal direction near the foil surface. The

resulting mesh is composed of 78 614 cells. A time step corresponding to 0.003 convective time units

is used for all the simulations conducted in this study:

∆t U∞

c
= 0.003 . (4.44)

As a result, between approximately 1 100 and 3 300 time steps are simulated per cycle depending on

the frequency of the prescribed heave motion.

The inlet boundary condition consists in a uniform and constant velocity with a modified turbulent

viscosity ratio of three (ν̃/ν = 3), based on the recommendation of Spalart and Rumsey (2007) to use

the Spalart-Allmaras model in its fully-turbulent mode. The single equation of the Spalart-Allmaras

turbulence model solves for the modified turbulent viscosity (ν̃), from which the turbulent viscosity

(νt) is computed using an empirical relation (Spalart et al., 1997). A pressure of zero is imposed at the

outlet boundary and a symmetry condition is used for the two lateral boundaries. The values of the

velocity and the turbulent viscosity ratio at the inlet boundary along with the value of the pressure at

the outlet boundary are used for the initial condition throughout the computational domain. Moreover,

the foil is initially located at its equilibrium positions in heave and in pitch (h∗ = 0 and θ = 0).

An implicit fluid-structure coupling algorithm is used to solve Eq. 4.1 with a second order backward

difference scheme for the temporal discretization. Consequently, the pitch angle (θ ) and the hydrody-

namic moment (M) are updated a few times (typically 3 or 4 times) within a given time step. Updates

of these variables are performed until the difference between two successive updates of the pitch an-

gle, in radians and normalized with π/2, falls below 10−8. When the pitch angle is converged for a

given time step, a few more fluid iterations are conducted before incrementing the time step in order

to reach the fluid convergence criteria. These convergence criteria are set so that the fluid residuals

for the pressure, the streamwise and transverse momentums drop by a factor of 10−4 or more dur-

ing a given time step and the fluid residual for the turbulent viscosity minimally drops by a factor of
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5× 10−4. A more thorough description of this algorithm is presented in the work of Boudreau et al.

(2019).

4.5 Results and discussion

4.5.1 Combining the moment of inertia and the pitch stiffness into a single effective
parameter

As mentioned in the introduction, we look for the important characteristics of flapping-foil turbines in

the perspective of optimal energy extraction and we aim to maintain an optimal performance across

a broad range of structural parameter values. To that end, the effects of varying the moment of in-

ertia about the pitch axis and the pitch stiffness are studied in this section. This investigation is

conducted around an efficient operating point reported in our previous work on the semi-passive tur-

bine concept (Boudreau et al., 2019). The characteristics of this initial case are listed in Table 4.1.

Unless otherwise indicated, these structural parameter values are used for all the cases considered in

Secs. 4.5.1 to 4.5.3.

Table 4.1: Description of the operating point around which the study of the effects of I∗
θ

and k∗
θ

is
conducted.

Parameters Values Parameters Values

Prescribed parameters Results

xp/c 0.25 Θ0 74.4°

H0/c 1 φ 94.5°

f ∗h 0.18 η 40.5%

S∗ 0.5

I∗
θ

2

k∗
θ

2.56

D∗
θ

0

First, the pitch stiffness coefficient and the moment of inertia are independently varied while keeping

all the other parameters constant. The effects of such variations on the pitch amplitude, the phase lag

between the heave and the pitch motions and the efficiency are shown in Fig. 4.1. These results reveal

that the semi-passive turbine dynamics is highly sensitive to variations of both k∗
θ

and I∗
θ

. A maximum

efficiency of 46.0%, which exceeds the best efficiency reported by Boudreau et al. (2019), is observed

when the dimensionless pitch stiffness coefficient is slightly smaller than that of the initial case, with

a value of 2.51. An increase of k∗
θ

above this value leads to considerable decreases of all three metrics

presented in Figs. 4.1a and 4.1c. In fact, the efficiency almost drops to zero when increasing k∗
θ

by
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only 10% from the best efficiency point. The drop of efficiency observed when k∗
θ

is decreased below

2.51 is even more abrupt. It is due to the fact that the boundary layers separate and that leading-edge

vortices (LEVs) are formed and ejected from the foil surface for all the cases tested with k∗
θ
< 2.51. As

discussed in the work of Boudreau et al. (2019), the formation and ejection of LEVs can significantly

alter the semi-passive turbine dynamics. In the present case, it results in sudden increases of both

the pitch amplitude and the phase lag between the heave and the pitch motions. Furthermore, the

formation of LEVs results in significant cycle-to-cycle variations of the three metrics considered, as

shown by the error bars indicating the standard deviation of the corresponding metric. As mentioned

in Sec. 4.4.3, error bars are only shown when the standard deviation exceeds 0.01, for η , and 1° for

Θ0 and φ .

Similar observations are made when varying the moment of inertia while keeping the other structural

parameters constant, as seen in Figs. 4.1b and 4.1d, but with opposite trends than when varying the

pitch stiffness coefficient. In other words, the effects of increasing k∗
θ

is equivalent to decreasing I∗
θ

,

and vice versa.

While these results reveal the high sensitivity of the semi-passive turbine dynamics to the moment

of inertia and the pitch stiffness coefficient, they are not general. Indeed, the values of k∗
θ

and I∗
θ

leading to the maximum efficiency observed in Fig. 4.1 are specific to this particular set of structural

parameters and they do not remain optimal in other situations. Actually, the initial point used to

conduct this analysis has been especially selected for its good performance and was obtained from a

parametric study in which I∗
θ

was set to a value of two. It is therefore not surprising to observe that

the turbine performance decreases as the moment of inertia departs from this value when all the other

parameters are kept constant. However, similar foil motions and efficiencies can be obtained with

considerably different values of I∗
θ

, provided that k∗
θ

is adjusted accordingly. For example, Fig. 4.2

demonstrates that efficiencies exceeding 40% are obtained with five different values of I∗
θ

. Note that

the black markers corresponding to the cases with I∗
θ
= 2 are the same as those presented in Fig. 4.1c.

Note also that for all the cases presented in Figs. 4.1 and 4.2, the foil oscillates in pitch at the same

frequency as the frequency of the prescribed heave motion: f ∗
θ
= f ∗h = 0.18, as indicated in Table 4.1.

This aspect is discussed in more details in Sec. 4.5.2.

A decrease of the turbine performance was also observed by Deng et al. (2015) when increasing the

mass of the components undergoing the heave motion for a different version of semi-passive flapping-

foil turbine, namely a turbine with a passive heave motion and a prescribed pitch motion. Following

a parametric study conducted with a ratio between the density of the foil and the fluid density of 1,

they selected an efficient case and showed that the efficiency is decreasing when the density ratio is

increased up to 100 while all the other parameters are kept constant. Their results therefore showed

that the structural parameter values that are optimal when the density ratio is one are not optimal

when the density ratio is much larger. However, it does not mean that it is impossible to achieve high

efficiencies when the density ratio is of the order of 100.
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(a) Pitch amplitude and phase lag. (b) Pitch amplitude and phase lag.

(c) Efficiency. (d) Efficiency.

Figure 4.1: Sensitivity of different metrics to independent variations of the dimensionless pitch stiff-
ness coefficient and moment of inertia. All the other structural parameters are kept constant to the
values listed in Table 4.1, except for k∗

θ
, which is set to 2.51 when I∗

θ
is varied.

The fact that the variations of k∗
θ

and I∗
θ

have similar but opposite consequences on the passive pitch

dynamics and that similar foil motions and efficiencies can be obtained with different values of these

two structural parameters suggest that they are closely related. In other words, they are not completely

independent from each other. There should therefore exists a relevant parameter combining them.

Following our previous investigation of the semi-passive turbine concept (Boudreau et al., 2019), we

know that the passive pitch motions closely follow sinusoidal motions with a single frequency, f ∗
θ

, for

the optimal operating points. Under such conditions, the pitch angle and the pitch acceleration can be

roughly approximated as:

θ(t)≈Θ0 sin(2π f ∗θ t∗−φ) , (4.45)

θ̈
∗(t)≈−(2π f ∗θ )

2
Θ0 sin(2π f ∗θ t∗−φ) , (4.46)

where t∗ = t U∞/c. Consequently, the terms involving the moment of inertia and the pitch stiffness
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Figure 4.2: Efficiency as a function of k∗
θ

for various values of I∗
θ

.

coefficient appearing in the equation of motion in pitch can be combined into a single effective pa-

rameter, which we refer to as the effective pitch stiffness and we denote it by λ ∗
θ

:

I∗θ θ̈
∗+ k∗θ θ ≈

(
k∗θ − (2π f ∗θ )

2I∗θ
)

θ = λ
∗
θ θ . (4.47)

where:

λ
∗
θ = k∗θ − (2π f ∗θ )

2I∗θ . (4.48)

This parameter is analogous to the "effective elasticity" used by Shiels et al. (2001) to study the

dynamics of an elastically-supported cylinder undergoing vortex-induced vibrations (VIVs). Using

the definition of λ ∗
θ

, Eq. 4.14 can be approximated as:

CM/2≈ S∗ ḧ∗ cos(θ)+D∗θ θ̇ +λ
∗
θ θ , (4.49)

which is even further simplified when considering an idealized frictionless turbine (D∗
θ
= 0):

CM/2≈ S∗ ḧ∗ cos(θ)+λ
∗
θ θ . (4.50)

This last relation suggests that for constant values of heave reduced frequency, heave amplitude and

static moment, the dynamics of the passive pitch motion should be almost independent of I∗
θ

and k∗
θ

,

as long as λ ∗
θ

is kept constant and the pitch motion remains close to a sinusoidal motion with a well-

defined single frequency. This statement is confirmed in Fig. 4.3, which presents the pitch amplitude,

the phase lag between the heave and the pitch motions and the efficiency as functions of λ ∗
θ

for

different values of I∗
θ

. Indeed, this figure shows that the data points presented in Fig. 4.2 essentially

collapse to a single curve, even when LEVs are formed (see the square markers), hence confirming

the relevance of the parameter λ ∗
θ

. The maximum efficiencies obtained with the different values of

I∗
θ

are all obtained around the same value of λθ , which is slightly below zero with this specific set of
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parameters. However, the data points obtained with the smallest moment of inertia tested (I∗
θ
= 0.1)

slightly deviate from the other data points. This is because the pitch motion deviates from a pure

sinusoidal motion in this case, as will be discussed in more details in Secs. 4.5.2 and 4.5.3.

(a) Pitch amplitude. (b) Phase lag.

(c) Efficiency.

Figure 4.3: Various metrics as functions of the parameter λ ∗
θ

for various values of I∗
θ

.

Instead of characterizing the passive pitch dynamics with the effective pitch stiffness λθ , an intuitive

choice would have been to use the frequency ratio r, namely the ratio between the frequency of the

pitch motion ( f ∗
θ

) and the pitch natural frequency in vacuum ( f ∗n,θ ):

r =
f ∗
θ

f ∗n,θ
. (4.51)

where:

f ∗n,θ =
1

2π

√
k∗

θ

I∗
θ

. (4.52)
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Figure 4.4: Efficiency as a function of the frequency ratio (r) for various values of I∗
θ

.

Fig. 4.4 presents the efficiency as a function of the frequency ratio for different values of I∗
θ

. Unlike

what is observed in Fig. 4.3c, the various curves obtained with different values of I∗
θ

do not agree

with each other. Moreover, these results show that the maximum efficiency is not always reached at

the same frequency ratio. For instance, the optimal frequency ratio is r = 1.6, when I∗
θ
= 0.1, and it

approaches unity, as I∗
θ

is increased. The sensitivity of the efficiency to a variation of r also differs for

the different values of I∗
θ

considered. The sensitivity increases with I∗
θ

. This can be explained by the

fact that the dynamics of the limit-cycle oscillations in pitch depends on the parameter λ ∗
θ

. Indeed, λ ∗
θ

can be expressed as:

λ
∗
θ = k∗θ − (2π f ∗θ )

2I∗θ = 4π
2 I∗θ
(

f ∗n,θ
2− f ∗θ

2
)
. (4.53)

Consequently, a given variation of f ∗n,θ
2− f ∗

θ

2, and thus of the frequency ratio (r), results in a larger

variation of λ ∗
θ

as I∗
θ

increases. All these observations confirm that the pitch dynamics of the turbine

permanent response does not directly depend on the frequency ratio, but rather on the effective pitch

stiffness λ ∗
θ

.

4.5.2 Frequency synchronization

For all the cases considered in the previous section, the frequency of the passive pitch motion ( f ∗
θ

)

synchronizes itself to the frequency of the prescribed heave motion ( f ∗h ). However, this does not

necessarily happen for any value of the structural parameters governing the pitch dynamics.

When I∗
θ

is not equal to zero and D∗
θ

is assumed to be zero, Eq. 4.14 can be written in the following

form:
CM

2 I∗
θ

=
(
θ̈
∗+(2π f ∗n,θ )

2
θ
)
+

S∗ ḧ∗ cos(θ)
I∗
θ

. (4.54)

When I∗
θ

approaches infinity, this equation can be approximated by the following relation:

θ̈
∗+(2π f ∗n,θ )

2
θ ≈ 0 , (4.55)

127



assuming that S∗, ḧ∗ and CM remain finite. This implies that, when I∗
θ

approaches infinity, the pitch

motion approaches a pure sinusoidal motion oscillating at the pitch natural frequency ( f ∗n,θ ), regardless

of the frequency of the prescribed heave motion ( f ∗h ). On the other hand, the pitch motion deviates

from a pure sinusoid when I∗
θ

approaches zero. An example of this behavior is shown in Fig. 4.5. It

shows that the differences between the time evolutions of the pitch angle obtained with two signif-

icantly different values of I∗
θ

is subtle, but the differences between the time evolutions of the pitch

accelerations are more evident.

Figure 4.5: Time evolution of the pitch angle (θ ) and the dimensionless pitch acceleration (θ̈ ∗) over
one foil oscillation for two different values of I∗

θ
but a constant value of λ ∗

θ
= −0.05. The values of

the other structural parameters are given in Table 4.1. Note that θ is given in radians.

Conversely, when I∗
θ
= 0, there is no inherent structural time scale in pitch since the pitch natural

frequency is undefined. Under this condition, f ∗
θ

is therefore expected to be dictated by f ∗h , which

affects the moment coefficient and the inertial coupling term in Eq. 4.14, no matter the value of k∗
θ

.

Fast Fourier Transforms (FFTs) of the pitch angle signals have been carried out in order to obtain the

amplitude spectra of the pitch motion and to confirm the above statements. The principal frequency

component ( f ∗
θ 1) is plotted against k∗

θ
in Fig. 4.6 for three different values of I∗

θ
. The reason for plotting

the results against k∗
θ

instead of λ ∗
θ

is discussed below. The shaded gray region indicates the range of

λ ∗
θ

values covered in Fig. 4.3. Only a few representative cases appearing in Fig. 4.3 are reproduced in

Fig. 4.6 for the sake of clarity.

Fig. 4.6 confirms that f ∗
θ

always synchronizes itself to f ∗h when I∗
θ
= 0. For nonzero but not infi-

nite values of I∗
θ

, this does not always happen. When f ∗
θ

and f ∗h are not synchronized, the principal

frequency component in the amplitude spectrum of the pitch motion rather follows the pitch natural

frequency. The region over which f ∗
θ

synchronizes itself to f ∗h , in terms of the range of k∗
θ

values,

shrinks as I∗
θ

increases. This finding is in agreement with the fact that f ∗
θ

should approach f ∗n,θ when

I∗
θ

approaches infinity, as discussed above.

The frequency of the prescribed heave motion, which is set to f ∗h = 0.18 for all the cases considered

in Fig. 4.6, is always present in the amplitude spectra of the pitch motion, even when the principal
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(a) I∗
θ
= 0.

(b) I∗
θ
= 2. (c) I∗

θ
= 8.

Figure 4.6: Principal frequency component ( f ∗
θ 1) in the amplitude spectrum of the pitch angle. The

values of the other structural parameters are given in Table 4.1.

frequency component is different than 0.18 and rather equal to the pitch natural frequency. This pres-

ence of multiple frequencies in the pitch angle signals for the cases located outside of the frequency

synchronization region results in significant amplitude modulations. For example, the differences be-

tween the pitch motion of three different cases with I∗
θ
= 8 are shown in Fig. 4.7. One case is located

on the left hand side of the frequency synchronization region in Fig. 4.6c, one case is in the frequency

synchronization region and the third one is on the right hand side of this region. This figure also

shows that the pitch amplitude is much smaller for the cases located outside the frequency synchro-

nization region. The erratic pitch motions associated to the presence of multiple frequencies and the

small pitch amplitudes observed outside the frequency synchronization region are not suitable for a

turbine application. Actually, positive efficiencies are only achieved in a narrow range of λ ∗
θ

values

(see Fig. 4.3c) where the passive pitch motion oscillates at a single frequency that is synchronized

with the frequency of the prescribed heave motion. For this reason, only cases that fit this description

are analyzed in the rest of the present study.

The reason for presenting the results against the parameter k∗
θ

instead of λ ∗
θ

in the current section is that

λ ∗
θ

is not well defined when there is more than one important frequency in the amplitude spectrum of

the pitch motion. Moreover, λ ∗
θ
= 0 when the frequency used in its definition corresponds to the pitch

natural frequency. As a result, all the cases for which the principal frequency component corresponds

to the pitch natural frequency are characterized by the same value of λ ∗
θ

, even though their dynamics
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(a) k∗
θ
= 8.23. (b) k∗

θ
= 10.2.

(c) k∗
θ
= 20.23.

Figure 4.7: Time evolution of the pitch motion for three different cases with I∗
θ
= 8 (see Fig. 4.6c).

differ. The effective pitch stiffness λ ∗
θ

is therefore not suitable to characterize such cases.

4.5.3 Scaling I∗
θ

and k∗
θ

The results presented in Fig. 4.3 have already shown that the dynamics of the passive pitch motion is

essentially independent of the moment of inertia about the pitch axis and the pitch stiffness, provided

that I∗
θ

is sufficiently large and that the effective pitch stiffness is not altered. Fig. 4.8 better illustrates

this point by presenting the variations of Θ0, φ and η as I∗
θ

is increased from 0 to 10 while adjusting

k∗
θ

in order to maintain λ ∗
θ

constant at−0.05. Clearly, all three metrics presented in this figure become

independent of I∗
θ

and k∗
θ

once threshold values are exceeded. The threshold value of I∗
θ

is around

0.5, in agreement with the results presented in Fig. 4.3. The efficiency only increases by 1.6%, in

relative difference, when I∗
θ

is increased from 0.5 to 100 (not shown in Fig. 4.8). Note that no LEVs

are formed for any of the cases considered in Fig. 4.8 and that the frequency of the pitch motion is

always synchronized to the frequency of the prescribed heave motion.

The reason explaining why Θ0, φ and η vary when I∗
θ

and k∗
θ

are decreased below the threshold values

required to reach the large-inertia asymptote in Fig. 4.8 is that the pitch motion deviates from a pure

sinusoidal motion in such circumstances, as already shown in Fig. 4.5. In this context, the approx-

imations of the pitch angle and the pitch acceleration given by Eqs. 4.45 and 4.46 are not accurate.

Consequently, the moment of inertia and the pitch stiffness cannot be combined as effectively into a

single parameter. In other words, the effective pitch stiffness becomes less relevant.
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(a) Efficiency. (b) Pitch amplitude and phase lag.

Figure 4.8: Various metrics as functions of the dimensionless moment of inertia (I∗
θ

) and the pitch stiff-
ness coefficient (k∗

θ
) with a constant value of λ ∗

θ
=−0.05. The values of all the remaining parameters

are equal to the corresponding values listed in Table 4.1.

Lastly, Fig. 4.9 shows that an optimal efficiency is not maintained when varying I∗
θ

and adjusting k∗
θ

so that the pitch natural frequency remains constant, even though the frequency ratio (r) is maintained

at a value very close to unity, namely 1.01. The results are compared to those that have already been

presented in Fig. 4.8a, for which λ ∗
θ

is kept constant at−0.05. Note that the point with I∗
θ
= 2 belongs

to the two sets of points. These results further demonstrate that the dynamics of optimal pitch motions

in terms of energy extraction does not directly depend on the frequency ratio, but rather on λ ∗
θ

.

Figure 4.9: Efficiency as a function of I∗
θ

for a constant value of λ ∗
θ
=−0.05 (black markers) and for

a constant value of r = 1.01 (green markers).

4.5.4 Pitch axis location

Having found that the performance of the semi-passive flapping-foil turbine with a passive pitch mo-

tion becomes almost independent of I∗
θ

and k∗
θ

once threshold values are exceeded and when λ ∗
θ

is kept

constant, this section investigates if an optimal performance can also be maintained when the pitch

axis is not located at the quarter-chord point (xp/c = 0.25) and if so, how the values of the different

governing structural parameters must be adjusted to reach this objective.
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Reference fully-constrained turbine cases

Before focusing on the semi-passive turbine dynamics, a few fully-constrained turbine cases with the

following prescribed sinusoidal motions are analyzed in this section:

h = H0 sin(2π f t) , (4.56)

θ = Θ0 sin(2π f t−φ) . (4.57)

They serve as reference cases to estimate the required values for the structural parameters governing

the semi-passive turbine dynamics with different positions of the pitch axis in the next section.

An operating point known to be efficient and well-documented is selected as a starting point (Kinsey

and Dumas, 2012, 2014). The different parameters describing the motions and measuring the perfor-

mance of this operating point are given in Table 4.2. Note that CPgen is equal to the sum of CPh and CPθ

in the case of fully-constrained turbines because the prescribed heave and pitch motions are periodic

and an idealized frictionless turbine is considered.

Table 4.2: Reference fully-constrained flapping-foil turbine case with xp/c = 0.33.

Parameters Values Parameters Values

Prescribed parameters Results

Re 3.9×106 η 40.5%

xp/c 0.33 CPh 1.43

H0/c 1 CPθ
-0.39

Θ0 75° CPgen 1.04

f ∗ 0.14

φ 90°

It is important to realize that the flow dynamics depends on the motion of the foil surface, or, alterna-

tively, the motion of every points on the chord line. If the same motion of the foil surface could be

prescribed with different positions of the pitch axis, the fluid would not “feel” the difference and the

overall energy transfer between the foil and the flow would therefore remain the same. When simply

modifying the position of the pitch axis while keeping all the other kinematic parameters constant, the

motion of the foil surface is significantly altered. Indeed, for a given position of the pitch axis, all the

points on the chord line undergo different motions. It is therefore normal that the motion of the pitch

axis has to be modified when its position is changed in order to maintain the same motion of the chord

line as for the efficient reference case.. One way of seeing this difference is to look at the transverse

(y or heave direction) motion of specific points on the chord line. For example, Fig. 4.10 presents the

motion of the points x/c = 0.33 and x/c = 1 for a case with the pitch axis located at the third-chord

132



point (xp/c = 0.33) and another one with the pitch axis located at the trailing edge (xp/c = 1) with

the same kinematic parameters in both cases. It shows that the motion of the point x/c = 1 with

xp/c = 1 (red curve in Fig. 4.10b), matches the motion of the point x/c = 0.33 with xp/c = 0.33

(black curve in Fig. 4.10a). However, the motion of the point x/c = 0.33 with xp/c = 1 (red curve

in Fig. 4.10a) considerably deviates from the motion of the point x/c = 0.33 with xp/c = 0.33 (black

curve in Fig. 4.10b). The motion of a specific point on the chord line is therefore altered when the

position of the pitch axis is varied while the kinematic parameters are kept constant.

(a) Motion of the point x/c = 0.33. (b) Motion of the point x/c = 1.

Figure 4.10: Comparison of the motions of two different points on the chord line as the position of the
pitch axis is varied for fully-constrained flapping-foil turbines. The motions follow counterclockwise
trajectories.

In order to better reproduce the motion of the foil surface characterizing the efficient case described

in Table 4.2, the kinematic parameters must therefore be adjusted when the position of the pitch axis

is changed. Since φ = 90° for this efficient case with xp/c = 0.33, the pitch axis reaches a maximum

heave position of one chord length, which corresponds to the heave amplitude, when the pitch angle

is equal to zero. However, the trailing edge exceeds this amplitude of one chord length and reaches its

maximum transverse position when the pitch angle is not zero, as shown in Fig. 4.10b. This implies

that if the pitch axis is instead placed at the trailing edge, the heave amplitude (H0) and the phase lag

between the heave and the pitch motions (φ ) have to be adjusted in order to maintain a similar motion

of the chord line, and thus of the foil surface. The adjusted heave amplitude and phase lag values

as functions of the pitch axis location are shown in Fig. 4.11 and the resulting motions of the points

x/c = 0.33 and x/c = 1 when the pitch axis is located at the trailing edge are presented in Fig 4.10. It

is observed that, when H0 and φ are adjusted, the transverse motion of the two considered points on

the chord line are in much better agreement with the motion of the same points characterizing the case

with xp/c = 0.33 than when the kinematic parameters are kept constant. Fig. 4.10 also shows that
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when a phase lag of 90° is imposed with xp/c = 0.33, the phase lag between the transverse motion of

the trailing edge and the pitch motion is smaller than 90°, that is, the pitch angle has already switched

from a negative to a positive value when the maximum transverse position of the trailing edge is

reached. As a result, a phase lag below 90° must be imposed when the pitch axis is located at the

trailing edge, as indicated in Fig. 4.11, so that the phase lag between the transverse motion of the

point x/c = 0.33 and the pitch motion remains around 90°. However, it is not possible to impose the

exact same motions of the foil surface with different values of xp/c since the pitch axis is the sole

point on the chord line that is restricted to move only in the transverse direction.

The values of CPgen , CPh and CPθ
, obtained with and without the adjustment of H0 and φ , are shown in

Fig. 4.12 for various positions of the pitch axis. The results show that when the kinematic parameters

remain constant, the power coefficient at the generator considerably decreases as the position of the

pitch axis departs from xp/c = 0.33 and even becomes negative when the pitch axis is located at the

trailing edge. Conversely, it remains relatively constant for positions of the pitch axis ranging from

the leading to the trailing edge when H0 ans φ are adequately adjusted even though the streamwise

motion of the different points on the chord line varies with xp/c. Note that this also holds true for the

efficiency, which is not shown. These results therefore demonstrate that it is possible to maintain an

optimal performance over a large range of pitch axis locations. Furthermore, they show that a phase

lag of 90° is not a fundamental characteristic of an optimal energy extraction performance although it

is often stated as such in the literature. This is because most of the studies on flapping-foil turbines

have been conducted with a pitch axis located at the third-chord point (Boudreau et al., 2018; Chen

et al., 2018; Deng et al., 2015; Teng et al., 2016; Veilleux and Dumas, 2017; Wu et al., 2015) or the

quarter-chord point (Boudreau et al., 2019; Huxham et al., 2012; Sitorus et al., 2015). In fact, a larger

phase lag is required when xp/c < 0.33 while a smaller phase lag is needed when xp/c > 0.33, in

agreement with the observations of Davids (1999).

Figure 4.11: Adjustments of the heave amplitude and the phase lag between the heave and pitch
motions with a variation of the pitch axis to reproduce the motion of the foil surface characterizing the
efficient case described in Table 4.2. The values of the other kinematic parameters all remain equal to
the values presented in Table 4.2.

While CPgen is found to remain relatively constant for various positions of the pitch axis when H0 and

φ are adjusted accordingly, Fig. 4.12b also shows that the heave and pitch power coefficients (CPh

and CPθ
) are affected by such variations. As will be discussed further in Sec. 4.5.4, an important
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(a) Constant kinematic parameters (see Table 4.2). (b) Adjusted heave amplitude and phase lag.

Figure 4.12: Different power coefficients as functions of the pitch axis location for a fully-constrained
flapping-foil turbine.

observation is that CPθ
increases as the pitch axis is shifted from the leading edge toward the three-

quarter-chord point, where it approaches zero. More information about this behavior is provided in

Appendix 4.A.

Semi-passive turbine

Following the demonstration that high efficiencies and power coefficients can be maintained over a

large range of pitch axis locations with specific prescribed motions, we now try to establish if and how

this can be done for a semi-passive flapping-foil turbine with a passive pitch motion. As mentioned

in the previous section, the fully-constrained turbine cases are used as reference cases to estimate the

values of the structural parameters that are required to passively obtain pitch motions that are similar to

the optimal prescribed motions. More specifically, four different fully-constrained cases with different

positions of the pitch axis are considered. These reference cases are described in Table 4.3.

Considering that the same heave motions can be prescribed for the reference fully-constrained turbine

cases and the semi-passive turbine cases, the forces and moment acting on the foil would be the same

for both turbine concepts if the same pitch motions can be obtained passively. Assuming that this

is feasible, one can try to determine a set of dimensionless structural parameters (I∗
θ

, S∗, D∗
θ

and

k∗
θ

) that satisfies the equation of motion in pitch (Eq. 4.14) with the moment coefficient obtained

from a fully-constrained turbine simulation and its prescribed sinusoidal pitch motion. If such a set

of parameters exists, it suggests that a passive sinusoidal pitch motion is possible. This “reverse

engineering” technique follows the idea of the Reverse Passive-Airfoil Solver (RPAS) presented in the

work of Veilleux and Dumas (2017).

Since sinusoidal pitch motions are assumed, the approximation of the equation of motion in pitch

given by Eq. 4.49 can be used instead of Eq. 4.14 to determine the sets of structural parameters. This

leaves three parameters to be determined, namely S∗, D∗
θ

and λ ∗
θ

. Regression analysis using the least-

square method have been conducted to determine the values of these three parameters for each pitch
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Table 4.3: Reference fully-constrained flapping-foil turbine cases with different pitch axis locations.

Parameters Values

Prescribed parameters

xp/c 0 0.25 0.50 0.75

H0/c 1.082 1.005 1.024 1.127

Θ0 75° 75° 75° 75°

f ∗ 0.14 0.14 0.14 0.14

φ 109.8° 94.7° 77.4° 64.8°

Results

η 40.5% 40.5% 39.9% 39.2%

CPh 1.96 1.43 1.14 1.05

CPθ
-0.90 -0.39 -0.11 -0.05

CPgen 1.06 1.04 1.03 1.00

axis location considered, namely xp/c = 0, 0.25, 0.50 and 0.75. These sets of parameters are given in

Table 4.4.

Table 4.4: Estimation of the structural parameter values required for the different pitch axis locations
considered.

Parameters Values

xp/c 0 0.25 0.50 0.75

S∗ 1.10 0.50 0.15 0

D∗
θ

0 0 0 0

λ ∗
θ

-0.50 0 0.35 0.70

Based on the results of these regression analysis, S∗ should be around zero when the pitch axis is

located at the three-quarter-chord point and should increase as the pitch axis is shifted toward the

leading edge. D∗
θ

should always be around zero and λ ∗
θ

should be around zero when xp/c = 0.25,

positive when the pitch axis is located further downstream and negative when it is located further

upstream. More explanations for the need of such parameter values are given in Appendix 4.B.

In order to validate that the guesses presented in Table 4.4 are correct and can result in a stable and
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efficient response of the semi-passive turbine, numerical simulations solving the exact equation of

motion in pitch (Eq. 4.14) are carried out. Although the high efficiencies and power coefficients

obtained with the four reference fully-constrained turbine cases presented in Table 4.3 are obtained

with different heave amplitudes depending on the pitch axis location, a heave amplitude of one chord

length (H0/c = 1) is chosen in order to remain consistent with Secs. 4.5.1 to 4.5.3, allowing a direct

comparison of the results. For the same reason, the heave motion is prescribed at f ∗h = 0.18, even

though the values of the structural parameters required for the different pitch axis locations have

been estimated through the analysis of fully-constrained cases oscillating at a reduced frequency of

0.14 (see Table 4.4). The dimensionless moment of inertia is set to 2 for all the cases considered in

this section, which is sufficiently large for the turbine performance to be almost insensitive to this

parameter based on the results presented in Sec. 4.5.3, and an idealized frictionless turbine (D∗
θ
= 0)

is considered. Regarding the dimensionless static moment, it is set to the values determined from the

analysis of the reference fully-constrained turbine cases that are listed in Table 4.4. Finally, we only

consider cases for which the frequency of the pitch motion synchronizes itself to the frequency of the

prescribed heave motion, so that f ∗
θ
= f ∗h = 0.18.

Fig. 4.13 shows the pitch amplitude, the phase lag between the heave and the pitch motions and the

efficiency as functions of λ ∗
θ

for different positions of the pitch axis. Again, the error bars indicate the

standard deviation of the corresponding metric and they are only shown when the standard deviation

exceeds 0.01, for η , and 1° for Θ0 and φ .

These results confirm that an efficiency exceeding 40% can be achieved with all four pitch axis lo-

cations considered. The characteristics describing the optimal operating points obtained with each

position of the pitch axis are given in Table 4.5. It is found that the estimated values of λ ∗
θ

required

for each pitch axis location are valid since the actual values of λ ∗
θ

resulting in the best efficiencies

are relatively close to the estimations listed in Table 4.4. The optimal value of λ ∗
θ

is below zero

when xp/c = 0, near but slightly below zero when xp/c = 0.25 and above zero when xp/c = 0.50

and xp/c = 0.75. Interestingly, the pitch amplitude and the efficiency follow opposite trends when

xp/c = 0 or xp/c = 0.25 compared to when xp/c = 0.50 or xp/c = 0.75.

As mentioned in Sec. 4.5.4, the key to reach a similar optimal performance with different positions

of the pitch axis is to maintain similar motions of the foil surface since this is what governs the

fluid dynamics. This is achieved when the pitch amplitude remains constant and when the phase

lag between the heave and the pitch motions decreases as the position of the pitch axis is shifted

toward the trailing edge, in a way similar to the trend shown in Fig. 4.11. Figs. 4.13a and 4.13b,

along with Table 4.5, show that this is indeed what happens for the four optimal semi-passive cases.

Consequently, the foil motions of the best efficiency points described in Table 4.5 are very similar, as

confirmed in Fig. 4.14, which presents the time evolution of the dimensionless vorticity field over one

turbine cycle.

However, the motions of the foil surface do not directly affect the dynamics of the elastically-supported
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(a) Pitch amplitude. (b) Phase lag.

(c) Efficiency.

Figure 4.13: Various metrics as functions of the parameter λ ∗
θ

for various positions of the pitch axis.
Filled markers are used to identify the maximum efficiency cases.

foil in pitch. It is rather governed by the motion of the pitch axis along with the hydrodynamic mo-

ment about this point. The fact that the moment about the pitch axis varies with xp/c explains why

different values of λ ∗
θ

and S∗ are required when considering different positions of the pitch axis.

Considering that D∗
θ
= 0 throughout the current study and that the motions leading to large values of η

and CPgen are periodic, the power required by the foil to sustain its pitch motion on average during one

cycle (〈CPθ
〉) is necessarily compensated by the power transferred from the heave motion to the pitch

motion via the inertial coupling terms (〈CPS,θ 〉), according to Eq. 4.28. For example, Boudreau et al.

(2019) demonstrated that a positive value of S∗ is required to compensate for the negative value of CPθ

characterizing the optimal operating points with xp/c = 0.25. The fact that the foil requires different

amount of power, i.e., different values of 〈CPθ
〉, to undergo similar motions of the foil surface with

138



(a) xp/c = 0

(b) xp/c = 0.25

(c) xp/c = 0.50

(d) xp/c = 0.75

Figure 4.14: Time evolutions of the dimensionless vorticity field (ω c/U∞) during one complete rep-
resentative foil oscillation for the best efficiency points obtained with the four different pitch axis
locations considered (see Table 4.5). Note that these cases are semi-passive cases with a prescribed
heave amplitude of one chord length. The dashed lines indicate the streamwise position of the pitch
axis, which is itself indicated with a black dot.
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Table 4.5: Best efficiency points obtained for the semi-passive flapping-foil turbine with different
pitch axis locations when varying λ ∗

θ
with constant S∗ and I∗

θ
values.

Parameters Values

Prescribed parameters

xp/c 0 0.25 0.50 0.75

H0/c 1 1 1 1

f ∗
θ
= f ∗h 0.18 0.18 0.18 0.18

S∗ 1.10 0.5 0.15 0

I∗
θ

2 2 2 2

k∗
θ

1.86 2.51 2.96 3.28

D∗
θ

0 0 0 0

Results

λ ∗
θ

-0.70 -0.05 0.40 0.72

Θ0 71.9° 76.4° 77.7° 75.3°

φ 120.5° 102.7° 81.0° 61.7°

η 44.3% 46.0% 44.1% 41.5%

CPh 2.32 1.84 1.33 0.97

CPθ
-1.38 -0.74 -0.23 0

CPgen 0.94 1.10 1.10 0.97

different positions of the pitch axis (see Fig. 4.12b and Table 4.5) corroborates the fact that different

values of S∗ are required. High efficiencies are obtained when using a value of zero for S∗ with

xp/c = 0.75, thereby implying that the foil does not provide or extract energy from the flow through

its pitch motion on average (〈CPθ
〉= 0) in this specific case, in agreement with the observation made

in Fig. 4.12b regarding the fully-constrained turbine cases. However, this does not mean that the

pitch motion is independent of the heave motion since the coupling between the heave motion and the

moment generated by the fluid flow remains.

4.5.5 Varying the frequency of the prescribed heave motion

Considering that the passive pitch motions of optimal operating points are close to sinusoidal motions,

the ratio between the amplitude of the pitch acceleration and the amplitude of the pitch motion is

roughly proportional to the square of the frequency of the pitch motion (see Eqs. 4.45 and 4.46), f ∗
θ
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being synchronized with f ∗h . For constant values of I∗
θ

and k∗
θ

, this implies that the relative contribution

of the term I∗
θ

θ̈ ∗ in Eq. 4.14 becomes more important compared to that of the term k∗
θ

θ when the

frequency is increased. Consequently, the value of k∗
θ

leading to an optimal turbine performance

varies with f ∗h when I∗
θ

is kept constant. For example, the results obtained with f ∗h = 0.18 that are

presented in Fig. 4.1c are compared to other results obtained with f ∗h = 0.22 in Fig. 4.15.

Figure 4.15: Efficiency as a function of k∗
θ

for various values of f ∗ with xp/c = 0.25. See Table 4.1
for the values of the other structural parameters.

The effective pitch stiffness takes this effect into account. However, a variation of f ∗h , and thus of

f ∗
θ

, does not only affect the term λ ∗
θ

θ in the approximated version of the dimensionless equation of

motion in pitch (Eq. 4.50), but also the two other terms appearing in this equation, namely CM/2 and

S∗ ḧ∗ cos(θ). Indeed, the amplitude of the heave acceleration (ḧ∗) is directly proportional to the square

of f ∗h and the dependence of the fluid dynamics to the frequency of the foil motions affects the hydro-

dynamic moment coefficient. This therefore raises a question about the applicability of the parameter

λ ∗
θ

when different prescribed frequencies are considered. To answer this question, simulations with

different values of f ∗h , ranging from 0.1 to 0.3, have been carried out for the four positions of the pitch

axis considered in the present study. This frequency range has been selected based on the parametric

study conducted by Kinsey and Dumas (2014) on the fully-constrained flapping-foil turbine concept.

Contours of the efficiency are presented in Fig. 4.16. Each marker corresponds to a simulated operat-

ing point. The shape of the markers are used to indicate if leading-edge vortices (LEVs) are formed

during the foil oscillations and their colors indicate the standard deviation of the efficiency. The oper-

ating points characterized by a standard deviation of the efficiency exceeding 5% are not considered

when computing the contours, but they are still indicated in Fig. 4.16 with black markers. The corre-

sponding areas are colored in gray. Part of the reason explaining the large fluctuations of the efficiency

is that the frequency of the pitch motion is not synchronized with the frequency of the heave motion

for some of these cases. The gray areas should not be confused with the white areas, which rather in-

dicate a negative, but relatively constant, efficiency. Note also that the cases with xp/c = 0, f ∗ = 0.10

141



(a) xp/c = 0. (b) xp/c = 0.25.

(c) xp/c = 0.50. (d) xp/c = 0.75.

Figure 4.16: Efficiency contours obtained with different positions of the pitch axis. The white areas
indicate negative efficiency values while the gray areas indicate zones where the data is not presented
because of the large cycle-to-cycle variations (ση ≥ 0.05). The values of S∗ used with the different
pitch axis locations are given in Table 4.4.

and λ ∗
θ
= −0.8 and −0.9 have not been tested because they would require a negative pitch stiffness

coefficient, which is impossible.

Fig. 4.16 reveals that the best efficiencies are always obtained with a reduced frequency around 0.2.

This reduced frequency is the same in heave and in pitch since the frequencies are synchronized for

these optimal cases. This observation justifies the choice of presenting the results for f ∗h = 0.18 in the

rest of the current work.
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It is also found that the value of λ ∗
θ

leading to the maximum efficiency, for a given frequency of

the prescribed heave motion, does not vary much with f ∗h . In other words, the optimal values of

λ ∗
θ

observed in Fig. 4.13c remain valid for other values of f ∗h around 0.18, namely from f ∗h = 0.16

to f ∗h = 0.24 approximately. Larger differences are observed when f ∗h departs from this range of

frequencies because the influence of the frequency of the foil motions on the hydrodynamic moment

coefficient and on the inertial coupling term eventually becomes too important.

4.5.6 Practical considerations

Considering a NACA0015 foil of constant density ρs and a span length (b) of one, the dimensionless

moment of inertia about the quarter-chord point is approximately equal to 0.009ρs/ρ , where ρs is the

solid density and ρ is the fluid density. For a foil made of steel and operating in water, the density

ratio is around 7.8 and the dimensionless moment of inertia of such a case is therefore roughly equal to

0.07. However, some other components undergoing the pitch motion would also be present on a real

turbine setup, hence contributing to a larger I∗
θ

. For example, the dimensionless moment of inertia of

the steel blade used on the fully-passive turbine prototype tested by Boudreau et al. (2018) was around

0.1 because of the presence of some components undergoing the pitch motion that were located above

water, such as the shaft holding the blade.

Based on the results of the present study with a pitch axis located at the quarter-chord point, I∗
θ

should

be larger than 0.5 in order to reach the large-inertia asymptote characterized with high efficiencies

(see Fig. 4.8a). This suggests that a flywheel having a moment of inertia about four times that of the

turbine blade would be required. Nevertheless, high efficiencies are still achieved with smaller values

of I∗
θ

and the specific threshold value of I∗
θ

to reach a maximum efficiency is expected to depend on

the specific sets of structural parameters selected. Note that a flapping-foil wind turbine would likely

operate in the large-inertia asymptote without even needing the addition of a flywheel because of the

smaller density of air compared to water.

Since the maximum efficiencies reached with the four different pitch axis locations are obtained with

different values of λ ∗
θ

, but constant values of I∗
θ

and f ∗
θ

, they are also obtained with different frequency

ratios. This is shown in Fig. 4.17, which presents the data shown in Fig. 4.13, but plotted against r

instead of λ ∗
θ

.

The optimal frequency ratio is around one (slightly above) when the pitch axis is located at the quarter-

chord point, larger than one when the pitch axis is further upstream and smaller than one when it is

further downstream. Thaweewat et al. (2018) observed the opposite behavior in the case of a similar

semi-passive flapping foil with a passive pitch motion and xp/c = 0, but in the context of propulsion

instead of energy extraction. Their optimal performance was found with a phase lag around 70° and

a frequency ratio of 0.5. The frequency ratio leading to the optimal propulsive efficiency obtained by

Mackowski and Williamson (2017) for a flapping foil with a prescribed pitch motion and a passive

heave motion also varies with the pitch axis location. However, it is worth recalling that optimal
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Figure 4.17: Efficiency as a function of the frequency ratio for various positions of the pitch axis. See
Table 4.5 for the values of the other parameters.

frequency ratios vary with I∗
θ

(see Fig. 4.4) since the dynamics of the passive pitch motion does not

directly depend on r, but rather on λ ∗
θ

. Nevertheless, λ ∗
θ
< 0 is always associated to r > 1, and vice

versa.

Even though f ∗
θ

synchronizes itself to f ∗h in the range of λ ∗
θ

values resulting in high energy-extraction

efficiencies, the frequency of the transient pitch response, that could result from a perturbation of the

turbine structure or a perturbation occurring in the flow, would be different if f ∗n,θ 6= f ∗h . This suggests

that a pitch axis located at the quarter-chord point should be preferred since the best efficiencies are

obtained when λ ∗
θ

is near zero in that case, hence corresponding to a frequency ratio close to unity

and therefore avoiding the presence of two significantly different frequencies in the pitch motion in

the event of a perturbation. This aspect also further supports the recommendation of having a large

value of I∗
θ

because f ∗
θ

approaches f ∗n,θ when I∗
θ

increases for a given value of λ ∗
θ

.

Lastly, while variations of I∗
θ

and k∗
θ

essentially do not affect the permanent pitch response when they

are sufficiently large and when λ ∗
θ

is kept constant, they do affect the transient period that would

follow a perturbation in the flow. The larger I∗
θ

is, the longer the transient period lasts. For example,

a permanent response is typically reached after completing about ten cycles when I∗
θ
= 2, with the

methodology described in Sec. 4.4, while more than 200 cycles can be required when I∗
θ
= 100.

4.6 Conclusion

The dynamics of a semi-passive flapping-foil, with a prescribed heave motion and a passive pitch

motion, operating at a Reynolds number of 3.9×106 has been investigated. Two-dimensional numer-

ical simulations of the incompressible Navier-Stokes equations with the Spalart-Allmaras turbulence

model and an implicit fluid-structure coupling algorithm have been carried out. The results demon-
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strate that an optimal power-generation performance can be maintained over large ranges of values of

I∗
θ

, k∗
θ

, xp/c and, to a lesser extent, f ∗h . This leaves a lot of flexibility regarding the design of such

semi-passive flapping-foil turbines.

Using the fact that the passive pitch motions of the optimal operating points are almost sinusoidal

and that their frequency synchronizes itself to the frequency of the prescribed heave motion, a simple

effective parameter combining the moment of inertia and the pitch stiffness (λ ∗
θ

) has been proposed.

We refer to it as the effective pitch stiffness. High efficiencies are maintained when I∗
θ

and k∗
θ

are

properly scaled, that is, by keeping λ ∗
θ

constant. When I∗
θ

and k∗
θ

are scaled so that the pitch natural

frequency remains constant instead of λ ∗
θ

, the efficiency quickly deteriorates as I∗
θ

and k∗
θ

are varied.

In order to maximize the efficiency, threshold values of I∗
θ

are k∗
θ

must be exceeded. In practice,

this suggests that the dimensionless moment of inertia should be about fives times larger than the

dimensionless moment of inertia of a steel blade operating in water. Consequently, a flywheel is

expected to be required in such conditions.

Four different pitch axis locations have been tested, namely the leading edge, the quarter-chord point,

the mid-chord point and the three-quarter-chord point. Operating points characterized by periodic

pitch motions of large amplitude and efficiency exceeding 40% have been obtained with all four

positions of the pitch axis. In order to do so, the governing structural parameters have to be adjusted

adequately because of the different phase lags between the heave and the pitch motions (φ ) required

to obtain similar motions of the foil surface with different positions of the pitch axis and the fact that

the phase difference between the heave motion and the moment coefficient varies with xp/c. One

consequence of these variations of the structural parameters is that the ratio between the frequency of

the pitch motion and the pitch natural frequency also changes with the pitch axis location. It is only

around one when xp/c = 0.25. It is larger than one when xp/c < 0.25 and smaller than one when

xp/c > 0.25.

Lastly, the results of the current study prove that the semi-passive flapping-foil turbine with a pre-

scribed heave motion and a passive pitch motion is a viable alternative to the more complex fully-

constrained flapping-foil turbine since both have a similar potential in terms of energy extraction,

with maximum efficiencies of the order of 45%.
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Appendix

4.A Variations of CPh and CPθ
with xp/c.

This appendix provides more information regarding the variations of CPh and CPθ
for the fully-constrained

turbine cases with different positions of the pitch axis (see Fig. 4.12b).

Fig. 4.A.1 presents the time evolutions of the heave force and moment coefficients, the dimensionless

heave and pitch velocities and the instantaneous heave and pitch power coefficients over one cycle for

two different positions of the pitch axis, namely the leading edge and the three-quarter-chord point.

Note that the heave and pitch power coefficients, defined by Eqs. 4.31 and 4.23, are also equal to

the products of the corresponding force, or moment coefficient, with the corresponding dimensionless

heave, or pitch, velocity:

〈CPh〉=
1
T

∫ ti+T

ti

(
Cy ḣ∗

)
dt , (4.58)

〈CPθ
〉= 1

T

∫ ti+T

ti

(
CM θ̇

∗) dt , (4.59)

where T = 1/ f , f being the prescribed frequency of the heave and pitch motions of the fully-

constrained turbine cases considered in this appendix. Since the instant t/T = 0 is defined as an

instant at which h = 0 and ḣ > 0, the adjustment of the phase lag between the heave and the pitch

motions with the position of the pitch axis (see Fig. 4.11) is not visible in Figs. 4.A.1a and 4.A.1b,

but it can be seen in Figs. 4.A.1c and 4.A.1d. Also, the time evolutions of the heave velocity for the

two considered pitch axis locations can be hardly distinguished from each other because the adjusted

heave amplitude is very similar in both cases and the frequency is kept constant.

Figs. 4.A.1a and 4.A.1b show that the larger heave power coefficient observed when xp/c = 0 (see

Fig. 4.12b) is due to a larger amplitude of the heave force coefficient. Regarding the pitch power

coefficient, Figs. 4.A.1c and 4.A.1d show that the phase difference between the heave motion and

the moment coefficient is considerably altered when changing the position of the pitch axis. When

xp/c= 0, the moment coefficient and the pitch velocity are out of phase, that is, the moment coefficient

is positive when the pitch velocity is negative, and vice versa. As a result, the instantaneous pitch

power coefficient is almost always negative, which leads to a large negative cycle-averaged pitch

power coefficient (〈CPθ
〉). Conversely, the phase difference between the pitch velocity and the moment

coefficient is around 90° when xp/c = 0.75, which results in a cycle-averaged pitch power coefficient
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(a) Heave force coefficient and dimensionless heave veloc-
ity.

(b) Instantaneous heave power coefficient.

(c) Moment coefficient and dimensionless pitch velocity. (d) Instantaneous pitch power coefficient.

Figure 4.A.1: Time evolutions of various metrics over one cycle for two different positions of the
pitch axis. The instant t/T = 0 corresponds to an instant at which h = 0 and ḣ > 0.

close to zero. This result implies that a smaller amount of power is required to drive the pitch motion

when xp/c = 0.75 than with any other pitch axis location (see Fig. 4.12b), even though the amplitude

of the moment coefficient reaches its minimum value when xp/c = 0.25 since this point is close to the

aerodynamic center.

4.B Explanations regarding the estimations of the structural
parameter values listed in Table 4.4

The estimations of the structural parameter values required with different positions of the pitch axis

presented in Table 4.4 have been determined from the reverse solver technique proposed by Veilleux

and Dumas (2017). In order to further explain why such values are required, the time evolutions of

the moment coefficient, the pitch angle (θ ), the pitch velocity (θ̇ ∗) and the term ḧ∗ cos(θ), obtained

from the reference fully-constrained turbine cases, are presented over one cycle in Fig. 4.B.1.

Fig. 4.B.1b shows that the pitch velocity is in antiphase (phase difference of about 180°) with the

moment coefficient term (CM/2) when xp/c= 0.25. This means that D∗
θ

would need to have a negative

value for the corresponding term to balance the moment coefficient term in Eq. 4.49, which is not

possible because this implies that the pitch damper would need to act as an energy source instead of
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(a) xp/c = 0. (b) xp/c = 0.25.

(c) xp/c = 0.50. (d) xp/c = 0.75.

Figure 4.B.1: Time evolutions of the different contributions appearing in Eq. 4.49 obtained from the
reference fully-constrained turbine cases presented in Table 4.3 over one cycle. θ is given in radians
and the instant t/T = 0 corresponds to an instant at which h = 0 and ḣ > 0.

an energy sink. In other words, an actuator would be needed. This figure also shows that there is

a phase difference of about 90° between θ and the moment coefficient term, hence making the term

involving λ ∗
θ

not suitable to satisfy Eq. 4.49 with this pitch axis location. Lastly, the term ḧ∗ cos(θ)

is in phase with the moment coefficient term, thus allowing satisfying Eq. 4.49 with a positive static

moment value, i.e. with a center of mass located downstream of the pitch axis.

When xp/c = 0.75 (see Fig. 4.B.1d), the phase lag between the heave and the pitch motions (φ ) is

smaller than when xp/c = 0.25 following the adjustment presented in Fig. 4.11. As a result, the

curves corresponding to the pitch angle, the pitch velocity and the term ḧ∗ cos(θ) shift to the left in

Fig. 4.B.1d compared to the corresponding ones in Fig. 4.B.1b since the instant t/T = 0 corresponds

to an instant at which h = 0 and ḣ > 0. The phase difference between the heave motion and the

moment coefficient also decreases when passing from xp/c = 0.25 to xp/c = 0.75, and this decrease

is more important than for the other terms involved in Eq. 4.49. Consequently, the term ḧ∗ cos(θ) is

no longer in phase with the moment coefficient term and thus cannot be used to satisfy the equation

of motion in pitch. This means that a value of zero for the static moment is expected to be needed

when the pitch axis is located at the three-quarter-chord point. In other words, this suggests that the

center of mass should coincide with the pitch axis in that specific case. The damping term, which is

proportional to the pitch velocity, is again not useful to balance the moment coefficient term, which
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thus leaves the term proportional to λ ∗
θ

as the only one that can satisfies Eq. 4.49.

The opposite behavior is observed when the pitch axis is located at the leading edge, i.e., the phase lag

between the heave and the pitch motions as well as the phase difference between the heave motion and

the moment coefficient increase when switching from xp/c = 0.25 to xp/c = 0 instead of decreasing.

Consequently, the term with λ ∗
θ

has to be negative instead of positive to balance the moment coefficient

term. Finally, the case with xp/c = 0.50 lies in between the cases with xp/c = 0.25 and xp/c = 0.75,

both in terms of the value of S∗ and the value of λ ∗
θ

.
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Chapter 5

Paper IV:
A parametric study and optimization of the
fully-passive flapping-foil turbine at high
Reynolds number

5.1 Résumé

La dynamique d’une turbine à aile oscillante complètement passive, opérant à un nombre de Reynolds

de 3.9×106, est étudiée à l’aide de simulations numériques bidimensionnelles résolvant l’interaction

fluide-structure. Ce concept consiste en une aile attachée à la structure de la turbine seulement à l’aide

de ressorts et d’amortisseurs. Ces supports élastiques permettent de remplacer les mécanismes plus

complexes qui sont généralement utilisés pour contraindre l’aile à suivre des mouvements particuliers.

La dynamique de l’aile dépend donc de son interaction avec ses supports élastiques et l’écoulement

de fluide auquel elle fait face. Cette étude démontre que les performances optimales de la turbine à

aile oscillante complètement contrainte peuvent être égalées avec ce concept plus simple de turbine

complètement passive lorsque les paramètres structuraux sont ajustés adéquatement. En effet, une

efficacité atteignant 53.8% a été obtenue. La présente étude révèle également que les effets liés à des

variations de la masse et de la raideur en pilonnement peuvent être caractérisés par un seul paramètre

qui n’est pas la fréquence naturelle en pilonnement. Par contre, la fréquence naturelle en tangage

caractérise bien la dynamique du mouvement de tangage passif, ce qui implique du même coup que le

moment d’inertie et la raideur en tangage peuvent aussi être combinés ensemble en un seul paramètre

effectif. Une performance optimale en terme d’extraction d’énergie peut être conservée sur de larges

plages de valeurs en ce qui concerne les propriétés inertielles et de raideur, autant en pilonnement

qu’en tangage, lorsque les paramètres effectifs les combinant ensemble sont maintenus constants. Les

résultats de cette étude montre aussi que la présence de frottement visqueux en tangage est nuisible
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en ce qui concerne la performance de la turbine, mais son effet demeure faible pour un niveau de

frottement réaliste.

5.2 Abstract

The dynamics of a fully-passive flapping-foil turbine, operating at a Reynolds number of 3.9× 106,

is studied via two-dimensional fluid-structure numerical simulations. This turbine concept consists

in an oscillating foil that is constrained to move only in heave and in pitch. The foil is allowed to

move freely in heave and in pitch by being simply attached to its structure by springs and dampers.

These elastic supports eliminate the need for the more complex mechanisms that are traditionally used

to prescribe specific foil motions. The consequence is that the foil dynamics depends entirely on its

interaction with the elastic supports and the oncoming fluid flow. This study demonstrates that the

optimal performance of fully-constrained flapping-foil turbines can be matched with a simpler fully-

passive turbine when the structural parameters are adequately adjusted. Indeed, an efficiency reaching

53.8% has been achieved in the present work. The present study also shows that the effects of varying

the heaving mass and the heave stiffness can be effectively characterized by a single parameter, which

is not the heave natural frequency. On the other hand, the pitch dynamics is appropriately characterized

by the pitch natural frequency, hence implying that the moment of inertia and the pitch stiffness can

also be combined together into a single parameter. An optimal energy-extraction performance can

be maintained over large variations of the inertial and stiffness properties, both in heave and in pitch,

when the effective parameters that combine them together are kept constant. It is also found that the

presence of viscous friction in pitch is detrimental to the turbine performance, but its effect remains

small with a realistic level of friction.

5.3 Introduction

Fully-passive flapping-foil turbines are a viable and mechanically simpler alternative to their fully-

constrained counterparts. Indeed, constraining the foil motions to follow specific functions of time,

in heave and in pitch, requires intricate mechanisms that increase the risks of failure of the apparatus

and may lead to important power losses (Kinsey et al., 2011). The fully-passive concept does not rely

on such mechanisms because its foil is simply attached to the turbine structure with elastic supports,

namely springs and dampers. It is therefore free to move in heave and in pitch. In fact, these two

motions result from the interaction of the elastically-supported foil and the fluid flow, thereby leaving

the designer of such a turbine with only an indirect control over the foil motions by adjusting the

structural parameters that govern the foil dynamics.

A few research groups have already demonstrated the feasibility of the fully-passive flapping-foil

turbine concept, both via numerical simulations (Peng and Zhu, 2009; Zhu, 2012; Veilleux and Du-

mas, 2017; Wang et al., 2017) and experiments (Boudreau et al., 2018; Iverson, 2018). They showed

that different types of responses are obtained when varying the structural parameters, including pe-
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riodic motions of large amplitudes leading to a net energy extraction from the flow. However, the

increased simplicity provided by the use of elastic supports has come at the cost of a lower perfor-

mance so far. Indeed, the maximum efficiencies reported for the fully-passive concept are of the order

of 30% (Boudreau et al., 2018; Veilleux and Dumas, 2017; Wang et al., 2017) compared to 45% for its

fully-constrained counterpart (Kinsey and Dumas, 2014; Xiao and Zhu, 2014; Young et al., 2014). All

the optimal fully-passive cases reported in the literature have one thing in common: they rely on deep

dynamic stall and the formation of leading-edge vortices (LEVs). In fact, Veilleux and Dumas (2017)

and Boudreau et al. (2018) argued that, in their case, the foil’s pitch motion is driven by a divergence

instability (Dowell, 2004; Fung, 2008), which in turn drives the heave motion. As soon as the foil is

released, the heave and pitch amplitudes are rapidly growing until they are limited by the unsteady

separation of the flow, or, in other words, the occurrence of deep dynamic stall. Such a limitation

of the amplitude following a divergence instability was also observed by Onoue et al. (2015) for an

elastically-supported pitching plate.

The coupled-mode flutter instability can also generate passive heave and pitch motions of a foil. Al-

though it has already been thoroughly studied, mainly with the purpose of determining the instability

onset and ways to mitigate it in the field of aeronautics, few studies have analyzed the large-amplitude

motions that can result from it (e.g., Amandolese et al. (2013); Pigolotti et al. (2017); Poirel and

Mendes (2014)) and none obtained a level of power extraction near what can be achieved with a

fully-constrained flapping-foil turbine.

Recently, Boudreau et al. (2019b) showed that efficiencies of the order of 45% could be reached with

a semi-passive concept, i.e., when prescribing a sinusoidal heave motion while elastically-supporting

the foil in pitch. This has been achieved with operating points for which no deep dynamic stall is

observed. Under such conditions, the pitch motion requires energy on average rather than extract-

ing energy from the flow (Boudreau et al., 2019b; Kinsey and Dumas, 2014). This energy must be

transferred from the heave motion to the pitch motion. When no motor actuates the pitch motion and

no rigid links couple the heave and pitch degrees of freedom, this transfer takes place via the inertial

coupling that arises when the pitch axis and the foil’s center of mass do not coincide. Considering a

pitch axis located at the quarter-chord point, such an energy transfer is possible when the center of

mass is positioned downstream of the pitch axis, i.e., when the static moment is positive.

In the case of the semi-passive flapping-foil turbine concept studied by Boudreau et al. (2019b), the

foil responses are driven by the prescribed heave motion. In fact, the electric generator linked to the

heave motion has to provide energy at some instants during the foil oscillations even when the cycle-

averaged energy extraction is maximized. This cannot occur in the case of a fully-passive flapping-foil

turbine for which both degrees of freedom are elastically supported.

The main objective of the present study is to determine if and how the best efficiencies reported for the

fully-constrained and semi-passive flapping-foil turbine can be reached with a simpler fully-passive

flapping-foil turbine. Moreover, we aim at determining if optimal fully-passive foil motions, in terms
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of energy extraction, can be achieved without deep dynamic stall. Following the works of Boudreau

et al. (2019a) on a semi-passive turbine, we also investigate how to properly scale the inertial and

stiffness properties of the turbine in heave and in pitch in order to provide some flexibility to the

designer of a fully-passive flapping-foil turbine prototype.

The fully-passive flapping-foil turbine concept, the metrics that characterize its performance and the

numerical methodology are presented in Sec.5.4. A parametric study involving variations of the heave

damping and stiffness coefficients is then presented in Sec. 5.5.1, followed by the analysis of effective

parameters in Sec. 5.5.2 and the evaluation of the effect of nonzero viscous damping in pitch in

Sec. 5.5.4.

5.4 Methodology

5.4.1 Dynamics

A rigid NACA0015 foil profile is considered and the turbine operates at a Reynolds number of 3.9×
106 based on the freestream velocity and the chord length:

Re =
U∞ c

ν
= 3.9×106 . (5.1)

The foil of the fully-passive flapping-foil turbine considered here is only free to move in heave (y

direction) and in pitch, as shown in Fig. 5.1. Since it is elastically supported in both these degrees of

freedom, its dynamics is governed by the two following equations:

Fy = mh ḧ+S
(
θ̈ cosθ − θ̇

2 sinθ
)
+Dh ḣ+ kh h , (5.2)

M = Iθ θ̈ +S ḧcos(θ)+Dθ θ̇ + kθ θ . (5.3)

Fy and M are respectively the force component in the heave (y) direction and the moment coefficient

about the pitch axis generated by the fluid flow. mh is the heaving mass, i.e., the mass of all the

components undergoing the heave motion. Iθ is the moment of inertia about the pitch axis. S is the

static moment and it is equal to the product of the mass of the components undergoing the pitch motion

(mθ ) with the distance between the center of mass (in pitch) and the pitch axis (xθ ):

S = mθ xθ . (5.4)

A positive value of xθ implies that the center of mass is located downstream of the pitch axis, as

illustrated in Fig. 5.1. The pitch axis is positioned at the quarter-chord point throughout this study.

In Eq. 5.2, Dh is the heave damping coefficient and it represents the sum of two different contributions:

Dh = Dh,e +Dh,v , (5.5)

where Dh,v accounts for the presence of undesired viscous friction in the setup and Dh,e models the

presence of an electric generator, as was done in several previous works that considered a passive
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Figure 5.1: Schematic of the fully-passive flapping-foil turbine concept. In the present study, xp/c =
0.25 and the foil is only free to move in heave (h) and in pitch (θ ).

heave motion (Abiru and Yoshitake, 2011; Boudreau et al., 2018; Deng et al., 2015; Griffith et al.,

2016; Iverson, 2018; Peng and Zhu, 2009; Teng et al., 2016; Veilleux and Dumas, 2017; Wang et al.,

2017; Zhu, 2012). In other words, the energy that is dissipated in this damping contribution represents

the energy that would be converted into electricity by an electric generator. Dθ is the pitch damping

coefficient and it represents undesired viscous friction in pitch. All the energy dissipated in the pitch

damper is therefore considered to be lost as heat. kh and kθ are respectively the heave and pitch

stiffness coefficients. The superscript (·) denotes a time derivative. Lastly, let us recall that the foil’s

motions are restricted to the heave and pitch degrees of freedom, i.e., the foil does not move in any

other direction, and the gravitational acceleration does not affect the turbine dynamics because it is

assumed to act in the span or z direction.

Using an appropriate normalization (Veilleux and Dumas, 2017; Boudreau et al., 2018; Onoue et al.,

2015), Eqs. 5.2 and 5.3 can be written in their dimensionless form:

CFy/2 = m∗h ḧ∗ + S∗
(

θ̈
∗ cosθ − θ̇ ∗

2 sinθ

)
+ D∗h ḣ∗ + k∗h h∗ , (5.6)

CM/2 = I∗θ θ̈
∗ + S∗ḧ∗ cosθ + D∗θ θ̇

∗ + k∗θ θ , (5.7)

where:

CFy =
Fy

0.5ρ U2
∞ bc

, CM =
M

0.5ρ U2
∞ bc2 , m∗h =

mh

ρ bc2 , I∗
θ
=

Iθ

ρ bc4 , S∗ =
S

ρ bc3 ,

D∗h =
Dh

ρ U∞ bc
, D∗

θ
=

Dθ

ρ U∞ bc3 , k∗h =
kh

ρ U2
∞ b

, k∗
θ
=

kθ

ρ U2
∞ bc2 ,

158



h∗ =
h
c

, ḣ∗ =
ḣ

U∞

, ḧ∗ =
ḧ c
U2

∞

, θ̇ ∗ =
θ̇ c
U∞

, θ̈ ∗ =
θ̈ c2

U2
∞

,

in which ρ is the fluid density, U∞ is the freestream velocity, c is the foil’s chord length and b is

the foil’s span length. Since the turbine dynamics is analyzed via two-dimensional (2D) numerical

simulations, forces per unit span are obtained and the span length is therefore considered to be equal

to one (b = 1).

5.4.2 Evaluating the energy extraction performance

Using a similar procedure than the one presented in our previous works on a semi-passive flapping-

foil turbine with a passive pitch motion (Boudreau et al., 2019b), the equations of motion can be

transformed into power balance equations. This is done by putting all the terms appearing in Eqs. 5.2

and 5.3 on the left hand side of their respective equations, except the heave damping contribution that

models the electricity generation, and by multiplying each equation of motion by the corresponding

heave or pitch velocity. The resulting equations are then normalized with 0.5ρ U3
∞ bc, the kinetic

energy flux passing through a plane of one chord length by one span length. Moreover, we define

the instant 0 in every turbine cycle as the instant at which h = 0 and ḣ > 0. By cycle-averaging

the normalized equations obtained with the procedure described above, the following relations are

obtained:

〈CPh〉+ 〈CPmh
〉+ 〈CPS,h〉+ 〈CPDh,v

〉+ 〈CPkh
〉= 〈CPDh,e

〉 , (5.8)

〈CPθ
〉+ 〈CPIθ

〉+ 〈CPS,θ 〉+ 〈CPDθ
〉+ 〈CPkθ

〉= 0 , (5.9)

where:

〈CPh〉=
1
T

∫ ti+T

ti

(
CFy ḣ∗

)
dt , (5.10)

〈CPmh
〉= 1

T

∫ ti+T

ti

(
−2m∗h ḧ∗ ḣ∗

)
dt , (5.11)

〈CPS,h〉=
1
T

∫ ti+T

ti

(
−2S∗ ḣ∗

(
θ̈
∗ cosθ − θ̇ ∗

2 sinθ

))
dt , (5.12)

〈CPDh,v
〉= 1

T

∫ ti+T

ti

(
−2D∗h,v ḣ∗2

)
dt , (5.13)

〈CPkh
〉= 1

T

∫ ti+T

ti

(
−2k∗h h∗ ḣ∗

)
dt , (5.14)

〈CPDh,e
〉= 1

T

∫ ti+T

ti

(
−2D∗h,e ḣ∗2

)
dt , (5.15)
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〈CPθ
〉= 1

T

∫ ti+T

ti

(
CM θ̇

∗) dt , (5.16)

〈CPIθ
〉= 1

T

∫ ti+T

ti

(
−2 I∗θ θ̈

∗
θ̇
∗) dt , (5.17)

〈CPS,θ 〉=
1
T

∫ ti+T

ti

(
−2S∗ ḧ∗ θ̇

∗ cosθ
)

dt , (5.18)

〈CPDθ
〉= 1

T

∫ ti+T

ti

(
−2D∗θ θ̇ ∗

2
)

dt , (5.19)

〈CPkθ
〉= 1

T

∫ ti+T

ti

(
−2k∗θ θ θ̇

∗) dt . (5.20)

The angle brackets indicate that the corresponding values are cycle-averaged, ti is the time at which

a given cycle starts, again defined as an instant at which h = 0 and ḣ > 0, and T is the period of one

cycle. Note that unless otherwise indicated, the term power coefficient refers to a cycle-averaged value

in the rest of the paper.

As mentioned in the previous section, the heave damping contribution, Dh,e, models the presence of

an electric generator. The power coefficient 〈CPDh,e
〉 therefore measures the power-generation perfor-

mance of the turbine. It is equal to the sum of the different contributions appearing on the left hand

side of Eq. 5.8. A positive value of 〈CPDh,e
〉 implies that a net amount of power is available for elec-

tricity production. On the other hand, the undesired heave damping contribution, 〈CPDh,v
〉, is always

negative and thus acts as a sink of power. In practice, it stems from the presence of friction in the

moving components forming the turbine assembly and the power dissipated by this friction is lost as

heat.

〈CPh〉 and 〈CPθ
〉 are the heave and pitch power coefficients. They measure the power transfers occur-

ring between the foil and the flow via the hydrodynamic force and moment and the corresponding

foil motion. A positive value for one of these power coefficients means that a net amount of power is

transferred from the flow to the foil. Conversely, a negative value implies that some power is required

to maintain the corresponding motion. Both are related to each other because of the hydrodynamic

coupling between the forces and moment acting on the foil.

The power available for the electric generator, 〈CPDh,e
〉, is also coupled to the power balance in pitch

because of the inertial coupling between both degrees of freedom that arises when the position of

the pitch axis does not coincide with the position of the center of mass (S 6= 0). A positive value of

〈CPS,h〉 represents a net power transfer from the pitch motion to the heave motion on average during

one turbine cycle, and vice versa. The equivalent term in Eq. 5.9 is 〈CPS,θ 〉. It is positive when a net
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amount of power is transferred from the heave motion to the pitch motion. When the foil motions are

periodic, these two power coefficients are equal in absolute value but with opposite signs (Veilleux,

2014):

〈CPS,h〉=−〈CPS,θ 〉 . (5.21)

Furthermore, the power coefficients involving m∗h, I∗
θ

, k∗h and k∗
θ

are equal to zero under such peri-

odic conditions because these terms are conservative (Veilleux, 2014). The power balance equations

(Eqs. 5.8 and 5.9) therefore simplify to:

〈CPh〉+ 〈CPθ
〉+ 〈CPDh,v

〉+ 〈CPDθ
〉= 〈CPDh,e

〉 , (5.22)

when the heave and pitch motions are periodic at the same frequency. This equation states that, in

this context, the power available to the electric generator is equal to the sum of the power extracted

from the flow through the heave and pitch degrees of freedom, which we refer to as the hydrodynamic

power coefficient:

〈CPhydro〉= 〈CPh〉+ 〈CPθ
〉 , (5.23)

minus the losses due to friction since 〈CPDh,v
〉 and 〈CPDθ

〉 are necessarily negative. Even though the

motions of a fully-passive flapping foil can be periodic (Boudreau et al., 2018; Peng and Zhu, 2009;

Veilleux and Dumas, 2017; Wang et al., 2017), other types of responses are also possible. Conse-

quently, 〈CPDh,e
〉 is computed using the more general Eq. 5.8 throughout this study.

The efficiency, which represents the fraction of the total hydrokinetic power available to the turbine

which is actually provided to the electric generator, is defined as:

η =

(
〈CPDh,e

〉
)

c

d
, (5.24)

where d is the overall transverse extent of the foil motion, i.e., the distance between the maximum

and minimum positions reached by any point on the foil surface in the heave direction during one foil

oscillation. Note that this definition slightly differs from another definition that is often used in the

literature, especially for fully-constrained turbines, that is based on the power extracted from the flow

rather than the power available to the electric generator:

ηhydro =
〈CPhydro〉c

d
. (5.25)

We refer to this efficiency as the hydrodynamic efficiency. When the friction is neglected and the

motions are periodic, Eqs. 5.24 and 5.25 are equivalent (see Eq. 5.22) and both efficiencies are the

same.

In addition to the power coefficients and the efficiency, a few other metrics are also of interest to char-

acterize the turbine performance for a specific turbine cycle, such as the heave and pitch amplitudes

(H∗0 and Θ0), the phase lag between the heave and the pitch motion (φ ) and the reduced frequency

( f ∗). These metrics are defined as:

H∗0 =
hmax −hmin

2c
, (5.26)
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Θ0 =
θmax −θmin

2
, (5.27)

φ =
360
T

(tθmax − thmax ) [degrees] , (5.28)

f ∗ =
f c
U∞

, (5.29)

where hmax, hmin, θmax and θmin are the maximum and minimum heave positions and pitch angles

reached during one specific cycle, tθmax and thmax are the instants at which the maximum pitch angle

and heave position are reached and f is the frequency of the foil motions. Note that for all the operating

points considered in this study, the foil oscillates at the same reduced frequency in heave and in pitch

( f ∗h = f ∗
θ

) and we use the variable f ∗ to denote this common reduced frequency.

Although it does not directly affect the turbine dynamics since the pitch axis is restricted to move only

in the heave direction, the streamwise force coefficient (Cx) is another useful metric to characterize

the turbine performance:

Cx =
Fx

0.5ρ U2
∞ bc

, (5.30)

where Fx is the streamwise component of the hydrodynamic force acting on the foil.

The time-averaged values presented in this work are computed by taking the average of cycle-averaged

quantities over a sufficient number of complete turbine cycles to obtain converged values. Note that

this averaging process only starts after a permanent response is reached following the initial transient

period. For example, the time-averaged efficiency is computed as:

η =
1

Nend−Nstart +1

Nend

∑
j=Nstart

η j , (5.31)

where the subscript j stands for the jth cycle, Nstart is the cycle number at which the averaging process

begins, Nend is the total number of completed cycles for a given simulation and η j is the efficiency of

the jth cycle. The standard deviation is computed using the same procedure:

ση =

√√√√ 1
Nend−Nstart

Nend

∑
j=Nstart

(η j−η)2 . (5.32)

When error bars are drawn in the figures of the present study, they indicate the standard deviation of a

specific metric. For the sake of clarity, they are only shown when the standard deviation exceeds 0.01

for η and ηhydro, 0.05 for CPDh,e
and CPhydro , 0.02 for H∗0 and 1° for Θ0 and φ . The same convention is

used throughout this work.

5.4.3 Numerics

Fluid and solid solvers

The numerical methodology used to carry out the current study closely follows the approach used

to perform our previous investigations of the semi-passive flapping-foil turbine (Boudreau et al.,
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2019b,a). Siemens’ STAR-CCM+® software is used as the fluid solver to conduct two-dimensional

incompressible Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations with the Spalart-

Allmaras one-equation turbulence model with rotation correction (Dacles-Mariani et al., 1995, 1999;

Spalart and Allmaras, 1994). Second-order schemes are used and the SIMPLE algorithm handles the

pressure-velocity coupling (Ferziger and Perić, 2002).

A solid solver is coupled to the fluid solver and solves the equations of motion that govern the turbine

dynamics, namely Eqs. 5.2 and 5.3. This fluid-solid algorithm is actually a two-degree-of-freedom

(2-DOF) version of the 1-DOF fluid-solid coupling algorithm presented by Boudreau et al. (2019b)

and follows the work of Olivier and Paré-Lambert (2019). Eqs. 5.2 and 5.3 are discretized as:

Rn
y = mh ḧn +S

(
θ̈

n cosθ
n− θ̇ n2 sinθ

n
)
+Dh ḣn + kh hn−Fn

y , (5.33)

Rn
θ = Iθ θ̈

n +S ḧn cos(θ n)+Dθ θ̇
n + kθ θ

n−Mn , (5.34)

with:

ḧn = c1 ḣn + c2 ḣn−1 + c3 ḣn−2 , (5.35)

ḣn = c1 hn + c2 hn−1 + c3 hn−2 , (5.36)

θ̈
n = c1 θ̇

n + c2 θ̇
n−1 + c3 θ̇

n−2 , (5.37)

θ̇
n = c1 θ

n + c2 θ
n−1 + c3 θ

n−2 . (5.38)

Ry and Rθ are the residuals of the discretized versions of the equations of motion. The superscript n

denotes the current time step being solved, and thus the superscripts n− 1 and n− 2 denote the two

previous time steps. c1, c2 and c3 are the constants of the numerical scheme used for the temporal

discretization, namely a second-order backward difference scheme to match the numerical scheme

used by the fluid solver. These constants are therefore equal to:

c1 =
3

2∆t
, c2 =

−4
2∆t

, c3 =
1

2∆t
, (5.39)

where ∆t is the time step.

The position of the foil in heave along with its pitch angle for a given time step (hn and θ n) are

determined by finding the roots of the functions on the right hand side of Eqs 5.33 and 5.34, with hn

and θ n as the independent variables, in order to minimize the absolute values of the residuals Rn
y and

Rn
θ

. In the 2-DOF version of the fluid-solid coupling algorithm used to perform the present study, the

Broyden’s method achieves this task. The procedure is summarized in Appendix 5.A.

Since the formulation of the fluid-solid coupling algorithm is implicit, the residuals of the discretized

equations of motion for the nth time step (Rn
y and Rn

θ
) depend on the heave position and the pitch angle

at this same time step (hn and θ n). As a result, hn and θ n have to be updated a few times within a

given time step in order to determine converged values for this specific time step. We refer to these

iterations as outer loops in Appendix 5.A and they are indicated with subscripts. During each outer
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loop, and thus for each intermediate values of hn and θ n, iterations of the fluid solver are carried

out to determine converged values of Fy and M for a specific foil position. The values of Fy and

M are considered to be converged when the differences, in absolute values, between the values of

the transverse force coefficient (CFy) and the moment coefficient (CM), obtained from two successive

fluid iterations, both fall below 10−5. Regarding the values of hn and θ n, they are considered to

be converged when the differences between the values determined from the last two outer loops, in

absolute values and normalized with the chord length for the heave position and π/2 for the pitch

angle, fall below 10−8. Four outer loops are typically required. Before incrementing the time step and

starting the whole process over again, some additional fluid iterations are performed to ensure that the

fluid residuals for the pressure, the streamwise and transverse momentums and the turbulent viscosity

at least drop by a factor of 10−4, for the first three residuals, and 5× 10−4, for the residual of the

turbulent viscosity, within a given time step.

Both the 1-DOF and the 2-DOF versions of this fluid-solid coupling algorithm have been validated in

the work of Boudreau et al. (2019b) by comparing the results obtained with the present methodology

to benchmark cases available in the literature.

Computational domain, initial conditions and boundary conditions

The computational domain, the mesh and the boundary conditions used to perform the present work

are the same as the one used by Boudreau et al. (2019b,a). More specifically, the computational

domain consists in a square of 100 chord lengths by 100 chord lengths with the foil located at the

center. The overset mesh technique is used to handle the foil motions so that two different meshes

are used: one for the moving foil region and one for the background region. The mesh of the moving

foil region consists in a structured mesh composed of rectangular cells while the background mesh

is composed of hexagonal cells. The size of the first layer of cell at the foil surface results in a

dimensionless normal wall distance (y+) around unity and about 500 nodes around the foil. The

growth factor in the normal direction near the foil surface is kept below 1.2. This leads to a mesh

composed of 78 614 cells.

A uniform and constant velocity is set at the inlet boundary condition along with a modified turbulent

viscosity ratio of three (ν̃/ν = 3), based on the recommendation of Spalart and Rumsey (2007) to

ensure that the Spalart-Allmaras turbulence model functions in its fully-turbulent mode. An empirical

relation relates the modified turbulent viscosity to the turbulent viscosity (Spalart et al., 1997). At

the outlet boundary, a pressure of zero is imposed and symmetry conditions are used for the two

remaining lateral boundaries. For the initial condition, the values of the velocity and the turbulent

viscosity ratio at the inlet boundary and the value of the pressure at the outlet are used throughout

the computational domain. Regarding the foil, it starts with nonzero heave velocity and pitch angle

to reduce the duration of the transient period preceding the permanent response. More specifically,

h∗ = 0, ḣ∗ = −1.25, θ = 1.5 and θ̇ ∗ = 0 at the start of the simulations. Some additional tests with

different initial conditions have been carried out to make sure that the results are not influenced by the
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choice of these initial conditions.

For all the simulations considered in the present study, the time step is set to 0.005 convective time

units:
∆t U∞

c
= 0.005 , (5.40)

which results in roughly 1 000 time steps per cycle since f ∗ remains close to 0.2 for the vast majority

of the cases considered in this study. However, a larger time step corresponding to 0.03 convective

time units is used during the initial transient period in order to reduce the computational costs of the

simulations. The switch between the two time step sizes occurs after completing 150 convective time

units, which corresponds to about 30 turbine cycles when f ∗ = 0.2. In order to deal with this variable

time step size, the definitions of the constants c1, c2 and c3 appearing in Eqs. 5.35 to 5.38 that have

been implemented in the fluid-solid coupling algorithm slightly differ from the definitions presented

in Eq. 5.39. Nevertheless, the definitions implemented in the fluid-solid coupling algorithm simplify

to those presented in Eq. 5.39 when the time step remains constant, which is the case for the whole

duration of the simulations except for the precise instant at which the time step size is changed. Note

also that only the data obtained after completing a minimum of 200 convective time units is considered

for the analysis of the results in order to avoid being affected by the larger time step used during the

initial transient period.

Lastly, the independence of the results to the spatial and temporal resolutions levels used for the

current work have already been verified in the study of Boudreau et al. (2019b).

5.5 Results and discussion

5.5.1 Parametric study

In this section, the effects of varying the heave damping and heave stiffness coefficients are inves-

tigated. The values of the structural parameters affecting the dynamics of the pitch motion are se-

lected based on previous studies on a semi-passive flapping-foil turbine with a passive pitch mo-

tion (Boudreau et al., 2019b,a). More specifically, I∗
θ

and k∗
θ

are respectively set to 2 and 3.16. No

viscous friction is considered in heave and in pitch so that Dh,v = 0 and D∗
θ
= 0. The dimensionless

heaving mass is set to the same value as the dimensionless moment of inertia, i.e., m∗h = 2. Lastly, two

different values of S∗ are tested, namely 0.40 and 0.65.

The values of the heave damping and heave stiffness coefficients required to maximize the energy

extraction from the flow are estimated by using the reverse solver technique presented by Veilleux and

Dumas (2017) and used by Boudreau et al. (2019a). Based on the simulation results of optimal semi-

passive flapping-foil turbine cases reported by Boudreau et al. (2019b), these structural parameters

are initially set to D∗h = 0.5 and k∗h = 1.75, with S∗ = 0.40, and to D∗h = 0.75 and k∗h = 1.15, with

S∗ = 0.65. D∗h and k∗h are then varied around these initial values.
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The results are presented in Figs. 5.1 and 5.2. Note that the cases for which the standard deviation

of the efficiency exceeds 5% are omitted when creating the contour plots. Such large variations of

the efficiency prevent these cases from being potential turbine candidates. The corresponding areas in

Fig. 5.2 are colored in gray and the markers denoting these cases are colored in black.

A maximum efficiency of 45.4% has been reported by Boudreau et al. (2019b) for a semi-passive

flapping-foil turbine with a passive pitch motion characterized by S∗ = 0.65 and the same values of I∗
θ

,

D∗
θ

and k∗
θ

as the ones used in the present section. The current results show that even higher efficien-

cies, up to 51.0%, are reached with the fully-passive concept. Such a good performance is achieved

when the heave amplitude is of the order of one chord length, the pitch amplitude is approximately

between 70° and 95°, the phase lag between the heave and the pitch motions ranges between 95°

and 110° and the reduced frequency of the motions is around 0.2, in agreement with several previous

studies on flapping-foil turbines (Boudreau et al., 2018, 2019b,a; Kinsey and Dumas, 2014; Young

et al., 2014; Xiao and Zhu, 2014). The contours of the reduced frequency are not shown in Figs. 5.1

and 5.2 because it is essentially unaffected by the variations of D∗h and k∗h over the ranges of values

tested. Indeed, f ∗ varies between 0.195 and 0.205, with S∗ = 0.40, and between 0.200 and 0.205

with S∗ = 0.65. In fact, the frequency of the heave and pitch motions closely follows the pitch natural

frequency in vacuum:

f ∗n,θ =
1

2π

√
k∗

θ

I∗
θ

, (5.41)

which is equal to 0.2 for all the cases considered in this section. This aspect is further discussed in

Sec. 5.5.2.

It is found that the heave and pitch amplitudes are mainly affected by D∗h, while the phase lag between

the heave and the pitch motions is more affected by k∗h. The decrease of the heave and pitch amplitudes

as D∗h is increased is responsible for the greater sensitivity of CPDh,e
to D∗h than η . The maximum values

of CPDh,e
are obtained with smaller values of D∗h than the maximum values of η . Similar observations

were made by Boudreau et al. (2018) regarding their experiments on a fully-passive flapping-foil

turbine prototype characterized by significantly different structural parameter values.

Even though the topologies are similar for both values of the static moment, some differences are

observed between the cases with S∗ = 0.40 and the ones with S∗ = 0.65. For example, the maximum

efficiency obtained with S∗ = 0.40 (η = 44.6%) is smaller than the maximum efficiency obtained with

S∗ = 0.65 (η = 51.0%), in agreement with previous results obtained with a semi-passive flapping-foil

turbine with a passive pitch motion (Boudreau et al., 2019b). Despite this fact, the maximum power

coefficient available for an electric generator, CPDh,e
, is larger with S∗ = 0.40 (CPDh,e

= 1.97) than

with S∗ = 0.65 (CPDh,e
= 1.49). This is because the heave amplitude reaches much larger values with

S∗ = 0.40, namely up to 2.22 chord lengths for the operating point with the maximum value of CPDh,e
,

compared to a maximum of 1.23 chord lengths with S∗= 0.65. A compromise in terms of efficiency in

favor of a larger power coefficient at the generator may be of practical interest in a context where the

energy resource and the space available for the turbine are not limiting factors. The characteristics of
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(a) Phase lag.

(b) Heave amplitude. (c) Pitch amplitude.

(d) Efficiency. (e) Power coefficient.
Figure 5.1: Contours of various metrics with S∗ = 0.40.
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(a) Phase lag.

(b) Heave amplitude. (c) Pitch amplitude.

(d) Efficiency. (e) Power coefficient.
Figure 5.2: Contours of various metrics with S∗ = 0.65. The gray areas indicate zones where the data
is not presented because of the large variations occurring from cycle to cycle (ση ≥ 0.05).
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the cases achieving the maximum values of η and CPDh,e
in the present section are given in Tables 5.1

and 5.2, respectively, and the time evolutions of the dimensionless vorticity field for these two cases

are shown in Fig. 5.3 over one turbine cycle.

Table 5.1: Characteristics of the cases achieving the best efficiency in Figs. 5.1 and 5.2.

Parameters Values Parameters Values

Prescribed parameters Results

xp/c 0.25 H∗0 1.14

m∗h 2 Θ0 91.3°

D∗h 0.70 φ 101.7°

k∗h 1.55 η 51.0%

S∗ 0.65 CPDh,e
1.41

I∗
θ

2 Cx 3.69

D∗
θ

0 ση 0.015

k∗
θ

3.16

Table 5.2: Characteristics of the cases achieving the best power coefficient at the generator in Figs. 5.1
and 5.2.

Parameters Values Parameters Values

Prescribed parameters Results

xp/c 0.25 H∗0 2.22

m∗h 2 Θ0 97.4°

D∗h 0.25 φ 86.4°

k∗h 1.85 η 38.4%

S∗ 0.40 CPDh,e
1.97

I∗
θ

2 Cx 6.35

D∗
θ

0 ση 0.033

k∗
θ

3.16

The vast majority of the semi-passive cases with high efficiencies reported by Boudreau et al. (2019b,a)

are characterized by very regular and periodic motions from cycle to cycle, with a standard deviation

of the efficiency below 1%. The motions of the most efficient fully-passive cases are also notably
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(a) Case with η = 51.0%.

(b) Case with CPDh,e
= 1.97.

Figure 5.3: Time evolution of the dimensionless vorticity field (ω c/U∞) during one complete repre-
sentative foil oscillation for the operating points achieving the best efficiency (a) and the best power
coefficient at the generator (b) among the cases presented in Figs. 5.1 and 5.2. See Tables 5.1 and 5.2
for the values of the structural parameters characterizing these two cases. The dashed lines indicate the
streamwise position of the pitch axis, which is itself indicated with a black dot. The instant t/T = 0
in these two figures corresponds to an instant at which h = 0 and ḣ > 0.

periodic, although the standard deviation of the efficiency is slightly higher, with values exceeding

1% for several cases (see the gray markers in Figs. 5.1 and 5.2). Nevertheless, the standard deviation

of the efficiency remains below 2.5% for all the cases having an efficiency above 45%.

No leading-edge vortices (LEVs) are formed for the majority of the most efficient cases (see the

circular markers in Figs. 5.1 and 5.2), unlike what was observed experimentally at a lower Reynolds

number by Boudreau et al. (2018). In their case, the maximum efficiency was however much smaller

(η ≈ 30%). Even though high efficiencies have been achieved for cases with LEVs, they are generally

associated to considerable variations of the motions from cycle to cycle (see the gray and black square

markers in Figs. 5.1 and 5.2), as previously discussed by Boudreau et al. (2019b). Consequently, cases

with LEVs are less suitable for a turbine application.

170



The formation and ejection of LEVs is not the sole mechanism that can cause significant cycle-to-cycle

variations of the foil motions. Indeed, several cases without LEVs still have a standard deviation of

the efficiency exceeding 1% (see the gray circular markers in Figs. 5.1 and 5.2). For such cases, the

periodicity of the motions is impaired by the interaction of the foil with its own wake. The slower the

wake is convected with respect to the foil motions, the stronger is the interaction between the forces

acting on the foil and the wake flow field, and thus, the larger the cycle-to-cycle variations are expected

to be. Since the frequency of the motion essentially remains the same for all the operating points

considered in Figs. 5.1 and 5.2, the strength of the interaction between the foil and its wake depends

on the wake velocity, which itself depends on the streamwise force component acting on the foil. The

cycle-to-cycle variations are thus expected to be larger for cases with larger time-averaged streamwise

force coefficients (Cx). For example, the case achieving the largest value of CPDh,e
is characterized by

Cx = 6.35 and ση = 0.033 compared to Cx = 3.69 and ση = 0.015 for the case achieving the largest

value of η . The wake patterns of these two cases can be observed in Fig. 5.3. One can notice that

the negative vortex (blue vortex) generated around t/T = 0.25 has not traveled as far downstream at

t/T = 1 in Fig. 5.3b than in Fig. 5.3a. Its influence on the hydrodynamic force and moment on the

foil at t/T = 1 is therefore more important for the case achieving the largest value of CPDh,e
, which is

characterized by a larger standard deviation of the efficiency.

The correlation between the standard deviation of the efficiency (ση ) and the time-averaged stream-

wise force coefficient (Cx) of all the cases considered in Figs. 5.1 and 5.2 is shown in Fig. 5.4. For

the cases without LEV (see the circular markers), ση is found to remain very close to zero when Cx is

below a threshold value of approximately three, and it then increases with Cx as this threshold value

is exceeded. The standard deviation of the efficiency of the cases with LEVs (see the square markers)

is not correlated with the streamwise force coefficient because the fluctuations of the motions result

from the interaction of the foil with the LEVs and not with its wake in these cases. Note that these

two mechanisms affecting the periodicity of the forces acting on the foil also exist in the case of fully-

constrained flapping-foil turbines, as discussed by Kinsey and Dumas (2014). However, the motions

of a fully-constrained turbines are not affected by the hydrodynamic forces and moment because they

are prescribed.

As discussed by Boudreau et al. (2019b), optimal pitch motions generally require a power input on

average to be maintained. In other words, CPθ
< 0 for these cases. This is especially true in the

absence of LEVs (Kinsey and Dumas, 2014) since the suction at the foil surface associated with the

presence of LEVs can positively contribute to CPθ
(Veilleux and Dumas, 2017; Zhu and Peng, 2009).

In the present study, all the cases appearing in Figs. 5.1 and 5.2 are characterized by a negative value

of CPθ
and a positive value of CPh . Since no actuator in pitch nor mechanical links coupling both

degrees of freedom together are present in a fully-passive flapping-foil turbine, the power required by

the pitch motion must necessarily be transferred from the heave motion to the pitch motion via the

inertial coupling terms, i.e., the terms involving the static moment in Eqs. 5.6 and 5.7. With the pitch

axis located at the quarter-chord point (xp/c = 0.25) and the types of motions characterizing the cases
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Figure 5.4: Correlation between the standard deviation of the efficiency and the time-averaged stream-
wise force coefficient. See Figs. 5.1 or 5.2 for the legend. The cases having a standard deviation of
the efficiency exceeding 0.05 are not shown.

presented in Figs. 5.1 and 5.2, such a power transfer is only possible when S∗ > 0. This implies that

the center of mass has to be located downstream of the pitch axis.

Since the power transfer through the inertial coupling is proportional to the static moment (see Eqs. 5.12

and 5.18), a larger value of S∗ allows for a more negative value of CPθ
. It explains why the pitch am-

plitude is smaller for the optimal operating points with S∗ = 0.40 than with S∗ = 0.65. For example,

CPθ
= −1.70 and Θ0 = 91.3°, for the best efficiency point with S∗ = 0.65, while CPθ

= −1.07 and

Θ0 = 80.8°, for the best efficiency point with S∗ = 0.40.

5.5.2 Effective parameters

Heave dynamics

For all the cases considered in the previous section, m∗h is kept constant and is equal to 2. The values

of the heave stiffness coefficient (k∗h) that result in an optimal performance in Fig. 5.2 (k∗h ≈ 1.55) are

specific to this heaving mass value. Indeed, Fig. 5.5 shows that efficiencies comparable to the highest

ones obtained with m∗h = 2 can also be achieved with different values of m∗h, but for significantly

different values of k∗h. Actually, the maximum efficiency obtained in the present study, namely 53.8%,

is achieved when m∗h = 1 and k∗h = 0. The values of the other structural parameters characterizing

all the cases analyzed in this section are presented in Table 5.3. The error bars indicate the standard

deviation of the metric considered and they are only shown when the standard deviation exceeds the

threshold values listed at the end of Sec. 5.4.2.

Changing the value of m∗h, without adjusting any other parameter, results in a different equilibrium

for the equation of motion in heave (Eq. 5.6), and thus a different turbine performance. However, a

variation of m∗h can be compensated by a variation of k∗h when the heave motion is nearly sinusoidal.
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Figure 5.5: Efficiency as a function of the heave stiffness coefficient for various values of m∗h.

Table 5.3: Values of the structural parameters that are kept constant to analyze the heave dynamics.

Parameters Values

D∗h 0.75

S∗ 0.65

I∗
θ

2

D∗
θ

0

k∗
θ

3.16

Under such a condition, the heave position and acceleration can be roughly approximated as:

h(t)≈ H∗0 sin(2π f ∗ t∗) , (5.42)

ḧ∗(t)≈−(2π f ∗)2 H∗0 sin(2π f ∗ t∗) , (5.43)

where t∗ = t U∞/c. Using these approximations, the inertial and stiffness terms appearing in Eq. 5.6

can be combined together into a single effective parameter:

m∗h ḧ∗+ k∗h h≈ λ
∗
h h , (5.44)

where:

λ
∗
h = k∗h− (2π f ∗)2m∗h . (5.45)

We call λ ∗h the effective heave stiffness coefficient. This approach follows the ideas proposed by Shiels

et al. (2001) and by Boudreau et al. (2019a) to analyze the dynamics of a cylinder undergoing vortex-

induced vibrations (VIVs) and the pitch dynamics of a semi-passive flapping-foil turbine, respectively.
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When plotting different metrics against the parameter λ ∗h introduced in Eq. 5.45, as is done in Fig. 5.6,

instead of the parameter k∗h, as is done in Fig. 5.5, one finds that the heave dynamics effectively

depends on λ ∗h , the effective heave stiffness, rather than depending on two independent parameters,

namely m∗h and k∗h. More specifically, the maximum amplitudes and efficiency are achieved around a

specific value of λ ∗h ≈−2, regardless of the individual values of m∗h and k∗h. This implies that m∗h and

k∗h can be scaled while preserving a similar dynamics, as long as λ ∗h and the other structural parameters

listed in Table 5.3 are kept constant. This is demonstrated in Sec. 5.5.3.

(a) Pitch amplitude. (b) Heave amplitude.

(c) Phase lag. (d) Efficiency.

Figure 5.6: Various metrics characterizing the foil dynamics as functions of λ ∗h for various values of
m∗h. See Table 5.3 for the values of the other structural parameters.

The data obtained with the different heaving mass values is more spread out when leading-edge vor-

tices (LEVs) are formed and ejected from the foil surface. Nevertheless, we note that the irregularity

of the foil motions and the smaller efficiency characterizing these cases make them less appropriate

for a turbine application. For the cases without LEVs, the discrepancies between the results obtained

with the different values of mh are due to the fact that the heave motions are not pure sinusoidal mo-
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tions. Therefore, the approximations given by Eqs. 5.42 and 5.43 are not exact. The less accurate

these approximations are, the less the parameter λ ∗h is relevant and the more the inertial term and the

stiffness term in Eq. 5.6 are independent from each other. Actually, the heave motion approaches a

pure sinusoidal motion as m∗h is increased, while it deviates from it as m∗h approaches zero. Represen-

tative examples of the time evolutions of the heave position and acceleration over one complete foil

oscillation are shown in Fig. 5.7. The heave acceleration is presented to emphasize the differences

between the heave motions and a pure sinusoidal motion.

Figure 5.7: Time evolution of the dimensionless heave position (h∗) and acceleration (ḧ∗) over one
foil oscillation of period T for two different values of m∗h.

As is the case in Sec. 5.5.1 when varying k∗h and D∗h, the frequency of the foil motions is essentially

unaffected when the heaving mass is varied. It only differs from the pitch natural frequency, which is

equal to 0.2, by less than 2.5% for all the cases presented in Fig. 5.6.

The fact that the heave and pitch amplitudes and the efficiency are maximized when λ ∗h is negative

implies that the heave natural frequency in vacuum:

f ∗n,h =
1

2π

√
k∗h
m∗h

, (5.46)

must be smaller than the frequency of the foil motion since Eq. 5.45 can also be written in the form:

λ
∗
h = 4π

2 m∗h
(

f ∗n,h
2− f ∗2

)
. (5.47)

Based on this other form for the definition of λ ∗h and the fact that the heave dynamics essentially

depends on this single effective parameter, it is not surprising to observe in Fig. 5.8 that the efficiency

data do not collapse to a single curve when plotted against f ∗n,h for different values of m∗h. The same

is true for the other characteristics of the foil motions, namely H∗0 , Θ0, φ . However, the next section

demonstrates that this does not hold true regarding the pitch dynamics.

Pitch dynamics

In this section, I∗
θ

and k∗
θ

are varied while all the other structural parameters remain constant. The

values of these fixed parameters are given in Table 5.4.
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Figure 5.8: Efficiency as a function of the heave natural frequency for various values of m∗h.

Table 5.4: Values of the structural parameters that are kept constant to analyze the pitch dynamics.

Parameters Values

m∗h 2

D∗h 0.75

k∗h 1.35

S∗ 0.65

D∗
θ

0

The pitch motion is also similar to a sinusoidal motion and it approaches a pure sinusoid as I∗
θ

in-

creases, as shown in Fig. 5.9. The pitch angle and the pitch acceleration can therefore be approximated

as:

θ(t)≈Θ0 sin(2π f ∗ t∗−φ) , (5.48)

θ̈
∗(t)≈−(2π f ∗)2

Θ0 sin(2π f ∗ t∗−φ) . (5.49)

As a result, the inertial and stiffness terms appearing in Eq. 5.7 can be combined together into the

following parameter:

I∗θ θ̈
∗+ k∗θ θ ≈ λ

∗
θ θ , (5.50)

where:

λ
∗
θ = k∗θ − (2π f ∗)2I∗θ , (5.51)

which can also be written in the following form:

λ
∗
θ = 4π

2 I∗θ
(

f ∗n,θ
2− f ∗2

)
. (5.52)
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λ ∗
θ

actually corresponds to the effective pitch stiffness that was proposed by Boudreau et al. (2019a) in

their study of a semi-passive flapping-foil turbine with a passive pitch motion and a prescribed heave

motion.

Figure 5.9: Time evolution of the pitch angle (θ ) and the dimensionless pitch acceleration (θ̈ ∗) over
one foil oscillation of period T for two different values of I∗

θ
. Note that θ is given in radians.

However, Fig. 5.10 shows that the frequency of the foil motions ( f ∗) is essentially dictated by the pitch

natural frequency in vacuum ( f ∗n,θ ), especially for the largest values of I∗
θ

. f ∗ slightly deviates from

f ∗n,θ as the moment of inertia decreases. This is because the surrounding fluid affects the pitch natural

frequency, and its relative importance increases as I∗
θ

and k∗
θ

decrease. Nevertheless, f ∗ remains very

close to f ∗n,θ . Consequently, λ ∗
θ

approaches zero, no matter the values of I∗
θ

and k∗
θ

. The effective pitch

stiffness (λ ∗
θ

) therefore becomes inappropriate to characterize the pitch dynamics.

Figure 5.10: Frequency of the foil motions as a function of the pitch natural frequency for various
values of I∗

θ
. The dotted line corresponds to the value of the pitch natural frequency. See Table 5.4 for

the values of the other structural parameters.

Besides, variations of I∗
θ

and k∗
θ

do not only affect the inertial and stiffness terms in the equation of
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motion in pitch (Eq. 5.7), but also the moment coefficient and the inertial coupling term because of the

resulting variations of the frequency of the foil motions. In other words, a specific balance between all

the terms involved in the equation of motion in pitch is only expected to be maintained if the frequency

of the foil motions remains the same. It therefore appears more logical to present the pitch dynamics

as a function of the pitch natural frequency instead of λ ∗
θ

. This is shown in Fig. 5.11, which confirms

that the pitch dynamics indeed depends on f ∗n,θ since the data essentially collapse to single functions

of f ∗n,θ regardless of the value of I∗
θ

.

(a) Pitch amplitude. (b) Heave amplitude.

(c) Phase lag. (d) Efficiency.

Figure 5.11: Various metrics characterizing the foil dynamics as functions of the pitch natural fre-
quency for various values of I∗

θ
.

At first glance, this observation appears to contradict the conclusion drawn by Boudreau et al. (2019a)

that the pitch dynamics depends on the effective pitch stiffnes coefficient (λ ∗
θ

) rather than f ∗n,θ for a

semi-passive flapping-foil with a prescribed heave motion. The reason is that the frequency of the

foil motions is dictated by the prescribed heave motion in the case of their semi-passive turbine, and

is thus not influenced by I∗
θ

and k∗
θ

. This independence of the frequency to the inertial and stiffness
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parameters is analogous to what is observed in heave in the present study.

5.5.3 Scaled inertial and stiffness properties

The designer of a real fully-passive flapping-foil turbine does not have a complete freedom regarding

the values of m∗h and I∗
θ

due to several practical constraints, such as the obvious fact that the turbine

structure must be able to withstand the forces at play. It is therefore valuable to have the possibility

to properly scale the heave and pitch stiffness coefficients depending on the inertial properties of a

specific turbine design. Since it is found that the frequency of the foil motions follows the pitch natural

frequency, that it is not much influenced by m∗h and k∗h and that the heave dynamics is governed by the

effective heave stiffness (λ ∗h ), the values of k∗h and k∗
θ

required to maximize the turbine performance

can be determined in advance for different sets of m∗h and I∗
θ

values.

Following this procedure, several simulations have been carried out by varying m∗h from 1.018 to 50

and I∗
θ

from 0.5 to 50. The analysis presented in the current section are conducted around a slightly

different operating point than in the previous two sections. The static moment is still S∗ = 0.65, but

the heave damping coefficient is D∗h = 0.825. Note that no LEVs are formed for any of the cases

analyzed in the current section.

First, Fig. 5.12 shows the efficiency as a function of m∗h. For each value of m∗h, k∗h is set so that

λ ∗h = −1.6 by assuming a priori that the frequency of the foil motions will remain equal to the pitch

natural frequency in vacuum, namely 0.2 for these cases. This procedure is similar to what a turbine

designer would have to do in practice. All the other structural parameters are kept constant. Note

that the smallest heaving mass considered (m∗h = 1.018) corresponds to a case without heave spring

(k∗h = 0).

Figure 5.12: Efficiency as a function of the dimensionless heaving mass. The value of k∗h is set to
obtain λ ∗h = −1.6 by assuming that the frequency of the foil motions is equal to the pitch natural
frequency ( f ∗n,θ = 0.20). The values of the other parameters are: D∗h = 0.825; S∗ = 0.65; I∗

θ
= 2;

D∗
θ
= 0; k∗

θ
= 3.16.

It is found that the efficiency decreases as m∗h is increased, in agreement with the results shown in

Fig. 5.6d. Nevertheless, it still remains above 40% for all the values of m∗h tested. As in Figs. 5.6a

and 5.6b, the heave and pitch amplitudes also follow similar trends, i.e., they decrease with an increase

of m∗h. However, the frequency of the foil motions remains almost unchanged, as expected, with a
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relative difference of only 2% between the case with the smallest heaving mass (m∗h = 1.018) and the

largest heaving mass (m∗h = 50) tested.

The effect of varying I∗
θ

and kθ , while maintaining a pitch natural frequency of f ∗n,θ = 0.2 and keeping

all the other structural parameters constant, is shown in Fig. 5.13a for two different values of m∗h.

The variations of the efficiency are less pronounced when varying I∗
θ

than when varying m∗h, except

when I∗
θ

approaches zero. Indeed, the efficiency decreases by 7%, in relative difference, when I∗
θ

is

decreased from 1 to 0.5 with m∗h = 2. This behavior is partly explained by the fact that the frequency

deviates from the pitch natural frequency as I∗
θ

approaches 0, as shown in Fig. 5.13b. As a result, the

value of λ ∗h is not equal to −1.6, as desired, for such cases. For example, it is rather around −2 when

m∗h = 2 and Iθ = 0.5∗. The increase of the frequency of the foil motions as I∗
θ

is decreased is less

pronounced when the heaving mass is larger, and thus the efficiency decrease is less important.

(a) Efficiency. (b) Frequency of the foil motions.

Figure 5.13: Efficiency as a function of the dimensionless moment of inertia for two different values
of m∗h and k∗h. The value of k∗

θ
is set to obtain a pitch natural frequency of f ∗n,θ = 0.20. The values of

the other parameters are: D∗h = 0.825; S∗ = 0.65; D∗
θ
= 0.

Despite the different effects observed when varying m∗h and I∗
θ

, the current results still confirm that an

optimal performance can be achieved over large ranges of m∗h and I∗
θ

values, provided that k∗h and k∗
θ

are adjusted adequately, thereby leaving a lot of flexibility to the designer of such devices.

The fully-passive flapping-foil turbine prototype designed and tested by Boudreau et al. (2018) con-

sisted of a steel blade oscillating in water. It had a heaving mass of about m∗h = 3 and a moment of

inertia of about I∗
θ
= 0.1. The prototype was designed in order to minimize these values, while ensur-

ing that it could withstand the forces generated by the fluid flow. It is therefore expected that smaller

values of m∗h and I∗
θ

would be hard to reach in practice for a similar hydrokinetic turbine. In any case,

the current results suggest that the dimensionless moment of inertia should exceed 0.5 to maximize

the turbine performance, in agreement with the recommendation made by Boudreau et al. (2019a) for

a semi-passive flapping-foil turbine with a passive pitch motion. The addition of a flywheel would

therefore probably be required. Regarding the dimensionless heaving mass, the present work suggests

that it should be kept to a minimum. The flywheel should therefore be designed to reach a sufficient

value of I∗
θ

, while also not resulting in a too large increase of m∗h.

180



5.5.4 Impact of nonzero pitch damping

So far, an idealized frictionless turbine has been considered (D∗h,v = 0 and D∗
θ
= 0). Nevertheless,

the effect of the heave damping coefficient has already been studied in Sec. 5.5.1. The presence of

undesired viscous friction in heave (D∗h,v 6= 0) would not affect the foil dynamics if the total heave

damping coefficient (D∗h) remains constant. It would simply reduce the amount of power available for

an electric generator since some power would be lost as heat. In this section, we investigate the effects

of having a nonzero pitch damping coefficient. As discussed in Sec. 5.4.1, the energy dissipated in

the pitch damper is considered to be unavailable for the electric generator and is therefore lost as heat.

Note that no LEVs are formed for any of the cases analyzed in this section, no matter the value of D∗
θ

.

The large fluctuations occurring from cycle to cycle for some of the cases considered in this section

rather stem from the interaction of the foil with its own wake, as discussed in Sec. 5.5.1.

One of the most efficient operating points presented in Fig. 5.2 with S∗ = 0.65 is first selected to

analyze the effects of D∗
θ

, namely the case with D∗h = 0.75 and k∗h = 1.35. It is characterized by

η = 50.7% and CPDh,e
= 1.36 when D∗

θ
= 0. Fig. 5.14 shows that an increase of D∗

θ
results in a linear

decrease of the heave and pitch amplitudes up to D∗
θ
= 0.04. Beyond this critical pitch damping

coefficient, the foil motions are completely damped even though large perturbations are used as the

initial conditions, as mentioned in Sec. 5.4.3. Regarding the phase lag between the heave and the pitch

motions (φ ), it is not significantly affected by an increase of the pitch damping. It only increases by

2° when D∗
θ

increases from 0 to 0.04.

Figure 5.14: Heave and pitch amplitudes as functions of the dimensionless pitch damping coefficient.
The values of the other parameters are: m∗h = 2; D∗h = 0.75; k∗h = 1.35; S∗ = 0.65; I∗

θ
= 2; k∗

θ
= 3.16.

The consequence of the heave and pitch amplitude decreases is that the hydrodynamic power coeffi-

cient (CPhydro) and the hydrodynamic efficiency (ηhydro), which measure the power extracted from the

flow, decrease as D∗
θ

increases. This is shown in Fig. 5.15. The fact that the differences between

the values of CPhydro and CPDh,e
increase as D∗

θ
increases implies that the amount of power lost as heat

through the pitch damping increases linearly with D∗
θ

, in spite of the reduction of the pitch amplitude.

As a result, the power available for an electric generator (CPDh,e
) and the efficiency (η) decrease more

rapidly than the total power extracted from the flow (CPhydro) and the corresponding hydrodynamic effi-

ciency (ηhydro). In the case of a fully-constrained turbine, only the power lost as heat due to the friction
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in pitch would affect the power available for an electric generator since the same foil motions would be

constrained to follow specific motions no matter the amount of friction in the setup. The fully-passive

flapping-foil turbine concept is therefore more sensitive to friction than the fully-constrained concept.

(a) Efficiencies (see Eqs. 5.24 and 5.25). (b) Power coefficients (see Eqs. 5.8 and 5.23).

Figure 5.15: Comparison of the performance metrics based on the energy extracted from the flow
and based on the energy available for the electric generator as functions of the dimensionless pitch
damping coefficient.

The effect of the pitch damping is also analyzed for two additional sets of structural parameters taken

from the parametric study with S∗= 0.40. Both sets of parameters are chosen for their larger heave and

pitch amplitudes as well as their high value of CPDh,e
, when D∗

θ
= 0. The heave and pitch amplitudes

along with η and CPDh,e
obtained with different values of D∗

θ
are shown in Fig. 5.16 for the three sets

of structural parameters. The error bars indicate the standard deviation of the corresponding metric.

Again, they are only shown when the standard deviation exceeds the threshold values listed at the end

of Sec. 5.4.2 for the sake of clarity.

The amplitudes, the efficiency and the power coefficient also considerably decrease as D∗
θ

increases

for the two additional sets of structural parameters. Furthermore, the motions are again completely

damped once critical values of D∗
θ

are exceeded. However, these critical D∗
θ

values are higher for the

two additional sets of parameters characterized by larger amplitudes when D∗
θ
= 0. It is also found that

the cases characterized with large amplitudes when D∗
θ
= 0 offer the possibility of maintaining large

power coefficients for larger values of D∗
θ

. Even though D∗
θ

should be minimized, it is impossible to

completely eliminate it on a real turbine. In the hypothetical case that the minimum value of D∗
θ

would

be 0.06, the set of parameters denoted with the red markers should obviously be preferred over the

other two. Nevertheless, it is worth noting that D∗
θ

was around 0.005 for the fully-passive flapping-foil

turbine prototype tested by Boudreau et al. (2018). Based on this information, the presence of nonzero

pitch damping is therefore not expected to be problematic in practice since the current results show

that the effects of D∗
θ

are minor with such a small amount of friction. It also suggests that parametric

studies carried out with an idealized frictionless turbine are relevant.

Interestingly, the presence of pitch damping considerably reduces the level of fluctuations occurring

from cycle to cycle. This is especially significant regarding the set of parameter denoted with red
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(a) Heave amplitude. (b) Pitch amplitude.

(c) Efficieny. (d) Power coefficient.

Figure 5.16: Variations of various metrics as D∗
θ

is increased from 0 to 0.10 for three sets of structural
parameters. Fixed parameters: m∗h = 2; I∗

θ
= 2; k∗

θ
= 3.16.

markers in Fig. 5.16. This is due to a decrease of the maximum streamwise force coefficient as the

heave and pitch amplitudes decrease, and thus to a weaker interaction of the foil with its own wake.

5.6 Conclusion

The fully-passive flapping-foil turbine concept, for which the foil is elastically supported both in heave

and in pitch, has been investigated in this work through two-dimensional numerical simulations at a

Reynolds number of 3.9×106. Based on the reverse solver technique proposed by Veilleux and Dumas

(2017) and optimal semi-passive turbine cases reported by Boudreau et al. (2019b,a), initial sets of

structural parameters have been determined around which a parametric study has been conducted.

Cases characterized by self-sustained periodic motions without deep dynamic stall have been found,

and efficiencies exceeding 50% have been achieved. This success demonstrates the great potential

of the fully-passive concept since it matches the best performance reported for the fully-constrained

flapping-foil turbine concept (Kinsey and Dumas, 2014; Young et al., 2014; Xiao and Zhu, 2014), but

with a significant improvement in terms of the structural simplicity of the device.

This study shows that the heave damping coefficient (D∗h), which models the effect of an electric gen-
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erator, mainly affects the heave and pitch amplitudes. An increase of D∗h is associated to a decrease of

the amplitudes. Regarding the static moment (S∗), a decrease from S∗ = 0.65 to S∗ = 0.40 can result

in a considerable increase of the heave amplitude and the power coefficient at the generator, with a

maximum value reaching CPDh,e
= 1.97 with S∗ = 0.40 compared to 1.49 with S∗ = 0.65. However,

the maximum efficiency decreases from 51.0% to 44.6% as S∗ is decreased from 0.65 to 0.40. There-

fore, different sets of structural parameter values would be selected depending on the specific turbine

deployment scenario, i.e., depending on which performance metric one seek to optimize.

Taking into consideration that the passive heave motion is similar to a sinusoidal motion, the heav-

ing mass and the heave stiffness coefficient can be combined into a single parameter referred to as

the effective heave stiffness (λ ∗h ). The current results prove that the heave dynamics is essentially

independent of variations of m∗h and k∗h, as long as λ ∗h is kept constant. Even though Boudreau et al.

(2019a) successfully used an equivalent effective pitch stiffness to characterize the pitch dynamics

of an elastically-supported foil with a prescribed sinusoidal heave motion, it is impractical with the

present fully-passive flapping-foil turbine. This is because the frequency of the fully-passive flapping-

foil motions closely follows the pitch natural frequency ( f ∗n,θ ). Therefore, it is more convenient to

characterize the pitch dynamics with f ∗n,θ . Starting from an optimal operating point, a high perfor-

mance can be maintained over large ranges of m∗h and I∗
θ

values if k∗h and k∗
θ

are scaled so that λ ∗h and

f ∗n,θ are kept constant.

The presence of viscous friction in pitch (D∗
θ
> 0) can be highly detrimental to the turbine performance

and even completely damp the foil motions if D∗
θ

is large enough. Nevertheless, the effect remains

small for a practicable level of friction (Boudreau et al., 2018). The decrease in efficiency and power

coefficient as D∗
θ

increases stems from two different effects: a fraction of the energy extracted from

the flow being lost as heat instead of being available for the electric generator and an alteration of the

foil motions, which directly affects the amount of energy extracted from the flow.

The frequency of the foil motions is dictated by the pitch dynamics for all the cases considered in this

study. However, the heave dynamics can also govern the frequency of passive heave and pitch motions

with different sets of structural parameters (e.g. Poirel and Mendes (2014)). It would be interesting to

investigate what would be the consequences of such a change on the heave and pitch dynamics as well

as on the energy-extraction performance of the device. Furthermore, the dynamics of fully-passive

flapping-foils is expected to be affected by some practical aspects that have not been investigated so

far, such as the effects of blockage and tip losses. These elements should be addressed in the future.
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Appendix

5.A Fluid-solid coupling algorithm in pseudocode

For the sake of conciseness, the heave position and pitch angle as well as the residuals of the corre-

sponding equations of motion are written in vector form:

p =

h

θ

 , R =

Ry

Rθ

 . (5.53)

Beginning of the nth time step

1. Execution of the solid solver for the ith outer loop:

IF i = 1 (first outer loop) THEN

a. Initial guess for the position vector at the current time step (pn) using the explicit second-

order Adams-Bashforth scheme:

pn
1 = pn−1 +

∆t
2
(
3 ṗn−1− ṗn−2) ; (5.54)

ELSE IF i = 2 (second outer loop) THEN

a. Initial guess for the 2×2 Jacobian matrix:

Jn
2 = Jn−1

2 ; (5.55)

b. Computation of the new position vector:

pn
2 = pn

1− Jn−1

2 Rn
1 , (5.56)

where Jn−1

2 is the inverse of the Jacobian matrix Jn
2;
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ELSE IF i > 2 (subsequent outer loops) THEN

a. Estimation of the new Jacobian matrix using Broyden’s method:

Jn
i = Jn

i−1 +
∆Rn− Jn

i−1 ∆pn

‖∆pn‖2 ∆pnT
, (5.57)

where:

∆p = pn
i−1− pn

i−2 , (5.58)

∆R = Rn
i−1−Rn

i−2 , (5.59)

∆pnT
is the transpose of vector ∆pn and ‖∆pn‖ is the norm of vector ∆pn;

b. Computation of the new position vector:

pn
i = pn

i−1− Jn−1

i Rn
i−1 , (5.60)

where Jn−1

i is the inverse of the Jacobian matrix Jn
i ;

END IF

2. Foil displacement and rotation according to the updated position vector (pn
i );

3. Check if the solid convergence criteria are met:

IF
( |hn

i −hn
i−1|

c
< 10−8 AND

|θ n
i −θ n

i−1|
π/2

< 10−8 AND i > 2
)

THEN

a. Execution of the fluid solver: perform fluid iterations until the fluid residuals convergence

criteria are met;

b. Incrementation of the time step and return to step 1.

ELSE THEN

a. Execution of the fluid solver: perform fluid iterations until the values of the transverse force

coefficient and the moment coefficient with the updated position vector are converged;

b. Computation of the velocity and acceleration vectors using the updated position vector and

Eqs. 5.35 to 5.38;

c. Computation of the residuals:

Rn
yi = mh ḧn

i +S
(

θ̈
n
i cosθ

n
i − θ̇ n

i
2 sinθ

n
i

)
+Dh ḣn

i + kh hn
i −Fn

yi , (5.61)

Rθ
n
i = Iθ θ̈

n
i +S ḧn cos(θ n

i )+Dθ θ̇
n
i + kθ θ

n
i −Mn

i ; (5.62)

d. Incrementation of the outer loop and return to step 2.

END IF
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Conclusion

6.1 Retrospective

In addition to the conclusions presented at the end of each paper, a summary of the main conclusions

of the four papers is also presented in Sec. 1.6. They are therefore not all repeated here. Instead, we

take a look back at the objectives of the present work that are listed in Sec. 1.5, namely:

1. Proving the feasibility and testing the power-generation performance of the fully-passive con-

cept experimentally;

2. Investigating the potential of the semi-passive turbine concept with a passive pitch motion;

3. Improving our understanding of the dynamics of passive pitch motions;

4. Using this new knowledge to optimize flapping-foil turbines relying on passive motions.

Each of these four objectives have been addressed by the different papers forming this thesis.

Paper I proves that it is possible to design a fully-passive flapping-foil turbine prototype achieving a

significant efficiency. This has been accomplished despite the presence of several detrimental aspects

that are generally ignored in the literature, such as the tip losses, the presence of viscous and Coulomb

friction and the drag of the components holding the blade.

Paper II demonstrates that the performance of a semi-passive flapping-foil turbine with a passive

pitch motion can match the best performance obtained with fully-constrained turbines. Moreover, it

highlights the important role of the inertial coupling between the heave and pitch degrees of freedom,

and thus of the static moment, that is responsible for providing the necessary power to maintain an

optimal pitch motion.

Paper III extends our knowledge of the dynamics of passive pitch motions by showing that the moment

of inertia and the pitch stiffness coefficient can be combined into a single parameter. Consequently,

the turbine performance is essentially independent of the moment of inertia, provided that the pitch

stiffness coefficient is properly scaled. Also, this paper highlights the fact that the fluid dynamics,

and therefore the overall energy extraction from the flow by the turbine, is governed by the motion
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of the foil surface, not the motion of the pitch axis. However, the motion of the pitch axis and the

hydrodynamic force and moment acting at this point are important regarding the dynamics of the

elastically-supported foil. As a result, a similar turbine performance can be achieved with different

positions of the pitch axis ranging from the leading edge to the three-quarter-chord point as long as

the structural parameters are adjusted so that a similar motion of the foil surface is maintained.

Using the knowledge gained from Papers II and III, Paper IV shows that efficiencies of the order of

50% can been achieved with a fully-passive flapping-foil turbine. This exceeds the best efficiency

values previously reported in the literature for fully-constrained turbines.

The present thesis therefore fulfills its overall objective of determining the power-generation potential

of flapping-foil turbines with passive motions as well as the conditions required to maximize the

turbine performance.

6.2 Future works

Despite the great progresses that have been made with the present study, a lot of works remains to be

done before bringing the fully-passive flapping-foil turbine to a commercial stage. This section briefly

presents some of the challenges and possible research avenues.

Except for the experiments presented in Paper I, an idealized two-dimensional (2D) foil in an uncon-

fined environment has been considered throughout the present study. However, it is well known that

the forces and moment acting on a blade having a finite span length differ from those acting on a 2D

foil (Anderson, 1991). For example, Kinsey and Dumas (2012b) showed that the efficiency decreases

by almost 30% because of the tip losses for a fully-constrained flapping-foil turbine with a blade span

length of five chord lengths (b = 5c) compared to a 2D foil. A flapping-foil turbine with passive mo-

tions is expected to be even more sensitive to these 3D effects since a change in the hydrodynamic

forces and moment also gives rise to a change in the foil motions. This statement has been confirmed

with some preliminary tests conducted with the fully-passive turbine prototype presented in Paper I

and a few numerical simulations. In fact, the optimal set of structural parameter values is expected

to depend on the blade aspect ratio. And even if the optimal foil motions determined in 2D could

be reproduced with a finite span blade by adequately adjusting the structural parameters, the turbine

performance will always remain smaller than its 2D counterpart. Consequently, the development of

techniques aiming at minimizing the tip losses, such as the use of well-designed end plates, should be

considered.

A similar comment can be made regarding the confinement, which can be non negligible in a real

environment either because of the finite size of the river or the presence of neighbor turbines. The

blockage effects also affect the forces and moment acting on a flapping-foil turbine (Gauthier et al.,

2016), and thus can alter the passive foil motions if the structural parameters are kept constant. More

specifically, the influence of blockage on the dynamic stall phenomenon should be investigated in
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more details.

A certain level of robustness of the foil’s passive motions is necessary for the semi-passive or fully-

passive flapping-foil turbine concepts to become viable. Investigating the sensitivity of the foil’s

dynamics to different kinds of perturbations in the flow is therefore crucial. Such perturbations can

be related to the turbulence level in the upstream flow (incoherent flow structures), the presence of

another turbine upstream (coherent flow structures) or the presence of shear in the upstream flow,

which could arise due to the marine boundary layer or the specific bathymetry of the site considered

for example. Iverson (2018) studied some of these aspects using the same turbine prototype and

experimental facilities as those presented in Paper I. He showed that the foil passive motions are not

significantly affected when increasing the turbulence intensity of the freestream flow from about 2%

to 20% and that the turbine performance is increasing with the turbulence intensity. However, the

foil motions and the turbine performance are much more sensitive to coherent perturbations produced

by placing a fully-constrained flapping-foil turbine 6.5 chord lengths1 upstream of the fully-passive

flapping-foil turbine. Still, more works are required in that regard. The results could have been

different in a less confined environment or with a greater distance between the two turbines. Moreover,

these tests have been conducted with only a few operating points, based on the baseline case presented

in Paper I. It would be interesting to repeat these experiments with the optimal cases reported in Paper

IV, which rely on a different physics. Indeed, the operating points presented in Paper IV are subject

to a coupled-mode flutter instability instead of a divergence instability. Furthermore, no LEVs are

formed for several of the optimal cases reported in Paper IV, unlike the baseline case presented in

Paper I.

If the semi-passive and fully-passive turbine concepts considered in this thesis happen to be too sensi-

tive to perturbations in the freestream flow, other flapping-foil turbine concepts with passive motions

could be considered. One possibility would be to keep the mechanism coupling both degrees of free-

dom together in order to constrain the phase lag between the heave and the pitch motions, but to

remove the crank mechanism and to use a simple uncontrolled linear electric generator. As a result,

the shape and the frequency of the heave motion would be unconstrained while the characteristics of

the pitch motion would be directly related to the heave motion. The increased complexity of such a

device compared to the fully-passive concept could be justified if imposing a specific phase lag would

allow the turbine to operate in a broader range of conditions and be less sensitive to perturbations.

The optimization of the turbine structural and electrical design is another critical aspect that has not

been investigated in details so far. For example, a swing-arm design (e.g. Huxham et al. (2012);

Sitorus and Ko (2019)) would require less bearings than a design relying on a heaving carriage (e.g.,

the prototype presented in Paper I), thereby reducing the number of moving components and the

undesired friction in heave in addition to avoiding the challenge of precisely aligning both ends of

the heaving carriage. Moreover, the actual dynamics of the electric generator connected to the turbine

should be considered for the final design of a full-scale turbine instead of an idealized damping law.

1This distance is measured between the pitch axis of the two turbines.
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The dynamics of the energy sink would also be different if the turbine would be used as a pump instead

of being directly connected to an electric generator.

A turbine extracting the energy of tidal streams would need to operate with the flow coming from two

directions. Consequently, the use of a symmetric foil profile with a pitch axis positioned at the mid-

chord point appears as a logical choice in that situation. Some work would be required to optimize

this specific configuration. For example, if a flat plate is chosen as the foil profile, some flexibility

could be beneficial to improve the turbine performance, especially if it can delay stall.

Lastly and on a more fundamental perspective, a better understanding of dynamic stall, unsteady

separation as well as the formation and ejection of leading-edge vortices would be very valuable since

the best efficiencies of the semi-passive and fully-passive turbines concepts are often obtained when

the foil is on the edge of stalling.
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Appendix A

Additional considerations regarding the
experiments presented in Paper I

A.1 End-effects of the eddy-current brake

By extrapolating the data obtained during the calibration of the eddy-current brake for larger values

of lm (see Fig. 2.B.2), it has been estimated that an asymptote would be reached when lm reaches

35 mm. Based on this estimation, it is expected that the heave damping coefficient decreases when

the amplitude in heave is such that the distance between the center of the magnets and the end of

the sliding plate in the heave direction becomes smaller than 35 mm. This happens when the heave

amplitude exceeds 90 mm. Nevertheless, the maximum heave amplitude that has been reached for all

the cases considered in Paper I is 77.9 mm (1.536c). Consequently, these eddy-current brake “end

effects” have not affected the experimental results.

A.2 Estimation of the uncertainties

This appendix complements the information presented in Sec. 2.B of Paper I. The reader is therefore

invited to read Sec. 2.B again before proceeding with the following appendix.

A.2.1 Preliminary concepts

This first section summarizes some basic concepts about the estimation of the uncertainties that are

discussed in the book of Coleman and Steele (2009). The interested reader is referred to this reference

for more details.

The standard uncertainty of a given variable X , referred to as uX , is defined as: ”an estimate of the

standard deviation of the parent population from which a particular elemental error originates” (Cole-

man and Steele, 2009). From a standard uncertainty (uX ), an expanded uncertainty (UX ) is estimated

by considering a certain confidence level that allows one to stipulate that the true value of a variable
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X falls within the interval:

Xbest±UX , (A.1)

where the mean value of X is often taken as Xbest. The relation between the standard uncertainty

and the expanded uncertainty depends on the statistical distribution of the error. For example, if one

considers an error source following a Student’s t-distribution, the expanded uncertainty is given by:

UX = tν ,% ux , (A.2)

where the subscript % is the confidence level and the subscript ν is the number of degrees of freedom.

Considering that N is the sample population, or the number of times the same measurement has been

taken:

ν = N−1 . (A.3)

For example, the expanded uncertainty of a variable X that has been measured 51 times with a confi-

dence level of 95% is given by:

UX = t50,95% ux = 2.009ux . (A.4)

When a variable r is a function of J other variables:

r = r(X1,X2, . . . ,XJ) , (A.5)

the uncertainty of r, Ur, is estimated by propagating the uncertainties of each variable on which r

depends. One well known method is the Taylor Series Method for which the expanded uncertainty of

the result (Ur) is given by:

U2
r =

J

∑
i=1

(
∂ r
∂Xi

)2

U2
Xi
, (A.6)

where UXi is the expanded uncertainty of the ith variable. This formulation of the Taylor Series Method

propagation equation is obtained by making the assumption that all the errors are uncorrelated.

When one is interested in the mean value of a given variable (X) obtained by conducting N independent

measurements, the standard uncertainty of the mean value (uX ) is given by:

uX =
uX√

N
. (A.7)

In some other situations, the variable of interest is obtained from a first-order linear regression using

the least-square method in order to obtain a relation of the type y = Ax+B. In such instances, the

expanded uncertainty of the slope (UA) obtained from a set of N points (xi, yi) is given by:

U2
A =

N

∑
i=1

(
∂A
∂yi

)2

U2
yi
+

N

∑
i=1

(
∂A
∂xi

)2

U2
xi
+2

N−1

∑
i=1

N

∑
k=i+1

(
∂A
∂yi

)(
∂A
∂yk

)
UyiUyk

+2
N−1

∑
i=1

N

∑
k=i+1

(
∂A
∂xi

)(
∂A
∂xk

)
UxiUxk +2

N

∑
i=1

N

∑
k=1

(
∂A
∂xi

)(
∂A
∂yk

)
UxiUyk ,

(A.8)
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Figure A.1: Relation between the forces applied to the load (F) cell and the output voltage (x) from
the measurements (red dots) along with the linear regression curve (black).

and the expanded uncertainty of the intercept (UB) is computed using the same equation by simply

replacing A by B. Since it would be very challenging to evaluate the partial derivatives in Eq. A.8 an-

alytically, they are estimated numerically. This is done by adding and subtracting a small perturbation

to each data point one by one and by evaluating the modified values of the slope (A) and the intercept

(B) with each new perturbed data point.

A.2.2 Load cell

An Omega LC703-25 load cell along with a EI1040 dual instrumentation amplifier set to a gain of

1000 were used to calibrate the springs and the heave damper. In order to calibrate the load cell,

reference test weights with known masses (m) were suspended from it.

The mass of the test weights were measured with the Mettler PJ360 DeltaRange and the Mettler PM16

weighing scales depending on their mass. 100 000 samples of the output voltage were collected over

1 second and they were averaged for each mass value.

The relation giving the force in Newtons (F) versus the average output voltage of the load cell (x) is

of the form:

F = Ax+B , (A.9)

where F = m ·g and g is the gravitational acceleration. The collected data is plotted in Fig. A.1. The

constants A and B appearing in Eq. A.9 are determined by performing a linear regression analysis:

A = 2.690 B =−0.586 . (A.10)

The expanded uncertainty of test weight masses used for the load cell calibration are estimated as half
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of the smallest mass increment that can be read by the corresponding weighing scale:

Um =


0.0005g if m < 50g ,

0.005g if 50 <= m < 250g ,

0.05g if m >= 250g .

(A.11)

The expanded uncertainty of the instantaneous output voltage (Ux) is used to estimate the uncertainty

of the average voltage (Ux) as a conservative estimate. This uncertainty, with a 95% confidence level,

is given by:

Ux = 1.96sx , (A.12)

where sx is the standard deviation of a set of data corresponding to a given mass value. The factor

1.96, which corresponds to a normal distribution, can be used because of the very large number of

samples. Note that since we directly estimate the standard uncertainty from the output voltage data,

we do not have to consider the uncertainty related to the analog-to-digital converter resolution as it is

included in the standard uncertainty estimated. The uncertainty stemming from the analog-to-digital

converter resolution is one order of magnitude smaller than this standard uncertainty.

The uncertainties of the constants A and B in Eq. A.9 are then determined using Eq. A.8:

UA = 0.003 N/V UB = 0.008 N . (A.13)

A.2.3 Positions and velocities

The uncertainty of the heave position is affected by the backlash between the timing belt undergoing

the heave motion and the sprocket connected to the heave encoder’s shaft (see Fig. 2.5). Indeed, one

cannot know if the teeth of the timing belt and the sprocket are in contact on one of their side, on

the other side or between these two contacts. However, we can assume that the teeth of the timing

belt and the sprocket are always in contact when a local extremum is reached for the heave position,

i.e., when the direction of the heave velocity changes. We can also assume that the heave encoder’s

shaft does not rotate further when the foil reaches a local extremum in heave. This is because of the

presence of friction in the encoder and the fact that the inertia of the encoder’s shaft and the sprocket

are very small. Moreover, the contact side of the teeth is always the same for positive local extrema

while negative local extrema are associated to the other contact side. Consequently, when one desires

to compute the distance between a positive extremum and a negative extremum, the backlash can be

added to the measured difference to obtain a more accurate value.

The backlash varies slightly with the heave position because the distance between the sprocket’s axis

of rotation and its contact point with the timing belt is not exactly uniform along the heave stroke.

As a result, the uncertainty of the difference between the prescribed heave positions in Eq. 2.19 for

a single test (U(h2−h1)) is estimated as being equal to half the difference between the largest and the

smallest backlash values measured at the different heave positions:

U(h2−h1) ≈ 1.4×10−4 m . (A.14)
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Note that the uncertainty stemming from the accuracy of the machining center is neglected as it is one

order of magnitude smaller than this value.

The uncertainty of (Eh2−Eh1) is estimated with the standard deviation computed from the 100 mea-

surements taken and by assuming a Student’s t-distribution with a 95% confidence level:

U(Eh2−Eh1)
= t99,95% σ(Eh2−Eh1)

= 0.0024 V , (A.15)

where:

σ(Eh2−Eh1)
= 0.0012 V , (A.16)

and:

t99,95% = 1.984 . (A.17)

Again, the resolution of the digital-to-analog converter is one order of magnitude smaller than this

uncertainty value.

The uncertainty of the calibration constant Ah is then obtained by applying the Taylor Series Method

to Eq. 2.19, which results in:

U2
Ah

=
U2
(h2−h1)(

Eh2−Eh1

)2 +

(
h2−h1

)2(
Eh2−Eh1

)4 ·U
2
(Eh2−Eh1)

, (A.18)

UAh = 5.7×10−5 m/V . (A.19)

Having determined the value of UAh , the uncertainty of the heave position (h) is then estimated by

applying the Taylor Series Method to Eq. 2.17:

U2
h = A2

h

(
U2

Eh
+U2

Eh0

)
+(Eh−Eh0)

2 U2
Ah
+U2

h0
,

= A2
h

(
U2

Eh
+U2

Eh0

)
+

(
h−h0

Ah

)2

U2
Ah

,
(A.20)

since Uh0 is considered to be equal to 0. Indeed, we are not interested in knowing the heave position

with respect to the exact position of the channel center, but rather with respect to a reference position,

namely the initial position of the blade. Nevertheless, the initial position of the blade corresponds

to the heave equilibrium position, which is set to be as close as possible to the center of the water

channel.

The expanded uncertainty of the initial, or reference output voltage, of the heave encoder (UEh0
) is

estimated by taking the standard deviation of this value (σEh0
) from a signal having a duration of 3

minutes with the blade being held at its initial position and by assuming a Gaussian distribution:

UEh0
= 1.96σEh0

= 9×10−4 V . (A.21)

This uncertainty stems from the fact that the reference voltage varies very slightly over time and it

includes the uncertainty due to the resolution of the digital-to-analog converter (≈ 2×10−4 V). This
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signal has been recorded over a larger period of time than the duration of all the tests conducted

during the experimental campaign (2 min signals). The standard deviation of the output voltage of the

heave encoder therefore provides a representative estimation of its variation during a test. Lastly, the

uncertainty of the instantaneous output voltage of the heave encoder (UEh) stems from the backlash

of the timing belt and is estimated as being equal to half the maximum backlash value (≈ 0.006 V

or 0.3 mm). Note that this uncertainty is larger than the uncertainty of the reference output voltage

given by Eq. A.21 and that the sum of the square of these two uncertainty values still results in 0.006

V. The uncertainty associated to the backlash can thus be considered as a good estimate of the total

uncertainty of UEh .

From Eq. A.20, one finds that the uncertainty of the heave position is given by:

Uh ≈
√

1.05×10−7 +(1.12×10−6) h2 , (A.22)

considering that h0 = 0. One can notice that the uncertainty of the heave position depends on the heave

position itself. It is maximum when the heave position reaches an extremum and minimum when the

blade is at its heave equilibrium position (h = h0 = 0). Considering the worst case scenario, namely

a heave position of around 0.09 m, since it roughly corresponds to the position of the blockers and

therefore to the maximum distance than the blade can reach, the expanded uncertainty of the heave

position with a 95% confidence level is approximately 0.34 mm. It is about 0.32 mm when the blade

is located at h = 0. An uncertainty of 0.3 mm is therefore a good estimate for any heave position.

The calibration constant Aθ has been estimated by holding the blade at two different pitch angles and

measuring the corresponding output voltages of the pitch encoder (see Eq. 2.21). The blade was held

in place with a dedicated pin inserted in two holes in the heaving carriage made for that purpose, as

shown in Fig. A.2.

The uncertainty of θ at 0° and 30° with the pin in place is the sum of squares of the machining

accuracy for the corresponding holes in the heaving carriage (0.06°) and the backlash between the

pin and the holes (0.2°), thus resulting in an uncertainty of about 0.21°. The uncertainty U(θ2−θ1) is

therefore estimated as 0.3°. The uncertainty of (Eθ2−Eθ1) is then given by:

U(Eθ2−Eθ1)
= t99,95% σ(Eθ2−Eθ1)

= 8.6×10−4 V , (A.23)

since:

σ(Eθ2−Eθ1)
= 4.3×10−4 , (A.24)

and t99,95% is given by Eq A.17.

Using this information, the uncertainty of Aθ can be estimated as:

U2
Aθ

=
U2
(θ2−θ1)(

Eθ2−Eθ1

)2 +

(
θ2−θ1

)2(
Eθ2−Eθ1

)4 ·U
2
(Eθ2−Eθ1)

, (A.25)
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(a) θ = 0° (equilibrium position). (b) θ = 30°.

Figure A.2: Pitch holder with the blade positioned at 0° and 30°.

with
(
θ2−θ1

)
= 30° and

(
Eθ2−Eθ1

)
= 0.2543 V. The resulting uncertainty value of Aθ is therefore

given by:

UAθ
= 1.2 degrees/V . (A.26)

Finally, the uncertainty of the pitch angle (θ ) is obtained by applying the Taylor series method to

Eq. 2.18, which gives:

U2
θ = A2

θ

(
U2

Eθ
+U2

Eθ0

)
+(Eθ −Eθ0)

2 U2
Aθ

+U2
θ0
,

= A2
θ

(
U2

Eθ
+U2

Eθ0

)
+

(
θ −θ0

Aθ

)2

U2
Aθ

+U2
θ0
,

(A.27)

The uncertainty of the reference output voltage of the pitch encoder (UEθ0
) is estimated as being equal

to the uncertainty of the reference output voltage of the heave encoder (UEh0
), given by Eq. A.21.

Since the pitch encoder is directly connected to the blade, the uncertainty of the instantaneous pitch

output voltage (UEθ
) is also estimated as being equal to UEh0

. In other words, there is no backlash

between the blade motion and the encoder rotation.

Regarding the uncertainty of the initial pitch position (Uθ0), it cannot be considered as being equal to

zero as is done in heave because we are not only interested in the pitch angle with respect to the initial

pitch angle, but rather to the pitch angle with respect to the oncoming flow. As a result, the accuracy

of the assembly of the blade with the shaft contributes to this uncertainty.

When assembling the blade, the shaft was held in place with the pin placed as shown in Fig. A.2a

while the blade was positioned so that its chord line was perpendicular to the direction of the heave

motion (θ = 0°). In order to position the blade, a height gauge was used to place the blade trailing
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Figure A.3: Assembly of the blade with respect to the pitch holder in order to obtain a pitch angle of
0° when the pitch holder is used.

edge at the appropriate height. This is shown in Fig. A.3. This distance was measured a few times and

its uncertainty is estimated as ±0.1 mm, which is converted into a uncertainty in degrees of:

atan
(

0.1
c− xp

)
≈ 0.17° , (A.28)

where c is the chord length and xp corresponds to the distance between the leading edge and the pitch

axis, so that c− xp = 33.3 mm. In addition to this uncertainty contribution, the backlash in the pin

holding the shaft in place also affects the uncertainty of the initial pitch position (Uθ0). This backlash

was measured on the turbine and the associated uncertainty is 8.5×10−4 V (≈ 0.1°). The uncertainty

of the initial pitch angle is thus estimated as:

Uθ0 =
√

0.172 +0.12 ,

≈ 0.2° .
(A.29)

From Eq. A.27, one finally finds that the uncertainty of the pitch angle is:

Uθ ≈
√

0.02+(1×10−4) θ 2 +0.04 ,

≈
√

0.06+(1×10−4) θ 2 ,
(A.30)

with θ given in degrees and considering that θ0 = 0°. The uncertainty of the pitch position therefore

ranges from about 0.2°, when the blade is at its pitch equilibrium position (θ = θ0 = 0°), to approxi-

mately 1° for the largest pitch angles reached during the tests (θ ≈ 100°). Note that this is much larger

than the resolution of the pitch encoder which is 360°/10 000 pulses = 0.036°/pulse.
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Using Eq. 2.17 and considering that a second-order central-difference scheme is used to compute the

heave velocity, one finds that:

ḣ(t) =
Ah [Eh(t +∆t)−Eh(t−∆t)]

2∆t
, (A.31)

where ∆t is the inverse of the sampling frequency (1/ fsampling). The uncertainty of ∆t is neglected

because it is much smaller than the other contributions. The uncertainty of the heave velocity (Uḣ) is

thus given by:

U2
ḣ =

A2
h

2∆2
t

U2
Eh
+

ḣ2

A2
h

U2
Ah

, (A.32)

considering that:

UEh(t +∆t)≈UEh(t−∆t)≈UEh(t) . (A.33)

For a sampling frequency of 83.333 Hz, the uncertainty of the heave velocity is:

Uḣ = 0.02 m/s . (A.34)

It does not depend on the heave velocity because the term involving the heave velocity in Eq. A.32 is

negligible compared to the other one that is mainly related to the backlash of the timing belt.

The pitch velocity is also obtained with a second-order central-difference scheme from Eq. 2.18:

θ̇(t) =
Aθ [Eθ (t +∆t)−Eθ (t−∆t)]

2∆t
, (A.35)

and its uncertainty is estimated as:

U2
θ̇
=

A2
θ

2∆2
t

U2
Eθ

+
θ̇ 2

A2
θ

U2
Aθ

. (A.36)

Again for a sampling frequency of 83.333 Hz, this results in:

U
θ̇
=

√
40+(1×10−4) θ̇ 2 , (A.37)

so that the uncertainty of the pitch velocity is around 6°/s when the velocity is close to zero and reaches

11°/s for the largest pitch velocities observed during the tests in the channel (θ̇ ≈ 900°/s).

A.2.4 Springs

The uncertainty of the spring stiffness coefficient (Uk) is obtained by considering the uncertainty prop-

agation through a first-order least-square linear regression analysis (see Eq. A.8), and by estimating

the expanded uncertainty of the spring elongation with a 95% confidence level (U∆) as 2.54× 10−5

m (accuracy of the machining tool) and the expanded uncertainty of the tension force (UF ) from the

results of the load cell calibration. Since we are only interested in the slope of the relation between the

tension force in the spring and their elongation, the intercept of the load cell calibration (B in Eq. A.9)
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is useless and the uncertainty of the constant B is not considered when estimating the uncertainty of

the spring stiffness coefficients. UF is therefore estimated as:

U2
F = A2U2

x + x2U2
A . (A.38)

where A and UA are respectively the slope of Eq. A.9 and its uncertainty, while x and Ux are the average

output voltage of the load cell and its uncertainty. Note that the uncertainty U∆ could be one order of

magnitude larger without affecting the value of Uk since the uncertainty of the tension force (UF ) has

a dominant contribution.

As more than one spring was used in heave for a given test, the uncertainty of the resultant heave

stiffness coefficient is given by:

U2
kh
=

N

∑
i=1

U2
ki
. (A.39)

Regarding the uncertainty of the resultant pitch stiffness coefficient, it is estimated by applying the

Taylor Series Method to Eq. 2.25, which results in:

U2
kθ
=

1
16
[
D4 (U2

k1
+U2

k2

)
+4D2U2

D
(
k2

1 + k2
2
)]

. (A.40)

A.2.5 Mass, moment of inertia and static moment

Again, the Taylor Series Method is used to estimate the uncertainty of the heaving mass (Umh) and the

moment of inertia (UIθ
). From Eq. 2.29, one finds that:

UIθ
=

1
16π4

[
T 4

θ

(
1−ζ

2
θ

)2
U2

kθ
+4k2

θ T 2
θ

(
1−ζ

2
θ

)2
U2

Tθ
+4k2

θ T 4
θ ζ

2
θ U2

ζθ

]
, (A.41)

where Ukθ
is given by Eq A.40, UTθ

is the uncertainty of the pitch oscillation period length and Uζθ

is the uncertainty of the pitch damping ratio, which is derived in the next section (see Eq. A.50). The

uncertainties of the period lengths have been estimated by considering their standard deviations and

assuming a Student’s t-distribution. An equation similar to Eq. A.41 is used to evaluate the fraction of

the heaving mass involved in the free decays (Umh free) by replacing the subscript θ with the subscript

h. The uncertainty of the total heaving mass (Umh) is given by:

Umh =

√√√√U2
mh free

+
Nh

∑
i=1

(
U2

mi

)
, (A.42)

where Nh is the number of components involved in the heave motion that were not present during the

free decay tests and Umi are the expanded uncertainties of the remaining component masses. These

uncertainties are related to the accuracy of the weighing scale that has been used.

Using Eq. A.43, the uncertainty of the static moment (US) is found to be given by:

U2
S =

Nθ

∑
i=1

(
m2

i U2
xθ , i

+ x2
θ , iU

2
mi

)
, (A.43)
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where Umi is the uncertainty of the mass of the ith component, which again is simply related to the

accuracy of the weighing scale, and Uxθ , i is the uncertainty of the distance between the pitch axis and

the center of mass. It would be very challenging to accurately estimate the uncertainty of xθ following

the procedure using the CAD that has been used to compute the static moment because it would imply

considering the effects of varying every features of a component (such as the positions and the sizes of

different holes in a given part) on the position of its center of mass. A much simpler and conservative

approach consists in assuming that every component can be represented as a one-dimensional rod

aligned with the blade chord and having a length corresponding to the length of the given component.

In other words, we assume that the mass of every component is evenly distributed along the direction

parallel to the blade chord. This would be an exact representation in the case of a rectangular plate.

This gives more weight to the extremities of the parts because their actual mass distribution is more

concentrated around the pitch axis than near their extremities. Therefore, it provides a conservative

estimate of the uncertainty of the static moment.

The position of the center of mass of this simplified representation is easy to find as it is located at the

geometric center of the rod idealizing a specific component. Using a coordinate system whose origin

lies on the pitch axis (xp), as shown in Fig. A.4, one finds that the distance between the pitch axis and

the center of mass is given by:

xθ =
x1 + x2

2
, (A.44)

where x1 and x2 respectively are the distances between the left end of the component and the pitch

axis and between the right end of the component and the pitch axis. Note that x1 is always negative or

null if the pitch axis coincides with the left end of the component. The uncertainty of xθ (Uxθ
) is thus

given by the relation:

U2
xθ
=

1
4
(
U2

x1
+U2

x2

)
, (A.45)

where Ux1 and Ux2 are the uncertainties of x1 and x2. These uncertainties are estimated considering

a standard machining tolerance grade (IT 12) for a length of 50 mm (Oberg et al., 2012), which

corresponds to the chord length. Again, this is a conservative estimate as the actual distances between

the pitch axis and the extremities of every component are smaller or equal to 50 mm.

Figure A.4: Scheme of the simplified one-dimensional representation used to estimate the uncertainty
of the static moment.

To sum up, the whole procedure consists of estimating the uncertainty of xθ by simply considering the

uncertainty of the distances between both ends of a component and the pitch axis. Since the uncer-

tainty associated to the location and size of the different features of a given part is neglected, an evenly

distributed mass distribution is assumed in order to give more weight to the sole uncertainty contribu-
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tions considered. It is worth mentioning that all the parts involved in the pitch motion contribute to

the uncertainty of the static moment, even those having a static moment of zero.

A.2.6 Linear and Coulomb damping

Regarding the uncertainties of the linear and Coulomb damping contributions, one first needs to find

the uncertainty propagation in Eq. 2.33, which results in:

U2
β
=

1
π2 (Xi+1−Xi−1)

U2
(Xi+1−Xi−1)

+
1

π2 (Xi−Xi−2)
U2
(Xi−Xi−2)

, (A.46)

where Uβ is the expanded uncertainty of β and U(Xi+1−Xi−1) and U(Xi−Xi−2) are the uncertainties of the

difference between two successive positive or negative position extrema. As for the prescribed heave

positions (h2−h1), the uncertainty of the difference between two heave position extrema (U(hi+1−hi−1))

is related to the difference between the largest and the smallest backlash values measured at the dif-

ferent heave positions, which is 1.4× 10−4 m (see Eq. A.14). However, the uncertainty of the volt-

age measurement associated to these two positions, estimated as being equal to UEh0
(9× 10−4 V or

4.8×10−5 m), also adds up to the uncertainty of (hi+1−hi−1) so that:

U(hi+1−hi−1) ≈
√

(1.4×10−4)2 +2 (4.8×10−5)
2
,

≈ 1.6×10−4 m .
(A.47)

Regarding the difference between two pitch angle extrema, one finds from Eq. 2.18 that:

(θi+1−θi−1) = Aθ

(
Eθi+1−Eθi−1

)
, (A.48)

so that:

U2
(θi+1−θi−1)

= 2A2
θ U2

Eθ
+
(
Eθi+1−Eθi−1

)2 U2
Aθ

, (A.49)

where UAθ
is given in Eq. 2.21 and UEθ

is given by Eq. A.21.

The uncertainty of the damping ratio can then be computed as:

U2
ζ
=

(
1√

1+β 2
− β 2

(1+β 2)3/2

)2

U2
β
, (A.50)

from Eq. 2.34. Using this result, the uncertainties of Dh and Dθ are evaluated with the relations:

U2
Dh

= 4kh mhU2
ζh
+

ζ 2
h mh

kh
U2

kh
+

ζ 2
h kh

mh
U2

mh
, (A.51)

U2
Dθ

= 4kθ Iθ U2
ζθ
+

ζ 2
θ

Iθ

kθ

U2
θ +

ζ 2
θ

kθ

Iθ

U2
Iθ
, (A.52)

stemming from Eqs. 2.35 and 2.36. Since the damping of the eddy-current brake is determined using

Eq. 5.5, its uncertainty for each of the magnet positions tested during the calibration process (UDh, b,calib)

is estimated as:

U2
Dh, b,calib

=U2
Dh

+U2
Dh, v

. (A.53)
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As mentioned in Sec. 2.B.4, a linear interpolation has been performed to determine the heave damp-

ing for the exact position of the heave damper’s magnets (lm) during the tests in the water channel.

This value of the heave damping coefficient is referred to as Dh,e calib and it is determined using the

following relation:

Dh,e calib = Dh,e calib,1 +(lm− lm,1)

(
Dh,e calib,2−Dh,e calib,1

lm,2− lm,1

)
, (A.54)

where the variables without the subscripts 1 or 2 correspond to the values corresponding to a given test

in the channel while the variables with the subscripts 1 and 2 correspond to the two magnet positions

tested during the calibration process that are the closest to the position of the case considered. Because

of these linear interpolations, an additional uncertainty contribution originates from the uncertainty of

the positions of the magnets (Ulm), which is related to the accuracy of the caliper used to measure this

value. It has been estimated as 0.05 mm. From Eq.A.54, this additional uncertainty for a given value

of lm is estimated as:

U2
Dh,e calib

= (2A1+2A1A2)U2
lm +(1+A2)U2

Dh,e calib,1
+A2U2

Dh,e calib,2
, (A.55)

where:

A1 =

(
Dh, b,calib,2−Dh, b,calib,1

lm,2− lm,1

)2

, (A.56)

A2 =

(
lm− lm,1

lm,2− lm,1

)2

. (A.57)

Lastly, another uncertainty contribution stems from the temperature correction (see Eq. 2.38):

UDh,e =
(1+αB0 ∆T )4(
1+αρe ∆T

)2 U2
Dh,e calib

+D2
h,e calib

[
2αB0 (1+αB0 ∆T )(

1+αρe ∆T
) −

αρe (1+αB0 ∆T )2(
1+αρe ∆T

)2

]2

U2
∆T , (A.58)

where U2
∆T is given as:

U2
∆T =U2

T +U2
Tcalib

, (A.59)

and:

UT ≈UTcalib ≈ 0.1 °C . (A.60)

An uncertainty of 0.1°C has been estimated for the temperature during a given test to take into account

the slight temperature variations occurring during a test. The same uncertainty has been considered for

Tcalib, even if this is larger than the thermometer accuracy, in order to obtain a conservative estimate

and to take into account that no uncertainty has been considered for the two temperature coefficients

(αB0 and αρe) due to the lack of information on this aspect.

The Taylor series uncertainty propagation method has also been applied to Eqs. 2.42, 2.43 and 2.44 to

obtain:

U2
C =

1

4
(
1+ e−β π

)2 U2
(Xi+1−Xi)

+
e−2β π

4
(
1+ e−β π

)2 U2
(Xi−Xi−1)

+
4π2 e−2β π(
1+ e−β π

)2

(
(Xi+1−Xi)

1+ e−β π
+(Xi−Xi−1)

[
e−β π

1+ e−β π
−1

])2

U2
β
,

(A.61)
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U2
fc
= k2

h U2
Ch
+C2

h U2
kh
, (A.62)

U2
mc

= k2
θ U2

Cθ
+C2

θ U2
kθ
, (A.63)

A.2.7 Hydrodynamic parameters

Since the resistive force in the direction of the flow associated to the presence of the blade is negligible

compared to the other losses in the closed-loop system of the channel, its presence has a negligible

effect on the water velocity. Nevertheless, PIV measurements have been carried out for a fixed blade

with the chord line aligned with the flow (θ = 0°), with the chord line perpendicular to the flow

(θ = 90°) and for a case with the baseline structural parameter values. The uncertainty of the mean

velocity of the oncoming flow for a given pump rotational speed has been estimated as being equal

to half the difference between the largest and the smallest velocities measured for the three cases

tested, namely θ = 0°, θ = 90° and the baseline case. In order to have a conservative estimate of this

uncertainty, the largest uncertainty from the different flow velocities has been used as an estimate of

the uncertainty for all the velocities, which is 2.2% of the mean velocity.

The boundary layer height at the channel’s bottom surface, defined as the region for which the velocity

is below 99% of the freestream velocity, has been measured to be around 9 mm at the PIV plane.

Assuming that it behaves as a laminar boundary layer on a flat plate with zero pressure gradient, the

estimated unperturbed (no blade in the channel) boundary layer height at the position of the blade

pitch axis should be around 10.3 mm. The associated displacement thicknesses are 3 mm and 3.5 mm.

If we consider that the displacement thicknesses are the same on the vertical side walls of the channel,

the expected velocity increase due to the increasing blockage caused by the boundary layers growth is

around 0.4%. This effect can therefore be neglected as it is smaller than the uncertainty of the velocity

measurement.

The uncertainty of the water density and the dynamic viscosity, which are determined by interpolating

the tabulated data available in the book of Munson (2013), have been estimated using an equation

similar to Eq. A.55 and by considering the uncertainty of the ambient temperature measurement,

which is estimated as 0.05°C.

A.2.8 Other uncertainties

The uncertainty of the chord length is Uc = 0.05 mm and is related to the accuracy of the caliper

that has been used to measure this length. The uncertainty of the blade span length is estimated as

Ub = 0.05 mm, when the blade is completely submerged, and Ub = 1 mm when it is only partially

submerged since this uncertainty becomes dependent on the water depth, which has not been measured

with the same accuracy.

Each period length (T ) is evaluated by finding the time interval between two successive moments at
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which the blade crosses its heave equilibrium position (th=0):

T = th=0, i+1− th=0, i , (A.64)

where the subscript i denotes the ith occurrence of h = 0. The uncertainty of the time at which one of

this event occurs is estimated as ∆t/2 where ∆t is the inverse of the sampling frequency (1/ fsampling).

The uncertainty of the period length is therefore estimated as:

UT =

√(
∆t

2

)2

+

(
∆t

2

)2

. (A.65)

The cycle-averaged power dissipated in the eddy-current brake, which models the energy extraction,

is computed using Eq. 2.10 in Paper I. In practice, since the recorded signals are discrete, the integral

is computed using the trapezoidal rule, which results in the following relation:

Ph,e j =
Dh,e

Tj
· ∆t

2

N2

∑
k=N1+1

(
ḣ2

k + ḣ2
k+1
)
, (A.66)

where:

N1 = t/∆t , (A.67)

N2 = (t +Tj)/∆t . (A.68)

The uncertainty of the cycle-averaged power dissipated in the heave damper is derived from Eq. A.66.

After some manipulations, one obtains:

U2
Ph,e j

=

(
Ph,e j ·Tj

Dh,e

)2

·

(
1

T 2
j

U2
Dh,e

+
D2

h,e

T 4
j

U2
T

)
+

(
Dh,e ·∆t

Tj

)2

·
N2

∑
k=N1+1

(
ḣ2

k ·U2
ḣk
+ ḣ2

k+1 ·U2
ḣk+1

)
.

(A.69)

In order to determine the uncertainty of the overall transverse extent of the blade motion (d), we

assume that it can be estimated as:

d ≈ (hmax +(c− xp)sin(θmax))− (hmin +(c− xp)sin(θmin)) ,

≈ (hmax−hmin)+(c− xp)(sin(θmax)− sin(θmin)) ,
(A.70)

where:

sin(θmax)− sin(θmin)≈ 2sin(θmax) , (A.71)

by assuming that the motions are symmetric about the pitch equilibrium position, so that:

d ≈ (hmax−hmin)+2(c− xp)sin(θmax) . (A.72)

The uncertainty of d is therefore estimated as:

Ud =U2
hmax−hmin

+4(c− xp)
2 cos2(θmax)U2

θmax
+4sin2(θmax)U2

c−xp
, (A.73)
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where Uhmax−hmin and Uθmax are determined using the information given in Sec. A.2.3 while Uc−xp is

estimated by considering a standard machining tolerance grade (IT 12), as has been done for Uxθ
in

Eq. A.45.

Finally, all the uncertainties of the dimensionless quantities have been derived using the Taylor series

propagation method and using the uncertainties presented in the previous subsections.
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Appendix B

Additional results and discussion related
to Paper III

B.1 Influence of the static moment with xp/c = 0.75

A few additional simulations have been carried out for various values of S∗ with xp/c = 0.75. The

corresponding contours of efficiency are shown in Fig. B.1. These results confirm that the static

moment needs to be around zero when the pitch axis is positioned at the three-quarter-chord point in

order to maximize the efficiency, which validates this choice in Paper III. It is also found that it is

possible to achieve high efficiencies with the center of mass located upstream of the pitch axis under

such conditions.

B.2 Driving mechanism of the semi-passive turbine

In paper I, we argue that a one-degree-of-freedom static instability, known as divergence (Dowell,

2004), is responsible for initiating the pitch motion of the fully-passive flapping-foil turbine prototype,

and that this pitch motion is in turn driving the heave motion. The heave motion cannot be driven by

the pitch motion in the case of the semi-passive turbine considered in Papers II and III study since it is

prescribed. Nevertheless, it is still useful to analyze the driving mechanism responsible for the pitch

motion of the foil.

Considering a foil that is elastically supported in pitch, but not allowed to move in heave and neglect-

ing the friction in pitch, the pitch motion is governed by:

CM/2 = I∗θ θ̈
∗+ k∗θ θ . (B.1)

For small pitch angles around zero, the moment coefficient can be approximated as:

CM =CMθ=0 +
∂CM

∂θ
θ , (B.2)
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Figure B.1: Contours of the time-averaged efficiency (η) for a pitch axis located at the three-quarter-
chord point. The white areas indicate negative values while the gray areas indicate zones where the
data is not presented because of the large variations (ση ≥ 0.05). The values of the other parameters
are: λ ∗

θ
= 0.7; I∗

θ
= 2; D∗

θ
= 0.

where CMθ=0 and ∂CM/∂θ are the moment coefficient and its slope at θ = 0. In the case of symmetric

foil profiles, CMθ=0 = 0. Eq. B.1 can therefore be written as:

I∗θ θ̈
∗+

(
k∗θ −

1
2

∂CM

∂θ

)
θ = 0 , (B.3)

which shows that the slope of the moment coefficient acts as an added fluid-induced stiffness. The

pitch motion is unstable when the effective stiffness is negative, i.e., when:

k∗θ −
1
2

∂CM

∂θ
< 0 . (B.4)

The critical dimensionless pitch stiffness coefficient:

k∗θ crit =
1
2

∂CM

∂θ
, (B.5)

below which the foil becomes unstable, can thus be found by determining the slope of the moment

coefficient around θ = 0. As for Veilleux and Dumas (2017), we used the thin airfoil theory in Paper

I to achieve this task. In this appendix, the slope of the moment coefficient around θ = 0 is rather

determined by conducting a series of steady numerical simulations with the NACA0015 foil oriented

at different pitch angles to obtain more accurate values for k∗
θ crit. The results are presented in Table B.1

for four different pitch axis locations. The foil cannot be unstable in divergence when xp/c = 0 since

a negative value of k∗
θ

would be required for that to happen. This is because the point of application

of the resultant hydrodynamic force on the foil is necessarily located downstream of the pitch axis in

this specific case, hence having a stabilizing effect for the pitch motion.

219



Table B.1: Critical dimensionless pitch stiffness coefficient (k∗
θ crit) as a function of the pitch axis

location.

Parameters Values

xp/c 0 0.25 0.50 0.75

k∗
θ crit - 0.007 0.802 1.597

Based on this analysis, some cases presented in Fig. 4.16d, with xp/c = 0.75, are subject to the di-

vergence instability. In order to visualize them, the contours presented in Fig. 4.16d are reproduced

in Fig. B.1, but with the addition of the contours of the pitch stiffness coefficient. This allows delim-

iting the zone in which the operating points are subject to the divergence instability based the critical

stiffness coefficient of 1.597.

Figure B.1: Contours of the pitch stiffness coefficient (red lines) superimposed on the contours of the
time-averaged efficiency with xp/c = 0.75 and S∗ = 0. The foil is subject to the divergence instability
in the hatched area.

It is found that all the operating points that are unstable in divergence are characterized by very irreg-

ular motions, which make them inappropriate for turbine applications, unlike what is observed with

a fully-passive turbine in Paper I and in the study of Veilleux and Dumas (2017). The reason is that

the heave motion must drive the pitch motion for the semi-passive flapping-foil turbine considered in

Papers II and III to work properly because the heave motion is not influenced by the pitch motion. In-

deed, the heave motion is prescribed to a specific sinusoidal motion no matter what happens in pitch.

When the foil is unstable in divergence, its pitch motion becomes self-driven while still being affected

by the heave motion through the inertial coupling term. This results in erratic pitch motions.

220



B.3 Analogy with the linear vibration theory for the derivation of the
parameter λ ∗

θ

The results presented in Paper III demonstrate that the parameter λ ∗
θ

(see Eq. 4.48) effectively charac-

terizes the dynamics of the optimal operating points achieved for a semi-passive flapping-foil turbine

with a passive pitch motion. This implies that the dynamics of these operating points does not directly

depends on the ratio between the frequency of the foil motion in pitch and the pitch natural frequency,

referred to as the frequency ratio r (see Eq. 4.51). Some insights can be gained from the vibration the-

ory of a one-degree-of-freedom linear mass-damper-spring system excited by a harmonic force (Rao,

2011). The equation of motion for such system undergoing a torsional motion is:

M0 cos(ω t) = Iθ θ̈ +Dθ θ̇ + kθ θ , (B.6)

where M0 is the amplitude of the exciting moment and:

ω = 2π f , (B.7)

f being the frequency of the torsional motion. Considering a general reference time scale (tref) and a

general reference scale for the torsional motion (θref), Eq. B.6 can be written in the following dimen-

sionless form:

cos
(

ω
t

tref

)
=

Iθ θref

M0 t2
ref

θ̈
∗+

Dθ θref

M0 tref
θ̇
∗+

kθ θref

M0
θ
∗ , (B.8)

Using 1/ω for tref and M0/kθ , the torsional deflection under a static moment M0, for θref, Eq. B.8

becomes:

cos(t∗) = r2
θ̈
∗+2ζ r θ̇

∗+θ
∗ , (B.9)

with:

t∗ = ω t , θ ∗ =
θ kθ

M0
, θ̇ ∗ =

θ kθ

ω M0
, θ̈ ∗ =

θ kθ

ω2 M0
, ζ =

Dθ

2
√

kθ Iθ

.

Note that this normalization is different than the one used in the rest of this thesis. The analytical

solution for this system is given by:

θ
∗ = Ac sin(t∗− γc) , (B.10)

where Ac is the classical amplification factor (Rao, 2011):

Ac =
1√

(1− r2)2 +(2ζ r)2
, (B.11)

and γc is the classical phase difference between the torsional motion and the exciting moment:

γc = arctan
(

2ζ r
1− r2

)
. (B.12)
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This result implies that the dynamics of such a linear mass-damper-spring system in torsion only

depends on two dimensionless parameters, namely the frequency ratio (r) and the damping ratio (ζ ).

However, this development is based on the use of M0/kθ as a representative scale for the torsional mo-

tion. This reference scale is not relevant for the optimal semi-passive flapping-foil turbine cases pre-

sented in Paper III because the fluid-structure interaction characterizing these cases is strong enough

for the pitch amplitude to be significantly influenced by the flow dynamics rather than being simply

dependent on the solid dynamics, i.e., the dynamics of the elastically-supported foil in vacuum. The

reference scale M0/kθ also becomes irrelevant when kθ approaches zero.

Considering a reference scale of one for θref and c/U∞ for tref, which is consistent with the reference

scales that have been selected to derive the dimensionless equation of motion in pitch (see Eqs. 4.8

used in the present thesis, Eq. B.8 becomes:

cos(2π f ∗ t∗) =
Iθ U2

∞

M0 c2 θ̈
∗+

Dθ U∞

M0 c
θ̇
∗+

kθ

M0
θ , (B.13)

and its analytical solution is:

θ = Asin(2π f ∗ t∗− γ) , (B.14)

where:

A =
1√(

kθ

M0
− Iθ U2

∞

M0 c2 ω2

)2

+

(
Dθ U∞

M0 c
ω

)2
, (B.15)

γ = arctan


Dθ U∞

M0 c
ω

kθ

M0
− Iθ U2

∞

M0 c2 ω2

 . (B.16)

Eq. B.15 and Eq. B.16 again only depends on two dimensionless parameters, one appearing at the

numerator in Eq. B.16 and another one at the denominator. It reduces to only one parameter when the

damping is kept constant. If we further consider that the moment generated by the fluid flow is not

constant and rather scales with 0.5ρ U2
∞ bc2 (see Eq. 4.13), the parameter appearing at the denominator

of Eq. B.16 becomes equivalent to the parameter λ ∗
θ

. This analysis relying on the dynamics of a linear

mass-damper-spring system therefore corroborates the idea of characterizing the strong fluid-structure

interactions of the semi-passive flapping-foil turbine with λ ∗
θ

instead of the frequency ratio.
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