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Abstract

The generalized metric is a T-duality covariant symmetric matrix constructed from the
metric and two-form gauge field and arises in generalized geometry. We view it here as
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1 Introduction

The remarkable T-duality properties of string theory [1] have motivated much study of field

theory models that may incorporate such properties. Double field theory [2, 3, 4] is a field

theoretic approach inspired by closed string field theory [5, 6] that focuses on the gravity, an-

tisymmetric tensor, and dilaton fields. These fields depend on a doubled set of coordinates:

coordinates xi associated with momentum excitations and coordinates x̃i associated with wind-

ing excitations. The closed string theory constraint L0 − L̄0 = 0 has implications: the fields

and gauge parameters of doubled field theory must be annihilated by the differential operator

∂i∂̃
i, where a sum over i is understood. Double field theory remains to be fully constructed;

the work in [2] gave the doubled action only to cubic order in the fluctuations of fields around

a fixed background. Noteworthy early work in double field theory includes that of Tseytlin [7]

and Siegel [8, 9]. Indeed, some of our results are closely related to the results of Siegel [8, 9].

In a recent paper [4] we imposed a stronger form of the constraint ∂i∂̃
i = 0 and constructed

a manifestly background independent double field theory action for Eij = gij + bij , with i, j =

1, 2, . . . , D, and the dilaton d. The action takes the form:1

1Our notation can deal with a theory with both compact and non-compact directions. The spacetime has
dimension D = n+ d and is the product of n-dimensional Minkowski space R

n−1,1 and a torus T d. Although
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S =

∫
dxdx̃ e−2d

[
− 1

4
gikgjlDpEkl DpEij +

1

4
gkl
(
DjEikDiEjl + D̄jEki D̄iElj

)

+
(
Did D̄jEij + D̄id DjEji

)
+ 4DidDid

]
,

(1.1)

where the calligraphic derivatives Di and D̄i are defined by

Di ≡ ∂

∂xi
− Eik

∂

∂x̃k

, D̄i ≡ ∂

∂xi
+ Eki

∂

∂x̃k

. (1.2)

This action is T-duality invariant. More precisely, it is invariant under the non-linear O(D,D)

transformations

E ′(X ′) = (aE(X) + b)(cE(X) + d)−1 , d′(X ′) = d(X) , X ′ = hX . (1.3)

Here we have used matrix notation for the E field, a, b, c, d are the D×D blocks of an O(D,D)

matrix h,

h =

(
a b
c d

)
∈ O(D,D) , htηh = η with η =

(
0 1
1 0

)
, (1.4)

and the coordinates have been grouped into the O(D,D) vector

XM =

(
x̃i

xi

)
, ∂M =

(
∂̃i

∂i

)
. (1.5)

O(D,D) indices M,N are raised and lowered with the constant O(D,D) invariant metric

ηMN =

(
0 1
1 0

)
. (1.6)

If some of the coordinates are compact, the symmetry O(D,D) is broken to the subgroup pre-

serving the periodic boundary conditions. Each term in the action (1.1) is separately O(D,D)

invariant. As explained in [4, 2] this result largely follows from consistent index contractions.

Although we do not display them explicitly, there are two types of indices: unbarred and barred.

The first index in Eij is viewed as unbarred and the second index is viewed as barred. The index

in Di is viewed as unbarred and the index in D̄i is viewed as barred. Finally the indices in gij can

be viewed either as both unbarred or as both barred. Any term in which all contractions can be

viewed as contractions of like-type indices is O(D,D) invariant.2 While the O(D,D) transfor-

mations are global, the various ingredients in the action (gij,DE , D̄E ,Dd, D̄d) transform by the

action of matrices that involve the field E and thus do not define linear representations of the

O(D,D) group. The barred/un-barred structure originates from the left/right factorization of

we write O(D,D) matrices, the ones that are used describe T-dualities that belong to the O(d, d) subgroup
associated with the torus.

2Also needed is that each E field appear with one calligraphic derivative. If more than one derivative is used
on a field, one must employ the O(D,D) covariant derivatives discussed in [4].
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closed string theory and its geometric significance will be discussed in section 5. The O(D,D)

symmetry is not manifest because the action does not use conventional O(D,D) tensors that

carry O(D,D) indices (M,N, . . . = 1, 2, . . . , 2D). Since ∂M∂M = 2∂i∂̃
i, the constraint on all

fields and gauge parameters is O(D,D) invariant.

The action (1.1) is also invariant under gauge transformations with a gauge parameter ξM :

ξM =

(
ξ̃i
ξi

)
. (1.7)

These parameters depend on both x and x̃ coordinates. The gauge transformations take the

form

δEij = Diξ̃j − D̄j ξ̃i + ξM∂MEij +Diξ
kEkj + D̄jξ

kEik ,

δd = −1

2
∂MξM + ξM∂M d .

(1.8)

Here ξM∂M = ξi∂i + ξ̃i∂̃
i and ∂MξM = ∂iξ

i + ∂̃iξ̃i. The invariance of the action (1.1) requires

a strong version of the constraint: ∂M∂M must annihilate all possible products of fields and/or

gauge parameters. This constraint is so strong that it implies that the theory is not truly

doubled: there is a choice of coordinates (x′, x̃′), related to the original coordinates (x, x̃) by

O(D,D), in which the doubled fields do not depend on the x̃′ coordinates [4]. This means that

we then have a field theory on the subspace with coordinates x′ in which the gauge symmetry

reduces to diffeomorphisms and b-field gauge transformations on that subspace.

Even though the theory it is not truly doubled, the action (1.1) is interesting because it

exhibits new structures and has some properties that are expected to persist in the – yet to be

constructed – general double field theory. It is a natural action for the field Eij and inherits

from string theory a left-right structure that is not present in the usual formulation. The gauge

algebra is defined by the Courant bracket, or more precisely, an extension appropriate for

doubled fields. Furthermore, the action (1.1), expanded to cubic order in fluctuations around

a flat background is fully gauge invariant to that order without imposing the strong version of

the constraint: only the weak constraint is needed. We believe that the general theory should

be some natural generalization of the theory discussed here.

The gauge invariance of the action (1.1) is not manifest and was verified in [4] through

an elaborate and lengthy calculation. The above gauge transformations can be rewritten in

suggestive ways but remain mysterious. In this paper we provide an equivalent form of the

action (1.1) for which the proof of gauge invariance is significantly simplified. Even the O(D,D)

invariance will be simpler: all objects will transform in linear representations.

The key object in the new construction will be the so-called “generalized metric”. This is a

2D×2D symmetric matrix constructed from the D×D metric tensor gij and the antisymmetric

tensor bij with the remarkable property that it transforms as an O(D,D) tensor. The explicit
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form of the generalized metric is:3

HMN =

(
gij −gikbkj

bikg
kj gij − bikg

klblj

)
. (1.9)

The non-linear O(D,D) transformation (1.3) of the fields g and b implies a simple transforma-

tion for HMN . Writing X ′ = hX as X ′M = hM
NX

N one finds:

hP
MhQ

NH′
PQ(X

′) = HMN(X) , (1.10)

so that HMN is an O(D,D) tensor, as indicated by the indices M,N .

The matrix (1.9) appeared in the early T-duality literature. It defines the first-quantized

Hamiltonian for closed strings in a toroidal background with constant metric and antisymmetric

tensor fields [10, 11]. Such matrices parameterize the coset space O(D,D)/O(D)×O(D), and

so arise in the toroidal dimensional reduction of supergravity and string theories whose moduli

take values in this coset [12, 13, 14].

The doubled space then has two metrics, the constant ηMN with signature (D,D) and the

metricHMN which incorporates the dynamical fields and is positive definite if gij is. Throughout

this paper, we will always use the metric ηMN and its inverse ηMN to lower and raise indices.

Raising one or both indices with η defines the new tensors HMN and HM
N . A striking feature

of matrices of the form (1.9) is that HMN is the inverse of HMN :

HMPHPN = δMN . (1.11)

Then HMN can be viewed as a metric on the doubled space that satisfies the constraint that

its inverse is HMN ≡ ηMPHPQη
QN . We define the matrix S whose components SM

N are

SM
N ≡ HM

N = ηMPHPN = HMPηPN . (1.12)

The matrix S satisfies

S2 = 1 , (1.13)

so that S is an almost local product structure, or almost real structure on the doubled space.

It has D eigenvalues +1 and D eigenvalues −1, and is an element of O(D,D):

StηS = η . (1.14)

In the mathematical literature, the generalized metric and the Courant bracket are key

structures in generalized geometry [15, 16, 17]. In this geometry the coordinates of the spacetime

manifold M are not doubled, rather, the tangent bundle T of M and the cotangent bundle T ∗

of M are put together to form a larger bundle E = T ⊕T ∗ (or a twisted version of this bundle).

3Note that this form follows from our convention XM = (x̃i, x
i). Some papers use the opposite conventions

with XM = (xi, x̃i), which would then lead to an expression for the generalized metric related to ours by
swapping rows and columns.
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Sections of this bundle E are the formal sums X + ξ of vectors X and one-forms ξ. There is

a natural (indefinite) metric η on sections of E given by 〈X1 + ξ1, X2 + ξ2〉 = X1
iξ2i +X i

2ξ1i.

Introducing a metric g and 2-form b on M allows the definition of tensor fields H and S by

the formulae above. The tensor S defines a splitting E = C+ ⊕ C− such that 〈·, ·〉 is positive
definite on C+ and negative definite on C−. The spaces C± are eigenspaces of the matrix S

with eigenvalues ±1. Gualtieri [16] referred to S as the generalized metric. In [18], it was

suggested that the term generalized metric be used instead for HMN . The generalized metric

is then a 2D × 2D matrix field on the D dimensional space M and a metric on sections of E.

In the context of doubling, however, it was proposed in [18] that the generalized metric be

used as a conventional metric on the 2D dimensional doubled space. In this context the name

‘generalized metric’ is a misnomer and HMN is better regarded as a conventional metric on the

doubled space satisfying the constraint (1.11). We will follow [18] and the subsequent literature

and continue to refer to the metric HMN on the doubled space as a generalized metric.

In this paper we present a double field theory spacetime action based on the generalized

metric which is a rather nontrivial and surprising rewriting of (1.1). The action is built using

the O(D,D) tensors HMN , HMN , and the derivatives ∂M and is a rather simple and natural

expression:

S =

∫
dxdx̃ e−2d

( 1

8
HMN∂MHKL ∂NHKL − 1

2
HMN∂NHKL ∂LHMK

− 2 ∂Md ∂NHMN + 4HMN ∂Md ∂Nd
)
.

(1.15)

This action is manifestly O(D,D) invariant because all O(D,D) indices are properly contracted.

The factor e−2d tranforms as a density under gauge transformations and a scalar under O(D,D)

transformations. Most directly, we view the above action as an action for g, b and d fields, in

which g and b enter through H. With this identification the Lagrangians associated with (1.1)

and (1.15) are in fact identical. Alternatively, and more intriguingly, one may view H as an

elementary constrained field with a natural geometric interpretation.

The action (1.15) is gauge invariant provided the strong constraint is imposed. The dilaton

gauge transformation in (1.8) is already in O(D,D) covariant notation. For HMN we find

δξHMN = ξP∂PHMN + (∂MξP − ∂P ξ
M)HPN + (∂NξP − ∂P ξ

N)HMP . (1.16)

This transformation looks like a diffeomorphism in which each index gives a covariant and

contravariant contribution. We can view the above right-hand side as the generalized Lie

derivative L̂ξ of HMN and write

δξHMN = L̂ξHMN . (1.17)

We can indeed define the action of L̂ξ on an arbitrary generalized tensor A N1N2...
M1M2...

consistently

with the derivation property. The algebra of gauge transformations in the theory becomes

the commutator algebra of the generalized Lie derivatives. The commutator of generalized Lie

5



derivatives is in fact a generalized Lie derivative. Indeed, making use of the strong form of the

constraint, we show that [
L̂ξ1 , L̂ξ2

]
= −L̂[ξ1,ξ2]C

, (1.18)

where the C bracket [· , ·]C is defined by

[
ξ1, ξ2

]M
C

≡ ξN[1 ∂Nξ
M
2] − 1

2
ξP[1∂

Mξ2]P , (1.19)

with [ij] = ij − ji. The C bracket, introduced by Siegel in [8], was recognized in [3] as the

O(D,D) covariant extension of the Courant bracket for doubled fields. As we shall discuss, our

generalized Lie derivatives are closely related to those of [8] and [19].

2 O(D,D) and the generalized metric

In this section we summarize some well-known facts about the O(D,D) group, its Lie algebra,

and the generalized metric. Some of these facts were already mentioned in the introduction.

We define O(D,D), as in (1.4), as the group of 2D × 2D matrices h satisfying

htη h = η , (2.1)

and consequently h−1 = η−1htη . The associated Lie algebra generators T satisfy T tη+ ηT = 0.

More explicitly,

T =

(
α β
γ δ

)
→ γ, β, antisymmetric and δ = −αt , (2.2)

giving a total of 2D2 −D parameters.

Raising the indices on the generalized metric (1.9) gives

HMN = ηMPηNQHPQ . (2.3)

It will be convenient to use an index-free matrix notation. We will write H to denote the matrix

whose components are HMN :

H ≡ H• • , (2.4)

with the heavy dots indicating the index positions. We write η to denote the matrix whose

components are ηMN and S to denote the matrix whose components are SM
N :

η ≡ η• • , S ≡ S•
• . (2.5)

In this notation (1.12) is written as

S = H η . (2.6)

6



It follows from (2.3), (2.4), and (1.9) that

H =

(
g − bg−1b bg−1

−g−1b g−1

)
. (2.7)

The matrix H is symmetric (Ht = H) and satisfies

H ηH = η−1 , (2.8)

so that its inverse is

H−1 = ηHtη = ηHη . (2.9)

ThenH, with components HMN , is the inverse of the generalized metric with componentsHMN ,

which we denote H−1 so that (1.11) becomes HH−1 = 1. One can check explicitly that the

matrix in (2.7) is indeed the inverse of the matrix in (1.9).

Since the entries of the matrix η−1 coincide with those of the matrix η and H is symmetric,

H satisfies the defining condition (2.1) for O(D,D). We will then refer to a symmetric matrix

H that satisfies the constraint (2.8) as being a (symmetric) O(D,D) matrix. Strictly speaking,

this is an abuse of language as H has upper indices HMN while group elements have mixed

indices hM
N . The fact that H is a symmetric O(D,D) matrix can be seen explicitly by writing

H as the product of three simple O(D,D) matrices:

H =

(
g − bg−1b bg−1

−g−1b g−1

)
=

(
1 b

0 1

)(
g 0

0 g−1

)(
1 0

−b 1

)
. (2.10)

The construction of H and its remaining properties are motivated by the action (1.3) of h ∈
O(D,D) on E . We have E ′ = h(E) = (aE+ b)(cE+d)−1. Let hE be the O(D,D) transformation

that creates E starting from the identity background4 E = I, where I is the unit matrix

Iij = δij , so that it satisfies E = hE(I). Such a transformation is given by

hE =

(
e b(et)−1

0 (et)−1

)
, (2.11)

where we have introduced a vielbein e for the metric, so that

g = eet . (2.12)

Indeed we easily confirm that, as desired,

hE(I) = (eI + b(et)−1)(0 · I + (et)−1)−1 = (e+ b(et)−1)et = eet + b = g + b = E . (2.13)

The matrix hE is not uniquely defined; right multiplication by the O(D)× O(D) subgroup of

O(D,D) that leaves the background I invariant gives another transformation with the desired

properties.

4For simplicity we give the argument for Euclidean signature. For Lorentzian signature, we take I as the
Minkowski metric and g = eIet.
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Let us now consider the group action on hE . Consider an O(D,D) transformation h taking

E to E ′ = h(E). We then have hE ′(I) = E ′ = h(hE(I)) = (hhE)(I). We thus deduce that

h : hE → hE ′ = hhE . (2.14)

We now define the symmetric O(D,D) matrix

H(E) ≡ hEh
t
E . (2.15)

Here H is in O(D,D) because both hE and ht
E are. Moreover, the O(D)× O(D) ambiguity in

hE drops out of H. A quick computation confirms that this agrees with (2.7):

H(E) =
(
e b(et)−1

0 (et)−1

)(
et 0

−e−1b e−1

)
=

(
eet − b(eet)−1b b(eet)−1

−(eet)−1b (eet)−1

)
=

(
g − bg−1b bg−1

−g−1b g−1

)
.

It follows from (2.14) and (2.15) that under a transformation h ∈ O(D,D) such that E ′ = hE
we get the following transformation of H:

H(E ′) = hH(E) ht . (2.16)

We note that H at any point X is a symmetric O(D,D) matrix (i.e. a symmetric matrix

satisfying (2.8)) that is in the component of the O(D,D) group connected to the identity. The

formula for H in terms of g and b is a useful parameterization of this symmetric O(D,D)

matrix. We can readily check that the counting of degrees of freedom works out. This is most

easily done near the identity, using the Lie algebra results. If h = 1 + ǫT is to be symmetric

then we get that α is symmetric and γ = −β, referring to the notation in (2.2). Thus the whole

T is characterized by a symmetric α and an antisymmetric β. This is precisely D2 parameters,

the same number of parameter as in E .
The O(D,D) indices make the transformation properties manifest. For an O(D,D) vector

V M and an O(D,D) element h we have a transformation

V ′M = hM
N V N . (2.17)

An upper index M runs over 2D values, the first D of them described with a lower roman index

i and the second D of them with an upper roman index i:

V M = ( vi , v
i ) . (2.18)

The indices i, j = 1, ..., D label representations of the GL(D,R) subgroup of O(D,D). The

components vi and vi are independent. For lower O(D,D) indices we have

UM = ( ui , ui ) . (2.19)

In summary we can write M =
(
i ,

i
)
and M =

(
i , i

)
. The matrix hM

N , for example, has

components

hM
N =

(
hi

j hij

hij hi
j

)
. (2.20)
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We can viewH as a tensor HMN with two upper O(D,D) indices because the transformation

(2.16) implies that:

H′MN
(X ′) = hM

P hN
QHPQ(X) . (2.21)

We thus identify the H matrix with HMN(= HNM) as

HMN =

(Hij Hi
j

Hi
j Hij

)
=

(
gij − bikg

klblj bikg
kj

−gikbkj gij

)
. (2.22)

The symmetry HMN = HNM implies that

Hij = Hji , Hij = Hji , H j
i = Hj

i . (2.23)

The relation ηHη = H−1 in (2.9) with O(D,D) indices is

(H−1)MN = ηMPHPQηQN = HMN , (2.24)

so that HMN is indeed the inverse of HMN . The generalized metric is

HMN =
(
HMN

)−1
=

(
gij −gikbkj

bikg
kj gij − bikg

klblj

)
. (2.25)

3 Gauge symmetry and Courant brackets

In this section we will show that the gauge transformations (1.8), which are non-linear when

written in terms of Eij, act linearly on the O(D,D) covariant matrix HMN introduced above.

This linear form of the gauge transformations naturally suggests a notion of generalized Lie

derivative, for which a tensor calculus can be developed. This simplifies the proof of gauge

invariance to be undertaken in the next section. Finally, the closure of the gauge algebra

according to the Courant bracket will be checked in this formulation.

3.1 Gauge transformations of the generalized metric

The gauge transformations (1.8) take a highly non-linear form when written in terms of the

fundamental fields Eij = gij + bij . Writing out δEij using the definition (1.2) of calligraphic

derivatives one determines the transformation of δξgij (from which δgij follows) and the trans-

formation δξbij . The results are

δξgij = Lξgij + Lξ̃gij +
(
∂̃kξl − ∂̃lξk

)
(gki bjl + gkj bil) ,

δξg
ij = Lξg

ij + Lξ̃g
ij −

[(
∂̃iξk − ∂̃kξi

)
gjlblk + (i ↔ j)

]
,

δξbij = Lξbij + Lξ̃bij + ∂iξ̃j − ∂j ξ̃i + gik
(
∂̃lξk − ∂̃kξl

)
glj + bik

(
∂̃lξk − ∂̃kξl

)
blj .

(3.1)
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Here we use the Lie derivatives with respect to ξi and dual Lie derivatives with respect to ξ̃i.

Their definition on tensors with arbitrary number of upper and lower indices follow from

Lξ u
j
i = ξp∂pu

j
i + ∂iξ

p u j
p − ∂pξ

j u p
i ,

Lξ̃ u
j
i = ξ̃p∂̃

pu j
i + ∂̃j ξ̃p u

p
i − ∂̃pξ̃i u

j
p .

(3.2)

It is of interest to determine the gauge transformations of the (inverse) generalized met-

ric HMN . The direct computation gives a remarkable result: the gauge transformations of HMN

implied by (3.1) are linear in HMN . Indeed, we find

δHij = LξHij + Lξ̃Hij +
[
(∂iξ̃p − ∂pξ̃i)Hp

j + (i ↔ j)
]
,

δHij = LξHij + Lξ̃Hij +
[
(∂̃iξp − ∂̃pξi)Hj

p + (i ↔ j)
]
,

δHi
j = LξHi

j + Lξ̃Hi
j + (∂̃iξp − ∂̃pξi)Hpj + (∂j ξ̃p − ∂pξ̃j)Hip .

(3.3)

We sketch the proof of the first relation in (3.3). For this we rewrite (3.1) with a separation of

terms δ̂ξ that are quadratic in the fields:

δξgij = Lξgij + Lξ̃gij + δ̂ξgij ,

δξg
ij = Lξg

ij + Lξ̃g
ij + δ̂ξg

ij ,

δξbij = Lξbij + Lξ̃bij + ∂iξ̃j − ∂j ξ̃i + δ̂ξbij .

(3.4)

The expressions for δ̂ξ on the fields follow directly by comparison with (3.1). In the computa-

tion of

δξHij = δξ
(
gij − bikg

klblj
)
, (3.5)

the terms in the gauge variations of fields that consist of Lie derivatives combine to form the

Lie derivatives of Hij . We thus find

δξHij = LξHij + Lξ̃Hij − (∂iξ̃k − ∂kξ̃i)g
klblj − bikg

kl(∂lξ̃j − ∂j ξ̃l) + δ̂ξHij

= LξHij + Lξ̃Hij + (∂iξ̃p − ∂pξ̃i)Hp
j + (∂j ξ̃p − ∂pξ̃j)Hp

i + δ̂ξHij ,
(3.6)

where we have used (2.22) to identify components of HMN and have relabeled the indices. A

direct computation then shows that:

δ̂ξHij = δ̂ξ
(
gij − bikg

klblj
)

= 0 . (3.7)

This completes the proof that the gauge transformation is linear in H. The other relations in

(3.3) follow similarly. The linear part of the above computation essentially coincides with the

analysis of [19], but the remarkable cancellation of the non-linear terms is only visible once the

dual derivatives ∂̃i enter.
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The transformations (3.3) can be written in a manifestly O(D,D) covariant form and the

result is rather simple:

δξHMN = ξP∂PHMN − ∂P ξ
M HPN − ∂P ξ

N HMP

+ ηPQ

(
ηMK∂Kξ

P HQN + ηNK∂Kξ
P HMQ

)
.

(3.8)

The first terms are the standard diffeomorphism terms, while the remaining ones are novel and

responsible for closure into the C bracket. If we use the notation ∂M = ηMN∂N , ξM = ηMNξ
N ,

etc., these gauge transformations can be rewritten in a even more suggestive form as

δξHMN = ξP∂PHMN − ∂P ξ
M HPN − ∂P ξ

N HMP + ∂MξP HPN + ∂NξP HMP . (3.9)

It looks like a diffeomorphism which democratically treats the indices both as covariant and

contravariant and can be seen as a generalized Lie derivative which we consider in more detail in

the next subsection. Another convenient rewriting that groups the covariant and contravariant

action on each index is

δξHMN = ξP∂PHMN + (∂MξP − ∂P ξ
M)HPN + (∂NξP − ∂P ξ

N)HMP . (3.10)

The gauge invariance has the usual gauge invariance: gauge parameters of the form ξP = ∂Pχ

generate no gauge transformations: δ∂χHMN = 0. This is readily verified in the equation above

using the strong form of the constraint.

3.2 Generalized Lie derivatives and Courant brackets

The transformation of HMN in (3.10) involves an operation similar to a Lie derivative. This

motivates the definition of a generalized Lie derivative L̂ of a generalized tensor which has upper

and lower indices A M1...
N1...

. For a tensor AM
N the generalized Lie derivative is defined to be

L̂ξAM
N ≡ ξP∂PAM

N + (∂MξP − ∂P ξM)AP
N + (∂NξP − ∂P ξ

N)AM
P . (3.11)

For multiple indices the generalized Lie derivative is defined analogously: each index gives rise

to two terms. With such definition we immediately recognize that the gauge transformation

(3.10) of the generalized (inverse) metric is simply a generalized Lie derivative:

δξHMN = L̂ξHMN . (3.12)

The generalized Lie derivative differs from the conventional Lie derivative by terms that involve

explicitly the O(D,D) metric

L̂ξAM
N = LξAM

N − ∂P ξM AP
N + ∂NξP AM

P

= LξAM
N − ηPQηMR ∂Qξ

R AP
N + ηPQη

NR ∂Rξ
QAM

P .
(3.13)

With the definition (3.11) L̂ξ is a derivative satisfying the Leibniz rule,

L̂ξ

(
A M1...

N1...
B Q1...

P1...

)
=
(
L̂ξA

M1...
N1...

)
B Q1...

P1...
+ A M1...

N1...

(
L̂ξB

Q1...
P1...

)
, (3.14)
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so that it is consistent to regard products of generalized tensors are generalized tensors with the

index structure of the full set of indices. The generalized Lie derivative L̂ξ of any generalized

tensor vanishes when ξM = ∂Mχ, so that for any generalized tensor A we have

L̂ξ+η−1∂χA = L̂ξA . (3.15)

A remarkable and important property is that the generalized Lie derivatives of the O(D,D)

metric ηMN and the Kronecker tensor δM
N vanish:

L̂ξηMN = 0, L̂ξη
MN = 0, L̂ξδM

N = 0 . (3.16)

For example,

L̂ξη
MN = ξP∂P ηMN − ∂NξM − ∂MξN + ∂NξM + ∂MξN = 0 . (3.17)

This is unusual; in ordinary diffeomorphism invariant theories a constant world-tensor with two

covariant or two contravariant indices does not have vanishing Lie derivative along arbitrary

vector fields.

An important consequence of L̂ξη = L̂ξη
−1 = 0 is that the constraint that H is an O(D,D)

matrix is compatible with its gauge symmetry. Taking the generalized Lie derivative of the

condition HηH = η−1 gives

(
L̂ξH

)
ηH +Hη

(
L̂ξH

)
= 0 . (3.18)

This means that (
δξH

)
ηH +Hη

(
δξH

)
= 0 , (3.19)

so that HηH = η−1 is preserved by the gauge transformations, showing that the O(D,D) and

gauge symmetries are compatible.

The constant tensors η and δ can be used to simplify and relate tensor expressions. The

simplest generalized tensor is a scalar S for which

L̂ξS = ξP∂PS . (3.20)

A generalized tensor with two indices contracted, such as AM
M , is a generalized scalar (the

definition (3.11) gives L̂ξAM
M = ξP∂PAM

M). Any contraction of an upper and a lower index

effectively removes both indices from the tensor. For a tensor AM with one index down we have

L̂ξAM = ξP∂PAM + (∂MξP − ∂P ξM)AP . (3.21)

For a tensor AM with one index up we have

L̂ξA
M = ξP∂PA

M + (∂MξP − ∂P ξ
M)AP , (3.22)

so that L̂ξA
M = ηMN L̂ξAM as expected.
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The algebra of generalized Lie derivatives is governed by the C bracket (1.19). The commu-

tator algebra of generalized Lie derivatives is most easily calculated acting on the generalized

tensor AM . A straightforward computation gives

[
L̂ξ1 , L̂ξ2

]
AM = −L̂[ξ1,ξ2]C

AM + FM (ξ1, ξ2, A) , (3.23)

where [· , ·]C is the C bracket defined in (1.19) and FM is given by

FM(ξ1, ξ2, A) = −1

2
ξ[1N ∂QξN2] ∂QAM + ∂Qξ[1M ∂Qξ

P
2] AP , (3.24)

which vanishes by the strong form of the constraint. Since we always assume this constraint,

we have shown that acting on a field AM we have

[
L̂ξ1 , L̂ξ2

]
= −L̂[ξ1,ξ2]C

. (3.25)

This commutator actually holds acting on arbitrary generalized tensors. Indeed, consider

the action on the product of two one-index generalized tensors

[
L̂ξ1, L̂ξ2

](
AMBN

)
=
([

L̂ξ1 , L̂ξ2

]
AM

)
BN + AM

[
L̂ξ1, L̂ξ2

]
BN

= −L̂[ξ1,ξ2]C

(
AMBN

)
.

(3.26)

By iterating this proof it follows that the commutator property (3.25) holds for all tensors with

lower indices. It also holds for tensors with an arbitrary number of upper indices. This follows

from L̂ξη
MN = 0,

[
L̂ξ1, L̂ξ2

]
AM =

[
L̂ξ1 , L̂ξ2

](
ηMNAN

)
= ηMN

[
L̂ξ1, L̂ξ2

]
AN

= −ηMN L̂[ξ1,ξ2]CAN = −L̂[ξ1,ξ2]CA
M .

(3.27)

We have verified explicitly that the commutator (3.25) holds acting on HMN . With the identi-

fication of δξ with L̂ξ acting on H we have that up to terms that vanish because of the strong

form of the constraint, [
δξ1 , δξ2

]
HMN = δξ12HMN , (3.28)

where ξ12 = −[ξ1, ξ2]C . The gauge transformations close according to the C bracket. This is in

agreement with [3] where it was shown that the algebra of the gauge transformations on E and

d is given by the C bracket.

3.3 Generalized Lie brackets and Dorfman brackets

The usual Lie derivative of a vector field defines the Lie bracket through [X, Y ] = LXY .

This suggests defining a generalized Lie bracket through the generalized Lie derivative. This

generalized Lie bracket, which we will refer to as a D-bracket, is thus defined by

[
A,B

]
D
≡ L̂AB . (3.29)
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The D bracket is not skew-symmetric, as can be seen using (3.22). A short calculation shows

that the D bracket differs from the C bracket (1.19) by a term which has the structure of a

trivial gauge parameter:

[
A,B

]M
D

=
[
A,B

]M
C

+
1

2
∂M
(
BNAN

)
. (3.30)

Generalized vectors that depend just on x and not on x̃ decompose into a vector and a 1-form

on the usual D-dimensional space with coordinates xi, and in that case it was shown in [3] that

the C bracket becomes precisely the Courant bracket. In that same situation, the D-bracket

becomes precisely the Dorfman bracket (see, for example [16], section 3.2) and our generalized

Lie derivative becomes precisely the generalized Lie derivative introduced in [19] leading to the

standard transformations of the metric and B-field. Our C bracket, D bracket and generalized

Lie derivative, however, have the advantage of being O(D,D) covariant. For any totally null

D-dimensional subspace N (i.e. any maximally isotropic subspace), we showed in [3] that the

C bracket becomes the Courant bracket on N . Similarly, the D-bracket becomes the Dorfman

bracket on N and the generalized Lie derivative becomes that of [19] on N .

The D-brackets inherit the properties of the familiar Dorfman bracket [16].5 They are not

skew:
[
A,B

]M
D

+
[
B,A

]M
D

= ∂M
(
BNAN

)
, (3.31)

but their antisymmetrization gives the C bracket
[
A,B

]
D
−
[
B,A

]
D
= 2
[
A,B

]
C
. It satisfies

the Jacobi like identity
[
A,
[
B,C

]
D

]
D
=
[[
A,B

]
D

]
, C
]
D
+
[
B,
[
A,C

]
D

]
D
. (3.32)

Thus while the C bracket is anti-symmetric but does not satisfy the Jacobi identity, the D-

bracket is not anti-symmetric but does satisfy a Jacobi identity.

4 The gauge invariant action

In this section we determine the gauge invariant action in terms of HMN , which is equivalent

to the original form (1.1). This action will be manifestly O(D,D) invariant and is further con-

strained by a discrete Z2 symmetry. Moreover, we construct a function R(H, d) that transforms

as a gauge and O(D,D) scalar and show that the action, up to boundary terms, can be written

in an Einstein-Hilbert-like form.

4.1 The O(D,D) and gauge invariant action

Given the O(D,D) transformation properties ofHMN , the partial derivatives ∂N , and the metric

ηMN = ηMN , we can build O(D,D) scalars by simply contracting all indices consistently.

5Since the Dorfman bracket is not skew, it is usually not written as a bracket, but rather as a product: A◦B
denotes what we call [A,B]D.
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The O(D,D) transformations are global and there is no complication whatsoever with the

derivatives. Examples of O(D,D) scalars are

HMN ∂Md ∂Nd , ∂KHMN∂MHKN . (4.1)

There are a number of such O(D,D) scalars and what we are looking for is a linear combination

of them, each with two derivatives, that is gauge invariant. To simplify the problem we consider

the one additional discrete Z2 symmetry the action is supposed to have. This is the symmetry

bij → −bij of the antisymmetric tensor field. This transformation must be accompanied by

letting x̃ → −x̃ as well as ∂̃ → −∂̃. In the original action (1.1) this is the symmetry under

Eij → Eji as well as D ↔ D̄. In our present notation, where

∂M =

(
∂̃i

∂i

)
, (4.2)

we will write

∂• → Z ∂• , with Z =

(
−1 0
0 1

)
, (4.3)

where we used ∂• to denote the column vector associated with ∂M . The matrix Z satisfies the

simple properties

Z = Zt = Z−1 , Z2 = 1 . (4.4)

When bij → −bij the off-diagonal matrices in HMN change sign. So do the off-diagonal matrices

in HMN . This is accomplished by

H•• → ZH••Z , H•• → ZH••Z . (4.5)

The matrix Z does not correspond to an O(D,D) transformation. Thus we find that

η•• 6= Z η••Z , η•• 6= Z η••Z . (4.6)

We now see that terms built with ∂•,H••, and H••, with all indices contracted, will be Z2

invariant. Indeed, each index appears twice and, under the transformation, generate two Z

matrices in a product ZZ = 1. The Z2 invariance is violated if η•• or η•• are needed to write

the term (H•• can be written with two η’s and H••). Alternatively, the Z2 invariance is violated

if we need to use the derivatives ∂M with an upper index.

The above Z2 constraint is quite strong. It eliminates, for example, the second term in (4.1).

In fact, one can convince oneself that there is no Z2-invariant term with two derivatives and

two appearances of the generalized metric. For terms that mix the generalized metric and the

dilaton there are four options:

∂Md ∂NHMN , HMN ∂Md ∂Nd , HMN ∂M∂Nd , ∂M∂NHMN . (4.7)

15



The last one qualifies as an interaction because it is to be multiplied by e−2d, just as every other

term. By integration by parts we can show that in an action the last two terms are simply

linear combinations of the first two. Thus our choices are

∂Md ∂NHMN , HMN ∂Md ∂Nd . (4.8)

Since we cannot have terms with just two generalized metrics, we look for terms with three

of them (built without η). There are just two options

HMN∂MHKL ∂NHKL , HMN∂NHKL ∂LHMK . (4.9)

The action must be build by an appropriate linear combination of the four terms listed above,

and multiplied by e−2d. We claim that the gauge-invariant combination is

S =

∫
dx dx̃L , (4.10)

with

L = e−2d
( 1

8
HMN∂MHKL ∂NHKL − 1

2
HMN∂NHKL ∂LHMK

− 2∂Md ∂NHMN + 4HMN ∂Md ∂Nd
)
.

(4.11)

Rather than prove now the gauge invariance we first verify that the above action is equivalent

to the double field theory action in [4]. Even more, the two corresponding Lagrangian densities

are just identical. As a check we perform a derivative expansion L = L(0) + L(1) + L(2) in ∂̃ as

in [4]. For L(0) one finds

L(0) = e−2d
(1
4
Hij∂iHkl ∂jHkl +

1

4
Hij∂iHk

l ∂jHl
k − 1

2
Hi

j∂jHk
l ∂lHik − 1

2
Hi

j∂jHkl ∂lHi
k

− 1

2
Hij∂jHk

l ∂lHi
k − 1

2
Hij∂jHkl ∂lHik − 2∂id ∂jHij + 4Hij ∂id ∂jd

)
.

(4.12)

It is a straightforward though somewhat lengthy calculation to check that

L(0) = e−2d
(1
4
gij∂igkl ∂jg

kl − 1

2
gij∂jg

kl ∂lgik − 2∂id ∂jg
ij + 4gij∂id ∂jd−

1

12
H2
)
, (4.13)

where Hijk = ∂ibjk + ∂jbki + ∂kbij . This coincides with the expression found in eq. (3.18) of [4].

Moreover, L(2) turns out to be the ‘T-dual’ expression, where we note that under inversion

duality

∂i → ∂̃i , Hij → Hij , etc. , (4.14)

i.e., L(2) must also coincide with the corresponding expression in [4]. The lemma that two

O(D,D) scalars that agree in one O(D,D) frame are identical [4] shows that the two La-

grangians are identical. Thus (4.11) is the correct rewriting of the Lagrangian in terms of the

generalized metric.
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It is possible to understand the equality of the Lagrangians (4.11) and (1.1) more directly.

For this purpose it is useful to define

eMi ≡
(
Eji
δj i

)
. (4.15)

This definition allows us to write

HMN = eMi e
N

j g
ij − ηMN , (4.16)

as can be verified by a simple direct calculation of the components. We also have

eMi ∂M ≡ D̄i , (4.17)

with the calligraphic derivative defined in (1.2). Next we will take terms in the new action and

write them in terms of those in the old action. For the last term in (4.11) the computation is

rather simple:

4HMN∂Md ∂Nd = 4eMie
N

jg
ij∂Md ∂Nd− 4ηMN∂Md ∂Nd

= 4gijeMi∂Md eNj∂Nd

= 4gijD̄id D̄jd ,

(4.18)

where we used the constraint, (4.16), and (4.17). The right-hand side is the last term in the

Lagrangian (1.1). Other terms require more work because they contain derivatives of HMN . A

short computation with the next to last term in (4.11) gives

−2 ∂Md ∂NHMN = −2 ∂Md ∂N
(
eMie

N
jg

ij
)

= −2 ∂̃kd D̄jEki gij − 2 D̄id ∂̃
kEkj gij − 2 D̄id D̄jg

ij .
(4.19)

At this point we can replace the ∂̃-derivatives using the identity ∂̃k = (D̄k − Dk)/2, and one

quickly finds that

− 2 ∂Md ∂NHMN = gijgkl
(
Dld D̄jEki + D̄idDlEkj

)
. (4.20)

The right-hand side describes the next to last terms in the Lagrangian (1.1)! One must work

harder to write the pure generalized-metric terms in terms of E and calligraphic derivatives.

But the results are still simple, with a rather direct correspondence between the terms in the

two actions. We have verified that

1

8
HMN∂MHKL ∂NHKL = −1

4
gikgjl DpEkl DpEij , (4.21)

showing that the first terms in the Lagrangians are equal. In doing this computation the

strategy is that terms with E fields and no derivatives have to combine and disappear, leaving
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at most metric components gij. Finally, given the equality of the Lagrangians, the last two

structures have to coincide,

− 1

2
HMN∂NHKL ∂LHMK =

1

4
gkl
(
DjEikDiEjl + D̄jEki D̄iElj

)
. (4.22)

In total we conclude that all terms in the action can be identified naturally.

We note, in passing, that integrating by parts in the last term of the action defined by (4.11)

we can get the simpler, three term action:

S =

∫
dxdx̃ e−2d

(1
8
HMN∂MHKL ∂NHKL−

1

2
HMN∂NHKL ∂LHMK+2HMN ∂M∂Nd

)
. (4.23)

Another set of integration by parts leads to an action where the Lagrangian takes the form of

e−2dR where R is a gauge scalar. This is what we discuss next.

4.2 Generalized scalar curvature

A reasonable assumption is that the analogue R of the scalar curvature is just the dilaton

equation of motion, a feature that it shares with the scalar curvature constructed in [4], and

that found in [8]. Using the Lagrangian (4.11) a simple computation gives the equation of

motion of the dilaton, and we thus define:

R ≡ 4HMN∂M∂Nd− ∂M∂NHMN

− 4HMN∂Md ∂Nd+ 4∂MHMN ∂Nd ,

+
1

8
HMN∂MHKL ∂NHKL − 1

2
HMN∂MHKL ∂KHNL .

(4.24)

The claim, to be proven in the following subsection, is that R so defined is a gauge scalar. We

can confirm that this is in fact the same as the scalar in [4]. The verification uses the equation

of motion of the dilaton from (4.11). The simplicity of this is that the Lagrangian here reduces

to L(0). The variation of the dilaton in the Lagrangian (but not the exponential) then gives

additional terms that are total derivatives and a short computation shows that they coincide

with the total derivatives in equation (C.27) of [4]. This confirms that the dilaton equation of

motion does equal the curvature invariant.

We now confirm that the action (4.11), up to total derivatives, takes the form

S =

∫
dx dx̃ e−2d R . (4.25)

To see this we consider the last two terms in the Lagrangian of (4.11). Simple manipulations
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show that

e−2d
(
− 2∂Md ∂NHMN + 4HMN ∂Md ∂Nd

)

= ∂M(e−2d) ∂NHMN + e−2d
(
− 4HMN ∂Md ∂Nd+ 8HMN ∂Md ∂Nd

)

= ∂M(e−2d ∂NHMN) + e−2d
(
− ∂M∂NHMN − 4HMN ∂Md ∂Nd

)
− 4HMN ∂M(e−2d) ∂Nd

= ∂M(e−2d [∂NHMN − 4HMN∂Nd]) + e−2d
(
− ∂M∂NHMN − 4HMN∂Md ∂Nd+ 4∂M(HMN∂Nd)

)
.

(4.26)

We recognize that the terms within the last parentheses are the first four terms in R, as given

in (4.24). Looking back at (4.11) and R we conclude that

L = e−2dR+ ∂M

(
e−2d [∂NHMN − 4HMN∂Nd ]

)
. (4.27)

4.3 Proof of gauge invariance

We prove now the gauge invariance of the action. For this purpose we consider (4.25) and we

will show that R is a gauge scalar, namely,

δξR = L̂ξR = ξM∂MR . (4.28)

Given that the dilaton exponential transforms like a density:

δξ e
−2d = ∂M(ξMe−2d) , (4.29)

the invariance of the action S follows immediately.

We use the same strategy as in [4] to prove (4.28). Since all indices are properly contracted,

we only need to focus on the non-covariant terms in the variation of partial derivatives. Thus,

for example, a short calculation shows that

δξ
(
∂MHKL

)
= L̂ξ

(
∂MHKL

)
+ ∂P ξM ∂PHKL − 2∂M∂P ξ

(K HL)P + 2∂M∂(KξP HL)P . (4.30)

The first term is the covariant one. The second term vanishes due to the constraint, and

consequently this term and analogous ones in the formulas below will be ignored in the following.

We will write, for any object W ,

δξW = L̂ξW +∆ξW , (4.31)

so that ∆ξW denotes the violation of W to transform as the tensor associated with its index

structure. Since δξ is a linear operation

δξ(WV ) = (δξW )V +W (δξV )

= (L̂ξW +∆ξW )V +W (L̂ξV +∆ξV )

= L̂ξ(WV ) + (∆ξW )V +W (∆ξV ) ,

(4.32)
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showing that the violation ∆ξ is also a derivation:

∆ξ(WV ) = (∆ξW )V +W (∆ξV ) . (4.33)

Using the notation in (4.31), the variation in (4.30) is

∆ξ

(
∂MHKL

)
= −2∂M∂P ξ

(K HL)P + 2∂M∂(KξP HL)P . (4.34)

The contraction of the above is useful,

∆ξ

(
∂MHMN

)
= −∂P (∂ · ξ)HPN − ∂M∂P ξ

N HMP + ∂M∂NξP HMP . (4.35)

Since δξη = L̂η = 0 we have ∆ξη = 0 and we can directly raise and lower indices in formulae

for ∆ξW . Thus, (4.34) gives

∆ξ (∂KHNL) = −2∂K∂
P ξ(N HL)P + 2∂K∂(Nξ

P HL)P . (4.36)

We also need

∆ξ

(
∂M∂NHMN

)
= − 2 ∂M(∂ · ξ) ∂NHMN − 2∂M∂N (∂ · ξ)HMN − ∂M∂Nξ

P ∂PHMN ,

∆ξ (∂Md) = − 1

2
∂M ∂ · ξ ,

∆ξ (∂M∂Nd) = ∂M∂Nξ
P ∂Pd−

1

2
∂M∂N(∂ · ξ) .

(4.37)

In light of the above discussion, we need to show that

∆ξR = 0 . (4.38)

We begin with the first two terms in R, those that contain second derivatives of fields. A short

calculation shows that

∆ξ

(
4HMN∂M∂Nd− ∂M∂NHMN

)
= 4HMN ∂M∂Nξ

P∂Pd+ 2∂M∂ · ξ ∂NHMN

+ ∂M∂Nξ
P∂PHMN .

(4.39)

The virtue of the above combination of terms is that variations with three derivatives on ξ

cancelled out. Next we aim to cancel the term above of the form H ∂2ξ ∂d. For this we use the

next two terms in R. A short computation gives

∆ξ

(
4∂MHMN∂Nd− 4HMN ∂Md∂Nd

)
= −4HMN ∂M∂Nξ

P∂Pd − 2∂M∂ · ξ ∂NHMN . (4.40)

Comparing with the previous equation we see that two terms are in fact cancelled and we get

∆ξ

(
4HMN∂M∂Nd−∂M∂NHMN+4∂MHMN∂Nd−4HMN ∂Md∂Nd

)
= ∂M∂Nξ

P∂PHMN . (4.41)
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The violation in the right-hand side can be cancelled by one of the remaining terms in R:

∆ξ

(
−1

2
HMN∂MHKL ∂KHNL

)
= − ∂M∂Nξ

P∂PHMN

+ ∂KHMN ∂M
(
∂LξP − ∂P ξ

L
)
HKPHNL .

(4.42)

We can show that the underlined term is in fact zero because it is equal to minus itself:

∂KHMNHKPHNL ∂M∂LξP =− ∂KHNLHKPHMN ∂M∂LξP

=− ∂KHNLHKPHMN ∂M∂LξP

=− ∂KHNMHKPHLN ∂L∂MξP

=− ∂KHMNHKPHNL ∂M∂LξP .

(4.43)

In the first step we used ∂KHMNHNL = −HMN∂KHNL, which follows from HMNHNL = δML .

As a result (4.42) becomes

∆ξ

(
−1

2
HMN∂MHKL ∂KHNL

)
= − ∂M∂Nξ

P∂PHMN − ∂KHMN HKPHNL ∂M∂P ξ
L . (4.44)

The first term on the right-hand side is suitable to cancel the violation in (4.41) but we got an

additional term. This term requires the consideration of the one remaining term in R. A short

calculation gives

∆ξ

(1
8
HMN∂MHKL∂NHKL

)
=

1

2
∂MHKL ∂N

(
∂Kξ

P − ∂P ξK
)
HMNHLP . (4.45)

Using manipulations similar to those in (4.43) show that the two terms in the above right-hand

side are actually equal so that

∆ξ

(1
8
HMN∂MHKL∂NHKL

)
= ∂MHKLHMNHLP∂N∂Kξ

P ,

= ∂KHMN HKPHNL ∂M∂P ξ
L ,

(4.46)

using additional manipulations for the last step. This result, together with (4.44), gives

∆ξ

(1
8
HMN∂MHKL∂NHKL − 1

2
HMN∂MHKL ∂KHNL

)
= −∂M∂Nξ

P∂PHMN . (4.47)

At this point it is clear that the ∆ξ violation of these two terms cancels precisely with the

violation of the other four terms in R, as shown in (4.41). We thus find that ∆ξR = 0, which

is what we wanted to show. This completes the proof of gauge invariance of the action.

4.4 Generalized Ricci curvature

We have seen that the dilaton field equation gives a generalized scalar R that can be viewed as

a generalisation of the scalar curvature. In this subsection we consider the field equation for H
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which provides a natural generalization of the Ricci curvature. The change in the action (1.15)

under a general variation δHMN of HMN is

δS =

∫
dxdx̃ e−2d δHMNKMN , (4.48)

where

KMN ≡ 1

8
∂MHKL ∂NHKL − 1

4
(∂L − 2(∂Ld))(HLK∂KHMN) + 2 ∂M∂Nd

− 1

2
∂(MHKL ∂LHN)K +

1

2
(∂L − 2(∂Ld))

(
HKL∂(MHN)K +HK

(M∂KHL
N)

)
.

(4.49)

As H is constrained to satisfy HηH = η−1, the equations of motion are found by considering

variations that preserve this constraint. The varied field H′ = H+δH will satisfy H′ηH′ = η−1

provided

δH ηH+Hη δH = 0 . (4.50)

Using (2.6) we rewrite the above as

δHSt + S δH = 0 , (4.51)

and recalling that S2 = 1 we have the constraint

δH = −S δHSt . (4.52)

Since 1
2
(1±S), acting on vectors V = V M with upper indices, can be viewed as projectors into

subspaces with S eigenvalues ±1, any matrix M = MMN can be viewed as a bivector and so

written as the sum of four projections into independent subspaces:

M =
1

4
(1 + S)M(1 + St) +

1

4
(1 + S)M(1− St)

+
1

4
(1− S)M(1 + St) +

1

4
(1− S)M(1− St) .

(4.53)

It then follows that the general solution of (4.52) is given by

δH =
1

4
(1 + S)M(1− St) +

1

4
(1− S)M(1 + St) , (4.54)

where M is an arbitrary matrix that must be symmetric to guarantee that δH is symmetric.

Inserting this in (4.48) and letting K denote the matrix with components KMN gives

δS =

∫
dxdx̃ e−2dTr

(
δHK

)

=

∫
dxdx̃ e−2dTr

(
M
[1
4
(1− St)K (1 + S) +

1

4
(1 + St)K (1− S)

])
.

(4.55)
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The field equation is then

RMN = 0 , (4.56)

where the matrix R, whose components are RMN , is given by

R ≡ 1

4
(1− St)K(1 + S) +

1

4
(1 + St)K(1− S) . (4.57)

Restoring the indices we have

RMN ≡ 1

4
(δM

P − SP
M)KPQ (δQN + SQ

N) +
1

4
(δM

P + SP
M)KPQ (δQN − SQ

N ) . (4.58)

The field equation RMN = 0 combines the field equations of the metric g and the b-field in

an O(D,D) covariant form and RMN provides a generalized Ricci curvature. We will discus it

further in section 5.4.

5 Vielbein formulations

In this section we discuss reformulations of the double field theory written in terms of viel-

beins or coset variables instead of the metric H, introducing variables similar to those used

in dimensional reduction of supergravity theories. When dimensionally reduced on a D-torus,

the familiar field theory of gravity plus b-field arising in supergravity theories gives a theory

with O(D,D) duality symmetry. In particular, the scalar fields originating from the metric and

b-field on the torus take values in the coset space O(D,D)/O(D)× O(D) [12, 13, 14]. Scalar

fields such as these that parameterize a coset space G/H can be represented by a group-valued

field V(x) ∈ G, which depends only on the non-compact coordinates xα and transforms as

V ′(x) = g V(x) h(x) , g ∈ G , h(x) ∈ H (5.1)

under localH and rigid G transformations. The theory can also be written in terms ofH = V†V,
which is H-invariant and reduces to H = V tV if V is a real matrix, as in our case.

For G/H = O(D,D)/O(D) × O(D), the matrix VM
A has an O(D,D) index M and a

O(D) × O(D) index A. The vielbein VM
A corresponds to the matrix hE in (2.11), which

indeed transforms from the left by the G = O(D,D) action and is well-defined only up to local

H = O(D)× O(D) transformations from the right. We define the H-invariant HMN by

HMN ≡ VM
A VN

B δAB . (5.2)

This definition coincides with (2.15) and thus HMN is the inverse generalized metric. Any

action for which V enters only through H is automatically H-invariant. The standard sigma

model Lagrangian reads L = Tr
[
H−1∂αHH−1∂αH

]
. An alternative formulation of this sigma

model was found by Maharana and Schwarz [12] involving a vielbein eMa, where a = 1, . . . , D,

and in this formulation the local symmetry is GL(D,R) instead of O(D)× O(D).
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Siegel generalised this by using similar variables for the whole space-time, not just an internal

torus. In [9] he rewrote the metric and b-fields in D-dimensional flat space in terms of a

Maharana-Schwarz-like vielbein eMa depending on all the space-time coordinates, not just the

non-compact ones. Then in [8] he extended this further to a doubled space-time with 2D

coordinates X transforming as a vector under O(D,D) and a vielbein eMA(X) with a local

GL(D,R) × GL(D,R) symmetry. This formulation reduces to the coset space formulation

with one gauge choice and to the Maharana-Schwarz-like formulation with another. Neither

eMA(X) or eMa(X) are coset representatives, but fixing the GL(D,R)× GL(D,R) symmetry

to O(D)× O(D) does give a representative of the coset O(D,D)/O(D)× O(D). Models with

fields taking values in a coset G/H and depending on coordinates X that transform under G

were discussed in [20], motivated by earlier use of such variables in e.g. [21] and [22]. A key

feature is that such models allow for more general G-invariant actions, as the derivatives ∂M
now carry the same kind of index as HMN or VM

A. Consequently, contractions between indices

on derivatives and indices on matrices are now possible, as arising in our action (4.11).

Here we will discuss reformulations of our theory in terms of vielbeins eMA(X) or eMa(X),

and use these to explore the geometry further. In this way we show how our formalism is related

to that of Siegel, giving a different approach to his formalism here.

5.1 General frames

We start by choosing a basis of vector fields eMA for the doubled space, where M is the usual

vector index and A = 1, . . . , 2D labels the basis. Then eMA is a 2D × 2D invertible matrix

field, and its inverse eAM can be regarded as a vielbein for the doubled space. The metrics H
and η then have frame components

HAB ≡ eMA eNB HMN (5.3)

and

η̂AB ≡ eMA eNB ηMN , (5.4)

where the ˆ indicates that for general frames this will be a function of X . There is a local

GL(2D,R) action on frames

eMA → eMB ΛB
A , Λ(X) ∈ GL(2D,R) . (5.5)

The inverse metrics have frame components defined by

HAB ≡ eAM eBN HMN , η̂AB ≡ eAM eBN ηMN , (5.6)

and it follows from these definitions and (1.11) that, as expected, these are the inverses of HAB

and η̂AB:

HACHCB = δAB , η̂AC η̂CB = δAB . (5.7)
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Using the above formulae, it follows that

eAM(ηMN eBN η̂BC) = δAC , (5.8)

so that the inverse vielbein is given by

eMC = ηMN eBN η̂BC . (5.9)

Thus it is fully consistent to raise and lower M,N, . . . indices with ηMN and the tangent space

indices A,B, . . . with η̂AB, and we will do so throughout this section.

The tangent space group GL(2D,R) can be reduced by restricting to a basis with special

properties. For example, a basis that is orthonormal with respect to ηMN will have

eMAe
N

B ηMN =

(
0 1
1 0

)
→ η̂AB =

(
0 1
1 0

)
. (5.10)

Restricting to such bases will restrict the tangent space group to O(D,D). Similarly, a basis

that is orthonormal with respect to HMN will have

eMAe
N

B HMN = δAB → HAB = δAB . (5.11)

Restricting to such bases will restrict the tangent space group to O(2D).6 Restricting to

frames which are orthonormal for both metrics H and η reduces the tangent space group to

O(D)×O(D).

5.2 Frames with GL(D,R)×GL(D,R) symmetry

Here we will be interested in a different reduction of the frame bundle in which the structure

group is reduced to GL(D,R)×GL(D,R). The doubled space is equipped with the two metrics

H and η so that S = η−1H satisfies S2 = 1 and is an almost local product structure or almost

real structure (the analogue of an almost complex structure satisfying J2 = −1). This allows

the splitting T = T+ ⊕ T− of the tangent bundle T of the doubled space into the subbundle T+

of vectors with S eigenvalue +1 and the subbundle T− with S eigenvalue −1. We will choose

a basis of D vectors eMa for T− (a = 1, . . . , D) and a basis eMā (ā = 1, . . . , D) for T+. Then

A = (ā, a) is an composite index and we have

eMA =
(
eMā eMa

)
=

(
eiā eia

eiā eia

)
, (5.12)

where

Sea = −ea,

Seā = eā .
(5.13)

6This is for the case in which gij andHMN are positive definite. For gij of signature (p, q), HMN has signature
(2p, 2q) and orthonormal frames will have HAB the constant Minkowski-type metric of signature (2p, 2q), and
the tangent space group would be O(2p, 2q). Throughout this section, we will present results for the case in
which gij is positive definite, but our formulae all have natural generalisations to the case of general signature.
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As HMN = ηMPS
P
N these imply

HMN eNa = −ηMN eNa ,

HMN eNā = ηMN eNā .
(5.14)

Contracting each of these with a vielbein we obtain

HMN eMa e
N

b = −ηMN eMa e
N

b → Hab = −η̂ab ,

HMN eMā e
N

b̄ = ηMN eMā e
N

b̄ → Hāb̄ = η̂āb̄ .
(5.15)

Additional information comes by considering HMN eMa e
N

b̄. Evaluating this term using the

first and second equations in (5.14) gives

HMN eMa e
N

b̄ = (HNM eMa) e
N

b̄ = −ηMN eMa e
N

b̄ ,

HMN eMa e
N

b̄ = (HMN eN b̄)e
M

a = ηMN eMa e
N

b̄ .
(5.16)

Since the two evaluations differ by a sign, the term in question vanishes. This means that

Hab̄ = 0 , η̂ab̄ = 0 ,

Hāb = 0 , η̂āb = 0 .
(5.17)

We define gab and gāb̄ as the nonvanishing components of the flattened metric η̂AB, with factors

of two introduced for later convenience,

gab ≡ − 1

2
ηMN eMa e

N
b = −1

2
η̂ab ,

gāb̄ ≡ 1

2
ηMN eMā e

N
b̄ =

1

2
η̂āb̄ .

(5.18)

The above results are summarized by giving the flat components of H and η:

HAB = 2

(
gāb̄ 0

0 gab

)
, η̂AB = 2

(
gāb̄ 0

0 −gab

)
. (5.19)

If the original metric gij is positive definite, then HMN and HAB are positive definite. Thus,

gab and gāb̄ are positive definite as well, while η̂AB has signature (D,D). (For other signatures,

if gij is invertible, then so are gab and gāb̄.)

Choosing frames in this way reduces the tangent space group to GL(D,R)×GL(D,R) with

one GL(D,R) factor acting on the indices a, b as frame rotations of T− and the other GL(D,R)

factor acting on the indices ā, b̄ as frame rotations of T+. The O(D,D) and the local tangent

space symmetries then act on the frame field as follows

e′
M

A(X
′) = hM

N eNB(X) ΛB
A(X) , (5.20)
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with h ∈ O(D,D) and Λ(X) ∈ GL(D,R)×GL(D,R), so that

ΛA
B =

(
Λā

b̄ 0

0 Λa
b

)
, (5.21)

with Λā
b̄ in the first GL(D,R) and Λa

b in the second GL(D,R). Here X ′ = hX as before, so

that the coordinates transform under O(D,D) but are inert under the tangent space group.

This is Siegel’s vielbein formalism with GL(D,R)×GL(D,R) symmetry [8].

Following [8] we consider gauge fixing the tangent space symmetry. We use one GL(D,R)

symmetry to choose gab =
1
2
δab and the other GL(D,R) symmetry to choose gāb̄ =

1
2
δāb̄. Then

HAB =

(
δāb̄ 0
0 δab

)
≡ δAB , η̂AB =

(
δāb̄ 0
0 −δab

)
. (5.22)

The basis is then orthonormal with respect to both H and η and the tangent space group is

reduced to O(D)× O(D). Then (5.3) implies

HMN = δAB eAM eBN , (5.23)

so that H−1 = ete and eAM is a vielbein for the generalized metric. The matrix η̂AB appearing

in (5.22) differs by a similarity transformation from ηMN :

σ η̂ σt = η , σ =
1√
2

(
1 −1
1 1

)
= (σt)−1 . (5.24)

We then have

ηAB = êMA êNB ηMN , where êMA ≡ eMB σA
B . (5.25)

This is verified by expanding the right-hand side, using (5.4), and the relation (5.24) that

follows from the gauge fixing. The result (5.25) means that ê is an O(D,D) group element.

Thus, êMA is an O(D,D) matrix transforming under a rigid O(D,D) transformation h and a

local O(D)× O(D) transformation Λ(X) as

ê′(X ′) = h ê(X) Λ(X) , (5.26)

where X ′ = hX . The gauge equivalence classes of ê under the local O(D)× O(D) symmetry

can then be identified with fields taking values in the coset space O(D,D)/O(D)× O(D). In

this way we recover the familiar coset space variables.

5.3 Frames with GL(D,R) symmetry

We now return to the general situation with the full GL(D,R)×GL(D,R) symmetry and show

that the geometry can be formulated in terms of the frames for T+:

eMā =

(
eiā

eiā

)
. (5.27)
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There is a local GL(D,R) symmetry acting on the index ā. In matrix notation,

eM → eM Λ , Λ ∈ GL(D,R) . (5.28)

We note that (5.19) implies

HAB =
1

2

(
gāb̄ 0

0 gab

)
, η̂AB =

1

2

(
gāb̄ 0

0 −gab

)
, (5.29)

where gab is the inverse of gab and gāb̄ is the inverse of gāb̄. Then

HAB =

(
gāb̄ 0

0 0

)
− η̂AB . (5.30)

Acting on this with eMA eNB gives

HMN = eMā e
N

b̄ g
āb̄ − ηMN . (5.31)

As gāb̄ is given in terms of the eMā by (5.18), it follows that (5.31) gives an expression for the

generalised metric in terms of the T+ frames eMā alone.

The components of HMN are given in (2.22) and this can be used to find expressions for gij
and bij in terms of the frame fields. First, the lower right block of (2.22) is Hij = gij and using

this in (5.31) gives

gij = eiā e
j
b̄ g

āb̄ . (5.32)

Remarkably, this implies that eiā is non-degenerate and can be viewed as D ×D frame fields

to convert the indices i, j, . . . to flat indices ā, b̄, . . .. Moreover, gāb̄ are precisely the frame

components of gij. The inverse of eiā is then the vielbein

eāi = gij e
j
b̄ g

āb̄ . (5.33)

Similarly, the upper right block of (2.22) is Hi
j = bikg

kj, and using this in (5.31) gives

bikg
kj = eiā e

j
b̄ g

āb̄ − δi
j . (5.34)

Multiplication by gjp quickly leads to

Eij = gij + bij = eiā e
ā
j . (5.35)

Thus, in addition to the vielbein eāi that gives a ‘square root’ of the metric gij in (5.32), there

is a field eiā which can be viewed as a second vielbein that incorporates the b-field and which

gives a factorisation of E . The contraction of upper and lower ā indices in (5.35) implies that

Eij is invariant under GL(D,R). Thus the generalised metric H and E are both given in terms

of the frame fields eMā (ā = 1, . . . , D) for T+. This is essentially the two-vielbein formalism
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given in [9] for fields depending on the spacetime coordinates and extended to doubled fields

in [8].

The linear transformation of eMā under O(D,D) then implies that Eij = eiā e
ā
j transforms

by the fractional linear transformation (1.3). To see this we use matrix notation and denote

the D ×D matrix components of eMā as e and ẽ, such that E = e ẽ−1. They transform under

the O(D,D) group element in (1.3) as follows

(
e

ẽ

)
→
(
a b

c d

)(
e

ẽ

)
=

(
ae + bẽ

ce+ dẽ

)
. (5.36)

This implies for the transformation of E

E → (ae + bẽ) (ce+ dẽ)−1 =
(
aeẽ−1 + b

)
ẽẽ−1

(
ceẽ−1 + d

)−1
(5.37)

= (aE + b) (cE + d)−1 ,

which is the fractional linear transformation (1.3), as we wanted to show.

We next fix the local GL(D,R) symmetry (5.28). One possibility is the gauge choice gāb̄ =

δāb̄. This makes the frame orthonormal so that one has the usual gij = eāi e
b̄
j δāb̄ and the tangent

space group is reduced to O(D). Alternatively, the GL(D,R) symmetry can be completely fixed

by choosing the gauge

GL(D,R) gauge fixing : eiā = δiā . (5.38)

In this gauge we identify flat indices ā, b̄ and world indices i, j. It follows that gij and gāb̄ become

identical matrices on account of (5.32). Moreover, we have eāi = δāi and equation (5.35) gives

Eij = eiā e
ā
j = eij . (5.39)

As a result, we have

eMi =

(
Eji
δji

)
. (5.40)

This is then precisely the field defined in (4.15). The derivatives with frame indices reduce in

this gauge as follows

Dā ≡ eMā ∂M ⇒ Di = eMi ∂M = D̄i , (5.41)

recovering the calligraphic derivative as in (4.17). In this way we provide a geometric setting

for the equations that were used in §4.1 in order to discuss the equivalence of the actions in

terms of E and H.

Similar arguments lead to completely analogous results for the frames of T−. The frames of

T− are

eMa =

(
eia

eia

)
. (5.42)
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The generalised metric is given by

HMN = eMa e
N

b g
ab + ηMN , (5.43)

the inverse metric is

gij = eia e
j
b g

ab , (5.44)

and eia is non-degenerate with inverse given by the vielbein

eai = gij e
j
b g

ab . (5.45)

Furthermore,

Eji = gij − bij = −eia e
a
j , (5.46)

so that

Eij = −eja e
a
i . (5.47)

The GL(D,R) symmetry acting on the indices a, b, . . . can be completely fixed by choosing

the gauge eia = δia. In this gauge we identify flat indices a, b and world indices i, j, and the

matrices gij and gab. The frames eMa become

eMi =

(
−Eij
δji

)
. (5.48)

The flattened derivatives in this gauge are

Da = eMa ∂M ⇒ Di = eMi ∂M ≡ Di , (5.49)

giving the unbarred calligraphic derivative defined in (1.2).

5.4 Gauge choices and applications

The doubled space has two metrics: the fixed metric η that appears in the constraint ηMN∂M∂N =

0 and the dynamical metric H, which encodes the space-time metric and b-field. As we have

seen, the geometry could instead be formulated in terms of η and the frames eMā, in terms of

η and the frames eMa, or in terms of eMA and η.

The theory can be rewritten in terms of the frame field eMā, giving a theory with a local

GL(D,R) symmetry. An advantage of this formalism is that eMā is unconstrained.7 In this

subsection we use the frame formulation to investigate the relation between the formulation in

terms of Eij and in terms of H.

As we have seen, the GL(D,R) gauge symmetry can be completely fixed by the gauge choice

eiā = δiā so that the frame field is given in terms of E by (5.40). Together with (5.31) this

7 If we are to restrict to non-degenerate metrics gij , then certain invertibility requirements need to be imposed
on eMā.
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gives a rewriting of the H-based theory in terms of E , and this was the strategy used in section

4 to show the equivalence of the action (1.15) in terms of H and the action (1.1) in terms of E .
Next we use the frame formalism to relate the gauge transformations of E to those of H.

The gauge and GL(D,R) transformations of the frame field eMā are

δeMā = L̂ξe
M

ā + eMb̄ Σ
b̄
ā

= ξK∂Ke
M

ā − ∂Kξ
M eKā + ∂MξK eKā + eMb̄ Σ

b̄
ā ,

(5.50)

where Σb̄
ā is the local GL(D,R) parameter. Then HMN is given by (5.31) and is a GL(D,R)

singlet and transforms with the generalized Lie derivative under the ξM gauge transformations.

The gauge condition eiā = δiā is not preserved by the ξ gauge transformations and so these

must be accompanied by compensating GL(D,R) transformations. The transformation of the

gauge-fixed component eiā is

δeiā = −∂Kξ
i eKā + ∂̃iξK eKā + eib̄ Σ

b̄
ā (5.51)

= −D̄āξ
i + ∂̃iξ̃ā + ∂̃iξk ekā + δib̄ Σ

b̄
ā ,

where we used (5.41), which holds after gauge-fixing. In order to preserve the gauge condition

we need δeiā = 0 and therefore a ξ-transformation must be accompanied by a compensating

GL(D,R) transformation with parameter

Σj
i = D̄iξ

j − ∂̃j ξ̃i − ∂̃jξk Eki , (5.52)

where we have used that after gauge-fixing Eij = eij , and ‘world indices’ are identified with ‘flat

indices’. Now, from (5.40) we have in this gauge

δeMi =

(
δEji
0

)
. (5.53)

The ξ variation of Eij can thus be found by substituting (5.53) in (5.50) and using (5.52),

δEij = ξK∂KEij − ∂K ξ̃i e
K

j + ∂iξK eKj + Eik Σk
j (5.54)

= ξK∂KEij − D̄j ξ̃i + ∂iξ̃j + ∂iξ
k Ekj +

(
D̄jξ

k − ∂̃k ξ̃j − ∂̃kξp Epj
)
Eik

= Diξ̃j − D̄j ξ̃i + ξK∂KEij +Diξ
k Ekj + D̄jξ

k Eik .

This is precisely the gauge transformation (1.8) of Eij, and thus we have shown that this can

be understood as arising from a geometric transformation and a compensating tangent space

rotation.

Alternatively, the theory can be rewritten in terms of the frame field eMA, giving a formu-

lation with local GL(D,R)×GL(D,R) symmetry as in [8]. This can be done by writing H+ η

in terms of eMā using (5.31) and writing H− η in terms of eMa using (5.43). Note that (5.16)

implies

eia eib̄ + eia e
i
b̄ = 0 . (5.55)
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The gauge transformations are

δeMA = L̂ξ e
M

A + eMBΣ
B
A , (5.56)

where the parameter Σ takes values in the Lie algebra gl(D,R)⊕ gl(D,R).

We can gauge-fix the GL(D,R)× GL(D,R) completely by setting eiā = δiā and eia = δia.

Then the indices a, b... and ā, b̄.... are both identified with the world indices i, j, ... and we

identify the component eiā with Eij as before. Then the constraint (5.55) determines eia to be

eia = −Eai; thus we have

eMA =

(Eiā −Eai
δiā δia

)
. (5.57)

The components of the ‘flattened’ derivative in this gauge become, on identifying the indices

i with both a and ā,

DA ≡ eMA ∂M ⇒ Da = Da , Dā = D̄ā . (5.58)

In this gauge the flattened derivatives are the calligraphic derivatives as in (5.41) and (5.49).

As an illustration of this formalism we translate the strong constraint ∂Mf∂Mg = 0 into the

language of calligraphic derivatives. It follows from the second equation in (5.6) that

ηMN = η̂AB eMAe
N

B. (5.59)

It thus follows that

0 = ηMN∂Mf ∂Ng = ∂Mf ∂Mg = η̂AB eMA eNB ∂Mf ∂Ng = η̂AB DAf DBg

=
1

2
gāb̄ Dāf Db̄g −

1

2
gabDaf Dbg =

1

2
gij D̄if D̄jg −

1

2
gijDif Djg

= −1

2

(
Dif Dig − D̄if D̄ig

)
,

(5.60)

where we used the expression for η̂AB in (5.30), the identification of gab and gāb̄ with gij, and

(5.58). This is the constraint in calligraphic derivatives [4].

The frame fields are useful in the discussion of the generalized Ricci curvature introduced

in §4.4. The tensor KMN given in (4.49) has frame components

KAB = KMNe
M

Ae
N

B =

(Kāb̄ Kāb

Kab̄ Kab

)
. (5.61)

As 1
2
(1+S) projects onto barred indices and 1

2
(1−S) projects onto unbarred indices (see (5.13)),

the frame components of (4.57) are

RAB = RMNe
M

Ae
N

B =

(
0 Kāb

Kab̄ 0

)
, (5.62)

so that the unmixed components vanish, Rab = Rāb̄ = 0, and the mixed ones are determined

by the mixed components of K, so that Rab̄ = Kab̄.
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6 Conclusions and Outlook

In this paper we have reformulated the background independent double field theory of [4] in

terms of the generalized metric HMN . The action and gauge transformations simplify signif-

icantly when written in terms of H, and the proof of gauge invariance is considerably easier

than the one given in [4]. The generalized metric transforms covariantly under O(D,D) and

as a result the action and gauge transformations are manifestly O(D,D) covariant. The gauge

symmetry acts nonlinearly on the fields gij and bij (or Eij) used for the formulation in [4] but

becomes linear when written in terms of HMN . The gauge algebra of double field theory is

characterized by a C bracket that is the natural O(D,D) covariant extension of the Courant

bracket to doubled fields. The C bracket reduces to the Courant bracket when the fields are

restricted to a null subspace. The action in terms of H can be seen as a generalization of a

non-linear sigma model based on the coset space O(D,D)/(O(D)× O(D)) in which the coor-

dinates transform under O(D,D). The generalized metric HMN can be viewed as a composite

field defined in terms of a metric g and an antisymmetric tensor b. Alternatively, HMN can

be viewed as an elementary field that is constrained to be a symmetric O(D,D) matrix. The

constraint can be solved by writing H in terms of frame fields, so that these frame fields could

be viewed as the basic fields of the theory.

We defined a generalized Lie derivative that was suggested by the linear form of the gauge

transformations of HMN and introduced generalized tensors that transform with this derivative.

We explored the properties of these derivatives in some detail. It is crucial that the Lie derivative

of the O(D,D) metric ηMN vanishes, so that the O(D,D) structure is preserved by the gauge

transformations. The commutator of two generalized Lie derivatives is again a generalized Lie

derivative with parameter obtained through the C bracket. The generalized scalar curvature R,

built with two derivatives acting on the generalized metric and the dilaton, indeed transforms

as a generalized scalar.

We have discussed the relation of our work to that of Siegel [8, 9]. The frame fields with

tangent space symmetry GL(D,R)×GL(D,R) have simple transformation properties and the

fields H and E were constructed in terms of these. The frame variables were useful in showing

the relation between the theory written in terms of H and that written in terms of E . In [8],

Siegel introduced covariant derivatives and curvatures constructed from the vielbein fields and

used these to write an action. Its relation to our actions should be investigated.

The ‘generalized metric’ HMN should properly be regarded as a conventional metric on the

doubled space. It is only unusual in that this metric is constrained to be an O(D,D) matrix.

The metric HMN is the natural extension of the generalized metric of generalized geometry to

doubled fields. It is intriguing that two key ingredients of generalized geometry play central roles

in the double field theory: Courant brackets and the generalized metric. There is much that

remains to be understood of the geometry underlying the double field theory. We have found

a natural field strength transforming as a scalar under the gauge transformations, and the field

equation forH gives a generalisation of the Ricci tensor, but we do not have an understanding of
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these as curvatures. It would be of considerable interest to develop a geometric understanding

of our results, perhaps combining ideas from generalized geometry with the constructions of

Siegel. This would help in constructing gauge-invariant higher derivative actions.

Our results in this paper use the strong version of the ∂M∂M = 0 constraint, which requires

that all fields and products of fields are in the kernel of ∂M∂M . This strong form of the

constraint implies that all fields and parameters depend on just D of the 2D coordinates, so

that the theory can be viewed as a conventional theory living on a D dimensional subspace of

the doubled spacetime. The most important outstanding question is whether there is a gauge

invariant theory in which only the weak form of the constraint is imposed, so that each field

satisfies the constraint, but products of fields need not do so. Such a theory would depend

non-trivially on all the coordinates of the doubled spacetime and so would be a true double

field theory. This theory was constructed to cubic order in [2] and shown to be gauge invariant

using only the weak form of the constraint. Its extension to higher orders, however, necessarily

involves new structures and the explicit appearance of a projector onto the kernel of ∂M∂M [2].

We hope that the geometric structures discussed in this paper will be useful in the quest for

such a theory.
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