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Résumé

Le monitorage (monitoring) est une approche pour la sécurisation du code qui permet

l’exécution d’un code potentiellement malicieux en observant son exécution, et en inter-

venant au besoin pour éviter une violation d’une politique de sécurité. Cette méthode

a plusieurs applications prometteuses, notamment en ce qui a trait à la sécurisation du

code mobile.

Les recherches académiques sur le monitorage se sont généralement concentrées sur

deux questions. La première est celle de délimiter le champ des politiques de sécurité

applicables par des moniteurs opérant sous différentes contraintes. La seconde question

est de construire des méthodes permettant d’insérer un moniteur dans un programme,

ce qui produit un nouveau programme instrumenté qui respecte la politique de sécurité

appliquée par ce moniteur. Mais malgré le fait qu’une vaste gamme de moniteurs a été

étudiée dans la littérature, les travaux sur l’insertion des moniteurs dans les programmes

se sont limités à une classe particulière de moniteurs, qui sont parmi les plus simples et

les plus restreint quant à leur champ de politiques applicables.

Cette thèse étend les deux avenues de recherches mentionnées précédemment et

apporte un éclairage nouveau à ces questions. Elle s’attarde en premier lieu à étendre le

champ des politiques applicables par monitorage en développabt une nouvelle approche

pour l’insertion d’un moniteur dans un programme. En donnant au moniteur accès à

un modèle du comportement du programme, l’étude montre que le moniteur acquiert

la capacit d’appliquer une plus vaste gamme de politiques de sécurité.

De plus, les recherches ont aussi démontré qu’un moniteur capable de transformer

l’exécution qu’il surveille est plus puissant qu’un moniteur qui ne possède pas cette

capacité. Naturellement, des contraintes doivent être imposées sur cette capacité pour

que l’application de la politique soit cohérente. Autrement, si aucune restriction n’est

imposée au moniteur, n’importe quelle politique devient applicable, mais non d’une

manière utile ou désirable. Dans cette étude, nous proposons deux nouveaux paradigmes

d’application des politiques de sécurité qui permettent d’incorporer des restrictions
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raisonnables imposées sur la capacité des moniteurs de transformer les exécutions sous

leur contrôle. Nous étudions le champ des politiques applicables avec ces paradigmes

et donnons des exemples de politiques réelles qui peuvent être appliquées à l’aide de

notre approche.



Abstract

Execution monitoring is an approach that seeks to allow an untrusted code to run

safely by observing its execution and reacting if need be to prevent a potential viola-

tion of a user-supplied security policy. This method has many promising applications,

particularly with respect to the safe execution of mobile code.

Academic research on monitoring has generally focused on two questions. The first,

relates to the set of policies that can be enforced by monitors under various constraints

and the conditions under which this set can be extended. The second question deals

with the way to inline a monitor into an untrusted or potentially malicious program

in order to produce a new instrumented program that provably respects the desired

security policy.

This study builds on the two strands of research mentioned above and brings new

insights to this study. It seeks, in the first place, to increase the scope of monitorable

properties by suggesting a new approach of monitor inlining. By drawing on an a priori

model of the program’s possible behavior, we develop a monitor that can enforce a

strictly larger set of security properties.

Furthermore, longstanding research has showed that a monitor that is allowed to

transform its input is more powerful than one lacking this ability. Naturally, this ability

must be constrained for the enforcement to be meaningful. Otherwise, if the monitor

is given too broad a leeway to transform valid and invalid sequences, any property can

be enforced, but not in a way that is useful or desirable. In this study, we propose

two new enforcement paradigms which capture reasonable restrictions on a monitor’s

ability to alter its input. We study the set of properties enforceable if these enforcement

paradigms are used and give examples of real-life security policies that can be enforced

using our approach.
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Chapter 1

Introduction

The ubiquity and growing interconnectivity of modern computer systems impose on

users and developers alike that steps be taken to assure the correctness of such systems.

Mobile code in particular poses significant risks since the sender is often unknown or

untrusted.

One solution that has gained wide acceptance in recent years is runtime monitoring.

This approach to code safety allows an untrusted program to run safely by observing its

execution and reacting as needed to prevent a violation of the security property. Many

security architectures rely upon monitoring, and the wider use of this method holds the

promise of greatly mitigating the security risks associated with potentially malicious

software and thus of extending the use of mobile and distributed software. Contrasted

to other approaches aimed at ensuring software safety, monitoring is characterized by its

precision: only executions which violate the security policy are altered or terminated,

while valid ones can be allowed to proceed. Furthermore, by being deployed on the

client side of a distributed architecture, monitoring can more easily be customized to

the specific security needs of each user.

One key element which could lead to a wider use of monitors is to extend the

range of security policies that can be enforced by its use. Most monitoring frameworks

limit themselves to the enforcement of a specific class of security policies called safety

properties. Yet, it has been proved that monitors are capable to enforce a much wider

range of security policies, provided they are given the tools to do so.

One option that could be used to extend the range of security policies enforceable

by monitors is to rely upon static analysis to produce a model of the program’s possible

behavior. Prior research has shown that, armed with such a model, a monitor can
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enforce security policies that would otherwise be beyond its capabilities. The first

contribution of this study is to propose a new method to inline a monitor into an

untrusted, and possibly malicious program in order to produce a new version of this

program which provably respects the security policy. By drawing on an a priori model of

the target program’s possible behavior, it becomes possible to enforce properties which

lie outside the set of safety properties. We also prove a number of theorems related to

the enforcement of securities properties by monitors in this context.

Another element which can be used to extend the range of enforceable policies by

monitors is to provide the monitor with the ability to transform its target execution.

Prior research has shown that this approach yields the most powerful monitors, but only

if the notion of enforcement is sufficiently flexible to allow the monitor to replace a valid

sequence with another equivalent sequence. This naturally necessitates the use of an

equivalence relation between sequences. But for such an enforcement to be meaningful,

the equivalence relation used must be constraining. Otherwise, if the monitor is given

too broad latitude to alter the execution, the enforcement may not be useful. In the

extreme, if every valid sequence can be thought of as equivalent to each other, any

property becomes enforceable simply by always outputting a trivially valid sequence.

The problem is compounded by the fact that the most widely used enforcement

paradigm does not place any demand on the monitor when the latter is presented with

an invalid sequence, other than it must somehow be corrected. Once the monitor finds

that its input sequence is irremediably invalid, it can cast it aside entirely and replace

with any valid sequence, no matter how different.

In this study, we develop an alternative policy enforcement framework to study

the behavior of monitors capable of transforming their input. In our framework, the

monitor’s behavior is constrained by a requirement to maintain an equivalence between

input and output, regardless of whether this input is valid or not. This intuitively

corresponds to an enforcement paradigm, closer to one that would be encountered in

practice, in which the actions taken by the monitor are constrained by a limitation that

certain behaviors present in the original sequence must be preserved. We study the set

of policies enforceable by this paradigm and offer examples of meaningful equivalence

relations, which can be used to enforce real-life properties.

In some situations, bounding the monitor to a requirement that the input always be

equivalent to the output could be too constraining. Indeed, this sometimes prevents the

monitor from taking corrective actions when the input is invalid, as the corrected valid

sequence would no longer be equivalent. Even stating the equivalence relation can be

problematic. For example, it requires that distinct invalid sequences be thought of as
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equivalent if the same valid sequence is a suitable replacement for both. Alternatively, it

requires distinct valid sequences to be thought of as equivalent if they are both suitable

replacement to the same invalid sequence.

To address these issues, we propose an alternative security enforcement paradigm

based on the notion of partial orders rather than equivalence relations. In this frame-

work, the monitor is allowed to replace an invalid sequence with a valid one if the latter

is higher on the partial order than the former. This approach enhances our ability to

model the corrective behavior of a monitor that replaces invalid sequences with valid

ones. We study the enforcement power of monitors operating within this framework,

and give examples of several real-life properties that are enforceable. Finally, since

several enforcement paradigms are possible for each property, we suggest metrics that

allow a user to compare monitors objectively and choose the best enforcement paradigm

for a given situation.

The remainder of this study proceeds as follows. In Chapter 2, we review the liter-

ature on monitoring, and focus more particularly on studies that address the question

of which security policies that be enforced by the approach. In Chapter 3, we present

a new approach to in-lining a monitor in an untested program to ensure its compli-

ance with the security policies it captures. In Chapter 4, we propose a new security

enforcement framework based on equivalence relations, and in Chapter 5, we suggest an

alternative enforcement paradigm based on preorders. Concluding remarks and avenues

for future research are given in Chapter 6.



Chapter 2

Review of The Theoretical Models

of Monitoring

2.1 Introduction

The first question that arises in the study of monitoring, as in the study of any other

security paradigm, is that of identifying precisely which security policies can or cannot

be enforced by the enforcement mechanism under consideration. Only then does it

become possible to compare the mechanism’s expressive power to that of other enforce-

ment mechanisms or develop means to make it more powerful.

To address this issue we begin in Section 2 by giving a rigorous definition of the

class of security policies that can be enforced on a target program by monitors. We

further give a formal definition of the notions of executions, security policy and monitor

that we will manipulate. We then show in Section 3 how these definitions allow us to

state the limitations of a rudimentary monitor. From these limitations the set of security

properties enforceable by this monitor can be deduced. In Section 4, we examine various

ways to enhance the power of monitors, giving in each case a new formal definition of the

extended monitor. These definitions will serve to identify the most promising model.

We next turn to the enforcement power of the those monitors found to be the most

powerful and give a lower bound to the set of properties they can enforce. In Section

5, we revisit the notion of enforcement and propose alternative definitions. Then, in

Sections 6 and 7, we examine how computational and memory constraints can affect

the set of enforceable properties. The question of how to inline a monitor into a target

program is examined in Section 8. Finally, other related work of interest on this topic
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are addressed in Section 9.

2.2 Security Policies and Security Properties

The first step in our analysis is to define a theoretical framework that can accommodate

the various concepts we elaborate, such as executions, security policies and monitors.

To this end we adopt the architecture devised in [11] which is widely used in the field.

An execution σ of a program, or trace, is modeled as a finite or infinite sequence of

atomic program actions :

σ = s0, s1, s2...

We let s range over a finite or countably infinite set of atomic actions Σ. The

empty sequence is noted ε, the set of all finite length sequences is noted Σ∗, that of

all infinite length sequences is noted Σω, and the set of all possible sequences is noted

Σ∞ = Σω ∪ Σ∗. Likewise, for a set of sequences S, S∗ denote the finite iterations of

sequences of S and Sω that of infinite iterations, and S∞ = Sω ∪ S∗. Let τ ∈ Σ∗ and

σ ∈ Σ∞ be two sequences of actions. We write τ ; σ for the concatenation of τ and σ.

We say that τ is a prefix of σ noted τ � σ,or equivalently σ � τ iff there exists a

sequence σ′ such that τ ; σ′ = σ. We write τ ≺ σ (resp. σ � τ) for τ � σ ∧ τ 6= σ (resp.

σ � τ ∧ τ 6= σ). Finally, let τ, σ ∈ Σ∞, τ is said to be a suffix of σ iff there exists a

σ′ ∈ Σ∗ s.t. σ = σ′; τ .

We denote by pref (σ) (resp. suf (σ)) the set of all prefixes (resp. suffixes) of σ. Let

A ⊆ Σ∞ be a subset of sequences. Abusing the notation, we let pref (A) (resp. suf (A))

stand for
⋃

σ∈A pref (σ) (resp.
⋃

σ∈A suf (σ)). The ith action in a sequence σ is given

as σi, σ[i, j] denotes the sequence occurring between the ith and jth actions of σ, σ[..i]

denotes the prefix of sequence σ, up to its ith action and σ[i..] denotes the remainder of

the sequence, starting from action σi. The length of a sequence τ ∈ Σ∗ is given as |τ |.

Let k be an integer. We write Σk = {σ ∈ Σ∗ : |σ| = k} to denote the set of sequences

from Σ∗ of length k, and Σ≤k = {σ ∈ Σ∗ : |σ| =≤ k} to denote the set of sequences

of length less or equal to k. Likewise, pref k and suf k denote the sets of prefixes and

suffixes of length k.
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A security policy P ⊆ ℘{Σ∞} is a set of sets of allowed executions. A policy P

is a property iff it can be characterized as a set of sequences for which there exists a

decidable predicate P̂ over the executions of Σ∞ : P̂(σ) iff σ is in this set. In other words,

a property is a policy for which the membership of any sequence can be determined by

examining only the sequence itself. Such a sequence is said to be valid or to respect the

property.

An example of security policies that are not properties are information flow proper-

ties, which limit the way that the execution of a certain trace may influence another.

More generally, a policy which forbids that two identical traces occur, or which states

that should a certain execution be possible another one must also be allowed, are not

security properties, since it is impossible while examining a single execution, to decide

whether or not this execution respects the security policy. Since all policies enforceable

by monitors are properties, P and P̂ are used interchangeably. Additionally, since the

properties of interest represent subsets of Σ∞, we follow the common usage in the lit-

erature and freely use P̂ to refer to these sets. The distinction between a set of valid

executions and the predicate over individual sequences that indicates if a given sequence

is in this set is only relevant in section 2.6, where we discuss the work of Schneider et

al.

A number of classes of properties have been defined in the literature and are of

special interest in the study of monitoring. First are safety properties [48], which

proscribe that certain “bad things” occur during the execution. Let Σ be a set of

actions and P̂ be a property, P̂ is a safety property iff

∀σ ∈ Σ∞ : ¬P̂(σ)⇒ ∃σ′ � σ : ∀τ � σ′ : ¬P̂(τ) (safety)

Informally, this states that any infinite length sequence does not respect the security

property if there exists a point in that sequence from which any possible extension does

not respect the security policy. This implies that a violation of a safety property is

irremediable: once a violation occurs, nothing could be done to correct the situation.

This definition also requires that we are able to detect and identify the precise point at

which the security property violation occurs.

Alternatively, a liveness property [2] is a property prescribing that a certain “good

thing” must occur in any valid execution. Formally, for an action set Σ and a property

P̂, P̂ is a liveness property iff

∀σ ∈ Σ∗ : ∃τ ∈ Σ∞ : τ � σ ∧ P̂(τ) (liveness)
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Informally, the definition states that a property is a liveness property if any finite

sequence can be extended into a valid sequence. Finally, it is often useful to restrict

our analysis to properties for which the empty sequence ε is valid. Such properties are

said to be reasonable. Formally, for an action set Σ and a property P̂ , P̂ is reasonable

iff ε ∈P̂ .

Some properties are neither safety nor liveness, though it was shown in [2] that

any property can be expressed as the conjunction of a safety property and a liveness

property. Furthermore, if the set of atomic actions Σ contains more than one element,

any property can be stated as the intersection of two liveness properties. We can thus

think of any security policy as comprising a liveness component and a safety component.

The only property that is both safety and liveness is the trivial property that accepts

all executions.

One of the most interesting results in the study of security properties is the ability to

represent properties as automata. This representation is widely used, and the automata

representation of properties is at the heart of both model checking and monitoring.

A widely used example of the representation is the Büchi [29] automaton. A Büchi

automaton is a non-deterministic finite state automaton that accepts infinite length

sequences. We represent such automata by a tuple of the form 〈Σ, Q,Q′, δ, F 〉 where,

Σ is an input alphabet, Q is a set of states, Q′ ⊆ Q is a set of initial states, δ ⊆

Q× Σ ×Q is a transition relation and F ⊆ Q is a set of accepting states. A sequence

is accepted if it enters an accepting state infinitely often. Properties expressed in

some temporal logics can be translated in Büchi automata. While algorithms exist to

translate a non-deterministic Büchi automaton into an equivalent deterministic one, this

transformation is not always possible since deterministic Büchi automata are strictly

less expressive than their deterministic counterparts. Alternatively, a Büchi automata

can be transformed into an equally expressive deterministic formalism, such as the

Müller [61] automata or the Rabin [65] automata. We will give a more formal definition

of the Büchi automaton in the next section.

Finally, we need to provide a definition of what it means to “enforce” a security

property P̂ . A number of possible definitions have been suggested. Yet, all have

in common that they revolve around imposing that the following two principles be

respected.

1. Soundness : All observable behavior of the target program respects the desired

property, i.e. every output sequence of the program is present in the set of exe-

cutions defined by P̂.
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2. Transparency : The semantics of valid executions is preserved, i.e. any execu-

tion of the unmonitored program that respects the security property must still

be present in the monitored program. On this point, we can distinguish between

precise enforcement, which does not allow any transformation of the input se-

quence, and equivalent enforcement, where a valid sequence can be transformed

into another equivalent sequence, with respect to some equivalence relation.

Some authors have suggested relaxing these restrictions, for instance by lifting the

transparency requirement and allowing some valid executions to be rejected, but the

enforcement power of these paradigms have not yet been formally studied. We will

revisit these concepts, and give a formal definition of the notion of enforcement in

Sections 2.4 and 2.5 and suggest new alternative enforcement paradigms in Chapters 4

and 5.

2.3 Security Automaton Modeling of Monitors

Schneider [69] is the first author to investigate the question of delineating exactly which

security policies are enforceable by monitors. He attempted to identify the range of

properties enforceable by a monitor that merely observes the execution of a target

program, with no knowledge of its possible future behavior, and with no ability to affect

it, except by aborting the execution. He designates EM (for Execution Monitoring) as

the subset of security policies that could be enforced by these monitors. Although he

admits that monitors could be made more powerful if these limitations were relaxed,

the class he identifies as EM does serve as a lower bound to the set of security policies

enforceable by monitors.

The set of policies in EM is bounded by three limits of these tools. Firstly, such an

enforcement mechanism can only accept or reject an execution by considering it alone,

without comparing it to prior runs of the same program. As discussed earlier, this is

formally expressed as :

(∃P̂ : ∀σ ∈ Σ : σ ∈ P ⇔ P̂(σ)) (2.3.1)

where P̂ is a predicate over executions. This implies that only security policies

which are also properties are enforceable by the mechanism under consideration.

Secondly, since the monitor does not have access to information about the possible

behavior that the program may or may not exhibit, it can never allow an invalid partial
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execution, with the confidence that it will necessarily be corrected, on all possible

execution paths. The monitor can thus only enforce properties for which a violation of

the property is irremediable. This is formalized as follows :

(∀τ ∈ Σ∗ : ¬P̂ (τ)⇒ (∀σ ∈ Σ∞ : ¬P̂ (τ ; σ))) (2.3.2)

If a finite sequence does not respect the security policy, this equation requires that

it can never be extended into a finite or infinite sequence that does.

Thirdly, before the execution of each action by the target program, the monitor must

decide either to accept it or otherwise abort the execution. It follows that any rejected

execution is rejected after a finite amount of time has elapsed. This requirement is

formally stated as :

(∀σ ∈ Σ∞ : ¬P̂ (σ)⇒ (∃i : ¬P̂ (σ[0..i]))) (2.3.3)

According to the classification of security policies presented in the previous section,

a policy that satisfies the requirements of equations 2.3.1, 2.3.2 and 2.3.3 is a safety

property. Yet, saying that monitors exactly enforce safety properties would be false on

two counts. First, the analysis presented above only applies to a subset of monitors,

whose behavior is especially constrained. Schneider notes that the range of enforceable

security properties could be extended if the definition of a monitor was relaxed, for

example by giving the monitor access to information about a program’s possible behav-

ior or the ability to alter the target program’s behavior in some way. Furthermore, he

also points out that other constraints, such as computability constraints, which are un-

avoidable, would restrict further the behavior of monitors. The set of safety properties

can then best be seen as an upper bound to the properties enforceable by the simplest,

most constrained monitors.

Finally, Schneider observes that safety properties can be modeled by a specific sub-

class of Büchi automaton, termed the security automaton.

Definition 2.3.1. A Büchi automaton is a tuple 〈Σ, Q,Q0, δ, F 〉 such that

• Σ is a finite or countably infinite set of symbols;

• Q is a finite or countably infinite set of states;

• Q0 ⊆ Q is a subset of initial start states;
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• δ : Q× Σ→ 2Q is a (possibly partial) transition relation;

• F ⊆ Q is an acceptance set. An infinite sequence ρ of symbols from Σ is valid

iff at least one state present in the acceptance condition occurs infinitely often in

this sequence. Such states are said to be valid or accepting.

Sequences of symbols model executions of the target program, and valid executions

are recognized when they reach a valid state infinitely often. Yet, when restricted to

safety properties Schneider shows that a simpler definition can be used, where every

state in Q is accepting and the execution is rejected as soon as an attempt is made

to take an undefined transition. This alternative form of Büchi automaton, termed

the security automaton was first suggested in [3], and can recognize exactly the set of

safety properties. These automaton have been widely used in monitoring on account

of the close connection between safety properties and monitorable properties, which we

outlined above.

Definition 2.3.2. A security automaton is a deterministic1 automaton 〈Q, q0, δ〉 where

• Σ is a finite or countably infinite set of symbols;

• Q is a finite or countably infinite set of states;

• q0 ⊆ Q is a subset of initial start states;

• δ : Q × Σ → Q is a (possibly partial) transition function. Rather than using an

acceptance set, the execution is aborted if it attempts a transition not present in

δ.

2.4 Extending the range of enforceable properties

using the Edit Automata

Schneider’s research should not be misunderstood as indicating that only safety prop-

erties can ever be enforced by monitors. Indeed, his paper [69] only discussed a specific

type of monitor; one which was limited in its capacity to react to a security policy

violation, and operated with no knowledge of its target’s possible behavior. Schnei-

der’s study also suggested that the set of properties enforceable by monitors could be

1While the original definition in [11] allowed the security automaton to be non-deterministic, sub-

sequent work focused on deterministic automata.
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extended under certain conditions. Building on this insight, Ligatti, Bauer and Walker

[11, 53] modify Schneider’s definition along three axes, namely:

1. according to the means put at the disposal of the monitor to react to a possible

security policy violation. In this regard, they distinguish between monitors that

can

• abort the execution of the target program;

• suppress a disallowed action and continue the execution;

• insert some action or actions into the control flow;

• insert or suppress actions in the control flow, effectively combining the power

of the previous two models.

2. according to the information made available to the monitor about the possible ex-

ecutions of the program. In this case, the authors distinguish between the uniform

context, in which a monitor operates with no knowledge about its target’s pos-

sible behavior, and the nonuniform context, in which the monitor has knowledge

that certain behaviors cannot be exhibited by the target program. Ligatti et al.

limit their analysis to finite sequences. Let S stand for the set of sequences which

the monitor considers as possible executions of the target program. A monitor

operates in a uniform context if S = Σ∗, and in the nonuniform context if S ⊆ Σ∗.

3. according to how much latitude the monitor is given to transform its target’s exe-

cution. The authors distinguish between precise enforcement, which imposes that

every action performed by the target program in a valid execution be preserved,

and effective enforcement which allows a valid execution to be transformed into

a semantically equivalent execution. This naturally necessitates the use of an

equivalence relation ∼= on executions.

To model the various possible enforcement paradigms, Ligatti et al. introduce four

new classes of automata. Unlike the security automata proposed by Schneider, which is

designed to recognize whether or not an input sequence is valid, the automata proposed

by Ligatti et. al. are designed to modify the input sequence and output a new one

that respects the security policy. The target program’s execution is the monitor’s

input, which is not visible to outside observers. The automata’s output represents the

“corrected” behavior of the target program, after the monitor has transformed it.

The execution of an automaton is specified using single step judgements of the form

(q, σ)
τ
−→(q′, σ′) where, q is the current state, σ is the sequence the target program



Chapter 2. Review of The Theoretical Models of Monitoring 12

wishes to execute, τ is the sequence of at most a single action which the monitor

outputs on this step, q′ denotes the successor state and σ′ is the input sequence after

this step has been taken. Each such judgement captures a single step of the execution

of the monitor. These single-step judgements are generalized to multi-step judgements

through reflexivity and transitivity rules as follows.

Definition 2.4.1 (Multi-step semantics, from [11]). The multi-step relation (q, σ)
τ

=⇒(q′, σ′)

is inductively defined as follows.

For all q, q′, q′′ ∈ Q, σ, σ′, σ′′ ∈ Σ∞ and τ, τ ′ ∈ Σ∗ we have

(q, σ)
ε

=⇒(q, σ) (2.4.1)

if (q, σ)
τ

=⇒(q′′, σ′′) and (q′′, σ′′)
τ ′

−→(q′, σ′) then (q, σ)
τ ;τ ′

=⇒(q′, σ′) (2.4.2)

The different enforcement paradigms studied in this research, namely: truncation,

suppression, insertion and edition, are modeled using different transition relations δ.

The simplest model is the truncation automaton, which simulates the behavior of

Schneider’s security automaton, since this automaton can only either accept each input

action, or abort the execution. It is thus defined by a transition function δ in which

every transition is restricted to those two options.

Definition 2.4.2. A truncation automaton T is a tuple 〈Q,Σ, q0, δ〉 where

• Q is a finite or countably infinite set of states;

• Σ is a finite or countably infinite set of atomic actions;

• q0 is the initial state, and

• δ : Q×Σ→ Q is a complete and deterministic transition function, which indicates

the output of the automaton when a given action is received as input in a given

state. In the case of the truncation automaton, the monitor is restricted in that at

any step of the execution, the monitor will either output the same action that has

been input, or abort. This is captured by the following the operational semantics:
(q, σ)

a
→ (q′, σ′) if σ = a; σ′ and δ(q, a) = q′

(q, σ)
ε
→ (q′, ε) otherwise

The suppression automaton possesses an added capacity to insert other actions into

the output stream. This is reflected in its transition function.
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Definition 2.4.3. A suppression automaton D (for deletion) is a tuple 〈Q,Σ, q0, δ, ω〉

where

• Q is a finite or countably infinite set of states;

• Σ is a finite or countably infinite set of atomic actions;

• q0 is the initial state;

• δ : Q× Σ→ Q is a partial and deterministic transition function and

• ω : Q×Σ→ {+,−} is a partial function with the same domain as δ that indicates

whether or not the current input action should be suppressed (−) or inserted (+).

This is captured by the following the operational semantics:
(q, σ)

a
→ (q′, σ′) if σ = aσ′,δ(q, a) = q′ and ω(q, a) = +

(q, σ)
ε
→ (q′, σ′) if σ = aσ′,δ(q, a) = q′ and ω(q, a) = −

(q, σ)
ε
→ (q, ε) otherwise

The insertion automata models a monitor that can insert actions into the control

flow. Its transition function thus indicates if a given input action must be output alone

or alongside a finite sequence of other actions, or whether the execution must be ter-

minated at that point.

Definition 2.4.4. An insertion automaton I is a tuple 〈Q,Σ, q0, δ, γ〉 where

• Q is a finite or countably infinite set of states;

• Σ is a finite or countably infinite set of atomic actions;

• q0 is the initial state;

• δ : Q× Σ→ Q is a partial and deterministic transition function and

• γ : Q × Σ → Σ∗ × Q is a partial deterministic function, termed the insertion

function, which specifies which actions (if any), the monitor should output at each

step of the execution. The domain of the insertion function is disjoin from the

domain of the transition function. This is captured by the following the operational

semantics:
(q, σ)

a
→ (q′, σ′) if σ = a; σ′ and δ(q, a) = q′

(q, σ)
τ
→ (q′, σ) if σ = a; σ′ and γ(q, a) = τ, q′

(q, σ)
ε
→ (q, ε) otherwise
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Finally, the most powerful model, to which we now turn, is the edit automaton,

which combines together the expressive power of the two previous automata2.

Definition 2.4.5. An edit automaton E is a tuple 〈Q,Σ, q0, δ〉 where

• Q is a finite or countably infinite set of states;

• Σ is a finite or countably infinite set of atomic actions;

• q0 is the initial state, and

• δ : (Q× Σ) → (Q× Σ∞) is a (possibly partial) deterministic transition function,

which indicates the output of the automaton when a given action is received as

input in a given state.

Let A be any of the automata defined above, we let A(σ) be the output of A when

its input is σ.

By using a formal model of monitors we can define more formally the notion of

enforcement. Recall that this revolves around two criteria, correctness, which imposes

that the output of the monitor always be valid, and transparency, which requires that

the semantics of valid executions be preserved. While the first criterion is straightfor-

ward, the second can be stated in a number of different ways, leading to alternative

notions of enforcement, which in turn induce different sets of enforceable properties

for the same monitor. Two notions of enforcement are particularly interesting in this

regard: precise enforcement and effective∼= enforcement.

A monitor precisely enforces a property if, at any step of the execution, it accepts

the input action, provided that it is part of a valid sequence.

Definition 2.4.6. Let Σ be a set of atomic actions and S ⊆ Σ∞ be a subset of sequences.

An automaton A precisely enforces a Property P̂ iff ∀σ ∈ S

1. (q0, σ)
σ′

=⇒A (q′, ε);

2. P̂(σ′); and

3. P̂(σ)⇒ ∀i : ∃q′′ : (q0, σ)
σ′[..i]
=⇒A (q′′, σ[i+ 1..])

2This definition, taken from [76], is equivalent to the original definition of the edit automaton given

in [53].
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This definition is very restrictive, and goes far beyond imposing syntactic equality

between valid input and output. For a monitor to precisely enforce a property, it is

necessary that every action present in a valid sequence be output in lockstep with the

input. This condition can be relaxed to allow the monitor to transform some valid

sequences, as long as the output is equivalent to the input, w.r.t. some equivalence

relation ∼=.

Definition 2.4.7. Let Σ be a set of atomic actions and S ⊆ Σ∞ be a subset of sequences.

An automaton A effectively∼= enforces a Property P̂iff ∀σ ∈ S

1. (q0, σ)
σ′

=⇒A (q′, ε);

2. P̂(σ′); and

3. A(σ) ∼= σ′

The equivalence relation ∼= can capture any semantic property of sequences. Ligatti

et al. only impose that it respects an indistinguishability requirement.

∀P̂ : ∀σ, σ′ ∈ Σ∞ : σ ∼= σ′ ⇒ (P̂(σ)⇔ P̂(σ′)) (indistinguishability)

In [21], Chabot shows that syntactic equality is the only equivalence relation which

respects this definition. In Chapter 5, we revisit the notion of equivalence and suggest

an alternative manner in which they can be used in a monitoring context.

By contrasting various combinations of the different possibilities enumerated above,

Ligatti et al. provide a rich taxonomy of classes of security policies, associated with

the appropriate model to enforce them. This also illustrates how each of the factors

discussed above can influence the set of policies that can be enforced by a monitor.

The simplest model presented in this regard is that of the truncation automaton,

which precisely enforces a property on a uniform system. This case is identical to that

of the security automaton discussed above, which has been shown to enforce exactly

the set of safety properties. In the nonuniform case however, some liveness properties

can be enforced. This happens when static analysis or code instrumentation assures

the monitor that any partial sequence that violates the property will eventually be

corrected. The monitor can thus allow the invalid sequence to proceed, with the confi-

dence that any violation will eventually be corrected. We will examine such nonuniform

enforcement by a truncation automaton in greater detail in the next chapter.
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The set of policies effectively applicable by truncation automata is also greater

than what this mechanism can precisely enforce. The authors give the example of an

equivalence relation stating that a certain prefix of an execution is equivalent to each

of its valid extensions. The automaton can thus accept, and terminate the execution,

when this prefix is input. Yet, this property would not be precisely enforceable if any

valid sequence had infinitely many invalid prefixes.

The next model examined is that of the suppression automaton. In a uniform

system, the set of policies precisely enforceable by this automaton is the same as that

of the truncation automaton. It is perhaps surprising that the ability to suppress an

action gives the monitor no added power. This is a result of the narrow definition

of precise enforcement: we require that executions which respect the security policy

be accepted without modification, and that each action be output by the automaton

in lockstep with the program. Since it is impossible to both modify an execution and

respect this requirement, the added ability of the suppression automaton cannot extend

the range of precisely enforceable policies in a uniform system. In a nonuniform system

however, the suppression automaton precisely enforces some properties that can never

be enforced by a truncation automaton. The reason is best understood if illustrated by

an example. Consider a policy that requires that any acquired resource is released and

that it is used no more than n times. Static analysis may be used to ensure compliance

with the first part of this requirement, but the question as to how many uses are made of

a resource is undecidable in the general case. A truncation automaton cannot enforce

the policy since, should an execution attempt to use more than n of the protected

resource its only possible reaction would be to allow the invalid sequence or terminate

the execution without releasing the resource. Yet, this policy can be precisely enforced

by a suppression automaton which simply suppresses the extra uses of the resource

while waiting for the release action. In the case of effective enforcement, we also find

that the suppression automaton is more powerful than the truncation automaton. Here,

the added power is derived from the possibility of suppressing an action that is both

superfluous (according to the equivalence relation) and potentially illegal.

Similarly to the two automata discussed above, the insertion automata in a uniform

system can only precisely enforce safety properties, because of the constraints imposed

upon it by the notion of precise enforcement. On a nonuniform system, the insertion

automaton can precisely enforce any property that can be precisely enforced by the

suppression automaton. This is because the insertion automaton can mimic the behav-

ior of the suppression automaton in the following way: if the suppression automaton

suppresses an action a, it can do so because it knows, from static analysis, that the

prefix of the execution that has already elapsed could be extended, possibly by several

suffixes. The insertion automaton has only to affix one of this suffixes and terminate the
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execution to ensure the respect of the security policy. There are also properties that are

precisely enforced by the insertion automaton, but not by the suppression automaton.

These cases occur when the insertion automaton uses its ability to insert actions into

the control flow and correct an otherwise invalid sequence. From this we can conclude

that the set of precisely enforceable policies by the insertion automaton on nonuniform

systems is a superset of that which can be enforced by the suppression automaton in

the same context. This result, however, does not hold for effective enforcement, where

the enforcement power of the insertion and suppression automata are orthogonal. This

observation is a bit surprising in light of the previous discussion, and follows from the

fact that in certain cases, no actions can be inserted in the sequence and at the same

time preserve the semantics of the sequence intact, whereas this can be achieved if one

or more actions are suppressed.

The last automaton developed by Ligatti, Bauer and Walker is the edition automa-

ton. Intuitively, it combines the capabilities of all the previous models. Yet, on uniform

systems, it remains limited to precisely enforcing safety properties, as are all the other

automata that were examined earlier, because of the strict definition of precise enforce-

ment. In the case of nonuniform systems, the edit automaton enforces exactly the same

set of properties as the insertion automaton. This result is not surprising since the

edit automaton is a combination of the insertion and suppression automaton and, as

mentioned earlier, the insertion automaton can enforce in this context a superset of the

properties applicable by the suppression automaton. Finally, the set of properties effec-

tively enforced by the edit automaton is a superset of the set of properties enforceable

by any other enforcement paradigm we have previously considered. The power of the

edit automaton derives from its ability to suppress an input sequence as long as it is

potentially invalid, only to reinsert it if it is valid. Since this analysis is limited to finite

sequences, and the empty sequence is always assumed to be valid, the edit automaton

can effectively enforce any property.

The taxonomy presented above is summarized in figures 2.1 and 2.2, adapted from

[11]. Two observations emerge particularly from these figures. The first is that the

range of security policies enforceable by most paradigms of monitoring is extended

in the non-uniform context, as opposed to the uniform context, with all other factors

remaining equal. Secondly, a monitor capable of more varied responses when faced with

a violation of the security property may be able to enforce a wider range of security

properties, but only if it is given sufficient latitude to alter a valid input sequence by

its equivalence relation. Alternatively, if the equivalence relation is too strict and the

monitor is unable to transform valid sequences, the added power of the monitor is lost

and the set of enforceable security properties is not extended.
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Figure 2.1: Precise application, on non-uniform systems
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Figure 2.2: Effective∼= application
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2.4.1 The edit automaton and Infinite Sequences

The analysis from [11] has focused exclusively on finite sequences. Yet, the behavior of

many systems is possibly nonterminating. In [54, 55], Ligatti et al. extend the above

analysis to a more general framework containing both finite and infinite sequences.

They focus on effective∼= enforcement by the edit automaton, since this is the more

powerful framework. Effective enforcement is dependent on an equivalence relation

between executions. Since these relations tend to be highly system-specific, Ligatti et.

al. focus on syntactic equality (=). It can be argued that any other equivalence relation

is more inclusive, the set of policies effectively= enforceable is thus a lower bound on

the set of policies that can be effectively enforced by the edit automaton.

Intuitively, the edit automaton works in the following way : as long as the actions

input by the target program comply with the security policy, they are immediately out-

put. If, however, the automaton detects that the input actions are part of a potentially

malicious sequence, the edit automaton may suppress them (outputting nothing), and

then store the input sequence until it is certain that they do indeed respect the security

policy, at which point the automaton will re-insert them. On the other hand, if the

automaton determines that the input sequence is irrevocably invalid, it terminates the

execution, having output only a valid prefix of the input sequence. The monitor is in

fact simulating the execution of the program until it is certain that the behavior it

has so far witnessed is correct. For the time being, it is assumed that the monitor has

an unlimited ability to do this for all program actions. In [32], it is observed that a

monitor behaving in this manner always outputs the longest valid prefix of its input, if

the latter is invalid.

The authors define the set of infinite renewal properties (Renewal) in order to char-

acterize the set of properties enforceable by an edit automaton in the following way.

A property is a member of this set if every infinite valid sequence has infinitely many

valid prefixes, while every invalid infinite sequence has only finitely many such prefixes.

Formally, for an action set Σ and a property P̂ , P̂ is a Renewal property iff it meets

the following two equivalent conditions

∀σ ∈ Σω : P̂(σ)⇔ {σ′ � σ|P̂(σ′)}is an infinite set (renewal1)

∀σ ∈ Σω : P̂(σ)⇔ (∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂(τ)) (renewal2)

Note that the definition of Renewal imposes no restrictions on the finite sequences in

P̂. This is consistent with their result in [11] that on systems containing only finite

sequences, every property is enforceable by the edit automaton. For infinite sequences,

the set of Renewal properties includes all safety properties, some liveness properties
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Infinite Renewal

Safety Liveness

All Properties

Figure 2.3: The set of Infinite Renewal Properties

and some properties which are neither safety nor liveness. For example, a property

that states that a given action must eventually occur in any non-empty execution fits

this definition since any valid infinite length execution has infinitely many valid prefixes

(prefixes in which that action occurs) while any invalid infinite length execution has

only a finite number of valid prefixes (none). The set of infinite renewal properties,

contrasted to that of safety and liveness, is given in figure 2.3.

The set of reasonable infinite renewal properties is a lower bound to the set of

properties that can be effectively= enforced by the edit automaton. In some cases,

this mechanism enforces properties that are not in Renewal. This happens when, at a

certain point, the automaton determines that the current prefix of the execution it has

been fed can only be extended in a single sequence that respects the security policy. In

this case, it can output that sequence and terminate the execution immediately. Ligatti

et al. however, regard this case as a marginal corner case.

It is also important to emphasize that this is only a lower bound on the set of prop-

erties that can be effectively enforced by the edit automaton. Indeed, the enforcement

mechanism does not rely upon the power of the edit automaton to transform an execu-

tion in order to make it compatible with the security requirement. Rather than reject

an illegal execution, the automaton could either delete some troublesome actions into

the control flow and output a modified, valid sequence, or add an action that must

inevitably happen for an execution to be valid. For example, in the model described

above, the automaton enforces a property stating that every open file is eventually

closed by simulating the execution of the target program, from the moment any file is

opened until it is eventually closed. We can apply the same property without simula-
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tion, by simply inserting a “close file” action at the end of any finite sequence. If the

property requires that no two files are opened at the same time, the edit automaton

may modify the ordering of actions in the program (if doing so is possible given the

control flow). We revisit the enforcement of this property in Chapter 5. Furthermore,

the set Renewal is only a lower bound to the set of properties enforceable in a uniform

context. As shown in the previous section, the set of properties enforceable by this

mechanism is extended when the monitor operates in the nonuniform context, which

allows non-renewal properties to be enforced.

2.4.2 Comparing Mechanisms’ Enforcement power

Drawing on the work of Ligatti et. al., Chabot [21] suggests the following notation to

capture the set of properties enforceable by a given automaton. Let {T ,D, I, E ,A}

range over the possible enforcement mechanisms, namely truncation (T ), suppression

(D), insertion (I), edition(E), or any enforcement monitor (A), let S ⊆ Σ∞ stand for a

subset of possible execution sequences, and let ∼= be an equivalence relation between the

sequences of Σ∞. We write AS
∼=-effectively enforceable to denote the set of properties

which are effectively∼= enforceable by a monitor of class A, when the set of possible se-

quences is S and ∼= is the equivalence relation limiting the monitor’s ability to transform

it’s input. Likewise, we write AS-precisely enforceable for the set of properties which

are precisely enforceable by a monitor of class A when the set of possible sequences

is S. We omit the superscripted set of possible input sequences when it is Σ∞, and

likewise omit the monitor class when it is the edit automaton, the most powerful model.

Finally, we sometimes write enforceableS∼= when the enforcement paradigm is clear from

context.

For example, EΣ
∞

= -effectively enforceable is the set of properties which are effectively

enforceable by an edit automaton in the uniform context, when the equivalence rela-

tion is syntactic equality, and DS-precisely enforceable is the set of properties which

are precisely enforceable by the suppression automaton when the set of possible input

sequences is S.

The following theorems from [53, 11] can now be given in this notation.

Theorem 2.4.8. T Σ∗

-precisely enforceable = IΣ
∗

-precisely enforceable=

DΣ∗

-precisely enforceable = EΣ
∗

-precisely enforceable = Safety

Theorem 2.4.9. ∀M ∈ {T ,D, I, E} : ∃S ⊂ Σ∗ :MΣ∗

-precisely enforceable ⊂ MΣS
-

precisely enforceable.
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Observe that this result does not imply that ∀S ⊂ Σ∗ : MS-precisely enforceable

⊂MΣ∗

-precisely enforceable.

Theorem 2.4.10. ∀S ⊂ Σ∗. Safety ⊂ T S-precisely enforceable ⊂ DS-precisely enforce-

able ⊂ DS-precisely enforceable = ES-precisely enforceable.

Theorem 2.4.11. Safety ⊂ T Σ∗

-effectively enforceable ⊂ IΣ
∗

-effectively enforceable

∧T Σ∗

-effectively enforceable ⊂ DΣ∗

-effectively enforceable.

Theorem 2.4.12. IΣ
∗

-effectively enforceable ⊂ EΣ
∗

-effectively enforceable ∧ ⊂ DΣ∗

-

effectively enforceable ⊂ EΣ
∗

-effectively enforceable.

Theorem 2.4.13. ∀P̂ ⊆ Σ∗ : P̂ ∈ EΣ
∗

-effectively enforceable.

2.5 Practical Enforcement Concerns

In [16, 17], Bielova et al. revisit an example of a property that is EΣ
∞

= -effectively en-

forceable given by Ligatti et al. in [53]. This is the “market policy” given as follows:

Let take(n) and pay(n) be two atomic actions that represent the acquisition and cor-

responding payment of n apples respectively. The policy states that any apple that is

taken must be paid for, either before or after the acquisition takes place (take(n);pay(n)

or pay(n);take(n)). In [53] Ligatti et al., produce an automaton that effectively= en-

forces this property, as well as a constructive proof that such a property is enforceable.

As discussed above, the automaton enforces the property by suppressing the execution

as long as its input is invalid, and outputting the current prefix when a valid sequence

is reached.

Neither Ligatti et al. nor Bielova et al. give a formal definition of the predicate

P̂ defining the market policy, but Bielova et al. observe that any reasonable defini-

tion would impose that any consecutive pair of actions of the form take(n);pay(n) or

pay(n);take(n) present in the input also be present in the output, since this represents

the purchase of n apples by a customer. But consider the behavior of the system when

presented with the sequence: pay(1); browse; pay(2);take(2). The automaton suggested

by Ligatti et al. outputs nothing, since this automaton is limited to outputting pre-

fixes of its input sequence, which is made irremediably invalid by the presence of a

pay(1) action lacking a corresponding take(1) action. Indeed, this meets the definition

of effective= enforcement since ε is the longest valid prefix of this sequence. However,

the valid transaction pay(2);take(2) is not present in the output.

What Bielova et al. realized is that the definition of effective enforcement is inade-

quate in that it makes no demands on the behavior of the monitor when it is presented



Chapter 2. Review of The Theoretical Models of Monitoring 23

with an invalid input sequence, other than that it must output a valid sequence. An

invalid sequence may be substituted by any valid sequence. In practice, a monitor

would most likely be bounded to preserve some aspect of the original input, or limited

in its ability to insert new behaviors not present in the input sequence. Bielova et al.

concisely state the problem in a subsequent paper : [18]: “What distinguishes an en-

forcement mechanism is not what happens when traces are good, because nothing should

happen! The interesting part is how precisely bad traces are converted into good ones.

To this extent soundness only says they should be made good. The practical systems, be-

ing practical, will actually take care of correcting the bad traces. But this part is simply

not reflected in the current theories.”

Bielova et al. suggest several constraints that can be imposed on the behavior of

monitors for both valid and invalid inputs. This allows them to define subclasses of the

edit automaton, and compare their enforcement power.

The first of these subclasses is the delayed Automaton, thus named because it only

delays the appearance of input actions, until a valid prefix has been built up. Such an

automaton never outputs an action not present in its input.

Definition 2.5.1. A delayed automaton A is an edit automaton, as defined in definition

2.4.5, with the added restriction that

∀σ ∈ Σ∗ : A(σ) � σ

The automaton defined in [11] is also limited in that at every step, the monitor either

outputs all suppressed actions, or suppresses the current action and outputs nothing.

In other words, this monitor never outputs only some of the actions it has previously

suppressed but not yet output, and it never outputs a previously suppressed action if

the current action is being suppressed. Bielova et al. refer to an automaton operating

in this manner as an all-or-nothing automaton.

Definition 2.5.2. An all-or-nothing automaton A is an edit automaton, as defined in

definition 2.4.5, with the added restrictions that

∀σ ∈ Σ∗ : A(σ) � σ and;

∀σ : ∀a : A(σ; a) = σ; a ∨ A(σ; a) = A(σ)

A third subclass of the edit automaton can be defined by imposing yet another

restriction, namely that the automaton always output the longest valid prefix of its

input sequence. Such an automaton is termed a Ligatti’s automaton for property P̂

where P̂ is the property the monitor enforces. The automaton suggested in [11] to

enforce the market policy is of this type.
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Definition 2.5.3. Let P̂ be a property. A Ligatti’s automaton for property P̂ A is an

edit automaton, as defined in definition 2.4.5, with the added restrictions that

∀σ ∈ Σ∗ : A(σ) � σ and;

∀σ ∈ Σ∗ : ∀a : A(σ; a) = σ; a ∨A(σ; a) = A(σ)

∀σ ∈ Σ∞ : P̂(σ)⇒ A(σ) = σ

A final subclass of the edit automaton can be defined by limiting the monitor to

output a valid prefix of the input when the latter is valid, but leaving the monitor

unconstrained otherwise (other than imposing that the output be valid). Such an

automaton is called a delayed automaton for property P̂ .

Definition 2.5.4. Let P̂ be a property. A delayed automaton for property P̂ A is an

edit automation, as defined in definition 2.4.5, with the added restriction that

∀σ ∈ Σ∗ : P̂(σ)⇒ A(σ) � σ ∧ P̂(A(σ)).

In [16], Bielova et al. give an example of a delayed automaton enforcing the market

policy, which can output valid transactions of the form take(n);pay(n) or pay(n);take(n)

present in the input even if they are preceded by an invalid prefix.

Since Bielova et al. found the definition of effective∼= inadequate to enforce the

market policy, they suggest an alternate notion of enforcement called delayed precise

enforcement. This enforcement paradigm captures a requirement that the monitor must

always output a valid sequence, and that if the input sequence is valid, the output must

be syntactically equal to it, and furthermore, the output must always be a prefix of the

input.

Definition 2.5.5. Let Σ be a set of atomic actions. An automaton A delayed precisely

enforces a Property P̂ iff ∀σ ∈ Σ∞

1. (q0, σ)
σ′

=⇒A (q′, ε);

2. P̂(σ′); and

3. P̂(σ)⇒ σ = σ′ ∧ ∀i : ∃j : j ≤ i ∃q∗ : (q0, σ)
σ[..j]
=⇒A (q∗, σ[i+ 1..])

This definition can be seen as intermediate between precise enforcement and effective=
enforcement and captures the manner in which Ligatti et al. propose to enforce secu-

rity properties in [54]. Any automaton which delayed precisely enforces a Property also

effectively= enforces this property.
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Edit Automata

Delayed Automata

All−Or−Nothing
Automata

Delayed Automata 
for P

Automata that delayed 
precisely enforce P

Automata that effectively= enforce P

Figure 2.4: Comparing the various subclasses of the edit automata

Comparing the classes of automaton introduced above, we find that the class of

Delayed automaton and Delayed automaton for property P̂ intersect, but that neither is

a strict subset of the other. An all-or-nothing automaton A is a Delayed automaton but

is not necessarily a delayed automaton for property P̂ . Likewise, a delayed automaton,

even if it delayed precisely enforces a property P̂ is not necessarily a Ligatti automaton

for property P̂ . However, the class of edit automata that effectively= enforce a property

P̂ is a subclass of delayed automaton for property P̂ . Furthermore, the class of edit

automaton that delayed precisely enforces a Property P̂ coincides with the intersection

between the class of delayed automaton, delayed automaton for property P̂ and the

class of edit automaton that effectively= enforces the property P̂ . Finally, an all-or-

nothing automaton enforces a property P̂ iff it is also a Ligatti automaton for property

P̂.

Theorem 2.5.6. If an automaton A effectively= enforces a property P̂, then A is a

delayed automaton for property P̂ but is not necessarily a delayed automaton.

Theorem 2.5.7. An automaton A delayed precisely enforces a Property P̂, iff A is a

delayed automaton, A is a delayed automaton for property P̂ and A effectively= enforces

the property P̂.

Theorem 2.5.8. An all-or-nothing automaton A precisely enforces the property P̂ iff

A is also a Ligatti automaton for property P̂.

These results are summarized in Figure 4.

Bielova et al. then turn their attention to monitors capable of producing an output

which is not a prefix of its input. They focus on a specific class of properties termed
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Iterative Properties

Liveness
Safety Renewal

All Properties

Figure 2.5: Iterative Properties

iterative properties, which model the repeated execution of transactions. We suggest

an alternative definition of this idea in Chapter 4.

Definition 2.5.9. A property P̂ is an iterative property iff ∀σ, σ′ ∈ Σ∗ : P̂(σ)∧P̂(σ′)⇒

P̂(σ; σ′)

Iterative properties serve to model the desired behavior of systems that are intended

to repeatedly perform a number of finite atomic transactions. The typical example is

the software of an online store or an ATM. Stack inspection is an iterative property,

as is termination and access control. More generally, the class of iterative properties

includes some but not all safety, liveness and Renewal properties. This is illustrated in

figure 2.5.

A new notion of enforcement, tailored to the application of such iterative properties,

can be explained as follows. Informally, a monitor iteratively enforces by suppression an

iterative property P̂ iff every valid transaction is output, and every invalid transaction

is suppressed. This idea is defined more formally as follows:

Definition 2.5.10. Let Σ be an action set and let P̂ be an iterative property. Automa-

ton A iteratively enforces by suppression property P̂ if:

1. ∀σ ∈ Σ∗ : P̂(σ)⇒ A(σ) = σ

2. ∀σ ∈ Σ∗ ∧ ¬P̂(σ) : ∃σ′ � σ : P̂(σ′) ⇒ A(σ) = σo where σo is the longest valid

prefix of σ.
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3. ∀σ ∈ Σ∗ : ¬P̂(σ) ∧ ∀σ′ � σ : ¬P̂(σ′) ∧ ∃σb : σ = σo; σbσr ⇒ A(σ) = σo;A(σr)

where σo is the longest valid prefix of σ and σb is the smallest sequence s.t. after

deleting it from σ the resulting sequence is valid.

Bielova et al. show how to construct an edit automaton which iteratively enforce a

transaction property P̂. Their work raises a number of interesting points. First, they

have identified a shortcoming in the notion of enforcement used in most other studies :

effective∼= enforcement does not place any restrictions on the monitor’s behavior when

it is faced with an invalid sequence. In practice, we may be interested in how a monitor

deals with such a situation. This raises several new questions, such as: Which valid

sequence will be chosen as a replacement? How is this new sequence chosen? Which

aspect of the original invalid sequence has to be preserved, and which has to be deleted

or replaced?

Answering these questions is central to the conception of practical monitoring soft-

ware. Indeed, a monitor which effectively∼= enforces a property by always replacing any

invalid sequence with the same valid sequence (perhaps ε) will not be useful in many

critical systems where it is essential that the execution does not terminate.

The research of Bielova et al. also confirms a prior result from [11], namely that

the enforcement power of monitors is intricately linked to the definition of enforcement

they use. It follows that any restriction imposed on the monitor’s ability to alter

invalid sequences must be crafted carefully. If it is designed too narrowly, this will

unduly restrict the range of enforceable properties. Conversely, if it is designed too

leniently, it could result in monitors which enforce the property, but not in a manner

that is desirable or useful.

The solution they advance in the case of iterative properties is ingenious and inno-

vative. In fact, it imposes that valid transactions present in the original sequence also

be present in the output, thus constraining the monitor’s behavior. Yet this solution

does suffer from a few drawbacks. First, the enforcement paradigm is specific to the

property being enforced (iterative enforcement and iterative properties). Enforcing a

different property requires a different enforcement paradigm. A more general enforce-

ment paradigm, which is at best parameterized to fit the desired property, as effective

enforcement is parameterized with an equivalence relation ∼=, may be preferable.

Furthermore, the method of enforcement, namely the suppression of illicit trans-

actions, is also encoded into the definition of enforcement. An automaton enforcing

an iterative property by transforming invalid transactions into valid ones would not be

iteratively enforcing the property. This makes it harder to compare alternative enforce-
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ment paradigms of the same property. In Chapters 4 and 5, we propose two alternative

security policy enforcement paradigms for monitors, which address some of the issues

mentioned above.

2.6 Imposing Computability Constraints

Both Schneider and Ligatti et al. have stated that the computability constraints make

a property unenforceable by a given security mechanism even if it lies inside the set

of properties enforceable by this mechanism. For example, a safety property may not

be enforceable by a truncation automaton because the monitor is unable to detect

the violation of the security property when it occurs. As such, the results presented

in the previous sections should be regarded as upper-bounds to the set of properties

enforceable by each mechanism.

In [43], Kim et al. give a more precise characterization of this restriction in the case

of the truncation automaton. They observe that for a monitor to be able to enforce a

property, it needs to be able to identify any invalid sequence upon the inspection of a

finite prefix of this sequence. It follows that only properties for which this is possible

are enforceable by monitors. Formally :

Theorem 1. A property P̂ is enforceable by a truncation automaton if and only if P̂

is a safety property and the set Σ∗\pref (P̂) is recursively enumerable.

In other words, a property is enforceable by a truncation automaton if it is a safety

property, and the set of executions that do not respect the property is recursively

enumerable. As observed in [79], this result can also be given as stating that the set of

enforceable properties is the class of co-recursively enumerable properties (coRE).

Proceeding along a similar line of inquiry, Hamlen, Morisette and Schneider [38, 40]

compare the set of properties enforceable by three enforcement mechanisms and link

them to known classes from computational complexity theory. In order to model the

(possibly infinite) execution of the target program, they introduce Program Machines

(PM), deterministic state machines, akin to Turing Machines (TM) that can accept an

infinite input, and exhibit an output sequence rather than accepting or rejecting this

input. In keeping with previous sections of this study, we let σ, τ range over both input

and output sequences, and use M(σ) to refer to the output of PM M when it is given

σ as input. We further let XM be the set of all possible output sequences of M , and

pref (XM) be that of finite prefixes of sequences in XM .
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Figure 2.6: Properties Enforceable by Monitors, from [43]

Hamlen et al. first consider the case of static analysis. A property P̂ can be said

to be statically enforceable if and only if there exists a TM MP̂ , that takes as input

a PM M and either accepts or rejects in finite time, according to whether or not P̂

holds on M . This definition is both intuitive and broad enough to encompass any

enforcement mechanism based on static analysis. This definition also matches exactly

that of the class of recursively decidable properties, (known as the class Π0 in the

arithmetic hierarchy) for which there exists a total computable procedure that decides

them. Since every such policy is also in coRE, statically enforceable properties form a

subset of monitorable properties. This result is based on the premise that any static

analysis could be performed by the monitor, at the onset of a program’s execution.

Next, Hamlen et al. examine the class RW≈ of properties enforceable by program

rewriters, defined as a mechanism that, in infinite time, modifies an untrusted program

prior to its execution in order to ensure its compliance with a security property. This

category includes the more expressive monitors such as the edit automaton. Like Ligatti

et al. in [11], they observe that the power of such an enforcement mechanism can only

be examined in the context of a specific equivalence relation, which constraints the

rewriter’s ability to transform a program. The authors suggest defining an equivalence

relation ≈ between PMs, which in turn is defined in term of an equivalence relation ∼=

over the possible executions of the PM.

Let M1 and M2 be two PMs, M1 is equivalent to M2, noted M1 ≈ M2 if and only if:

∀σ : σ ∈ Σ∞ : M1(σ) ∼= M2(σ). (2.6.1)

The following two constraints on ∼= are imposed:

M1(σ) ∼= M2(σ) is recursively decidable if M1(σ) and M2(σ) are finite (2.6.2)
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σ ∼= σ′ ⇒ (∀i ∈ N : ∃j ∈ N : σ[..i] ∼= σ′[..j]) (2.6.3)

The first requirement ensures that a procedure be able to determine whether or

not two executions are equivalent. The latter imposes that equivalent executions have

equivalent prefixes. Given a certain equivalence relation ≈, property P̂ can be enforce-

able by rewriting if there exists a total computable rewriting function, R ⊆ PM × PM

that can transform any PM into a new valid (with respect to P̂) PM, while preserving

the semantics of every valid PM. Formally :

P̂(R(M)) (2.6.4)

P̂(M)⇒M ≈ R(M) (2.6.5)

This definition is equivalent to that of effective∼= enforcement given in section 2.4.

Since no restriction is imposed on the PM’s output in those cases where the execution

is invalid, every satisfiable statically enforceable property is trivially RW≈ enforceable.

We can determine statically which programs respect this property, and the rewriting

relation R has only to return the program unchanged if it respects the property, or some

safe execution otherwise. Only the unsatisfiable property, which rejects all executions,

is statically enforceable property but cannot be enforced by program rewriters in this

manner, since there is no valid execution which can be substituted for the invalid ones.

Policies that are RW≈ enforceable also include some but not all properties in coRE and

some properties not in this class.

Turning their attention back to the properties enforceable by monitoring, Hamlen

et al. argue that the class coRE actually represents an upper-bound to the set of

properties enforceable by this mechanism. Note first that when a monitor detects a

violation of the security property, it must react to prevent this violation. In their model,

this intervention is modeled by a sequence of actions (possibly the end of program

token) that the monitor appends to the current input sequence. Let I be the set of all

possible interventions on the monitor’s part. The property P̂I , which forbids all such

interventions cannot be enforced by a monitor. Yet this property is in coRE if I is a

computable set. For example, the non termination property P̂end, which demands that

the target program’s execution does not terminate, is not enforceable by a truncation

automaton, since the only remedial course at the disposal of such a monitor is explicitly

forbidden.

Even more remarkably, the authors observe that the same property can become

enforceable or not by monitors depending on how the predicate P̂ that characterizes
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this property is stated. For example, consider the property PRU which states that a

resource cannot be used (by the action euse) after it has been released (by the action

erel). This property can be stated as :

P̂RU1(σ) = (∀i : i ≥ 1| : erel /∈ σ[..i] ∨ euse /∈ σ[i+ 1..]).

This predicate states that no euse can occur after a erel action. This property can

be enforced by a suppression automaton, by suppressing the occurrence of euse, or by a

truncation automaton, by aborting the execution.

Alternatively, this same property can be given as :

P̂RU2(σ) = (erel /∈ σ ∨ (∀σ′.σ; σ′ ∈ Σ∞| : euse /∈ σ′)).

This predicate states that any execution containing a erel action cannot be extended

to include a euse action. Both are the same property, in the sense that both define the

same set of execution. While this is a safety property in coRE, the question of deciding

whether or not a finite execution will be extended to respect P̂RU2 is undecidable. This

is because, while both predicates rule out the same executions, P̂RU2 actually defines a

violation of the property in any execution by an event that occurs earlier than P̂RU1. A

truncation mechanism which relies upon the definition of P̂RU1 is thus unable to prevent

some violations of the policy from occurring.

A better characterization of the set of properties enforceable by monitors actually

is the intersection of the class coRE and the set RW≈. Properties in this intersection

exhibit a particular behavior termed benevolence. A property is benevolent if there

exists a decision procedure MP̂ that rejects any invalid prefix of an invalid execution,

but accepts any valid prefix of a valid execution, for all possible PM M . This allows

the monitor to reject valid prefixes if it determines that they will be extended to invalid

executions. Observe that the monitor is not required to accept the valid prefixes of

invalid executions. Formally, a property P̂ is benevolent if there exists a decision

procedure MP̂ such that for all PM M :

¬(∀σ ∈ XM : P̂(σ))⇒ (∀σ ∈ pref (XM) : (¬P̂(σ)⇒MP̂(σ)rejects)) (2.6.6)

(∀σ ∈ XM : P̂(σ))⇒ (∀σ ∈ pref (XM) : (MP̂(σ)accepts)) (2.6.7)
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P̂RU1 is an example of a benevolent property.

Properties that do not lie in the intersection of coRE and RW do not have the

benevolence property, and thus cannot be meaningfully enforced by monitors. In the

absence of a decision procedure MP̂ that fits the description above, the monitor is

required to either reject some valid executions, or to only reject a violation of the

security property after it has occurred. This result squares with our intuition that

monitors can be inlined in the program they aim to protect, so that any property

enforceable by monitor can also be enforced by program rewriting.

coRE RW enforceable 
properties

Statically enforceable
properties

Monitorable Properties

unsatisfiable property

Figure 2.7: Properties enforceable by various mechanisms, from[40]

A summary of the findings of Schneider et al. is given in Figure 2.7. As discussed

earlier, any statically enforceable property is seen as being also enforceable by monitor-

ing and program rewriting, under the assumption that a monitor can perform a static

analysis of its target before its execution begins. Note however that this presupposes

that both the static and the dynamic analyzer have access to the same information

about the program’s behavior. Static analyzers often have access to source code un-

available to monitors, which could allow them to enforce a greater range of properties.

The set of properties enforceable by monitors is defined as the intersection of coRE

properties and RW≈, properties. Properties in the intersection of these classes exhibit

an interesting behavior, termed benevolence, which allows the monitor to reject all in-

valid behaviors before they occur. This result indicates that the class of monitorable

properties is somewhat smaller than previous studies have shown, an inconstancy that

is explained by the fact that such previous studies considered that a monitor can enforce

some properties even though the monitor only discovered a violation of the property

after it had occured and thus outputs an invalid sequence. Finally the set of properties

enforceable by program rewriting is shown to be a superset of that of properties en-

forceable by monitoring, owing to the rewriters greater ability to transform the target

program. This is consistent with the conclusion of Ligatti et al. [11] who argue that

the edit automaton, which can alter a program’s semantics in the manner of a rewriter,

is strictly more powerful that an truncation or insertion automaton, which lacks this

ability.
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2.7 Monitoring with Memory Constraints

Among the assumptions made previously when studying the enforcement power of mon-

itors is the assumption that they are unconstrained by any memory limitations. In

practice however, it is reasonable to assume that monitors only have a finite amount

of computational resources at their disposal. Several authors have thus examined the

set of properties enforceable by a monitor whose finite memory allows it to keep only a

partial record of its target ongoing execution. Despite this limitation, memory-bounded

automata where shown to be capable of enforcing several interesting real-life properties.

2.7.1 Shallow History Automata

The study of memory-bounded automata and their use in monitoring was pioneered

by Fong [36]. He introduces the shallow history automaton (SHA), which only records

the shallow history i.e. the unordered set of security relevant events performed by the

target program. Formally, a shallow automaton is a tuple 〈Σ, F (Σ), H0, δ〉 where :

• Σ is a finite or countably infinite set of events;

• F (Σ) is the set of all possible shallow histories;

• H0 ∈ F (Σ) is an initial access history, usually ∅;

• δ : F (Σ)×Σ→ F (Σ) is a transition function, which is defined as δ(H, a) = H∪{a}

if δ is defined for 〈H, a〉.

The set of properties enforceable by SHA, known as EMSHA, is a strict subset of

the set EM of properties enforceable by Schneider’s security automaton. Yet, several

interesting real-life properties can be enforced under this paradigm. Fong gives the

following 4 examples :

The Chinese Wall Policy The Chinese Wall Policy [57] seeks to prevent conflicts of

interests. It specifies, for example, that a consultant cannot advise a client if he

also serves as an advisor to competitors of this client. The Chinese Wall property

is defined in terms of sets of data objects O, and subjects S, and a set of conflicts

of interests which maps each data objects with a list of objects that conflict with

it. Once a subject has accessed a given object, he is restricted from accessing any
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object that conflicts with it. In order to enforce this policy, a monitor only needs

to keep track of the set of objects that each subject has previously accessed, with

no regard for the sequencing in which these accesses have occurred. This allows

the property to be enforced by a SHA, which aborts the execution if a conflicting

data access is attempted. In chapter 5, we will suggest alternative enforcement

paradigms for this same property, that allows more valid data accesses to be

output.

Low-Water-Mark Policy The low-water-mark policy is a data access policy formu-

lated by Biba [15]. The model defines a set S of subjects, a set O of objects, and

a set L of trustworthiness levels, partially ordered by the binary relation ≤. The

trustworthiness level of an object is a permanent classification. That of users is

monotonously decreased each time an object is read, so that the trustworthiness

level of the user becomes the greatest lower bound between its previous level and

that of the object it reads. A subject is only allowed to write to an object or

execute another subject if its trustworthiness level is greater or equal to that of

its target. Once again for this policy to be enforceable, the monitor needs only to

keep track of which access events have occurred, with no regard for their sequenc-

ing. A subjects’s label can be straightforwardly computed from an unordered list

of such events and an access event aborted by the monitor if its trustworthiness

level is deemed inadequate.

One-out-of-k authorization One-out-of-k authorization [28] is a safety paradigm

whereas applications are classified into equivalence classes based on the tasks they

perform, and are then granted access rights inherent to each class. For example,

an application that attempts to open a socket will be classified as a browser and

allowed network actions, while a program that attempts to access user files will

be classified as an editor and given the right to access user and temporary files.

Applications are permanently assigned to a class according to their runtime be-

havior. This property can be easily enforced by a SHA, in the following manner :

let Σ be the set of all possible accesses, and let each application class i be defined

by a set Ci ⊆ Σ. A SHA whose transition function is defined so that 〈H, a〉 is

defined iff H ∪ {a} ⊆ Ci for some i.

Assured Pipelines The Assured Pipelines policy [19, 81] seeks to ensure the integrity

of data objects that are processed by several procedures. Let O be a set of data

objects and S a set of procedures. Σ = S×O thus defines the set of access events

and each event 〈s, o〉 corresponds to the application of procedure s to data object

o. An instance of an assured pipeline policy is specified by an enabling relation

e ⊆ S × S, with the following restriction that e must define an acyclic graph.

The presence of a pair 〈s, s′〉 in e indicates that any action of the form 〈s′, o〉 is

only allowed if s was the last process that accessed o. Because of the restriction
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that e must be an acyclic graph, each action 〈s′, o〉 can occur at most once. It

follows that a monitor SHA can enforce this property simply by examining the

unordered access events that have already occurred during the execution and

contrasting them with e.

Fong further suggests that other meaningful subclasses of EM could be formed by

abstraction, i.e. by merging several states of a SA into a single abstract state, making

them indistinguishable from the perspective of policy enforcement. Let A be a set of

abstract states and α : Σ∗ → A be an abstraction function. An automaton whose

states are built from applying the abstraction function α to the states of a security

automaton SA is noted SAα. A property is enforceable by a SAα if it can be enforced

using only information left behind after the abstraction process. We write EMα for the

set of properties enforceable by SAα. The SHA, as well as the set of properties it can

enforce, can be seen as an instance of this abstraction process, generated by a particular

abstraction function. Every abstraction α induces an equivalence relation ≡α such that

∀σ, σ′ ∈ Σ∗ : σ ≡α σ′ ⇔ α(σ) = α(σ′).

The use of equivalence relations provides an intuitive comparison point between the

subsets of EM. Let EM≡ be the set of properties enforceable by ≡. Fong shows that

more properties are enforceable by a monitor bounded by an equivalence relation ≡1

than one bounded by ≡2 if ≡1 is more differentiating than ≡2.

Theorem 2.7.1. Let ≡1, ≡2 be equivalence relations. ≡1⊆≡2⇒ EM≡1
⊆ EM≡2

Fur-

thermore, if the former inclusion is strict, so is the latter.

This comparison also argues for a lattice based classification of the subclasses of

EM defined by abstraction. Let the join operator be the intersection of two equivalence

relations (≡1 t ≡2=≡1 ∩ ≡2), and meet the transitive closure of the union of two

equivalence relations (≡1 u ≡2= (≡1 ∪ ≡2)
+). These two operators define a lattice over

the set of all equivalence relations over a given set of actions Σ∗. The top element of this

lattice, (≡>) corresponds to the class EM, and the bottom element (≡⊥), corresponds

to the class of memoryless properties enforceable by an automaton with a single state.

The classes of properties enforceable by a SHA and by any other subclass of EM are

ordered on a poset induced by the above lattice classification.

The following are corollaries of theorem 2.7.1.

Corollary 2. EM⊥ ⊂ EMSHA ⊂ EM>

Let SHAΣ∗

-enforceable stand for the set of properties enforceable by a Shallow

history automaton. Fong shows that this set is a strict subset of the set of properties
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enforceable by an unbounded truncation automaton.

Corollary 3. SHAΣ∗

-enforceable ⊂ T Σ∗

-precisely enforceable.

2.7.2 Bounded History Automata

Fong was the first to examine the enforcement power of monitors operating with in-

formation constraints. These constraints were modeled by abstracting the states of a

security automaton enforcing safety properties. Following this line of enquiry, and link-

ing it to Ligatti’s research on the edit automata, Talhi, Tawbi and Debbabi [76, 74, 75]

devised the Bounded History Automaton (BHA) which has only a limited space with

which to store the program’s execution history and showed how this new automata

class can still enforce a relevant set of properties despite this limitation. They further

showed how bounded-memory monitors can be modeled both by Bounded Security Au-

tomata (BSA) or by Bounded Edit Automata (BEA), analogous to the security and

edit automata introduced by Schneider [69] and Ligatti[11] respectively.

To better reason about bounded histories, Talhi et al. introduce the following no-

tation : Let Σ be a finite or countably infinite alphabet of atomic actions. Σk is the

subset of sequences of length k while Σ≤k is the subset of finite sequences of Σ of length

less than k, (Σk = {σ ∈ Σ∗ : |σ| = k} and Σ≤k = {σ ∈ Σ∗ : |σ| ≤ k}). Pref (σ) is the set

of all prefixes of a sequence σ, Suf (σ) that of the set of all suffixes. Pref k(σ) Suf k(σ)

denote the sets of prefixes and suffixes of lengths k respectively and the set of k-length

factors of σ is given as Factk(σ) = {σ
′ ∈ Σk|∃σ

′′ ∈ Σ∗.∃σ′′′ ∈ Σ∞ : σ = σ′′; σ′; σ′′′}.

Bounded history automaton (BHA) is a class of automata used to model security

properties enforceable by monitors equipped with only a bounded memory with which

to store the past history of the target execution. Each state of the automaton thus

represents a finite-size abstraction of the input sequence that has occurred so far. Talhi

et al. define two subclasses of BHA: The Bounded Security Automaton, which is anal-

ogous to a truncation automaton, and can only allow an action or abort the execution,

and the Bounded edit Automaton, analogously to an edit automaton, which can also

suppress and insert actions into the input stream.

Definition 2.7.2. A Bounded Security Automaton of bound k (noted k-BSA), is a tuple

〈Σ, Q = Σ≤k, q0, δ〉 where :

• Σ is a finite or countably infinite set of input actions.
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• Q is a finite or countably infinite set of states, each of which represent a bounded

history of size smaller or equal to k.

• k is the maximal size of the history.

• q0 ∈ Q is the initial state. This is usually the empty history ε.

• δ : (Q × Σ) → Q is the (possibly partial) transition function. If, for a given au-

tomaton A, δ(h, a) = h′, this signifies that the bounded history h′ is an abstraction

of h; a, and that h′ contains all the information necessary for the enforcement of

the property captured by A.

Analogously to an edit automaton, a BHA can be enriched with the ability to insert

or suppress actions in the programs they monitor. The history stored by a bounded

edit automata consists of two sequences; the first has been output by the automaton,

while the second is suppressed in order to reinsert it if a valid prefix is recognized.

Definition 2.7.3. A Bounded edit automaton of bound k (noted k-BEA), is a tuple of

the form 〈Σ, Q = (Σ≤k,Σ≤k)≤k, q0, δ〉 where :

• Σ is a finite or countably infinite set of input actions.

• Q is a finite or countably infinite set of states, each of which is a pair 〈σAcc, σSup〉

such that σAcc, σSup ∈ Σ≤k.

• k is the maximal size of the history.

• q0 ∈ Q is the initial state. This is usually the empty history. 〈ε, ε〉.

• δ : (Q × Σ) → Q is the (possibly partial) transition function. As with the BSA,

if δ(h, a) = h′ then h′ is an abstraction of h; a that contains all the relevant

information necessary for the enforcement of the property accepted by the BEA.

Talhi et al. prove a number of interesting theorems related to the expressivity

of this enforcement mechanism. Let EMkSA be the set of properties enforceable by

BSA, and EMkEA be the set of properties enforceable by BEA. EMkSA is naturally

a subset of safety properties, enforceable by unbounded SAs, and EMkEA a subset

of reasonable infinite renewal properties, enforceable by unbounded EAs. The set of

properties enforceable by bounded automata increase monotonously as a larger memory

is made available to to the monitor. Formally :

Theorem 2.7.4. For any two integers k and k’ such that k < k’, we have EMkSA ⊂

EMk′SA and EMkEA ⊂ EMk′EA.
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BSA are equally expressive as the SAα defined by Fong. For any BSA, there exists

a SAα, and conversely, for any SAα, there exists a k-bound BEA with some maximal

memory size k that enforces the same property. Furthermore, any SHA can be trans-

lated into a k-bound BEA where k is the cardinality of the set Σ of input actions,

provided that Σ is finished.

Theorem 2.7.5. For any BSA enforcing a Property P̂ there exists a SAα that also

enforces P̂.

Theorem 2.7.6. For any SAα, enforcing a Property P̂ there exists a k-bound BSA A

enforcing the same property, where k is the maximal size of the histories of A.

Theorem 2.7.7. Let A = 〈Σ, F (Σ), H0, δ〉 be a SHA enforcing a Property P̂, if Σ is a

finite set and |Σ| = k, then there exists a k-bound BSA that enforces the same property.

There exists a close connection between the set of properties enforceable by BHA

and a class of properties termed locally testable properties (or local properties)[13].

Locally testable properties are properties that are recognizable by a class of automata,

termed scanners, which are equipped with a finite memory and a sliding window of

size k. This window is slid along the input sequence starting with the initial action,

with only the actions in the window being visible to the scanner at any given time.

Properties are enforceable by scanners if they can be recognized using only the prefixes

and suffixes of length less than k and the factors (subsequences) of length k. In [46], it is

observed that such properties are particularly well suited to be enforced by monitoring

because a monitor enforcing such a property needs only to keep a record of the last k

computational cycles. Furthermore, if a monitor enforces several such properties, this

record can be shared, so that the memory overhead of the monitor is independent of

the number of locally testable properties being enforced.

Let P, S,X and F be 4 sets, such that P, S ⊆ Σk−1, X ⊆ Σ≤k−1 and F ⊆ Σk.

Definition 2.7.8. A property L is k-locally testable if and only if it respects the following

two rules[76]:

• ∀σ ∈ Σ∗.σ ∈ L\{ε}| : (σ ∈ X) ∨ ((Pref k−1(σ) ∩ P 6= ∅) ∧ (Suf k−1(σ) ∩ S 6=

∅) ∧ (Factk(σ) ⊆ F )).

• ∀σ ∈ Σω.σ ∈ L\{ε}| : ∀σ′ ∈ Pref (σ) : ∃σ′′ ∈ Pref (σ).σ′ ∈ Pref (σ′′) ∧ σ′′ ∈ L.

Informally, a property P̂ is k-locally testable if any finite non-empty sequence ∈ P̂

is either of size less than k or if it has both a prefix and a suffix in the sets P and S
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respectively, and that all their factors of size k are in the set F . Taken together, these

requirements mean that a scanner examining this property through a sliding window of

size k will always be able to recognize that the sequence under consideration is in the

P̂.

A property L is locally testable if it is k-locally testable for some integer k. There

exists several algorithms for deciding if a language is locally testable, and finding the

minimal k value for which it is k-locally testable [78, 58, 45, 44]. These algorithms are

polynomial in time with respect to the size of the language’s alphabet and that of the

automaton used to represent the language.

The set of locally testable properties intersects with that of prefix testable, suffix

testable, prefix-suffix testable, testable properties, and contains a subset of strongly

locally testable properties [65]. Prefix testable properties are properties that can be

recognized by examining only prefixes of the input sequences, and conversely suffix

testable properties are recognizable by examining only suffices of the input sequences.

Prefix-suffix testable properties are recognizable by examining both prefixes and suffixes

of the input sequences. Each of these classes contains a subset of locally testable

properties, the k-prefix, k-suffix and k-prefix-suffix testable properties, which can be

recognized by examining only a bounded prefix, suffix or a prefix and a suffix of size k.

Finally, strongly locally testable properties are a subset of locally testable properties

which are recognizable by inspecting factors of a bounded size.

The connection between locally testable properties and properties enforceable by

BHA is as follows. Since the BSA is a subclass of the SA, properties enforceable by the

BSA will necessarily be a subset of those enforceable by SAs, and thus will be prefix

closed. Prefix-closed k-prefix are enforceable by k-bounded BSA, so are k-strongly en-

forceable properties and locally testable properties in general if they are prefix-closed.

Conversely, suffix testable and prefix-suffix testable properties are generally not enforce-

able by BSA.

Theorem 2.7.9. Any prefix-closed k-prefix testable property P̂ is enforceable by some

k-BSA.

Theorem 2.7.10. Any k-strongly locally testable property P̂ is enforceable by some

k-BSA.

Theorem 2.7.11. Any prefix-closed k-locally testable property P̂ is enforceable by some

k-BSA.

Theorem 2.7.12. Any suffix testable and prefix-suffix testable properties are not en-

forceable by BSA.
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The more powerful BEA naturally enforces strictly more properties. A k-bounded

BEA can enforce any k-prefix testable property, any k-strongly enforceable properties

and any k-locally testable properties. Suffix testable and prefix-suffix testable properties

are generally not enforceable by BEA.

Theorem 2.7.13. Any prefix-closed k-prefix testable property P̂ is enforceable by some

k-BEA.

Theorem 2.7.14. Any k-strongly locally testable property P̂ is enforceable by some

k-BEA.

Theorem 2.7.15. Any k locally testable property P̂ is enforceable by some k-BEA.

Theorem 2.7.16. Any suffix testable and prefix-suffix testable properties are not en-

forceable by BSA.

Talhi, Tawbi and Debbabi’s contribution in this context is three fold. First, they

devise a new abstract model of monitors, the Bounded History Automaton, and explore

its enforcement power. Second, they devise a new taxonomy of enforceable properties,

based on the amount of memory needed for the enforcement. Thirdly, they show a

connection between locally testable properties and those enforceable by BHA. Their

research allows us to better characterize the properties enforceable by monitors con-

strained by memory limitations. Since real-life monitors will certainly be constrained

in this way, their study offers relevant insights on the enforcement power of monitors.

2.7.3 Finite Automaton

A final enquiry in the set properties enforceable by an edit automaton with memory

constraints was done by Beauquier et. al. In [12], they examine the set of properties

enforceable by an edit automaton with a finite, but unbounded, set of states. They focus

on effective enforcement and on uniform systems containing both finite and infinite

sequences, with = as the equivalence relation, and define a new class of properties,

termed memory bounded properties, which coincides with the set of properties that are

effectively= enforceable by a finite edit automaton.

Before presenting the result of this study, we introduce the specific notation that

was used by the authors in this regard. Let Σ be a set of atomic actions and P̂ ⊆ Σ∞

be a property. We write P̂fin for P̂ ∩ Σ∗ and P̂inf for P̂ ∩ Σω.
−−→
P̂fin designates the set

of infinite sequences which have infinitely many prefixes in P̂fin.
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Definition 2.7.17. A property P̂is memory bounded if P̂is of the form P̂fin∪
−−→
P̂fin

⋃
j∈J Rj ; βj

where

• ε ∈ P̂;

• J is finite;

• P̂fin is regular;

• ∀j ∈ J : Rj is regular;

• ∀j ∈ J : βj is an ultimately periodic sequence in Sigmaω;

• ∀j ∈ J : Rj ∩ Pref (P̂fin) = ∅;

• ∀i, j ∈ J : i 6= j = Rj ∩ Pref (Ri) = ∅

• there exists a constant K such that for every u ≺ v s.t. u /∈ Pref (P̂fin) and

v ∈ Rj |v| − |u| � K

We can now state the main result from [12].

Theorem 2.7.18. Let FΣ∞

= -effectively enforceable stand for the set of properties that

are effectively enforceable by a finite edit automaton in a uniform context, with = as the

equivalence relation. A Property P̂ is in FΣ∞

= -effectively enforceable iff P̂ is memory

bounded.

2.8 In-lining a monitor into a Program

The final question we examine in this chapter is how to inline a monitor into a possibly

untrusted program, in order to ensure its compliance with the property that it captures.

This process also raises other interesting issues of optimizing the resulting code and

proving the correctness of the in-lining process. A wide variety of implementations

of monitors has been suggested in the literature. We focus here on automata-based

approach, since this is the framework we have used in all other sections.
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2.8.1 SASI

This issue was first addressed by Erlingsson and Schneider in [31], where they introduce

the SASI monitoring framework. The idea behind this framework is to inject a monitor,

modeled by a security automaton, into an untrusted object code.

To inline the security automaton into the target program, a special segment of code

that simulates the automaton’s behavior is added before each instruction. The current

state of the automaton is captured in state variables that can only be modified by

the added code. Before any instruction can be executed, this code updates the state

variables to reflect the state that the automaton reaches after taking the appropriate

transition from its current state. If no transition is defined from the current state for

the next instruction, the execution is aborted.

By using this method, we can be sure that the target code respects the security policy

since we do not perform a single program instruction without verifying that doing so

will not violate the security property. Yet the runtime cost incurred is substantial since

several text instructions must be performed for each program instruction. To reduce

this cost, the inlining of the target program and the security automaton is done in four

steps, in a manner designed to reduce overhead. These steps are :

Insert security automata The security automaton is inserted before each instruc-

tion.

Evaluate transitions Static analysis is used to identify which states are reachable

from each program point, and thus identify for each program point which tran-

sitions will necessarily be taken, (labeled as true) and which cannot be taken

(labeled as false).

Simplify Automaton Any transition labeled as false is deleted.

Compile Automaton The remaining security automaton is translated into a code

which is then added at the appropriate program point to simulate the behavior

of the automaton.

Two prototypes of SASI were developed for x86 assembly language and Java. The

x86 prototype is comparable in performance to Misfit [71], a specialized tool for code

rewriting. Likewise, the JAVA version of SASI can simulate the functionalities of the

Java Security Manager (SM) with no statistically significant difference in overhead.

Yet in both these cases the set of policies enforceable by SASI is a superset of those
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enforceable by those of Misfit or SM. This shows SASI to be both as efficient as some

specialized tools and highly polyvalent.

2.8.2 Colcombet and Fradet’s Approach

While Erlingsson and Schneider propose to inline a security automaton into object code,

Colcombet and Fradet apply the same operation on source code [26]. Although similar

to the preceding approach, the most salient aspect of their approach is the manner

in which the runtime overhead is systematically minimized by a combination of static

analysis and optimizations. The result is a code that provably respects the desired

security property with a minimal amount of runtime checks.

Their approach consists in seven steps.

Property Encoding The first step is the choice of the desired security policy. As was

the case with [31], the user is limited to safety properties, since the chosen policy

must be translated into a security automaton.

Program Annotation The second step is to define a function E that associates rel-

evant program instructions with events. A program instruction is considered rel-

evant if it can affect the validity of the security property. Each instruction must

be associated with exactly one event. All actions judged irrelevant are associated

with the dummy event ?.

Program Abstraction The next step consists in constructing a conservative abstrac-

tion of the target program. The authors settle on a control-flow graph whose nodes

represent program points and whose edges represent instructions (abstracted into

events) but stress that a more precise abstraction could be used.

Direct Instrumentation The fourth step consists in adding to the graph the runtime

checks that will make it impossible to accept a trace that violates the security

property. This is done by constructing a new structure called an I-graph. The I-

graph is built from the control flow graph by adding a set of states, some of which

are marked as accepting, and a transition function. These states correspond to the

states of the security automaton with which we want to constrain the program’s

behavior, and the transition function mimics the automaton’s behavior. If the

transition function dictates that the execution must enter a non-accepting state,

the execution is halted. This step results in a structure that can be translated

into a program which always respects the desired property, but with a very high
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added runtime overhead incurred by systematically updating the state after each

relevant program action and then verifying if that update places the automaton

in a non-accepting state. The purpose of the next two steps is thus to reduce this

added overhead.

Minimization This step seeks to identify and remove the states that are unreachable

for each program point. This operation is analogous to the one made in [31]

to reduce the added runtime cost incurred by instrumenting the program. An

iterative algorithm is used to compute the set of reachable states. A state v is

reachable at a given node if there exists a sequence of events ω which, when fed

to the transition function from the initial node r0 reaches v.

The I-graph can then be further simplified by merging several states together at

certain nodes. This can be done for any two states r1 and r2 if the same set of

traces can be generated from a node v whether it is in state r1 or in r2 . This

is similar to standard automaton minimization. After this step is performed, the

transition function links equivalent sets of states in each node to their successors

in another node, but the semantics of the I-graph remains unchanged.

Erasing The I-graph’s transition function is translated into dynamic tests, which in

turn are the source of the added runtime. It is thus essential to reduce the

number of tests. This is done by erasing those transitions for which the current

state remains unchanged after the event occurs. As was the case in the preceding

step the semantics of the target program are preserved thoughtout this step.

Concretization The last step in the instrumentation process is to convert the opti-

mized I-graph into code. While this step is dependent on the target language

we wish to use, the task is made easier by the fact that the I-graph is still very

similar to a control flow graph. Its nodes are program points, its edges are in-

structions. All that remains is to add a program variable in order to store the

current state and a series of assignations and tests on that variable in order to

model the evolution of the current state during the execution.

2.8.3 Automata Injection

In [63, 62], Ould-Slimane et al. give a formalization of the in-lining process. Their

method is based on the idea of automata composition, using a new operator, �f
g which

embeds an automata representing a property into another representing a program (mod-

eled as a labeled transition system). Their approach distinguishes itself from other

monitoring frameworks presented in this chapter in that the transitions contain pairs

or predicates and actions, rather than simply actions. Each predicate is a condition
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that must be respected by the action for the transition to be taken. Otherwise, the

execution is aborted. These predicates allow the insertion into the target program of

runtime tests which simulate the monitor’s behavior.

The � operator is parameterized with two functions, f , g that help define the

monitor’s behavior in certain instances. f inserts the runtime test on the automaton’s

transitions and g determines the accepting states of the automaton. In [63] and [62],

Ould-Slimane et al. give two possible examples of such functions, both of which apply

to a truncation automaton. The enforcement using an edit automaton is discussed in

[64].

Definition 2.8.1. Let A∞ = (Q1,Σ, δ2, q10, F1) and A∈ = (Q2,Σ, δ2, q20, F2) be two

automata as defined in definition 2.3.1. The injection modulo functions (f,g) of A∞

into A∈, denoted A∞ �
f
g A∈ is the automaton A = (Q,Σ, δ, q0, F ) where

• Q is the smallest set s.t.

– (q10, q20) ∈ Q;

– if (s1, s2) ∈ Q and s′1 = δ1(s1, a1) and s′2 = δ2(s2, a2) then (s′1, s
′
2) ∈ Q

• δ is defined by way of function f as follows :

– δ : Q× Σ→ Q

– δ((si, si′), f(ai, ai′)) = (sj, sj′) where sj = δ1(si, ai) and s′j′ = δ2(si′, ai′)

• q0 = (q10, q20)

• F is defined as by way of function g : Q×Σ× δ(q0)→ F , which is given as input

to the composition operator.

This method is proved to be sound (the resulting program always respect the de-

sired property) and complete (every valid execution present in the original program is

preserved). Contrasting the three implementations presented in this section with the

theoretical studies of monitors presented in the preceding sections, we come to the fol-

lowing conclusions. First, all such implementations of monitors (except that of [64])

are limited to the enforcement of safety properties, despite the fact that it was shown

in [11] and other papers that monitors can, in many cases, enforce a greater range of

security policies. For instance, none of the approaches presented here makes use of

static analysis to extend the range of enforceable properties even though the needed

abstraction is available, and is used to reduce the number of runtime tests added by the

in-lining process. In this thesis, we propose a new inlining procedure which draws upon
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a static model of the target program to enforce some nonsafety properties. Finally,

Ould-Slimane et al. state that the instrumented program produced by the in-lining

process is equivalent to the original program, but do not specify the precise notion of

equivalence they use. Since it was shown in [11] that the set of enforceable properties

is greatly dependent on the choice of the equivalence relation, a more formal charac-

terization could have been beneficial. We explore some possible equivalence relations

and their use in monitoring in Chapter 4, and an alternative to equivalence relations,

preorders, in Chapter 5.

2.9 Other Work in Monitoring

In parallel to the main issues discussed so far that are central to our thesis, the question

of how to construct a monitor from an automaton representing a security property, has

been addressed several times in the literature. A constructive proof that it is possible

for all properties over finite sequences is given is [11]. An alternative algorithm is given

in [18].

In [35, 34, 32, 33], Falcone et al. show that the class of Renewal properties proposed

by Ligatti et al. is equivalent to the union of five of the six classes of the safety-

progress classification of properties [24], namely safety, guarantee, obligation, response

and persistence, with the class of reactivity properties containing properties which are

not effectively=enforceable by the edit automaton. This classification is an alternative

to the safety-progress dichotomy, in which properties are arranged in a hierarchy of six

classes. They further give algorithms to construct a monitor from a property for each

of the 5 classes for which this is possible.

While the automata based model of monitors presented throughout this chapter is

the most widely used in the literature, other models have been proposed. In [82], Zhu et

al. suggest modeling monitors by way of a stream automata while another alternative

model, the Mandatory results Automata is suggested by Ligatti et al. in [56]. Both of

these models differ from the edit automaton in that they distinguish between the action

set of the target and that of the system it interacts with. These models made it easier to

study the interaction between the target program, the monitor and the system. In this

study, while we continue to focus on the truncation and edit automaton, we believe the

results we present can easily be applied to the more refined automata models introduced

in these papers. In [39], Jun models monitors as Mealy Machines [59] and study their

expressive power.
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In [7, 10] Bauer et al. study the set of monitorable properties using a slightly

different definition of monitoring, in which a monitor is tasked only with detecting and

reporting the occurrence of a violation of the security property. They are thus sequence

recognizers, as defined by Schneider, rather than sequence transformers, as defined by

Ligatti. The monitor thus incrementally examines each prefix τ of an ongoing execution

w.r.t. a three-valued variant of LTL [66] or TLTL [68] and returns one of the three

following possible results :

> If every possible extension of τ satisfies the desired property. In [47], such a prefix

is termed a good prefix for this property.

⊥ If every possible extension of τ violates the property. In this case, τ is a bad prefix

for this property [47].

? otherwise.

The properties enforceable in this context are characterized by the absence of a

prefix υ, for which there is no ν ∈ Σ∗ s.t. υ; ν is either a good prefix or a bad prefix for

the property being monitored. In this case, υ is called an ugly prefix for this property.

The set of monitorable properties thus includes all safety properties, for which every

invalid execution has a bad prefix, that of co-safety properties [47], for which every valid

execution has a good prefix, and some other properties which are neither safety nor co-

safety. The authors further show how to construct a monitor that is both minimal

(w.r.t. its size) and optimal, in that it detects a good or bad prefix as early as possible.

This result, and its implications, are expounded in more detail in [4].

In [8, 9], the authors extend this framework into a four valued semantics, which

distinguishes between a possibly true and possibly false values instead of just “?”. This

allows the monitor to distinguish between a sequence which will not respect the property

unless some future event occurs, from one which would respect the property if it ends

on the next step.

In [27], an algorithm is given to extract a monitor which detects the minimal bad

prefix of a property stated as a Büchi automaton. This method does not monitor the

liveness component of a property.

Other monitoring frameworks are more specific with regard to the systems or the

properties they can be used to enforce. The monitoring of security protocols is discussed

in [5, 6]. That of information flow policies is discussed in numerous papers including

[25] and [37]. In [70] Sen at al. propose a decentralized monitor which monitors safety
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properties in distributed programs. The optimization of monitors is further discussed in

[80]. The in-lining of monitors in concurrent programs is discussed in [51]. An algebraic

method to inline a safety property into a program is given in [49, 52]. In this approach,

both the property and the program are stated using process algebra. The instrumented

program is shown to be equivalent to the original one using a notion of equivalence

based on bisimulation. The monitoring of networks is discussed in [60].

A more exhaustive list of all implementations of formal monitor is given in [54].

2.10 Conclusion

This chapter has presented an overview of the main results of studies on runtime soft-

ware monitoring, which seek to delimitate the set of policies applicable by such monitors.

The analysis shows that monitors can be used to enforce a wide range of interesting

security policies. The most basic monitors can be shown to enforce only a subset of

safety policies. However, we have identified three situations where this range can be

extended, namely : (1) if the monitor knows which executions paths are possible and

which are not (or has an approximation of this information), (2) if the monitor has

more means at its disposal to react to a potential security policy violation (rather than

simply aborting the execution), and (3) if the monitor is not tightly bound to respect

the semantics of a valid execution, but can instead transform its input w.r.t. some

equivalence relations between sequences. We explore this idea in Chapters 4 and 5.

However, all the implementations of monitors which we have surveyed are limited

to a narrow class of security properties, namely safety properties, and on a simple

enforcement mechanism based on truncation. A greater range of security properties

can be enforced if the monitor could rely on a static analysis of the target program. In

the next chapter, we propose a new method to inline a truncation monitor into a target

program in order to enforce non-safety properties.



Chapter 3

Generating In-Line Monitors Based

on Static Analysis

3.1 Introduction

As was discussed in the previous chapter, studies on security policy enforcement mech-

anisms show that an a priori knowledge of the target program’s behavior increases the

power of these mechanisms [11, 40]. However, most practical implementations of moni-

tors do not take advantage of this possibility and restrict themselves to enforcing safety

properties. Furthermore the needed abstraction is often already available, and is used

to minimize the runtime overhead incurred by the property monitoring process.

In this chapter, we present an approach to generate a safe instrumented program,

from a security policy and an untrusted program in which the monitor draws on an a

priori knowledge of the program’s possible behavior. The policy is stated as a deter-

ministic Rabin automaton, a model which can recognize the same class of languages as

non deterministic Büchi automata [65].

In our framework a program execution may be of infinite length, representing the

executions of programs such as daemons or servers. Finite executions are made infinite

by attaching at their end an infinite repetition of a void action. The use of Rabin

automaton is motivated by the need for determinism in order to simplify our method

and the associated proofs.

Our approach draws on advances in discrete events system control by [67] and on
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related subsequent research by Langar and Mejri [50] and consists in combining two

models via the automata product operator: a model representing the system’s behavior

and another one representing the property to be enforced. In our approach, the model

representing the system’s behavior is represented by a LTS and the property to be

enforced is stated as a Rabin automaton. The LTS representing the program could be

built directly from the control flow graph after a control flow analysis [1, 14].

To sum up, our approach either returns an instrumented program, modeled as a

labeled transition system, which provably respects the input security policy or termi-

nates with an error message. While the latter case sometimes occurs, it is important to

stress that this will never occur if the desired property is a safety property which can

be enforced using existing approaches. Our approach is thus strictly more expressive.

The rest of this chapter is organized as follows. In Section 2, we define some concepts

that are used throughout the chapter. The elaborated method is presented in Section 3.

In Section 4, we discuss the theoretical underpinnings of our method. Some concluding

remarks are finally drawn in Section 5 together with an outline of possible future work.

The research has been accomplished in collaboration with H. Chabot [21], and the

results have been presented at the 14th Nordic Conference on Secure IT Systems and

published in the conference’s proceedings [22] and have been accepted for publication

in a forthcoming edition of the journal Computers & Security [23].

3.2 Preliminaries

Before moving on, let us briefly review some preliminary definitions.

We express the desired security property as a Rabin automaton.

Definition 3.2.1. A Rabin automaton R, over alphabet Σ is a tuple (Q, q0, δ, C) such

that

• Σ is a finite or countably infinite set of symbols;

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• δ : Q× A→ Q is a transition function;



Chapter 3. Generating In-Line Monitors Based on Static Analysis 51

• C = {(Lj , Uj)|j ∈ J} is the acceptance set. It is a set of couples (Lj , Uj) where

Lj ⊆ Q and Uj ⊆ Q for all j ∈ J and J ⊆ N.

Let R stand for a Rabin automaton defined over alphabet Σ. A subset Q′ ⊆ Q is

admissible if and only if there exists a j ∈ J such that Q′ ∩ Lj = ∅ and Q′ ∩ Uj 6= ∅.

We refer to the elements defining an automaton or a model following this formalism:

the set of states Q of automaton R is referred to as R.Q and we leave it as Q when it

is clear in the context.

A path π, is a finite (respectively infinite) sequence of states 〈q1, q2, ..., qn〉 (respec-

tively 〈q1, q2, ...〉) such that there exists a finite (respectively infinite) sequence of sym-

bols a1, a2, ..., an (respectively a1, a2, ...) called the label of π such that δ(qi, ai) = qi+1

for all i ∈ {0, ..., n} (respectively i ≥ 0). In fact, a path is a sequence of states consisting

of a possible run of the automaton, and the label of this path is the input sequence that

generates this run. A path is said to be empty if its label is the empty sequence ε.

Let set(π) denote the set of states visited by the path π. The first state of π is

called the origin of π. If π is finite, the last state it visits is called its end; otherwise, if

it is infinite, we write inf (π) for the set of states that are visited infinitely often in π.

A path π is initial if and only if its origin is q0, the initial state of the automaton, and

it is final if and only if it is infinite and inf (π) is admissible.

A path is successful if and only if it is both initial and final. A sequence is accepted

by a Rabin automaton iff it is the label of a successful path.

The set of all accepted sequences of R is the language recognized by R, noted LR.

Let q ∈ Q be a state of R. We say that q is reachable iff there exists an initial

path (possibly the empty path) that visits q. We say that q is co-reachable iff it is the

origin of a final path.

Recall from Section 2.2 that executions are modeled as sequences of atomic actions

taken from a finite or countably infinite set of actions Σ. The empty sequence is noted

ε, the set of all finite length sequences is noted Σ∗, that of all infinite length sequences

is noted Σω, and the set of all possible sequences is noted Σ∞= Σω ∪ Σ∗. Let τ ∈ Σ∗

and σ ∈ Σ∞ be two sequences of actions. We write τ ; σ for the concatenation of τ and

σ. We say that τ is a prefix of σ noted τ � σ iff τ ∈ Σ∗ and there exists a sequence σ′

such that τ ; σ′ = σ.
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Let a ∈ Σ be an action symbol. A state q′ ∈ Q is an a−successor of q if δ(q, a) = q′.

Furthermore, a state q′ is a successor of q if there exists a symbol a such that δ(q, a) = q′.

Let π = 〈q1, q2, ..., qn〉 be a finite path in R. This path is a cycle if q1 = qn. The

cycle π is admissible iff set(π) is admissible. It is reachable iff there is a state q in

set(π) such that q is reachable, and likewise, it is co-reachable iff there is a state q in

set(π) such that q is co-reachable.

1

2

3 4 5

b

b aend

b
a

a
aend

b

a

C = {({3}, {4}), (∅, {5})}

Figure 3.1: A Rabin Automaton with acceptance Condition C

Let us consider Figure 3.1. It represents a Rabin automaton. In this figure, all

the states are reachable and co-reachable. The paths 〈3, 4, 3, 4, 3〉, 〈3, 4, 3〉 and 〈2, 2〉

are inadmissible cycles, while 〈5, 5〉 is an admissible cycle and both infinite paths

〈1, 2, 3, 4, 5, 5, . . .〉 and 〈1, 2, 3, 4, 3, 4, 4, . . .〉 are initial and final and therefore both are

successful.

3.3 Method

In this section we explain our approach and illustrate it with an example. The main

algorithm takes as input a Rabin automaton R, which represents a security Policy P̂

and a labeled transition system (LTS) M, which models a program. The algorithm

either returns a model of an instrumented program that enforces P̂ on M or returns

an error message. The latter case occurs when it is not possible to produce an instru-

mented program that both enforces the desired security property and generates all valid

sequences ofM.

Following [30, 40, 53], we consider that an enforcement mechanism successfully

enforces the property if the two following conditions are satisfied. First, the enforcement

mechanism must be transparent, meaning that all possible program executions that

respect the property must be emitted, i.e. the enforcement mechanism cannot prevent

the execution of a sequence satisfying the property. Second, the enforcement mechanism
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must be sound, meaning that it must ensure that all observable outputs respects the

property. We revisit and expand these ideas in Sections 3.3.3 and 3.4. We illustrate

each step of our approach using an example program and a security policy.

3.3.1 Property Encoding

As mentioned earlier, the desired security property is stated as a Rabin automaton.

The security property P̂ to which we seek to conform the target program is modeled

by the Rabin automaton in Figure 3.1, over the alphabet Σ ∪ {aend} with Σ = {a, b}.

The symbol aend is a special token added to Σ to capture the end of a finite sequence,

since the Rabin automaton only accepts infinite length sequences. Any finite sequence

σ which we desire to include in the security property is thus modeled as σ; (aend)
ω. The

language accepted by this automaton is the set of executions that contains only a finite

non-empty number of a actions and such that finite executions end with a b action.

For the sake of simplicity, if a sequence σ = τ ; (aend)
ω with τ ∈ Σ∗ is such that P̂(σ)

we say that P̂(τ).

3.3.2 Program Abstraction

The program is abstracted as a labeled transition system (LTS). This is a conservative

abstraction, widely used in model checking and static analysis, in which a program

is abstracted as a graph, whose nodes represent program points, and whose edges are

labeled with instructions (or abstractions of instructions, or actions).

Definition 3.3.1. A labeled transition system M, over alphabet Σ is a deterministic

graph (Q, q0, δ) such that:

• Σ is a finite or countably infinite set of actions;

• Q is a finite set of states;

• q0 is the initial state;

• δ : Q × Σ → Q is a transition function. For each q ∈ Q, there must be at least

one a ∈ Σ for which δ(q, a) is defined.
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Here also a finite sequence σ ∈ Σ∗ is extended with the suffix (aend)
ω yielding the

infinite sequence σ; (aend)
ω.

In general, static analysis tools do not always generate deterministic LTSs. Yet,

this restriction can be imposed with no loss of generality. Indeed, a non-deterministic

LTS M over alphabet Σ can be represented by an equivalent deterministic LTS M′

over alphabet Σ × N, which is equivalent toM (in the sense that it accepts the same

language) if we ignore the numbers i ∈ N associated with the actions. Each occurrence

of an action a is associated with a unique index in N so as to distinguish it from

other occurrences of the same action a. In what follows, we can thus consider only

deterministic LTSs. Furthermore, we focus exclusively on infinite length executions.

The example program that we use to illustrate our approach is modeled by the LTS

in Figure 3.2, over the alphabet Σ. The issue consisting of how to abstract a program

into a LTS is beyond the scope of this study.

1

2 3

4 5

6 7

b a

{a, b}a

a

b a

b a

b

Figure 3.2: Example- Labeled transition system

As with the Rabin Automata, we define a path π as a finite or infinite sequence of

states 〈q1, q2, . . .〉 such that there exists a corresponding sequence of actions (a1, a2 . . .)

called the label of π, for which the δ(qi, ai) = qi+1 for i ≥ 1.

The set of all labels of infinite paths starting in q0 is the language generated or

emitted byM and is noted LM. This set includes all possible executions of the program.

More precisely it represents a superset of all possible executions since the analysis that

constructs an LTS from a program is conservative and some of the paths thus do not

represent actual possible executions.
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3.3.3 Algorithm

In this section, we give a brief overview of our algorithm, which is detailed in Appendix

A.1. The algorithm’s input consists of the program modelM and a Rabin automaton

R which encodes the property. The output is a instrumented program behaving in

the same manner as the original program monitored by a truncation automaton T

representing a model of an inlined monitored program acting exactly identically to the

input program for all the executions satisfying the property and halting a bad execution

after producing a valid prefix of this execution.

A high level description of the algorithm is as follows:

1. Build a product automaton RP whose recognized language is exactly : LRP =

LR ∩ LM.

2. Build RT from RP by the application of a transformation allowing it to accept

partial executions of the program modeled byM that satisfy the property P̂ .

3. Check if RT could be used as a truncation automaton and produce a LTS T

modeling the program instrumented by a truncation mechanism otherwise pro-

duce error.

The following sections give more details on each step.

Automata Product

The first phase of the transformation is to construct RP , a Rabin automaton that

accepts the intersection of the language accepted by the automaton R and the language

emitted byM. This is exactly the product of these two automata. Thus RP accepts

the set of executions that both respect the property and represent executions of the

target program.

Given a property automatonR = (R.Q,R.q0,R.δ,R.C) and a LTSM = (M.Q,M.q0,M.δ)

the automaton RP is constructed as follows:

• RP .Q = R.Q×M.Q

• RP .q0 = (R.q0,M.q0)
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• ∀q ∈ R.Q, q′ ∈M.Q ∧ a ∈ (Σ ∪ {aend})

RP .δ((q, q′), a) =





(R.δ(q, a),M.δ(q′, a)) if R.δ(q, a) andM.δ(q′, a)

are defined

undefined otherwise

• RP .C =
⋃

(L,U)∈R.C{(L×M.Q, U ×M.Q)}

The automaton built for our example using the property in Figure 3.1 and the program

model presented in Figure 3.2 is given in Figure 3.3. Note that only reachable states

are shown in the Figures and listed in the acceptance condition.

(1, 1)

(3, 2) (4, 2)

(2, 4) (3, 5) (4, 5)

b

ba

b

b

a
b

a

(3, 3)

(2, 6) (3, 7) (4, 6)

a

b

a
b

a

C = {( {(3, 2), (3, 3), (3, 5), (3, 7)},
{(4, 2), (4, 5), (4, 6)} )}

Figure 3.3: Example - Rabin automaton RP

SinceRP accepts the intersection of the languages accepted by the automatonR and

M, it would seem an ideal abstraction from which to build the instrumented program.

However, there is no known way to transform such an automaton into a program.

Indeed, since the acceptance condition of the Rabin automaton is built around the

notion of infinite traces reaching some states infinitely often, a dynamic monitoring

system built from such an automaton with no help provided by a prior static analysis,

may never be able to determine if a given execution is valid or not.
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Instead, we extract a deterministic automaton, T = (T .Q, T .q0, T .δ), from the Ra-

bin automaton RP . This automaton is the labeled transition system which is returned.

It forms in turn the basis of the instrumented program we seek to construct. The

instrumented program is expected to work as a program monitored by a truncation

automaton meaning that its model T has to satisfy the following conditions: (1) T

emits each execution ofM satisfying the security property without any modification,

(2) for each execution that does not satisfy the property, T safely halts it after produc-

ing a valid partial execution, and (3) T does not emit anything else apart from those

executions described in (1) and (2).

The next step toward this goal is to apply a transformation that allows RP to accept

partial executions of M which satisfy the property. Indeed, all finite initial paths in

RP represent partial executions ofM, only some of them satisfy the security property.

We add a transition, labeled ahalt, to a new state h to every state in RP where the

execution could be aborted after producing a partial execution satisfying the property,

i.e. a state (q1, q2) for which R.δ(q1, aend) is defined. The state h is made admissible by

adding the transition (h, ahalt, h) to the set of transitions and the pair (∅, {h}) to the

acceptance set. We have to be careful in choosing h and ahalt so that h 6∈ R.Q ∪M.Q

and ahalt 6∈ Σ the alphabet of actions.

We refer to this updated version of RP as RT , built from RP as follows :

• RT .Q = RP .Q ∪ {h}

• RT .q0 = R
P .q0

• RT .δ = RP .δ ∪ {(q, ahalt, h)|R
P .δ(q, aend) is defined }∪ {(h, ahalt, h)}.

• RT .C = RP .C ∪ {(∅, {h})}

After this transformation, our example product automaton becomes the automaton

depicted in Figure 3.4. The halt state h has been duplicated three times in order to

avoid cross edging.
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(1, 1)

(3, 2) (4, 2)

(2, 4) (3, 5) (4, 5)

(2, 6) (3, 7) (4, 6)

b

ba

b

b

a

b

a

b

a

b

(3, 3)a

a

h

h

h

ahalt

ahalt

ahalt

ahalt

ahalt

ahalt

C ={({(3, 2), (3, 3), (3, 5), (3, 7)},
{(4, 2), (4, 5), (4, 6)}),(∅, {h})}

Figure 3.4: Transformed Product Automaton

The language recognized by RT is

LRT = (LR ∩LM) ∪ {τ ; (ahalt)
ω|(τ ∈ Σ∗)∧ (∃σ ∈ LM : τ � σ)∧ (τ ; (aend)

ω ∈ LR)}.

Extracting a Model of the Instrumented Program

The next phase consists in extracting, if possible, a labeled transition system T =

(Q, q0, δ), from the Rabin automaton RT . This automaton is expected to behave as the

original program monitored by a truncation automaton, as define din section 2.4.

To understand the need for this step, first note that the acceptance condition of a

Rabin automaton could not be checked dynamically due to its infinite nature. Should we

build an instrumented program directly from RT , by ignoring its acceptance condition,

and treating it like a simple LTS, the resulting program would still generate all traces

ofM that verify the property P̂ but it would also generate the invalid sequences ofM

representing labels of infinite paths in RT trapped in non admissible cycles. In other

words, the enforcement of the property would be transparent but not sound.
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In order to generate T , we pruneRT of some of its states and transitions, eliminating

inadmissible cycles while taking care to preserve the ability to generate all the valid

sequences of LM. Furthermore, we need to ascertain that T aborts the execution of

every sequence of LM not satisfying P̂ and that T generates only executions satisfying

P̂.

We can now restate the correctness requirements of our approach. In the formulation

of these requirements, the actions aend and ahalt are ignored, as they merely model the

end of a finite sequence.

(∀σ ∈ LM| : (∃τ ∈ LT | : (τ 4 σ) ∧ P̂(τ) ∧ (P̂(σ) =⇒ (τ = σ)))) (3.3.1)

∀τ ∈ LT | : ((∃σ ∈ LM| : ((τ = σ) ∨ (τ 4 σ))) ∧ P̂(τ) (3.3.2)

Note that the requirements 3.3.1 and 3.3.2 are not only sufficient to ensure the

respect of soundness and transparency requirements introduced at the beginning of

Section 3.3 following [30, 40, 53], but also that of a more restrictive requirement. In-

deed, requirement 3.3.1 also states that the mechanism is a truncation mechanism. It

ensures the compliance to the security property by aborting the execution before a se-

curity violation occurs whenever this is needed. We can thus prove that for any invalid

sequence present in the original model, the instrumented program outputs a valid prefix

of that sequence.

Our enforcement mechanism is not allowed to generate sequences that are not related

to sequences in LM either by equality or prefix relation. Furthermore these sequences

must satisfy P̂ . This is stated in requirement 3.3.2.

Requirements 3.3.1 and 3.3.2 give the guidelines for constructing T from RT . The

transformations that are performed on RT to ensure meeting these requirements are

elaborated around the following intuition. The automaton RT has to be pruned so as

to ensure that it represents a safety property even though R is not. Note that this is

not possible in the general case without violating the requirements. The idea is that

admissible cycles are visited infinitely often by executions satisfying P̂ and must thus

be included in T . Likewise, any other state or transition that can reach an admissible

cycle may be part of such an execution and must be included. On the other hand,

inadmissible cycles cannot be included in T as the property is violated by any trace

that goes through such a cycle infinitely often. In some cases their elimination cannot

occur without the loss of transparency and our approach fails, returning error. The

underlying idea of the subsequent manipulation is thus to check whether we can trimRT
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by removing bad cycles but without also removing the states and transitions required

to ensure transparency.

The following steps show how we perform the trim procedure.

The next step is to determine the strongly connected components (scc) in the graph

representing RT using Tarjan’s algorithm [77]. We then examine each scc and mark

it as containing either only admissible cycles, only inadmissible cycles, both types of

cycles, or no cycles (in the trivial case).

The next step is to construct the quotient graph ofRT in which each node represents

a scc and an edge connecting two scc c1 and c2 indicates that there exists a state q1 in

scc c1 and a state q2 in scc c2 and an action a such that RT .δ(q1, a) = q2. We assume,

without loss of generality, that all the scc states are reachable from the initial node, the

scc containing q0.

The nodes of the quotient graph RT are then visited in reverse topological ordering.

We determine for each one whether it should be kept intact, altered or removed.

In what follows the scc containing the halting state h is referred to as H .

A scc with no cycle at all is removed with its incident edges if it cannot reach another

scc. In Figure 3.4 the scc consisting of the state (3, 3) is thus eliminated.

A scc containing only admissible cycles should be kept, since all the executions

reaching it satisfy P̂ . Eliminating it would prevent the enforcement mechanism from

being transparent. In our example in Figure 3.4 the scc consisting of the single state

(4, 2) has only admissible cycles and should be kept.

A scc containing only non admissible cycles can be removed if it cannot reach another

scc with admissible cycles. Otherwise, we are generally forced to return error. However,

in some cases, we can either break the inadmissible cycles or prevent them from reaching

H by removing some transitions and keeping the remainder of the scc. This occurs when

the only successor, having admissible cycles, of this scc is H . In our example, the scc

containing the states (3, 7) and (4, 6) has only non admissible cycles and H is its only

successor. We can eliminate this scc and halt with error at this point. Yet, if we

observe that eliminating the transition ((4, 6), a, (3, 7)) would break the inadmissible

cycle, we can eliminate that transition and keep the rest of the scc.

A transition can only be removed if its origin has h as immediate successor. This is
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because, should the instrumented program attempt to perform the action that corre-

sponds to this transition, its execution would be aborted. However, a partial execution

only satisfies the property if it ends in a state that has h as an immediate successor.

A scc containing admissible and non admissible cycles may cause good or bad be-

havior. Actually, an execution reaching this scc may be trapped in an inadmissible

cycle forever or may leave it to reach an admissible cycle thus satisfying the property

P̂. We have no means to dynamically check whether the execution is going to leave a

cycle or not. Thus, in this example, it is not possible to enforce the desired property on

this program and the application of the algorithm yields error. In the example given in

Figure 3.4 the scc consisting of the two states (3, 5) and (4, 5) has one admissible cycle,

〈(4, 5), (4, 5)〉 and one inadmissible cycle 〈(3, 5), (4, 5), (3, 5)〉. This last cycle is visited

if the invalid sequence (ba)ω is generated. Note that the automaton accepts an infinite

number of valid traces of the form ba(ba)∗bω, and that no truncation automaton can

both accept these traces and reject the invalid trace described above. Hence we have

to abort the algorithm with error in such cases.

After removing all the scc with inadmissible cycles and provided the algorithm did

not abort, we can be sure that an instrumented program built from T would not contain

any infinite length execution which does not respect the security property. We must

still verify that whenever the execution is halted, the partial sequence emitted satisfies

P̂.

The last step is to check whether the eliminated states and transitions could not

allow invalid partial executions to be emitted. This verification is based on the follow-

ing observation: if a removed transition has an origin state that is not an immediate

predecessor of h this would then allow to emit a partial execution that does not sat-

isfy P̂ . Hence, the verification merely consists in checking whether we have removed

transitions from states that are not immediate predecessors of h; if such is the case we

have to abort with error. More precisely, for a state q = (q1, q2) in T we have to check

whether it is possible from q2 in M to perform actions that are not possible from q;

if this is the case, q must have h as immediate successor; otherwise, we have no other

option than to terminate the algorithm without returning a suitable LTS and with an

error message.

We may also remove the transitions of the form (h, ahalt, h) and (q, aend, q), where

q ∈ RT .Q.
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3.3.4 Additional Example

Throughout this section, we have illustrated each step of our approach with an example

that was carefully crafted to highlight some of the behavior our algorithm may encounter

when in-lining a monitor into a target program. As some aspects of the behavior lead

to the rejection of the target program, we were unable to show, using this example, the

final result of our approach. We thus introduce in this section another example in which

the approach succeeds and returns a model of an instrumented program that verifies

the property. The most striking feature of this example is the fact that the property

being enforced is not a safety property and, as such, cannot possibly be enforced under

existing implementations on formal in-line monitoring frameworks.

q0

{voidi|i ∈ N}

q1

{voidi|i ∈ N}

qhalt aend

aend

{openi|i ∈ N}

{closei|i ∈ N}

C = {(∅, {q0, qhalt})}

Figure 3.5: Example 2, Rabin automaton

This security property is modeled by the automaton in Figure 3.5, over the alphabet

Σ = {open, close, void}. This automaton captures a plausible security requirement for

a program that accesses a database, namely that:

• The program can open no more that one connection to the database at any given

time.

• The program only closes a connection to the database if it has already been

opened.

• Any connection that is opened is eventually closed. This last requirement adds a

liveness component to the desired security property.

Note that the first two actions from Σ model the operation of opening and closing the

database, while the last is used as a stand in for other program actions that have no

bearing on the satisfaction of the security property.
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1 3 5

8

11 12

aend

void2

void10

open7close8

close11

open4

void5

Figure 3.6: Example 2, LTS

Figure 3.6 shows a LTS which approximates the behavior of the program whose

execution we wish to monitor. This program could be a remote agent who accesses

a database, performs some computations locally and returns a result. The subscripts

added to the atomic actions serve only to avoid the presence of non-determinism in

the model (each action is associated with a distinct program instruction), and has no

bearing on the satisfaction of the security predicate.

The transformed product automaton RT of Example 2 is depicted in Figure 3.7.

(q0, 1) (q0, 3)

(q0, 11)

(q1, 3)

(q1, 5)

(q1, 8)

void2

void10

open4

open7
void5

close8

h ahalt

ahalt
ahalt

ahalt

'

&

$

%

A

�
�

�
�
NC

�
�

�
�
NC

�
�

�
�
NC �

�
�
�
A

C = {(∅, {(q0, 1), (q0, 3), (q0, 11)}), (∅, {h})}

Figure 3.7: Example 2, Transformed product automaton

In Figure 3.7, the strongly connected components are shown and annotated with
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either Ameaning all the component’s cycles are admissible, NC meaning the component

has no cycles and N meaning all the cycles of the component are inadmissible.

(q0, 1) (q0, 3)

(q0, 11)

(q1, 8)

void2

void10

open7close8

h

ahalt
ahalt

ahalt

Figure 3.8: Example 2, Truncation automaton

We omit the intermediate steps performed by the algorithm, since they have al-

ready been discussed throughout the last section using the preceding example. More

relevant is the result returned by our approach in this case, namely a LTS that could

be transformed into a provably secure program. This LTS is presented in Figure 3.8.

3.4 Mechanism’s Enforcement power

In this section, we show that nonuniform enforcement mechanisms, which occur when

the set of possible executions S is a subset of Aω, are more powerful than uniform

enforcers, i.e. those for which S = Aω, in the sense that they are able to enforce a

larger class of security properties. This demonstration will reveal that monitors that

are tailored to specific programs may be able to enforce a wide set of properties and

argues for the use of static analysis in conjunction with monitoring.

Let us begin with a more formal definition of the concepts we discussed in the

previous sections. Intuitively, we can think of security enforcement mechanisms as

sequence transformers, automata that take a program’s actions sequence as input, and

outputs a new sequence of actions that respects the security property. This intuition is

formalized as follows:

Definition 3.4.1 (Transformation, from [11]). A security automaton M = (Q, q0, δ)

transforms an execution trace σ ∈ Σ∞ into an execution τ ∈ Σ∞, noted (q0, σ)⇓Mτ , if
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and only if

∀q′ ∈ Q, σ′ ∈ Σ∞, τ ′ ∈ Σ∗ |: ((q0, σ)
τ ′

=⇒M(q′, σ′)) =⇒ τ ′ 4 τ (3.4.1)

∀τ ′ 4 τ |: ∃q′ ∈ Q, σ′ ∈ Σ∞ |: (q0, σ)
τ ′

=⇒M(q′, σ′) (3.4.2)

We can now state formally what it means for an enforcement mechanism to effec-

tively enforce a security property

Definition 3.4.2 (effectiveS∼= Enforcement, from [11]). Let S ⊆ Σ∞ be a set of execution

traces and let ∼= be an equivalence relation between executions. A security automaton

M = (Q, q0, δ) enforces effectively∼= a security property P̂ for S if and only if for all

input trace σ ∈ S there exists an output trace τ ∈ Σ∞ such that

(q0, σ)⇓Mτ (3.4.3)

P̂(τ) (3.4.4)

P̂(σ) =⇒ σ ∼= τ (3.4.5)

Informally, a security automaton enforces effectively∼= a property for S iff for each

execution trace σ ∈ S, it outputs a trace τ such that τ is valid, with respect to the

property, and if the input trace σ is itself valid then σ ∼= τ .

Definition 3.4.3 (MS
∼=-enforceable). Let S ⊆ Σ∞ be a set of execution traces andM be

a type of security automata. The classMS
∼=-enforceable is the set of security properties

for which there exists a security automaton inM that effectively∼= enforces this property

for the traces in S.

Our approach is built around the idea, first suggested by Ligatti et al. in [11, 53],

that the set of properties enforceable by a monitor could sometimes be extended if the

monitor has some knowledge of the program’s possible behavior and thus can rule out

some executions as impossible.

We can now state this idea more formally.

Theorem 3.4.4. Let M be a class of security automata and let S\,S] ⊆ Σ∞ be two

sets of execution traces S\ ⊆ S] then we have

MS]

∼= -enforceable ⊆MS\

∼= -enforceable (3.4.6)



Chapter 3. Generating In-Line Monitors Based on Static Analysis 66

The proof is quite straightforward, and based upon the intuition that a security

mechanism possessing certain knowledge about its target may discard it, and then

behave as an enforcement mechanisms lacking this knowledge.

Proof. Let S\,S] ⊆ Σ∞ be two sets of execution traces such that S\ ⊆ S] and P̂ be a

MS]

∼= -enforceable security property.

P̂ ∈ MS]

∼= -enforceable

⇐⇒ 〈 Definition 3.4.2 and 3.4.3 〉


∃M = (Q, q0, δ) ∈M :



∀σ ∈ S] :


∃τ ∈ Σ∞

(q0, σ)⇓Mτ

: ∧ P̂(τ)

∧
(
P̂(σ) =⇒ σ ∼= τ

)










=⇒ 〈 Domain weakening (S\ ⊆ S]) 〉


∃M = (Q, q0, δ) ∈M :



∀σ ∈ S\ :


∃τ ∈ Σ∞

(q0, σ)⇓Mτ

: ∧ P̂(τ)

∧
(
P̂(σ) =⇒ σ ∼= τ

)










⇐⇒ 〈 Definition 3.4.2 and 3.4.3 〉

P̂ ∈ MS\

∼= -enforceable

Corollary 3.4.5. LetM be a class of security automaton. For all execution trace set

S ⊆ Σ∞ we have

MΣ∞

∼= -enforceable ⊆MS
∼=-enforceable (3.4.7)

Corollary 3.4.5 indicates that any security property that is effectively∼= enforceable

by a security automaton in a uniform context (S = Σ∞) is also enforceable in the

nonuniform context (S 6= Σ∞). It follows that our approach is at least as powerful as

those previously suggested in the literature.

It would be interesting to prove that for all security automaton classes, M, for all

S⊂Σ∞ and for all equivalence relations ∼=, we haveMΣ∞

∼= -enforceable ⊂MS
∼=-enforceable.
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This is unfortunately not the case, as there exists at least one class of security au-

tomaton (ex. M = ∅), and one equivalence relation (ex. τ ∼= σ ∀τ, σ ∈ Σ∞ ) such

thatMΣ∞

∼= -enforceable =MS
∼=-enforceable for all sets of traces S ⊆ Σ∞. However in our

approach, we focus both on a specific class of security automata and on a specific equiv-

alence relation. In our particular case, the set of policies enforceable in a nonuniform

context is strictly greater than the one that is enforceable in the uniform context.

The monitors used in this study are truncation automata, first described in [69].

These are monitors which, when presented with a potentially invalid sequence, have no

option but to abort the execution.

The following theorem gives a characterization of the properties that can be effectively∼=
enforced in a nonuniform context.

Theorem 3.4.6. Let S ⊆ Σ∞ be a set of execution sequences. A property P̂ is T
S
∼=-

enforceable iff there exists a decidable predicate D over Σ∗ such that

(∀σ ∈ S | ¬P̂(σ) : (∃σ′ 4 σ |:D(σ′))) (3.4.8)

(∀τ ; a ∈ Σ∗ |D(τ ; a) : P̂(τ) ∧ (∀σ ∈ S | σ < τ ; a ∧ P̂(σ) :σ ∼= τ)) (3.4.9)

¬D(ε) (3.4.10)

Proof. (if direction)

Let S ⊆ Σ∞ be a set of execution sequences, let P̂ be a property, ∼= an equivalence

relation over the execution sequences and D be a decidable predicate over Σ∗ which

satisfies the conditions (3.4.8), (3.4.9) and (3.4.10). We can construct a truncation

automaton T which effectively∼=enforces P̂ over S.

Let T = (Q, q0, δ) be a truncation automaton such that

• Q = Σ∗;

• q0 = ε;

• For all σ ∈ Σ∗, a ∈ Σ

δ(σ, a) =




σ; a if ¬D(σ; a)

halt else

Since Σ∗ is a countably infinite set, so is Q. Furthermore, δ is fully defined and

computable since D is decidable.
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The automaton T satisfies the following invariant I(q) : for any reachable state q = σ,

the execution sequence σ has been emitted so far, (q0, σ)⇓Tσ and (∀σ′ 4 σ |:¬D(σ′)).

Informally, if the automaton T is in state q = σ, it did not halt before reaching this

state and has emitted exactly the execution sequence σ. T obviously satisfies the I(q0)

since q0 = ε, (q0, ε)⇓T ε and ¬D(ε). An induction on the length of the execution trace

shows that I(q) is satisfied for any reachable state q = σ.

Let σ ∈ S be an input sequence. We show that T effectively∼= enforces P̂ over S by

showing that T satisfies conditions (3.4.3), (3.4.4) and (3.4.5) for σ.

• if ¬P̂(σ)

By condition (3.4.8) we have that (∃σ′ 4 σ |:D(σ′)). Thus, by invariant I, T must

halt if its input sequence is σ, and must do so before reaching the state σ′. Let τ

be the last state which T reaches when its input is σ. By I and definition 3.4.1 we

have that (q0, σ)⇓T τ . Thus condition (3.4.3) is satisfied. Let a ∈ Σ be an action

such that τ ; a 4 σ. Since τ is the last state T reaches when σ is input and by the

definition of T we have that δ(τ, a) = halt and thus that D(τ ; a). Furthermore, by

condition (3.4.9) we have that P̂(τ). It follows that condition (3.4.4) is satisfied.

Since ¬P̂(σ), condition (3.4.5) is satisfied.

• if P̂(σ)

– if T does not halt on input σ

then T emits all and every prefix of σ. By definition 3.4.1 we have (q0, σ)⇓Tσ.

Thus, condition (3.4.3) is satisfied. Since P̂(σ) ∼= is reflexive, conditions

(3.4.4) and (3.4.5) are also satisfied.

– if T halts on input σ

Let τbe the last state T reaches when its input is σ. By I and definition 3.4.1

we have that (q0, σ)⇓T τ . Thus, la condition (3.4.3) is satisfied. Let a ∈ Σ

be an action such that τ ; a 4 σ. Since τ is the last state T reaches when

σ is input and by the definition of T we have that δ(τ, a) = halt and thus

that D(τ ; a). By condition (3.4.9) we have P̂(τ) and since P̂(σ) we have that

σ ∼= τ . Thus conditions (3.4.4) and (3.4.5) are satisfied.

(elseif direction)

Let S ⊆ Σ∞ be a set of execution sequences and let P̂ be a property, ∼= an equivalence

relation over the execution sequences and T = (Q, q0, δ) be a truncation automaton

which effectively∼= enforces P̂ over S. We construct a decidable D over Σ∗ such that

the conditions (3.4.8), (3.4.9) and (3.4.10) are satisfied.
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This predicate is built in the following manner :

• D(ε) is false.

• For all σ ∈ Σ∗, a ∈ Σ we have that D(σ; a) is true iff automaton T emits exactly

σ when the input sequence is σ; a.

Since δ is fully defined and computable, and D is only defined over Σ∗ we can

conclude that D is also fully defined and decidable.

The definition of D, implies that condition (3.4.10) is satisfied.

Furthermore, since T effectively∼= enforces P̂ over S, if it outputs σ the input se-

quence is σ; a, then, by condition (3.4.4) we have that P̂(σ). Also, by condition (3.4.5)

the fact that T halts before emitting any sequence τ ∈ S such that τ < σ; a, we have

that condition (3.4.9) is satisfied.

Finally, let σ ∈ S be an input trace such that ¬P̂(σ) and assume that (∀σ′ 4

σ |:¬D(σ′)) as to obtain a contradiction. By the definition of D, automaton T cannot

halt on any prefix of σ, and must thus necessarily output all its prefixes. Yet by

definition 3.4.1 we have that (q0, σ)⇓Tσ.

This is a contradiction since T cannot effectively∼= enforce P̂ over S if there exists

an input trace σ ∈ S such that (q0, σ)⇓Tσ and ¬P̂(σ). It follows that condition (3.4.8)

is satisfied.

Finally, since we also restrict ourselves in this study to the use of syntactic equiva-

lence (=) as the equivalence relation between valid traces, we give a characterization of

the security properties effectively= enforceable by a truncation automaton, in a nonuni-

form context.

Corollary 3.4.7. Let S ⊆ Σ∞ be a set of execution sequences. A property P̂ is T
S
=-

enforceable iff there exists a decidable predicate D over Σ∗ such that

(∀σ ∈ S | ¬P̂(σ) : (∃σ′ 4 σ |:D(σ′))) (3.4.11)

(∀τ ; a ∈ Σ∗ |D(τ ; a) : P̂(τ) ∧ (∀σ ∈ S | σ < τ ; a :¬P̂(σ))) (3.4.12)

¬D(ε) (3.4.13)
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Proof. Let S ⊆ Σ∞ be a set of execution sequences and let P̂ be a security property

such that P̂ ∈ T
S
=-enforceable.

P̂ ∈ T
S
=-enforceable

⇐⇒ 〈 Theorem 3.4.6 〉

∃D

(∀σ ∈ S | ¬P̂(σ) : (∃σ′ 4 σ |:D(σ′)))

: ∧ (∀τ ; a ∈ Σ∗ |D(τ ; a) : P̂(τ) ∧ (∀σ ∈ S | σ < τ ; a ∧ P̂(σ) : σ = τ))

∧ ¬D(ε)




⇐⇒ 〈 Transfer 〉

∃D

(∀σ ∈ S | ¬P̂(σ) : (∃σ′ 4 σ |:D(σ′)))

: ∧ (∀τ ; a ∈ Σ∗ |D(τ ; a) : P̂(τ) ∧ (∀σ ∈ S | σ < τ ; a : P̂(σ) =⇒ σ = τ))

∧ ¬D(ε)




⇐⇒ 〈 σ < τ ; a =⇒ σ � τ =⇒ σ 6= τ and (p =⇒ false)⇐⇒ (¬p) 〉

∃D

(∀σ ∈ S | ¬P̂(σ) : (∃σ′ 4 σ |:D(σ′)))

: ∧ (∀τ ; a ∈ Σ∗ |D(τ ; a) : P̂(τ) ∧ (∀σ ∈ S | σ < τ ; a :¬P̂(σ)))

∧ ¬D(ε)




The intuition behind the above proof is simply to apply conditions given in theorem

3.4.6 in a context where S is equal to Σ∞.

We can now state the central theorem of this chapter, that the enforcement power

of the truncation automaton is strictly greater in the nonuniform context than in the

uniform context, when we consider =-enforcement.

Theorem 3.4.8. For all set of traces S ⊂ Σ∞ we have

T
Σ∞

= -enforceable ⊂ T
S
=-enforceable (3.4.14)

Proof. The proof is based on the following observations. First, it has been shown in

[11, 69] that a property is TΣ∞

= -enforceable iff it is a safety property. Second, let P̂ be

a security property, P̂ is trivially enforceable on S iff for every sequence σ ∈ S, P̂(σ).



Chapter 3. Generating In-Line Monitors Based on Static Analysis 71

Let T = (Q, q0, δ) be a truncation automaton such that for every sequence σ ∈ Σ∞

we have (q0, σ)⇓Tσ. It is easy to see that this automaton trivially enforces over the set

S any trivially enforceable property over this same set. The remainder of this proof

consists in showing that there exist some properties which are trivially enforceable over

S but are not reasonable, safety and decidable.

Let υ ∈ Σ∞ be an execution sequence such that υ /∈ S and let P̂ be the security

property stating that for any sequence σ ∈ Σ∞ we have

P̂(σ)⇐⇒ (σ 6= υ)

This property is T
S
=-enforceable, and the following automaton, T = (Q, q0, δ) with

δ(q0, a) = q0 for all actions a ∈ Σ effectively enforces it over Σ .

We show that P̂ /∈ T
Σ∞

= -enforceable by contradiction. Were it the case that P̂∈

T
Σ∞

= -enforceable there would necessarily be a decidable predicate as defined in Corollary

3.4.7. However, such a predicate cannot for the property P̂.

Assume that P̂ ∈ T
Σ∞

= -enforceable, by definition, there exists a predicate D over Σ∗

such that conditions (3.4.11), (3.4.12) et (3.4.13) are satisfied.

P̂ ∈ T
Σ∞

= -enforceable

⇐⇒ 〈 Corrolairy (3.4.7) and definition of P̂ 〉

(∃D |:

(∀σ ∈ Σ∞ | σ = υ : (∃σ′ 4 σ |:D(σ′)))

∧ (∀τ ; a ∈ Σ∗ |D(τ ; a) : τ 6= υ ∧ (∀σ ∈ Σ∞ | σ < τ ; a : σ = υ))

∧ ¬D(ε)

)

=⇒ 〈 Axiom of choice on the first ∀. τ ; a < τ ; a, τ ; a; a < τ ; a and domain

weakening on the third ∀ 〉

(∃D |:

(∃σ′ 4 υ |:D(σ′))

∧ (∀τ ; a ∈ Σ∗ |D(τ ; a) : τ 6= υ ∧ τ ; a = υ ∧ τ ; a; a = υ)

∧ ¬D(ε)

)

=⇒ 〈 Definition of 4 and domain Weakening on the second ∃. Contradiction

and transfer for ∀ 〉

(∃D |:

(∃σ′ ∈ Σ∗ |:D(σ′))

∧ (∀τ ; a ∈ Σ∗ |:D(τ ; a) =⇒ false)

∧ ¬D(ε)

)

⇐⇒ 〈 Renaming. p =⇒ false⇐⇒ ¬p 〉

(∃D |: (∃σ ∈ Σ∗ |:D(σ)) ∧ (∀τ ; a ∈ Σ∗ |:¬D(τ ; a)) ∧ ¬D(ε))
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⇐⇒ 〈 Domain Splitting 〉

(∃D |: (∃σ ∈ Σ∗ |:D(σ)) ∧ (∀σ ∈ Σ∗ |:¬D(σ)))

⇐⇒ 〈 Contradiction and (∃x |R : false)⇐⇒ false 〉

false

Having determined that the set of monitorable properties is indeed increased by

relying on static analysis to narrow the set of possible executions, one would naturally

wonder if this improvement occurs monotonously, i.e. if every time a sequence υ is

removed from a set S, a new property is added to the set of TS
=-enforceable properties.

This would be desirable, as it would imply that any effort made to perform or refine a

static analysis of the target program would payoff in the form of an increase in the set

of enforceable properties.

Unfortunately, this does not bear out, and there are cases where reducing the size of

the set of possible sequences does not result in any advantage. As a counter-example,

consider a simple system that can only perform two sequences, each containing only one

action, either a or b, or output nothing, thus S = {ε, a, b}. Further, let S ′ = {ε, a}. We

can limit our analysis to properties that differ only with respect to the sequences present

in S. Eight such sequence sets exist. Because the set of possible properties is finite,

it is tractable to examine each of them and determine that w.r.t. the criteria given

in theorem 3.4.6, the sets of properties enforceable by each is indeed the same. The

details of this analysis are given in table 3.1. Each line represents a different property,

and each column a set of possible execution sequences. We write X to indicate that the

property is truncation enforceable for a given set S or S ′ and X if the property is not

enforceable. As can be shown from this table, in each case, either the property is in

both T
S′

= -enforceable and T
S
=-enforceable or it is in neither set. For example, a property

containing all three sequences, ε, a and b is trivially enforceable in both cases, since

every possible sequence is valid. Properties for which P̂∩S = {ε, a}, P̂∩S = {ε, b}

or P̂∩S = {ε} are safety properties (for a monitor for which only the sequences in S

are possible) and are also enforceable in both cases. However, if the empty sequence

ε is disallowed, a truncation-based mechanism cannot enforce the property since some

sequences have no valid prefixes.

In order to increase the set of enforceable properties, at least one of the following

three conditions must be met.

Theorem 3.4.9. (Constraining S) Let S ⊂ S ′ ⊆ Σ∞, TS′

= -enforceable ⊂ T
S
=-enforceable
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T
S′

= -enforceable T
S
=-enforceable

P̂∩S = {ε, a, b} X X

P̂∩S = {ε, a} X X

P̂∩S = {ε, b} X X

P̂∩S = {a, b} X X

P̂∩S = {ε} X X

P̂∩S = {a} X X

P̂∩S = {b} X X

P̂∩S = ∅ X X

Table 3.1: Enforceable properties when S = {ε, a, b} and S ′ = {ε, a}

iff at least one of the three following conditions are met:

1. ∃υ ∈ S ′\S : ∃τ � υ : τ 6= ε ∧ ∃υ′ � τ : υ′ ∈ S ′ ∧ υ 6= υ′

2. ε /∈ S

3. ∃υ ∈ S ′\S : there does not exist a decidable function f : S ′ × B s.t.∀τ ∈ S :

f(τ0) = true if τ = υ and false otherwise.

Informally, theorem 3.4.9 states that the set of enforceable properties is increased in

three cases. First, if there exits a sequence υ, removed from the set of possible sequences

S ′ which has a prefix that is both different from ε and has an extension in S ′ other

than υ. Second, if the set of possible sequences does not contain the empty sequence

ε. Finally, if a sequence υ has been removed for which there does not exist a decidable

predicate with which can the monitor, at the onset of the execution, determine that the

ongoing execution is υ. The intuition of the proof is to exhibit in each case an example

of a property that is not in T
S′

= -enforceable but is in T
S
=-enforceable. In the first two

cases, this occurs because there is an invalid sequence with no valid prefix on which the

execution can be aborted. In the latter case, it is because the monitor cannot discover

in time that the ongoing execution is indeed invalid.

Proof. (if direction) We show that in each of the cases given above, at least one property

is in T
S
=-enforceable but not in T

S′

= -enforceable.

1. ∃υ ∈ S ′\S : ∃τ � υ : τ 6= ε ∧ ∃υ′ � τ : υ′ ∈ S ′ ∧ υ 6= υ′
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There are three cases to consider :

case υ ≺ υ′: Let P̂(σ) ⇔ (σ = ε ∨ σ = υ′). This property is not in T
S′

= -

enforceable since the valid sequence υ′ has an invalid prefix in S ′. The prop-

erty is enforceable over S by an automaton which aborts the every execution

on ε, the only valid sequences in S.

case υ′ ≺ υ : Likewise, in this case, the property P̂(σ)⇔ (σ = ε ∨ σ = υ) is not

in T
S′

= -enforceable, but is TS
=-enforceable.

case υ′ � υ ∨ υ � υ′ : Let υ′′ be the smallest sequence in S ′\S s.t. υ′′ � τ ∧υ′′ �

υ′. Let P̂ be the property P̂(σ) ⇔ (σ � τ ∧ σ � υ′′). This property is

not in T
S′

= -enforceable since the monitor cannot abort on any prefix of υ′′

without losing either transparency or correctness. The property is trivially

enforceable over TS
=-enforceable.

2. ε /∈ S

There are two cases to consider :

case ∃υ′ ∈ S : υ′ ≺ υ: As was the case above, the property P̂(σ) ⇔ (σ = ε ∨ υ)

is not in T
S′

= -enforceable, but is TS
=-enforceable.

case ¬∃υ′ ∈ S : υ′ ≺ υ: Let P̂(σ) ⇔ (σ � υ). This property is not in T
S′

= -

enforceable since sequence υ has no valid prefix. The property is trivially

T
S
=-enforceable.

3. ∀υ ∈ S ′\S : there exists a decidable functionf : S ′ × B s.t.∀τ ∈ S : f(τ0) =

true if τ = υ and false otherwise.

Let P̂ be defined such that P̂(σ) ⇔ (σ � υ ∨ σ = ε). Let the input sequence

be υ. Assume further that none of the two cases mentioned above apply. If

the function described above does not exist, then the monitor cannot recognize

on the first action of the sequence that the input is invalid. Since ε is the only

valid sequence prefix of the input, the monitor has no detector to indicate when

the abort the execution, and thus cannot enforce the property. This property is

trivially enforceable over S.

(elseif direction)

We show that the set of TS′

= -enforceable properties = T
S
=-enforceable properties if the

following three conditions are met
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1. ∀υ ∈ S ′\S : ∀τ � υ : τ 6= ε⇒ ∃υ′ � τ : υ′ ∈ S ′ ∧ υ 6= υ′

2. ε ∈ S

3. ∀υ ∈ S ′\S : there exists a decidable functionf : S ′ × B s.t.∀τ ∈ S : f(τ0) =

true if τ = υ and false otherwise.

Let P̂ be a property in T
S
=-enforceable. By definition, there exists a decidable pred-

icate D over the sequences of S meeting the requirements of theorem 3.4.6. For all

σ ∈ S ′, a ∈ Σ, υ ∈ S ′\S, we define the predicate D? as follows

D?(τ ; a) =





D(τ ; a), if it is defined ;

true, if¬P̂(f(τ ; a))

false otherwise

The intuition behind the proof is to show that for any property that is TS
=-enforceable,

we can exhibit a decidable predicate over Σ∗ meeting the criteria given in Theorem 3.4.6,

thus rendering the property T
S′

= -enforceable. First, observe that any property T
S
=-

enforceable is necessarily reasonable since ε ∈ S. Condition 3 above ensures that a

decidable predicate exists which can halt the execution on some prefix of any sequence

υ ∈ S ′\S, and since, P̂(ε), this prefix is valid. Furthermore, from condition one, we

have that ε cannot be prefix of any sequence other than υ. Finally, observe that it

must be possible to detect from the onset that the current execution is a prefix of

υ, since otherwise, a property for which υ has no valid prefix other than ε would be

T
S
=-enforceable but not TS′

= -enforceable.

P̂ ∈ T
S
=-enforceable

⇐⇒ 〈 Theorem 3.4.6 〉

∃D

(∀σ ∈ S | ¬P̂(σ) : (∃σ′ 4 σ |:D(σ′)))

: ∧ (∀τ ; a ∈ Σ∗ |D(τ ; a) : P̂(τ) ∧ (∀σ ∈ S | σ < τ ; a ∧ P̂(σ) : σ = τ))

∧ ¬D(ε)




⇐⇒ 〈 from cond. 3, ∀σ ∈ S ′\S : ∃σ′ � σ : D?(σ′) 〉

∃D

(∀σ ∈ S ′ | ¬P̂(σ) : (∃σ′ 4 σ |:D(σ′)))

: ∧ (∀τ ; a ∈ Σ∗ |D(τ ; a) : P̂(τ) ∧ (∀σ ∈ S | σ < τ ; a ∧ P̂(σ) : σ = τ))

∧ ¬D(ε)




⇐⇒ 〈 since ε ∈ S, ∀P̂ ∈ T
S
=-enforceable we have that P̂(ε) and from cond.1

and the definition of D? we have that D?(σ)⇒6= ∃σ′ � σ : P̂(σ′) 〉
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∃D

(∀σ ∈ S ′ | ¬P̂(σ) : (∃σ′ 4 σ |:D(σ′)))

: ∧ (∀τ ; a ∈ Σ∗ |D(τ ; a) : P̂(τ) ∧ (∀σ ∈ S ′ | σ < τ ; a ∧ P̂(σ) : σ = τ))

∧ ¬D(ε)




⇐⇒ 〈 Theorem 3.4.6 〉

P̂ ∈ T
S′

= -enforceable

3.4.1 Complexity

A distinctive aspect of the method under consideration is that unlike other code instru-

mentation methods, ours induces no added runtime overhead. However, the size of the

instrumented program is increased in the order O(m × n), where m is the size of the

original program and n is the size of the property. The worst case would occur if every

program instruction modifies the state of the security automaton, a situation which is

arguably unlikely. The instrumentation algorithm itself runs in time O(p× c), where p

is the size of the automaton’s acceptance condition and c is the number of cycles in the

product automaton. In practice, graphs that abstract programs have a comparatively

small number of cycles.

3.5 Conclusion and Future Work

The main contribution of this chapter is the elaboration of a method aiming at in-lining

a security enforcement mechanism in an untrusted program. The security property to

be enforced is expressed by a Rabin automaton and the program is modeled by a

LTS. The inlined monitoring mechanism is actually a truncation mechanism allowing

valid executions to run normally while halting bad executions before they violate the

property.

In our approach, the monitor’s enforcement power is extended by giving it access

to statically gathered information about the program’s possible behavior. This allows

us to enforce non-safety properties for some programs. Nevertheless, several cases still

exist where our approach fails to find a suitable instrumented code. These are cases

where an execution may alternate between satisfying the property or not and could halt
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in an invalid state, or cases where an invalid execution contains no valid prefixes where

the execution could be aborted without also ruling out some valid executions.

Another contribution of this chapter is to provide a proof that a truncation mecha-

nism that effectively enforces a security property under the equality as an equivalence

relation is strictly more powerful in a non uniform context than in a uniform one.

Giving the monitor more varied means to alter the execution could allow us to

ensure the satisfaction of the security property in at least some cases where doing so

is currently not feasible. For example, the monitor could suppress a sub-sequence of

the program, and keep it under observation until it has determined that the program

actually satisfies the property and output it all at once. Alternatively, the monitor could

be allowed to insert some actions at the end of an invalid sequence in order to guarantee

that the sequence is aborted in a valid state. Such monitors are suggested in [11], their

use would extend this approach to a more powerful framework. Another question

that remains open is to determine how often the algorithm will succeed in finding a

suitable instrumented code when tested on real programs. We are currently developing

an implementation to investigate this question further and hope to gain insights as to

which of the above suggested extensions would provide the greatest increase in the set

of enforceable properties.



Chapter 4

Monitoring With Equivalence

Relations

4.1 Introduction

In the last chapter, we proposed a new method to inline a monitor into an untrusted

program to produce a new version of this program which provably respects a security

property. Any valid execution present in the original program is also present in the

instrumented program, while invalid executions are truncated to a valid prefix. Other

implementations can be more transformative. For instance, in [63], runtime test are

added to both valid and invalid executions. It is thus necessary to ensure that the

transformed execution remains equivalent to the original one, despite the transforma-

tions performed by the monitor.

The question of identifying the set of properties enforceable by monitors able to

transform invalid executions was raised several times in the literature [11, 40, 54, 69].

While these studies observe that this ability considerably extends the monitor’s en-

forcement power, they do not provide a more specific characterization of the set of

enforceable properties w.r.t equivalence relations other than syntactic equality. This

results from the lack of a framework constraining the ability of a monitor to transform

its input. This point is concisely explained by Ligatti et. al. in [54]. “A major difficulty

with semantic equivalence is its generality: for any reasonable property P̂ there exists

a sufficiently helpful equivalence relation that enables a security automaton to enforce

P̂”.
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Indeed, the authors go on to note that if all valid sequences can be thought of as

being equivalent to one another, any security policy can be enforced simply by always

outputting an arbitrarily chosen valid sequence. This strictly meets the definition of

enforcement but does not provide a meaningful enforcement of the desired policy.

This problem is compounded by the fact that the definition of effective∼= enforcement

does not place any restriction on the output of the monitor when the observed sequence

does not respect the property, as long as this output is itself valid. This means that once

the monitor determines that a sequence is irremediably invalid, it can ignore the target

program’s behavior and output anything, even if this output is completely unrelated

to the observed execution. Once again, such a behavior would fit the definition of

enforcement, but would not provide a useful enforcement of the desired policy, where one

would prefer that an invalid sequence be corrected in a more systematic or predictable

manner.

This point was also raised in the literature, in [18] Bielova et al. write: “What

distinguishes an enforcement mechanism is not what happens when traces are good,

because nothing should happen! The interesting part is how precisely bad traces are

converted into good ones.”.

For example, consider a system managing online purchases, and a security policy

forbidding a user from browsing certain merchandize without prepaying. A monitor

could abort the execution as soon as this is attempted. But the property would also

be enforced by replacing the input sequence with any sequence of actions respecting

the policy, even if it contains purchases unrequested by any users, or by outputting

nothing, depriving legitimate users of the ability to use the system.

In this chapter, we suggest a framework to study the enforcement power of monitors

capable of transforming their input. The key insight behind our work is to state certain

criteria which must be met for an equivalence relation to be useful in monitoring.

We then give two examples of such equivalence relations, and show which security

properties are enforceable with their use. The research presented in this chapter has

been presented at the Fifth International Conference Mathematical Methods, Models,

and Architectures for Computer Networks Security, and published in the conference’s

proceedings [42].

Intuitively, this enforcement parading models a behavior that is closer to that which

would be encountered in practice, in which the actions taken by the monitor are con-

strained by a limitation that certain elements present in the original sequence be pre-

served. In this chapter, we give two examples of such equivalence relations, and show
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which security properties are enforceable with their use.

The contributions of this chapter are as follows: first, we develop a framework of

enforcement, termed corrective∼=, enforcement to reason about the enforcement power

of monitors bounded to produce an output which is semantically equivalent to their

input with respect to some equivalence relation ∼=. We suggest two possible examples

of such relations and give the set of enforceable security policies as well as examples of

real policies for each. Finally, we show that the set of enforceable properties defined

in [54] for effective enforcement can be considered as special cases of our more general

framework.

The remainder of this chapter is organized as follows. In Section 2, we define some

concepts and notations that are used throughout the chapter. In Section 3, we show

under what conditions equivalence relations can be used to transform sequences and

ensure the satisfaction of the security policy. The set of security policies that can be

enforced in this manner is examined in Section 4. In Section 5, we give two examples

of possible equivalence relations and show that they can serve as the basis for the en-

forcement of meaningful security properties. In section 6, we investigate how an a priori

knowledge of the target program’s behavior would increase the monitor’s enforcement

power. In section 7, we discuss some limitations of our framework. Concluding remarks

and avenues for future work are laid out in Section 8.

4.2 Preliminaries

The notation used to describe and manipulate executions, properties and systems is

the same was used in previous chapters.

A multiset, or bag [73] is a generalization of a set in which each element may occur

multiple times. A multiset A can be formally defined as a pair 〈A, f〉 where A is a set

and f : A → N is a function indicating the number of occurrences of each element of

A in A. Note that a 6∈ A ⇔ f(a) = 0. Thus, by using this insight, to define basic

operations on multisets one can consider a universal set A and different functions of type

A → N associated with it to form different multisets. Given two multisets A = 〈A, f〉

and B = 〈A, g〉, the multiset union A ∪ B = 〈A, h〉 where ∀a ∈ A : h(a) = f(a) + g(a).

Furthermore, A ⊆ B ⇔ ∀a ∈ A : f(a) ≤ g(a). The removal of an element a ∈ A from

multiset A is done by updating function f so that f(a) = max(f(a)− 1, 0).

• the multiset intersection A ∩ B = 〈A, h〉 where ∀a ∈ A : h(a) = min(f(a), g(a)),
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• the multiset removal of B from A, noted A\B = 〈A, h〉 where ∀a ∈ A : h(a) =

max(f(a)− g(a), 0).

Finally, we formalize the set of transactional properties, suggested in [54], which

will be of use in Section 4.5. A transactional property is one where any valid sequence

consists of a concatenation of valid finite transactions. Such properties can model, for

example, the behavior of systems which repeatedly interact with clients using a well-

defined protocol, such as a system managing the allocation of resource or the access to

a database. Let Σ be an action set and T ⊆ Σ∗ be a set of finite transactions, P̂T is a

transactional property over set T iff

∀σ ∈ Σ∞ : P̂T (σ)⇔ σ ∈ T ∞ (transactional)

This definition is subtly different, and indeed forms a subset of the set of iterative

properties defined in [18]. Transactional properties also form a subset of the set of

Renewal properties, and include some but not all safety properties, liveness properties

as well as properties which are neither safety nor liveness.

4.3 Monitoring with Equivalence Relations

The idea of using equivalence relations to transform execution sequences was first sug-

gested in [40]. The equivalence relations are restricted to those that are consistent with

the security policy under consideration. Let P̂ be a security policy, the consistency

criterion for an equivalence relation ∼= is given as:

∀σ, σ′ ∈ Σ∞ : σ ∼= σ′ ⇒ P̂(σ)⇔ P̂(σ′). (consistency)

Yet, upon closer examination, this criterion seems too restrictive for our purposes.

If any two equivalent sequences always meet this criterion, an invalid prefix can never

be made valid by replacing it with another equivalent one. It is thus impossible to

“correct” an invalid prefix and output it.

It is still necessary to impose some restrictions on equivalence relations and their re-

lation to properties. Otherwise, as discussed above, any property would be enforceable,

but not always in a meaningful manner.

In this study, we suggest the following alternative framework.
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Following previous work in monitoring by Fong [36], we use an abstraction function

F : Σ∗ → I, to capture the property of the input sequence which the monitor must

preserve throughout its manipulation. The set I can be any abstraction of the program’s

behavior. Fong focuses on shallow (unordered) history of the execution and makes use

of this abstraction to reduce the overhead of the monitor. In the following sections,

we suggest other abstractions and show how they can be used as the basis for our

equivalence relations. Such abstractions can capture any property of relevance. This

may be, for example, the presence of certain subwords or factors or any other semantic

property of interest. We expect the property to be consistent with this abstraction

rather than with the equivalence relation itself. Formally:

F(σ) = F(σ′)⇒ P̂(σ)⇔ P̂(σ′) (4.3.1)

We wish to use the abstraction to restrict the possible behavior of the monitor. To

this end, we let ≤ stand for some partial order over the values of I. We define v as the

partial order defined as ∀σ, σ′ ∈ Σ∗ : σ v σ′ ⇔ F(σ) ≤ F(σ′). We equivalently write

σ′ w σ and σ v σ′.

The transformation performed by the monitor on a given sequence τ produces a

new sequence τ ′ s.t. τ ′ v τ . To ease the monitor’s task in finding such a suitable

replacement, we impose the following two constraints on the equivalence relations used

in monitoring.

First, if two sequences are equivalent, any intermediary sequence over v is also

equivalent to them.

σ v σ′ v σ′′ ∧ σ ∼= σ′′ ⇒ σ ∼= σ′ (4.3.2)

Second, two sequences cannot be equivalent if they do not share a common greatest

lower bound. Conversely, the greatest lower bound of two equivalent sequences is also

equivalent to them. These last two criteria are stated together as:

∀σ, σ′ ∈ Σ∗ : σ ∼= σ′ ⇒ ∃τ ∈ Σ∗ : τ = (σ u σ′) ∧ τ ∼= σ (4.3.3)

where (σ u σ′) = τ s.t. τ v σ ∧ τ v σ′ ∧ ¬∃τ ′ w τ : τ ′ v σ ∧ τ ′ v σ′

The intuition behind the above two restrictions is that, if an equivalence relation

meets these two criteria, a monitor looking for a valid sequence equivalent to an invalid

input simply has to iteratively perform a certain transformation until such a sequence

is found or until every equivalent sequence has been examined.

We define our equivalence relations over finite sequences first. Two infinite sequences

are equivalent iff they have infinitely many valid equivalent prefixes.
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Let ∼= be an equivalence relation over the sequences of Σ∗

∀σ, σ′ ∈ Σω : σ ∼= σ′ ⇔ ∀τ ≺ σ : ∃υ � τ : ∃τ ′ ≺ σ′ : υ ∼= τ ′ (4.3.4)

It is easy to see that an equivalence between infinite sequence not meeting this criterion

would be of no use to a monitor, which is bound to transform its input in finite time.

Finally, we impose the following closure restriction:

τ ∼= τ ′ ⇒ τ ; σ ∼= τ ′; σ (4.3.5)

This may, at first sight, seem like an extremely restrictive condition to be imposed but

in fact every meaningful relation that we examined has this property.

Furthermore, no security property can be enforced using an equivalence relation

lacking this property. Consider for example what would happen if a monitor is presented

with an invalid prefix τ of an input sequence for which there exists a valid equivalent

sequence τ ′. It would be natural for the monitor to transform τ into τ ′. Yet it would

also be possible that the full original sequence σ � τ be actually valid, but that there

exists no equivalent sequence for which τ ′ is a prefix.

In fact, v organizes the sequences according to some semantic framework, using

values given by an abstraction function F , P̂ establishes that only certain values of F

are valid or that a certain threshold must be reached, while ∼= groups the sequences if

their abstractions are equivalent. In Section 4.5, we give examples that show how the

framework described in this section can be used to model desirable security properties

of programs and meaningful equivalence relations between their executions.

4.4 Corrective Enforcement

In this section, we present the automata-based model used to study the enforcement

mechanism, and give a more formal definition of our notion of enforcement. We begin

by reviewing some definitions we previously gave in Chapter 2, to better illustrate the

novelty of our approach.

Recall that the edit automaton [11, 54] is the most general model of a monitor. It

captures the behavior of a monitor capable of inserting or suppressing any action, as

well as halting the execution in progress.

Definition 4.4.1. An edit automaton is a tuple 〈Σ, Q, q0, δ〉 where
1:

1This definition, taken from [76], is equivalent to the one given in [11].



Chapter 4. Monitoring With Equivalence Relations 84

• Σ is a finite or countably infinite set of actions;

• Q is a finite or countably infinite set of states;

• q0 ∈ Q is the initial state;

• δ : (Q×Σ)→ (Q×Σ∞) is the transition function, which, given the current state

and input action, specifies the automaton’s output and successor state. At any

step, the automaton may accept the action and output it intact, suppress it and

move on to the next action, outputting nothing, or output some other sequence

in Σ∞. If at a given state the transition for a given action is undefined, the

automaton aborts.

Let A be an edit automaton, we let A(σ) be the output of A when its input is σ.

Most studies on this topic have focused on effective enforcement. A mechanism

effectively enforces a security property iff it respects the two following principles, from

[11]:

1. Soundness : All output must respect the desired property.

2. Transparency : The semantics of executions that already respect the property

must be preserved. This naturally requires the use of an equivalence relation,

stating when one sequence can be substituted for another.

Definition 4.4.2. Let A be an edit automaton. A effectively∼= enforces the property P̂

iff ∀σ ∈ Σ∞

1. P̂(A(σ)) (i.e. A(σ) is valid)

2. P̂(σ)⇒ A(σ) ∼= σ

The above definition is equivalent to the one given in Chapter 2.

In the literature, the only equivalence relation ∼= for which the set of effectively∼=
enforceable properties has been formally studied is syntactic equality[11]. Yet, effective

enforcement is only one paradigm of enforcement that has been suggested.

In this study, we introduce a new paradigm of security property enforcement, termed

corrective∼= enforcement. An enforcement mechanism correctively∼= enforces the desired

property if every output sequence is both valid and equivalent to the input sequence.
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This captures the intuition that the monitor is both required to output a valid sequence,

and forbidden from altering the semantics of the input sequence. Indeed, it is not always

reasonable to accept, as do preceding studies of monitor’s enforcement power, that the

monitor is allowed to replace an invalid execution with any valid sequence, even ε. A

more intuitive model of the desired behavior of a monitor would rather require that only

minimal alterations be made to an invalid sequence, for instance by releasing a resource

or adding an entry in a log. Those parts of the input sequence that are valid, should

be preserved in the output, while invalid behaviors should be corrected or removed.

It is precisely these corrective behaviors that we seek to model using our equivalence

relations. The enforcement paradigm thus ensures that the output is always valid, and

that all valid behavior intended by the user in the input, is present in the monitor’s

output.

Definition 4.4.3. Let A be an edit automaton and let ∼= be an equivalence relation

satisfying 4.3.2- 5.2.2. A correctively∼= enforces the property P̂ iff ∀σ ∈ Σ∞

1. P̂(A(σ))

2. A(σ) ∼= σ

A monitor can correctively∼= enforce a property iff for every possible sequence there

exists an equivalent valid sequence which is either finite or has infinitely many valid

prefixes, and the transformation into this sequence is decidable. We write enforceable∼=
for the set of properties which are correctively∼= enforceable.

Theorem 4. A property P̂ is correctively∼= enforceable iff

1. ∃P̂ ′ : P̂ ′ ⊆ P̂ ∧ P̂ ′ ⊆ Renewal

2. P̂ is reasonable

3. There exists a decidable function γ : Σ∞ → P̂ ′ : ∀σ ∈ Σ∞ : γ(σ) ∼= σ.

4. ∀σ′ � σ : γ(σ′) � γ(σ)

Proof. (if direction) By construction of the following automaton.

A = 〈Σ, Q, q0, δ〉 where

• Q = Σ∗, the sequence of actions seen so far.
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• q0 = ε

• The transition function δ is given as δ(σ, a) = (σ; a, γ(σ; a))

Note that from Condition 3 of Theorem 4 we have that γ(σ; a) is always defined,

and from condition 4 that it takes the recursive form described above.

The automaton maintains the following invariants INV(q): At state q = σ, γ(σ) has

been output so far, this output is valid and equivalent to σ.

The invariant holds initially, as by definition, ε is valid and equivalent to itself. An

induction can then show that the invariant is preserved by the transition relation.

(elseif direction) Let γ(σ) be whatever the automaton outputs on input σ. By

definition, γ is a decidable function. Furthermore, we have that P̂(σ) and A(σ) ∼= σ.

We need to show that the image of γ is a property P̂ ′ included in P̂ and in Renewal.

That the image of γ is a subset of P̂ follows trivially from the assumptions ∀σ ∈

Σ∞ : P̂(A(σ)). Furthermore, were the output not in Renewal, it would include valid

sequences with only finitely many valid prefixes. Yet, since the automaton’s transition

function is restricted to outputing finite valid sequences by the requirement that the

finite input be equivalent to the output and equation 4.3.4 , this is impossible. It follows

that the image of γ is a subset of P̂ and Renewal. It is also easy to see that P̂(ε), since

if it were not the case, a violation would occur even in the absence of any input action.

Finally, since γ is applied recursively to every prefix of the input, it is thus unavoidable

that ∀σ′ � σ : γ(σ′) � γ(σ).

An equivalence relation ∼= over a given set Σ∗ can be seen as a set of pairs (x, y),

with x, y ∈ Σ∗. This allows equivalence relations over the same sets to be compared.

Relation ∼=1 is a refinement of relation ∼=2, noted ∼=1<∼=2 if the set of pairs in ∼=1 is a

strict subset of those in ∼=2.

Theorem 5. Let ∼=1, ∼=2 be two equivalence relations and let enforceable∼= stand for the

set of correctively∼= enforceable properties, then ∼=1<∼=2⇒ enforceable∼=1
⊂ enforceable∼=2

.

Proof. It is easy to see that any property which is correctively∼=1
enforceable is also

correctively∼=2
enforceable, since every pair of sequences that are equivalent w.r.t. ∼=1

are also equivalent w.r.t. ∼=2. The property can thus be correctively∼=2
enforced using

the same transformation function γ as was used in its correctively∼=1
enforcement.
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Let [σ]∼= stand for the set of sequences equivalent to σ with respect to relation ∼=.

By assumption, there is a σ s.t. [σ]∼=1
⊂ [σ]∼=2

. Let P̂ be the property defined s.t.

¬P̂(τ) ⇔ τ ∈ [σ]∼=1
. This property is not correctively∼=1

enforceable as there exists

no valid equivalent sequences which the monitor can output when its input is σ. The

property can be correctively∼=2
enforced by outputting a sequence in [σ]∼=2

\[σ]∼=1
when

the input is σ.

It follows from this theorem that the coarser the equivalence relation used by the

monitor, the greater the set of enforceable∼= properties.

The following lemma is used in the next section to set an upper bound to the set of

enforceable properties with specific equivalence relations.

Lemma 6. Let ∼= be an equivalence relation and P̂ be some correctively∼= enforceable

property. Then, for all P̂ ′ s.t. P̂ ⊆ P̂ ′ we have that P̂ ′ is correctively∼= enforceable.

The monitor has only to simulate its enforcement of P̂ in order to correctively∼=
enforce P̂ ′.

4.5 Equivalence Relations

In this section, we consider two examples of the equivalence relation ∼=, and examine

the set of properties enforceable by each.

4.5.1 Factor equivalence

The first equivalence relation we will consider is factor equivalence, which models the

class of transactional properties introduced in section 4.2. A word τ ∈ Σ∗ is a factor

of a word ω ∈ Σ∞ if ω = υ; τ ; υ′, with υ ∈ Σ∗ and υ′ ∈ Σ∞. Two sequences τ, τ ′

are factor equivalent, w.r.t. a given set of valid factors T ⊆ Σ∗ if they both contain

the same multiset of factors from T . We use a multiset rather than simply comparing

the set of factors from T occurring in each sequence so as to be able to distinguish

between sequences containing a different number of occurrences of the same subset of

factors. This captures the intuition that if certain valid transactions are present in

the input sequence, they must still be present in the output sequence, regardless of

any other transformation made to ensure compliance with the security property. In



Chapter 4. Monitoring With Equivalence Relations 88

this context, the desired behavior of the system can be defined by a multiset of valid

transactions. A valid run of this system consists of a finite or infinite sequence of

well-formed transactions, while an invalid sequence is a sequence containing invalid or

incomplete transactions. One may reasonably consider all sequences exhibiting the same

multiset of valid transactions to be equivalent to each other. Transactional properties

form a subset to the class of Renewal properties which can be effectively= enforced [54].

In [17], Bielova et. al. propose an alternate enforcement paradigm, which allows all

valid transactions to be output. Corrective∼= enforcement can be seen as a generalization

of their work.

Let validT (σ), which stands for the multiset of factors from the sequence σ which are

present in T , be the abstraction function F . The partial order v used to correctively

enforce this property is thus given as ∀σ, σ′ ∈ Σ∞ : σ v σ′ ⇔ validT (σ) ⊆ validT (σ
′).

Intuitively, a sequence is smaller than another on the partial order if it has strictly

fewer transactions. Finally, two sequences σ and σ′ are transaction equivalent w.r.t.

the set of transactions T , noted σ ∼=T σ′ iff they they share the same valid transactions.

Formally, ∀σ, σ′ ∈ Σ∞ : σ ∼=T σ′ ⇔ validT (σ) = validT (σ
′). This equivalence relation

captures the intuition that any valid transaction present in the original sequence must

also be present in the monitor’s output.

For example, let Σ = {open, close, log} be a set of atomic actions and let T =

{open; log; close} be the set containing the only allowed transaction. If the input

sequence is given as σ = log; open; log; close; log; open; close; open; log; close, then

validT (σ) is the multiset containing two instances of the factor open; log; close.

We now turn our attention to the set of properties that are correctively∼=T
enforce-

able. Intuitively, a monitor can enforce this property by first suppressing the execution

until it has seen a factor in T , at which point the factor is output, while any in-

valid transaction is suppressed. This method of enforcement is analogous to the one

described in [17] as delayed all-or-nothing enforcement. Any sequence output in this

manner would preserve all its factors in T , and thus be equivalent to the input sequence,

but is composed of a concatenation of factors from T , and hence is valid.

Let T ⊆ Σ∗ be a set of factors and let P̂T be a transactional property as defined in

section 4.2. Note first that all properties enforceable by this approach are in Renewal,

as they are formed by a concatenation of valid finite sequences. Also, the property

must necessarily be reasonable, (i.e. P̂(ε)) as the monitor will not output anything if

the input sequence does not contain any factors in T . Finally, for the property P̂T to

be correctively∼=T
enforceable in the manner described above, the following restriction,

termed unambiguity must be imposed on T :
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∀σ, σ′ ∈ T : ∀τ ∈ pref (σ) : ∀τ ′ ∈ suf (σ′) : τ 6= ε ∧ τ ′ 6= ε⇒ τ ′; τ /∈ T

(unambiguity)

To understand why this restriction is necessary, consider what would happen in its

absence: it would be possible for the monitor to receive as input a sequence which

can be parsed either as the concatenation of some valid transactions, or as a different

valid transaction bracketed with invalid factors. That is, let σ1; σ2 = τ1; σ3; τ2 be the

monitor’s input, with σ1, σ2, σ3 ∈ T and τ1, τ2 /∈ T . If the monitor interprets the

sequence as a concatenation of the valid transactions σ1 and σ2, then it has to preserve

both factors in its output. However, if it parses the sequence as τ1; σ3; τ2, then it must

output only the equivalence sequence σ3. Since the two sequences are syntactically

identical, the monitor has no information of which to base such a decision.

Theorem 7. A transactional property P̂T is correctively∼=T
enforceable if it is transac-

tional, reasonable, and T is unambiguous.

Proof. From theorem 4, the property P̂ is correctively∼= enforceable iff there exists a

function γ : Σ∞ → P̂ ′, where P̂ ’ is a subset of P̂ and is in Renewal, P̂ is reasonable,

and ∀σ, σ′ � σ ∈ Σ∗ : γ(σ′) � γ(σ) ∧ γ(σ) ∼= σ. We prove this theorem by exhibiting

such a function.

Let γ : Σ∞ → P̂T . We define γ recursively as follows. ∀σ ∈ Σ∞.

γ(σ) =

{
τ ; γ(σ′) if there exists a τ in T : σ = τ ; σ′

γ(σ[2..]) otherwise

It is easy to show that the image of this function is P̂T , as all transactions not in

T are deleted. The image is also in Renewal as T is formed by a concatenation of

finite sequences, and any infinite valid sequence not in Renewal would necessarily have

finitely many valid prefixes. Conversely, the output of γ is ∼=T equivalent to its input

since only factors not in T are removed. From the fact that γ is applied to the input

iteratively we have ∀σ, σ′ ∈ Σ∞ : σ′ � σ : γ(σ′) � γ(σ). Transactional properties are

reasonable by definition.

We have only to refer to lemma 6 in order to state a precise upper bound to the set

of enforceable properties.



Chapter 4. Monitoring With Equivalence Relations 90

Theorem 8. A property P̂ is correctively∼=T
enforceable iff P̂T ⊆ P̂ and T is unam-

biguous.

Proof. (if direction) Follows directly from theorem 7 and lemma 6.

(if direction) We show that every sequence in P̂T must be present in any correctively∼=T

enforceable property by contradiction. Let σ ∈ P̂T be an input sequence such that

¬P̂(σ). The monitor may not enforce the property by removing or adding a transaction

in T to σ, as the output would no longer be equivalent to the input. To understand

why the monitor would be incapable of outputing a valid sequence containing exactly

the same transactions as σ, even if one such sequence exists consider the following.

Let σ′ ∼=T σ ∧ P̂(σ′). Let τ be the longest common prefix of σ and σ′. For it to be

possible that σ′ be both ∈ P̂T and equivalent to σ, there must be at least two sequences

τ ′, τ ′′ ∈ T which are appended to τ in a different order to produce σ and σ′. Without

loss of generality, let τ ′ occur first in σ and second in σ′. Let the input sequence be

the invalid sequence τ ; τ ′;ω where ω is an infinite suffix which does not contain any

valid transactions. After having output τ , the monitor may not output τ ′ as this would

result in an invalid sequence if the following valid transactions in the input occur in the

same order as they do in σ. Yet if it does not output τ ′, the output sequence is not ∼=T

equivalent to the input.

Likewise, let T be not unambiguous. By assumption there exists valid sequences

σ1, σ2, σ3 ∈ T and invalid sequences τ, τ ′ /∈ T s.t. τ ; σ3; τ
′ = σ1; σ2 and σ1, σ2, σ3 are

valid transactions. Let the infinite sequence σ1; υ; σ2; υ; σ1; υ... be the input sequence,

where υ does not contain nay valid transactions (possibly υ = τ or υ = τ ′). There

cannot be a valid equivalent sequence since any concatenation σ1; σ2 also contains the

transaction σ3. Such a property is thus unenforceable.

4.5.2 Prefix Equivalence

In this section, we show that Ligatti et al.’s result from [54], namely that the set

of properties effectively= enforceable by an edit automaton corresponds to the set of

reasonable Renewal properties with a computability restriction added2, can be stated

as a special case of our framework.

2Actually, the authors identified a corner case in which a property that is not in the set described

above. This occurs when the monitor reaches a point where only one valid continuation is possible.

The input can then be ignored and this single continuation is output. We have neglected to discuss

this case here as it adds comparatively little to the range of enforceable properties.
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First, we need to align our definitions of enforcement. Using effective enforcement,

they only require that the monitor’s output be equivalent to its input when the latter

is valid, and while placing no such restriction on the output otherwise. The semantics

of their monitor however, do impose that the output remain a prefix of the input

in all cases, and indeed, that the longest valid prefix always be output [33]. This

characterization can be translated in our formalism by instantiating ∼= to ∼=�

def
= ∀σ, σ′ ∈

Σ∗ : σ ∼=� σ′ ⇔ pref (σ) ∩ P̂ = pref (σ′) ∩ P̂. Using this relation, two sequences are

equivalent, w.r.t. a given property P̂ iff they have the same set of valid prefixes.

Theorem 9. A property P̂ is effectively= enforceable iff it is correctively∼=�
enforceable.

Proof. (if direction) From [54], we have that a property is effectively= enforceable iff

1) P̂(σ)⇒ A(σ) = σ and 2) P̂(A(σ)). Conditions 2 is present in identical form in the

definition of corrective enforcement. For condition 1, we must consider two cases. If

P̂(σ), then it is trivial to show that σ ∼=� A(σ), since both sequences are syntactically

identical. Otherwise, the semantics of the enforcement mechanism described in [54]

ensure that the longest valid prefix is output. It follows that pref (σ)∩P̂ = pref (A(σ))∩

P̂ and from the definition of ∼=�, that σ ∼=� A(σ).

(else if direction) We must show that σ ∼=� A(σ) ∧ P̂(σ) ⇒ A(σ) = σ. It is sufficient

to observe that if a sequence σ is valid, there can exist no σ′ ≺ σ : σ′ ∼=� σ. Since the

enforcement mechanism described above only outputs a sequence that is prefix or equal

to its input we have that σ ∼=� A(σ).

It would be intuitive to instantiate the partial order v to �. Other possibilities can

be considered, which would more closely follow the specific property being enforced.

Theorem 10. A property P̂ is correctively∼=�
enforceable iff it is in Renewal, reasonable

and decidable.

Proof. Immediate from theorem 9 and theorem 3 of [54].

As discussed in [54], this set includes a wide range of properties, including all safety

properties, some liveness properties such as the “eventually audits” properties requiring

that an action eventually be logged, and properties which are neither safety nor live-

ness such as the transactional properties described in section 4.3. Furthermore, if the

behavior of the target system is known to consist only of finite executions, then every

sequence is in Renewal.
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4.6 Nonuniform Enforcement

In this section, we investigate the possibility of extending the set of enforceable prop-

erties by giving the monitor some knowledge of the target program’s possible behavior.

This question was first raised in [69]. In [11], the authors distinguish between the uni-

form context, in which the monitor must consider that every sequence in Σ∞ can occur

during the target program’s execution, from the nonuniform context, in which the set

of possible executions is a subset of Σ∞. They further show that in some case, the set of

properties enforceable in a nonuniform context is greater than that which is enforceable

in a uniform context. Later Chabot et. al. [22] showed that while this result did not

apply to all runtime enforcement paradigms, it did apply to that of truncation-based

monitor. Indeed, they show that in this monitoring context, a monitor operating with

a subset of Σ∞ is always more powerful than one which considers that every sequence

can be output by its target. In the previous chapter, we reviewed their work and gave

the conditions which must be met for it to be possible to extend the set of enforceable

properties by static analysis.

Let S stand for the set of sequences which the monitor considers as possible execu-

tions of the target program. S is necessarily an over approximation, built from static

analysis of the target. We write correctivelyS∼= enforceable, or just enforceableS∼=, to de-

note the set of properties that are correctively∼= enforceable, when only sequences from

S ⊆ Σ∞ are possible executions of the target program. A property is correctivelyS∼=
enforceable iff for every sequence in S, the monitor can return a valid and equivalent

sequence.

Definition 4.6.1. Let A be an edit automaton and let S ⊆ Σ∞ be a subset of execu-

tions. A correctivelyS∼= enforces the property P̂ iff ∀σ ∈ S

1. P̂(A(σ))

2. A(σ) ∼= σ

Theorem 11. A property P̂ is correctivelyS∼= enforceable iff

1. P̂ is Reasonable

2. ∃P̂ ′ ⊆ P̂ : P̂ ′ ∈ Renewal : (∃γ ∈ S → P̂ ′ : (∀σ ∈ S : γ(σ) ∼= σ) ∧ (∀σ, σ′ ∈ S :

σ′ � σ ⇒ γ(σ′) � γ(σ)) ∧ γ is decidable)
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Proof. The proof follows exactly as that of Theorem 4.

Lemma 12. Let S ⊆ Σ∞ and P̂ be a reasonable property P̂ is trivially correctivelyS∼=
enforceable iff S ⊆ P̂. If this is the case, the monitor can enforce the property by always

returning the input sequence.

It would be desirable if the set of enforceable properties increased monotonously

each time a sequence was removed from S. This means that any effort made to per-

form or refine a static analysis of the target program would payoff in the form of an

increase in the set of enforceable properties. This is unfortunately not the case. As a

counterexample, consider the equivalence relation defined as ∀σ, σ′ ∈ Σ∞ : σ ∼= σ′. It

is obvious that any satisfiable property can be trivially enforced in this context, simply

by always outputting any valid sequence, which is necessarily equivalent to the input.

No benefit can then be accrued by restricting S.

There are, of course, some instances where constraining the set S does result in a

increase in the set of correctivelyS∼= enforceable properties. This occurs when invalid

sequences with no valid equivalent are removed from S. Indeed, for any subsets, S,S ′

of Σ∞ s.t. S ⊆ S ′ ∧ S ′\S 6= {ε}, there exists an equivalence relation ∼= for which

enforceableS
′

∼= ⊂ enforceableS∼=.

Theorem 13. Let S ⊂ S ′ ⊆ Σ∞ ∧ S ′\S 6= {ε}. There exists an equivalence relation ∼=

s.t. enforceable∼=S′

⊂ enforceableS∼=.

Proof. Let ∼= be defined s.t. ∃σ ∈ S ′\S : {σ}∩S 6= ∅. Let P̂ be the property defined as

P̂(σ)⇔ (σ /∈ S ∧σ 6= ε). This property is not enforceableS
′

∼= since there exists sequences

in S ′ with no valid equivalent. The property is trivially enforceableS∼=.

A final question of relevance on the topic of nonuniform enforcement is whether

there exists some equivalence relations ∼= for which every reduction of the size of S

monotonously increases the set of properties that are correctivelyS∼= enforceable. In

other words, if there exists some ∼= for which S ⊂ S ′ ⇒ enforceableS
′

∼= ⊂ enforceableS∼=.

Anyone operating under such an equivalence relation would have an added incentive to

invest in static analysis of the target, as he would be guaranteed an increase in the set

of enforceable properties. Unfortunately, it can be shown that this result holds only

when ∼= is syntactic equality and at least one sequence different from ε is removed from

the set of possible sequences.

Theorem 14. (σ ∼= σ′ ⇔ σ = σ′) ⇔ ∀S,S ′ ⊆ Σ∞ : S ⊂ S ′ ∧ S ′\S 6= {ε} :

enforceableS
′

∼= ⊂ enforceableS∼=
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Proof. (if direction)

Let P̂ be defined such that P̂(σ)⇔ (σ /∈ S ′\S). This property cannot be correctivelyS
′

∼=

enforceable since any sequence in S ′\S does not have a valid equivalent. The property

is trivially correctivelyS∼= enforceable.

(else if direction)

By contradiction, let ∼= be different than syntactic equality. This implies there exists

σ, σ′ ∈ S ′ : σ ∼= σ′ ∧ σ 6= σ′. Further, let S ′ = {σ, σ′} and S = {σ}. We show that any

property that is correctivelyS∼= enforceable is also correctivelyS
′

∼= enforceable. There are

five cases to consider. :

• σ, σ′ ∈ P̂ : In this case, the property is always trivially enforceable.

• σ ∈ P̂ ∧ σ′ /∈ P̂: Such a property would be both correctivelyS∼= enforceable and

correctivelyS
′

∼= enforceable by automaton A for which A(τ) = σ for all τ in the

input set.

• σ′ ∈ P̂ ∧ σ /∈ P̂ : Such a property would be both correctivelyS∼= enforceable and

correctivelyS
′

∼= enforceable by automaton A for which A(τ) = σ′ for all τ in the

input set.

• σ, σ′ /∈ P̂ ∧ ∃σ′′ ∼= σ : P̂(σ′′) : Such a property would be both correctivelyS∼=
enforceable and correctivelyS

′

∼= enforceable by automaton A for which A(τ) = σ′′

for all τ in the input set.

• σ, σ′ /∈ P̂ ∧ ¬∃τ ∼= σ : P̂(τ) : This property can neither be correctivelyS∼= enforce-

able nor can it be correctivelyS
′

∼= enforceable since there exists some sequences with

no valid equivalent.

Finally, observe that since only reasonable sequences are enforceable, no possible gain

can be accrued from removing only ε from the set of possible sequences.

4.7 Limitations

Like all monitors, the ones described in this paper are limited by memory and compu-

tational constraints, which we have not taken into account in our analysis. The results

given in theorems 8 and 10 should thus be seen as upper bounds to the set of properties

that are enforceable using the enforcement paradigm proposed here.
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The main limitation of the approach is the difficulty of stating meaningful equiva-

lence relations. This problem is especially acute when the monitor inserts actions into

the input stream, rather then suppressing them or truncating the execution. When this

is the case, an equivalence relation often implies that several distinct valid sequence,

which are possible transformations of an invalid sequences, must be equivalent. Like-

wise, it requires that several invalid sequences be considered equivalent if a single valid

sequence is a valid alternative to both.

For example, consider the possible equivalence relation of a monitor enforcing the

transactional property of section 4.5.1, but by correcting invalid transactions, rather

than simply suppressing them. Whenever this monitor is presented with an invalid

transaction τ , it can complete it by adding whichever actions are necessary to trans-

form this invalid transaction into a valid one. For this to be permissible in a corrective∼=
enforcement framework, the completed valid transaction must be thought of as equiv-

alent to its incomplete factor. The equivalence relation given in 4.5.1 is thus no longer

adequate. If an invalid sequence τ can be extended into two possible valid transactions,

then both of these transactions must be thought of as equivalent. Furthermore, any

other invalid sequence which can be corrected by transforming it into one of these valid

sequences must in turn be thought of as equivalent to τ .

A possible solution to this problem is to replace equivalence relations with partial

orders, thus organizing executions according to a relation which is reflexive, transitive,

but not symmetric. Actually, instead of grouping together sequences whose abstraction

is similar, a partial order organizes them in a gradual manner. In the example of

transactional properties, a sequence with more valid transactions would be higher on

the partial order than one with less such transactions. The transparency requirement

would then be stated by imposing than the output always be higher on the partial order

than the input. Not only would this solve the problem highlighted above but it would

allow us to objectively describe one valid execution as better than another, which in

turn could lead to comparing execution monitors along these lines. We are currently

elaborating such an enforcement framework along these lines.

4.8 Conclusion and Future Work

In this chapter, we propose a framework to analyze the security properties enforceable

by monitors capable of transforming their input. By imposing constraints on the en-

forcement mechanism to the effect that some behaviors existing in the input sequence

must still be present in the output, we are able to model the desired behavior of real-life
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monitors in a more realistic and effective way. We also show that real life properties

are enforceable in this paradigm, and give prefix equivalence and factor equivalence as

possible examples of realistic equivalence relations which could be used in a monitor-

ing context. The set of properties enforceable using these two equivalence relations is

related to previous results in the field.

Future work will focus on other equivalence relations. Two meaningful equivalence

relations which we are currently studying are subword equivalence and permutation

equivalence. The first adequately models the behavior of a monitor that is allowed to

insert actions into the program’s execution, but may not subtract anything from it.

The second models the behavior of a monitor which can reorder the actions performed

by its target, but may not add or remove any of them. An even more general framework

that could be envisioned would be one in which the behavior that the monitor must

preserve is stated in a temporal logic.



Chapter 5

Monitoring With Preorders

5.1 Introduction

As was shown in the previous chapters of this study, monitors form powerful security

policy enforcement paradigm that can allow the enforcement of a wide variety of se-

curity policies. Of particular interest are monitors capable of transforming their input

sequences, rather than simply aborting them, as such monitors have been shown to be

amongst the most powerful. But for this kind of enforcement to be meaningful, con-

straints must be imposed on the monitor’s ability to transform sequences. Otherwise,

the monitor could enforce the property by replacing any execution with an arbitrarily

chosen valid sequence.

In the previous chapter, we proposed to solve this problem by sorting out sequences

into equivalence classes and imposing that the monitor’s output be equivalent to the

original sequence in either some or all cases. In this context, the equivalence relation

represents a semantic property of the original sequence that must be preserved through-

out any transformation performed by the monitor. Although this approach solves the

problem described above, it also limits the monitor’s ability to take certain corrective

actions, since the equivalence between the monitor’s inputs and outputs must be always

maintained. Furthermore, it is often difficult to define a suitable equivalence relation.

In this chapter, we propose a new framework to model the corrective capabilities

of monitors. Our key insight is to organize executions into preorders, rather than

equivalence classes, and impose that an execution be replaced only by a sequence that

is at least as high on the preorder than itself. As we argue in section 5.2, we find

that preorders are a more natural way to model the restrictions we wish to impose
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on the monitor than equivalence relations. We also illustrate our framework with four

examples of real life properties. Finally, since corrective enforcement is sufficiently

flexible to allow several different enforcement alternatives of the same property, we

suggest metrics that allow a user to compare monitors objectively and choose the best

enforcement paradigm for a given situation. The research presented in this chapter has

been presented at the 7th International Workshop on Formal Aspects of Security &

Trust (FAST2010) [41].

The remainder of this chapter is organized as follows. Section 2 reviews the various

notions of enforcement which have been suggested in the literature, and proposes an

alternative enforcement paradigm, based on the notion of preorders. We show how

preorders can form the basis of a corrective monitoring framework, and motivate the

use of such a framework by comparing it to other enforcement paradigms. In Section

3, we give four examples of security properties that can be enforced in this manner and

propose metrics that could be used to compare alternative enforcements of the same

security policy. Concluding remarks and avenues for future work are laid out in Section

4.

5.2 Monitoring with Preorders

This chapter extends the body of research that seeks to study the notion of security

policy enforcement by monitors and to identify the set of properties enforceable by

monitors under various constraints.

Recall that these issues were first investigated by Schneider in [69], who formalized

the notions of monitoring and enforcement. He focused on specific classes of monitors

that observe the execution of a target program with no knowledge of its possible future

behavior and with no ability to affect it, except by aborting the execution. Under these

conditions, a monitor can enforce the class of security policies that are identified in the

literature as safety properties.

In [11], Ligatti, Bauer and Walker show that if this definition of enforcement is

used, the added power of some monitors to transform the executions they monitor (by

inserting or suppressing program actions) does not result in an increase in the set of

enforceable properties. The authors suggest the alternative notion of effective∼= enforce-

ment instead. A monitor effectively∼= enforces a property if any execution respecting

the property is replaced by an equivalent execution, w.r.t. some equivalence relation ∼=.

Subsequently, in [54], the authors delineate the set of properties that are effectively∼=
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enforceable for a specific equivalence relation, syntactic equality. Alternative definitions

of enforcement are given in [17] and [56].

Most previous work in monitoring has focused on effective∼= enforcement. This

definition allows the monitor to replace an invalid execution with any valid sequence,

even ε. A more intuitive model of the desired behavior of a monitor would rather require

that only minimal alterations be made to an invalid sequence, for instance by releasing

a resource or adding an entry in a log. Those parts of the input sequence which are

valid should be preserved in the output, while invalid behaviors should be corrected or

removed. This is the enforcement paradigm which we proposed in the previous chapter,

and which we termed corrective∼= enforcement. Informally, an enforcement mechanism

correctively∼= enforces the desired property if every output sequence is both valid and

equivalent to the input sequence. The equivalence relation used is formulated in such

a way that the valid behavior of the input sequence is preserved.

However, this definition also raises some difficulties. In particular, it implies that

several distinct valid sequences, which are possible transformations of an invalid se-

quences, must be equivalent. Likewise, it requires that several invalid sequences be

considered equivalent if a single valid sequence is a valid alternative to both.

In this chapter, we examine an alternative notion of enforcement, termed correctivev
enforcement. Just as we did in the previous chapter, we use an abstraction function

F : Σ∗ → I, to capture the property of the input sequence that the monitor must

preserve throughout its manipulation. Once again, we use these abstractions as the

basis for determining which transformations the monitor is or is not allowed to perform

on both valid and invalid sequences. The main idea is to use this abstraction to capture

the semantic property of the execution corresponding to the valid, or desired behavior

of the target program. This may be, for example, the number of occurrences of certain

subwords or factors or any other semantic property of interest.

We wish to constrain the behavior of the monitor so that an invalid sequence is

corrected in such a way that the monitor preserves all valid behaviors present in it. An

intuitive solution to this problem would be to impose that the output sequences always

have the same value of F . The abstraction function would thus form the basis of a

partition of the sequences of Σ∞ into equivalence classes. But, as discussed above, this

limits the monitor’s ability to use the same valid sequences as a potential solution to

several unrelated invalid sequences. Instead, we let v be a preorder over sequences of

Σ∗, s.t. ∀σ, σ′ : σ v σ′ ⇔ F(σ) ≤ F(σ′). The monitor is allowed to transform an input

σ into another sequence σ′ iff σ v σ′. By defining v appropriately, we can ensure that

sequences which are greater on the preorder are always adequate replacements for any



Chapter 5. Monitoring With Preorders 100

inferior sequences, in the sense that they preserve the valid behaviors present in those

sequences. The use of preorders also allows us to connect monitoring to refinement

specifications, which are stated using preorders. We also find that partial orders are a

more natural way to state most security policies than equivalence relations. Let τ, τ ′

be two sequences s.t. τ v τ ′, we write that τ is lower than τ ′ or conversely, that τ ′ is

higher than τ .

Formally :

Definition 5.2.1. Let A be an edit automaton and let v be a preorder over the sequences

of Σ∞. A correctivelyv enforces the property P̂ iff ∀σ ∈ Σ∞

1. P̂(A(σ))

2. σ v A(σ)

A monitor often operates in a context in which it knows that certain executions

cannot occur. This is because the monitor can benefit from a static analysis of its

target, that provides it with a model of the target’s possible behavior. Prior research [11]

has shown that a monitor operating in such a context can enforce a significantly larger

range of properties than one that considers every sequence in Σ∞ to be a possible input.

To take into account the possibility that the monitor might operate in a nonuniform

context, we adapt the preceding definition as follows:

Definition 5.2.2. Let S ⊆ Σ∞ be a subset of sequences, let v be a preorder over the

sequences of Σ∞ and let A be an edit automaton. A correctivelySv enforces the property

P̂ iff ∀σ ∈ S

1. P̂(A(σ))

2. σ v A(σ)

We write correctivev enforcement when S = Σ∞ or S is obvious from context.

As was the case in the previous chapter, we define preorders over finite sequences and

two infinite sequences compared by way of their prefixes using the following equation.

∀σ, σ′ ∈ Σω : σ v σ′ ⇔ ∀τ ≺ σ : ∃υ � τ : ∃τ ′ ≺ σ′ : υ v τ ′ (5.2.1)
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Finally, since the monitor operates by transforming sequences, we must impose that

every preorder respects the following closure restriction.

τ v τ ′ ⇒ τ ; σ v τ ′; σ (5.2.2)

To understand the need for this restriction consider the possible behavior of a mon-

itor which is presented with an invalid an invalid prefix τ of a longer input sequence. It

may opt to transform τ into a valid higher sequence τ ′. However, if the cloture restric-

tion given in equation 5.2.2 is not respected by the preorder, then it’s possible that the

full input sequence σ � τ is actually valid, but that there is no valid extension of τ ′

that is greater than σ. The monitor would have inadvertently ruined a valid sequence.

5.3 Examples

In this section, we illustrate the use of correctivev enforcement using four real-life

security properties : transactional properties, the assured pipeline property, the Chinese

wall property and general availability. When several possible monitors can enforce the

same property, we show how these different enforcement paradigms can be compared.

5.3.1 Transactional Properties

The first class of properties we wish to correctivelyv enforce is that of transactional

properties introduced in the previous chapter. Recall that if Σ is an action set and

T ⊆ Σ∗ is a set of finite transactions, P̂T is a transactional property over set Σ∞ iff

∀σ ∈ Σ∞ : P̂T (σ)⇔ σ ∈ T ∞ (transactional)

Transactional properties form a subset of the class of Renewal properties which can

be effectively= enforced [54], in a manner that allows the longest valid prefix to be

output [12]. In [17], Bielova et. al. propose an alternative enforcement paradigm, that

allows all valid transactions to be output. Correctivev enforcement can be seen as a

generalization of their work.

We only consider transactional properties built from a set of sequences T which

meets the unambiguity criterion suggested in the previous chapter.
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As was the case when enforcing this property with equivalence relations, we use an

abstraction function which returns the multiset of factors occurring in a given sequence

rather than simply comparing the set of factors from T occurring in each sequence so as

to be able to distinguish between sequences containing a different number of occurrences

of the same subset of factors. For any two sequences σ and σ′, we write σ v σ′ iff σ′

has more valid factors (w.r.t. T ) than σ, and σ′ is thus an acceptable replacement

sequence for σ, provided that the σ′ is valid and σ is not. This captures the intuition

that if certain valid transactions are present in the input sequence, they must also be

present in the output sequence, regardless of any other transformation made to ensure

compliance with the security property. The monitor may add valid transactions and

remove invalid ones, but may not remove any valid transactions present in the original

execution.

Let validT (σ), which stand for the multiset of factors from the sequence σ which

are present in T , be the abstraction function F . The preorder v used to correctively

enforce this property is thus given as ∀σ, σ′ ∈ Σ∞ : σ v σ′ ⇔ validT (σ) ⊆ validT (σ
′).

This preorder captures the intuition that any valid transaction present in the original

sequence must also be present in the monitor’s output.

The following automaton correctively enforces transactional properties by suppress-

ing any invalid transaction present in the input sequence, while allowing every valid

transaction to be output. Let At = 〈Σ, Q, q0, δ〉 where

• Σ is a finite or countably infinite action set.

• Q = Σ∗×Σ∗, is the set of automaton states. Each state consists of a pair 〈σo, σs〉

where σo is the sequence which has been output so far, and σs is a sequence which

the monitor has suppressed, and may either eventually output or delete.

• q0 = 〈ε, ε〉, is the initial state.

• The transition function δ : Q× Σ→ Q× Σ∞ is given as:

δ(〈σo, σs〉, a) =





〈σo; τ, ε〉 if ∃τ ∈ suf (σs; a) : τ ∈ T ∧ τ 6= ε

〈σo; σs; a, ε〉 if ∃τ ∈ T : ∃τ ′ ∈ T ∗ : σo; σs; a = τ ′; τ∧

|τ | ≥ |σs; a|

〈σo, σs; a〉 otherwise

Proposition 5.3.1. Let T ⊆ Σ∞ be a subset of sequences, let P̂T be the corresponding

transactional property and let v be a preorder over the sequences of Σ∞ defined such

that ∀σ, σ′ ∈ Σ∞ : σ v σ′ ⇔ validT (σ) ⊆ validT (σ
′). The automaton At correctivelyv

enforces P̂T .
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Proof. By theorem 5.2.1, we have that the automaton correctivelyv enforces the prop-

erty iff ∀σ ∈ Σ∞ : A(σ) ∈ P̂T ∧σ v A(σ). It is easy to see that the output of A is in P̂T

since by construction, at every step, the monitor only outputs a sequence if it is in T ,

or if appending it to the sequence the monitor has already output produces a sequence

in T ∞. Likewise, to see why for all input sequences σ, σ v A(σ), simply observe that

any factor τ of σ present in T will necessarily be output by the monitor.

The method above thus shows how a transactional property could be enforced in such

a manner that the output is always valid, and always contains as many or more valid

transactions than the input. In this particular example, we may be able to prove an even

stronger enforcement paradigm, namely that the output will always contain exactly the

same valid transactions as the input. This is unsurprising, since equivalence relations

are a special case of preorders, and imposing such a constraint would be tantamount

to using the equivalent∼= enforcement proposed in section 5.2. The method presented

here can thus be seen as a generalization of this framework.

But this example also highlights why equivalent∼= enforcement is also too rigid to be

useful in many practical cases. Consider what would happen, for example, if the restric-

tion that the set T be unambiguous is lifted 1. Even though the only transformation

performed by the monitor is to remove invalid factors, we cannot guarantee that exactly

those valid sequences which are present in the original sequence will be present in the

output. As a counterexample, consider the case of valid sequences T = {σ1, σ2, σ3}

and invalid sequences τ, τ ′ /∈ T s.t. τ ; σ3; τ
′ = σ1; σ2. Let the infinite sequences

σ1; υ; σ2; υ; σ1; υ... be the input sequence, where υ is an invalid transaction (possibly

τ or τ ′). The multiset of valid transactions present in σ1; σ2, σ1; σ2, σ1; σ2... contains

an infinite number of factors σ3, not present in the original sequence. While it may

be difficult to imagine a real-life, transactional property exhibiting this behavior, this

example does illustrate why using equivalence relations rather than a preorder would

unduly restrict the transformations available to a monitor. Furthermore, one may wish

to consider other means by which a monitor may enforce a transactional property, for

instance, by inserting actions to correct an incomplete or transactions, or simply to log

the occurrence of certain possibly malicious factors.

5.3.2 Assured Pipelines

In the previous section, we show how transactional properties can be enforced by an

edit automaton that simply suppresses some actions from the input stream. Yet, part

1This may involve altering the definition of iterative properties.
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of the power of the edit automaton resides in its ability to insert actions not present

in the input to correct an invalid sequence. Naturally, this ability must be constrained

for the enforcement to remain meaningful, otherwise the monitor may simply replace

any invalid sequence in its entirety by some unrelated valid sequence. In this section,

we propose three possible enforcement paradigms for the Assured Pipeline policy based

on truncation, suppression and insertion, and compare them using the metrics given in

the previous section.

The assured pipeline property was suggested in [19, 81] to ensure that data trans-

formations are performed in a specific order. Let O be a set of data objects, and S be

a set of transformations. We assume that S contains a distinguished member create.

Finally, let E : 〈S × O〉 be a set of access events. 〈s, o〉 ∈ E denotes the application of

transformation s to the data object o. An assured pipeline policy restricts the appli-

cation of transformations from S to data objects using an enabling relation e : S × S,

with the following two restrictions: the relation e must define an acyclic graph, and the

create process can only occur at the root of this graph. The presence of a pair 〈s, s′〉

in e, is represented in the graph by the occurrence of a edge between the vertice s and

the vertice s′, and indicates that any action of the form 〈s′, o〉 is only allowed if s is the

last process that accessed o. Because of the restriction that e must be an acyclic graph,

each action 〈s′, o〉 can occur at most once during an execution.

For the purpose of this example, we add another restriction namely that the enabling

relation be linear. This condition makes it easier for insertion monitors to add actions

to the output, without compromising transparency.

A truncation-based monitor was suggested by Fong [36] and Talhi [76] to enforce

this property. Their monitors effectively= enforces the assured pipeline property by

aborting the execution if an unauthorized data transaction is encountered. Following

their ideas, we propose the automaton At
ap bellow which enforces the assured pipelines

in this manner. At
ap = 〈E,Q, q0, δt〉 where

• E is a set of access events over objects from O and transformations from S, as

defined above.

• Q : ℘(E) is the state space. Each state is an unordered set of access events from

E.

• q0 = ∅ is the initial state.

• δt : Q× E → Q× E ∪ {ε} is given as :
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δt(q, 〈s, o〉) =





(q ∪ {〈s, o〉}, 〈s, o〉) if s = create ∧ 〈create, o〉 /∈ q

(q ∪ {〈s, o〉}, 〈s, o〉) if ∃s′ ∈ S : 〈s′, o〉 ∈ q ∧ 〈s′, s〉 ∈ e∧

〈s, o〉 /∈ q

undefined otherwise

Proposition 5.3.2. Let e be an enabling relation, defining an assured pipeline policy

P̂ over a set of objects O and subjects S. The automaton At
ap effectively= enforces P̂.

Proof. By definition 4.4.2, we have that the automaton effectively= enforces the prop-

erty iff ∀σ ∈ Σ∞ : A(σ) ∈ P̂∧, P̂(σ) ⇒ A(σ) = σ. Since the execution is aborted as

soon as an illicit action is encountered, we necessarily have P̂(A(σ)). Conversely, since

valid actions are always output in lockstep with the input, we have P̂(σ) ⇒ A(σ) =

σ.

At each step of the execution, the monitor either outputs the current action if it

is valid, or else aborts by attempting an undefined transition otherwise. It follows

that if the input sequence is invalid, the monitor outputs its longest valid prefix. Can

this enforcement paradigm be improved upon? A corrective enforcement framework

allows the monitor to continue the execution after an illicit transformation has been

attempted.

As was the case with transactional properties, the preorder defining the desired

behavior of the program is stated in terms of the presence of valid actions, i.e. those

occurring in a manner allowed by the enabling relation. Since each action can only occur

once, a function returning the set of valid atomic actions is an adequate abstraction

function. We write valide(σ) for the set of valid transformations (w.r.t. enabling

relation e) occurring in σ. We write σ v σ′ ⇔ valide(σ) ⊆ valide(σ
′).

Instead of simply aborting the execution, a corrective monitor may suppress an

invalid action, and allow the execution to proceed. We only need to make minor ad-

justments to At
ap to create automaton As

ap, which enforces the property in this manner.

Let As
ap = 〈E,Q, q0, δs〉 where Σ, Q and q0 are defined as in At

ap and δs is given as

follows.

δs(q, 〈s, o〉) =





(q ∪ {〈s, o〉}, 〈s, o〉) if s = create ∧ 〈create, o〉 /∈ q

(q ∪ {〈s, o〉}, 〈s, o〉) if ∃s′ ∈ S : 〈s′, o〉 ∈ q ∧ 〈s′, s〉 ∈ e∧

〈s, o〉 /∈ q

(q, ε) otherwise
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Proposition 5.3.3. Let e be an enabling relation, defining an assure pipeline policy P̂

over a set of actions E, and let v be a preorder over the sequences of E∞ defined such

that ∀σ, σ′ ∈ E∞ : σ v σ′ ⇔ valide(σ) ⊆ valide(σ
′). The automaton As

ap correctivelyv
enforces P̂.

Proof. By definition 5.2.1, we have that the automaton correctivelyv enforces the prop-

erty iff ∀σ ∈ Σ∞ : A(σ) ∈ P̂ ∧ σ v A(σ). Soundness is ensured by the fact that the

automaton only outputs valid actions. Furthermore, since every valid action occurring

in the input sequence is immediately output, we also have σ v A(σ).

The execution thus either outputs an action if it is valid, or it suppresses it before

allowing the execution to continue. Yet, the edit automaton is capable of not only

suppressing or outputting the actions present in the input, but also of adding actions

not present in the execution to the input. It may be reasonable, for instance, for a

monitor to suppress only those transformations which have already occurred, or those

manipulating an object which has not yet been created. Otherwise, if an action occurs

in the input sequence before the actions preceding it in e have occurred, the monitor

can enforce the property by adding the required actions. The following automaton Ae
ap

enforces the property as described above.

To simplify the notation, we use the predicate pathe(τ) to indicate that τ is a factor

of a valid sequence according to e and that every action in τ manipulates the same

object. Formally , pathe(τ)⇔

• ∃o ∈ O : ∀〈s, o′〉 ∈ acts(τ) : o′ = o

• ∀i : 2 ≤ i ≤ |τ | : τi−1 = 〈s, o〉 ∧ τi = 〈s
′, o〉 ⇒ 〈s, s′〉 ∈ e

Let Ae
ap = 〈E,Q, q0, δe〉 where Σ, Q and q0 are defined as in Ae

ap and δe is given as

follows.

δe(q, 〈s, o〉) =





(q ∪ {〈s, o〉}, 〈s, o〉) if s = create ∧ 〈create, o〉 /∈ q

(q ∪ {〈s, o〉}, 〈s, o〉) if ∃s′ ∈ S : 〈s′, o〉 ∈ q ∧ 〈s′, s〉 ∈ e∧

〈s, o〉 /∈ q

(q ∪ acts(τ ; 〈s, o〉), τ ; 〈s, o〉) if 〈s, o〉 /∈ q ∧ 〈create, o〉 ∈ q

and τ is the longest sequence s.t.

τ0 /∈ q ∧ path(τ ; 〈s, o〉)

(q, ε) otherwise
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Proposition 5.3.4. Let e be an enabling relation, defining an assured pipeline policy P̂

over a set of actions E, and let v be a preorder over the sequences of E∞ defined such

that ∀σ, σ′ ∈ E∞ : σ v σ′ ⇔ valide(σ) ⊆ valide(σ
′). The automaton Ae

ap correctivelyv
enforces P̂.

Proof. Similarly to the proof of theorem 5.3.3, soundness is ensured by the fact that the

automaton only outputs valid sequences while the fact that every valid action occurring

in the input sequence is immediately output, implies that σ v A(σ).

We now have three possible execution monitors for the assured pipeline policy,

two of them are based upon corrective enforcement and the other one on effective=
enforcement. In what follows, we propose metrics that allow us to compare these

enforcement paradigms, and enable us to select the most adequate monitor given each

situation.

The first metric which we consider is based on the preorder used by the monitor

to correctivelyv enforce the property. Since this preorder is designed to capture the

desired behavior of the target program, it is natural to also rely upon it to compare

enforcement paradigm among themselves.

Definition 5.3.5. Let v be a preorder over a set of sequences from Σ∞, let S ⊆ Σ∞ be

a set of input sequences and let A,A′ be an edit automata enforcing the same property.

A vS A′ ⇔ ∀σ ∈ S : A(σ) v A′(σ). We write A ≡S A′ ⇔ A vS A′ ∧ A′ vS A and

A @S A′ ⇔ A vS A′ ∧ ¬(A′ vS A) and A ≡S A′ ⇔ A vS A′.

Proposition 5.3.6. Let Σ be a set of atomic actions, At
ap v

Σ∞

As
ap v

Σ∞

Ae
ap

Proof. For any valid sequence, all three monitors behave similarly, and output the input

sequence in lockstep. Let σ be an invalid sequence, it necessarily contains at least one

invalid action a. Upon encountering this action, At
ap aborts while As

ap suppresses a. It

follows that At
ap(σ) = A

s
ap(σ) iff a is the last action of the sequence if every subsequent

action is also invalid. Otherwise, if there are valid actions left in the sequence, these

actions are included in As
ap(σ) but not in At

ap(σ). In both cases, we have At
ap(σ) v

As
ap(σ) and thus At

ap v A
s
ap.

When faced with an an invalid action a, Ae
ap behaves in the same manner as As

ap

if this action represents a transformation which has already been output. Otherwise,

Ae
ap inserts in the output the transformations needed for a to be valid. If these actions

occur after a in the input sequence, they are suppressed by Ae
ap (since they have already

been output). In all cases, we have As
ap(σ) v A

e
ap(σ) and thus As

ap v A
e
ap.
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In some cases, one may favor a monitor that allows as much as possible of the input

sequence to be output, while also preserving the ordering between these input actions.

This is particularity desirable when the user is not assumed to be malicious, as is the

case, for example, of a monitor allocating resources between trusted users. A monitor A

is more permissive than another monitor A′, noted AES
p A

′, iff, for any input sequence

in a set S, the output of A contains more actions present in the input, regardless of

any other actions that are inserted.

A finite word τ ∈ Σ∗ is said to be a subsword of a word ω, noted τ C ω iff

τ = a0a1a2a3...ak and ω = Σ∗a0Σ
∗a1Σ

∗a2Σ
∗a3...Σ

∗akΣ
ω where Σ∗ and Σω are used to

denote sequences from these sets. The set of subwords of sequence σ is given as sub(σ).

Let τ, σ be sequences form Σ∗. We write csτ (σ) to denote the longest subword of τ

which is also a subword of σ.

Definition 5.3.7. Let S ⊆ Σ∞ be a set of input sequences and let A,A′ be edit automata

enforcing the same property. AES
p A

′ ⇔

• ∀σ ∈ S ∩ Σ∗ : |csσ(A(σ))| ≤ |csσ(A
′(σ))|

• ∀σ ∈ S ∩ Σω : ∀τ ≺ σ : ∃τ ′ � σ : τ ′ � τ : |cs′τ(A(τ
′))| ≤ |cs′τ (A

′(τ ′))|

We write ACS
p A

′ ⇔ AES
p A

′ ∧ ¬(A′ ES
p A) and A ≡

S
p A

′ ⇔ AES
p A

′ ∧ A′ ES
p A.

Proposition 5.3.8. Let Σ be a set of atomic actions, At
ap E

Σ∞

p As
ap E

Σ∞

p Ae
ap

Proof. For any valid sequence, all three monitors behave in the same manner, and

output the input sequence in lockstep. Let σ be an invalid input sequence, At
ap will

output the longest valid prefix of σ. This prefix will also be output by As
ap(σ), as well

as any subsequent valid action. It follows that At
ap E

Σ∞

p As
ap.

Any subword of σ present in As
ap(σ) is also be present in the output of Ae

ap(σ) since

the transitions function δe outputs strictly more actions from the input than δs. The

output of Ae
ap may, however, contain subwords of σ not present in As

ap(σ), since δe
sometimes outputs actions which are suppressed by δs.
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5.3.3 Chinese Wall

As a third example, we consider the Chinese Wall policy, suggested in [20] to avoid

conflicts of interest. In this model, a user which accesses a data object o is forbidden

to simultaneously accessing certain other data objects that are identified as being in

conflict with o. Several implementations of this model have been suggested in the

literature. In this study, we consider the framework of Sobel et al. [72], which includes

a useful notion of data relinquishing.

Let S be a set of subjects, and O a set of objects. The set of conflicts of interests

is given as a set of pairs C : O ×O. The presence of (oi, oj) ∈ C indicates that objects

oi and oj conflict. Naturally, C is a symmetric set ((oi, oj) ∈ C ⇔ (oj, oi) ∈ C). For

all objects oi ∈ O, we write Coi for the set of objects which are in conflict with oi. Let

O′ ⊆ O be a subset of objects, overloading the notation we write CO′ for
⋃

o∈O′ Co. An

action of the form (acq , s, o) indicates that subject s holds the right to acquire the

right to access object o. After this action is performed the subject can freely access the

resource but can no longer access an object which conflicts with o.

It can often be too restrictive to impose on subjects that they never again access

any data that conflict with any data objects they have previously accessed. In practice,

the involvement of a subject with a given entity will eventually come to an end. Once

this occurs, the subject should no longer be prevented from collaborating with the

competitors of his former client. In [72], the model is enriched along this line by giving

subjects the capacity to relinquish previously acquired data. This can be modeled by

the action (rel, s, o), indicating that subject s relinquishes a previously accessed object

o. After this action occurs in a sequence, s is once again allowed to access object

that conflict with o, as long as they do not conflict with any other objects previously

accessed by s and not yet relinquished. To simplify the notation, we define the function

live : S×Σ∗ → ℘(O) as follows : let s be a subject and τ be a finite sequence, live(s, τ)

return the set of objects which s has accessed in τ and has not yet released.

In the presence of a relinquish action, the security property predicate is stated in

the following manner: ∀σ ∈ Σ∞ : P̂(σ)⇔

∀s ∈ S : ∀o ∈ O : ∀i ∈ N : σi = (access , s, o) : ¬∃o′ ∈ live(s, σ[..i− 1]) : o ∈ Co′

Where Σ = {access,rel} × S × O is the set of atomic actions. Both Fong [36] and

Talhi [76] suggest that this property be enforced by truncation, using an automaton that

aborts the execution as soon as a conflicting data access is attempted. The following

automaton enforces the property in this manner; and its transition function only allows
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a action to be output if it is a release action, or if it is an access action which does not

cause a conflict of interest to occur. This automaton always either immediately output

the action it has received (if this is a release action, or an access to which does not cause

a conflict of interest to occur) or else the execution is aborted because the transition is

undefined.

At
cw = 〈E,Q, q0, δt〉 where

• Σ : {access,rel} × S × O is the set of all possible access and release events over

objects from O and subjects from S,

• Q : Σ∗ is the state space. Each state is the finite sequence which has been output

so far.

• q0 = ε is the initial state.

• δt : Q× Σ→ Q× Σ ∪ {ε} is given as :

δt(q, a) =





(q; a, a) if a = (access , s, o) ∧ o /∈ live(s, q)

(q; a, a) if a = (rel , s, o)

undefined otherwise

Proposition 5.3.9. Let C be a set of conflicts of interests, and let P̂C be the corre-

sponding Chinese Wall property. The automaton At
cw effectively= enforces P̂C .

Proof. The proof of this proposition proceeds exactly as that of proposition 5.3.2.

Since the monitor enforces the property by truncation, any authorized data access

present in the input sequence after a conflicting data access has occurred is absent from

the output sequence. Corrective enforcement can provide a more flexible enforcement

paradigm. First, we define the preorder v. Analogously to the preorder proposed in

section 5.3.1 to weed out invalid transactions while preserving valid ones, we impose

that authorized data accesses be preserved while conflicting ones be deleted. Let σ be a

sequence and let C be the corresponding conflict of interest class, we write validC(σ) for

the multiset of actions from σ occurring in that sequence in a manner consistent with

C. The preorder is defined as ∀σ, σ′ ∈ Σ∞ : σ v σ′ ⇔ validC(σ) v validC(σ
′). The

most intuitive manner to correctivelyv enforce this property is to suppress conflicting

data access, but allow the execution to proceed afterward. Only a slight adjustment

needs to be made to At
cw to create a monitor enforcing the Chinese wall property in this

manner. The monitor As
cw thus behaves likes At

cw in all cases except when a conflicting

action is encountered, where it suppresses the execution rather than abort.
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Let As
cw = 〈E,Q, q0, δs〉 where Σ, Q and q0 are defined as in At

cw and δsis given as

follows.

δs(q, a) =





(q; a, a) if a = (access , s, o)) ∧ o /∈ live(s, q)

(q; a, a) if a = (rel , s, o)

(q, ε) otherwise

Proposition 5.3.10. Let C be a set of conflicts of interests, and let P̂C be the corre-

sponding Chinese Wall property. The automaton As
ap correctivelyv enforces P̂C.

Proof. The proof of this proposition proceeds exactly as that of proposition 5.3.3.

As discussed above, the involvement of any subject with any given entity eventually

ends. When this occurs, objects which conflict with that entity become available to this

subject for access, provided that they do not conflict with any other object currently

held by this subject. Thus it is natural to suggest an alternative enforcement paradigm

in which the monitor keeps track of data access that have been denied, and inserts them

after a release action makes them available to the subject which has requested them.

In fact, access to conflicting objects is delayed rather than suppressed.

The automaton Ae
cw enforces the property in this manner.

Ae
cw = 〈E,Q, q0, δe〉 where

• Σ : {access, rel} × S × O is the set of all possible access and release events over

objects from O and subjects from S,

• Q : Σ∗ × Σ∗ is the state space. Each state is a pair 〈σo, σs〉 of finite sequences,

where σo is the sequence which has been output so far, and σs is the sequence

which has been seen and suppressed.

• q0 = 〈ε, ε〉 is the initial state.

• δe : Q× Σ→ Q× Σ ∪ {ε} × Σ∞ is given as :

δe(〈σo, σs〉, a) =





(〈σo; a, σsτ〉) if a = (access , s, o)) ∧ o /∈ live(s, σo)

(〈σo; a; τ, σs\τ〉) if a = (rel , s, o)〉and f(s, σo, σs) = τ

(〈σo, σs; a〉) otherwise
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where the function f examines the sequences have been suppressed and output up

to that point and returns a sequence composed of all actions which have previously

been suppressed, but can now be output without causing a conflict. This automaton

operates in the following manner: As long as the actions it receives as input as access

actions which do not cause a conflict of interest to occur, the input actions are out-

put immediately. When a conflict of interest does occur, the monitor suppresses the

requested access, and stores it in memory. Finally, when a release action is encoun-

tered, the targeted resource is released, and the monitor searches through its memory

and outputs any data access stored therein for which there no longer is any conflict of

interest.

Proposition 5.3.11. Let C be a set of conflicts of interests, and let P̂C be the corre-

sponding Chinese Wall property. The automaton Ae
ap correctivelyv enforces P̂C.

Proof. By theorem 5.2.1, we have that the automaton correctivelyv enforces the prop-

erty iff ∀σ ∈ Σ∞ : Ae
ap(σ) ∈ P̂ ∧ σ v Ae

ap(σ). Every output of Ae
ap is in the prop-

erty since the transition function of Ae
ap only outputs valid factors. Any authorized

access present in the input sequence is immediately output, which guarantees that

∀σ ∈ Σ∞ : σ v Ae
ap(σ)

Once again, we can compare the three proposed enforcement paradigms using several

metrics. Let us begin with the question of which is more corrective, and which is more

conservative.

Proposition 5.3.12. At
cw v

Σ∞

As
cw v

Σ∞

Ae
cw

Proof. By theorem 5.2.1, we have that the automaton correctivelyv enforces the prop-

erty iff ∀σ ∈ Σ∞ : A(σ) ∈ P̂ ∧ σ v A(σ). Since, δe only outputs valid factors, we

necessarily have that A(σ) ∈ P̂ . Furthermore, since every valid action present in the

input sequence is output, it follows necessarily that ∀σ ∈ Σ∞ : σ v Ae
cw(σ)

Proposition 5.3.13. At
cw EΣ∞

p As
cw EΣ∞

p Ae
cw

Proof. That At
cwE

Σ∞

p A
s
cw follows immediately from the automata’s transition functions,

since As
cw always either outputs the same sequence as At

cw, or outputs a strictly longer

sequence. Likewise, Ae
cw’s transition function always outputs any action, and thus any

subword, output by As
cw, and may also output some more. This occurs when an action

is suppressed by Ae
cw, and later output after a release action allows it.
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Another aspect that must be taken into consideration while selecting an enforcement

paradigm is the amount of memory that the monitor may require. The monitor may

need to store the execution that has occurred so far, or an abstraction of it, as well as

any sequence that has been suppressed, but not yet output. The question of how much

memory is required for the enforcement was first raised by Ligatti et al. [54] and first

addressed by Fong [36] by way of the Shallow history automata. Later Tahli et al. [76]

examine the enforcement power of a memory bounded monitor, while Beauquier et. al.

[12] considered that of a finite automaton.

Since different enforcement paradigms for the same security property can vary w.r.t.

the amount of memory they require, it is natural that this factor also be used to compare

enforcement mechanisms.

Definition 5.3.14. Let mem(A) stand for the space efficiency of the monitoring al-

gorithm A (measured in O notation). Let A,A′ be edit automaton enforcing the same

property. We write AES
m A

′ ⇔ mem(A) ⊆ mem(A′).

We write ACΣ∞

m A
′ ⇔ AEΣ∞

m A
′∧¬(A′EΣ∞

m A) and A ≡
Σ∞

m A′ ⇔ AEΣ∞

A′∧A′EA.

Proposition 5.3.15. Ae
cw CΣ∞

m As
cw ≡

Σ∞

m At
cw

Proof. Follows immediately from the automata constructions given above. Observe

that As
cw and At

cw necessitate the same amount of memory since As
cw simply deletes

conflicting data accesses, with no intent to reinsert them later. Thus this automaton

does not keep track of the set of suppressed data accesses.

5.3.4 General Availability

The final security property that we examine is general availability; a policy requiring

that any resource that is acquired is eventually released. Despite its apparent simplicity,

the property is remarkably difficult to monitor in a system with more than one resource,

and is given by Ligatti et. al. as an example of a property that is not effectively=
enforceable.

Modifying Ligatti’s formulation slightly, we define the property as follows. Let

(ac, i), (use, i) and (rel, i) stand for accessing, using and releasing a resource i from a

set of resources I. The set of possible actions is given as Σ : {ac, use, rel} × I. The

property states that only acquired resources are used, and that any acquired resource
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is eventually released. Note that this seemingly straightforward property combines a

liveness component that cannot be monitored [54], with a safety component.

From the onset of the study of formal monitors, there has been an interest in ex-

amining how restricting the set of possible executions can increase that of enforceable

properties. The intuition is that if the monitor knows, from an a priori static analysis,

that certain execution paths cannot occur in its target, it should be able to use this in-

formation to enforce properties that would otherwise not be enforceable. This question

was first raised in [69], and was later addressed in [11, 56].

It this section, we use the availability property proposed above to show that an a

priori knowledge of the program’s possible execution paths not only increases the set

of properties enforceable by the monitor, but also to provide a different, and possibly

preferable, enforcement of a given property. First, consider the difficulties facing a

monitor trying to enforce the general availability property in a context in which S = Σ∞.

The monitor may not simply abort an invalid execution since the liveness component

implies that some invalid sequences can be corrected. Nor can it suppress a potentially

invalid sequence only to output it when a valid prefix is reached. As observed in [54],

an infinite sequence of the form (ac, 1); (ac, 2); (rel, 1); (ac, 3); (rel, 2); (ac, 4); (rel, 3)...

is valid but has no finite valid prefix. The property can only be enforced by a monitor

transforming the input more aggressively.

Since the desired behavior of the program is given in terms of the presence of (use, i)

actions bracket by aci and (rel, i) actions, a preorder based on the number of occurrences

of such actions is a natural way to compare sequences. We can designate such use

actions as valid. Let the function valid(σ), which returns the multiset of actions (use, i)

which occur in sequence σ and are both preceded by a (ac, i) action and followed by a

(rel, i) action be the abstraction function F . We thus have that ∀σ, σ′ ∈ Σ∗ : σ v σ′ ⇔

valid(σ) ≤ valid(σ′).

A trivial way to enforce this property is for the monitor to insert an (ac, i) action

prior to each (use, i) action, and follow it with a (rel, i) action. The (ac, i) and reli
actions present in the original sequence can than simply be suppressed, as every (use, i)

action is made available by a pair of actions (ac, i) and (rel, i) inserted by the monitor.

While theoretically feasible, it is obvious that a monitor which opens and closes a

resource after every program step would be of limited use in practice. Furthermore,

for many applications, a sequence of the form (ac, i); (use, i); (use, i); (rel, i) cannot be

considered equivalent to the sequence (ac, i); (use, i); (rel, i); (ac, i); (use, i); (rel, i). We

thus limit this study to monitors which insert (ac, i) actions a finite number of times.
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We first propose a monitoring framework capable of enforcing the general availabil-

ity property in a uniform context, where every sequence in Σ∞ can occur in the target

program. A monitor can enforce the property in this context by suppressing every ac-

quire action, as well as subsequent use actions for the same resource, and output them

only when a release action is reached. Any use action not preceded by a corresponding

acquire action is simply suppressed and never inserted again. A monitor enforcing the

property in this manner needs to keep track only of the actions that have been sup-

pressed and not output so far. The automaton AΣ∞

ga enforces the property as described

above.

Let AΣ∞

ga = 〈Σ, Q, q0, δe〉 where

• Σ : {aq, rel, use} × I is the set of all possible acquire, release and use actions for

all objects;

• Q : Σ∗ is the sequence which has been suppressed so far;

• q0 = ε is the initial state;

• δΣ∞ : Q× Σ→ Q× Σ ∪ {ε} is given as:

δe(τ, a) =





(τ, ε) if a = (use, i) ∧ (ac, i) /∈ acts(τ)

(τ ; a, ε) if a = (ac, i) ∨ (a = (use, i)∧

(ac, i) ∈ acts(τ))

(τ\(fi(τ)), fi(τ); (rel, i)) if a = (rel, i)

The purpose of the function fi is simply to examine the suppressed sequence and

retrieve the actions over resource i.

Proposition 5.3.16. The automaton AΣ∞

ga correctivelyv enforces the general availabil-

ity property.

Proof. It is easy to see that the output of AΣ∞

ga is always valid, since the monitor only

outputs finite valid factors. Furthermore, the transition function outputs every valid

use action, as soon as it is released in the input sequence. This ensures that the property

is correctivelyv enforced.

A static analysis can often determine that all computations of a program are fair

meaning certain actions must occur infinitely often in infinite paths. For the purposes

of the general availability property, a static analysis could determine that any action
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(ac, i) is eventually followed by a (rel, i) action, or by the end of the execution. The

property can thus be violated only by the presence of use actions that are not preceded

by a corresponding ac action. If the monitor is operating in a fair context, a new,

more conservative enforcement method becomes possible, as is illustrated by automaton

Afair
ga .

Let Afair
ga = 〈Σ, Q, q0, δe〉 where Σ is defined as above and

• Q : ℘(I) is the set of resources which have been acquired but not yet released;

• q0 = ∅ is the initial state;

• δΣ∞ : Q× Σ→ Q× {Σ ∪ ε} is given as :

δe(q, a) =





(q, ε) if a = (use, i) ∧ (ac, i) /∈ acts(τ)

(q ∪ {i}, a) if a = (ac, i)

(q\i, a) if a = (rel, i)

(q, a) if a = (use, i) ∧ i ∈ q

(ε, f(q)) if a = aend

Where f : ℘(I)→ Σ∗ is a function returning a sequence of the form reli, relj, relk... for

all resources present in its input. Informally, this automaton operates by keeping a list

of the resources that have been acquired and not yet released. This list is updated each

time an ac or a rel action is encountered, and such actions are immediately output, as

are use actions for resources present on the list. use actions for resources are simply

suppressed. When the monitor encounters the end of execution token action, every

resource still present on the list is released.

Proposition 5.3.17. Let S ⊆ Σ∞ be a subset of sequences s.t. ∀σ ∈ S ∩ Σω : ∀i ∈

I : ∀j ∈ N : σj = (ac, i) ⇒ ∃k > j : σk = (rel, i). The automaton Afair
ga correctivelySv

enforces the general availability property.

Proof. Every sequence output by the monitor is valid, since the monitor only outputs

use actions which have been acquired, and a static analysis assures every acquire action

is eventually followed by a corresponding release action. Furthermore, the output is

necessarily equal to the input on the preorder as the monitor only suppresses a use

action with the certainty that it is not valid, since it has not yet been acquired. Afair
ga

thus correctivelyv enforces the general availability property.
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Finally, a static analysis may determine that every possible execution of the target

program eventually terminates. If this is the case, an even more corrective enforcement

paradigm is available to the monitor, which can acquire resources as needed, and close

them at the end of the execution. Since every execution is finite, the number ac actions

inserted into the sequence will also necessarily be finite.

Let AΣ∗

ga = 〈Σ, Q, q0, δe〉 where Σ is defined as above and

• Q : ℘(N) is the set of resources which have been acquired but not yet released;

• q0 = ∅ is the initial state;

• δΣ∞ : Q× Σ→ Q× {Σ ∪ ε} is given as:

δe(q, a) =





(q ∪ {i}, (ac, i); a) if a = (use, i) ∧ (ac, i) /∈ acts(τ)

(q ∪ {i}, a) if a = (ac, i)

(q\i, a) if a = (rel, i)

(q, a) if a = (use, i) ∧ i ∈ q

(ε, f(q)) if a = aend

Where f : ℘(I)→ Σ∗ is a function returning a sequence of the form reli, relj, relk... for

all resources present in its input.

This automaton inserts an ac action as needed into the input stream so that every

use action can be output as soon as it is received. As was the case with Afair
ga , the

automaton AΣ∗

ga also keeps track of every resorcin that has been acquired, so that such

resources can be released when the end of execution action is encountered.

Proposition 5.3.18. The automaton AΣ∗

ga correctivelyΣ
∗

v enforces the general availabil-

ity property.

Proof. Every sequence output by the monitor is valid, since the monitor only outputs

use actions for resources which have already been acquired, and every achieved resource

is closed when the sequence terminates. Since every use action present in the input

sequence is also present in the output, we also have that ∀σ ∈ Σ∗ : AΣ∗

ga (σ) v σ. By

theorem 5.2.2, this implies that the property is correctively enforced.

The three monitors suggested here differ with respect to the set of sequences that can

be produced by the target program if the monitor correctivelyv enforces the property.
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The monitor AΣ∞

ga can enforce the property in all cases while AΣ∗

ga and Afair
ga can only

do so if a static analysis successfully rules out some execution paths. It is natural to

use this restriction on the monitor’s possible use a basis for comparing monitors. We

say that a monitor is more versatile than another iff it can enforce the same property

when strictly more sequences are present.

Definition 5.3.19. Let A,A′ be edit automata enforcing the same property P̂.

AEv A
′ ⇔ ∀S ∈ ℘(Σ∞) : ∀σ ∈ S : (P̂(A(σ)) ∧ σ v A(σ))⇒ (P̂(A′(σ)) ∧ σ v A′(σ)).

We write ACv A
′ ⇔ AEv A

′ ∧ ¬(A′ Ev A) and A ≡v A
′ ⇔ AEv A

′ ∧ A′ Ev A.

Proposition 5.3.20. AΣ∗

ga Cv A
fair
ga Cv A

Σ∞

ga

Proof. From propositions 5.3.16, 5.3.17 and 5.3.18, we have AΣ∗

ga EvA
fair
ga EvA

Σ∞

ga . Fur-

ther, observe that AΣ∗

ga cannot enforce the property if the input set contains a sequence

from Σfair\Σ∗, as the acquire actions added by the monitor may be unmatched by

release actions. Finally, observe that Afair
ga cannot enforce the property if the input

contains sequences from Σ∞\Σfair. It follows that AΣ∗

ga Cv A
fair
ga Cv A

Σ∞

ga .

The automaton enforcing the general availability property can also naturally be

compared using the metrics suggested in the previous sections.

Proposition 5.3.21. Afair
ga ≡

Σ∗

AΣ∞

ga v
Σ∗

AΣ∗

ga

Proof. From the transition functions of the automata above, we have that any use

action present in the input of AΣ∗

ga will be present in its output, while only valid use

actions present in the input of Afair
ga and AΣ∞

ga will be present in these automata’s

output.

Proposition 5.3.22. AΣ∞

ga EΣ∗

m A
fair
ga ≡

Σ∗

m A
Σ∗

ga

Proof. Follows immediately from the automata constructions given above.

Proposition 5.3.23. Afair
ga ≡

Σ∗

p A
Σ∞

ga CΣ∗

p A
Σ∗

ga

Proof. Since AΣ∗

ga does not suppress invalid use actions, it will naturally exhibit more

subwords of the input than the other two monitors. Furthermore, any subword of the

input present in the output of Afair
ga is also present in the output of AΣ∞

ga . This follows

directly from the fact that use action present in a fair sequence will either be output

by both monitors, or suppressed by both.



Chapter 5. Monitoring With Preorders 119

5.4 Conclusion and Future Work

In this chapter, we propose a framework to analyze the security properties enforceable

by monitors capable of transforming their input. By imposing constraints on the en-

forcement mechanism to the effect that some behaviors existing in the input sequence

must still be present in the output, we are able to model the desired behavior of real-life

monitors in a more realistic and effective way. We also show that real life properties

are enforceable in this paradigm, and give four examples of relevant real-life properties.

Finally, we propose metrics that can be used to compare alternative enforcements of

the same security property.

The framework presented in this paper allows us to transform a program execution

to ensure its compliance with a security policy, while also preserving the semantics

of the execution. We believe this framework to be sufficiently flexible to be useful in

other program rewriting contexts, and even in situations where security is not the main

concern, such as controller synthesis or specification refinement. In future work, we

hope to adapt our corrective framework to such contexts.



Chapter 6

Conclusion And Future Work

This thesis seeks to bring a new insight to the issue of monitoring and the question of

which security policies they can enforce. Previous studies that have addressed this issue

have shown that monitors that can draw on a static analysis of their target can be more

powerful than similar monitors that lack this ability. However, most implementations

of formal monitors did not draw upon this capacity to extend the range of policies that

they can enforce.

In this study, we develop a new framework to inline a monitor into a potentially

untrusted program, and thus ensure its compliance with the security policy captured

by this monitor. By drawing upon static analysis of the target program, we can enforce

strictly more properties than previous in-lining approaches. We also state and prove

several theorems related to the enforcement of security properties by monitors aided by

an abstraction of the program’s possible behavior.

Prior research have also shown that monitors that possesses the ability to transform

their target execution to be more powerful than others lacking this ability, but only

if the notion of enforcement is sufficiently flexible to allow the monitor to replace a

valid sequence with another equivalent sequence. However, the models present in the

literature did not adequately capture the restrictions that must be imposed on the

monitor’s behavior, leading to monitors which could, in theory, enforce any property,

but often not in a desirable way.

In this thesis we propose two new frameworks to study the enforcement power

of monitors capable of transforming their input. The first is based on the insight

of using equivalence relations to constrain the behavior of the monitor. The second

framework relies on preorders, which allows us to better capture the corrective behavior
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of a monitor that transforms its input. We study the enforcement power of a monitor

operating within these frameworks and give examples of real life properties that can be

enforced if they are used.

Finally, we suggest metrics that allow a user to compare several alternative enforce-

ment monitors for the same property and select the most appropriate one for a given

situation.

The research in this study has been the subject of presentations at three confer-

ences: the 14th Nordic Conference on Secure IT Systems [22], the Fifth International

Conference Mathematical Methods, Models, and Architectures for Computer Networks

Security [42] and the 7th International Workshop on Formal Aspects of Security &

Trust (FAST2010) [41] and is accepted for publication in the Journal of Computers &

Security [23].

Several avenues for future research remain open. First, the work presented in Chap-

ter 3 can be extended in a number of directions. There are several cases where the

procedure fails to produce a suitable instrumented code. This is because the program

abstraction is too coarse to allow enforcement by a truncation monitor. A more pow-

erful monitor, capable, for instance, of suppressing a sub-sequence or of inserting some

actions, could enforce the property in at least some of these cases.

The corrective enforcement frameworks presented in Chapter 4 and 5 are a very

versatile and elegant way to capture transformations performed on a program to ensure

its compliance to a security policy. We believe this framework is sufficiently flexible to

be useful in other program rewriting contexts, and even in situations where security is

not the main concern, such as controller synthesis or specification refinement. In future

work, we hope to adapt our corrective framework to such contexts.
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Algorithm and Proof of Correction

A.1 Algorithm

In this appendix, we sketch out the algorithm that performs the transformations de-

scribed in the chapter 3. The most interesting function is Trim, which eliminates the

inadmissible cycles if any and which aborts with error if it is not possible to do so.

Algorithm A.1.1 Synthesizing the Instrumented Program LTS

Input: R /* The input Rabin automaton */

Input: M /* The LTS */

Output: T

1: let RP ← AutomataProduct(R,M)

2: let RT ← AddHalt(RP ) /* Adding the halt state */

3: let T ← Trim(RT ) /* Removing non admissible cycles from RT with all incident

transitions */
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Algorithm A.1.2 Trim

Input: RT

Output: T /* return T or abort with error */

1: let QT ← BuildScc(RT ) /* Detect the strongly connected components and build the

quotient graph QT */

2: DetectCycles(QT,RT ) /* Detect all the cycles in RT */

3: Annotate(QT,RT ) /* Annotate each scc as A (all cycles admissible), N (all cycles

non admissible), B (both), or NC (no cycles) */

4: SortScc(QT ) /* Sort the scc in reverse topological ordering */

5: for all scc c in QT do

6: CheckForRemove(c) /* Visit sccs according to the reverse topological ordering */

7: end for

8: let T ← update(QT,RT ) /* Build T with states and transitions that have not been

removed from QT */

9: if CheckRemovedTransitions(T ,M) then

10: return T

11: else

12: abort and return error

13: end if

• CheckRemovedTransitions is a function that scans all the states in T . Let q =

(q1, q2) ∈ T .Q a state in T . Note that q1 ∈ R.Q and q2 ∈ M.Q. Let L(q) =

{a|(∃q′ ∈ T .Q| : (q, a, q′) ∈ T .δ}) and L′(q) = {a|(∃q′2 ∈ M.Q| : (q2, a, q
′
2) ∈

M.δ)}.

If there exists at least one state q ∈ T .Q such that L(q) ⊂ L′(q) and h is not an

immediate successor of q then exit and return false.
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Algorithm A.1.3 CheckForRemove(c)

Input: c

1: let Annot← GetAnnotation(c) /* Get the scc annotation */

2: if Annot = A then

3: noop /* Leave unchanged */

4: else if Annot = B then

5: abort and return error

6: else if Annot = NC then

7: if Succ(c) = ∅ then

8: Remove(c) /* Remove c with its incident edges. Succ(c) is the set of the suc-

cessors of c in QT */

9: end if

10: else if Annot = N then

11: CheckN(c)

12: end if

Algorithm A.1.4 CheckN(c)

Input: c

1: if Succ(c) = ∅ then

2: Remove(c)

3: else if AllAnnotA(Succ(c)) = {H} then

4: TryRemoveTransitions(c)

5: RemoveRemainingCycles(c)

6: else

7: abort and return error

8: end if

Where

• AllAnnotA(c) returns the set of all successors of c annotated A,

• TryRemoveTransitions(c) removes the transitions connecting states in c that sat-

isfy the following: (q, a, q′) is removable if q has h as an immediate successor and

if q′ is in c,

• RemoveRemainingCycles(c) removes the remaining cycles in c with all their inci-

dent edges. This procedure also removes the states that are no longer accessible

with their incident edges.
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A.2 Proof of Correction

In what follows, we give a sketch of a proof showing that whenever the algorithm succeed

in constructing an LTS T requirements 3.3.1 and 3.3.2 hold.

Proof of requirement 3.3.1

There are two cases to consider, namely the case where P̂(σ) and the case where

¬P̂(σ).

• Case 1, P̂(σ):

We begin by showing that σ = τ . By contradiction, if σ 6= τ then there exists

a transition t in RT , used by σ, but absent in τ . Yet, such a transition could

not have been eliminated during the transformation phase of RT . We will show

that this is the case both for transitions that occur inside a scc or connecting two

different sccs. Note that P̂(σ) means that σ reaches an admissible cycle starting

from the initial state.

– t = (q1, a, q2) with q1, q2 in the same scc c. The sccs are treated by our

algorithm based on whether the cycles they contain are admissible or not.

We examine each possibility in turn.

∗ c contains only admissible cycles: In such a case, the scc is preserved in

T by algorithm A.1.3 lines 1-2. Furthermore, since a scc can only be

removed if it has no admissible successors (A.1.3 lines 7 and 8 and A.1.4

lines 1 and 2), c will remain accessible in T .

∗ c contains both admissible and inadmissible cycles. In such a case, we

cannot construct T and are forced to return error.

∗ c contains only inadmissible cycles. The scc is removed only if it has no

successor (lines 1 and 2 of A.1.4). In this case, the execution reaching

this scc cannot be valid. If after crossing c,the execution can reach a scc

with admissible cycles other than H we have to abort with error, (line

7 in A.1.4). Otherwise, the transition t may be removed only if doing

so does not remove any initial paths to H . We thus remove only the

transitions that go from immediate predecessors of H to another state in

the scc (cf the explanation of the function TryRemove Transitions). To

sum up, a transition in c is removed only if it cannot allow the execution

to reach an admissible cycle.
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∗ c contains no cycles. It can only be removed if it has no successors,

(lines 6,7 and 8 in A.1.3). Note that if c has a successor c′ with no cycle,

we can show that from c′ we can reach an admissible cycle, otherwise it

would have been removed during some previous iteration.

– t = (q1, a, q2) with q1 ∈ c1 and q2 ∈ c2, c1 6= c2. Such a transition is only

removed if its destination is a state in a scc that is removed.

As discussed above, such an scc can never be a part of a valid path.

P̂(τ) follows immediately from σ = τ and P̂(σ).

• Case 2 : ¬P̂(σ).

Since our method consists exclusively in removing, rather than adding states and

transitions, it is obvious that the execution τ emitted by T when running σ is

either equal to σ , or is a prefix of it. To show that such a sequence τ would

always respect the property, we must consider two cases, namely τ is infinite and

τ is finite.

– τ is infinite. In such a case, the proof that P̂(τ) proceeds by contradiction.

Let τ be an invalid infinite sequence, τ must enter an inadmissible cycle. Yet,

all scc containing such cycles were removed from RT by algorithm A.1.4 line

2 or line 5. And if we were unable to remove them an error message would

have been produced without generating T .

– τ is finite. In this case, σ has been halted in h producing τ or it reached

an end state, after executing an aend transition. We know that an execution

reaching the end state satisfy the property, since we have kept in RT only

executions satisfying P̂ . We have been careful to not remove transitions that

could belong to an execution in LM without being sure that the origin of the

removed transition is a state that is a predecessor of h, σ could not reach

but an end state or h, thus we can be sure that we have P̂(τ).

Proof of requirement 3.3.2 The first half on the conjunction is immediate from the

construction process of T . Since we have have not added any new states or transitions,

safe those needed to abort the execution when needed, it follows than any execution

that remains in T was already present inM. Once again we have to examine the cases

of τ being finite or infinite separately.

• τ is infinite. In such a case, τ can only be invalid if it enters an inadmissible cycle.

As discussed above, all such cycles were removed from T by algorithm A.1.4 line

2 or line 5.
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• τ is finite. Likewise, we have already ascertained that any such sequence must be

valid, since it necessarily ends in a safe end or halt state.
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