
Light-induced chaotic rotations in nematic liquid crystals

E. Brasselet1 and L. J. Dubé2,*
1Laboratoire de Physique UMR 5672, École Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

2Département de Physique, de Génie Physique, et d’Optique, Université Laval, Cité Universitaire, Québec, Canada G1K7P4
�Received 12 October 2005; published 23 February 2006�

Various nonlinear rotation regimes are observed in an optically excited nematic liquid-crystal film under
boundary conditions �for the light and material� that are invariant by rotation. The excitation light is circularly
polarized, the intensity profile is circularly symmetric, and the beam diameter at the sample location is a few
times smaller than the cell thickness. A transition to chaos via quasiperiodicity is identified when the light
intensity is taken as the control parameter. Transverse nonlocal effects are suggested to be the cause of the
observed dynamics, and a simple model consisting of a collection of coupled rotators is developed to provide
a qualitative explanation.
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I. INTRODUCTION

The long-range orientational order of the molecules in
liquid crystals adds a collective character to the light-matter
interaction and generates a unique spatiotemporal feedback
mechanism responsible for the dynamical richness of opti-
cally induced orientational phenomena. This is particularly
true when the light-matter system is not invariant under ro-
tation about the light propagation axis—e.g., elliptical polar-
ization �1�, or an asymmetric intensity profile �2� at normal
incidence and ordinary waves at small oblique incidence �3�,
where quasiperiodic or chaotic behavior has already been
reported. Such systems are not only interesting by them-
selves but can be viewed as suitable candidates to test ex-
perimentally generic sets of equations describing nonlinear
dynamics.

For instance, chaotic rotations have retained much atten-
tion in the context of the phase synchronization of coupled
chaotic oscillators �4,5� and in the study of chaotic bounded
flows �6�. Since the dynamics of a number of well-known
systems can be reduced to a chaotic rotation �e.g., the
Rössler and Lorenz systems�, the study of real systems that
exhibit chaotic rotations is of special interest. Quite recently,
the chaotic rotation generated by light in a nematic liquid-
crystal �NLC� film has been observed �2�. The light was
circularly polarized with an astigmatic intensity profile, and
the existence of a chaotic rotation of the director �i.e., the
unit vector n that defines the local orientation of the optical
axis of the NLC� has been ascribed to the rotational asym-
metry arising from the astigmatism of the excitation beam
�2�.

In the present contribution, we show that complex and
intriguing reorientation dynamics can also be generated even
in the presence of rotational invariance. The interaction ge-
ometry corresponds to a light beam with circular polarization
and a circularly symmetric intensity profile focused on a ho-
meotropic nematic liquid-crystal film. The director trajectory

is reconstructed solely from the experimental data obtained
from the analysis of the light at the output of the sample. We
observe the following sequence of distinct dynamical re-
gimes when the light intensity, taken as the control param-
eter, is increased: periodic, quasiperiodic, chaotic, quasiperi-
odic, periodic. The appearance of this scenario is ascribed to
the use of a beam diameter a few times smaller than the cell
thickness. The competition between finite beam size effects
and spin angular momentum transfer to the medium will also
be discussed.

The paper is organized as follows. In Sec. II, the experi-
mental procedure is described together with the observed dy-
namical scenario. This is then followed by a detailed linear
and nonlinear analysis of time series reconstructed from ex-
perimental intensity observations. In Sec. III, we briefly
compare our results with those of previous studies and point
out the importance of a critical geometrical aspect ratio �ex-
citation beam diameter over cell width� below which com-
plex dynamics is produced. We also construct a Kuramoto-
like model to account qualitatively for the appearance of a
critical aspect ratio associated with finite beam effects. We
finally collect our conclusions in the last section.

II. EXPERIMENTS AND TIME SERIES ANALYSIS

A. Experimental procedure and dynamical scenario

Our observations concern a homeotropically aligned NLC
cell illuminated by a circularly polarized laser beam operat-
ing at 532 nm in the fundamental mode TEM00 whose
Gaussian intensity profile is written I�x ,y�= I0exp�−2�x2

+y2� /w0
2�. The light beam is focused on the sample by means

of a lens with focal length 150 mm at normal incidence
�along the z axis�. The beam diameter 2w0, at e−2 of maxi-
mum intensity at the sample location, is measured to be
30 �m and the cell thickness is L=75 �m. The experimental
setup is shown in Fig. 1. It permits the monitoring of the
director dynamics via the real-time acquisition of the total
intensity Ic of the central part of the emerging excitation
beam �placing a diaphragm at the output of the sample� and
the intensities of the horizontal and vertical components of
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the electric field, Ix and Iy �Ic= Ix+ Iy�. This setup has been
originally used in a previous study �7� where it is explained
that, on the one hand, the time series Ic�t� contains explicit
information on � only and that, on the other hand, the time
series Ix�t� and Iy�t� contain explicit information on both �
and � where � and � are, respectively, the polar and azi-
muthal angles of the reorientation of the director, n
= �sin � cos � , sin � sin � , cos ��. The normalized intensi-
ties with respect to Ic, ix�t�� Ix / Ic and iy�t�� Iy / Ic, contain
for their part only explicit information on �. Since ix�t�
=1− iy�t�, these time series possess the same dynamical in-
formation and we shall refer to any one of them as i�t�.

In the present work we propose to reconstruct the director
trajectory in the �x ,y� plane solely from the experimental
quantities Ic�t� and i�t�. For this purpose, we define a math-

ematical object �ñx , ñy�= �ñ�cos �̃ , ñ�sin �̃� which embod-
ies the dynamics of the physical director. From the above

considerations, the azimuthal degree of freedom �˜ is recon-
structed from the time series i�t�, whereas we choose

ñ��t� = Ic�t� . �1�

Strictly speaking, this quantity is to be kept distinct from the
projection of the real director n� onto the �x ,y� plane. In
fact, the larger the director’s reorientation angle �i.e., n��, the
lower is the intensity in the central part of the output beam
�i.e., ñ�� and the relationship between the two quantities is
not simple. However, only the fact that ñ� and n� contains
the same dynamical features is of interest in the present con-
text.

Next, we calculate the time delay �d as the first zero of the
autocorrelation function C�f ,��=T−1�0

TF�t�F�t+��dt where T
is the duration of the time series f�t� �typically T�104 s� and
F�t�= f�t�−T−1�0

Tf�t�dt is the zero-mean-value part of f�t�.
Since there is no possible ambiguity, we will further keep the
notation i and Ic to mean that the zero-mean-value parts are

used �e.g., in Eq. �2� or Figs. 5 and 6�. Finally, �̃ is defined
as

�̃�t� = arctan� i�t + �d�
i�t� 	 . �2�

Figure 2 shows the time evolution of ñ� �left column� and �̃
�center column�. The director dynamics in the plane �ñx , ñy�
is presented on the right-hand side of the figure. The excita-
tion intensity is progressively increased starting from the un-
perturbed state �i.e., ��1 where �= I / IF is the light intensity
I normalized to the optical Fréedericksz transition threshold
�OFT� value IF�. The sampling time is �t=0.25 s, which is
more than one order of magnitude smaller than the charac-
teristic reorientation time of the cell estimated to be �NLC

5 s. The complete experiment lasted up to 20 h without
anchoring breakdown, which enables data acquisition during
several hours for each value of the intensity, at a fixed point
of the sample. Time series with duration 104 s have then
been extracted for each regime to plot the director trajecto-
ries in the plane �ñx , ñy�. Since the long-term behavior of the
azimuthal angle is always a quasiuniform precession around
the light propagation axis �z�, one can write

�̃�t� = �t + 	�t� . �3�

The angular velocity � corresponds to a long-term uniform
precession of the director around the z axis whereas 	�t�
describes the nonuniform part of the azimuthal dynamics, as

can be seen in the insets of �̃�t� in Fig. 2. The director
dynamics amounts therefore to nonlinear rotations, and the
observed five distinct regimes are labeled Rn �n=1, 2, 3, 4,
and 5� for intensities �=1.10, 1.31, 1.53, 1.63 and 1.72, re-
spectively. The right column of Fig. 2 shows these different
director trajectories in red �online�, for typical temporal win-
dows of duration 2
 /�. Regimes R1, R2, and R3 corre-
spond to small reorientation amplitude �i.e., the maximum
reorientation amplitude �max satisfies �max

2 �1�, where only
one self-diffraction ring �8� is observed at the maximum with
�max

2 
0.1. In contrast, regimes R4 and R5 exhibit several
rings �up to 20� and correspond to strongly reoriented states
��max
1�.

The observed sequence of regimes differs from the one
predicted by the infinite plane-wave model where instead a
sequence of type R1→R2→R5 is predicted �9�. The unex-
pected regimes R3 and R4 can thus be attributed at first sight
to finite beam size effects as suggested by our preliminary
observations �7�. We will next characterize the sequence of
nonlinear rotations Rn with a detailed �linear and nonlinear�
time-series analysis.

B. Data analysis

1. Linear measures

We have selected three linear indicators to begin the
analysis of the time series: namely, the evaluation of �

�which is obtained by fitting �̃�t� to a linear function�, the
autocorrelation function, and the Fourier power spectrum for
the time series Ic�t� and i�t� for each rotating regime Rn �n

FIG. 1. Sketch of the experimental setup. 2w0 is the beam di-
ameter defined at e−2 of its maximal intensity; E, circularly polar-
ized incident electric field; NLC, nematic liquid-crystal film of
thickness L; D, diaphragm; BS, beam splitter; PBS, polarization
beam splitter; PDi, photodiodes. The angle � is the divergence
angle of the beam after its passage through the reoriented film re-
sulting from self-focusing effects. This angle may be tens of de-
grees in the strongly reoriented states ��max
1�. The photodiode
PD1 collects the intensity Ic, which is proportional to the total in-
tensity emerging from the diaphragm, and PD2,3 collect the inten-
sities Ix,y of the horizontal and vertical components of the electric
field.
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=1, 2, 3, 4, and 5�. From Table I, we see that the averaged
precession rate � is a decreasing function of n, which indi-
cates that the averaged reorientation angle � increases with
intensity �the viscous torque scales as sin2��. The almost
periodic rotating regimes R1 and R5 thus differ only by their
characteristic time scale, the precession rate of R5 being ap-
proximately 20 times smaller than that of R1. One notices

also a small residual synchronous nutation in R1 �see Fig.
5�b� below�, and R5 �see Fig. 2�e��. In distinction, a nutation
motion ��t��0� is coupled to precession for the R2, R3, and
R4 regimes, as indicated by a thickening of the trajectory in
the �x ,y� plane. Obviously, these three regimes are qualita-
tively different as seen from the short-time trajectories
shown in Fig. 2: regime R3 looks particularly irregular �see

FIG. 2. �Color online� Experimental director dynamics of the rotating regimes. The left column displays the time series ñ��t�, the center

one shows �˜�t�, and the right column is the director trajectory in the �ñx , ñy� plane. �a� R1 at �=1.10, �b� R2 at �=1.31, �c� R3 at �
=1.53, �d� R4 at �=1.63, and �e� R5 at �=1.72. Trajectories for a short temporal window appear �in red online� the right column.
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the inset of ñ��t� in Fig. 2�c�� whereas regime R4 exhibits a
rather regular precession-nutation motion of the director with
two distinct frequencies fprecession and fnutation with
fnutation / fprecession
17. The uniform nature of the nutation
motion is emphasized by the almost sinusoidal oscillations of
ñ��t� �see the inset of Fig. 2�d��. Regime R2 also corre-
sponds to a quasiperiodic precession-nutation motion charac-
terized by fnutation / fprecession
1.5. However, the nutation is
clearly nonlinear as evidenced by the presence of harmonics
in the time behavior of ñ��t� �see the inset of in Fig. 2�b��.

The autocorrelation functions C�f ,�� of the sequences R2,
R3, and R4 �Fig. 3� reveal further distinctive features of the
three regimes. For instance, they are each characterized by a
distinct pair of autocorrelation times ��c�i� ,�c�Ic�� �Table I�
where �c�f� is estimated as the time when the envelope of
C�f ,�� has fallen by a factor of 10. At least one correlation
time of each pair varies by one order of magnitude �or more�
for any combination of regimes �Ri ,Rj� �i , j=1,2 ,3�. The
sudden decrease of �c�Ic� as one goes from R2 to R3 indi-
cates that a drastic broadening must have occurred in the
Fourier spectrum of Ic�t� associated with the appearance of
new frequencies. This is confirmed in Fig. 4 where the power

Fourier spectra are plotted for the regimes R2, R3, and R4.
The relative importance of low frequencies in the R3 regime
suggests that a transition to a very irregular regime �still to
be characterized� has occurred between R2 and R3. The fur-
ther disappearance of the low-frequency background at
higher intensity �R4 regime� demonstrates the intrinsic non-
linear nature of the R3 dynamics and rules out the appear-
ance of an experimental noise caused by the irreversible deg-
radation of the anchoring condition and of the integrity of the
nematic film.

In this respect, we note that in the context of optically
generated nonlinear dynamics in nematic liquid crystals, an-
choring problems have been found to be a severe limitation
to the acquisition of long-time series �several hours� �2,10�.
In contrast, we have observed the sequence of bifurcations
associated with the regimes Rn without any damage of the

TABLE I. Linear and nonlinear dynamical characteristics of ro-
tating regimes R1, R2, R3, R4, and R5: angular velocity �, auto-
correlation times �c of the time series Ic�t� and i�t�, and converged

correlation dimension d̄2 for the time series i�t�.

Regime � �deg/s� �c�Ic� �s� �c�i� �s� d̄2�i�

R1 19.1 5100 1.16±0.13

R2 13.8 160 810 1.99±0.07

R3 13.1 12 400 2.22±0.17

R4 7.56 200 7800 1.47±0.04

R5 0.91

FIG. 3. Autocorrelation functions for the normalized intensity i �upper graphs� and Ic �lower graphs� in regimes R2, R3, and R4 �from
left to right�.

FIG. 4. Power Fourier spectrum of the noise-reduced time series
Ic�t� in regimes R2, R3, and R4 �see Sec. II B 2 for details of the
noise-reduction procedure�.
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anchoring, which has allowed us to obtain time series of
several hours for each intensity in a single experiment �the
complete experiment lasted up to 20 h�. Our ability to do so
lies in the fact that the R3 regime is associated with a small
reorientation amplitude whereas, in other interaction geom-
etries, the strongly reoriented �several self-diffraction rings�
director dynamics tends to prematurely wear the system out
and the anchoring eventually breaks down �2,10�.

To get a further grasp on the characteristics of the differ-
ent regimes, and especially to identify the complex R3 dy-
namics as chaos, we now turn to the tools of nonlinear analy-
sis.

2. Nonlinear measures

Although visual irregularity and spectral broadening are
necessary indices for the presence of chaotic dynamics, they

are not sufficient to distinguish a complicated signal from a
chaotic one. The nonlinear analysis toolbox has matured con-
siderably during the past decades �11�, and some of the meth-
ods are becoming standard and useful when employed with
the necessary care.

First, the presentation of our data as a return map, x�t
+�d� versus x�t� �where x= i or Ic�, offers an image of the
dynamics that is complementary to the ones shown in Fig. 2.
Figures 5�a� and 6�a� display the original data with a delay
time �d chosen customarily, albeit somewhat arbitrarily, as
the first zero of the autocorrelation function �see Fig. 3�: for
x= i we have �d=5, 6.5, 6.5, and 12 s and for x= Ic, �d=1.5,
3.8, 1 and 1 s for the regimes R1, R2, R3, and R4, respec-
tively. Figures 5 and 6 confirm what we have learned from
the linear analysis: that a transition in the dynamical charac-
ter takes place from R2 to R4. For the sequence Ic�t�, a

FIG. 5. Reconstructed phase space i�t+�d� versus i�t� of regimes R1, R2, R3, and R4. �a� Original data and �b� noise-reduced data.

FIG. 6. Reconstructed phase space Ic�t+�d� versus Ic�t� of regimes R1, R2, R3, and R4. �a� Original data and �b� noise-reduced data.
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two-dimensional phase space seems almost sufficient to un-
fold the resulting structures in R2 and R4 whereas the R3
regime is higher dimensional. Similarly, for the sequence
i�t�, the two-dimensional unfolding gives rise to well-defined
manifolds in R1 and R4, in contrast to regimes R2 and R3
which exhibit a more complex organization.

In order to quantify the complexity of the system, we
build, from the scalar time series �xj , j=1,2 , . . . ,N� �xj

=x�j�t� where �t is the sampling time�, a set of time-delay
vectors

X j = �xj,xj+nd
, . . . ,xj+�dE−1�nd

� , �4�

with �d=nd�t in a reconstructed state space of embedding
dimension dE. Embedding theorems �12,13� guarantee that,
for a reasonable delay and a large enough dE, the procedure
leads to a faithful representation of the underlying system.
The vectors X j can then be used to calculate a dimension
estimate via the correlation sum C2�X ,� whose practical
implementation can be written as �11�

C2�X,� =
2

�N − nmin��N − nmin − 1�

�
i=1

N


j=i+1+nmin

N

H� − �X j − Xi�� , �5�

where H is the Heaviside function. The expression is simply
the fraction of all possible pairs of points which are closer
than a given distance  in a particular norm. A technical point
in this implementation is the removal of pairs in a time win-
dow tmin=nmin�t in order to avoid artifacts from temporal
correlations. In the limit of an infinite amount of data �N
→ � � and for small , we expect C2 to scale as C2�X ,�
�d2, thereby defining the correlation dimension d2. In prac-
tice, d2 is obtained on a log-log plot as the slope of C2 versus
 within the scaling range. We have carried out the calcula-
tions of these estimates for the different regimes and for the
sequences i�t� and Ic�t� in embedding dimensions dE

=1, . . . ,7.
Figure 7 displays a typical result for C2 and d2 in regime

R2 for the i�t� sequence. The calculations on the original data
�open circles� indicate that the correlation dimension d2
keeps increasing with embedding dimension dE �Fig. 7�b��.
The slopes of C2 are obtained in a scaling range centered
around �10−1 �which is approximately 1/10 of the size of
the attractor�. This behavior is not specific to the R2 regime
or to the choice of the sequence i and is traceable to the
presence of noise in the data invading the higher dimensions
of the underlying lower-dimensional system. At this point, no
reliable estimate of d2 can be given.

We have then applied a nonlinear noise-reduction algo-
rithm to the original data. For our purpose, a few experimen-
tations have shown the simplest noise-reduction method pro-
posed by Schreiber �14� to be quite effective. It consists
basically, apart from implementational details, in the replace-
ment of Xi by an average over its neighbors—i.e.,

Xi → X̃i =
1

Ni�� 
j=1

Ni��

X j , �6�

where Ni�� is the number of neighbors of Xi within a dis-
tance . This algorithm can be iterated �typically 4–6 times�
until no further corrections are applied. We have fixed the
number of iterations to 5 and have checked that the main
features of the power spectrum are not washed out by the
procedure. The resulting noise-reduced data appear in Figs.
5�b� and 6�b� where the main features are nicely sharpened
as a qualitative indicator of the noise reduction. The success
of the operation is also gauged by an enlarged scaling region
of the correlation sum. This is clearly seen in our illustrative
example. Figure 7�a� shows as solid circles the calculations
repeated on the noise-reduced data: the scaling range now
extends over two orders of magnitude roughly for 
�10−3–10−1. Furthermore, the correlation dimension d2
saturates rapidly as a function of dE towards a value close to
2.

Our dimension results for all four regimes of the noise-
reduced sequence i�t� appear in Fig. 8. They reflect nicely
the visual impression obtained by a look at Figs. 5�b� and
6�b�: R1 and R4 are the low-dimensional regimes, and R2
and R3 give a comparable state-space dimension with a
slight edge for R3 which is still more complex. The average

correlation dimension d̄2 is tabulated in Table I: for R1 and
R4 �R2 and R3� the average is taken over 2�dE�7 �3
�dE�7� and the error bars indicate the standard deviation
about the mean. Thus far, it is safe to attribute the label

quasiperiodic for regimes R2 �d̄2
2.0� and R4 �d̄2
1.5�. In

FIG. 7. �a� Correlation sum C2 of the time series i�t� as a func-
tion of the separation distance  in regime R2, for embedding di-
mensions dE=1 �top curve� , . . . ,7 �bottom curve�. �b� Correspond-
ing correlation dimension d2 as a function of the embedding
dimension dE. Open circles refer to original data while solid circles
refer to noise-reduced data. The solid curve in �b� is the line d2

=dE.
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contrast, a further quantitative measure is needed to classify

R3 �d̄2
2.2�.
This brings us to possibly the best evidence for chaos:

namely, a positive Lyapunov exponent. If X�t� is the time
evolution of some initial condition X�0� in the appropriate
phase space, the largest Lyapunov exponent �max is found
with probability 1 by

�max = lim
t→�

lim
→0

1

t
ln� �X�t� − X�t��


� , �7�

with �X�0�−X�0� � =. As an estimator, we have imple-
mented the algorithm introduced by Rosenstein et al. �15�
and Kantz �16�. The computation is based on the quantity

S�n� =
1

N

i=1

N

ln� 1

Ni�� 
j=1

Ni��

�Xi+n − X j+n�� , �8�

where the expression in parentheses is simply the averaged
distance after a time tn=n�t between initial neighbors at t
=0. The numerical value for �max is then the slope of S�n�
versus n in an intermediate range of n.

Based on the preceding evidence, we concentrate our at-
tention on the sequence Ic�t� for the detection of a possible
chaotic rotation. It is also the sequence that shows the
sharper transition from regular to chaotic dynamics �see Figs.
4 and 6�b��. The expansion sums S�n� for R2, R3, and R4 are
displayed in Fig. 9. The functions are followed to saturation
where the distance can no longer grow, having reached the
size of the attractor. These are typical results obtained with
dE=4 and =0.02. Curves for 4�dE�7 and 0.01�
�0.08 are almost identical. The only remaining arbitrariness
is to select the scaling range where the slopes will be calcu-
lated. There is no definitive criterion for doing this, and we
have adopted the following recipe, which appears quite ro-
bust in all the cases that we have examined. We record the
value Smin=S�nd� and Smax=S�n�nd� for an interval �S
=Smax−Smin and define the lower bound S−=Smin+�S /4 and
the upper bound S+=Smax−�S /4 corresponding to abscissas
n− and n+ between which the slope is drawn. Note that Smin is
associated with a temporal distance �d=nd�t, discarding the
first few time steps, to allow the difference vectors between
neighbors to turn towards the more unstable direction and

thereby for the linear increase of Smin to be a proper charac-
teristic of the exponential divergence of adjacent trajectories.
To remove the final arbitrariness, we have chosen nd=1 in all
of our Lyapunov exponent calculations. This leads to repro-
ducible and conservative results. In comparison with evalu-
ations on known dynamics, our method tends to underesti-
mate the chaotic regimes while overestimating the more
regular ones.

In view of the procedure employed, one should therefore
not put too much importance on the absolute value of �max,
but rather on what it tells us about the relative chaoticity of
the different regimes. We find, for R2, R3, and R4, �max

0.06, 0.33, and 0.13 s−1, respectively �note that the unit
differs from that of Table II�. These values should further be
compared with that of the most periodic sequence—namely,
that of i�t� in the R1 regime—which should set a reference
value �0 ideally equal to zero. We obtain �0
4�10−3 s−1,
two orders of magnitude smaller than that of the R3 regime.
This conclusively identifies R3 as a chaotic regime.

III. DISCUSSION

A. Comparison with previous studies

There are very few reported cases of experimental obser-
vation of optically induced chaotic oscillations in NLC. One
example is the case of an s-polarized laser beam at small
incidence angle �10,17–19�. In this geometry, a recent nu-
merical analysis succeeded to recover all the qualitative ex-
perimental features of the dynamics �3�. Another example is
the situation of a circularly polarized light beam at normal
incidence having an asymmetric intensity profile �2�, for
which a chaotic dynamics has been identified. Finally, irregu-
lar oscillations have also been observed in the case of a lin-
early polarized light beam at normal incidence with an ellip-
tical intensity profile whose major axis is orthogonal to the
electric field’s direction �20�. However, no quantitative char-
acterization of possible chaoticity is available in the latter
case. Except for the case of the s-polarized excitation beam
at oblique incidence, the transition to chaos still poses a chal-
lenge to a theoretical description in other situations since
none of the available results, including ours, can be ex-
plained at present.

FIG. 8. Correlation dimension d2 as a function of the embedding
dimension dE of regimes R1 �down triangles�, R2 �up triangles�, R3
�squares�, and R4 �circles� for the noise-reduced time series i�t�.
The solid curve corresponds to the line d2=dE.

FIG. 9. �Color online� Expansion sum S as a function of the
iterate in time series Ic of regimes R2 �blue online�, R3 �red online�,
and R4 �black�. The dashed curves are the linear fits in the interme-
diate region corresponding to �S− ,S+� as defined in the text.
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Table II compiles existing experimental results concern-
ing chaotic dynamics obtained in different interaction geom-
etries with different cell thickness L and beam diameter 2w0
�at e−2 for a Gaussian intensity profile�. To allow for proper
comparison, we introduce the dimensionless geometrical pa-
rameter �=2w0 /L and give the Lyapunov exponents in nor-
malized units ��NLC

−1 �. The absence of a converged value for
the correlation dimension d2 in �10� could be explained by
the occurrence of a non-negligible signal-to-noise ratio in the
recorded time series, as suggested by our own results where
a noise reduction procedure has been shown necessary.
Where convergence has been reached, the quoted values of

d̄2 obtained in other geometries are typically larger by one
unit from our reported value. The significance of this differ-
ence is difficult to assess since no details of the evaluation
procedure is given; nor is any mention made of the treatment
�if any� of the experimental noise. It would be premature
therefore to conclude that a different underlying physical
mechanism is at work in these experiments, although the
interaction geometries in Refs. �17,2� surely play a role. De-
spite these remarks, all the experiments of Table II identify
clearly a chaotic regime with a maximal Lyapunov exponent
�max exceeding the reference value �0 of the most regular
periodic regime by a factor of 10–100.

There are also striking similarities between our results and
those of Vella et al. �2� concerning the regime of chaotic
rotations by comparing the graphs related to R3 in Fig. 2 and
Figs. 1�a�, 1�c�, and 1�d� of Ref. �2�. Obviously the interac-
tion geometries are different: only the spin part of angular
momentum of the incident photons is involved in the present
work whereas both orbital and spin angular momenta play a
role when complex dynamics is observed in Ref. �2�. This
situation is depicted in Fig. 10 where the pure spin case
�panel �a�� corresponds to the ratios �x,y =2wx,y /L=3.2 and
the spin-orbital case �panel �b�� corresponds to the ratios �x
=0.32 and �y =3.2. Vella et al. �2� concluded that the com-
plexity arises from the competition between the orbital and
spin angular momenta of light. However, our results, ob-
tained with �x,y =0.4 �panel �c��, do not involve the orbital
part of the angular momentum of light and invite us to re-
consider the interpretation of Ref. �2�. In addition, the pa-
rameter � has already been identified to gauge the finite size
effects on the reorientation dynamics �7,21�. Therefore we
believe that the results of Ref. �2� could be attributed, at least

in part, to finite beam size effects rather than a competition
between the spin and orbital components of the light angular
momentum.

We have also found that kinks may appear in the azi-
muthal dynamics during the nonlinear rotation regimes, as
indicated by the arrows in Fig. 11 for regime R2. Again, this
behavior is reminiscent of that appearing in the work of Vella
et al. �compare their Figs. 2 and 1�b� to our Figs. 11�a� and
11�b��. Since R2 is obviously a quasiperiodic regime, this
intermittent behavior is not specifically related to the exis-
tence of chaotic dynamics. We did not study extensively the
distribution of these kinks as done in Ref. �2�, but the above
discussion leads us to infer that their appearance could also
be attributed to finite beam size effects.

In the next section, we derive a simple model that empha-
sizes the role of transverse nonlocal effects in the optically
induced reorientation dynamics of NLC under a light beam
of finite extent. It will be shown that the parameter � can
indeed be viewed as a suitable control parameter, and we
determine the existence of a critical value �c under which the
dynamics is much enriched.

B. Kuramoto-like model

The experiments have implicitly revealed the existence of
a characteristic value �c below which dynamical regimes oc-
cur that have no counterpart in the infinite plane-wave �IPW�
limit. The situation can be qualitatively analyzed with the
introduction of the electric coherence length estimated at the

TABLE II. Comparison of chaotic rotation regime R3 to other works where a chaotic dynamics of the
director have been observed. �0 is the maximal Lyapunov exponent in the fundamental periodic regime �R1

in our case�, �max is the maximal Lyapunov exponent in the chaotic regime �R3 in our case�, and d̄2 the
converged value of the correlation dimension. When the parameter �=2w0 /L is multivalued, the values
correspond to its minimum and maximum, respectively. An empty entry indicates that the corresponding
information is not available.

Reference Polarization Beam shape � �0 ��NLC
−1 � �max ��NLC

−1 � d̄2

�17� Oblique o-wave Circular 1 2.5�10−3 �0.2 3.35

�10� Oblique o-wave Circular 0.93 5.6�10−5 5.6�10−3

�2� Circular Elliptical 0.32/3.2 2.5�10−3 �8.2�10−3 3.50±0.05

Present work Circular Circular 0.4 2.3�10−2 1.85 2.22±0.17

FIG. 10. Relative intensity profiles in various contexts, dx and dy

being the diameters at e−2 of the maximum intensity value in the x
and y directions, respectively. The scale is almost the same in the
three panels. �a� Circularly symmetric situation in �2� ��x=�y

=dx /L�3.2�. �b� Asymmetric situation in �2� ��x=dx /L�0.32,�y

=dy /L�3.2�. �c� Present work ��x=�y =0.4�.
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OFT threshold intensity IF: namely, �= �2Kc�
1/2 /aIF�1/2

�22�, where K is the Frank elastic constant in the one-
constant approximation and � ��� is the dielectric suscep-
tibility at optical frequency along �perpendicular to� the mo-
lecular axis, with a=� −�. � implicitly depends on the
parameter � via the threshold intensity IF= IF

IPW�1
+23/2 / �
���2, which is the analytical expression originally
derived by Zolot’ko et al. in the case of linear polarization in
the Gaussian approximation �23� �it is also valid in the case
of circular polarization as shown in the Appendix of Ref.
�7��. From IF

IPW=2
2cK� / �L2a�
1/2� �W m−2� we obtain

���� =
�IPW

1 + �̄/�
, �9�

where �IPW= �� /��1/2�L /
� is the coherence length in the

IPW limit. This equation defines an intrinsic �, �̄=23/2 /


0.90. Since ���� is essentially the length over which the
system averages the excitation, it should be compared with
the characteristic length of the excitation—i.e., w0. It follows
from Eq. �9� that

�/w0 � 1/� if � � �̄ , �10�

�/w0 � 1 if � � �̄ . �11�

This ratio can be used to gauge the efficiency of the spatial
averaging of the nonuniform excitation in the �x ,y� plane.

The material response at a given position is expected to be
local �� /w0�1� for large �, whereas it depends on the state
of the system in the surrounding region �� /w0�1� for small

�—i.e., a nonlocal behavior. Therefore �̄ appears naturally as
the parameter below which transverse nonlocal effects

should be important and therefore identifies �̄ as a relevant
estimation of the critical value �c referred to previously.

The derivation of the exact system of equations governing
the dynamics that accounts for a detailed description of the
light-NLC system in the presence of the finite beam size
effects is beyond the scope of this work. Our goal here is to
extract the essential features of transverse nonlocal dynami-
cal effects and to reduce the initial problem �a set of coupled
partial differential equations involving all space coordinates
and time� to a finite set of ordinary differential equations
with respect to time. This can be achieved by the discretiza-
tion procedure sketched in Fig. 12 where w0 and w� are the
radii �at e−2� of the light intensity and the reorientation pro-
files, respectively. The actual reorientation profile is not
known and will not be calculated: it is assumed as a first
guess to behave as �=�maxexp�−2r2 /w�

2 �sin�
z /L� where
r2=x2+y2, �max is the amplitude of the lowest reorientation
mode estimated at r=0, and the radius w� is expressed as
w�=L�21/2� /
�1/2 as first derived in Ref. �23�. We then re-
duce the initial problem to a one-dimensional finite assembly
of rotators at locations ri= i� where i is an integer running
from −N to N, with N defined as the integer part of the ratio
w� /� �Fig. 12�. The reduced system consists of 2N+1
coupled rotators represented by the pair of angles ��i ,�i�.
Furthermore, recalling that since the details of the longitudi-
nal �along the z axis� dynamics are presently of no concern,
we restrict the dynamics of the rotators to their simplest form
by imposing that the polar angles behave as

�i = �maxexp�− 2ri
2/w�

2 � �12�

and by ignoring any twisted modes of reorientation. We are
therefore left with a system of coupled equations

FIG. 11. �a� Kinks �indicated by arrows� during the long-term
quasiuniform rotation in regime R2. �b� Time dependence of the
nonuniform part of the angular velocity d	 /dt averaged over a
duration of 2 s.

FIG. 12. Reduction of the initial problem, where the light inten-
sity profile I�r� and the reorientation profile ��r� have, respectively,
a spatial extension w0 and w�, to a unidimensional finite set of
rotators equally spaced by the distance �. Typically, the rotators
located under the Gaussian light excitation �ri�w0� are forced
�solid circles� by light angular momentum deposition to the medium
while those located beyond w0 are considered unforced �open
circles�.
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��i

�t
= �i + 

NN
f ij��� , �13�

where �i is the forcing angular frequency of the precession
of the ith rotator around the z axis imposed by the light
angular momentum transfer to the NLC in the absence of an
interaction with the other rotators. On the other hand, f ij
accounts for the coupling between the pair of nearest-
neighbor �NN� rotators �i , j� �i.e., the elastic torque resulting
from the local change of the director’s orientation in the
transverse direction� and will depend on the aspect ratio �
with the limiting behavior f ij���1�→0. These quantities are
determined in what follows.

First, the forcing frequency �i is expected to be propor-
tional to the amount of angular momentum deposited by each
photon, �1−cos �i��, and to the photon flux, Ii / �h��, at the
location ri. �i is the phase shift experienced between the
extraordinary and the ordinary waves after the light has
passed through the sample at r=ri, Ii is the light intensity at
r=ri, and � is the light frequency. An expression for �i can
be inferred from knowledge of the IPW situation �at the OFT
threshold� within the limit of small reorientation ��max

2 �1�.
In that case, �IPW= �1−cos �IPW� / ��IPW�NLC� �24� with
�NLC=�1L2 / �
2K� where �1 is the orientational viscosity.

Moreover, �IPW= L̃�max
IPW2, L̃=L
a� / �2��� being the nor-

malized film thickness and typically �IPW

 at the OFT
threshold. Further extension of these results to the finite
beam size case implies that one needs to take into account �i�
the amplification factor for the OFT threshold intensity, �th
= �1+23/2 / �
���2 �23�, and �ii� the light intensity and reori-
entation profiles at r=ri. Putting together gives the expres-
sion

�i =
1 − cos �i

�i�NLC
�thexp�− 2ri

2/w0
2� , �14�

where, from Eq. �12� and �0=
,

�i = 
 exp�− 4ri
2/w�

2 � . �15�

Second, since the intermolecular interactions in NLC are at-
tractive, the molecules tend to align. In a simple scheme that
preserves the symmetry n→−n, we will thus consider that
the jth rotator exerts on the ith a torque proportional to
�ni ·n j��ni�n j�. In that case, the �azimuthal� coupling contri-
bution to Eq. �13� reads

f ij = gij�ni · n j��ni � n j�z,

where gij �0 �attraction�. Dimensional arguments are useful
for the determination of gij. It has the dimension of fre-
quency and thus can be written as gij =K / ��1�ij

2 � where �ij is
a typical length associated with the pair �i , j�, naturally taken
as �ij =�. Finally, using the normalized time �= t /�NLC, Eq.
�13� becomes �in the limit �2�1�

��i

��
= �i + 

NN
�ijsin�� j − �i� , �16�

where �i=�i�NLC are the normalized angular forcing fre-
quencies and the coupling coefficients �ij depend solely on �
following

�ij��� =
�

�

� �IPW

���� 	2

�i���� j��� , �17�

where

�n��� = �
/L̃�1/2exp�−
n2
�2

�

�2

L2� . �18�

The simulations have been done with the refractive indi-
ces �

1/2=1.75 and �
1/2=1.52 corresponding to the NLC ma-

terial E7 �from Merck datasheet� and taking for initial con-
ditions ���=0�=0 for all i. For the purpose of
demonstration, we focus our attention on the dynamics of the
rotators located in the central part of the excitation beam—
namely, i=0 and i= ±1—by looking at the behavior of �1 as
a function of �0 �note that the dynamics for i=−1 and i=1
are identical; see Eqs. �16�–�18��. The results are shown in
Fig. 13 where the phase diagrams have been plotted for �
=0.4, 0.6, and 0.8. Above �=0.8 the situation is qualitatively
unchanged with respect to the case �=0.8; i.e., a phase-
locked regime is observed. Therefore Fig. 13 illustrates the
existence of a critical value �c
0.70 that separates two dis-
tinct dynamics. For ���c the central rotators are phase
locked while for ���c they are not. These results clearly
indicate that a bifurcation has occurred at �=�c, which is a
generic behavior for coupled oscillators. Despite the fact that
the proposed modelization has been based on physical
grounds, it remains a toy model. Indeed, it consists of a
collection of pure phase oscillators while the experiments
correspond to both a phase ��� and amplitude ��� dynamics.
Nevertheless, the fact that the critical value �c
0.70 corre-

sponds approximately to the distinctive value �̄
0.90 that
appears in the expression of the coherence length in Eq. �9�

FIG. 13. Phase diagram �1 as a function of
�0 for �=0.4, 0.6, and 0.8. Phase locking occurs
at �c
0.70. The normalized integration time is
500 times the period of the rotator located at r
=0, the initial conditions are �i=0 for all i, and
the transient has been removed. In each case, the
total number of rotators is 2N+1=9.
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invites us to connect the observation of new �with respect to
the IPW limit� dynamical regimes when � is sufficiently
small �e.g., regimes R3 and R4� to transverse nonlocal mani-
festations.

IV. CONCLUSION

We have proposed an experimental method for the recon-
struction of the director reorientation dynamics when a nem-
atic liquid-crystal film is excited by light. We have demon-
strated that a sequence of nonlinear rotations of the
type “periodic→quasiperiodic→chaotic→quasiperiodic→
periodic” takes place when the excitation beam is circularly
polarized with a symmetric intensity profile. This bifurcation
scenario is only observed when the beam diameter is suffi-
ciently small compared to the cell thickness and is not pre-
dicted by available theoretical models.

It may be interesting to note that the system of equations
�16� has the generic form of the well-known model of Kura-
moto �25� �finite dimensional in our case�, which was origi-
nally introduced to describe oscillatory chemical reactions. A
recent review dedicated to the analysis of synchronization
phenomena on the basis of the Kuramoto model can be

found in �26�. Although the present model can claim only to
give a first simple �pure phase oscillators� picture of dynami-
cal transverse nonlocal effects in optically excited NLC
films, some results on the collective behavior of limit-cycle
oscillators encourage us to include amplitude dynamics in
our approach. For instance, Matthews and Strogatz �27� have
shown that linearly coupled oscillators with amplitude and
phase degrees of freedom near a Hopf bifurcation exhibit
unsteady dynamics �i.e., large-amplitude oscillations, quasi-
periodicity, chaos� in well-defined regions of the coupling
strength and a spread of the natural frequencies. In our con-
text, this should be associated with the observation of the
chaotic regime, R3, and the quasiperiodic regime with large-
amplitude oscillations, R4. A more recent example concerns
the observation of a high-dimensional chaotic behavior,
called phase chaos, in the finite-dimensional Kuramoto
model of coupled limit-cycle, or chaotic, oscillators �28�.
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