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ABSTRACT: We develop a finite-sample procedure to test the mean-variance efficiency and span-

ning hypotheses, without imposing any parametric assumptions on the distribution of model dis-

turbances. In so doing, we provide an exact distribution-free method to test uniform linear re-

strictions in multivariate linear regression models. The framework allows for unknown forms of

non-normalities as well as time-varying conditional variances and covariances among the model

disturbances. We derive exact bounds on the null distribution of joint F statistics in order to deal

with the presence of nuisance parameters, and we show how to implement the resulting general-

ized non-parametric bounds tests with Monte Carlo resampling techniques. In sharp contrast to

the usual tests which are not even computable when the number of test assets is too large, the

power of the proposed test procedure potentially increases along both the time and cross-sectional

dimensions.
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1 Introduction

A benchmark portfolio of assets is said to be mean-variance efficient with respect to a given set of

test assets if it is not possible to combine it with the test assets to obtain another portfolio with the

same expected return as the benchmark portfolio, but a lower variance. With multiple benchmark

portfolios, the question becomes whether some combination of them is efficient. The mean-variance

efficiency hypothesis is a testable implication of the validity of linear factor asset pricing models,

such as the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), or more

generally of the Arbitrage Pricing Theory (APT) of Ross (1976); see Sentana (2009) for a recent

survey of the econometrics of mean-variance efficiency tests. A more stringent hypothesis is that

of mean-variance spanning, which states that the minimum-variance frontier of the benchmark

portfolios plus the test assets coincides with the frontier of the benchmark portfolios only; see

DeRoon and Nijman (2001) for a survey. When spanning holds, the addition of the new assets does

not improve the efficiency frontier for a mean-variance optimizing investor. This means that the

extra assets are not worth holding, either long or short (Cheung et al., 2009).

The most prominent tests of these hypotheses are those by Gibbons et al. (1989) (GRS) in

the case of mean-variance efficiency and by Huberman and Kandel (1987) (HK) for the spanning

hypothesis. These tests take the form of either likelihood ratio (LR) tests or system-wide F tests

conducted within a multivariate linear regression (MLR) model, where the number of equations in

the system equals the number of test assets. The CAPM and APT are single-period models, so in

order to test their implications it is necessary to make an assumption concerning the time-series

behavior of returns. The exact, finite-sample distributional theory for the GRS and HK tests rests

on the assumption that the MLR model disturbances are independent and identically distributed

(i.i.d.) each period according to a multivariate normal distribution. This assumption can be

questionable when dealing with financial asset returns, since there has long been ample evidence

that financial returns exhibit non-normalities; see e.g. Fama (1965), Blattberg and Gonedes (1974),

Affleck-Graves and McDonald (1989), and Zhou (1993). Beaulieu et al. (2007, 2010) (BDK) extend

the GRS and HK approaches for testing mean-variance efficiency and spanning. Their simulation-

based procedure does not necessarily assume normality but it does nevertheless require that the

disturbance distribution be parametrically specified, at least up to a finite number of unknown

nuisance parameters, e.g. Student-t with unknown degrees of freedom.
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In this paper, we extend the ideas of Gungor and Luger (2009, 2013) to obtain a finite-sample

procedure to test mean-variance efficiency and spanning that relaxes four restrictions of the GRS

and HK tests: (i) the assumption of independent disturbances, (ii) the assumption of identically

distributed disturbances, (iii) the assumption of normally distributed disturbances, and (iv) the

restriction on the number of test assets. Indeed, any procedure (e.g. GRS, HK, BDK) based on

standard estimates of the disturbance covariance matrix requires that the size of the cross-section,

N , be less than that of the time series, T , in order to avoid singularities and hence be computable.

In sharp contrast, our approach is based on F statistics computed in turn for each equation of the

MLR model and thus remains applicable no matter the number N of included equations. This

idea of using equation-by-equation statistics that leave aside the effects of disturbance covariances

follows Affleck-Graves and McDonald (1990) and Hwang and Satchell (2012). We propose the use

of vector norms to combine the resulting N statistics, and we then derive exact bounds around

the unknown null distribution of the aggregate F statistic in order to deal with the presence of

nuisance parameters that arise in our statistical framework. In so doing, we provide a new method

to test uniform (within equation) linear restrictions in MLR models, of which the efficiency and

spanning hypotheses are special cases. The resulting generalized bounds tests bear resemblance to

the well-known test of Durbin and Watson (1950, 1951) for autocorrelated disturbances in regression

models.

The developed procedure rests on a multivariate conditional symmetry assumption for the

MLR model disturbances, which includes the multivariate normal distribution assumed by GRS

and HK. In fact, the maintained symmetry condition encompasses the entire class of elliptically

symmetric distributions which play a very important role in mean-variance analysis because they

guarantee full compatibility with expected utility maximization regardless of investor preferences;

see Chamberlain (1983), Owen and Rabinovitch (1983), and Berk (1997). Unlike Gungor and

Luger (2009, 2013), this framework also leaves open the possibility of unknown forms of time-

varying conditional non-normalities and other distribution heterogeneities, such as time-varying

conditional covariance structures. Many popular models, e.g. multivariate GARCH and stochastic

volatility models with symmetrically distributed innovations, are compatible with our statistical

framework. The null distribution of the equation-by-equation F statistics is characterized by a sign-

permutation principle which preserves the cross-sectional covariance structure among the model

disturbances. We rely on the Monte Carlo resampling techniques of Dwass (1957), Barnard (1963),
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and Birnbaum (1974) to obtain computationally inexpensive and yet exact p-values, no matter the

sample size; see Dufour and Khalaf (2001) for a survey of Monte Carlo test in econometrics. In

sharp contrast to the GRS and HK tests that are not computable when N > T , the power of the

proposed test procedure potentially increases with both T and N .

Pesaran and Yamagata (2012) (PY) also develop (asymptotic) tests of the mean-variance ef-

ficiency hypothesis that can be applied when N > T . Similar to our approach, the PY tests use

an aggregation of t statistics computed equation by equation. In order to deal with the presence

of a non-trivial cross-sectional correlation structure, the PY test statistic is scaled by a threshold

estimator of the average squares of pairwise disturbance correlations. The theory underlying the

use of this threshold estimator nevertheless places certain restrictions on the allowable disturbance

correlations. Specifically, it assumes weakly and sparsely correlated disturbances. So not surpris-

ingly, our simulation experiments show that the asymptotically standard normal PY test has better

power than ours when the model disturbances are uncorrelated in the cross-section. But as the

degree of cross-sectional disturbance correlation increases (and whether the correlation structure is

time-varying or not), the proposed test procedure does better than the PY test. Moreover, the PY

approach based on t statistics is specifically tailored to the mean-variance efficiency hypothesis; it

does not yield a general testing procedure for any MLR restriction. This leaves the new tests as

the only ones available to test the mean-variance spanning hypothesis or any other uniform linear

restrictions in MLR models when N > T .

It is important to note that large N, small T situations are quite common in empirical finance

applications. Indeed, it is a usual practice to test asset pricing models over relatively short sub-

periods owing to concerns about parameter stability; see Campbell et al. (1997, Ch. 5), Gungor

and Luger (2009, 2013), Ray et al. (2009), and Pesaran and Yamagata (2012) for examples. If

N > T , one may ask: “Why not form portfolios to decrease the number of test assets?” Since Roll

(1977), it has long been recognized that portfolio groupings can result in a loss of information about

the cross-sectional behavior of individual stocks. Specifically, individual asset deviations from the

pricing model can cancel out in the formation of portfolios, thereby destroying test power. As Lo

and MacKinlay (1990) explain, the selection of assets to be included in a given portfolio is almost

never at random, but is often based on some of the stock’s empirical characteristics such as the

market value of the companies’ equity. This way of sorting stocks into groups based on variables

that are correlated with returns is a questionable practice since it favors a rejection of the asset
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pricing model under consideration. Liang (2000) argues that even when the sort is based on a

variable estimated using prior data, measurement error in this variable can also lead to a spurious

rejection. If anything then, it seems more natural to try to increase the number of test assets in

order to boost the probability of rejecting the null hypothesis when it is false. Indeed, an expansion

of the investment universe should help detect violations of the null hypothesis, provided of course

that more informative test assets get included in the MLR model.

The paper is organized as follows. In Section 2 we formally introduce the mean-variance effi-

ciency and spanning hypotheses along with the exact GRS and HK tests. In Section 3 we develop our

test procedure in the general MLR context. Section 4 presents the results of our simulation study

comparing the performance of the new procedure with the GRS and PY tests of mean-variance ef-

ficiency, and to the HK test of mean-variance spanning. Section 5 presents an illustrative empirical

application with a large number of individual stocks as test assets, and finally Section 6 concludes.

2 Hypotheses and exact tests

Consider an investment universe comprising a risk-free asset, K portfolios of risky assets, and an

additional set of N risky assets. We are interested in the relation between the minimum-variance

frontier spanned by the K benchmark portfolios and the frontier of the N + K assets. At time t,

the risk-free return is denoted by rft, the returns on the K benchmark portfolios are denoted by

rKt, and the returns on the other N test assets are denoted by rt. Correspondingly, the time-t

excess returns are denoted by zt = rt − rft and zKt = rKt − rft.

2.1 Mean-variance efficiency

Suppose the excess returns zt are described by the following model:

zt = a + βzKt + εt, (1)

where a is an N -vector of intercepts (or alphas), β is an N×K matrix of linear regression coefficients

(or betas), and εt is an N -vector of model disturbances such that E[εt | zKt] = 0 and E[εtε
′
t] = Σ.

If a portfolio of the K benchmark portfolios is mean-variance efficient (i.e. it minimizes variance for

a given level of expected return), then E[zt] = βE[zKt]. These N conditions of the usual expected

return-beta representation can be assessed by testing the null hypothesis:

HE : a = 0, (2)
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in the context of model (1). Observe that forming P portfolios of the test assets with weights

ωp to deal with large N amounts to testing Hp
0 : ω′pa = 0, for p = 1, ..., P , as opposed to HE

in (2). Gungor and Luger (2013) use a split-sample technique to formalize this approach without

introducing any of the data-snooping size distortions (i.e. the appearance of statistical significance

when the null hypothesis is true) discussed in Lo and MacKinlay (1990). It is clear, however, that

a = 0 implies ω′pa = 0, but not vice versa. Indeed, Hp
0 may hold even if HE is false.

GRS propose a multivariate F test of HE that all the pricing errors comprising the vector a are

jointly equal to zero. Their test assumes that the vectors of disturbance terms εt, t = 1, ..., T , in

(1) are independent and normally distributed around zero with a cross-sectional covariance matrix

that is time-invariant, conditional on the T × K collection of factors ZK = [zK1, ..., zKT ]′; i.e.,

εt |ZK ∼ i.i.d. N(0,Σ). Under normality, the methods of maximum likelihood and ordinary least

squares (OLS) yield the same unconstrained estimates of a and β:

â = z̄− β̂z̄Kt,

β̂ =

[
T∑
t=1

(zt − z̄)(zKt − z̄K)′

][
T∑
t=1

(zKt − z̄K)(zKt − z̄K)′

]−1

,

where z̄ = T−1
∑T

t=1 zt and z̄K = T−1
∑T

t=1 zKt. With â and β̂ in hand, the unconstrained estimate

of the disturbance covariance matrix is found as

Σ̂ =
1

T

T∑
t=1

(
zt − â− β̂zKt

)(
zt − â− β̂zKt

)′
. (3)

For the constrained model, which sets the vector a in (1) equal to zero, the estimates are

β̂0 =

[
T∑
t=1

ztz
′
Kt

][
T∑
t=1

zKtz
′
Kt

]−1

,

Σ̂0 =
1

T

T∑
t=1

(
zt − β̂0zKt

)(
zt − β̂0zKt

)′
. (4)

The GRS test statistic for HE is

JE,1 =
(T −N −K)

N

[
1 + z̄′KΩ̂−1z̄K

]−1
â′Σ̂−1â, (5)

where Ω̂ = T−1
∑T

t=1(zKt− z̄K)(zKt− z̄K)′. Equivalently, the GRS test statistic can be written as

JE,1 =
(T −N −K)

N

[
|Σ̂0|
|Σ̂|
− 1

]
, (6)
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which shows that JE,1 can be interpreted as an LR test (Campbell et al., 1997, Ch. 5). Under the

null hypothesis HE , the statistic JE,1 follows a central F distribution with N degrees of freedom in

the numerator and (T −N −K) degrees of freedom in the denominator.

2.2 Mean-variance spanning

Mean-variance spanning occurs when the minimum-variance frontier of rKt (with K ≥ 2) is the

same as the minimum-variance frontier of rKt and rt. To formulate the spanning hypothesis,

consider the statistical model:

rt = a + βrKt + εt, (7)

where the disturbance vector εt now satisfies E[εt | rKt] = 0 and E[εtε
′
t] = Σ. Note that this model

is specified in terms of returns, not excess returns. HK show that mean-variance spanning imposes

on model (7) the 2N restrictions:

HS : a = 0, δ = 0, (8)

where δ = ιN −βιK and ιi is an i-vector of ones. When HS holds, then for every test asset, we can

find a portfolio of the K benchmark assets that has the same mean (since a = 0 and βιK = ιN )

but a lower variance than the test asset (since Cov(rKt, ε
′
t) = 0 and Σ is positive definite). In

this case, the N test assets do not improve the mean-variance frontier already spanned by the K

benchmark assets; see Kan and Zhou (2012) for more details.

Just like the GRS test, the one proposed by HK to assess the spanning hypothesis HS assumes

that the disturbances in (7) are normally distributed. Specifically, if we let the T ×K collection of

benchmark returns be collected in RK = [rK1, ..., rKT ]′, then the exactness of the HK test rests on

the assumption that εt |RK ∼ i.i.d. N(0,Σ).

For the unconstrained model, the OLS parameter estimates resemble those for the GRS efficiency

test. In the case of model (7), they are given by

â = r̄− β̂r̄Kt,

β̂ =

[
T∑
t=1

(rt − r̄)(rKt − r̄K)′

][
T∑
t=1

(rKt − r̄K)(rKt − r̄K)′

]−1

,

where r̄ = T−1
∑T

t=1 rt and r̄K = T−1
∑T

t=1 rKt. The unconstrained estimate of the disturbance
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covariance matrix is then

Σ̂ =
1

T

T∑
t=1

(
rt − â− β̂rKt

)(
rt − â− β̂rKt

)′
. (9)

Following Campbell et al. (1997, Ch. 6), the restrictions in (8) can be imposed by partitioning

the matrix β into [b1,C], where the N×1 vector b1 is the first column of β and C is the remainder

N × (K − 1) matrix. Conformably, we partition the vector rKt into its first row r1t and its last

K − 1 rows r(K−1)t. With these partitions, the model in (7) can be written as

rt = a + b1r1t + Cr(K−1)t + εt,

and the constraint βιK = ιN becomes b1 + CιK−1 = ιN . Upon substitution of the restrictions

a = 0 and b1 = ιN −CιK−1, we obtain the constrained version:

rt − ιNr1t = C(r(K−1)t − ιK−1r1t) + εt. (10)

The constrained estimates are then given by

Ĉ0 =

[
T∑
t=1

(rt − ιNr1t)(r(K−1)t − ιK−1r1t)
′

]

×

[
T∑
t=1

(r(K−1)t − ιK−1r1t)(r(K−1)t − ιK−1r1t)
′

]−1

,

b̂1,0 = ιN − Ĉ0ιK−1,

Σ̂0 =
1

T

T∑
t=1

(
rt − β̂0rKt

)(
rt − β̂0rKt

)′
, (11)

where β̂0 = [b̂1,0, Ĉ0].

The HK test statistic takes the following LR form:

JS =
(T −N −K)

N

[√
|Σ̂0|
|Σ̂|
− 1

]
, (12)

and, under the null hypothesis HS , the statistic JS follows a central F distribution with 2N degrees

of freedom in the numerator and 2(T − N −K) degrees of freedom in the denominator. As Kan

and Zhou (2012) and Peñaranda and Sentana (2012) point out, the original expression given in

Huberman and Kandel (1987) contains a typo, whereby the square root is missing from the ratio

of determinants. The correct expression shown in (12) is also found in Jobson and Korkie (1989).
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3 Exact non-parametric tests

In this section we develop non-parametric bounds tests of efficiency and spanning that relax four

assumptions of the exact JE,1 and JS tests discussed previously: (i) the assumption of independent

disturbances, (ii) the assumption of identically distributed disturbances, (iii) the assumption of

normally distributed disturbances, and (iv) the restriction that N ≤ T −K − 1.

3.1 MLR framework

The specifications in (1) and (7) are special cases of the MLR model:

Y = XB + ε, (13)

where Y is a T × N matrix of dependent variables, X is a T × (K + 1) matrix of regressors,

and ε = [ε1, ..., εT ]′ is the T × N matrix of model disturbances. The parameters are collected

in B = [a,β]′, a (K + 1) × N matrix. In the case of model (1) we define Y = [z1, ..., zT ]′ and

X = [ιT ,ZK ], and for model (7) we take Y = [r1, ..., rT ]′ and X = [ιT ,RK ]. From here on we shall

make explicit when necessary the dependence on Y to distinguish some statistics computed with

the original sample of dependent variables from those computed with “bootstrap” samples, which

later will be denoted by Ỹ.

In the terminology of Berndt and Savin (1977), the mean-variance efficiency and spanning

hypotheses are prominent examples of so-called uniform linear (within equation) restrictions on the

parameters of (13) which can be written as

H0 : HB = D, (14)

where H is an h× (K + 1) matrix of constants of rank h, and D is an h×N matrix of constants.

Indeed, the efficiency hypothesis in (2) obtains upon setting H = [1, 0, ..., 0] and D = [0, ..., 0]. For

the spanning hypothesis in (8), we set

H =

 1 0 ... 0

0 1 ... 1

 , D =

 0 ... 0

1 ... 1

 .
The distinguishing feature of (14) is that the same hypothesis is tested on all the equations com-

prising the MLR system in (13); see Stewart (1997) for further discussion and examples of such

restrictions.

8



With the MLR model in (13), the unrestricted OLS estimates and residuals are given as usual

by

B̂(Y) = (X′X)−1X′Y,

ε̂(Y) = Y −XB̂(Y) = MY = Mε,

(15)

where M = I −X(X′X)−1X′. Here the ith column of B̂(Y) = [B̂1(Y), ..., B̂N (Y)] minimizes the

ith diagonal element of the sum-of-squares and cross-products matrix E = (Y −XB)′(Y −XB).

The estimated version of this matrix is

Ê(Y) = ε̂′(Y)ε̂(Y). (16)

Minimizing the diagonal sum-of-squares in E subject to the restrictions in (14) yields the following

constrained estimates and residuals:

B̂0(Y) = B̂(Y)− (X′X)−1H′
[
H(X′X)−1H′

]−1
[
HB̂(Y)−D

]
,

ε̂0(Y) = Y −XB̂0(Y) = M0Y = M0ε,

(17)

with M0 = M + X(X′X)−1H′
[
H(X′X)−1H′

]−1
H(X′X)−1X′, and where B̂(Y) and M already

appear in (15). The corresponding restricted residual sum-of-squares and cross-products matrix is

Ê0(Y) = ε̂′0(Y)ε̂0(Y). (18)

The GRS and HK test statistics in (5) and (12) are constructed specifically for the mean-

variance efficiency and spanning hypotheses in (2) and (8), respectively, which are special cases of

H0 in (14). More generally, some commonly used criteria for H0 are: (i) the LR criterion (Bartlett,

1947; Wilks, 1932), (ii) the Lawley-Hotelling trace criterion (Bartlett, 1939; Hotelling, 1947, 1951;

Lawley, 1938), (iii) the Bartlett-Nanda-Pillai trace criterion (Bartlett, 1939; Nanda, 1950; Pillai,

1955), and (iv) the maximum root criterion (Roy, 1953). All these test criteria are functions of the

roots m1, ...,mN of the determinantal equation:

∣∣Ê(Y)−mÊ0(Y)
∣∣ = 0,

where the matrices Ê(Y) and Ê0(Y) are defined in (16) and (18), respectively. Under H0 and

when certain other conditions hold, Dufour and Khalaf (2002, Theorem 3.1) show that the joint

distribution of m1, ...,mN does not depend on nuisance parameters so that test criteria obtained

as functions of these roots are pivotal (i.e. free of nuisance parameters). For this result to be
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operational, however, one needs to proceed like GRS, HK, and BDK by assuming a parametric

distribution for the disturbances of the MLR model, e.g. εt |X ∼ i.i.d. N(0,Σ). This is precisely

what we are trying to avoid here. Indeed, we wish to leave free the distribution of disturbances

and to allow for time-varying conditional covariance structures of unknown form. Moreover the

matrices Ê(Y) and Ê0(Y) become singular when N > T , meaning that none of the usual statistics

can be computed.

The test procedure we propose is also derived from (16) and (18), but does not require the

determinants |Σ̂| and |Σ̂0| seen in (6) and (12) for the GRS and HK tests, thereby avoiding the

singularity problem. The distributional theory underlying our approach rests on a multivariate

symmetry assumption, which includes the normal distribution assumed by GRS and HK as a

special case. In the following, the symbol “
d
=” stands for the equality in distribution.

Assumption 1 (Reflective symmetry). The cross-sectional disturbance vectors εt, t = 1, ..., T ,

which constitute the rows of ε in (13), are jointly continuous and reflectively symmetric so that

(ε1, ε2, ..., εT |X)
d
= (±ε1,±ε2, ...,±εT |X),

where ±εt means that the entire vector εt is assigned either a positive or negative sign with proba-

bility 1/2.

This assumption is satisfied whenever the vectors εt, for t = 1, ..., T , are continuous and re-

flectively symmetric in the sense that εt
d
= −εt, conditional on X and ετ , τ 6= t. This reflective

symmetry condition can be equivalently expressed in terms of the conditional density function as

ft(εt) = ft(−εt). Recall that a random variable x is symmetric around zero if and only if x
d
= −x,

so the symmetry assumption made here represents the most direct non-parametric extension of

univariate symmetry; see Serfling (2006) for more concepts of multivariate symmetry. The class

of distributions encompassed by Assumption 1 is very large and includes elliptically symmetric

distributions, which play a very important role in mean-variance analysis because they guarantee

full compatibility with expected utility maximization regardless of investor preferences (Berk, 1997;

Chamberlain, 1983; Owen and Rabinovitch, 1983).

Several popular models of time-varying covariances, such as (possibly high-dimensional) multi-

variate GARCH or stochastic volatility models, satisfy the symmetry condition in Assumption 1.

For example, suppose the conditional cross-sectional covariance matrix of model disturbances at
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time t is Σt and that the disturbances themselves are governed by

εt = Σ
1/2
t ηt,

where {ηt} is an i.i.d. sequence of random vectors drawn from a symmetric distribution (e.g.

multivariate normal or Student-t) and Σ
1/2
t is an N×N “square root” matrix such that Σ

1/2
t Σ

1/2
t =

Σt. If Σ
1/2
t and ηt are conditionally independent given X and ετ , τ 6= t, then Assumption 1 is

satisfied.

3.2 Test procedure

The proposed test procedure is based on equation-by-equation F statistics which can be computed

from the unrestricted and restricted OLS estimates in (15) and (17). Consider the N × 1 vector of

F statistics:

F(Y) =

(
diag

{
Ê0(Y)

}
− diag

{
Ê(Y)

})
/h

diag
{
Ê(Y)

}
/(T −K − 1)

, (19)

where Ê(Y) and Ê0(Y) are the unrestricted and restricted N × N residual sum-of-squares and

cross-products matrices in (16) and (18), respectively; diag{·} returns the diagonal elements of a

square matrix. Here h equals the number of rows of H in (14), and the division between the vectors

appearing in the numerator and denominator is performed element-wise. The ith element of the

N -vector F(Y) = [F1(Y), ..., FN (Y)]′ is the usual single-equation F statistic:

Fi(Y) =
(RSS0,i(Y)−RSSi(Y)) /h

RSSi(Y)/(T −K − 1)
,

where the residual sum-of-squares terms RSSi(Y) and RSS0,i(Y) correspond to elements [i, i] of

T Σ̂ and T Σ̂0, respectively; recall that Σ̂ is an unrestricted covariance matrix estimate as in (3)

and (9), and Σ̂0 is the restricted counterpart as in (4) and (11). Note that the degrees-of-freedom

term (T − K − 1)/h could be omitted from (19) since it is just a constant under the proposed

permutation approach.

The Fi(Y) statistics comprising F(Y) could also be calculated from the restricted and unre-

stricted sum of squared residuals of the following models:

yi = ιTai + xβi + εi, (20)

for i = 1, ..., N , where yi corresponds to column i of Y and x represents columns 2 through K + 1

of X. Here the scalar ai is the ith element of a and the K-vector βi corresponds to the ith column
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of β′. When testing the efficiency hypothesis in (2) for instance, the Fi(Y) statistics are related to

the usual t statistic for ai = 0. Indeed, let âi, β̂i denote the OLS estimates of ai, βi in (20) and

consider the following squared t statistic:

t2i =
â2
i (ι
′
TMxιT )

T σ̂2
i /(T −K − 1)

, (21)

where Mx = I − x(x′x)−1x′ is the matrix that projects onto the orthogonal complement to the

span of x, and σ̂2
i = ε̂′iε̂i/T with ε̂i = yi − ιT âi − xβ̂i. In this case with h = 1, it is well known

that Fi(Y) = t2i (Davidson and MacKinnon, 2004, p. 144).

The elements of F(Y) can be combined in different ways to obtain a joint test. A seem-

ingly natural choice is simply to use the average F statistic F̄(Y) =
∑N

i=1N
−1Fi(Y), which was

proposed by Hwang and Satchell (2012) to test the mean-variance efficiency hypothesis; see also

Affleck-Graves and McDonald (1990) for a similar idea. The average F statistic can be interpreted

geometrically in relation to the GRS statistic. To see how, consider the problem of testing the

Sharpe-Lintner version of the CAPM whereby the excess returns of the market portfolio constitute

the only factor on the right-hand side of (1). Given (21), the average F statistic can be written as

F̄(Y) = cN−1
∑N

i=1 â
2
i /σ̂

2
i with c = ι′TMxιT (T −K − 1)/T in this case. Moreover, the results of

GRS for the market model show that

â′Σ̂−1â =
µ̂2
p

σ̂2
p

−
µ̂2
b

σ̂2
b

,

where p refers to the ex post tangency portfolio constructed from the N test assets plus the bench-

mark market portfolio, b. As Hwang and Satchell (2012) explain, this last expression can be further

decomposed as

µ̂2
p

σ̂2
p

−
µ̂2
b

σ̂2
b

=
N∑
i=1

â2
i

σ̂2
i

+ ∆̂,

where the discrepancy term ∆̂ is a function of the off-diagonal elements of the disturbance variance-

covariance matrix. The left-hand side of this expression measures the ex post maximum pricing

error, whereas
∑N

i=1 â
2
i /σ̂

2
i on the right-hand side corresponds to the mean pricing error scaled

by N . The discrepancy between these two measures depends on the sample estimates of the

disturbance covariances. Hwang and Satchell (2012) argue that the average pricing error can be

more informative than the maximum pricing error.

The constant term N−1 in the definition of the average F statistic plays no role under our

proposed resampling scheme. So an equivalent test is obtained from F1(Y) =
∑N

i=1 Fi(Y), which
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corresponds to the 1-norm of the vector F(Y) since each component Fi(Y) ≥ 0. More generally,

our approach applies to any p-norm defined as

Fp(Y) =

(
N∑
i=1

Fi(Y)p

)1/p

, (22)

for an integer p ≥ 1. When p→∞, we obtain the maximum norm:

Fmax(Y) = max
{
F1(Y), ..., FN (Y)

}
, (23)

which picks out the individual F statistic suggesting the greatest violation of the null hypothesis.

In Section 4 we compare the performance of our procedure based on (22) for p = 1, ..., 4 versus

(23), and we find that power is generally increasing in p, meaning that Fmax(Y) is the preferred

statistic in the present context.

In our statistical framework built upon the reflective symmetry condition in Assumption 1, the

distribution of Fp(Y) and Fmax(Y) under H0 depends on the values of B left unspecified by the

null hypothesis. We deal with the presence of these nuisance parameters by establishing exact

bounds to the H0-distribution of the test statistics. Before doing so, it is worth emphasizing again

that (22) and (23) can be calculated even if N > T , since the constituent Fi(Y) statistics can be

calculated one equation at a time. Observe also that Fp(Y) and Fmax(Y) potentially have power

increasing with both T and N . To see this, consider the efficiency hypothesis (2) and statistic (21).

As the time series lengthens, the precision with which the ais are estimated should improve, thereby

increasing power. Furthermore, it will become more likely that non-zero ais will be detected as more

informative test assets are included in the MLR model, i.e. ones for which the “signal-to-noise”

ratio in (21) is relatively large. The simulation study in Section 4 illustrates this point.

3.2.1 Building blocks

The bounds we establish to deal with the nuisance parameters that arise in our context (i.e. the

elements of B not restricted by H0) are based on a point null hypothesis of the form:

H∗0 : H0 and B = B∗, (24)

where B∗ are specified values that ensure compatibility with the null hypothesis, i.e. so that

H∗0 ⊆ H0. Define ε∗ = Y−XB∗ and note that under H∗0 these residuals correspond to ε, the true
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model disturbances. Observe also that H∗0 in (24) depends by construction on the choice of B∗ and

so do the H∗0 -restricted residuals, ε∗.

Let s̃ = [s̃1, ..., s̃T ]′ denote a T -vector comprising independent Bernoulli random variables such

that Pr[s̃t = 1] = Pr[s̃t = −1] = 1/2, for all t, and define a bootstrap sample of dependent variables

as

Ỹ = XB∗ + s̃� ε∗, (25)

where the notation s̃� ε∗ means that, for t = 1, ..., T , the scalar s̃t multiplies every element in row

t of ε∗. Doing so preserves the contemporaneous covariance structure among the row elements of

ε∗. Then, under H∗0 in (24) and conditional on X, we have that Y
d
= Ỹ, for each of the 2T possible

realizations of Ỹ. From Theorem 1.3.7 in Randles and Wolfe (1979), we know that if Y
d
= Ỹ and

F(·) is a measurable function (possibly vector-valued) defined on the common support of Y and

Ỹ, then F(Y)
d
= F(Ỹ). For our purposes, F(Y) will denote either Fp(Y) in (22) or Fmax(Y) in

(23).

Proposition 1 (Equally likely property). Suppose the MLR model in (13) with Assumption 1

holds. Let Ỹ be a bootstrap sample generated according to (25) for a given realization of s̃ and

consider the statistic F(Ỹ) computed using the bootstrap sample. Then, under H∗0 in (24) and

given X, the 2T values of F(Ỹ) that can be obtained from all the possible realizations of s̃ are

equally likely values for F(Y), the original test statistic.

This result is a straightforward extension to the multivariate case of the general methods de-

scribed in Randles and Wolfe (1979, §11.1) for constructing distribution-free procedures. Propo-

sition 1 shows that F(Y) is pivotal under H∗0 , meaning that its bootstrap distribution does not

depend on any nuisance parameters. In principle, critical values could be found from the condi-

tional distribution of F(Y) derived from the 2T equally likely possibilities represented by F(Ỹ).

Determination of this distribution from a complete enumeration of all possible realizations of s̃

is obviously impractical. To circumvent this problem and still obtain exact p-values, we use the

Monte Carlo (MC) test technique (Barnard, 1963; Birnbaum, 1974; Dwass, 1957).

The MC test proceeds by generating M − 1 random samples Ỹ1, ..., ỸM−1, each one according

to (25). With each such sample, the statistic F(·) is computed to yield F(Ỹm) for m = 1, ...,M−1.

Proposition 1 implies that the M statistics F(Ỹ1), ...,F(ỸM−1),F(Y) are exchangeable under H∗0 .

Note that the bootstrap distribution of the F(·) statistic is discrete, meaning that ties among the
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resampled values can occur, at least theoretically. A test with size α can be obtained by applying

the following tie-breaking rule (Dufour, 2006). Draw M i.i.d. variates Um, m = 1, ...,M , from a

continuous uniform distribution on [0, 1], independently of the F(·) statistics, randomly pair the U

and F(·) statistics, and compute the lexicographic rank of
(
F(Y), UM

)
according to

R̃M
[
F(Y)

]
= 1 +

M−1∑
m=1

I
[
F(Y) > F(Ỹm)

]
+
M−1∑
m=1

I
[
F(Y) = F(Ỹm)

]
× I
[
UM > Um

]
, (26)

where I[A] is the indicator function of event A.

Upon recognizing that the pairs
(
F(Ỹ1), U1

)
, ...,

(
F(ỸM ), UM−1

)
,
(
F(Y), UM

)
are exchange-

able under H∗0 , we then know from Lemma 2.3 in Dufour (2006) that the lexicographic ranks are

uniformly distributed over the integers 1, ...,M ; i.e., Pr
[
R̃M [F(Y)] = m

]
= 1/M , for m = 1, ...,M .

So the MC p-value can be defined as

p̃M
[
F(Y)

]
=
M − R̃M

[
F(Y)

]
+ 1

M
, (27)

where R̃M
[
F(Y)

]
is the rank of

(
F(Y), UM

)
, given by (26). If αM is an integer, then the critical

region p̃M
[
F(Y)

]
≤ α has exactly size α in the sense that

Pr
[
p̃M
[
F(Y)

]
≤ α

∣∣X ] = α,

under the point null hypothesis H∗0 in (24).

The MC test of H∗0 paves the way for our proposed bounds tests of H0, the hypothesis of

interest. The basic idea is to obtain both a liberal test and a conservative test, each with nominal

level α. The null hypothesis H0 will be accepted when it is not rejected by the liberal test, and it

will be rejected when the conservative test is significant.

3.2.2 Bounds MC tests

The liberal and conservative tests are based on the point null hypothesis in (24) specified with

B∗ = B̂0, the OLS estimate of B obtained under H0. By construction, we have HB̂0 = D so that

H∗0 is compatible with H0. The H∗0 -residuals now correspond to those obtained under H0 so that

ε∗ = ε̂0, where we have dropped the dependence on Y seen in (17).

Denote by pLM
[
F(Y)

]
the associated MC p-value computed according to (27), where the super-

script indicates that this is a liberal p-value in the sense that Pr
[
p̃LM
(
F(Y)

)
> α |X

]
≤ 1−α, under

H0. The logic of the decision rule which consists of accepting H0 when p̃LM
(
F(Y)

)
> α follows from
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the fact that H∗0 ⊆ H0; i.e., if H∗0 is not rejected, then neither is H0. Dufour (2006) refers to such

a test as a local MC test.

The conservative test also focuses on H∗0 : H0 and B = B̂0, but introduces a test statistic

specifically for this point null hypothesis. Let the residual sum-of-squares and cross-products matrix

at H∗0 be written as E∗ = ε∗′ε∗, which corresponds to (18), and consider the N × 1 vector of test

statistics:

FC(Y) =

(
diag

{
E∗
}
− diag

{
Ê(Y)

})
/h

diag
{
Ê(Y)

}
/(T −K − 1)

,

whose superscript stands for conservative. When computed with the original sample Y, we have

FC(Y) = F(Y) since we set B∗ = B̂0. Observe also that diag
{
ε∗′ε∗

}
= diag

{
(̃s � ε∗)′(̃s � ε∗)

}
,

for any possible realization of s̃. So with any bootstrap sample Ỹ generated according to (25), the

following inequalities hold:

diag
{
E∗
}
≥ diag

{
Ê0(Ỹ)

}
≥ diag

{
Ê(Ỹ)

}
, (28)

where the comparisons are element-wise. This follows from the fact that an OLS restricted residual

sum of squares cannot be smaller than a less restricted one (Davidson and MacKinnon, 2004, §3.8).

The inequalities in (28) imply that F(Ỹ) ≤ FC(Ỹ).

As we did before in (22) or (23), the conservative statistics comprising the FC(·) vector can be

aggregated using any p-norm. In obvious notation, let FC(·) denote either FC
p (·) or FC

max(·). The

foregoing discussion shows that F(·) ≤ FC(·) and hence

Pr[F(·) > ζ] ≤ Pr[FC(·) > ζ], (29)

for any ζ ∈ R. To see how this result will be exploited, let ζα be a critical value such that

Pr[F(Y) > ζα |X] = α when H0 holds; similarly define ζCα via Pr[FC(Y) > ζCα |X] = α under

H∗0 . It follows from (29) that ζα ≤ ζCα , meaning that Pr[F(Y) > ζCα |X] ≤ α when F(Y) follows

its H0-distribution. The consequence is that F(Y) > ζCα ⇒ F(Y) > ζα. In words, if the joint

F bounds test based on ζCα is significant, then for sure the exact joint F test based on ζα is also

significant at level α. In order to operationalize the bounds test, we use the MC test technique.

Proposition 2 (Bounds MC p-values). Suppose the MLR model in (13) with Assumption 1 holds.

Further, consider a statistic F(Y) for testing H0 and the corresponding conservative test statistic

FC(Y). Define liberal and conservative MC p-values as

p̃LM
[
F(Y)

]
=
M − R̃M

[
F(Y)

]
+ 1

M
and p̃CM

[
F(Y)

]
=
M − R̃CM

[
F(Y)

]
+ 1

M
,
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where R̃M
[
F(Y)

]
and R̃CM

[
F(Y)

]
are the lexicographic ranks of F(Y) among F(Ỹm) and FC(Ỹm),

m = 1, ...,M −1, respectively. Here the Ỹms are bootstrap samples generated according to (25) and

the lexicographic ranks are computed as

R̃M
[
F(Y)

]
= 1 +

M−1∑
m=1

I
[
F(Y) > F(Ỹm)

]
+
M−1∑
m=1

I
[
F(Y) = F(Ỹm)

]
× I
[
UM > Um

]
,

R̃CM
[
F(Y)

]
= 1 +

M−1∑
m=1

I
[
F(Y) > FC(Ỹm)

]
+
M−1∑
m=1

I
[
F(Y) = FC(Ỹm)

]
× I
[
UM > Um

]
,

where Um, m = 1, ...,M , are i.i.d. uniform variates on [0, 1], independently of the F statistics. If

αM is an integer, then Pr
[
p̃LM
(
F(Y)

)
> α |X

]
≤ 1 − α and Pr

[
p̃CM
(
F(Y)

)
≤ α |X

]
≤ α, under

H0 in (14).

This result follows from Proposition 2.4 in Dufour (2006) on the validity of MC tests for general

statistics. An important remark about Proposition 2 above is that a given bootstrap sample Ỹm

serves to compute both F(Ỹm) and FC(Ỹm). Furthermore, the same collection of uniform draws

U1, ..., UM should be used to compute both R̃M
[
F(Y)

]
and R̃CM

[
F(Y)

]
. These requirements ensure

that the liberal and conservative MC p-values do not yield conflicting answers.

The result in Proposition 2 suggests the following MC bounds test of H0 : HB = D at level α:
Reject H0 when p̃CM

(
F(Y)

)
≤ α;

Accept H0 when p̃LM
(
F(Y)

)
> α;

Consider the test inconclusive, otherwise.

(30)

The logic of this decision rule is the same as with the well-known bounds test of Durbin and

Watson (1950, 1951) for autocorrelated disturbances in regression models. For further discussion

and examples of such bounds procedures, see Dufour (1989, 1990), Dufour and Kiviet (1996),

Stewart (1997), and Dufour and Khalaf (2002).

4 Simulation study

This section presents the results of simulation experiments to examine the performance of the

proposed procedure for testing the mean-variance efficiency and spanning hypotheses. Here we

simply use Fp and Fmax to refer to the MC test procedure based on the statistics in (22) and (23).
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The MC tests are performed at the nominal α = 0.05 significance level with M − 1 = 99 random

samples.

We consider the MLR model in (13) given for convenience again here as

yt = a + BxKt + εt, (31)

for t = 1, ..., T , where yt and xKt are interpreted as vectors of excess returns when we examine the

efficiency hypothesis, and simply as returns in the case of mean-variance spanning. The benchmark

portfolio returns are generated as standard normal variables, which is a rather innocuous choice

since the proposed tests are conditional on the realized values of xKt. Here we let K = 1, 3 and

the elements of B are uniformly distributed over [0.5, 1.5]. The model disturbances in (31) have

the following factor structure:

εt = ϕft + λet, (32)

where et ∼ N(0, I). The common factor ft evolves according to a stochastic volatility process of

the form:

ft = exp(ht/2)ηt, with ht = φht−1 + ξt, (33)

where ηt follows a Student-t distribution with 3 degrees of freedom (standardized to have unit

variance); and ξt follows a normal distribution with mean zero and variance 0.1. The specifica-

tion in (32) and (33) implies that Var(εit |Ft−1) = ϕ2
iVar(ft |Ft−1) + λ2 and Cov(εit, εjt |Ft−1) =

ϕiϕjVar(ft |Ft−1), where Ft is the time-t information set. So the autoregressive parameter φ deter-

mines the persistence over time of shocks to the cross-sectional covariance structure. We examine

two polar cases by setting the autoregressive parameter in (33) as either φ = 0 (no persistence) or

φ = 0.99 (nearly integrated), and the recursion is started with h1 = ξ1. The power of the efficiency

and spanning tests depends on the disturbance variance through the values of ϕ and λ in (32).

We draw the elements of ϕ as ϕi ∼ U [0, ϕmax] and we consider the following pairs of values for

(ϕmax, λ): (0, 0.8) and (1, 0.2). With this design, the normality assumption made by GRS and HK

is satisfied when ϕmax = 0. When examining the power of the efficiency tests, the elements of a

are generated as ai ∼ U [−0.1, 0.1]. Recall that the spanning hypothesis places restrictions on the

elements of both a and δ. So we investigate the power of the spanning tests under two scenarios:

(i) ai ∼ U [−0.1, 0.1], δi = 0, and (ii) ai = 0, δi ∼ U [−0.2, 0.2]. Finally, we let the sample size vary

as T = 60, 100 and the number of test assets as N = 50, 100, 200, 400.
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Even though we are mainly concerned with testing mean-variance efficiency and spanning when

N > T , we nevertheless include some cases in which the GRS JE,1 and the HK JS tests are

computable. As we mentioned in the introduction, Pesaran and Yamagata (2012) also develop

tests of the efficiency hypothesis (2) in large N situations. Of the two tests they propose, the one

that allows for the presence of cross-sectional correlations is computed as

JE,2 =
N−1/2

∑N
i=1

(
t2i − v

v−2

)
(

v
v−2

)√
2(v−1)
v−4 [1 + (N − 1)ρ̂2]

,

where t2i is the squared t statistic defined in (21), v = T −K − 1 is a degrees-of-freedom term, and

ρ̂2 is a threshold estimator of the average squares of pairwise disturbance correlations given by

ρ̂2 =
2

N(N − 1)

N∑
i=2

i−1∑
j=1

ρ̂2
ijI[vρ̂2

ij ≥ θN ],

with ρ̂ij = ε̂′iε̂j/
√

(ε̂′iε̂i)(ε̂
′
j ε̂j); recall that ε̂i are the OLS residuals from (20). PY suggest selecting

the threshold value via
√
θN = Φ−1

(
1 − pN/2

)
, where Φ−1(·) is the standard normal quantile

function and pN = α/(N − 1). Assuming, as in GRS, that εt |X ∼ i.i.d. N(0,Σ), as well as

some other regularity conditions, PY show that JE,2 is asymptotically N(0, 1) when mean-variance

efficiency holds. PY argue that this asymptotic result continues to hold even for non-Gaussian

disturbances, assuming that N grows at a sufficiently slower rate than T .

The empirical size and power (in percentage) of JE,1, JE,2, and the proposed Fp, for p = 1, ..., 4,

and Fmax tests are reported in Tables 1 and 2 for K = 1 and 3, respectively. Table 3 compares the

new tests for the spanning hypothesis with the HK test, JS . In each table, the symbol “-” indicates

cases when the GRS test or the HK test is not computable and the entries set in bold show the

most powerful tests. From Panel A of each table, we see that all the tests respect the nominal level

constraint. Indeed, the empirical size of the conservative MC tests is always strictly less than 5%,

as expected from the developed theory, while that of JE,1, JE,2, and JS stays relatively close to 5%.

The simulation results clearly show the power of Fp increasing in p with the best power achieved

by Fmax. Tables 1 and 2 further reveal that the power of JE,2 is far better than that of JE,1 and

the proposed tests when the model disturbances are i.i.d. both over time and in the cross-section

(φ = 0, ϕmax = 0). Note that increasing N from 60 to 100 with i.i.d. disturbances yields relatively

little additional power for the new tests, if any at all. When the disturbances are cross-sectionally

correlated, however, JE,2 is dominated by one of the other tests. The pattern is that JE,1 is the
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better test when it is computable. But as soon as N > T , the power ranking has Fmax in first place

quite far ahead of the JE,2 test. For instance, when φ = 0, ϕmax = 1, λ = 0.2 and T = 60, N = 400,

the power of Fmax is about 96% while that of JE,2 is about 31%. The reason is that the theory

underlying the use of the threshold estimator in JE,2 assumes that the correlation matrix is sparse,

i.e. with only a finite number of non-zero correlations that vanish as N grows. On the contrary,

Assumption 1 allows for any correlation structure. The power results in Tables 1 and 2 are all the

more remarkable considering the distribution-free nature of the new tests. A comparison of Tables

1 and 2 reveals that all the tests tend to have relatively lower power when K increases. The reason

why the bounds tests become more conservative is that increasing K from 1 to 3 triples the number

of nuisance parameters in the testing problem, thereby increasing the inequalities in (28).

Table 3 tells a similar story when examining the mean-variance spanning hypothesis. Here we

see that the JS test is preferred when N < T , but a larger number of test assets leaves the new

tests as the only ones available to assess the spanning hypothesis. Table 3 again shows that the Fp

and Fmax tests have low power in the i.i.d. case. As before, however, we see that the presence of

cross-sectional correlation among the model disturbances restores the power of the new tests. Our

general conclusion is that Fmax has the better power when these correlations become stronger. We

proceed next to an empirical illustration of the Fmax test.

5 Empirical application

Our empirical illustration uses monthly returns on 452 individual stocks traded on the NYSE,

AMEX, and NASDAQ markets for the 39-year period from January 1973 to December 2011 (468

months). These are all the stocks for which data is available in the Centre for Research in Securities

Prices (CRSP) monthly files for this sample period. We use the one-month U.S. Treasury bill as

the risk-free asset when forming excess returns. It is also quite common in the empirical finance

literature to test asset pricing models over subperiods owing to concerns about parameter stability.

So here we also divide the 39 years into seven 5-year, one 4-year, three 10-year, and one 9-year

subperiods. This breakdown follows Campbell et al. (1997, Ch. 5), Gungor and Luger (2009, 2013),

and Ray et al. (2009). As in Pesaran and Yamagata (2012), we complement the subperiod analysis

by performing the tests using the returns observed over 60-month rolling windows.
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5.1 Efficiency assessment

We assess the efficiency hypothesis first in the context of the Sharpe-Lintner version of the CAPM

using the excess returns of a value-weighted stock market index of all stocks listed on the NYSE,

AMEX, and NASDAQ as proxy for the market risk factor. Second, we test the more general Fama

and French (1993) three-factor model, which adds two risk factors to the CAPM specification:

(i) the average returns on three small capitalization portfolios minus the average return on three

big market capitalization portfolios, and (ii) the average return on two value portfolios minus the

average return on two growth portfolios.

Table 4 reports the p-values of the mean-variance efficiency tests, where columns 2–4 pertain to

the CAPM and columns 5–7 are for the Fama-French model. The new test procedure is applied here

with the Fmax statistic using M = 500, so the smallest possible MC p-value is 0.2%. Based on the

decision rule in (30) with α = 5%, we report only the conservative MC p-value if p̃CM
(
Fmax(Y)

)
≤ α,

whereas the liberal MC p-value is reported when p̃LM
(
Fmax(Y)

)
> α. Recall that the MC tests

may yield an inconclusive outcome when p̃CM
(
Fmax(Y)

)
> α and p̃LM

(
Fmax(Y)

)
≤ α. In these

inconclusive cases, we report both the conservative and liberal MC p-values. We set in bold the

table entries that correspond to a rejection of the null hypothesis at the 5% significance level.

Looking at the full sample results, we see that the GRS JE,1 and the MC test do not reject

efficiency in the CAPM, but the JE,2 test indicates a decisive rejection of that null hypothesis.

In the subperiods, the JE,2 and Fmax test outcomes agree in most cases, except in the 5-year

subperiod 1/03–12/07 and two of the three 10-year subperiods (1/73–12/82, 1/83–12/92). Overall,

the CAPM finds strong support from the MC test. This is further corroborated by the 60-month

rolling-window p-values shown in Panel (a) of Figure 1. We clearly see the p-values staying above

the cutoff line, indicating non-rejections of the CAPM.

Turning now to the Fama-French model, we see from Table 4 that mean-variance efficiency finds

broad support across tests and time periods. This can also be gleaned from Panel (b) of Figure 1

where the rolling-window MC p-values, while again fluctuating a lot from month to month, never

indicate a rejection of the efficiency hypothesis. Given that the CAPM is never rejected in the

subperiods by the MC test, it is then entirely coherent to find that the Fama-French portfolios are

generally efficient as well since the latter three-factor model nests the single-factor model. On the

contrary, in the 5-year subperiod 1/88–12/92 and the 9-year subperiod 1/03–12/11, the PY test

indicates a non-rejection of the CAPM at the 5% significance level but then surprisingly rejects
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the Fama-French model. The message to take away from Figure 1 is that even though it never

quite dips below the 5% cutoff line, the new non-parametric test displays non-trivial power with

empirical p-values showing a great deal of variation and often times moving towards a rejection of

the mean-variance efficiency hypothesis.

5.2 Spanning assessment

The mean-variance spanning hypothesis is evaluated in the context of the Fama-French model using

the HK test in (12) and the non-parametric Fmax test. From the results in Table 5, it is immediately

clear that mean-variance spanning is strongly rejected, suggesting that the individual stocks can

improve the efficiency frontier spanned by the three Fama-French portfolios. Over the seven 5-year

and the one 4-year subperiods, the MC test shows rejections more than half the time. On the

other hand, the spanning hypothesis is decisively rejected in the full 39-year period, in the two of

the three 10-year subperiods (1/73–12/82, 1/83–12/92), and in the 9-year subperiod (1/03–12/11),

which suggests that mean-variance spanning is less likely to hold when assessed over longer periods.

Focusing on the 60-month rolling-window results, Figure 2 shows that Fmax doesn’t reject the

spanning hypothesis in the 1980s and from the late-1990s until about 2005. The rather sustained

rejections occurring towards the end of the sample period are particularly noteworthy, since the

correlations among asset returns generally tend to increase during high volatility periods. For in-

stance, the results suggest that an investor holding the Fama-French portfolios would have benefited

from diversification during the recent financial crisis.

6 Conclusion

The starting point for the econometric analysis of linear factor asset pricing models, such as the

CAPM or APT models, is an assumption about the time-series behavior of returns. For example,

the well-known GRS and HK exact tests of mean-variance efficiency and spanning, respectively,

assume that returns, conditional on the factor portfolio realizations, are i.i.d. through time and

jointly multivariate normal. This assumption is at odds with a huge body of empirical evidence

as it precludes not only non-normalities, but also multivariate GARCH-type effects. Another

shortcoming of these tests is that they can no longer be computed when the number of test assets

(i.e. the number of equations in the MLR) is too large relative to the available time series. This is
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rather unfortunate since it is natural to try to use as many test assets as possible in order to boost

test power. Indeed, as the test asset universe expands, it should become more likely that violations

of the null hypothesis will be detected.

In this paper we have proposed an exact test procedure that overcomes these problems, with-

out imposing any parametric assumptions on the MLR disturbance distribution. Our statistical

framework leaves open the possibility of unknown forms of time-varying non-normalities and many

other distribution heterogeneities, such as time-varying conditional variances and covariances. We

derived liberal and conservative bounds on the null distribution of joint F statistics in order to deal

with the presence of nuisance parameters, and we have shown how to implement the exact test

procedure with Monte Carlo resampling techniques. The null distribution of the proposed bounds

tests is obtained conditional on the absolute values of the model residuals, since only their signs are

randomized according to (25). The Lehmann and Stein (1949) impossibility theorem shows that

such sign tests are the only ones which yield valid inference when one wishes to remain completely

agnostic about disturbance distribution heterogeneities; see also Dufour (2003) for more on this

point. It is important to bear in mind that even though we found the GRS, PY, and HK tests to

be fairly robust to deviations from their underlying assumption of i.i.d. N(0,Σ) model disturbance

vectors, there is no theoretical guarantee that this would always be the case.

A very appealing feature of our approach is that it remains applicable no matter the number

of equations in the MLR. And in fact the results of our simulation study show that the power of

the proposed tests potentially increases along both the time and cross-sectional dimensions. This

makes the new test procedure a very useful way of assessing mean-variance efficiency and spanning,

especially when the MLR includes a large number of correlated disturbances. Finally, note that

our approach applies not only to these hypotheses, but to any uniform linear restriction in the

MLR model. Investigating the performance of our test procedure for other MLR restrictions is the

subject of ongoing research.
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Table 1. Comparison of empirical size and power of mean-variance efficiency tests: 1 benchmark portfolio

φ = 0, ϕmax = 0, λ = 0.8 φ = 0, ϕmax = 1, λ = 0.2 φ = 0.99, ϕmax = 1, λ = 0.2

T N = 50 100 200 400 50 100 200 400 50 100 200 400

Panel A: Size

60 JE,1 5.2 - - - 5.4 - - - 5.2 - - -

JE,2 6.8 4.2 6.0 5.7 5.8 6.8 5.9 6.3 6.1 6.7 6.1 5.6

F1 0.0 0.0 0.0 0.0 1.8 1.2 1.4 2.1 1.0 1.3 1.4 1.3

F2 0.2 0.1 0.0 0.0 1.8 1.3 1.4 2.2 1.3 1.4 1.4 1.7

F3 0.8 0.3 0.0 0.2 1.7 1.3 1.5 2.3 1.3 1.3 1.5 1.7

F4 1.3 0.7 0.4 0.3 1.4 1.3 1.6 2.1 1.5 1.3 1.5 1.5

Fmax 1.2 1.1 1.1 0.9 1.4 1.1 1.3 1.2 1.6 1.5 1.6 0.8

100 JE,1 5.0 - - - 4.5 - - - 4.8 - - -

JE,2 6.0 5.3 5.0 5.8 6.5 6.2 5.6 6.5 6.2 6.5 5.9 6.0

F1 0.0 0.0 0.0 0.0 1.2 0.8 0.9 1.2 1.8 1.2 2.0 1.5

F2 0.1 0.0 0.0 0.0 1.4 0.9 0.9 1.3 1.7 1.2 2.1 1.6

F3 0.6 0.1 0.0 0.1 1.3 0.9 0.9 1.3 1.7 1.1 2.2 1.6

F4 1.0 0.4 0.1 0.4 1.3 1.2 0.8 1.3 1.7 1.2 2.2 1.6

Fmax 1.1 1.3 0.5 1.2 1.3 1.3 0.5 1.3 2.1 1.0 1.3 1.8

Panel B: Power with ai ∼ U [−0.1, 0.1]

60 JE,1 10.4 - - - 95.8 - - - 96.1 - - -

JE,2 40.6 63.1 85.4 98.4 30.5 33.5 29.7 31.3 35.6 37.1 36.9 38.6

F1 0.1 0.0 0.0 0.0 7.0 6.7 5.6 6.5 11.9 10.4 10.1 11.3

F2 1.0 0.6 0.2 0.1 26.9 25.8 22.8 22.8 29.9 28.9 29.1 30.6

F3 3.1 1.8 1.9 0.9 50.6 54.4 59.1 64.5 46.1 51.1 56.5 61.2

F4 3.9 3.3 3.7 3.2 61.6 72.2 79.0 85.4 55.6 64.2 73.2 79.6

Fmax 4.2 4.8 5.3 5.5 71.0 82.0 91.3 96.6 68.0 78.4 89.0 94.7

100 JE,1 42.6 - - - 100.0 - - - 100.0 - - -

JE,2 72.8 92.2 99.3 100.0 69.5 71.0 73.4 75.3 53.3 54.2 54.9 58.0

F1 0.4 0.0 0.0 0.0 18.4 14.3 12.9 14.5 23.5 23.7 24.5 25.4

F2 4.5 3.5 1.5 0.8 61.9 64.8 70.4 75.2 52.0 54.1 56.7 58.1

F3 9.1 8.4 7.0 9.5 82.5 89.9 94.2 96.5 70.5 76.8 82.9 85.7

F4 10.9 10.0 9.3 12.3 89.1 95.1 98.4 99.2 79.2 86.9 93.4 95.7

Fmax 11.1 9.8 9.7 11.4 93.7 98.3 99.7 100.0 88.6 94.8 99.0 99.8

Notes: This table reports the empirical size in Panel A and power in Panel B of the GRS JE,1 test, the PY JE,2 test, and the proposed MC bounds

tests with M = 100 based on the Fp, p = 1, ..., 4, and Fmax statistics. The MLR model disturbances are i.i.d. both over time and in the cross-section

when φ = 0 and ϕmax = 0; a higher value of ϕmax implies stronger cross-sectional covariances; a non-zero value of φ makes the covariance structure

time-dependent. Entries are percentage rates, the nominal level is 5%, and the results are based on 1000 replications. The symbol “-” is used whenever

the GRS test is not computable and the entires set in bold indicate the most powerful test.

28



Table 2. Comparison of empirical size and power of mean-variance efficiency tests: 3 benchmark portfolio

φ = 0, ϕmax = 0, λ = 0.8 φ = 0, ϕmax = 1, λ = 0.2 φ = 0.99, ϕmax = 1, λ = 0.2

T N = 50 100 200 400 50 100 200 400 50 100 200 400

Panel A: Size

60 JE,1 5.0 - - - 5.0 - - - 3.9 - - -

JE,2 4.8 6.9 6.2 4.7 6.7 6.0 6.0 6.1 7.5 4.8 5.8 6.3

F1 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.1 0.2 0.2 0.1 0.0

F2 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.1 0.2 0.3 0.2 0.0

F3 0.0 0.1 0.0 0.0 0.0 0.4 0.3 0.1 0.2 0.3 0.2 0.1

F4 0.0 0.2 0.0 0.0 0.1 0.3 0.3 0.1 0.1 0.3 0.2 0.1

Fmax 0.1 0.5 0.1 0.2 0.2 0.3 0.3 0.1 0.1 0.1 0.5 0.0

100 JE,1 4.7 - - - 5.0 - - - 5.4 - - -

JE,2 5.6 6.1 5.6 6.1 6.2 6.7 7.1 8.0 5.0 6.2 6.1 7.7

F1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.4 0.2 0.4

F2 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.4 0.2 0.5

F3 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.4 0.2 0.5

F4 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.4 0.2 0.5

Fmax 0.1 0.0 0.0 0.1 0.2 0.2 0.2 0.0 0.3 0.1 0.0 0.1

Panel B: Power with ai ∼ U [−0.1, 0.1]

60 JE,1 8.8 - - - 89.0 - - - 88.9 - - -

JE,2 39.9 62.2 83.4 97.6 33.8 29.3 31.2 29.1 37.3 34.2 36.7 35.0

F1 0.0 0.0 0.0 0.0 0.4 0.6 0.8 0.6 1.3 0.9 0.7 0.7

F2 0.0 0.0 0.0 0.0 2.7 1.6 2.0 1.8 5.1 3.9 3.1 4.3

F3 0.0 0.1 0.0 0.0 10.4 7.7 9.7 8.0 13.6 13.2 10.9 14.8

F4 0.3 0.3 0.0 0.0 20.6 21.3 24.9 27.0 22.2 22.8 26.4 32.0

Fmax 0.9 0.6 0.7 0.6 35.1 47.5 54.3 71.8 35.5 44.7 58.9 68.5

100 JE,1 42.7 - - - 100.0 - - - 100.0 - - -

JE,2 67.8 90.3 99.7 100.0 63.1 66.9 70.4 73.2 50.4 51.8 53.9 56.2

F1 0.0 0.0 0.0 0.0 1.5 1.9 1.1 1.0 4.8 3.8 3.8 4.7

F2 0.0 0.0 0.0 0.0 12.7 11.6 8.8 7.9 17.4 17.5 15.3 18.9

F3 0.2 0.0 0.0 0.0 37.0 44.2 44.6 46.4 35.0 41.3 40.7 43.7

F4 0.5 0.4 0.1 0.2 55.2 67.8 73.2 79.3 48.1 59.1 64.3 68.4

Fmax 0.9 1.6 1.3 1.8 75.0 88.0 95.5 98.6 70.6 83.1 92.5 95.7

Notes: This table mimics Table 1, except that here the returns are generated according to the MLR model with K = 3.
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Table 3. Comparison of empirical size and power of mean-variance spanning tests: 3 benchmark portfolios

φ = 0, ϕmax = 0, λ = 0.8 φ = 0, ϕmax = 1, λ = 0.2 φ = 0.99, ϕmax = 1, λ = 0.2

T N = 50 100 200 400 50 100 200 400 50 100 200 400

Panel A: Size

60 JS 4.9 - - - 5.7 - - - 4.2 - - -

F1 0.0 0.0 0.0 0.0 0.6 0.4 0.9 1.0 0.5 1.1 0.7 0.5

F2 0.0 0.0 0.0 0.0 0.7 0.4 0.9 1.1 0.5 1.2 0.7 0.6

F3 0.1 0.0 0.0 0.0 0.7 0.4 1.0 1.1 0.5 1.2 0.7 0.7

F4 0.3 0.2 0.0 0.0 0.7 0.4 0.9 1.2 0.4 1.0 0.6 0.6

Fmax 0.4 0.4 0.4 0.2 1.0 0.7 0.8 0.8 1.1 0.6 0.8 0.6

100 JS 6.3 - - - 5.4 - - - 5.2 - - -

F1 0.0 0.0 0.0 0.0 0.6 0.8 0.4 0.5 0.7 0.6 0.9 0.6

F2 0.0 0.0 0.0 0.0 0.5 1.1 0.5 0.5 0.9 0.7 0.9 0.6

F3 0.0 0.0 0.0 0.0 0.6 1.2 0.7 0.5 0.9 0.7 1.1 0.6

F4 0.4 0.0 0.2 0.0 0.8 1.0 0.7 0.5 0.9 0.8 1.1 0.5

Fmax 0.9 0.7 0.8 0.9 0.8 0.6 0.6 0.7 0.8 1.0 1.0 0.3

Panel B: Power with ai ∼ U [−0.1, 0.1], δi = 0

60 JS 7.7 - - - 64.5 - - - 65.9 - - -

F1 0.0 0.0 0.0 0.0 2.5 1.5 2.6 3.0 3.0 3.7 3.1 2.3

F2 0.1 0.0 0.0 0.0 6.1 4.0 4.8 5.7 9.4 9.3 7.6 7.4

F3 0.4 0.3 0.0 0.0 16.9 14.2 15.1 15.3 17.4 19.8 20.5 18.8

F4 1.8 0.6 0.2 0.1 27.4 30.7 35.4 36.7 25.3 32.6 36.7 38.0

Fmax 3.2 1.4 1.5 2.0 45.1 54.9 68.7 78.2 39.5 56.4 66.3 74.2

100 JS 26.2 - - - 100.0 - - - 100.0 - - -

F1 0.0 0.0 0.0 0.0 5.6 4.7 5.0 3.7 10.9 11.2 11.1 10.6

F2 0.1 0.0 0.0 0.0 22.5 19.8 20.0 17.6 24.4 25.6 26.5 24.4

F3 1.3 0.4 0.2 0.0 49.0 55.6 60.9 60.2 42.4 48.9 52.0 52.3

F4 1.8 1.5 1.9 0.5 64.2 74.4 82.4 87.2 54.6 65.2 71.2 76.8

Fmax 2.5 4.0 4.0 3.5 81.9 92.6 97.5 99.2 75.7 86.9 93.4 98.1

Panel C: Power with ai = 0, δi ∼ U [−0.2, 0.2]

60 JS 10.2 - - - 73.7 - - - 73.5 - - -

F1 0.0 0.0 0.0 0.0 4.0 2.4 3.7 4.5 5.8 6.7 5.7 5.7

F2 0.0 0.0 0.0 0.0 13.0 10.0 10.9 12.5 16.7 16.9 16.6 13.9

F3 0.5 0.1 0.0 0.0 30.0 31.7 35.2 38.8 30.1 34.9 33.5 37.1

F4 1.3 1.0 0.6 0.1 43.1 49.7 60.3 65.4 42.5 51.2 53.2 57.7

Fmax 2.3 2.3 2.9 1.6 58.0 73.0 82.7 90.7 58.2 70.1 78.1 89.9

100 JS 38.8 - - - 100.0 - - - 100.0 - - -

F1 0.0 0.0 0.0 0.0 11.7 9.1 9.1 7.7 17.2 17.9 18.2 17.6

F2 0.1 0.2 0.0 0.0 45.7 41.6 46.7 46.5 39.3 40.7 39.9 40.0

F3 1.6 0.8 0.5 0.2 73.0 78.0 83.4 85.7 60.0 64.4 68.4 71.8

F4 2.5 2.3 2.4 1.5 83.5 90.5 93.3 96.6 71.5 79.1 84.3 89.2

Fmax 4.3 5.8 5.8 6.4 91.2 96.8 99.9 99.9 85.2 93.7 97.2 99.3

Notes: This table reports the empirical size in Panel A and power in Panels B and C of the HK JS test and the proposed MC bounds tests with

M = 100 based on the Fp, p = 1, ..., 4, and Fmax statistics. The MLR disturbances are i.i.d. both over time and in the cross-section when

φ = 0 and ϕmax = 0; a higher value of ϕmax implies stronger cross-sectional covariances; a non-zero value of φ makes the covariance structure

time-dependent. Entries are percentage rates, the nominal level is 5%, and the results are based on 1000 replications. The symbol “-” is used

whenever the HK test is not computable and the entires set in bold indicate the most powerful test.
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Table 4. Mean-variance efficiency tests: CAPM and Fama-French model

CAPM Fama-French Model

Time period JE,1 JE,2 Fmax JE,1 JE,2 Fmax

39-year period

1/73–12/11 0.999 0.000 0.302 0.956 0.055 0.260

5-year subperiods and a 4-year subperiod

1/73–12/77 - 0.487 0.544 - 0.638 0.312

1/78–12/82 - 0.178 0.158 - 0.989 0.768

1/83–12/87 - 0.258 0.910 - 0.482 0.916

1/88–12/92 - 0.419 0.674 - 0.038 0.154

1/93–12/97 - 0.972 0.986 - 0.929 0.640

1/98–12/02 - 0.999 0.852 - 0.999 0.994

1/03–12/07 - 0.000 0.274 - 0.000 0.360

1/08–12/11 - 0.973 0.918 - 0.986 0.778

10-year subperiods and a 9-year subperiod

1/73–12/82 - 0.003 0.196 - 0.637 0.770

1/83–12/92 - 0.000 0.662 - 0.000 0.028, 0.900

1/93–12/02 - 0.802 0.948 - 0.988 0.756

1/03–12/11 - 0.076 0.196 - 0.045 0.112

Notes: The results are based on 452 individual stock returns. The entries are p-values and

those set in bold represent significant cases at the 0.05 level. The conservative MC p-value

is reported when p̃CM
(
Fmax(Y)

)
≤ 0.05, whereas the liberal MC p-value is reported when

p̃LM
(
Fmax(Y)

)
> 0.05, and both are reported when the outcome is inconclusive. The symbol

“-” is used whenever the GRS test is not computable.
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Table 5. Mean-variance spanning tests: Fama-French model

Time period JS Fmax

39-year period

1/73–12/11 0.029 0.002

5-year subperiods and a 4-year subperiod

1/73–12/77 - 0.014

1/78–12/82 - 0.066

1/83–12/87 - 0.170

1/88–12/92 - 0.022

1/93–12/97 - 0.010

1/98–12/02 - 0.012, 0.070

1/03–12/07 - 0.038

1/08–12/11 - 0.016

10-year subperiods and a 9-year subperiod

1/73–12/82 - 0.004

1/83–12/92 - 0.004

1/93–12/02 - 0.020, 0.152

1/03–12/11 - 0.010

Notes: The results are based on 452 individual stock returns. The

entries are p-values and those set in bold represent significant cases

at the 0.05 level. The conservative MC p-value is reported when

p̃CM
(
Fmax(Y)

)
≤ 0.05, whereas the liberal MC p-value is reported

when p̃LM
(
Fmax(Y)

)
> 0.05, and both are reported when the

outcome is inconclusive. The symbol “-” is used whenever the HK

test is not computable.
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(a) Mean-variance efficiency tests: CAPM

(b) Mean-variance efficiency tests: Fama-French model

Figure 1. Time variation in p-values (as percentage rates) of the Fmax test of mean-variance efficiency based

on the CAPM (panel a) and the 3-factor Fama-French model (panel b) using a 60-month rolling window. The

conservative MC p-value is plotted when p̃CM
(
Fmax(Y)

)
≤ 5%, whereas the liberal MC p-value is plotted when

p̃LM
(
Fmax(Y)

)
> 5%. The discontinuities in the series indicate periods of inconclusive test outcomes.
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Mean-variance spanning tests: Fama-French model

Figure 2. Time variation in p-values (as percentage rates) of the Fmax test of mean-variance spanning based

on the 3-factor Fama-French model using a 60-month rolling window. The conservative MC p-value is plotted when

p̃CM
(
Fmax(Y)

)
≤ 5%, whereas the liberal MC p-value is plotted when p̃LM

(
Fmax(Y)

)
> 5%. The discontinuities in

the series indicate periods of inconclusive test outcomes.
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