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Résumé 
Les équations en eaux peu profondes, encore appelées équations de Saint-Venant, sont 

utilisées dans de nombreux cas importants comme les fleuves, les lacs, les estuaires et les 

océans. La conservation de certaines quantités est une propriété importante qui est 

habituellement désirée pour assurer la précision des simulations à long terme et également 

pour le cas des écoulements complexes avec présence d'ondes de choc.  Cette thèse 

examine tout d'abord la formulation de schémas semi-Lagrangiens, qui sont bien connus 

pour demeurer stables pour des nombres très élevés de CFL.  Cependant, ces schémas 

perdent leur propriété de stabilité lorsque la conservation totale des quantités, qui est 

cruciale pour une simulation correcte les ondes de chocs, est imposée.  Un schéma semi-

Lagrangien entièrement conservatif est développé ici et ce dernier demeure stable pour des 

nombres élevés de CFL. L'approche proposée est ensuite étendue à la méthode des 

caractéristiques (MOC) et une version conservative du schéma MOC est développée.  

Contrairement au schéma MOC original, qui ne peut pas simuler correctement les ondes de 

choc à cause du manque de conservation, le schéma proposé les simule avec succès. De 

plus, le nouveau schéma présente des avantages sur le plan numérique, tant pour la 

diffusion et la dispersion que pour la stabilité. Le cas 2D est ensuite considéré, et la 

méthode de volume finie est utilisée à cause de son conservation inhérente. 

Le cas 2D est ensuite considéré, et la méthode de volumes finis est utilisée à cause de ses 

qualités inhérentes de conservation. La plupart des méthodes numériques disponibles sont 

sensibles au problème du déséquilibre entre les termes source et de flux, particulièrement 

en présence d'un maillage non structuré.  D'autre part, la plupart des schémas numériques 

disponibles (par exemple les schémas HLL et ENO) induisent un niveau élevé de diffusion 

numérique en simulant des écoulements tourbillonnaires. Trois approches différentes, 

applicables sur des maillages non structurés sont développées ici. Elles peuvent simuler des 

conditions complexes d'écoulement comprenant les topographies variables, les écoulements 

tourbillonnaires, trans-critiques et discontinus. 

Finalement plusieurs méthodes de volumes finis upwind sont utilisées, via une analyse de 

type Fourier, pour évaluer le niveau d`amortissement des modes de Rossby. Contrairement 

aux bons résultats habituellement obtenus par les méthodes de volumes finis upwind dans 
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le cas d'écoulements dominés par la convection, on remarque ici que les ondes de Rossby 

sont amorties de manière excessive. 

 

Abstract 
Shallow water equations arise in many important cases such as in rivers, lakes, estuaries 

and oceans. Conservation is an important property which is usually desired to ensure the 

accuracy of the long term simulations and also for the case of complex flows with shock-

waves.   This thesis begins with semi-Lagrangian schemes, which are well known to remain 

stable for very high CFL numbers. However, they lose their high stability property when 

the fully conservative property, which is crucial for a correct simulation of shock waves, is 

imposed. An inherently fully conservative semi-Lagrangian scheme is developed here 

which remains stable for high CFL numbers. The proposed approach is then extended to the 

method of characteristics (MOC) and a conservative extension of MOC is developed. 

Contrary to the original MOC, which is unable to simulate shockwaves due to the lack of 

conservation, the proposed scheme easily simulates them. Further, the new scheme presents 

favorable features in terms of numerical diffusion and dispersion. The 2D case is then 

considered, and the finite volume method is employed due to its inherent conservation 

properties. Most available numerical methods face the problem of imbalance between the 

source and flux terms, particularly when unstructured grids are used. On the other hand, 

most available numerical schemes (such as the HLL and the ENO schemes) induce a high 

level of numerical diffusion in simulating recirculating flows. Three different approaches 

using unstructured grids are successfully developed here. The new schemes can simulate 

complex flow conditions including recirculating, trans-critical and discontinuous flows 

over variable topographies. Finally, the performance of the upwind finite volume schemes, 

for Rossby waves, is studied using a Fourier analysis approach. Contrary to the usual good 

results obtained for those schemes in the case of convection dominated flows, it is observed 

here that they lead to an excessive damping of the Rossby modes. 
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CHAPTER 1 

Introduction 
Shallow water equations arise in many important cases such as rivers, lakes, estuaries and 

oceans. Mathematical modeling of these flows is of special importance for many practical 

applications such as the design of hydraulic structures and prediction of natural events. 

Conservation is an important property which is usually desired to ensure the accuracy of  

numerical simulation. Particularly, in the long term simulations, conservation may be 

necessary to prevent accumulation of errors in time. Further, some important cases of 

shallow water flows are supercritical or even a complex combination of super and sub 

critical regimes. Those include flows produced by sudden opening of control gates in 

channels, flows over the chute of spillways and the dam-break flows. Such flows usually 

contain shock waves. Conservation property is then necessary for a correct simulation of 

shock waves. 
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On the other hand, most numerical schemes encounter a high level of numerical oscillations 

in simulating complex flows. Different approaches have been developed in the literature to 

overcome the instabilities and preventing the oscillations. Characteristics play an essential 

role in most remedies designed for this purpose. However, most characteristics-based 

schemes lead to numerical problems such as the lack of conservation (e.g. the method of 

characteristics and most semi Lagrangian schemes) and imbalance between different terms 

(e.g. the upwind finite volume methods). The purpose of the present research is therefore 

the development of conservative, characteristic-based schemes for shallow flows in 1D and 

2D, leading to a low level of numerical diffusion and oscillations.  

Finally, shallow water equations arise also in the modeling of ocean circulation (see e.g. 

Vreugdenhil, 1994), where in addition to the convective effects, the Coriolis term plays an 

important role and the performance of the upwind schemes in this case needs to be studied. 

In particular, the damping of Rossby wave by a numerical scheme is a very important issue 

in ocean circulation modeling. This is because most energy-transfer in the ocean scale is  

due to these waves. An excessive damping of the Rossby modes is therefore unacceptable 

and leads to erroneous results. The very good performance of the conservative upwind 

schemes for those flows motivates the following question: How well these schemes 

perform for large scale flows where the Coriolis parameter plays a key role? This issue is 

hence studied in the present research. 

This thesis is organized as follows: 

Chapter 2 deals with the semi-Lagrangian schemes, which are well known to remain stable 

for very high CFL numbers. Most existing semi-Lagrangian schemes are non-conservative 

or only mass conservative, while a fully conservation property is crucial for a correct 

simulation of shock waves. The problem is that, by the imposition of the fully conservative 

property, the existing semi-Lagrangian schemes lose their high stability property. In this 

chapter, an inherently fully conservative semi-Lagrangian scheme is developed which 

remains stable for high CFL numbers.  

The proposed approach is then extended to the method of characteristics (MOC) and a 

conservative extension of MOC is proposed in chapter 3. While the original method of 
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characteristics is unable to simulate shockwaves due to the lack of conservation, the 

proposed scheme simulates them very well with a low level of numerical diffusion and 

dispersion and it is able to simulate complex cases of wave interaction, which is beyond the 

capability of most existing schemes. This is a considerable improvement which allows for 

the extension of characteristics schemes to a wide range of real applications.  

The 2D shallow water equations are then considered in chapters 4 and 5. Since in most real 

problems, a complex geometrical boundary is encountered, unstructured grids are usually 

preferred. They present the desired flexibility for local mesh refinement and complex 

boundaries. In the past two decades, finite volume methods have become popular due to 

their inherent conservation property, straightforward formulation for unstructured grids and 

capability of capturing complex flows by using the characteristic-based schemes for the 

calculation of the numerical flux. However, in the 2D case, the main difficulty in most 

existing schemes arises in the treatment of source and flux terms, particularly with 

unstructured grids. This is due to the imbalance between the source and flux terms. The 

study of this problem is the main subject of the present research in chapters 3 and 4. It has 

led in the development of three new well-balanced schemes designed for unstructured 

grids.  

In chapter 4, a new well-balanced mass conservative scheme is introduced. For this scheme, 

a modification of the Roe scheme is proposed here to obtain the desired balance. Further, 

the gravity terms are extracted from the flux terms and they are combined with the source 

terms. The resulting scheme is found to have a good performance not only in the case of 

flows with variable topography, but also for circulating flows (compared to the 

experimental data). Moreover, the balance property of this scheme holds for the case of 

unstructured grids as well. However, this scheme is not fully conservative and may give 

rise to problems in presence of strong shocks. 

 In Chapter 5, we introduce two new fully conservative schemes to overcome this problem, 

and both theoretical and numerical evidences are given to show that the crucial 

compatibility property holds. The resulting schemes maintain all the satisfactory 

performances of the previous method (presented in chapter 4) and moreover they simulate 

satisfactorily very strong shocks. Further, the two new methods proposed in this chapter, 
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directly deal with the source terms without changing the flux terms. Therefore, contrary to 

the approach presented in chapter 4, the new methods could be combined with most 

existing Riemann solvers.  

In the previous chapters, the Coriolis parameter has not been considered and the study has 

been restricted to the small scale flows where convection and gravity effects are dominant. 

The very good performance of the conservative upwind schemes for those flows motivates 

the question that how well these schemes perform for large scale flows where the Coriolis 

parameter plays a key role. This question is the main subject of the last chapter and we 

employ the Fourier analysis approach to study the behavior of upwind finite volume 

schemes for both gravity and Rossby waves. 

Finally in Chapter 6, the performance of upwind finite volume schemes is examined by a 

Fourier analysis approach including the study of phase speed, group velocity, damping and 

dispersion for the gravity waves and most importantly the possible damping of the Rossby 

waves. In particular, the latter is studied numerically as well and the results are compared 

with those obtained by using a slope limiter approach. Some concluding remarks complete 

the study. 

 

CHAPTER 2 

Conservative semi-implicit semi-Lagrangian scheme for 
simulation of shallow flows 
In this chapter, we study the semi-Lagrangian method.  The feature of this scheme is that it 

remains stable for high CFL numbers. However, the lack of a full conservation property 

leads to mass loss and/or an incorrect simulation of shock waves. Here, the SL integrated 

mass method (SLIM) of Laprise and Plante (1995) is extended to the conservative form of 

the shallow-water equations and it is combined with a semi-implicit semi-Lagrangian one. 

The new scheme ensures the full conservation property while preserving the high stability 

of classical semi-Lagrangian methods. 
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Une methode conservative semi-Lagrangienne semi implicite 
pour la simulation de écoulements peu profond.   
 

Résumé 
Un schéma semi-Lagrangien (SL) entièrement conservatif est présenté pour résoudre les 

équations d'écoulements peu profonds. Des schémas SL entièrement conservatifs existent, 

mais ils assurent seulement la conservation de la masse alors que la quantité de mouvement 

n'est pas entièrement conservée.  Les termes de quantité de mouvement, qui sont 

principalement responsables de la structure de l'onde dans les écoulements de type ruptures 

de barrage, sont ensuite discrétisés en employant des schémas non conservatifs 

traditionnels eulériens.  En présence de grandes variations de la surface de l'eau (par 

exemple les écoulements de type de ruptures de barrage), une telle approche mène à une 

vitesse de choc incorrecte et a des résultats qui oscillent fortement.  En effet, si la 

conservation de la quantité de mouvement est nécessaire, l'utilisation des schémas existants 

ne sera possible que pour de petits pas de temps. Dans cet article nous présentons un 

schéma entièrement conservatif qui peut exactement simuler les écoulements peu profonds 

avec de grands pas de temps.  Dans notre méthode, tous les termes de quantité de 

mouvement, sont traités de façon conservative, ce qui assure une vitesse précise du choc.  

La propriété de conservation (totale) améliore considérablement les résultats des schémas 

SL pour un large éventail d'applications pratiques. 

 

Conservative semi-implicit semi-Lagrangian scheme for 
simulation of shallow flows 
 

A. MOHAMMADIAN, D. Y. LE ROUX 
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Abstract.  
A fully conservative semi-Lagrangian (SL) scheme is presented to solve for the shallow-

water equations. Existing inherently conservative SL schemes only ensure the conservation 

of mass while momentum is not fully conserved. The gravity terms, which are mainly 

responsible for the wave structure in dam break flows, are then discretized by using 

traditional non-conservative Eulerian schemes. In the presence of large variations in water 

surface (e.g. dam-break type flows), such an approach leads to incorrect shock speed and 

highly oscillatory results. Indeed, if the conservation of the gravity terms is forced, the use 

of existing schemes will be restricted to small time steps. In this paper we present a fully 

conservative scheme which can accurately simulate the shallow flows with a large time 

step. In our approach, both convective and gravitational terms are treated in a 

conservative manner, which ensures an accurate shock speed. The fully conservation 

property improves considerably the performance of common SL schemes for a wide range 

of practical applications.  

Key Words:  Conservative, semi-Lagrangian, semi implicit, shallow-water, dam-break  

 

 

1. Introduction 
Hyperbolic systems arise in many cases like shallow flows and gas dynamics. The flow 

regime changes from subcritical to supercritical in many fluvial flows, and the numerical 

method should be able to analyze these two types of flows simultaneously. Another 

difficulty is concerned with flows presenting discontinuous surface like dam break flows. 

Extensive research has been performed in this area and different flux vector splitting and 

flux difference splitting methods have been proposed. Most of these methods have the 

capability of shock capturing with a high level of accuracy in few computational cells, and 

in most of them, the flux vector is determined based on the wave propagation structure.  
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On the other hand, SL schemes have become very popular in CFD to solve for the Navier-

Stokes (Xiu and Karniadakis, 2001) and Hamilton Jacobi equations (Falcone and Ferrettiy, 

2001), Magneto Hydrodynamics, ocean modeling (Zerroukat, Wood and Staniforth, 2002) 

and weather simulations (Temperman, Hortal and Simmons, 2001). The SL method greatly 

enhances computational efficiency because it can usually circumvent the CFL bound 

associated with traditional Eulerian advection schemes. The time step is then adjusted by 

the accuracy considerations instead of stability. The possibility of stable integrations with 

large Courant numbers is not the only virtue of a SL advection scheme. It also gives good 

phase speeds with little numerical dispersion compared to Eulerian schemes when a high 

order interpolation is used. For a review of traditional SL schemes and related issues see 

Staniforth and Coté (1991). 

Existing SL schemes cannot be used directly to solve the shallow-water equations, 

because of the gravity effects, as explained later. One possible approach consists of 

combining a semi-implicit discretization of the gravity terms with a SL advection scheme 

(Robert, 1981). This combination has been successfully used in numerical weather 

prediction (Staniforth and Coté, 1991) and also as a proof-of-concept study in ocean 

modeling using unstructured meshes by Le Roux, Lin and Staniforth (2000). 

Most of existing SL schemes developed to solve shallow-water equations, fail to simulate 

dam-break type flows. Contrary to Eulerian flux-form method, a common problem 

encountered with the SL approach is the lack of mass conservation and this is due to the 

dissipative effect of the interpolation procedure. Exact conservation is crucial to correctly 

predict the shock speed in dam-break flows and also for long-term simulations. 

Many studies have been performed on this issue and a number of conservative SL 

schemes have been proposed in the literature. Those schemes can be grouped in two 

categories: corrective, and inherently conservative. The first group was proposed by 

Priestley (1993), in which a posteriori correction is used to restore the desired quantity 

whilst minimizing change to the original solution. Such a method has been applied to the 

shallow-water equations by Gravel and Staniforth (1994). In most schemes of the second 

type, either a constraint on the interpolating polynomial is applied to exactly satisfy the 

conservation law, or the SL method is applied directly to the conservative form of the 

equations. Attention herein is focused on the numerical methods of the second group, 
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which have been considerably improved in the past few years, and they will be discussed in 

section 3-2.  

Another difficulty arises in the case of strong discontinuities such as the dam-break 

problem. For a correct simulation of the shock speed, mass conservation is not sufficient, 

and the gravity source term should be also conserved. Indeed, the shallow-water equations 

in their fully conservative (FC) form (where the gravity effect is considered as a flux term) 

should be satisfied. Most available conservative SL schemes only ensure mass 

conservation, and considered the gravity terms in a non-conservative manner (Lin and 

Rood, 1997). On the other hand, imposing the conservation of the gravity terms leads to a 

loss of stability when large time steps are used.  

Due to the above mentioned problems only few researchers have used the SL methods for 

the dam-break type flows. Among them, Garcia Navarro and Priestly (1994) (GP) proposed 

for the first time a fully conservative scheme by employing a corrective (first group) 

method. They reported that SL methods are attractive for dam-break type flows due to their 

accuracy and the possibility of using CFL numbers greater than 1. However, the GP 

scheme may fail to preserve mass, momentum and phase when systems of equations are 

considered instead of the advection equation alone. This is a consequence of using the 

corrective approach to overcome the conservation problem of SL methods. 

The objective of this paper is to present an inherently and fully conservative SL scheme to 

solve the shallow-water equations. In terms of computational efficiency, the proposed 

method, as for the GP scheme, consists of two steps whilst the oscillation suppressing 

process is done via an artificial viscosity approach rather than a limiter one used in GP 

scheme. On the other hand due to the inherently conservative approach, the highly 

expensive linear programming step of the GP method is avoided, and this makes our 

scheme more efficient.  The proposed method is able to simulate dam-break type flows 

with a high level of accuracy and fluvial flows by using large time steps, without 

encountering the phase problem as the GP method does. Further, the ideas presented in this 

paper, may be easily applied to most existing mass conservative SL models to make them 

fully conservative. 

This paper is organized as follows: In section 2 the model equations are presented. In 

section 3, several methods for solving conservation laws using SL schemes are reviewed 
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and a new scheme is developed for a scalar conservation law. A suitable integral form of 

the momentum equation is derived and a new predictor-corrector semi-implicit SL method 

is proposed. In section 4, the performance of the proposed numerical method is tested for 

different cases and those are compared with the exact solutions. The ability of the method 

in performing large time steps is also examined. Some concluding remarks complete the 

study. 
 

2. The shallow-water equations 
The one dimensional depth averaged continuity and momentum equations in a wide 

channel are written in conservative form (Toro, 2000) 

c
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and the source term cS
r

 including frictional, bed slope, and width variations effects is 

assumed to be zero. In (2) and (3), t and x are the time and spatial coordinates respectively, 

h and u are the water depth and the velocity variables respectively, g is the gravitational 

acceleration and uhp =  is the discharge in unit width. In the following, the subscript c will 

refer to a conservative variable. 

Equation (1) may also be written in non-conservative form (Henderson, 1966) 
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3- The SL scheme 

3-1-Basic concepts and model equations 
In SL schemes, a reference frame is moving with an individual parcel of fluid along a 

trajectory defined by 

),( txu
dt
dx = ,           (6) 

and the following differential equation is solved 

),( txS
dt
dc = ,           (7) 

where c(x,t) is any physical variable, t is the time, x is the spatial coordinate, u and S are 

the flow field and the source term respectively, and 

x
u

tdt
d

∂
∂+

∂
∂= ,          (8) 

is the total or Lagrangian derivative. In (7), the total time derivative is simply the rate of 

change along flow trajectories as 

S
t

ttxctxc
dt
dc d =

−−
=

Δ
Δ ),(),(

,        (9) 

where xd is the departure point of a fluid particle that originates at t-Δt and arrives at x 

after  Δt. In SL schemes an Eulerian computational grid is used and a different set of 

particles is selected at each time step, and these are required to arrive at mesh nodes at the 

end of the time step. 

   As can be seen from (6) and (7), the SL scheme is based on a non-conservative form of 

the transport equation, and hence, it cannot be used directly to solve conservation laws of 

the type 

( ) 0=
∂
∂+

∂
∂ uc

xt
c .         (10) 

    In order to solve (10) using the SL method, the equation is usually rewritten in the non-

conservative form 

x
uc

td
cd

∂
∂−= ,                                                                                                              (11) 
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 where the Lagrangian derivative is approximated along trajectories. Following this 

approach, (4) and (5) are rewritten as 

x
hg

dt
du

∂
∂−= ,         (12) 

x
uh

dt
dh

∂
∂−= .          (13) 

As shown in Staniforth and Cote (1991), the gravity term in (12) will lead to unstable 

results if it is discretized using an explicit method. One popular approach for overcoming 

this problem is the use of an implicit discretization for the gravity term. To this respect, an 

efficient semi-implicit SL scheme, proposed by Layton and Van de Panne’s (2002), is 

presented in appendix 1, and it will be used later. 

 

3-2-Conservative SL methods 
  For the sake of simplicity we let S=0 in the remaining of this subsection. Apart from the 

corrective methods, there are two general approaches for inherently conservative solution 

of conservation laws when using the SL methods: 

(i) Exactly conservative methods written in a non-conservative form 
(CIP-CSL) 
Using this approach, the Lagrangian invariant’ c in (7) is constant along the trajectories 

specified by (6). Hence, equations (6) and (7) lead to 

),(),( ttxctxc d Δ−= .         (14) 

   An explicit approximation of the Lagrangian derivative leads to the following two step-

scheme: 

Step1: the SL transport is performed 

),(),(~ ttxctxc d Δ−= ,                          (15) 

Step2: the source term is added 

t
utxcttxctxc

∂
∂Δ−= ),(~),(~),( .       (16) 

   Obviously, this approach, which may be considered as a point-wise scheme, is not 

necessarily conservative. However, Tanaka et al. (2000) and Yabe et al. (2001) showed that 
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the conservation of the above method can be achieved by using the conservation law (10) 

as a constraining condition for the interpolation functions. In the Tanaka et al. and Yabe et 

al. schemes, both nodal values and cell averages are transported by the SL method (the 

CIP-CSL type schemes). This approach has been successfully extended to general 

hyperbolic systems using cubic polynomials by Xiao et al. (2001). Further improvements 

were also obtained by Xiao (2002) in a more general approach (VSIAM3). However, most 

existing schemes of type (i) lose their unconditional stability in shallow-water systems due 

to the presence of gravity source terms. 

(ii) SL integrated mass (SLIM) methods 
   This approach, introduced by Laprise and Plante (1995), is applied directly to the original 

conservation law (10) and may be considered as a cell average scheme. At each step, only 

average values of variables are transported, and nodal values are calculated using the cell 

averages. One benefit of this approach is that, no extra source term is present in the 

formulation, since the conservative form of the equations is used directly. Zerroukat, Wood 

and Staniforth (2002) recently developed an efficient extension of this scheme for two-

dimensional domains. 

It this paper, the cell average method (SLIM) is followed, i.e. the nodal values are 

calculated from the cell averages, and by imposing a monotonicity preserving constraint, 

the spurious oscillations are avoided. Further, by combining the SLIM method with a semi-

implicit point-wise predictor step for evaluating the gravity terms, a fully conservative and 

stable SLIM scheme for the shallow water equations is constructed. In the following, we 

first describe the new scheme for scalar conservation laws, and we then extend it to the 

shallow-water case. 
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Figure 1. Arrangement of grid points and trajectories. The total derivative is approximated 
along particle trajectories in non-conservative SL schemes. The mass between two 
sequential departure points is transported to the corresponding destination cell in 
conservative SL schemes 

 

Equation (10) is integrated over any moving control volume [x1,x2] with x1=x1(x,t) and 

x2=x2(x,t). By using the Leibnitz’ rule (Laprise & Plante, 1995) we obtain 
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If the boundaries x1and x2 are moving with the fluid we have 
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hence, (17) reduces to  

0),(),,( ),(

),(
21 2

1

=⎟
⎠
⎞⎜

⎝
⎛≡ ∫

txx

txx
dxtxc

dt
d

dt
txxdM .      (20) 

Equation (20) implies the mass M(x1, x2, t) contained between any two boundaries x1 and 

x2 (moving with the fluid) is constant, and transported with the flow from the departure 

point (x1
n ,  x2

n) to the destination points (x1
n+1, x2

n+1).  

The domain Ω=[xmin,xmax] is subdivided into N finite volumes FVi with unequal spacing 

Δxi = xi+1-xi , i=1,2,…,N, where the grid points xi and xi+1 are respectively the left and right 
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boundaries of each finite volume i (Figure 1). For each interval ),( 1+ii xx  an “initial” 

condition is defined at time nt  in terms of an interpolation function φi
n(x) as 

1  ,  )()( +<<= ii
n
i xxxxxc φ .                                                                                   (21) 

In SL schemes, x1(t) and x2(t) in (20) are chosen such that their position at the new time 

step (n+1), i.e. x1
n+1(t) and  x2

n+1(t), coincide with two sequential grid points, i.e. 

x1
n+1(t)= xi  ,  x2

n+1(t)= xi+1        (22) 

where xi  is the position of ith grid point, and using the fact that these boundaries are 

moving with fluid, their position at the last time step (n), i.e. x1
n(t)and x2

n(t) represent the 

departure points of trajectories of nodes i and i+1 
d
i

nd
i

n xtxxtx 1 
1

2 
1

1 )(   ,   )( +
++ == ,         (23) 

where xi
d is the position of the foot of the trajectory of node i.  

Hence, an inherently conservative approach is constructed in the following three stages: 

 

(a) Computation of the cell averages 
Let xl and xm be the grid points such that xl<xi

d < xl+1 and xm<xi+1
d < xm+1. Then by using 

(20), the cell average values for each finite volume are calculated as 

x
txxM

x
txxMc

n
ii

nd
i

d
i

i Δ
=

Δ
=

+
++

+
),,(),,( 1

11
2/1 ,      (24) 

where 

∫
+=+

+

d
i

d
i

x

x

nn
ii dxxtxxM 1 )(),,( 1

1 φ          

  

⎪
⎪
⎩
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=

∫
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+=
d
i

d
i

d
i

d
i

lmdx

lmdxxdx

n
ll

n
mm

n
j
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lj
j

n
ll

1

1

    .    ,                                                          )(

,1    ,       )()(
 0

1 1

1
ξ

ξ

ξ

ξ

ξξφ

ξξφφξξφ

Δ

ΔΔΔ
      (25) 

and the local coordinates at the foot of the trajectories read 

ll
d
i

d
i xxx Δ/)( −=ξ   and           mm

d
i

d
i xxx Δ/)( 11 −= ++ξ . 

   For the sake of simplicity, a constant grid spacing is assumed in the remainder of the 

paper. 
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(b) Computation of the nodal values 

   The nodal values ic are calculated by fitting cubic curves on four sequential cells, using 

the known cell averaged values, and this procedure leads to a fourth order scheme. The 

resulting interpolation function for calculating the nodal values from the cell-averaged ones 

leads to 

x
ccccc iiii

i Δ
−++−= ++−−

12
77 2/12/12/12/3 .       (26) 

   In order to prevent spurious oscillations in (26), we impose 

),max(),min( 2/12/12/12/1 +−+− ≤≤ iiiii ccccc .      (27) 

   The monotonicity constraint (27) ensures that the calculated nodal value ic  in (26) will 

remain bounded. 

 

(c) Construction of the interpolating polynomials 
   Various polynomial interpolation schemes have been tried in the past, including the 

piecewise linear method (van Leer, 1977), and the piecewise parabolic method (Woodward 

and Colella, 1984). Conservative schemes using cubic polynomials have been introduced 

by Xiao et al. (2001). More recently, higher order non-oscillatory polynomials were 

proposed in the area of weighted essentially non-oscillatory (WENO) schemes (e.g. Levy et 

al., 2002).  

    An efficient alternative is the use of the rational function of Xiao et al. (1996 and 1999) 

(leading to a monotonic interpolation scheme) which has been recently employed in exactly 

conservative and oscillation-less SL schemes (Nakamura et al., 2001; Ida, 2002) 

∫ +
++==

X

ii

n
iii

X
XcXXdcXM

0

23

1
)()(

αβ
χκθθ ,      (28) 

where X=x-xi . The coefficients are calculated as 

[ ] ii
n
i

n
iii xcccc Δ−−−= + /1)/()( 1β ,       (29) 

iii
n
iiiii xxccc Δ−Δ−+= καβχ /)( ,       (30) 

[ ] iiii
n
ii

n
ii xxcccc ΔΔ+−+−= + /)1)(( 1 αβκ ,      (31) 
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⎩
⎨
⎧ ≥−−

= +

                         .      0
,0)/()(       1 1

otherwise
ccccfor i

n
i

n
iiα       (32) 

 Finally, differentiating (28) with respect to X, leads to 

2

232

)1(1
23)(

ii

n
iii

i
ii

n
iii

X
XcXX

X
cXXXc

αβ
χκαβ

αβ
χκ

+
++−

+
++= .    (33) 

The rational function defined in (33) coincides with a quadratic one when α =0. The above 

SL Integrated Mass scheme with the Rational interpolation function (SLIM-R) is 

summarized as follows  

SLIM-R Algorithm: 

(i) Draw the trajectories and assign the mass between two sequential departure points 

to the corresponding destination Eulerian control volume using (24) and (25). 

(ii) Calculate the nodal values based on the already calculated cell average values, and 

impose the constraints (26) and (27). 

(iii) Construct the interpolation polynomials based on the cell average values using the 

rational function (33). 

   The main difference between the present scheme (SLIM-R) and existing numerical ones 

(such as the R-CIP-CSL scheme of Nakamura et al., 2001), is the calculation of the nodal 

values (step ii). Here, the nodal values are directly calculated by the cell average values 

(already computed). This is an essential step in order to construct fully conservative and 

stable schemes for shallow-water models. In most existing CIP-CSL type conservative 

schemes, the nodal values are calculated using the two-step SL procedure (15) and (16). 

Contrary to most existing schemes, the proposed method can be used to construct fully 

conservative and stable SL schemes, as shown in section 5.  

   In order to show the performance of the present method employing the rational function, 

we compare our results with two other schemes using quadratic polynomials (QUICKEST 

and R-CIP-CSL2) in a classical advection test. The first scheme is the well-known 

QUICKEST scheme (Leonard 1979) employing the cell average values of three sequential 

cells to define the quadratic polynomials. A non-oscillatory version of this scheme is the 

ULTIMATE QUICKEST scheme (Leonard 1991). The second scheme is the R-CIP-CSL2 

method of Nakamura et al. (2001), in which the nodal values are calculated using the two-



 17

step procedure (15) and (16), with the rational function (33). The exact solution is shown in 

figure 2 after 1500 time steps with a CFL number of 0.2.  A low value of the CFL number 

is used to compare the numerical diffusion of the proposed method (without the constraint 

(27)) and the QUICKEST scheme. As shown in figure 2, the proposed method gives better 

results than the QUICKEST scheme in terms of both diffusion and numerical dispersion. In 

order to investigate the performance of the proposed method using the oscillation 

suppressing constraint (27), we also compare it with the ULTIMATE QUICKEST and R-

CIP-CSL2 schemes and the results are shown in figure 3. Again, the proposed method 

exhibits a much lower level of numerical diffusion than the ULTIMATE QUICKEST 

scheme, but the R-CIP-CSL2 method appears to be marginally less diffusive than our 

scheme. However, contrary to the R-CIP-CSL2 scheme, the proposed method is applicable 

to the fully conservative form of the shallow water equations as shown in section 3-2-2 and 

5. 

 

 

Figure 2. Results of the linear wave after 1500 time step with a CFL number of 0.2 
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Figure 3. Results of linear wave after 1500 time step with a CFL number of 0.2 

   

3-3- A conservative SL Scheme for shallow-water equations 
It is well know that the source terms lead to instabilities when large time steps are 

employed in the framework of SL schemes. This has led to the development of the semi-

implicit SL (SISL) schemes. Here, we intend to show how the SLIM-R scheme could be 

successfully combined with SISL methods, for constructing a fully conservative scheme. 

 

3-2-1-The continuity equation 
  The SLIM-R scheme applies directly to (10), and hence no source term is present, 

contrary to the CIP-CSL schemes case. The continuity equation is the simple scalar 

conservation law 

0)( =
∂

∂+
∂
∂

x
uh

t
h , 

and hence, the SLIM-R scheme can be used directly here.  
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3-2-2-The momentum equation 
The depth averaged momentum equation in (1) is written in the conservative form 

0)5.0( 2

=
∂

+∂+
∂
∂

x
ghup

t
p ,                   (34) 

where p=uh. Here, we extend the approach of Laprise and Plante (1995) to (34) which is 

integrated over any control volume [x1,x2], moving with the fluid flow. This leads to 

[ ] 0),(),(5.0),( 2
1

2
2

),(

),(

2

1

=−+∫ txhtxhgdxtxp
dt
d txx

txx
.              (35) 

Equation (35) is now integrated over a temporal control volume and we obtain 
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n dttxhdttxhgdxtxpdxtxp . (36) 

By choosing x1, x2 as before, (36) is rewritten as 

⎟
⎠
⎞

⎜
⎝
⎛ −−=Δ ∫∫∫
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+ ++

1

1

1

1
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n
i dttxhdttxhgdxtxpxp .   (37) 

We then use a trapezoidal approximation for the pressure integrals 

thhdttxh
d
i

n
it

t

n

n
Δ+=

+

∫
+

2
)()(),(

221
2

1

1

1
,       (38) 

and we obtain 

4
)()()()(),(

2212
1

21
111 1

d
i

n
i

d
i

n
ix

x

n
i

n
i

hhhhtgdxtxpxp
d
i

d
i

+−+Δ−=Δ
+

+
+

+++ ∫
+ ,   (39) 

where the integral ∫
+ +
d
i

d
i

x

x

n dxtxp1 ),( 1 can be calculated in the same way as in (25). The above 

approach is conservative, because the second term in right hand side of (39) is in the flux 

form.  

Hence, the nodal values of 1+nh  are necessary for calculating the right hand side (RHS) of 

(39). Estimating those nodal values is a crucial step in to preserve the stability of SL 

schemes, using large time steps, in the case of fully conservative equations. 

    Here, we use the following SISL scheme to obtain a priori estimation of 1+nh  when 

calculating the source term in the RHS of (39) 
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where iĥ and iû are the water depth and velocity calculated at the foot of the trajectory 

arriving at node i. Equation (40) leads to a simple three-diagonal system which can be 

solved efficiently. The derivation of (40), proposed by Layton and van de Panne (2002) is 

presented in appendix I, and it has been extended to the 2D case by Layton and van de 

Panne (2002). 

   Knowing 1+nh  from (40), equation (39) can then be solved by using the SLIM-R scheme.  

The semi-implicit SL scheme with rational function (SI-SLIM-R) is summarized as 

follows: 

SI-SLIM-R Algorithm 

(i) Determine the nodal values of 1+nh  by (40), and use them to calculate the source 

term in the right hand side of (39) 

(ii) Apply the SLIM-R scheme to solve (39) 

(iii) Apply the SLIM-R scheme to solve the continuity equation. 

   As previously mentioned the SLIM-R method, although marginally more diffusive than 

the R-CIP-CSL2 scheme (Figure 3), is also much more stable. In order to show the 

performance of the SI-SLIM-R scheme, we now construct the SI-CIP-CSL-R scheme. The 

latter is obtained by employing the R-CIP-CSL2 scheme at steps (ii) and (iii) in the above 

SI-SLIM-R algorithm. In the next section we show that, contrary to the SI-SLIM-R 

scheme, the SI-CIP-CSL-R method is restricted to CFL numbers smaller than 1. Indeed if 

the calculated cell averaged values are not taken account in the calculation of the nodal 

values, then the stability region is reduced. This is why the SLIM-R scheme (24)-(33), has 

been introduced to calculate the nodal values based on the cell averages instead of 

determining them by the SL transport as for CIP-CSL type schemes. 

 

4- Artificial viscosity 
  The SL method leads to oscillation-free results in the case of a pure advection equation 

when a non-oscillatory interpolation function is used. However, this is not the case when 

the shallow-water equations are considered, and spurious oscillations arise even when a 
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first order (linear) interpolation scheme is used (Navarro and Priestley, 1994). This is due 

to the presence of gravitational source term in the momentum equation. Two approaches 

have been proposed in the past to suppress those oscillations. In the first one (Xiao, 2002), 

a flux vector splitting method is used to discretize the source terms while in the second 

approach, the oscillations are suppressed by adding an artificial diffusive term. The latter 

technique is employed here by following the Tseng et al. (2000) method, where the 

computed values 1* +n
iU

r
 are corrected by adding a diffusive term as 

( )2/12/12/12/1
1*1 5.0 −−++

++ −+= iiii
n
i

n
i RRUU ΦΦ

rrrr
.               (41) 

In (41), ),( 2
2/1

1
2/12/1 +++ = iii ΦΦΦ

r
 is calculated as 
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where k=1 and 2. The entropy correction function ψ in (42) is defined as 
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Harten and Hyman (1983) introduced the following formula to calculate ε 
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i

k
i 2/112/12/1 ,,0max ++++ −−= λλλλε ,                (44) 

and characteristic variable in (42) is defined as 

)( 12/12/1 iiii UUL −= +++α .                  (45) 

The role of flux limiter function ϕ in (41) is to supply artificial dissipation when there is a 

discontinuity or a strong gradient, while adding very little or no dissipation at all in regions 

of smooth variations. Yee (1989) proposed to calculate ϕ  as 
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where 
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α
α σ ,                   (47) 

and  

( )k
isign 2/1+= λσ .                   (48) 

In (48), 1λ  and 2λ  are the eigenvalues corresponding to the Jacobian of the flux vector 



 22

cu +=1λ ,                    (49) 

cu −=2λ ,                    (50) 

where 

.ghc =                              (51) 

In (41) and (45) R and L are respectively the right and left eigenvector matrices 
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The mean values of the velocity and water depth can be calculated by using the Roe 

method 
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2
1

2/1
ii

i
hhgc += +

+ .                    (55) 

 

5-Numerical results 
   In order to study the performance of the numerical method presented here, three test cases 

have been selected herein. Tests a and b have been chosen to examine the accuracy of the 

proposed method while test c is used to show the stability of the method.  In the Riemann 

problem tests (a, b), the exact solutions are calculated by using an exact solver, Toro 

(2000), and the CFL is set to 0.3. In test c, a CFL of 2.0 is used. In all tests a wide 

horizontal, rectangular and frictionless channel of length 50 m is used. 

  

a –The Dam Break Problem 
   The dam break problem is the most common test to evaluate the performance of shock 

capturing schemes in shallow flows. As mentioned by Toro (2000), the ability of a 

numerical method to correctly resolve shock waves is an important feature of the method in 
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terms of (i) correct speed of the propagation, (ii) correct strength of the jump, (iii) width of 

the shock layer and (iv) absence or presence of spurious oscillations in the vicinity of the 

shock. Here, a dam is located at the channel mid-length. The water depth at the left and 

right hand sides of the dam are 0.5m and 0.1m, respectively. The dam is instantaneously 

removed across its entire width and the simulation is performed up to time t=2s. The results 

obtained for the depth h and discharge p are presented in figures 4.a and 4.b respectively, 

and they are compared with the exact solution and the results of the Lyton and van de 

Panne non-conservative SL scheme (2002). The results consist of a strong right-going 

shock and a left-going rarefaction. As shown in figures 4.a and 4.b, the non conservative 

SL scheme leads to large errors in the shock speed and water level right after the shock 

wave (shock strenght) and it also generates spourious oscillations. These errors are not 

present in the proposed scheme, which shows a good shock-capturing ability with low 

oscillations. 

 

 

Fig. 4.a. The dam break problem: The water surface elevation at t=2s with non-
conservative MOC scheme, the proposed scheme and the exact solution 
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Fig. 4.b. The dam break problem: Water discharge at t=2s with non-conservative MOC 
scheme, the proposed scheme and the exact solution 

 

b- Left Sonic Rarefaction and Right Shock 
   In this test, the initial condition has been chosen in order to produce a strong right 

propagating shock wave and a sonic or trans-critical left propagating rarefaction wave. The 

important feature here is that the left rarefaction is sonic, i.e. it contains the sonic point 

where the flow regime changes from super critical to sub critical. Most numerical methods 

encounter difficulties in simulating sonic rarefactions, and they produce an unphysical 

jump at the sonic point inside the rarefaction waves. Such schemes are called entropy-

violating methods. The water depth is chosen to be 0.5m and 0.05m  in left and right sides 

of the dam, respectively. 

  Numerical results at t=10s are shown in figure 5 and they are compared with the exact 

solution and those of the Lyton and van de Panne scheme (2002). The result of the Roe 

scheme is also shown to illustrate the entropy violating shock inside the rarefaction wave. 

As shown in figure 5, the proposed scheme is able to correctly simulate the shock speed 

without exhibiting an unphysical shock. 
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Fig. 5. Left sonic rarefaction and right shock: Water surface elevation at t=10s with 
proposed method, the Roe scheme and the exact solution.  

 

c- An Stability Test; A small perturbation of stagnant condition 
   The initial flow velocity is zero in the entire channel with  
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where x0=18.6 m and L=2 m.  

   Numerical results using CFL=2 are shown in figure 6 and they are compared with those 

obtained by the Roe method in the case CFL=0.2. Here, the proposed method is stable up to 

8.0CFL ≈ , while other existing conservative SL methods like R-CIP-CSL2 (Nakamura et 

al., 2001) fail to simulate it with CFL grater than 1. 
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Fig. 6. Cosine hump: The water surface elevation at t=4s with proposed method (CFL=2.0) 
and Roe scheme (CFL=0.2) 

 

5-Conclusion  
   SL integrated mass method (SLIM) of Laprise and Plante (1995) has been extended to the 

conservative form of the shallow-water equations. This method was successfully combined 

with a semi-implicit SL one, and resulted in a fully conservative SL scheme (SI-SLIM-R).  

   The most important feature of the proposed scheme is that, not only the mass, but also the 

gravity source term are conserved during the simulation and the fully conservative form of 

the shallow-water equations is satisfied. Numerical results showed that contrary to existing 

CIP-CSL schemes, the proposed algorithm preserves the stability property of SL methods 

when large time steps are employed. The fully conservation property of the proposed 

scheme enables it to correctly simulate the shock speed in dam-break type flows.  

A number of test cases showed that the proposed method could be used for sub, super and 

trans-critical flows and also for dam-break type flows. The fully conservation property 

considerably improves the performance of common SL schemes for a wide range of 

practical applications.  
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   In terms of computational efficiency, our method, as the G P scheme, consists of two 

steps but the oscillation suppressing process is done here via an artificial viscosity approach 

rather than a limiter one used in the GP scheme. Further, the proposed method is free of 

phase problems which usually arise when corrective methods are employed in solving 

systems of equations. On the other hand due to the inherently conservative approach, the 

highly expensive linear programming step of the corrective methods is avoided, and this 

makes our method more efficient than the GP scheme. 

   

Appendix I -Layton and Van de Panne’s SL scheme  
In the Layton and van de Panne’s scheme (2002), as for most SL schemes, the non-

conservative shallow-water equations are written in Lagrangian form 

,0=
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The Lagrangian derivative is approximated along the trajectories 
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where ĥ and û are the water depth and velocity that are calculated at the foot of trajectories. 

Differentiating the momentum equation with respect to x and substituting in the continuity 

equation gives 
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Equation (I-5) can be numerically solved by using a centered discretization scheme as 
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CHAPTER 3 

A conservative extension of the method of characteristics for 1-d 
shallow flows 
In the second chapter, a fully conservative semi-Lagrangian scheme was developed by 

ensuring the conservation of mass and momentum in the polynomial fitting step. In this 

chapter, this approach is extended to the method of characteristics and a fully conservative 

MOC method is proposed where the fully conservation property is imposed in the 
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interpolation step. The resulting scheme is shown to produce a low level of numerical 

diffusion and dispersion.  
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Une prolongation conservative de la méthode des 
caractéristiques pour les écoulements peu profonds 1-d.   
 

Résumé 
La méthode des caractéristiques (MOC) a été employée pendant longtemps dans les canaux  

ouverts.  Elle est basée sur une formulation non conservative des équations, et par 

conséquent elle ne peut pas être employée directement pour résoudre des écoulements peu 

profonds discontinus.Dans cet article nous développons une version conservative du 

schéma MOC pour les écoulements peu profonds 1-D en imposant la loi de conservation à 

l'étape d'interpolation.  La propriété de conservation du schéma permet de modéliser 

précisément un choc et permet au schéma MOC de simuler des écoulements de type 

ruptures de barrage.  En employant une fonction appropriée d'interpolation, la méthode 

proposée peut également produire des résultats présentant peu d'oscillations et tout à fait 

précis.  Un certain nombre de cas tests difficiles  montre que le schéma proposé se compare 

avantageusement a la méthode MOC traditionnelle (non conservatrice) dans le cas de type 

ruptures de barrage et de simulations d'écoulements trans-critiques. 
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A conservative extension of the method of 

characteristics for 1-d shallow flows 

 
A. MOHAMMADIAN, D. Y. LE ROUX , M. TAJRISHI 

 

Abstract. The method of characteristics (MOC) has been used for a long time in 

open channels and pipes flows. It is based on non-conservative equations, and hence it 

cannot be used directly for solving discontinuous shallow flows. In this paper we develop a 

conservative version of the MOC scheme for 1-D shallow flows by imposing the 

conservation law at the interpolation step. The conservation property of the scheme ensures 

the production of an accurate shock modeling and enables the MOC scheme to simulate 

dam-break type flows. By using a proper interpolation function, the proposed method can 

also produce quite accurate low-oscillatory results. A number of challenging test cases 

show considerable improvement compared to the traditional non-conservative MOC 

scheme in the case of dam break type and trans-critical flow simulations. 

Key Words:  Conservative, method of characteristics, shallow-water, dam-break.  

 

1. Introduction 
The flow regime changes from subcritical to supercritical in many fluvial flows, and the 

numerical method should be able to analyze these two types of flows simultaneously. 

Another difficulty encountered by the numerical method deals with flows which result from 

the sudden opening and closing of control gates and dam break flows. 

Extensive research has been performed in this area during the last two decades and 

different numerical schemes have been developed in the context of finite difference (FDM), 

finite element (FEM), finite volume (FVM), Lagrangian (LM), and semi-Lagrangian 

(SLM) methods. The characteristics play an essential role in most of existing numerical 

schemes, especially in those which are designed to simulate both sub and super critical 

flows. The use of characteristics and wave propagation structure stabilizes the numerical 

methods and prevents spurious oscillations (Leveque, 2002). 
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Attention has been focused almost exclusively on the FVM, which is inherently 

conservative, and several shock capturing schemes have been proposed using flux vector 

and flux difference splitting methods, e.g. Roe (1981), Van Leer (1982), Harten and Osher 

(1987). The FVM has also been considered to solve the shallow-water equations, e.g. 

Glaister (1988), Alcrudo and Navarro (1993), Nujic (1995), Zhao (1996) and Wang (2000). 

Most of these FVM have the capability of capturing shocks quite accurately in few 

computational cells, and for most of them, the flux vector is determined based on the 

characteristics and wave propagation structure. The use of the characteristics has not been 

restricted to FVM. For example, Fennema and Chaudry (1987) presented some 

characteristics-based finite difference schemes for dam break flows, and Hicks and Steffler 

(1992) used a characteristic-dissipative Galerkin FEM to solve the shallow water equations. 

 The conservation of mass and momentum is an important issue for all numerical 

schemes. Although the governing equations can be written in a non-conservative form for 

smooth flows, they are originally derived from the conservation laws, and numerical 

schemes may have to satisfy the conservation property. The exact conservation is crucial in 

some cases including long term simulations, where mass errors may accumulate in time and 

discontinuous flows. In the presence of nonlinear fluxes, conservation laws may lead to 

singularities, and consequently weak solutions derived from the underlying integral 

conservative relations, have to be introduced. Many studies have been performed in this 

area and a number of conservative schemes have been published in the literature. Those 

may be grouped in two categories: corrective and inherently conservative schemes (such as 

flux form schemes). Among the algorithms of the first group (corrective schemes), Garcia 

Navarro and Priestley (1994) used a posteriori correction to restore the desired quantity 

whilst minimizing change to the original solution. Their approach is based on an averaging 

between high and low order schemes, where the averaging factors at all grid points and for 

each time-step are adjusted somehow to minimize the mass misbalance by a linear 

programming type approach, which is computationally expensive. Moreover, this method 

only guarantees the phase conservation when a single scalar equation is considered. For 

most of the second type schemes (inherently conservative), mass conservation is obtained 

by imposing a constraint at the polynomial interpolation step. Attention herein is focused 

on the second group. 
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Another important issue of numerical schemes deals with the ability of the method in 

properly simulating transcritical flows. Indeed, solutions of the integral conservative 

equations are not unique, and a number of numerical schemes produce nonphysical results, 

e.g. the Roe scheme may lead a shock inside a rarefaction wave in the case of transcritical 

flows.  

Methods of characteristics have been used for a long time by hydraulic engineers in open 

channels and pipe flows, and their popularity is largely due to their simple implementation. 

Those methods are based on non-conservative equations, hence they do not ensure the 

conservation properties and they cannot be used directly to solve discontinuous flows. The 

objective of this paper is to develop an inherently conservative characteristics based scheme 

with a high level of accuracy to simulate dam-break type flows. To this end, we impose the 

conservation law at the interpolation step level. We show that by using a uniformly non-

oscillatory (UNO) scheme and a conservative interpolation function, the MOC scheme can 

produce high accurate low-oscillatory results in simulating complex discontinuous 1-D 

shallow flows. 

Challenging test cases performed in the paper (including strong sonic shocks and dry bed 

problems) show that the proposed scheme is potentially a competing method for high 

resolution schemes. Moreover, the computational effort of the proposed method is 

comparable to the cost of a typical high resolution scheme (the Roe approximate solver 

with a standard second order interpolation scheme using the minmod slope limiter). 

The proposed method may also be extended to the 2D case by considering either the cone 

of characteristics, or 1D characteristics schemes in the direction orthogonal to the cell 

interfaces. 

The paper is organized as follows: In section 2 the model equations are presented and in 

section 3 and 4 the MOC scheme is described and discretized, respectively. In section 5, a 

new conservative interpolation method is developed, and the method for calculating the 

slope of the characteristics is presented in section 6. The performance of the proposed 

numerical method is tested for different cases, and those are compared with exact solutions 

in section 7. Some concluding remarks complete the study. 
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2- The one dimensional shallow-water equations  
The one dimensional depth averaged continuity and momentum equations in a wide 

channel are written in conservative form (Toro, 2000) 
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and the source term cS
r

 (including frictional, bed slope, and width variations effects) is 

assumed to be zero. In (2) and (3), t and x are the time and spatial coordinates respectively, 

h and u are the water depth and the velocity variables respectively, g is the gravitational 

acceleration and uhp =  is the discharge in unit width. In the following the subscript c will 

refer to a conservative variable. 

Equation (1) may also be written in non-conservative form (Henderson, 1966) 
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3- Review of the MOC scheme 
Consider the one dimensional advection equation 

0=
∂
∂+

∂
∂

x
f

t
f λ ,          (6) 

where f(x,t) is any physical variable to be transported and λ  is the phase speed. In the 

MOC scheme, the reference frame is moving at the speed dtdx /=λ , and thus the total 

derivative of f reads 
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Hence, (6) is reduced to 

0=
td

df ,           (8) 

which implies that the value of f is constant in such frames. The trace of the moving frame 

in the global x-t coordinate system is called the characteristic. Thus, (6) implies that the 

value of f is constant along the characteristic (defined by λ=dtdx / ) in the global x-t 

frame, and this leads to the following solution 

),(),( ttxftxf d Δ−= ,         (9) 

where dx is the departure point of a characteristic that originates at time tt Δ−  and arrives 

at position x at time t. In (6)-(9), the MOC scheme is based on a non-conservative form of 

the transport equation, and hence, it cannot be used directly when conservation laws have 

to be satisfied. 

In the following, we assume the initial condition is known at time nt  on the arbitrary 

interval ],[ maxmin xx , subdivided into N segments with unequal spacing 

Nixxx iii 1,2,...,  ,1 =−= +Δ , where ix  represents the position of the grid point i. In the 

original MOC scheme, the characteristics are drawn in the time-space coordinate system to 

specify the profile of f at each time step. Hence, the original MOC scheme is grid free and 

the grid point positions change in time. Similarly, in the grid based numerical MOC 

schemes, the values of the variables at grid points are obtained at the next time step by 

drawing the characteristics using one of the following methods: 

(i) Departure-based: The characteristics are drawn such that the departure points, at the 

previous time step (tn) coincide with the grid points. An interpolation procedure is thus 

necessary to find the grid point values at the new time step (tn+1) 

(ii) Destination-based: The characteristics are drawn such that their arrival points, at the 

next time step (tn+1) coincide with the grid points as shown in Figure 1. An interpolation 

procedure is hence needed at the old time step (tn), to find the values of f at the departure 

points, say d
ix .  

 



 37

 

 Figure 1. Arrangement of grid points and characteristics in the case of the destination-
based method. 

  

In this paper a destination-based method is followed, and the procedure to solve for (6) 

consists of the following two stages: 

(i) Drawing the characteristics from the destination points ),( 1+n
i tx to find the 

departure points ),( nd
i tx , i.e. the foots of the characteristics, in the space-time 

coordinate system, 

(ii) Calculating the value of f at the foots of the characteristics at time tn+1, i.e. 1+n
if . 

   When the particle paths are used instead of the characteristics (i.e. when the frame moves 

with the fluid particle speed and not the characteristic speed), the method is named the 

semi-Lagrangian (SL) method. Usually the characteristics are not coinciding with the 

particle paths, except in the case of a pure (linear) advection equation. In existing SL 

methods, the left hand sides of (4) and (5) are considered as total derivatives along the 

particle path (i.e. the frame moves with the fluid particle speed u). Such an approach leads 

to oscillatory results, even when a first order interpolation is used (Garcia Navarro and 

Priestley, 1994). This is due to the effect of the gravity term, which is considered as a 

source term in SL schemes. In order to overcome this difficulty, we have chosen to use the 

method of characteristics in the present paper, and not the semi-Lagrangian one. A 

destination-based method is applied to the characteristic form of the shallow water 
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equations, and the source terms in the right hand sides of (4) and (5) are included in the 

advection terms, as it is shown in the next section. 

 

4- Destination-based moc for the shallow-water equations 
The shallow-water equations expressed in characteristic form (Henderson, 1966) are 

written as  
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where cuR 21 += , cuR 22 −= , cu +=1λ  , cu −=2λ and ghc = . 

As for the advection equation, (10) and (11) can be solved using the characteristic 

approach, and this leads to the Riemann invariants 
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where 1
~λ  and 2

~λ  represent the nonlinear terms that have to be computed. The procedure 

to evaluate 1
~λ  and 2

~λ  will be discussed in details in section 5. 

  When solving for (12) and (13) using the original grid free MOC scheme, two 

characteristics are drawn from each node (xi , tn) and the intersection of the characteristics 

specifies the new computational nodes. Hence, in the destination-based MOC scheme, as 

described above for the scalar advection case, the characteristics are drawn back from (xi , 

tn+1) and R1 and R2 are calculated at the foot of the characteristics, leading to 

d
id

i

d
id

i gh
h
p

R 1
1

1
1 2+= ,         (14) 

d
id

i

d
id

i gh
h
p

R 2
2

2
2 2−= ,         (15) 

where d
jih  and d

jip  are the values of h and p at the foot of the characteristic corresponding 

to jλ , j=1,2. The method for calculating the slope of the characteristics and the interpolation 
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procedure are discussed in sections 5 and 6. Once the Riemann invariants are known, the 

nodal values of the conserved variables are computed from (14) and (15). This leads to 
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For the case of a dry bed, an appropriate choice is obtained based on the exact solution (see 

e.g. Toro, 2000). For example for the case of right dry bed, we obtain 
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5- Conservative interpolation 
As mentioned in the previous section, the MOC scheme employs the non-conservative 

form of the equations, and therefore the procedure is not conservative. In order to impose 

the conservation property, the interpolation functions are defined in terms of the conserved 

variables h and p as 

    ,   )()( 1+<<= iihi xxxxhxφ ,       (19) 

    ,   )()( 1+<<= iipi xxxxpxφ .       (20) 

We then use a control volume approach and consider each cell [ ix , 1+ix ] as a finite volume 

FVi. Following Xiao and Yabe (2001) the interpolation functions are chosen to be cubic 

polynomials. The use of higher order polynomials is possible, but it has a negligible impact 

on the accuracy of the results and it considerably increases the computational cost of 

numerical scheme. 

   In order to construct a cubic polynomial for h in each cell, we need four conditions. Three 

conditions result from imposing the mass conservation at the cell level 
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where n
ih 2/1+ is defined as the averaged depth over FVi and it is calculated here by using the 

following α -scheme 
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where α  is a weighting factor with 10 ≤≤ α . Similarly, 
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The above approach is conservative since it is written in the flux form. Equations (24) and 

(25) are solved without recourse to solve a linear system, because the values of n
ip and n

ih  

have already been determined by the MOC scheme, hence the right hand sides of (24) and 

(25) are known. 

   Finally, the last condition is imposed on the slope of the interpolation function at the cell 

mid-points  
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where n
id 2/1+ represents the slope of )(xn

hiφ  at 2/1+ix  and it may be calculated by a curve 

fitting scheme. Any high order interpolation scheme may be employed to calculate n
id 2/1+ . 

On the other hand, a number of oscillation free schemes are available in the literature such 

as Essentially Non-Oscillatory schemes (ENO) e.g. Shu and Osher (1988), Weighted 

Essentially Non-Oscillatory (WENO) schemes e.g. Levy et al. (2002) and Uniformly Non-

Oscillatory schemes e.g. Harten and Osher (1987). The performance of the above methods 

depends on the employed numerical discretization schemes and the physical problems 

which are considered. A detailed discussion of the above different approaches may be 

found in Leveque (2002).  

Xiao and Yabe (2001) have successfully employed Harten and Osher’s UNO 

reconstruction and obtained accurate results in solving advection equations. The UNO 
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method is free of oscillations at the vicinity of discontinuous regions when an appropriate 

slope limiter is used. Slope limiters usually prevent the oscillations in high order accurate 

schemes by reducing the order of accuracy only in the vicinity of shocks and steep changes. 

In such regions, increasing the order of accuracy will increase the level of oscillations, and 

in fact, a first order scheme usually gives more accurate results. In the UNO scheme a 

minmod-type slope limiter was employed by Harten and Osher (1987) and adopted here. 

This leads to 
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   The piecewise-quadratic reconstruction functions in the Harten and Osher (1987) scheme 

are defined as 
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Another simple but interesting choice is the Collela and Woodward (1984) method where 

 



 42

( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

++−+

+

−++++
+

                                                                                                             otherwise. ,0

0,
sgn

2,2,min
2
1

2
3

2
1

2
1

2
1

2
1

2
1

2
1

2
3

2
12/1

n

i

n

i

n

i

n

i

n

i
n

i

n

i

n

i

n

i

n

i
CW

n
i hhhhif

x

h
hhhhhd

δ
δ

 
            

           (35) 

with  
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It was observed in the numerical experiments in the present study that the UNO scheme 

tends to produce numerical diffusion with the proposed method while the CW scheme 

produces numerical oscillations. A reasonable choice is therefore an average value as  
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with 10 ≤≤ β . The weighting factor β  was set to 0.5 in all test cases in this paper. 

Imposing the above-mentioned four conditions, the piecewise cubic polynomial function 

for a constant grid spacing is written as 
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The interpolation function for p, i.e. )(xn
piφ , is constructed in a similar manner. 

 

6-Calculation of the slope of the characteristics 
   When using the MOC scheme, it is necessary to compute the values of u and c at the 

midpoints of the characteristics in order to draw the characteristics. Those values are 
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calculated as average values between the departure and the arrival points of the 

characteristics. For most MOC schemes the calculation of the slopes is done through an 

iterative procedure, i.e. once the nodal values of u and c are obtained at a new time step, 

they are averaged at the characteristics midpoints in order to recalculate the slopes and this 

process is repeated until it converges (usually within two iterations). However, such an 

iterative procedure is usually not necessary with the current method and the characteristics 

speeds 1
~λ  and 2

~λ  at a given time step are calculated using the Roe approximation as 
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  All numerical tests presented in this paper are performed without recourse to an iterative 

procedure. The stability condition of the proposed scheme is the usual CFL condition 

(smaller than 1) since we have used a control volume approach. It should be mentioned that 

in the case of discontinuous flows, the length of the time step is usually chosen on the basis 

of accuracy considerations rather than stability.  

7-Numerical results 
   In order to study the performance of the proposed numerical method, seven test cases 

have been selected herein. The numerical results have been compared to a high-resolution 

MUSCL-type finite volume scheme where the Roe approximate solver with entropy fix has 

been employed with a minmod slope limiter at the reconstruction step (see e.g. Toro 2000 

for details). 

   For the Riemann problem tests (a, b, c, d, e and f), the exact solutions have been 

calculated by using an exact Riemann solver, Toro (2000). The location of the initial 

discontinuity is x=25 m in the cases a to f. In order to validate the proposed scheme, the 

results of the non-conservative MOC scheme are also presented using a cubic Lagrange 

polynomial (Appendix 1), except for test a and c, where the cubic non-conservative MOC 

leads to instabilities and hence a linear non-conservative MOC is preferred. For all tests a 

wide horizontal, rectangular and frictionless channel is used. The length of the channel is 

chosen to be 50m for tests a,b,c and d. The weighting factor α  was set to 0.84 in all test 

cases, based on numerical experiments. A number of 600 computational cells have been 

used in all tests. A typical CFL of 0.6 has been used in all test cases except for test e where 
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the CFL has been set to 0.81 and 0.66 for cases (i) and (ii) respectively, to compare with the 

MUSCL scheme, and in the accuracy test (g) where a CFL of 0.2 was selected in order to 

compare the numerical diffusion of the proposed method with that of the MUSCL scheme 

in a numerical-diffusion-dominant case. The numerical results are presented for typical 

time steps where the error of other schemes becomes significant compared to the proposed 

approach.  

  

a –The Dam Break Problem with a Sonic Rarefaction  
   The dam break problem is the most common test to evaluate the performnce of shock 

capturing schemes in shallow flows. Here, a dam is located at the channel mid-length. The 

water depth at the left and right hand sides of the dam is 1m and 0.01 m, respectively. The 

dam is instantaneously removed across its entire width and the simulation is performed up 

to time t=4s. The important feature here is that the left rarefaction is sonic, i.e. it contains 

the sonic point where the flow regime changes from super critical to sub critical. Most 

numerical methods encounter difficulties in simulating sonic rarefactions, and they produce 

an unphysical jump at the sonic point inside the rarefaction waves. Such schemes are called 

entropy-violating methods. The results obtained for the depth h and the discharge p are 

presented in figures 2.a and 2.b respectively, and they are compared with the results of the 

non-conservative MOC scheme, the exact solution and the MUSCL scheme. As shown in 

figures 2.a and 2.b, the non- conservative MOC scheme leads to large errors in the shock 

speed and the water depth right after the shock wave (shock strength). These errors are not 

present in the proposed method and the MUSCL scheme. It is also seen that the proposed 

method does not lead to entropy violating solutions. 

  The proposed scheme and the MUSCL method lead to comparable CPU time (roughly 0.1 

s) on a Pentium IV processor and a Microsoft Fortran Power Station Software (release 

mode). However, the duration of the experiment is not long enough to precisely compare 

the computational cost of the two methods. This is why, we have rerun the experiment by 

using 4200 computational cells and found 4.6 s and 4.2 s for the proposed method and the 

MUSCL scheme, respectively. Therefore, the proposed method is about 10% more 

expensive, which is expected since in the selected MUSCL scheme, only linear 
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reconstruction is used while here we use cubic reconstruction. This ratio is the same for all 

the experiments conducted in the remaining sections. 

   In order to see the effect of the number of numerical cells on the results and to verify the 

grid independency, the value of the water depth in the intermediate state (upstream the 

shock) is shown in Figure 2c for different cell numbers. As it is observed, the modified 

method can easily give the exact value with a few grid points, which is a consequence of 

the conservation property. On the other hand, the non-conservative MOC scheme exhibits 

large errors and cannot simulate the exact result.  

 

 

Fig. 2.a. The dam break problem: The water surface elevation at t=4 using non-
conservative MOC scheme, the proposed method and the exact solution. 
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Fig. 2.b. The dam break problem: Water discharge at t=4 using non-conservative MOC 
scheme, the proposed method and the exact solution. 
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Fig. 2.c. The effect of the number of numerical cells on the results; the water depth in 
intermediate state for different cell numbers using the non-conservative MOC scheme, the 
proposed method and the exact solution. 

 

b– Generation of a Dry Bed 
   In this test, the initial condition has been chosen in order to obtain two rarefaction waves 

separated by a dry bed. As shown in Toro (2000), some numerical methods face serious 

difficulties in solving such a test case, particularly due to the presence of the dry bed. The 

water depth is 0.1m and the initial velocity is 3 and –3 m/s at the left and right hand sides of 

the discontinuity, respectively. The latter is located at the channel mid-legnth. The 

numerical results at t = 5 s (as propsed by Toro, 2000) are presented in figure 3  and they 

are compared with those of the non-conservative MOC scheme and the exact solution. As 

shown in figure 3, both the non-conservative and conservative MOC schemes solve this 

problem successfully. The non-conservative approach exhibits however better results than 

the conservative one for the rarefaction wave. Indeed, the good performance of non-

conservative schemes in mild flows has already been observed and those schemes have 

been used to develop adaptive conservative/non-nonservative schemes (Toro, 2000). 

However, the proposed scheme has a reasonable capability of simulating the mild flow 

region and it can simulate the dry bed flow as well (see also the test f; the dambreak test on 

dry bed). 
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Fig. 3. Generation of a dry bed: The water surface elevation at t=5 using the non-
conservative MOC scheme, the proposed method and the exact solution. 

 

c– The Dam Break Problem with a Depth ratio of 1000 
   In the dam break tests, an appropriate numerical method should give good results for 

arbitrary hL and hR. In this test case we show that the proposed method, can simulate the 

problems of high depth ratio better than the MUSCL scheme.  

   In this test, the initial condition has been chosen in order to produce a right propagating 

shock wave and a sonic or trans-critical left rarefaction wave. The water depth is chosen to 

be 1m and .001m in left and right sides of the dam, respectively. 

  Simulation results at time t=4s are presented in figures 4.a and 4.b and they are compared 

with the results of the non-conservative MOC scheme and the exact solution. The MUSCL 

scheme leads to instability and cannot be used to simulate this test case with a CFL of 0.6.  

As can be seen in figure 4, both non-conservative and conservative MOC approachs could 

solve this problem without exhibiting an unphysical shock. However, the non-conservative 

approach leads to large errors in the numerical solution, contrary to those obtained with the 
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modified scheme. Recall that for the non-conservative MOC scheme, linear polynomials 

have been used instead of cubic ones to avoid unstable spurious oscillations.  

 

 

Fig. 4.a- Left sonic rarefaction and right shock: The water surface elevation at t=4s using 
the non-conservative MOC scheme, the proposed method, and the exact solution. 
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Fig 4.b. As for fig.4.a but for the water discharge. 

 

d –Initial Converging Flow 
  The initial condition has been chosen here as to produce two shock waves propagating in 

opposite direction. Herein, the water depth is chosen to be 1m and the initial velocity is set 

to 3m/s and –3m/s in left and right hand sides of the discontinuity, respectively.  The 

numerical results at t = 5s are presented in figure 5 and they are compared with those of the 

non-conservative MOC scheme, the MUSCL scheme and exact solution. As it can be seen 

in figure 5, the non-conservative approach leads to large errors and produces a high level of 

spurious oscillations, while the proposed method and the MUSCL scheme simulate the 

water level and the shock speed accurately and coincide quite well with the exact solution. 

The level of the numerical oscillations of the proposed method are slightly higher than 

those of the MUSCL  scheme in this test. However, this is not always the case as shown in 

the next test. 
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Fig. 5. Initial converging flow at t=5 using the non-conservative MOC scheme, the 
proposed method and the exact solution; water surface elevation (left) and velocity (right). 

 

e– Interaction of waves 
   In this test, initially used by Wang (2000), two dams are located at positions 100m and 

900m respectively, in a channel of length 1000m. The water is initially stagnant in the 

channel, and it is subdivided in three parts by the dams. In order to show the characteristics 

of the interaction two cases are considered: (1) h01=100m, h02=2m, h03=100m and (2) 

h01=200m, h02=2m, h03=80m, where ih0  represents the initial water depth in the part i of the 

channel, i=1,2,3, as shown in figure 6.1. In both cases 0201 hh >  and 0302 hh <  hence the 
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two shocks are moving toward each other. Reflecting boundary conditions are assumed 

here. The “exact” solutions here are obtained using a high resolution scheme on a grid of 

6000 computational cells. 

   The numerical results of the proposed method are shown at different times in figures 6.2.a 

(depth) and 6.2.b (velocity). After the interaction, two shocks are traveling back in opposite 

directions and complex combinations of shock waves and rarefactions are produced. 

Contrary to the proposed method, non-conservative MOC and the MUSCL schemes fail to 

simulate this problem with a CFL of 0.8. This again shows the good stability properties of 

the proposed method in complex problems.  

 

 

Fig. 6.1. A schematic view of test e (correspond to case 1). Two dams are located in a 
channel.  
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Fig 6.2.a. The interaction of waves, case (1): The water surface elevation at different times 
using the proposed method and the “exact” solution. 
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Fig 6.2.b. As for fig. 6.2.a but for the water velocity. 

 

   For the second set of data, corresponding to a non case 030201 hhh >> , two separate 

dambreak flows occur at the beginning of the simulation, and this leads to a pair of very 

strong inward moving shock waves. After these waves combine completely, a complex 

right moving combination of rarefactions and shocks appear in the domain. The numerical 

results of the water surface are shown at different times in figures 6.3.a and 6.3.b for the 

proposed and MUSCL schemes, respectively. Similar results for water velocity are shown 

in figures 6.3.c and 6.3.d. As shown in those figures, the modified scheme is able to 

produce accurate shock speeds and water surface elevations with low numerical oscillations 

and the level of numerical oscillations are less than those of the MUSCL scheme. 

  



 55

 

Fig 6.3.a. The interaction of waves, case (2): the water surface elevation at different times 
using the proposed method. 
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Fig 6.3.b. As for fig. 6.3.a but for the MUSCL scheme. 
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Fig 6.3.c. As for fig. 6.3.a but for the water velocity. 
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Fig 6.3.d. As for fig. 6.3.c but for the MUSCL scheme. 

 

 

f- Dam break on dry bed 
  The numerical simulation of the dam break test over a dry bed is a challenging one, since 

even small numerical oscillations may lead to negative depths and hence to instabilities. 

The numerical results of the proposed method are shown in figures 7 and they compare 

well with the exact solution and the MUSCL scheme. This test also shows that the 

proposed scheme is able to simulate dam break type flows with any depth ratios (hL/hR). 
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Fig. 7. Dam break on dry bed: The water discharge at t=2 s, obtained by using the proposed 
method, is compared to the exact solution. 

 

g- An accuracy test; A small perturbation of stagnant condition 
   The initial flow velocity is zero in the entire channel with  
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where x0=18.6 m and L=2 m.  

   The numerical results obtained at t = 3 s with the weighting factors 84.0=α  and 5.0=α  

in (23) and (24) are shown in figure 8 and they are compared with the results of the 

MUSCL scheme. The proposed method is clearly much less diffusive than the MUSCL 

scheme, especially when a centered scheme ( 5.0=α ) is employed, as expected. 
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Fig. 8. Small perturbation of stagnant condition, left and right-going waves resulted from 
an initial cosine-type hump of water surface at t=3s. 

 

8-Conclusion 
A conservative MOC scheme has been introduced to simulate dam break type flows. The 

proposed method can simulate sub, super and trans critical flows very accurately. By using 

an appropriate interpolation function, the scheme also produces high accurate low-

oscillatory solutions. The conservation property of the scheme ensures a high accuracy of 

the shock speed and it considerably improves the performance of the original MOC 

scheme. Hence, the modified method extends the classical MOC schemes for a wide range 

of complex flows, as shown in a number of challenging test cases e.g. interaction of waves 

and dry-bed problems.  
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The computational effort of the proposed method is comparable to the cost of a muscl-

type high resolution scheme (the Roe approximate solver with a minmod slope limiter at 

the reconstruction step). Finally, the proposed method may be extended to the 2D case by 

considering either the cone of characteristics, or 1D characteristics schemes in the direction 

orthogonal to the cell interfaces. The latter is currently under development and promising 

preliminary results have already been obtained. 

 

Appendix-1-Cubic Lagrange interpolation 
   A fourth order accurate interpolation scheme results from the use of the cubic Lagrange 

polynomials )(xhiφ  defined over the interval [ ]21 , +− ii xx  and expressed as 
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where the coefficients )(xCi are computed as 
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   The cubic Lagrange polynomials satisfy the condition of  )( jjh hx =φ for j= i-1, i, i+1 and 

i+2. 
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CHAPTER 4 

A mass conservative scheme for simulating shallow flows over 
variable topographies using unstructured grid 
 

In chapter 4, the 2-D shallow water equations are numerically solved using a characteristic-

based finite volume method over unstructured grids, which are of great interest for real 

applications. In the 2D case, the main difficulty in most existing schemes arises in the 

treatment of source and flux terms, particularly with unstructured grids. This is due to the 
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imbalance between the source and flux terms. Here, a new scheme is introduced, based on a 

modification to the Roe method, which satisfies the balance property.  

 

Un schéma conservatif pour la masse permettant de simuler les 
écoulements peu profonds avec des topographies variables et des 
maillages non structurés.  
 

Résumé 
La plupart des méthodes numériques disponibles sont inadéquates en présence de 

topographies variables à cause du non équilibre des termes source et de flux. Les 

améliorations apportés à ces difficultés fonctionnent généralement bien pour des maillages 

structurés, mais ne sont pas directement applicables pour des maillages non structurés.  

D'autre part, malgré leur bonne performance pour des écoulements discontinus, la plupart 

des schémas numériques disponibles (par exemple les méthodes HLL et ENO) induisent un 

niveau élevé de diffusion numérique en simulant des écoulements tourbillonnaires. Une 

méthode numérique pour simuler des écoulements tourbillonnaires peu profonds en 

présence d'une topographie variable et des maillages non structurés est présentée.  Cette 

approche, conservant la masse, peut simuler différentes conditions d'écoulement 

comprenant les topographies variables, les écoulements tourbillonnaires, transcritiques et 

discontinus, sans recourir à la technique d'upwinding pour les termes de source et avec peu 

de diffusion numérique.  Différents tests numériques sont présentés pour montrer la 

performance du schéma dans le cas de problèmes difficiles. 
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A Mass Conservative Scheme For Simulating Shallow Flows 

Over Variable  Topographies Using Unstructured Grids 
 

A. MOHAMMADIAN, D. Y. LE ROUX, M. TAJRISHI, K. MAZAHERI 
 

Abstract. Most available numerical methods face problems, in the presence of 

variable topographies, due to the imbalance between the source and flux terms. Treatments 

for this problem generally work well for structured grids, but most of them are not directly 

applicable for unstructured grids. On the other hand, despite of their good performance for 

discontinuous flows, most available numerical schemes (such as HLL flux and ENO 

schemes) induce a high level of numerical diffusion in simulating recirculating flows. A 

numerical method for simulating shallow recirculating flows over a variable topography on 

unstructured grids is presented. This mass conservative approach can simulate different 

flow conditions including recirculating, transcritical and discontinuous flows over variable 

topographies without upwinding of source terms and with a low level of numerical 

diffusion. Different numerical tests cases are presented to show the performance of the 

scheme for some challenging problems. 

  

Key Words:  Shallow-water, variable topography, unstructured grid, recirculating flow, 

finite volume method, mass conservative approach 

 

1- Introduction 
   Shallow recirculating flows cover a wide category of fluvial flows. They occur in many 

hydraulic situations such as breakwaters, bridge piers, embayment and channel junctions. 

Modeling these flows is important for engineering applications and optimum design of 

hydraulic structures. On the other hand, for many fluvial flows, the flow regime changes 

from subcritical to supercritical and the employed numerical method should be able to 

solve sub, super and trans-critical flows. In this paper our primary interest is the simulation 

of the above-mentioned flows using unstructured grids. Unstructured grids are attractive 
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because of their flexibility for representing irregular boundaries and for local mesh 

refinement. 

Extensive research has been performed in the area of shallow-water equations, and several 

upwind methods originally designed to solve the Euler equations have been extended to the 

shallow-water system. Those are for example, the Roe method (Glaister, 1988), the Beam-

Warming scheme (Fenemma and Chaudry, 1987), the Monotonic Upstream Schemes for 

Conservation Laws (MUSCL) using curve-linear coordinate (Alcrudo and Navarro, 1993), 

the Osher and Salmon scheme (Zhao et. al., 1994), the Essentially Non-Oscillatory (ENO) 

schemes (Nujic, 1995) and the Harten, Lax and van Leer (HLL) solver (Minhgam and 

Causon, 1998). Most of these methods have the capability of shock capturing with a high 

level of accuracy in few computational cells, and the flux vector is determined based on the 

wave propagation structure.  

Some of these methods perform well for particular types of flow like discontinuous or 

transcritical flows over flat topographies, but in the case of flows over variable topography 

and recirculating flows around structures, there is room for considerable improvement. 

Some modifications have been brought to the above mentioned methods in the case of 

variable topographies and structured grids. Bermudez and Vazquez-Cendon (1994) 

extended the van Leer’s Q-scheme for variable topographies by using an upwind 

discretization of the source terms and they introduced the C property, which states that the 

scheme should preserve the stagnant conditions. Their work has been extended in the case 

of a general 1-D channel with breath variation by Vazquez-Cendon (1999). Hubbard and 

Navarro (2001) then extended the Vasquez-Cendon approach to flux difference splitting 

schemes. However, upwinding of source terms is computationally expensive for practical 

applications because the source terms have to be projected on a basis of eigenvectors. 

LeVeque (1998), introduced a Riemann problem inside a cell for balancing the source 

terms and the flux gradients, and the resulting method was found to preserve both stagnant 

and quasi steady state conditions. However, the LeVeque’s scheme is not directly 

transportable to unstructured grids. Kurganov and Levy (2002) extended their Central-

Upwind scheme for the shallow-water equations and by using the water surface elevation 

instead of the depth, they proposed an adaptive algorithm for variable topographies. They 

also proved that their scheme preserves the steady state condition with a positive depth, 
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without resorting to any artificial drying and wetting strategy. Unfortunately, their scheme 

poorly performs in the case of circulating flows, as shown in the following. Alcrudo and 

Benkhaldon (2001) defined the topography such that a sudden change in the topography 

occurs at the interface of two cells. They also developed a Riemann solver at the interface 

with a sudden change in the bed elevation. However, their approach leads to several cases 

of Riemann fan and it is numerically too expensive. Vukovic and Sopta (2002) extended 

the ENO and Weighted ENO (WENO) schemes to shallow-water equations with the source 

terms in 1-D channels. Jin (2002) developed the interface method, which preserves the 

steady state condition up to second order accuracy on structured grid, but his approach is 

not directly usable on unstructured grids. Xu (2002) proposed a second order gas kinetic 

scheme for shallow-water flows over variable topographies. The gas kinetic schemes are 

basically different from characteristics based schemes and they should be tested for 

challenging test cases such as recirculating flows. Nujic (1995) used the water level 

variable instead of the depth and he extracted the gravitational terms from flux functions. 

Then, using the Shu and Osher (SO) scheme (1988), he computed the flux vector and 

obtained accurate results for dam break problems over variable topographies. 

Unfortunately, the SO scheme (1988) generates a high level of numerical diffusion in the 

case of recirculating flows, as shown in the following. 

  Zhou et. al. (2001) introduced the surface gradient method and showed that interpolating 

the depth without considering the bed variations may lead to erroneous results. They used 

the interpolated water surface elevation to calculate the depth at the interface and they 

showed that this approach combined with the HLL flux function (Harten, 1983) satisfies 

the C property. Their scheme performs very well for variable topographies without any 

extra efforts for balancing the source terms and the flux gradients. However, the C property 

does not hold for unstructured grids and moreover, the HLL flux induces a high level of 

numerical viscosity in recirculating flows, as shown in the following. 

 The objective of this paper is to present an efficient numerical method for recirculating 

flows over variable topographies on unstructured grids. In order to fulfill this goal, the 

Nujic method (1995) is combined with the Roe scheme, and the surface gradient method 

(Zhou et. al., 2001) is used for calculating the water depth at the interface. The resulting 

scheme is mass conservative, i.e. the convection terms are conserved but the gravity source 
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term is discretized using a non-conservative method. Hence, it can simulate flows over 

variable topographies without upwinding of source terms. Several numerical tests are 

presented to show that the non-conservative discretization of the source terms induces a 

minor effect on the ability of the proposed scheme in simulating discontinuous flows. On 

the other hand, the mass conservation property ensures that the errors will not accumulate 

in time, which is crucial for the long-term simulations. 

This paper is organized as follows. The model equations and the numerical schemes are 

presented in sections 2 and 3, respectively.  In section 4, some test case problems are 

numerically simulated, and they show the accuracy of the proposed method. Some 

concluding remarks complete the study. 

2- Governing equations 
   The shallow water equations (SW) in a conservative form are written as  
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where h is the water depth, u and v are the velocity components (Figure 2-1) and g is the 

gravitational acceleration. 

 

 

Fig. 2-1. Schematic diagram of an unsteady 1-D flow over an irregular bottom and the 
corresponding notation. 
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The superscript d refers to the diffusion and the diffusive flux has the following form  
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 and ν and tν  are water and eddy viscosity coefficients respectively. 

The source term S
r

 is written as 
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where bz  is the distance between the bed surface and the reference level (Figure 2-1) and 

fc  is the friction coefficient. The SW equations may also be written in a non-conservative 

form  
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where A and B are the Jacobian matrices 
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and ghc =  is the wave velocity.  

The eigenvalues ia  and ib , (i=1,2,3) corresponding to the matrices A and B respectively 

are  

cuauacua −==+= 321  , ,  and cvbvbcvb −==+= 321      ,     , , respectively. 

 



 68

3- Numerical scheme 

3-1-Finite volume methods on unstructured grids 
In this paper, the variables are located at the geometric centers of the cells, and each 

triangle represents a control volume. Let A  be the area of a triangle with boundary s. The 

SW equations are integrated over every control volume 

.0=⎟⎟
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       (3.1) 

   The time integration is performed by using the first order forward (explicit) Euler time-

stepping scheme, which leads to 
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   In (3.2) the accuracy of the time stepping scheme may be increased to second order by 

employing the Lax-Wendroff scheme as described in section 3.5. By using the divergence 

theorem, the diffusive and convective flux integrals are transformed into boundary integrals 
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and the boundary integral is approximated by a summation over the triangle edges 

( ) ( )∫ ∑
=

⋅−⋅=−⋅−⋅
s

k
kk

d
kkk

d dsnFnFdsnFnF
3

1
 rrrrrrrr

.       (3.4) 

   The diffusive fluxes on the cell interfaces are usually approximated by a centered scheme 

( )d
L

d
R

d FFF
rrr

+= 5.0           (3.5) 

and the convective fluxes F
r

 in the Godunov type methods are calculated based on an exact 

or approximate Riemann solver. Most approximate Riemann solvers are written as 

 ( )*5.0 FFFF LR

rrrr
Δ−+= ,          (3.6) 

where ( ) ( )RRLL UFFUFF
rrrrrr

==  and  are the left and right flux vectors. The subscripts 

 .R and L.  represent the evaluation of the right and left sides of the interface, respectively, 

and *F
r

Δ is the flux difference. When 0* =F
r

Δ  in (3.6), the scheme is equivalent to a 

standard centered scheme. Hence, *F
r

Δ may be considered as an “artificial diffusive flux”. 
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   The maximum possible (stable) artificial diffusive flux is employed in the Lax–Fredrichs 

scheme, which in the 1-D case is written as 

 U
t
xF

rr
Δ

Δ
Δ

Δ =* ,         (3.7) 

where ( )LR UUU
rrr

−=Δ .  

A less diffusive approximation for the artificial diffusive flux is that of the Rusanov scheme 
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where amax is the greatest eigenvalue of the Jacobian matrices corresponding to the left and 

right flux vectors in (3. 6). The Rusanov scheme is the base of many central schemes, and it 

provides good results in the case of shock wave problems (see Leveque, 2002 for more 

details). However, *F
r

Δ in (3.8) excessively damps the solutions for recirculating flows. 

   Another approach, which works well for both recirculating flows and shock wave 

problems, is the Roe method, for which an approximate Riemann solver is obtained by 

solving a linearized system. Here, *F
r

Δ  is calculated as 
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where UnFA
rrr ∂∂= ).(  is the Jacobian matrix of the flux projection in the normal direction, 

A~  is Roe average Jacobian matrix, which satisfies UAF
rr

ΔΔ
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where 
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and the eigenvalues of A~ are simply 

c~nv~nu~a~ yx ++=1   ,   yx nv~nu~a~ +=2   ,   c~nv~nu~a~ yx −+=3 ,   (3.12) 

 with the corresponding eigenvectors 
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respectively. The kα~  coefficients in (3.9) arise from the decomposition of U
r

Δ  in the basis 

( 1er , 2er , 3er ), and they depend on the jumps LR )  ()  ( −=Δ  with 
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~ 3,1 +−+±=α ,    (3.14) 

( )[ ] ( )[ ]( )yx nhuhunhvhv
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  ~ -  ~ ~
1~ 2 ΔΔΔΔ −−=α .     (3.15) 

  Shu and Osher (1988) showed that instead of using the Roe approximate solver with 

U
r

Δ  expressed in the eigenvector basis, the ENO schemes can be efficiently implemented 

using a simpler Rusanov-type approximate solver with artificial diffusive flux  

)(||*
LR UUF
rrr

−−=Δ α ,         (3.16) 

where || maxaλα =  (with 1≤λ ), and a TVD Runge-Kutta time marching method. 

 

3-2- The surface gradient method 
In order to calculate the numerical fluxes in (3.5) and (3.6), the values of the variables at 

the left and right sides of the interface must be calculated. Zhou et. al. (2001) proposed the 

surface gradient method, in which the water surface elevation η  is interpolated at the cell 

faces instead of the water depth. The water depth at the cell face is then calculated using the 

water surface elevation and the bed topography.  For example, once Lη  is calculated, the 

water depth can be obtained as  

eLL zh += η ,          (3.17) 

where ez  is the distance between the bed surface and the reference level (Fig. 2-1) at 

triangle edge midpoints. The surface gradient method leads to 0=hΔ  at the cell faces in the 

case of stagnant water conditions. 

 The velocities at cell interfaces are also calculated from the depth integrated velocities 

uh  and vh  at cell faces as 
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3-3- Calculation of derivatives 
The derivatives of a scalar variable c on unstructured grids are calculated using the 

divergence theorem, and we obtain 
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where (see figure 3-1) 

231 yyy −=Δ       ,     231 xxx −=Δ      ,      2/)( 111
RL ccc += ,   (3.21) 

312 yyy −=Δ       ,     312 xxx −=Δ     ,      2/)( 222
RL ccc += ,   (3.22) 

123 yyy −=Δ       ,     123 xxx −=Δ     ,       2/)( 333
RL ccc += .   (3.23) 

 

 

Fig. 3-1. The triangular cell i with the quantities R
jc and L

jc computed at the right (R) and 
left (L) sides respectively at a given face j,  j=1,2,3. The coordinates ),( jj yx , j=1,2,3, are 
located at the three vertices of cell i. 

 

This approach may be used for calculating the )( xzgh ∂∂  and )( yzgh ∂∂ terms and also 

the viscous terms, i.e.   
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The treatment of variable topographies now follows. 

 

3-4- Variable topographies 
   As mentioned in the previous sections, the bed slope (BS) term xzgh ∂∂ /  is included in 

the source term, and it is usually discretized using a centered scheme. This leads to an 

imbalance between the depth gradient (DG) term xhg ∂∂ /5.0 2  and the BS term and hence 

to an artificial source term in the numerical solution. In order to overcome this problem, the 

Nujic method (1995) is adopted and modified here in the following manner. 

 In the Nujic method, the DG term is extracted from the flux functions and it is discretized 

using a central scheme. However, the eigenvalues of the original system are used to 

calculate the fluxes using the SO scheme. The BS term is then dicretized in the Nujic 

method such that the compatibility between the DG and BS terms is guaranteed. On 

structured grids, as was shown by Nujic (1995), this is easily possible, but on unstructured 

grids a compatible discretization of the BS term is not as straightforward as on structured 

grids.  

 Nujic used the Shu and Osher (1988) method (SO) with 4.0~−λ  and mentioned that the 

SO scheme is attractive for solving dam break problems. However, as shown in the 

following, the SO scheme produces significant numerical diffusion in the case of 

recirculating flows. In order to reduce it, we use here the Roe approximate solver (3.9) 

instead of the SO scheme, employed in the Nujic method, as follows. 

 The discretized SW equations using the Roe method lead to 
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or, by  rearranging the terms  
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and L
r

 includes all the remaining terms of the right hand side of (3.25). In the case of 

stagnant conditions η  is constant, and hΔ  is thus zero at the cell faces using the surface 

gradient method. Because the stagnant conditions, we also have 0=uh  and 0)( =uhΔ . 

Therefore, the kα~  coefficients calculated using (3.14) and (3.15) vanish and hence, 

0* =F
r

Δ . All other terms in L
r

 also vanish in the case of stagnant conditions. In order to 

satisfy the C property K
r

 must also vanish, which is not the case when using 2k  as defined 

in (3.27). By rewriting 2k  in (3.27) as 
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using the following approximations  
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and neglecting the second order terms, equation (3.28 ) leads to 
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The 2k component in (3.31) obviously vanishes because of stagnant conditions and hence 

the C property is now satisfied. In the tests presented below, it is shown that neglecting the 

second order terms in (3.29) and (3.30) has a minor effect on the TVD property of the Roe 

method, while considerably improves its performance in the case of variable topographies. 

This approach may be viewed as a mass-conservative approach. Although the 

discretization of the gradient term is not conservative, the convection terms are treated in a 

conservative manner, hence the mass is conserved, which is crucial for the long term 

simulations. 

A similar approach is used for the 2-D case. The bed slope term in a triangular control 

volume i may be discretized using the central scheme (3.19) as 
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Then, 3yΔ  is replaced in (3.33) by )( 213 yyy ΔΔΔ +−=  and using 
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we obtain 

( ) ( ) ( )( )3322112 )/(5.0 yyyhtgk RLRLRLii ΔΔΔAΔ ηηηηηη +++++−= .  (3.36) 

Similarly, the same procedure leads to 

( ) ( ) ( )( )3322113 )/(5.0 xxxhtgk RLRLRLii ΔΔΔAΔ ηηηηηη +++++= .  (3.37) 

The components 2k and 3k  in (3.36) and (3.37), are obviously zero in the case of stagnant 

conditions and hence, the C property is satisfied. Note (3.36) and (3.37) reduce to (3.31) in 

the 1-D case.  

 

3-5- Entropy and high resolution corrections 
    The Roe method violates the entropy condition in the case of sonic rarefaction 

(transcritical flow), and produces a shock inside a sonic rarefaction, which is obviously 

incorrect for the SW equations. Many methods have been proposed to overcome this 

problem. Here, we use the approach proposed by Harten and Hyman (1983) with 
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instead of (3.9). Here, the entropy correction function ψ  is defined as 
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Harten and Hyman (1983) proposed to calculate ε  as 
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The first order Roe scheme can be extended to a high resolution method by adding a 

correction term (based on the Lax-Wendroff scheme ) to *F
r

Δ in the first order flux (3.5). 

The resulting *F
r

Δ is written in the following form 
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where kϕ  is the flux limiter associated with the kth component of the decomposition. 

Here, *F
r

Δ vanishes in the case of stagnant conditions (since kα~  vanishes) and hence, the C  

property still holds with the high resolution scheme. 

 The flux limiter approach (3.41) has also been employed by Hubbard and Navarro (2000) 

on a triangular grid with an upwind discretization of the source terms and led to good 

results. The implementation of (3.41) for 2-D cases has been described in Leveque (2002). 

All the computations presented below are performed by using the minmod flux limiter as 

described in Leveque (2002). 

 

3-6- Stability and boundary conditions 
   Due to the explicit discretization of the convective terms, a CFL number less than 1 is 

an upper limit for stability. This is the case when the non-linear effects are not dominant, 

like in the Leveque’s 1-D test case presented below using a CFL value of 0.99. However, 

for most existing schemes, the stability considerations are more restrictive when nonlinear 

effects are dominant, and this is also the case for the present scheme. Based on numerical 

experiments, there is no significant difference between the stability condition of the original 

Roe scheme and the modified one proposed here, in the case of smooth flows.  

  On the other hand, the proposed corrections in (3.29) and (3.30) induce a minor effect on 

the non-oscillatory feature of the Roe scheme in simulating discontinuous flows with a high 

CFL number. However, by choosing a slightly smaller time step (usually 10-20% less than 

the original Roe scheme), the oscillations disappear. For example, in the dambreak test case 

4-1 presented below, using a first order scheme, the oscillations are not seen when the CFL 

number is less than 0.83, and the scheme is stable up to a CFL of 0.93. When using high 
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resolution scheme, the oscillations are not observed when the CFL number is less than 0.75 

and the scheme is stable up to a CFL of 0.9. In 2D, the CFL condition is defined as 
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⎡ ++
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iii

d
tcvu
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Δ22

min        (3.42) 

where dij is the distance between the centroid of each cell i and its neighbors j.   

The numerical treatment of the boundary conditions is performed by setting the variables 

at the boundary edges based on the theory of characteristics (Alcrudo and Navarro, 1993). 

For subcritical flows, two external conditions must be specified at inflow boundaries, 

whereas only one is required at the outflow one. However, two-dimensional supercritical 

flows require the imposition of three inflow boundary conditions and none at the 

downstream side.  

  In the particular case of solid wall, both velocity components are set equal to zero. The 

depth variables are calculated by using the information carried out by the outgoing bi-

charachteristics (the Riemann invariants). However, in most practical cases those may be 

simply set to the corresponding values of the adjacent inner cells. 

 

4- Numerical results 
   In order to study the performance of the numerical scheme, some tests have been 

performed herein. Tests 4-1 and 4-2 show the ability of the model for simulating dam-break 

type flows. The remaining tests show the performance of the proposed scheme for variable 

topographies and recirculating flows. In tests 4-1 to 4-4 and 4-9-1 we examine 1-D 

problems and the other tests are performed using the two dimensional model. In all tests the 

CFL number ranges between 0.35 and 1.0. In all figures and tables, the SI system has been 

used, i.e. the water depth and the water surface elevation are in m and the water discharge is 

in sm /3 . In all tests a high resolution scheme is employed except otherwise mentioned. 

  

4-1 –The dam break problem 
   The dam break problem is a common test for evaluating shock capturing schemes in 

shallow flows. Here, a dam is located at the mid point of a channel of length 50 m. The 
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water depth at left and right hand side of the dam is 0.5m and 0.25 m respectively. The dam 

is instantaneously removed across its entire width and the flow conditions are computed up 

to time t = 8 s. A CFL number of 0.65 was chosen in order to compare the first and second 

order schemes introduced in (3-38) and (3-41), respectively. The results consist of a right 

shock and a left rarefaction. The results for the depth (h) and discharge (uh) are presented 

in figures 4-1-a and 4-1-b respectively. As it can be seen, both first and second order 

schemes are able to provide good results without numerical oscillations. Further, the second 

order scheme requires less grid points than the first order one, to capture the shock wave. In 

the dam break tests, the maximum value of hL/hR is a measure of the performance of the 

numerical scheme. In the next section we show that the proposed method can simulate the 

dambreak problem with all depth ratios (even on a dry bed). 

 

 

Fig. 4-1-a. Calculated depth at t=1.6, 3.2, 4.8, 6.4 and 8s  with the proposed method; second 
order (left) and first order (right). 
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Fig. 4-1-b. Calculated discharge at t=1.6, 3.2, 4.8, 6.4 and 8s with the proposed method; 
second order (left) and first order (right). 

 

4-2- Toro’s Riemann problems 
   We now investigate the ability of the proposed scheme in performing several challenging 

test cases designed by Toro (2000). A summary of the initial conditions used in these test 

cases is presented in table 1, where hL, uL, hR, uR, denote the initial depth and velocity in 

the left and right hand side of the discontinuity, x0 is the position of the discontinuity and 

tout is the output time. In all tests a wide horizontal, rectangular and frictionless channel of 

length 50 m is used. In all tests a second order scheme is used and the results are compared 

with those of the Roe scheme (second order) and the analytical solutions. 

 

Table 1. Data for Toro’s test problems. 
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4-2-1– Left sonic rarefaction and right shock 
   The initial condition has been chosen as to produce a strong shock wave and a sonic or 

transcritical left rarefaction wave. The results of this test are presented in figure 4-2-1, and 

they are compared with those of the original Roe scheme. As it can be seen, both the Roe 

scheme  and the proposed method give good results. 

 

 

Fig. 4-2-1. Left sonic rarefaction and right shock test case. Calculated water depth with the 
proposed method (left) and the Roe scheme (right)  

 

4-2-2 – Two rarefactions and nearly dry bed 

  In this test, the initial conditions have been chosen in order to produce two rarefacrtion 

waves and a nearly dry bed. The results are shown in figure 4-2-2 for the original Roe 

scheme and the proposed method. They confirm that the proposed modifications do not 

change the performance of  the Roe method for this problem. 
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Fig. 4-2-2. Two rarefactions and nearly dry bed test case. Calculated water depth with the 
proposed method (left) and the Roe scheme (right) 

 

 

4-2-3-Dambreak on dry bed 
   Jha et. al. (1996) reported that the Roe method using the second order accurate correction 

fails to simulate the dambreak problem when hL/hR<0.002. In order to overcome this 

problem, the flux limiter function is also set here to zero when 510−<h , i.e. the model is 

second order accurate everywhere except close to the shock region and the wet/dry border. 

The results are presented in figure 4-2-3, and they are again compared with those of the 

original Roe scheme (with the modified flux limiter function). They show that the proposed 

method is able to simulate the dambreak type flows whatever the choice of depth ratio 

hL/hR.  
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Fig. 4-2-3.  Dambreak on dry bed. Calculated water depth with the proposed method (left) 
and the Roe scheme (right). 

 

  4-2-4-Generation of a dry bed 
   The initial condition has been chosen in order to produce a solution consisting of two 

rarefaction waves with a portion of a dry bed between them. The results of this test are 

presented in figure 4-2-4, and they are again compared with those of the Roe scheme. As it 

can bee seen, both schemes produce similar results, i.e. the proposed modification does not 

change the quality of the results of the Roe scheme for this test. Hence, tests 4-2-3 and 4-2-

4 show the ability of the proposed scheme in simulating dry bed problems. 
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Fig. 4-2-4. Generation of a dry bed. Calculated water depth with the proposed method (left) 
and the Roe scheme (right). 

 

  4-3-Tidal wave flow 

4-3-1-Tidal wave flow over regular topography 

   This one dimensional test was proposed by Bermudez and Vazquez (1994). The 

topography is defined as 
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where L=14000m is the channel length. By defining H(x)=-z(x), the initial conditions write 
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For this test, Bermudez and Vazquez (1994) derived the following analytical solution 
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At time t = 7552.13, the results are shown in figure 4-3-1, and are in a good agreement with 

the exact solution.  

 

 

. 

Figure 4-3-1. Tidal wave flow in a channel with variable topography. 

 

 

Figure 4-3-2. Tidal wave flow over an irregular bed. 
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   4-3-2- Tidal wave flow over an irregular bed 
Here, the topography is defined in table 2. This irregular bed was proposed at a workshop 

on dambreak wave simulations (Goutal and Maurel, 1997).  

The initial and boundary conditions are identical to those used in test 4-3-1, with 

L=1500 m,        H(x)= H(0)-z(x),   H(0)=16m. 

The analytical solution is given by (4.6) and (4.7). At time t = 10800 s the results, shown in 

figure 4-3-2, indicate the ability of the scheme in simulating irregular topographies.  

 

Table 2. Topography for Irregular Bed. 

 

 

 

   4-4- Steady flow over a bump 
This problem was also proposed at the workshop on dam-break simulations (Goutal and 

Maurel, 1997). The topography is defined as 
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  Depending on the initial and boundary conditions, the flow may be subcritical, 

transcritical (with or without a steady shock), or supercritical. The analytical solution of 

this problem is given in Goutal (1997).  The global relative error R is defined as 
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where n
ih  and 1−n

ih  are the local water depths at the current and previous time levels. A 

mesh of 150 nodes was used in all computations. 

   Three different cases are considered: 

  (i)  Transcritical flow without a shock 

   The boundary conditions are defined as 

Downstream: The water level h=0.66m is imposed only when the flow is 

subcritical. 

Upstream: The discharge uh=1.53 m3/h is imposed. 

   The surface profile is plotted in Figure 4-4-1, and it shows a good agreement with the 

analytical solution. The computed discharge is also compared with the theoretical one in 

Figure 4-4-1. The numerical oscillations observed in figure 4-4-1 (right) are also present in 

most existing schemes. This behavior is related to the fact that the C property, although it is 

widely accepted in the literature as a good-enough measure to test the ability of the 

numerical schemes in the presence of real topographies, does not guarantee that the steady 

state condition with non-zero discharge is well captured. 

  (ii) Transcritical flow with a shock 

   The boundary conditions are defined as 

Downstream: The water level h=0.33m is imposed. 

Upstream: The discharge uh=0.18 m3/h is imposed. 

   Figure 4-4-2 (left) shows that a good agreement is obtained between the analytical 

solution and the computed water surface elevation. A comparison of the computed 

discharge with the theoretical results is shown in figure 4-4-2 (right). The oscillations have 

the same origin as previously mentioned in (i). 

  (iii) Subcritical flow 

   The boundary conditions are now defined as 

Downstream: The water level h=2.m is imposed. 

Upstream: The discharge uh=4.42 m3/h is imposed. 

   The numerical results are depicted in figure 4-4-3 (left), and again they show an excellent 

agreement between the analytical solution and the computed water surface elevation. A 

comparison of the computed discharge with the analytical results is shown in figure 4-4-3 

(right). Again, the oscillations have the same origin than previously mentioned in (i).  
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   The convergence history performed for the tests (i), (ii), (iii) is shown in figure 4-4-4, 

which shows that for all problems, the convergence is obtained in a reasonable number of 

iterations.  

  In order to examine the 2-D model in different flow regimes over variable topographies, 

the present test case is also performed with the 2-D model. The unstructured grid used here 

is shown in figure 4-4-5. The corner triangles do not complete a rectangle but this does not 

have any effect on the results. The results corresponding to the boundary conditions (i), (ii), 

(iii) are compared with the analytical solution in figure 4-4-6, and they show that the 

current method can simulate all cases accurately. 

 

Figure 4-4-1. Steady transcritical flow over a bump without a shock: Water surface 
elevation (left) and discharge (right). 

 

 

Figure 4-4-2. As for fig. 4-4-1 but for the steady transcritical flow over a bump with a 
shock. 
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Figure 4-4-3. As for fig. 4-4-1 but for the steady subcritical flow over a bump. 

 

 

Figure 4-4-4. Convergence history for tests (i), (ii), (iii), from left to right respectively. 

 

 

Figure 4-4-5. Unstructured triangular grid used for the steady flow over a bump. 

 

 

Figure 4-4-6. Different cases of flow over a bump (the 2D model): Water surface elevation. 
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   4-5-Bore Reflection 

4-5-1- Alcrudo and Navarro’s oblique wave problem 

   An oblique wave is generated by the interaction between a supercritical flow and a 

converging wall, with an angle of θ = 8.95o between the wall and the stream-wise direction. 

The upstream condition is a uniform supercritical flow with a depth of 1 m, and the flow 

velocity is such that u=8.57 m/s and v = 0.0 m/s. The analytical solution for this problem is 

hd=1.5m and 9525.722 =+ vu m/s, respectively, and the numerical results are shown in 

figure 4-5-1-a and 4-5-1-b. The calculated depth and flow velocity are hd=1.4995 m and 

9556.722 =+ vu  m/s. Hence, it appears that the model is able to simulate this test case 

accurately, without exhibiting numerical oscillations. 

 

 

 

Fig 4-5-1-a. Oblique wave problem: 3D view of calculated water level. 
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Fig 4-5-1-b. Oblique wave problem: Grid and contours of water level. 

 

4-5-2- Shock-on-shock interaction 

This test, including an exact solution, was proposed by Causon et. al. (1999). A schematic 

representing the problem and the unstructured grid used in the simulation, are presented in 

figure 4-5-2-a. Based on the interaction of the shock-waves, four regions (1), (2), (3) and 

(4) are formed, where Aβ is the angle between the shock wave and the original flow 

direction and Dβ  represents the angle between the shock wave and the side wall. 

The numerical simulation has been performed by using an averaged value of 0.65 for the 

CFL number. The water depth is 1 m in the undisturbed region, the upstream Froude 

number is 2.7 and the wall deflection angle is 12o. The simulation was pursued until a 

steady state solution was obtained using the high-resolution scheme. A two dimensional 

view of the water level is shown in figure 4-5-2-b. A comparison between the computed 

and the exact solution is presented in Table 3. As it can be seen, the numerical model can 

accurately simulate the water surface and the shock-on-shock interaction.  
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Figure 4-5-2-a- A schema of the shock-on-shock interaction problem (Left) and the 
triangular grid used in the simulation of the shock-on-shock interaction problem (right). 

 

 

Fig 4-5-2-b- Shock on Shock interaction: Contours of calculated water surface elevation. 

 

Table 3- comparison between calculated results and exact solution. 
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4-6- Circular dam break 
To test again the performance of the proposed method, we now consider the breaking of a 

cylindrical dam and the time evolution of the subsequent waves (Alcrudo and Navarro, 

1993). Two regions of still water are separated by a cylindrical wall of radius r = 11 m, 

such that the water depth is 10 m on the inner side and is 1 m outside the dam. The 

computed water surface profile using 6328 cells at time t = 0.69 s is shown in figure 4-6 

(left) and it is compared with the HLL scheme results (figure 4-6, right). As it can be seen, 

the method performs well and smooth results are obtained. Further, the radial symmetry of 

the computed solution numerical method is respected. 

 

 

 

Fig. 4-6. Computed water surface level at t = 0.69s for the circular dam break problem; a 
3D view (top) and a comparison with the HLL scheme (bottom).  
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4-7- Recirculating flow after a sudden expansion 
The 2-D laminar flow past a sudden expansion in a side wall (horizontally analogous to 

the backward facing step) provides a well documented benchmark test for evaluating the 

level of numerical diffusion in conservation law schemes. Many researchers (Denham and 

Patrick, 1974), have provided experimental and numerical data on the flow pattern 

immediately after a backward facing step, where a steady vortex appears with its length 

depending on the Reynolds number, defined as ν/Re 1bU= , where 1U  is the mean inlet 

flow velocity, b is the dimension of the wall expansion and ν  is the fluid kinematic 

viscosity coefficient. In Denham and Patrick (1974), DqU x /1 =  where xq  is the inlet x-

direction inlet momentum flux and D is the flow depth. The channel width is 2b before, and 

3b after the expansion, where b = 1m. At the expansion, the mean flow velocity is U1=0.5 

m/s, the flow depth at the downstream is 1 m and the eddy viscosity is 0.00685 m2/s, also 

considered by Denham and Patrick, corresponding to 73/Re 1 == νbU . No bottom friction 

is applied. All numerical experiments are performed using the first order scheme, and a 

structured 300×100 grid is employed. Figure 4-7-1 presents the predicted velocity vectors 

in the x direction and the experimental data. The predicted steady-state velocity profiles at 

different positions along the channel past the expansion are in very close agreement with 

Denham and Patrick’s experimental results, as shown in figure 4-7-1. The streamtraces 

predicted by using the proposed scheme are shown in figure 4-7-2. The length of the 

recirculation region is approximately 3.89b which is near the value 3.95b given by Denham 

and Patrick (1974) from experimental data. This recirculation zone is correctly modeled, 

thus demonstrating the ability of the proposed scheme to simulate circulating flows with a 

low level of numerical diffusion. 

  The results of the Nujic method are also shown in figure 4-7-2. As it can be seen the 

length of the recirculating zone is roughly half of the expected value, which shows a high 

level of numerical diffusion for the circulating flows. The HLL flux (used by Mingham et. 

al., 1998), and the Kurganov’s central upwind scheme (2002) have even more numerical 

diffusion, and the recirculating zone is roughly 1.2b as shown in figure 4-7-2 
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Fig. 4-7-1. Predicted velocities with the proposed method in the x-direction compared with 
the experimental data. 

       

        

 

Fig. 4-7-2. Streamtraces calculated with:  a) the proposed method, b) the Nujic scheme, 
c)the central upwind scheme, and d) the HLL flux (all first order) 

 

4-8- Partially closed channel 
A partially closed channel of length 3 km and width 1 km is considered under the steady 

state flow conditions. Although this is an academic case, a number of different models have 

been applied to it as reported in the literature (Kolahdoozan, 1999, van Rijn, 1987 and 

Wang, 1989). A headland of length 0.4 km is located in the middle of the channel, as 

shown in figure 4-8-1. The bed roughness height is assumed to be 0.25 m and the 

horizontal mixing coefficient is 0.5 m2/s. The upstream hydrodynamic boundary condition 

is assumed to be a discharge of 4000 m3/s and the downstream boundary is h = 6 m 

(Kolahdoozan 1999). Figure 4-8-2 shows the mesh and the streamlines predicted by the 
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proposed model.  

The results of the depth-averaged velocities along the streamline B obtained with the 

present model are compared in figure 4-8-3 with three other models. Those are GEO- 

DIVAST model (Kolahdoozan 1999), which is a modified version of DIVAST (Falconer 

1980) and uses a finite volume method; the finite element model SUTRENCH, developed 

by Delft Hydraulics (van Rijn 1987); and the ESMOR two dimensional depth averaged 

model, also developed by Delft Hydraulics (Wang, 1989). Based on a comparison of the 

results in figure 4-8-3, the results of the proposed model are in a close agreement with other 

models. However, the proposed model has a wider applicability and is able to simulate 

super critical and trans-critical flows on unstructured grids. Further, it should be mentioned 

that in this test case, the bed is movable and the current model successfully simulated the 

morphological processes around a groyne (Mohammadian et. al., 2003). 

 

 

Figure 4-8-1. Schematic view of the channel 

 

 

Figure 4-8-2. Streamline predicted by the proposed model. 
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Figure 4-8-3. Depth averaged velocities along the streamline B obtained by using different 
models. 

 

4-9- Small perturbation of a steady-state solution 
 

4-9-1- One dimensional, small perturbation of a steady-state solution 
   This test case is concerned with wave propagation and it has been proposed by Leveque 

(1998). The channel has a length of 1.0 m and the topography is defined as 
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Two cases have been considered: 2.0=ε m and .01 m. The solutions obtained on a grid 

of 100 nodes and 1=g m2/s are shown in figure 4-9-1. When 01.0=ε  the experiment is 

more difficult to conduct. A CFL number of 0.85 and 0.99 is used for the cases of 

2.0=ε m and .01 m, respectively. Contrary to most existing schemes, which have used 

much more grid points than here (600 in Hubbard and Navarro, 2000), the present method 

can capture the quasi steady solutions quite well, with a very low level of numerical 

diffusion and without numerical oscillations. 
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Fig. 4-9-1. Computed water surface level at t=0.7 with 2.0=ε (left) and 01.0=ε (right). 

 

4-9-2- Two dimensional, small perturbation of a steady-state solution 
   In the test case presented by Leveque (1998), the SW equations are solved in the 

domain ]1,0[]2,0[ × , and the bottom surface is an elliptical shaped hump 

( )⋅−−−−−= 22 )5.0(50)9.0(5exp8.0),( yxyxz      (4.12) 

The surface is initially flat with 1),( =yxh  except for 15.005.0 << x , where 

01.1),( =yxh m. Figure 4-9-2 displays the right-going disturbance as it propagates past the 

hump, using coarse (11653 control volumes) and fine (29877 control volumes) unstructured 

grids. The current method is clearly able to simulate this problem without facing spurious 

oscillations due to variable bed topography. 
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Fig. 4-9-2. Computed water surface level with a coarse grid (left) and a fine grid (right) for 
t=0.6, 0.9, 1.2, 1.5 and 1.8s. 
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7- Conclusion 
A mass conservative approach has been proposed to solve the shallow-water equations. It 

is able to accurately simulate mild flows such as recirculating and tidal flows with low 

numerical diffusion.  

Numerical results indicated that the proposed method can also accurately compute sub, 

super and trans-critical flows with discontinuity over complicated topographies.  

In the proposed scheme, it is not necessary to perform an extra upwinding or Riemann 

solution for the source terms, which makes our method computationally efficient. Many 

test cases show that the proposed method can be efficiently used for a wide range of SW 

problems. Contrary to many available schemes, our approach can be easily implemented on 

unstructured grids and has the advantage of being flexible for irregular boundaries and local 

mesh refinement.  
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CHAPTER 5 

Simulation of shallow flows over variable topographies using 
unstructured grids 
In chapter 4, a well balanced scheme was developed for the numerical simulation of 2-D 

shallow water problems using a characteristics-based finite volume method. However, it is 

not fully conservative and may give rise to problems in presence of strong shocks. In this 

chapter, two new fully conservative schemes are introduced to overcome this problem 

while preserving the balance between flux and source terms.  Further, they directly deal 

with the source terms without changing the flux terms. This makes it possible to combine 

them with most existing Riemann solvers. 

 

Simulation d'écoulements peu profonds en présence de 
topographies variables  et des maillages non structurés.   
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Résumé 
La simulation d'écoulements peu profonds en présence de topographies variables est un cas 

difficile pour la plupart des schémas disponibles.  Le problème vient du fait que les termes 

source et les gradients de flux ne sont pas équilibrés dans les calculs numériques.  Les 

améliorations apportées à cette difficulté fonctionnent généralement bien sur des maillages 

structurées, mais ils sont habituellement trop coûteux et non directement applicables aux 

maillages non structurés.  Dans cet article nous proposons deux méthodes efficaces pour 

traiter les termes source sans utiliser la méthode dite d'upwinding et pour satisfaire la 

condition de compatibilité sur des maillages non structurés. Dans la première méthode, le 

calcul des termes source, à cause de pente au fond, est déterminé en utilisant une 

approximation compatible de profondeur de l'eau aux interfaces des cellules. Dans la 

seconde, différentes composantes du terme de pente au fond sont considérées séparément et 

une discrétisation compatible des composantes est proposée.  Les améliorations introduites 

ici sont applicables pour la plupart des schémas, incluant la méthode de Roe, sans modifier 

la performance du schéma original pour des topographies régulières. 
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SIMULATION OF SHALLOW FLOWS OVER VARIABLE  

TOPOGRAPHIES USING UNSTRUCTURED GRIDS 
 

A. MOHAMMADIAN, D. Y. LE ROUX 
 

Abstract. Simulation of shallow flows over variable topographies is a challenging 

case for most available shock-capturing schemes. This problem arises because the source 

terms and flux gradients are not balanced in the numerical computations. Treatments for 

this problem generally work well on structured grids, but they are usually too expensive, 

and most of them are not directly applicable to unstructured grids. In this paper we 

propose two efficient methods to treat the source terms without upwinding and to satisfy the 

compatibility condition on unstructured grids. In the first method, the calculation of the bed 

slope source term is performed by employing a compatible approximation of water depth at 

the cell interfaces. In the second one, different components of the bed slope term are 

considered separately and a compatible discretization of the components is proposed. The 

present treatments are applicable for most schemes including the Roe method without 

changing the performance of the original scheme for smooth topographies. 

  

Key Words:  Shallow-water, variable topography, unstructured grid, finite volume 

method 

 

1- Introduction 
   The shallow-water (SW) equations govern many practical applications like river and 

tidal flows in estuary and coastal water regions where variable topographies are usually 

present. The simulation of these flows is of great interest for hydraulic engineers, 

particularly on unstructured grids. Unstructured grids are attractive because of their 

flexibility for representing irregular boundaries and for local mesh refinement. On the other 

hand, for many fluvial flows, the flow regime changes from subcritical to supercritical and 

the employed numerical method should be able to solve sub, super and trans-critical flows. 
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The discretization of the shallow-water equations has received considerable attention in 

the past two decades and many upwind schemes have successfully solved channel flows 

(Glaister, 1988, Fenemma and Chaudry, 1987, Zhao et. al., 1994 and Mingham and 

Causon, 1998). However, their use in the presence of irregular topographies is usually 

problematic, due to the imbalance between the source terms and the flux gradients 

(Bermudez and Vazquez-Cendon, 1994). In fact, most shock capturing finite volume 

schemes for the shallow water equations, are obtained by using approximate Riemann 

solvers which have been originally designed for hyperbolic systems without considering the 

source terms (such as bed topography in the case of shallow water equations). Therefore, in 

the presence of source terms, those schemes may lead to oscillations. Numerically, this 

problem is due to an imbalance between discretized source and flux terms. 

 Some modifications have been brought to the above mentioned methods in the case of 

variable topographies and structured grids. For example, the van Leer’s Q-scheme was 

extended by Bermudez and Vazquez-Cendon (1994) for the SW equations, and an upwind 

discretization of the source terms for variable topographies has been formulated. The C 

property, which states that the scheme should preserve the stagnant conditions was also 

introduced. In the stagnant conditions, water is initially at rest inside of some closed area 

with variable bottom topography. Hence, without influence from outside, the water should 

stay at rest. This work has been improved in the case of a general 1-D channel with breath 

variation by Vasquez-Cendon (1999). The Vasquez-Cendon approach was then extended to 

flux difference splitting schemes by Hubbard and Navarro (2001). However, upwinding the 

source terms is computationally expensive for practical applications because those terms 

have to be projected on a basis of eigenvectors. LeVeque (1998), introduced a Riemann 

problem inside a cell for balancing the source terms and the flux gradients, and the 

resulting method was found to preserve both stagnant and quasi steady state conditions. 

However, the LeVeque’s scheme is not directly transportable to unstructured grids. On the 

other side, Kurganov and Levy (2002) extended the Central-Upwind (CU) scheme to the 

shallow-water equations and by using the water surface elevation instead of the depth, they 

proposed an adaptive algorithm for variable topographies. They also proved that their 

scheme preserves the steady state condition with a positive depth, without resorting to any 

artificial drying and wetting strategies. Unfortunately, their scheme poorly performs in the 
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case of circulating flows, as shown in Mohammadian et. al. (2005). In a different approach, 

Alcrudo and Benkhaldon (2001) defined the bed level such that a sudden change in the 

topography occurs at the interface of two cells. They also developed a Riemann solver at 

the interface with a sudden change in the bed elevation. However, their approach leads to 

several cases of shock and rarefaction wave patterns and it is numerically too expensive. 

The ENO and Weighted ENO (WENO) schemes were extended by Vukovic and Sopta 

(2002) to the shallow-water equations including the source terms, but they are restricted to 

1-D channels. Jin (2002) developed the interface method, which preserves the steady state 

condition up to second order accuracy on structured grids, but his approach is not directly 

usable on unstructured grids. A second order gas kinetic scheme for shallow-water flows 

over variable topographies was also proposed by Xu (2002). However, the gas kinetic 

schemes are basically different from characteristics based schemes and they should be 

tested for challenging test cases such as recirculating flows. Rogers et. al. (2003), proposed 

a numerical scheme where the balance is achieved by the incorporation of extra physical 

information, but, only structured grids are employed. Nujic (1995) used the water level 

variable instead of the depth and he extracted the gravitational terms from the flux 

functions in the Shu and Osher (SO) scheme (1988) to solve for variable topographies. 

Unfortunately, the SO scheme (1988) generates a high level of numerical diffusion in the 

case of recirculating flows, as shown in Mohammadian et. al. (2005). 

  Zhou et. al. (2001) introduced the surface gradient method where the depth is 

interpolated at the cell interface considering the bed variations. They showed that by 

combining their approach with the HLL flux function (Harten et. al., 1983) the C property is 

satisfied, and the resulting scheme performs well for variable topographies without any 

extra efforts for balancing the source terms and the flux gradients. However, the C property 

does not hold on unstructured grids and moreover, the HLL flux induces a high level of 

numerical viscosity in recirculating flows, as shown in Mohammadian et. al. (2005). 

 Mohammadian et. al. (2005) showed that the Roe method produces much less numerical 

diffusion than the SO, HLL and CU schemes in the case of circulating flows and they 

developed a numerical scheme using the Roe method which satisfies the C property. 

However, although their scheme is mass conservative, it is not fully conservative since the 

gravity terms are not discretized in a conservative manner. 
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In this paper we present two efficient numerical methods for flows over variable 

topographies on unstructured grids. The proposed two methods are shown to satisfy the C 

property when combined with the Roe scheme and the surface gradient method (Zhou et. 

al., 2001) for calculating the water depth at the interface. Several numerical tests are 

presented to show the performance of the two schemes over variable topographies. 

  The main feature of the methods presented here is that, since they are working directly on 

the discretization of the source terms, they are not restricted to the Roe method and they 

can be used with a large range of existing shock capturing schemes such as the Roe, the 

HLL, the HLLC, the central upwind methods etc… 

 

This paper is organized as follows. The model equations are introduced in section 2. The 

numerical scheme, the treatment of the source term and the proof of the C property are 

presented in section 3.  In section 4, some numerical test cases show the performance of the 

proposed schemes. Some concluding remarks complete the study. 

 

2- Governing equations 
   The 2-D SW equations in a conservative form are written as  
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where h is the water depth, u and v are the velocity components (Figure 2-1) and g is the 

gravitational acceleration. 
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Fig. 2-1. Schematic diagram of an unsteady flow over an irregular bottom and the 
corresponding notation. 

 
The superscript d refers to the diffusion and the diffusive flux has the following form  
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 and ν and tν  are water and eddy viscosity coefficients respectively. 

The source term S
r

 is written as 
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where z  is the distance between the bed surface and the reference level (Figure 2-1; z is 

zero in the reference level and increases downward) and fc  is the friction coefficient.  

The SW equations may also be written in a non-conservative form  
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where A and B are the Jacobian matrices 
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and ghc =  is the wave velocity.  

The eigenvalues of A and B are  

cuauacua −==+= 321  , ,  and cvbvbcvb −==+= 321      ,     , , respectively. 

 

3- Numerical scheme 

3-1-Finite volume methods on unstructured grids 
A finite volume method using triangular grids is used in this paper. The variables are 

located herein at the geometric centers of the cells, and each triangle represents a control 

volume. Let A  be the area of a triangle with boundary s. The SW equations are integrated 

over every control volume 
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   A high order time stepping scheme may be employed to integrate (3.1) in time. However, 

for the sake of simplicity and because the discretization of the source term is the main 

issue, we use here the first order forward (explicit) Euler time-stepping scheme. This leads 

to 
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where superscript n and n+1 refer to the variables at time tn and tn+1, respectively. The 

application of Gauss theorem to the diffusive and convective flux integrals gives 
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and the boundary integral is approximated by a summation over the triangle edges 
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The diffusive fluxes are approximated by a centered scheme 

( )d
L

d
R

d FFF
rrr

+= 5.0           (3.5) 

 A centered scheme for the diffusion term is employed because this scheme is (i) second 

order accurate, (ii) economically justified and (iii) easily incorporated in the whole 
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numerical procedure, which is in a flux-based format. Mohammadian et. al (2005), have 

shown that the scheme (3.5) for the diffusive fluxes, leads to correct simulation of 

circulating zones.  

 The convective fluxes F
r

 are calculated here by a Godunov type scheme 

 ( )*5.0 FFFF LR

rrrr
Δ−+= ,          (3.6) 

where ( ) ( )RRLL UFFUFF
rrrrrr

==  and  are the left and right flux vectors. The subscripts 

 .R and L.  represent the evaluation of the right and left sides of the interface, respectively, 

and *F
r

Δ is the flux difference based on the Roe linearization 
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where ka~  and ke~ r , k=1,2,3, are the eigenvalues and the eigenvectors of A~ , respectively. 
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In the case of a dry bed problem, c~  is calculated in the same manner as in (3.9), and the 

average velocities are 
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The eigenvalues of A~ are simply 
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respectively. The coefficients kα~ , k=1,2,3, are computed as 
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where ( ) ( ) ( )LR ... −=Δ .  

The Roe method violates the entropy condition in the case of sonic rarefactions 

(transcritical flows) and it predicts an unphysical jump at the sonic point inside the 

rarefaction waves, which is physically incorrect. This is because hyperbolic conservation 

laws admit, for example, rarefaction shocks and compressive shocks. In the shallow water 

equations, only the compressive shocks are physically acceptable. The entropy condition is 

a criterion for selecting the physically meaningful solution, in such cases. 

Many methods have been proposed to improve the Roe method for these flows such as 

Harten and Hyman (1983). Here, we employ an approach proposed by van Leer et. al. 

1989, and already used by Bradford and Sanders (2002). It consists of modifying the values 
ka~ , k=1,2,3, in (3.7) when 

2
~

2

k
k

k aaa ΔΔ <<− ,         (3.15) 

and replacing them by kâ defined as 
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where, k
Ra  and k

La  are calculated as in (3.10), but using LLL cvu ,,  and RRR cvu ,, , 

respectively. Such a simple modification enables the scheme to simulate the transcritical 

flows correctly. 
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3-2- Calculation of derivatives 
The divergence theorem is employed to obtain the derivatives of a scalar variable c on a 

triangular cell i (shown in figure 3-1) as 
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Fig. 3-1. The triangular cell i with the quantities R
jc and L

jc computed at the right (R) and 
left (L) sides respectively at a given face j,  j=1,2,3. The coordinates ),( jj yx , j=1,2,3, are 
located at the three vertices of cell i. 

 
where  
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The viscous terms are then calculated as 
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3-3- Interpolation Scheme 
  The values of the variables at the left and right sides of the interface are needed to 

compute the numerical fluxes in (3.5) and (3.6). Those values may be calculated using a 

piecewise constant or a piecewise linear interpolation scheme. Because this paper focuses 

on the discretization of the source terms, for the sake of simplicity, a piecewise constant 

approach has been employed in all the computations (except where mentioned otherwise). 

However, the methods presented in the next section to calculate the source terms, also 

preserve the C  property when high accurate interpolation schemes are employed (e.g. 

Appendix I). This is because the C  property proofs given in section 3-4 are independent of 

the method for  calculating the variables at the left and right sides of the interface, provided 

0=hΔ  at the cell interfaces (which is the case when the surface gradient method employed) 

in stagnant conditions.  

  In the surface gradient method (Zhou et. al. 2001) the water surface elevation η  is 

interpolated at the cell faces instead of the water depth. Once Lη  is calculated, the water 

depth can be obtained as  

eLL zh += η ,            (3.24) 

where ez  is the distance between the bed surface and the reference level at triangle edge 

midpoints and is known from topography data.. In the case of the stagnant conditions 

0ηηη == RL , where 0η is the constant water level and using (3.24) we obtain 

00 zhh RL +== η , which leads to 0=hΔ  at the cell faces. This is crucial to guarantee the C 

property proofs given in the next section. 

An interpolation procedure (Appendix I) is also needed to calculate the depth integrated 

discharges uh  and vh  at the cell interfaces, and we obtain 
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3-4- Computation of Bed Slope Term in Variable Topographies 
As mentioned before, the bed slope term is considered separately in the source term (2.5). 

This usually leads to an incompatible discretization of the water surface gradient term 
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( 25.0 gh ) and the bed slope term and consequently produces an artificial source term in the 

numerical solution. For example, in complicated topographies with the stagnant initial 

condition, the water will not remain stagnant (Bermudez and Vazquez-Cendon, 1994). 

In the following we introduce two methods to overcome this problem. 

3-4-1-Method I- Compatible discretization of the bed slope term using a modified 
water depth 

We first explain a simplified version of the method in one dimension. For a cell i, with 

edges i+1/2 and i-1/2, and length xΔ  ,the bed slope term is usually approximated as 
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where hi  is the water depth in the cells. Recall z  is the distance between the bed surface 

and the reference level (Figure 2-1). However, (3.26) does not satisfy the C property. In 

order to balance the source terms and the flux gradients, hi is approximated by iĥ  as  
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In the case of the stagnant water conditions we have 
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where 0η  is the constant water surface elevation over the domain and 
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kk hhh , with k= i-1/2 and i+1/2 .  Further, because all velocities are 

zero (due to the stagnant conditions), we obtain 0* =F
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In 1-D, (3.2) reduces to (see 3.3 and 3.4)  
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Therefore, the discretized momentum equation corresponding to cell i (for stagnant 

conditions) is (see 3.31) 
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Hence, the C property holds.  

This approach can be extended to arbitrary control volumes. Indeed, following (3.15), the 

bed slope term in a cell i (figure 3-3) is discretized as 
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where 3yΔ  is replaced by )( 213 yyy Δ+Δ−=Δ  and this leads to 
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Fig. 3-3. The triangular cell i with the quantities R
jh and L

jh computed at the right (R) and 
left (L) sides respectively at a given face j,  j=1,2,3. The coordinates ),( jj yx , j=1,2,3, are 
located at the three vertices of cell i. 

 

Again, (3.34) does not satisfy the C property because there is still an imbalance between 

the bed slope and the flux terms. In order to reach the balance, the right hand side of (3.34) 

is expressed in two parts (part 1 and part 2). Following the same procedure than in (3.26) 

and (3.27), we replace ih  by 
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in parts 1 and 2 of (3.34), respectively (Fig. 3-3), and this leads to 
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Proposition I. The numerical scheme presented in sections 3-1 to 3-3, satisfies the C 

property with (3.37).  

Proof: In the case of stagnant water conditions we have 
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111 hhh LR == ,         (3.38)  
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The C property thus holds. The extension of the present method for an arbitrary control 

volume with m edges is straightforward by considering  
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The proof of proposition I is then generalized in a similar manner. 

 

3-4-2- Method II- Considering different components of the bed slope term separately 
In method I, two different approximations (3.35 and 3.36) have been used to approximate 

the depth inside a given triangular cell in order to balance the source and the flux gradient 

terms. For general control volumes having more than three edges (such as quadrilaterals) 

the accuracy of method I may be decreased in the case of stretched cells. This problem 

motivates the introduction of method II in which the source and the flux gradient terms are 

inherently balanced by considering different components of the bed slope term separately. 

Here, the bed slope term is written as 
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In the case of a horizontal bed, B1 and B3 cancel each other and B2 is equal to zero. 

  Proposition II. The numerical scheme presented in sections 3-1 to 3-3, satisfies the C 

property with (3.44) to (3.47). 

Proof: The stagnant condition leads to  
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Substituting (3.49) in (3.48) we obtain 

i
n
ii

n
i uhuh AA )()( 1 =+ .         (3.50) 

Hence, the C property holds. This proof is directly generalized in the case of an arbitrary 

control volume having more than three edges, by adding the corresponding terms to (3.45) 

to (3.47). 

 

3-5- Computational modeling of wetting and drying fronts  
    It is generally accepted that the wetting-drying simulation is very hard (Toro 2000). 

This is particularly the case in real applications with complicated topographies using 

unstructured grids. Therefore an algorithm to treat wetting and drying fronts is generally 

needed.   

 In this paper, if the water depth in a cell is less than a specified value hmin , then this cell 

is considered as a dry cell. In such a cell all outward fluxes and also the bed slope and 

friction source terms are set to zero. Inward fluxes are always active, as a mechanism for 

wetting the dry cells. There are other strategies for handling moving fronts such as level set 

methods and also volume of fluid methods, but they are usually too expensive for 

unstructured grids. 

 

3-6- Boundary conditions  
In order to treat the boundary conditions, the variables at boundary faces are imposed as 

following:  
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Subcritical flow:  

inflow: two external conditions  

outflow: one external condition  

  Supercritical flow  

inflow: three external conditions  

outflow: none  

  Solid walls:  

            Velocity components are set zero  

  All remaining conditions may be calculated based on the characteristics theory, i.e. by 

using the information carried out by the outgoing bicharachteristics (the Riemann 

invariants). However, in most practical cases those may be simply set to the corresponding 

values of the adjacent inner cells. 

 

4- Numerical results 
   In order to study the performance of the numerical scheme, some tests have been 

performed herein for variable topographies. In all figures and tables, the SI system has been 

used, i.e. the water depth and the water surface elevation are in meters (m) and the water 

discharge is in sm /3 . Note that methods I and II present the same results in the following 

tests and no visible difference is observed. 

  

  4-1-Tidal wave flow over an irregular topography 
The topography for this case is defined in table 1 (Goutal and Maurel, 1997) and 

graphically represented in figure 4-1-1. 

 

Table 1. Topography for an irregular bed. 



 119

 

 

Figure 4-1-1. Topography for an irregular bed 

 
The initial conditions write 

)()0,( xHxh = ,         (4.1) 
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with 

L=1500 m,        H(x)= H(0)-z(x),   H(0)=16m. 

The boundary conditions are 
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For this test, Bermudez and Vazquez (1994) derived the following “asymptotic” unsteady 

solution by writing the equations in dimensionless form and asymptotic expansions in 

terms of the Froude number. 
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At time t = 10800, the numerical results using a CFL number of 0.63 and 100 grid points 

are shown in figure 4-1-2 (left) . The results of the original scheme i.e. using (3.33), 

(instead of the proposed methods I or II i.e. (3.27) or (3.44), respectively), are also 

presented in figure 4-1-2 (right). In this test case, the original scheme shows a high level of 

oscillations due to the irregular topography which can not be handled because of the 

imbalance between the source and flux terms, while a considerable improvement is 

observed with method I or II. The numerical results for water surface are shown in figure 4-

1-3, which again show the performance of the proposed methods. Finally, in order to verify 

the C property, the numerical result of velocity and water surface elevation obtained by the 

proposed method and the original scheme for a stagnant initial condition are presented for t 

= 40 in figures 4-1-4 and 4-1-5 respectively. As, shown, contrary to the original scheme, 

the proposed method can preserve the stagnant conditions. 

 

 

Figure 4-1-2. Tidal wave flow over an irregular bed, velocity: Present method (left) and the 
original scheme (right). 
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Figure 4-1-3. Tidal wave flow over an irregular bed, water surface elevation: Present 
method (left) and the original scheme (right). 

 

 

 

Figure 4-1-4. Stagnant condition over an irregular bed, velocity: Present method (left) and 
the original scheme (right). 
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Figure 4-1-5. Stagnant condition over an irregular bed, water Surface: Present method (left) 
and the original scheme (right). 

 

4-2- A surge crossing a step 
Here we consider a surge crossing a step. A channel of length 10000m is used with a step 

of height 2 m, located at the middle of the channel (Figure 4-2). This test case has been 

previously studied by Hu et. al. (2000) who replaced the step by a steep bed slope. A grid 

of 400 uniform cells is used here.  

The initial water surface is 5 m in the channel, the water depth at the upstream end is 10m, 

and the velocity of the surge at the entrance is defined as (Hu et. al., 2000) 

du

du
du

g
tu

ηη
ηηηη

2
)(

)(),0(
+

−=         (4.7) 

where ηu =10 m and ηd =5m. 

In figure 4-2, the numerical results obtained using method I or II are compared with the 

analytical solution (Hu et. al., 2000). They show the ability of the model in simulating 

surges over discontinuous bed profiles. 
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Fig. 4-2. Surge crossing a step: computed water surface at t =600 s. 

 

4-2- One dimensional, small perturbation of a steady-state solution 
  A small perturbation of a steady-state solution, proposed by Leveque (1998), is a 

challenging test for evaluating the performance of numerical schemes over variable 

topographies. A channel of length 1.0 m is considered with the following topography 
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with a zero initial flow velocity and a surface profile defined as 

⎩
⎨
⎧ <<+

=
.,0.1

,2.01.00.1
),(

otherwise
xfor

yx
ε

η       (4.8) 

Following Leveque (1998), 01.0=ε m and the reduced gravitational acceleration is 

1=g m2/s. Here, a CFL number of 0.99 is used. The numerical results obtained on a very 

fine grid (1500 nodes), using method I or II, are used as reference solutions in the absence 

of an analytical one. On a grid of 100 nodes, the results obtained with method I or II and 

the original scheme are compared with the reference solution in figure 4-2. This case is a 

challenging one, and most existing schemes have used considerably more grid points than 

here (such as 600 in Hubbard and Navarro, 2000). As shown in figures 4-2, method I or II 
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can capture the quasi steady solutions quite well, and a considerable improvement is 

observed compared to the original scheme. 

 

 

Fig. 4-2. Computed water surface level at t=0.7 with 01.0=ε : Present method (left) and 
the original scheme (right). 

 

4-4- Two dimensional, small perturbation of a steady-state solution 
  In this test case (Leveque, 1998), the SW equations are solved in a domain [ ] [ ]1,02,0 ×  , 

and the bottom surface is an elliptical shaped hump 

The water surface is initially flat with 1),( =yxh except for 15.005.0 << x , where 

01.1),( =yxh  m. An unstructured grid with 12344 triangular cells and a CFL number of 0.6 

is used for this test. Figure 4-3 displays the right-going disturbance at t=1.8s as it 

propagates past the hump. This shows the ability of the model in simulating 2-D problems 

with variable topographies without producing numerical oscillations. 
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Fig. 4-3. Computed water surface level at t=1.8 with 01.0=ε : Present method (bottom) 
and the original scheme (top). 

 

 

   4-5- Steady flow over a bump 
The topography is now defined (Goutal and Maurel, 1997) as 

⎩
⎨
⎧ <<−−

=
   .                                  0

,128        )10(05.02.0
)(

2

otherwise
xifx

xz      (4.8) 

  Depending on the initial and boundary conditions, the flow may be subcritical, 

transcritical (with or without a steady shock), or supercritical. The analytical solution of 
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this problem is given in Goutal (1997).  An unstructured grid of average triangle edges 

equal to 0.075 m was used in all computations. A high order accurate interpolation scheme 

(Appendix I) was employed in this test case. 

   Three different cases are considered below by imposing downstream and upstream 

boundary conditions for the water level (h) and the discharge (uh), respectively: 

 (i)Transcritical flow without a shock: h=0.66m only when the flow is subcritical and 

uh=1.53 m3/h. 

 (ii) Transcritical flow with a shock: h=0.33m and uh=0.18 m3/h. 

 (iii) Subcritical flow: =2.m and uh=4.42 m3/h. 

The surface profiles are plotted in figures 4-5-1-a,b,c for method I or II, and they show 

good agreements with the analytical solutions. The computed discharges are also compared 

in figures 4-5-2-a,b,c with the analytical ones, which show a low level of numerical 

oscillations. It should be mentioned that such a level of numerical oscillations is also 

present in most existing schemes. This is because the C property, although widely accepted 

in the literature as a good measure to test the ability of numerical schemes in the presence 

of real topographies, does not guarantee that the steady state conditions with non-zero 

discharge is well captured.  

 

 

Figure 4-5-1-a. Steady transcritical flow over a bump without a shock: Water surface 
elevation. 
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Figure 4-5-1-b. Steady transcritical flow over a bump with a shock: Water surface 
elevation. 

 

 

Figure 4-5-1-c. Steady subcritical flow over a bump: Water surface elevation. 
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Figure 4-5-2-a. Water discharge in steady transcritical flow over a bump without a shock 

 

 

Figure 4-5-2-b. Water discharge in steady transcritical flow over a bump with a shock 
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Figure 4-5-2-c. Water discharge in steady subcritical flow over a bump without a shock 

 

4-6- Dam break and advance over a triangular obstacle 
In this test case, evolution of a dam-break wave over a triangular obstacle is examined. 

The channel geometry is presented in Figure 4-6-1. The physical model combines a 

reservoir connected to a rectangular channel. The length of the entire model is 22.5m. The 

dam is situated at x=15.5m. A triangular obstacle (6m long, 0.4m high) is situated 13m 

downstream the dam over the bed of the channel. The slopes of the obstacle are symmetric. 

The initial conditions considered are 0.75m of water depth in the reservoir and dry bed in 

the rest of the channel. The fixed boundaries are solid walls except for the free outlet. The 

Manning roughness coefficient is 0.0125 for the bed and 0.011 for the vertical walls of the 

rectangular channel, values supplied by the experimentalists from a steady flow test case. 

Gauging points are located: G4 at 4m, G10 at 10m, G11 at 11m, G13 at 13m and G20 at 

20m as shown in Fgure 4-6-2. Experimental data are reported in Brufau et. al. 2002 which 

are obtained from the Recherches Hydrauliques Lab. Chatelet together with the University 

of Bruxelles (Belgium) under the supervision of J.M. Hiver. 

A minimum wet depth of hmin=0.004 m was considered in the numerical calculations. 

Sensitivity computation with the 1D model showed that reducing the hmin has minor effects 

on the numerical results. The predicted and measured water depth time evolutions during 

40 s at the gauging points are presented in Figure 4-6-3 which shows a satisfactory 
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concordance. The water depth and the arrival time of the wave are predicted well at G4, 

G10 and G11 which are located before the obstacle. Moreover, the transition from wet to 

dry is correctly predicted at point G13 which is a critical point since it is located at the 

vertex of. At the last point (G20) a little disagreement between measures and numerical 

results is observed but the amount of water is insignificant. The same feature is also 

observed in Brufau et. al. 2002 and may be related to vertical non-hydrostatic motions that 

are ignored in shallow water equations. 

Finally, figure 4-6-4 compares the numerical results obtained for the water depth at 

different times from the 1D and 2D numerical schemes. As it can be seen in Figure 4-6-4, 

results of two models coincide, which is expected due to the nearly one-dimensional feature 

of the flow (i.e. lateral changes are negligible) and this shows the coherence of both 

models.   

 

 

Figure 4-6-1. Geometry of the experimental model in the simulation of a dam break and 
advance over a triangular obstacle. 
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Figure 4-6-2. Location of the gauging points in the experimental model for the simulation 
of a dam break and advance over a triangular obstacle. 
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Figure 4-6-3. Time evolution during 40 s of the water depth measured and computed at 
gauging points: G4, G10, G11, G13 and G20 in the simulation of a dam break and advance 
over a triangular obstacle. Points stand for experimental measures and solid line for 
numerical results. 
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Figure 4-6-4. Numerical results obtained with a 1D and a 2D scheme on the water depth 
profiles along the channel at times: T =3; 5; 10 and 20 s in the simulation of a dam break 
and advance over a triangular obstacle. 

 

5- Conclusion 
Two efficient methods have been proposed to treat the source terms and to satisfy the 

compatibility property on unstructured grids. In the proposed methods, it is not necessary to 

perform extra upwinding or Riemann solution for the source terms. Contrary to many 
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available schemes, our approach can be easily implemented on unstructured grids and it 

takes advantage of being flexible for irregular boundaries and local mesh refinement. 

Numerical results indicated that the proposed methods accurately simulate sub, super and 

trans-critical flows in complicated topographies and also the circulating flows. 

 

Appendix I- Interpolation scheme  
In the present cell-centered scheme, the variables are located at the triangle barycenters 

and the values of the variables at the left and right sides of the interface are needed to 

compute the numerical fluxes and source terms. Consider two adjacent triangles as shown 

in figure I-1. 

A first order approximation of η, uh, vh at left and right hand side of the cell interfaces is 

simply equal to their values in the corresponding cell. For example 
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Various methods have been proposed for developing higher order accurate interpolation 

schemes. Here, some details of a high order monotonic interpolation method, is described. 

 

 

Fig. I-1. Two adjacent triangles with barycenters bL and bR, where lL and lR  are the lengths 
between the mid-side node of the common face and bL and bR, respectively. 

 
For a scalar variable such as η , the interface values Lη  and Rη  (on the left and right sides 

of a given face respectively) are calculated by the κ scheme (Battina 1990). For example, 

Lη  is calculated as 
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where κ = -1 leads to an upwind scheme, κ = 0 to the Fromm scheme, κ = 1 to a central 

scheme and κ =1/3 to a third order scheme (in 1-D).  

The slope limiter s, is chosen according to Battina (1990) 
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22
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where ε is a very small number for avoiding division by zero in the regions of mild slope. 

The interface values of uh and vh are calculated similarly. 
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CHAPTER 6 

Fourier analysis of upwind schemes in Shallow Water systems 
for gravity and Rossby waves  
 

In the previous chapters, the Coriolis parameter has not been considered and the study has 

been restricted to the small scale flows were convection and gravity effects are dominant. 

The very good performance of the conservative upwind schemes for those flows motivates 

the following question: How well these do schemes perform for large scale flows where the 

Coriolis parameter plays a key role? This question is the main subject of the last chapter 

and we employ the Fourier analysis approach to study the behavior of upwind finite volume 

schemes for both gravity and Rossby waves. 

 

Etude de méthodes de volumes finis upwind par une analyse de 
type Fourier pour les ondes de gravité et de Rossby  
 

Résumé 
Une analyse de type Fourier est utilisée ici pour étudier plusieurs méthodes de volumes 

finis upwind, et plus particulièrement la vitesse de phase, la vitesse de groupe, 

l'amortissement et la dispersion. Les ondes de gravité sont tout d'abord considérées. 

Comme celapouvait être anticipé, la plupart des schémas upwind induisent un 

amortissement considérable. Cependant la vitesse de phase est mieux approximéeque pour 

les schémas centrés. Dans une deuxième partie, les termes de Coriolis sont introduits dans 

les équations et les modes de Rossby sont étudiés.Dans ce cas tous les schémas upwind 

considérés ici induisent un amortissement important. Les résultats numériques sont aussi 

comparésavec ceux obtenus en utilisant une approche de type limiteur de flux. On montre 

que le limiteur de flux utilisé amortit encore davantage, demanière excessive, les résultats 
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précédants. En conclusion, avec ou sans limiteur de flux, les méthodes de volumes finis 

upwind ne sont pasde bons candidats pour un calcul précis des modes de Rossby. 
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Fourier analysis of upwind schemes in Shallow Water 

systems for gravity and Rossby waves 
 

A. M. Mohammadian and D. Y. Le Roux 

 

 

  

Abstract. A Fourier analysis has been performed for various upwind finite volume 

schemes, including the study of phase speed, group velocity, damping and dispersion. In the 

first part, pure gravity waves are investigated. As expected, most upwind schemes lead to a 

considerable damping but they exhibit a better phase behavior than most centered schemes.  

In the second part, the Coriolis factor is considered and the Rossby modes are studied. In 

this case, all selected upwind schemes lead to a severe damping. The numerical results are 

also compared with those obtained by using a slope limiter approach. It is concluded that 

most upwind schemes with or without slope limiters present poor result for an accurate 

calculation of the Rossby modes. 

 

Keywords: finite volume method; upwind schemes, shallow-water equations; gravity 

waves; Rossby waves  

 

 

1- Introduction 
 Finite volume schemes are well known due to their inherent conservation properties. In 

addition, upwind finite volume schemes have become popular for hyperbolic systems 

during the past two decades due to their ability to capture discontinuities with a low level of 

numerical diffusion and oscillations. For these methods, the critical stage is the calculation 

of the numerical flux and various schemes have been developed based on different 

approaches for estimation of numerical fluxes (see e.g. Leveque, 2002 and Toro, 2000). 
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Upwind finite volume schemes use the characteristic information of the hyperbolic system 

to calculate numerical fluxes. In the case of the scalar advection equation, this simply leads 

to a biased discretization of the equation in the flow direction. However, this is not the case 

for coupled systems, such as the shallow water equations. This is because the flow direction 

is not the only factor in the calculation of the numerical fluxes. In fact, for coupled systems, 

the flux vector must be decomposed in the basis of eigenvectors and then each component 

is calculated in an upwind manner based on the sign of the corresponding eigenvalue.  

 

An extensive research has been dedicated to the study of upwind schemes for shallow water 

systems, especially in the convection dominated cases, i.e. for hyperbolic formulations (see 

e.g. Toro, 2000). Upwind finite volume schemes have been successfully employed for the 

simulation of some challenging problems for shallow flows such as dam break flows and 

supercritical flows over spillways (e.g. Mohammadian et. al., 2005 and 2006 and Lai et. al. 

2005).  

 

Fourier analysis is a useful tool to study the effect of discrete schemes on some quantities 

such as wave amplitude, phase speed and group velocity. The analytical form of those 

quantities should be preserved by an ideal numerical method. Further, the Fourier analysis 

may give guidelines for a proper selection of numerical parameters such as the CFL 

number. Note that the Fourier analysis has been applied to the discretized form of the 

shallow water equations using finite difference (e.g. Batteen and Han, 1981, Wajsowicz 

1986, Neta and Williams,1989, Randall, 1994, Adcroft et. al., 1999, Sankaranarayanan and 

Spaulding, 2003), and finite element methods (Foreman, 1984,  Walters and Carrey, 1983, 

Atkinson et. al., 2004, Le Roux et. al. , 2006a and b). The dispersion relation for the least-

squares mixed formulation of the shallow-water equations has also been analyzed by Le 

Roux and Carey (2004) and the results are compared with those of the Galerkin scheme. 

They concluded that the method should be used with care particularly for long term 

simulations due to its inherent numerical damping.  

 

The discretization of the shallow water system using upwind schemes has been rarely 

studied by the Fourier analysis. This is because slope/flux limiters are inherent to most 
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upwind formulations and cannot be included in a Fourier-type analysis. Gosaard and Kolar 

(2003) have numerically studied the phase and damping errors of some slope limiters. 

However, such a study can only be performed for a few sets of parameters due to the 

excessive amount of required numerical computations.  

 

Gosaard and Kolar (2000) also performed Fourier and dispersion analyses of the first order 

upwind finite volume scheme for the shallow water equations, where slope limiters are not 

involved. They have concluded that this scheme exhibits a good phase behavior. In 

addition, due to the inherent conservation of finite volume schemes, the work of Gosaard 

and Kolar (2000) motivates the study of higher order upwind finite volume schemes. 

Moreover, such a study is also necessary because, as shown in the following, the use of 

slope limiters is not necessarily recommended for all types of waves. Indeed, shallow water 

equations permit two types of waves, fast gravity and slow Rossby modes. The later, are 

due to the earth rotation, and usually need to be computed quite accurately (Vreugdenhil, 

1994). This is because most energy transfer in the ocean scale is due to these waves. As 

shown later, the amplitude of the Rossby modes is considerably damped by the use of slope 

limiters in upwind finite volume schemes, which has not been reported earlier in the 

literature, up to our knowledge. Note that the study of Gosaard and Kolar (2000) is only 

concerned with the propagation of gravity waves. Such waves are important for small scale 

flows, e. g. estuaries, but not for large scale flows such as global ocean circulation. Indeed, 

unless an accurate representation of the fast modes is important, gravity waves may be 

regarded as small amplitude noise superimposed on the slow solution and they can be 

justifiably retarded or damped, which is usually the case in ocean modeling. 

 

The present paper is dedicated to dispersion and Fourier analyses of high order upwind 

finite volume schemes and it is organized as follows. The model equations for the pure 

gravity waves are introduced in Section 2. Various finite volume schemes are presented in 

Section 3 for these waves with the Fourier analysis results. The model equations for Rossby 

waves are then introduced in Section 4 and a Fourier analysis is also performed. Some 

numerical test cases are presented in section 5 and concluding remarks complete the study. 
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2-Model problem for gravity waves 
The one-dimensional, inviscid, linearized form of the shallow-water equations may be 

expressed in Cartesian coordinates (Vreugdenhil, 1994) as :  

,0=xt uH+η     (1) 

,0=xt gu η+                                             (2)     

where u  is the velocity variable, η  is the surface elevation with respect to the reference 

level 0=z , g  is the gravitational acceleration and the mean depth H is assumed constant.  

 

In the present analysis, (1)-(2) are solved on an infinite channel (i.e., with periodic 

boundary conditions) subject to initial conditions. The system (1)-(2) could be written in 

the following conservative vector form  

0,=
x
F

t
U

∂
∂+

∂
∂

rr

      

where  

,= ⎥
⎦

⎤
⎢
⎣

⎡
u

U
ηr

      

and 

⎥
⎦

⎤
⎢
⎣

⎡
ηg

Hu
F =
r

     (1) 

We can also write the system in the following non-conservative form  

0,=
x
UA

t
U

∂
∂+

∂
∂

rr

     (2) 

where  

,
0

0
= ⎥

⎦

⎤
⎢
⎣

⎡
g

H
A      (3) 

The matrix A has two real eigenvalues given by 

gH=1λ  

gH−=2λ  

and the following corresponding eigenvectors:  
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⎥
⎦

⎤
⎢
⎣

⎡
+ Hg

e
/

1
=1

r      (4) 

and  

⎥
⎦

⎤
⎢
⎣

⎡
− Hg

e
/

1
=2

r      (5) 

The matrix A  is decomposed as  
1= −PDPA  

where  

,
0

0
=

2

1
⎥
⎦

⎤
⎢
⎣

⎡
λ

λ
D      (6) 

and P   is the matrix including the eigenvectors of A  as  

],,[= 21 eeP rr      (7) 

Define  

,
,0)(max0

0,0)(max
=

2

1
⎥
⎦

⎤
⎢
⎣

⎡+

λ
λ

D      (8) 

+− − DDD = ,     (9) 

or  

,
00
0= ⎥
⎦

⎤
⎢
⎣

⎡+ gHD      (10)  

,
0

00
= ⎥

⎦

⎤
⎢
⎣

⎡
−

−

gH
D      (11) 

and  

.
||0

0||
|=|

2

2
⎥
⎦

⎤
⎢
⎣

⎡
λ

λ
D      (12) 

Therefore, the matrix A  is decomposed as  
−+ + AAA = ,     (13) 

where  
1= −++ PPDA ,     (14) 

and  
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1= −−− PPDA .     (15) 

 

3-Numerical algorithm 
In the finite volume method, the equations are integrated in each computational cell. This 

leads to  

0,=)( dx
x
F

t
U

c ∂
∂+

∂
∂

∫Ω
rr

     (16) 

where cΩ represents the area of a control volume. The divergence theorem is then 

employed to replace the volume integral by a surface one:  

0,=. c
cc

dnFdxU
dt
d Γ+ ∫∫ ΓΩ

rrr
     (17) 

where cΓ  represents the boundary of a control volume, and nr  is its unit outward normal 

vector. For the one dimensional case (17) is rewritten as  

x
tFtF

tU
dt
d jj

j Δ
−

− −+ )()(
=)( 1/21/2

rr
r

     (18) 

where )(tU j

r
 represents the cell averaged value of conserved variables and )(1/2 tFj+

r
 is the 

numerical flux. For the various numerical schemes employed in this study, the 

corresponding numerical fluxes (see e.g. Toro, 2000) are given in the following. 

 

For the centered scheme we have,  

)0.5(= 11/2 jjj FFF
rrr

+++      (19) 

The first order upwind scheme (1st) gives 

jjj UAUAF
rrr

−
+

+
+ +11/2 =      (20) 

or equivalently  

( )jjjjj UUAFFF
rrrrr

−−+ +++ 111/2 ||0.5)0.5(=      (21) 

where  
1|||=| −PDPA       

In (25), the first order upwind flux is equal to the centered flux in (23) plus an artificial 

diffusive flux, which stabilize the numerical scheme. Higher order schemes may be 
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constructed by calculating the interface values more accurately, e.g. as in the κ  scheme. In 

this method, which includes a family of schemes, the numerical flux is calculated as  

)(||0.5)0.5(= 2/12/12/12/11/2
R
j

L
j

R
j

L
jj UUAFFF +++++ −−+

rrrrr
,     

where the superscripts R. and L.  represent the evaluation of the right and left sides of the 

interface, respectively, with  

)(= 2/12/1
L
j

L
j UFF ++

rrr
, 

)(= 2/12/1
R
j

R
j UFF ++

rr
, 

and the interface values L
jU 2/1+

r
 and R

jU 2/1+

r
 are calculated at the interface 

2
1+j  as  

( )))((1))((1
4
1= 112/1 jjjjj

L
j UUUUUU

rrrrrr
−++−−+ +−+ κκ , 

( )))((1))((1
4
1= 11212/1 jjjjj

R
j UUUUUU

rrrrrr
−++−−− +++++ κκ . 

Depending on the value of κ , the method leads to the following schemes:  

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−

−

,1,
,1/2,

,1/3,
,1/6,

, 0,
,1,

=

schemecentered
schemeQuick

upwindorderthird
upwindorderthirdbasedcell

schemeFrommsimplified
upwindordersecond

κ       

Among the schemes given above, the centered and second order upwind (2nd) schemes are 

well documented in the literature (see e.g. Leveque, 2002), the Quick scheme is a 

simplified version of the method presented in Leonard (1979) where the third order upwind 

scheme (3rd) is also introduced, and the Fromm scheme is a limiting case of the method 

proposed in Fromm (1968).  

 

The cell-based (formally) third order accurate discretization (3rdCell) in a 1D problem, 

which is introduced here for the first time to our knowledge, is obtained by fitting a cubic 

curve over four consecutive computational cells such that the total mass of each cell is 

correctly represented by the corresponding cubic curve for each conserved variable, i.e. 
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1,,1,2for    )(2/1

2/1

+−−=Δ=∫
+

−

jjjjixUdxxUi

i

x

x i

rr
. An upwind polynomial fitting is performed 

by using two cells at the upstream side of the interface and one cell in the downstream side. 

The interface value is then adjusted such that the following condition is satisfied: 

x
UU

x
xU L

j
L
j

xx j
Δ
−

=
∂

∂ −+

=

2/12/1)(
rrr

. 

This leads to the following interface value  

)522(7
24
1= 112/1 −++ −+ jjj

L
j UUUU

rrrr
.  (24)  

In a similar way, but for the downwind polynomial fitting, we obtain: 

)7225(
24
1= 122/1 jjj

R
j UUUU

rrrr
++− +++ .  (25)  

Note that the cell-based third order accurate method may be written in the κ  scheme form, 

for 6/1=κ . 

 

 

Figure 1. Polynomial fitting for the 3rdCell scheme. A cubic curve is fitted such that the 
mass is conserved in four consecutive cells.  

 

4-Fourier analysis for the spatial discretization schemes 

Substituting periodic solutions of the form ⎥⎦
⎤

⎢⎣
⎡ + )(~= tkxieuReu ω  and ⎥⎦

⎤
⎢⎣
⎡ + )(~= tkxieRe ωηη  

into (1) and (2), where u~  and η~  are amplitudes, k  is the wave number in the x- direction 

and ω  is the angular frequency, we obtain 

0~
~

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
uHk

gk η
ω

ω
  (28)  

By noting that the determinant of the matrix in the left hand side of (28) must be zero for a 
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nontrivial solution, an equation for the frequency or the so-called dispersion relation is 

obtained 

.0=22 kHg−ω    (29)    

The two solutions kHg±=ω , correspond to the free-surface gravitational modes. The 

gravity waves can propagate along the - x  axis in both directions at a speed gHk =/ω , 

independently of the wave number k , and hence there is no dispersion of the waves.  

 

Phase (C ) and group (G ) velocities are then calculated using  

k
C rω:=      (22) 

k
G r

∂
∂ω:=      (23) 

 where rω  represents the real part of ω . For the analytical case, we obviously have 

 ωω =r   
As for the continuum case, the dispersion relation for the discrete scheme is found through 

a Fourier expansion. The discrete solutions corresponding to [ ])()~,~(Re=),( tkxi
jj

jeuu ωηη +  

are sought at node j  ( )1,2,3= Kj , where ),( jj uη  are the nodal unknowns that appear in 

the selected discrete equations and )~,~( uη  are amplitudes. The jx  coordinates are expressed 

in terms of a distance to a reference node. Substitution in the discrete equations leads to a 

square matrix system for the Fourier amplitudes as 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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ΔΔ+

−+
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0
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2/2/
2/2/

uxgHdixgd
xHdxgHdi η

ω
ω
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with 

)sin(2 xkid Δ=+ , 

)cos(22 xkd Δ−=− , 

for the first order upwind scheme , and 

( ))2sin()2/1()sin()3( xkxkid Δ−−Δ−=+ κκ , 

( ) 2/)2cos()1()cos()44()3( xkxkd Δ−−Δ−+−=− κκκ , 
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for the κ  scheme. The dispersion relation is then obtained by setting the determinant of the 

matrix system to zero, and this leads to  

( ) ( )22
)2/(2/ xdgHxgHdi Δ=Δ+ +−ω  

The resulting equations for the frequency for the first order upwind scheme is written as 

(Gossard and Kolar, 2000) 

1)1))(cos(()(sin= +−Δ±Δ xkcixkcω ,     (24) 

and for the κ  scheme we obtain 

( ),)))(1(2cos)(cos4(3))(1(2sin)26)((sin
4

= κκκω −Δ+Δ−±−Δ++−Δ xkxkixkxk
gH

    

(25) 

 

An ideal numerical scheme, should present similar dispersion relation to the continuous 

mode in (1). A monotonic curve for )(kω  indicates that the numerical solution is free of 

spurious xΔ2  oscillations (Platzman, 1981).  

 

Usually, numerical models are setup (Foremann, 1982) such that the desired wavelengths 

are resolved at least by 20 cells (i.e. 0.1/ ≤Δ πxk ). Therefore, in the following, the range 

0.1/ ≤Δ πxk  will be referred as the region of interest.  The remaining region generally is 

concerned with the shorter waves, which do not transfer much energy. However, phase 

error for these waves, particularly for the xΔ2  waves, could lead to oscillatory results, 

unless they are effectively damped. Indeed, it is expected that the numerical scheme 

preserves the amplitude of the waves, i.e. zero damping error. This is the case, when all 

wave numbers are transferred with a correct speed. However, zero damping error is not 

always desirable. This is because, most schemes have phase speed errors for high 

frequencies and hence, it is desirable to damp them in this case. This damping does not 

seriously affect the whole numerical simulation because most energy is transferred via 

waves of intermediate and small wave numbers rather than high frequency waves.  

 

The numerical results for )(ωRe  are plotted in Figure 1a. All selected numerical methods 

lead to a folded dispersion plot implying potential aliasing problems since two separate 
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wave vectors can contribute to the same frequency (Platzman, 1981). For all schemes, the 

wave vector space is truncated at π=Δxk  due to the special discretization limitation since 

the maximum resolvable wavelength is xΔ2 . Of fundamental importance is the observation 

that waves of length xΔ2  correspond to 0=ω  and hence, those waves do not propagate 

because their phase speed is zero. For most numerical schemes, the cutoff frequency 

corresponds to zero group velocities and maximum frequencies. In Figures 1a,c, the cutoff 

frequency is ranging from  2/π  to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−− −

2
3

2
1cos 1π or approximately 0.6194π  and 

those values correspond to the first and second order upwind schemes, respectively. The 

Fromm scheme gives the best approximation for the frequency before the cutoff. The 

second order upwind scheme overestimates the frequency while the remaining schemes 

underestimate it. However, it should be stressed that the temporal scheme may have a 

significant impact on the dispersion relation (see e.g. Beckers and Deleersnijder, 1993), this 

will be examined in the next section. It should be also mentioned that the cell-based third 

order upwind scheme gives better results than the classical (point-wise) third order upwind 

method for the frequency. The former, gives here intermediate results between the 3rd and 

Fromm schemes.  

 

The results concerning phase and group velocities and damping are presented in Figures 

1b,c,d. It is observed that the 3rdcell and Fromm schemes give very close phase and group 

velocities. However, the 3rdcell has better phase and group velocities than the Fromm 

scheme in the region of interest, as shown in Figure 2, because the former method has 

results closer to the analytical ones. Moreover, in Figure 1d, the 3rdcell appears less 

diffusive than the Fromm scheme. Hence, by considering phase and group velocities and 

damping, the 3rdcell may be preferred to the Fromm scheme at this stage of the argument. 

Finally, the Quick method leads to significant phase error with little damping, and the third 

order scheme, has results between the Quick and 3rdcell schemes. 
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Fiugure 2. Various numerical properties of different spatial discretization schemes; (a) 
frequency, (b) phase speed, (c) group velocity, (d) damping. 

  
Exact , 1st , 3rdCell  , Quick , Fromm , 3rd , 2nd  
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Fiugure 3. Phase velocity gHC /  for various spatial discretization schemes in the region 
of interest. 

 
Exact , 1st , 3rdCell  , Quick , Fromm , 3rd , 2nd  
   

5-Temporal discretization 
At a given time step nn ttt −Δ +1=  we employ a general time discretization of (2) of the 

form  

( ) ( )n
j

n
j

n
j

n
j

n
j

n
j FF

x
tuFF

x
tu 1/21/2

1
1/2

1
1/2

1 )(1= −+
+

−
+

+
+ −−

Δ
Δ+−

Δ
Δ+ σσ     (26) 

 where σ  is a real parameter such that 10 ≤≤ σ . Observe that the standard choices 

0,1/2,1=σ  yield the respective forward Euler, trapezoidal Crank-Nicolson and backward 

Euler type schemes. Other choices such as Runge Kutta schemes are possible, but they 

would make the present stability/dispersion analysis much less tractable.  

 

6-Fourier analysis for the fully discretized schemes 
A Fourier analysis is now conducted for both spatial and temporal schemes. By substituting 

periodic solutions of the form [ ])()~,~(Re=),(
n

j tkxin
j

n
j euu ωηη +  into (26), we obtain 
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with ( )xtgHa ΔΔ= 2/ , and ( )xtb ΔΔ= 2/ . 

 An equation for the propagation factor (defined by tieE Δω:= ) is then obtained by setting 

the determinant of the coefficients to zero for a nontrivial solution. The resulting equations 

for the propagation factor, for the first order and the κ  schemes, lead to 

,
1

)(11
=

σω
σω

i
i

E
−

−+
     (27) 

where ω  denote the frequencies corresponding to the first order and the κ  schemes in (26) 

and (25), respectively. The amplification factor ( || E ), the group velocity, the frequency 

(real part) and the phase speed ratio have been plotted in Figure 2 for the schemes 

examined here. The phase speed ratio is defined as the ratio of the computed phase speed to 

the analytical one. It should be mentioned that except for the first order upwind scheme, 

which remains stable even for a fully explicit time-discretization scheme ( 0=σ ), all other 

schemes may lead to unstable results ( 1|>| E ) for 0=σ , as shown  graphically in Figure 3. 

 

 

Figure 3. Amplification factor for 0=σ .  

 
Exact , 1st , 3rdCell  , Quick , Fromm , 3rd , 2nd  
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Figure 4- Various numerical properties of the fully discretization schemes.  

 
Exact , 1st , 3rdCell  , Quick , Fromm , 3rd , 2nd  
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Figure 4- (Continue) 

 
Exact , 1st , 3rdCell  , Quick , Fromm , 3rd , 2nd  
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Figure 4- (Continue) 

 
Exact , 1st , 3rdCell  , Quick , Fromm , 3rd , 2nd  
 
Hence, for stability reasons, a Crank-Nicholson scheme is used for the κ scheme. However, 

for the first order upwind scheme, a fully explicit method is employed because the use of a 
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Crank-Nicholson scheme would bring an excessive damping. Moreover, for σ ranging 

from 2/1 to 1 we also observe (results not shown) a significant damping for the κ scheme. 

Consequently, the graphics shown in Figure 4 have been obtained using 0=σ for the first 

order upwind scheme and 2/1=σ  for the κ  scheme. 

 

Based on the Fourier analysis results, it is concluded that the numerical performance of 

upwind schemes highly depends on the CFL number. For CFL<0.5, e.g. in Figure 4d for 

CFL=0.1, all the curves are folded, and waves of wavelength xΔ2  (i.e. π=Δxk ) do not 

propagate and are stationary. For CFL ≥ 0.5, as shown in Figures 4h,l, the curves 

corresponding to the first and second order methods are no  longer folded and they are 

closed to the monotonic continuous solution. In particular, for CFL=0.5, the first order 

upwind scheme exactly coincide with the analytical frequency and phase speed. However, 

both schemes have other serious drawbacks. Indeed, in the region of interest ( 10/π<Δxk ), 

the first order upwind scheme leads to an excessive damping and both schemes show a 

significant group velocity error. Therefore, the first order and the second order upwind 

schemes will no longer be considered in the following.  

 

The remaining schemes (i.e. 3rdCell, 3rd, Fromm and Quick) are now studied in more 

details, as the HOA (High Order Accurate) schemes. Since the performance of the HOA 

methods is improved as the CFL number increases regarding the phase speed and the 

frequency, and for all wave numbers, only high CFL numbers are considered in the 

following. Note the cutoff frequency is progressively increasing as the CFL number 

increases as shown in Figures 4d,h,l. In this respect, the Fromm scheme exhibits the best 

behavior and the Quick one is the worst. Similar conclusions have already been drawn for 

the semi discrete case.  

 

The Fromm and the 3rdCell schemes have the most accurate phase speed, for high CFL 

numbers, as shown in Figure 4,k. Although they lead to zero phase speed for xΔ2  waves, 

they also induce a significant damping for those waves. Therefore, these schemes are 

expected to give less oscillatory results than the others. In particular, the 3rdCell scheme 

gives better phase speed results in the region of interest than the Fromm one, whatever the 



 157

CFL is.  

 

However, considering the group velocity and the damping errors, the Quick scheme 

exhibits the best results while the Fromm scheme has the largest errors, as shown in Figures 

4i,j. In particular, the Fromm scheme shows a significant group velocity error for xΔ2  

waves at high CFL numbers. This is because the phase speed curve presents a sharp 

gradient for the xΔ2  waves. However, this may not be an impediment since energy 

transfer, via the group velocity, is mostly done by long waves rather than short ones. Recall 

that energy is transferred at the group velocity. Again, for all HOA schemes, the group 

velocity accuracy is improved as the CFL increases in the region of interest.  

 

The 3rdcell and 3rd  schemes give intermediate results between those of the Quick and 

Fromm schemes as shown in Figure 4. The 3rdCell scheme always exhibits results closer to 

the Fromm ones. This was largely expected from the corresponding values of κ . The 

3rdCell scheme appears to be a good choice compared to the Fromm method at this stage of 

the argument. Both schemes behave similarly in most cases. However, the 3rdCell method 

gives better group velocity results. It should be stressed that, none of the selected schemes 

could be considered as the "best" one since this choice largely depends on which quantity 

(frequency, damping, phase and group velocities) is more important regarding the physical 

problem at hand. 

 

After having discussed the propagation of pure gravity waves, we now consider the 

Coriolis parameter. In the following we are particularly interested in the dissipative effects 

for Rossby waves in ocean and atmosphere modeling applications.  

7-Model problem and modal behavior for Rossby modes 
When the Coriolis term is taken into account, the one-dimensional, inviscid, linearized 

form of the shallow-water equations may be expressed in Cartesian coordinates 

(Vreugdenhil, 1994) as:  

,0=xt uH+η        (35) 

,0=xt gvfu η+−    (36) 
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,0=ufvt +    (37) 

where the Coriolis parameter f  is assumed constant.  

Periodic solutions of the form )(~= tkxieuu ω+ , )(~= tkxievv ω+  and )(~= tkxie ωηη +  are 

sought again and we obtain  
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Letting the determinant of the matrix in the left hand side of (39) equal to zero to obtain 

non-trivial solution leads to 

( ) 0222 =−− gHkfωω  (40)  

The two first roots 22 gHkf +±=ω  correspond to inertia-gravity modes and the third 

one, 0=ω , is the geostrophic mode and it would correspond to the slow Rossby mode on a 

β -plane.  

 

The finite volume method and the temporal scheme (presented in Section 5), are again 

employed to obtain the discrete form of (35)-(37). The discretization of (35) exactly 

coincides with the pure gravity waves case. Equation (37) only contains a source term 

)( uf  and it is discretized as 
n
j

n
j

n
j

n
j tfutfuvv Δ−−Δ−= ++ )1(11 γγ , (41) 

with 10 ≤≤ γ . In this study, based on numerical experiments, a fully implicit case for the 

Coriolis term ( 1=γ ) has been chosen. The case 2/1=γ  leads to similar damping while 

producing more oscillations. Finally, in (36) all fluxes are basically calculated as for pure 

gravity waves case, but now with the Coriolis term )( vf−  treated as the source term )( uf  

in (41). Again, the first order upwind and the κ schemes are used in the following.  

 

A Fourier analysis is conducted at the discrete level, by substituting periodic solutions of 

the form [ ])()~,~,~(Re=),,(
n

j tkxin
j

n
j

n
j evuvu ωηη +  into discretized form of (26-37). This leads to 

a square 33×  matrix system for the wave amplitudes as 



 159

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+Δ
−+Δ−−++−−+

−+−++−
−+

+−

0
0
0

~
~
~

1)1(
)1()1(1)1(

0)1()1(1

v
u

EEtf
EtfEadEEgbd

EHbdEadE η

γγ
γγσσσσ

σσσσ
, 

A cubic equation for the propagation factor E  is then obtained by setting the determinant 

of the matrix system to zero. Two roots are complex conjugate and correspond to inertia-

gravity modes. For these modes, || E  is graphed in Figure 5,a with  CFL=0.9 and 0.1=tfΔ . 

The results are basically similar to those of the pure gravity waves case (Figure  4,f), with a 

shift depending on tfΔ . 

 

The third root is real and corresponds to the slow mode, the Rossby mode. || E  is graphed 

for this mode with CFL=0.9 and 0.1=tfΔ  in Figure 5,b for the first order and κ  schemes. 

It should be mentioned that, for Rossby waves, the κ scheme is less sensitive to the CFL 

number than the first order upwind scheme. Therefore, only the results for CFL=0.9 are 

shown in Figure 5,b. The Quick scheme shows less damping than the other methods in the 

region of interest, while the first and second order upwind schemes, lead to the highest 

level of damping. However, all schemes examined in Figure 5,b exhibit a high level of 

damping for the Rossby mode. The observed level of damping should occur at each time-

step in a numerical simulation, and would lead to an excessive damping for long term 

simulations. Indeed, a high order spatial accuracy is usually desirable for the treatment of 

the slow Rossby modes, and has proven practical and beneficial for atmospheric and 

oceanic prediction models. 
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Figure 5,a. Damping error E  of inertial gravity waves for various schemes. 

  

Exact , 1st , 3rdCell  , Quick , Fromm , 3rd , 2nd  
 
 

 

Figure 5,b- Damping error E of fully discretization for various schemes for the Rossby 
waves.  
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Exact , 1st , 3rdCell  , Quick , Fromm , 3rd , 2nd  

 
 

 

8-Numerical results 
In the following, the Fourier analysis results obtained in the previous section for the Rossby 

modes are computationally verified by considering two numerical tests. The first one is 

concerned with a single wave solution while the second test corresponds to a Gaussian 

initial condition. In both cases periodic boundary conditions are used and (35)-(37) are 

numerically solved to examine the level of damping induced by the first order and κ   

schemes.  

 

8-1- Stationary wave solution 
The wave solution of (35)-(37) corresponding to the geostrophic mode is 

)cos(~ kxηη = , (41) 

0=u ,  (42) 

)sin(~ kx
f

gkv η−= . (43) 

Equations (41)-(43) are used here as the initial condition with m05.0~ =η , CFL=0.9, 

1.0=Δtf  and 1.0/ =Δ πxk . The latter parameter corresponds to the region of interest.  

 

The level of damping (per time step) for the Rossby waves is examined for the Fourier 

analysis and the numerical test performed here. As expected, a very good matching 

between the damping for the velocity and surface elevation was found. In table 1, the 

results corresponding to the damping of both fields are presented and a close agreement 

between the numerical and analytical results is observed. The (explicit) first order upwind 

scheme leads to unstable results, although the amplification factors for both gravity and 

Rossby modes are less than one. Indeed, as also observed in Foreman (1983), instability 

may occur even if 1
max

<E  (where 
max

E  is the maximum amplification actor for all 

modes). 
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Table 1. Damping (per time step) of the Rossby waves for different schemes obtained from 
Fourier analysis and numerical test corresponding to CFL=0.9 and 1.0=Δtf .  

 

 

8-2- A Gaussian water surface distribution  
This test is performed to give a physical idea about the damping level of the Rossby waves 

in a realistic case. A Gaussian distribution is prescribed at initial time and the initial 

velocity field is taken to be in geostrophic equilibrium , a balance between the Coriolis and 

the pressure gradient terms, i.e.,  
2

=,0)( xex νμη −  

0=,0)(xu  

,0)(=,0)( xgfxv xη  

A computational grid with the meshlength parameter 30=xΔ  km is taken and the 

domain is chosen sufficiently long to prevent the Gaussian from approaching the 

boundaries. The Coriolis parameter is evaluated at o25  N ( 1 5-6.163465e −= sf ) with 

63.1=H  m and the radius of deformation is thus 65/= ≈fgHRd  km. The parameters 

μ  and ν  are chosen such that the e-folding radius of the initial Gaussian is resolved by 

xΔ3  and the initial maximum azimuthal velocity is 1 m/s. A simple scaling can provide 

more realistic atmospheric parameters without substantially modifying the results.  

 

Numerical results corresponding to the damping of the surface-elevation are shown for 
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various schemes in Table 2,a and b with 15=Δt  mn ( 055.0≈Δtf ) and 30=Δt  mn 

( 111.0≈Δtf ), respectively. It is observed that the Rossby modes are highly damped and 

the relative level of damping for the various schemes is in accordance with the results of the 

Fourier analysis in Figure 5,b. The level of dampings in Table 2,a and b are almost identical 

for the finite volume schemes, while the case 30=Δt  is marginally more dissipative. 

Although the Quick scheme has the smallest level of damping, the results are still too 

damped for most practical application. For the two-dimensional case, a higher level of 

damping is expected.  

 

Finally, in finite volume methods, slope limiters are widely used to reduce the oscillations 

resulting from phase errors. In order to examine the consequence of the slope limiter 

approach on the accuracy of the Rossby mode approximation, the third order upwind 

scheme using a typical slope limiter (Batina, 1990) is employed here. The interface values 

e.g. for Lη , are calculated as  

( )))((1))((1/4= 11 jjjjjL sss ηηκηηκηη −++−−+ +−  

where 

1= −− −Δ jj ηη , 

jj ηη −Δ ++ 1= , 

and the slope limiter is then written as  

ε
ε

+Δ+Δ
+ΔΔ

+−

+−
22

2
=s  

where ε  is a very small number to avoid division by zero in the regions of zero slope. The 

level of damping of the third order scheme, using the above slope limiter approach, for the 

Rossby modes, is shown in the last line of Table 2a and b (3rdMonotone). As observed, the 

level of damping of the 3rdmonotone scheme is significantly higher than the 3rd  one (with 

2/1=σ ).  This is also expected for the other upwind finite volume schemes. In Tables 2a 

and b the previous results are compared with those of the least-squares and the Galerkin 

methods, obtained with 2/1== γσ  (Le Roux and Carrey, 2003). By taking into account 

the dissipative nature of the least-squares scheme, the upwind finite volume schemes 

appear to give over damped results in Table 2a and b. For real applications, Rossby modes 
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are computed through non linear models. However, nonlinear finite volume methods 

usually require the use of slope limiters. Therefore, for real applications (for nonlinear 

models), upwind finite volume schemes should excessively damp the Rossby waves. 

  

 

 Table 2a. Damping of the Rossby waves for different schemes for Gaussian initial 
conditions ( min15=Δt )  

 

 
 

 Table 2b. Damping of the Rossby waves for different schemes for Gaussian initial 
conditions ( min30=Δt ) 
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9-Conclusion 
Different upwind finite volume schemes including first, second and third order, as well as 

Quick, Fromm and a cell-based third order methods have been studied here using a Fourier 

analysis approach. Various numerical aspects have been considered and discussed for these 

schemes first in the case of gravity waves. For most methods, folded frequency curves with 

stationary xΔ2  waves have been observed in both the semi and fully-discrete cases. 

However, the xΔ2  waves are effectively damped although they encounter high phase 

errors. 

 

On the other hand, when the effect of the Coriolis terms is taken into account, all selected 

upwind schemes lead to a very high (and unacceptable) damping error for the Rossby 

waves. An academic test case was designed to accurately verify the Fourier analysis results. 

By performing two numerical tests, it has been numerically shown that the damping of 

Rossby waves is even more significant when slope limiters are used. Based on these results, 

it is concluded that most upwind finite volume schemes, with or without slope limiters, 

should be used with care (if at all) for Rossby waves and restricted to short simulations. 
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CHAPTER 7 
 

Conclusion 
 

Different numerical schemes were studied in the 1-D and 2-D forms of the shallow water 

equations including the semi-Lagrangian method, the method of characteristics in the 1-D 

case and the finite volume method using unstructured grids in the 2-D case.  

In chapter 2, the semi-Lagrangian integrated mass method (SLIM) of Laprise and Plante 

(1995) was extended to the conservative form of the shallow-water equations. This method 

was then successfully combined with a semi-implicit semi-Lagrangian one. It resulted in a 

fully conservative semi-Lagrangian scheme (SI-SLIM-R) where both mass and momentum 

are conserved while preserving stability with the use of large time steps. The full 

conservation property of the proposed scheme enables it to correctly simulate the shock 

speed in complex sub, super and trans-critical flows. The fully conservation property 

considerably improves the performance of common semi-Lagrangian schemes for a wide 

range of practical applications. Moreover, the resulting scheme is comparable to the 
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corrective schemes as GP, but it is free of phase problems of the corrective methods. On the 

other hand due to the inherently conservative approach, the highly expensive linear 

programming step of the corrective methods is avoided, and this makes the proposed 

method more efficient than the GP scheme. 

A conservative MOC scheme was then introduced in chapter 3 to simulate dam break type 

flows. The proposed method was shown to be able to simulate sub, super and trans critical 

flows very accurately. By using an appropriate interpolation function, the scheme also 

produces high accurate low-oscillatory solutions, with a computational effort comparable to 

the cost of a muscle-type high resolution scheme (the Roe approximate solver with a 

minmod slope limiter at the reconstruction step). The conservation property of the scheme 

ensures a high accuracy of the shock speed and it considerably improves the performance 

of the original MOC scheme in complex flows, as shown in a number of challenging test 

cases e.g. interaction of waves and dry-bed problems.  

In chapters 4 and 5, the Finite volume method over unstructured grid was considered due to 

its inherent conservation property and its flexibility for local mesh refinement and complex 

boundaries. 

A mass conservative approach was proposed in chapter 4 to solve the shallow-water 

equations which is able to accurately simulate mild flows such as recirculating and tidal 

flows with low numerical diffusion, and also complex sub, super and trans-critical flows 

with discontinuity over complicated topographies.  The proposed scheme was found to be 

computationally efficient because it is not necessary to perform an extra upwinding or 

Riemann solution for the source terms.  

In chapter 5, two efficient methods were proposed to treat the source terms and to satisfy 

the compatibility property on unstructured grids, again, without performing any extra 

upwinding or Riemann solution for the source terms. Contrary to the scheme presented in 

chapter 4, which is not fully conservative and may give rise to problems in presence of 

strong shocks, these two schemes are fully conservative. Further, they directly deal with the 

source terms without changing the flux terms. Therefore, they could be combined with 
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most existing Riemann solvers and efficiently employed for a wide range of shallow water 

problems as shown by many challenging test cases. 

Finally in Chapter 6, the performance of the upwind finite volume schemes in the case of 

Rossby waves was examined by a Fourier analysis approach including the study of phase 

speed, group velocity, damping and dispersion for the gravity waves and more importantly 

damping for the Rossby waves. Contrary to the usual good performance of those schemes 

in the case of convection dominated flows, poor results were obtained here for Rossby 

modes. Indeed, in this case, all selected upwind schemes lead to a severe damping. The 

numerical results were also compared with those obtained by using a slope limiter 

approach. It is concluded that most upwind schemes with or without slope limiters present 

poor result for an accurate calculation of the Rossby modes and therefore, they should be 

used with care (if at all) and restricted to short simulations. 
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