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Abstract 

It was found from monitored data from eight dwellings in a case study building in 

Quebec City (Canada) that there are clear differences in the window opening behavior 

between different households. This paper aims to develop from data a probabilistic 

window opening model that accounts for occupant behavior. Logit regression is 

employed to predict the state (opened/closed) of windows according to indoor and 

outdoor temperatures environmental and temporal parameters. To replicate the diversity 

of behavior, normal distribution functions applied to the logit regression coefficients are 

used so that simulated occupants respond differently to environmental stimuli. It was 

found that the model offers good prediction for the monitoring by only using the outdoor 

and indoor temperatures as predictors. The proposed methodology was tested by 

simulating 10,000 times a full validation year of the case study building and comparing 

the results with measured data. The agreement was good. The model overestimated 

slightly the total frequency of window opening in the dwellings and the number of 

window changes-of-state. A vast range of window opening behavior was generated by the 

model, showing its ability to reproduce both the aggregated window opening behavior 

and the diversity of behaviors of the case study building. 
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Greek letters 

  Logit regression coefficient 

Subscripts 

clo Closure of windows 

 const Constant 

in Inside temperature 

 op Opening of windows 

 open Opened window 

out Outside temperature 

  

1. Introduction 

Recent studies in social housing buildings found that many occupants experience thermal 

and olfactory discomfort, and even report health problems related to these issues [1], [2]. 

Window openings have a high impact on the energy consumed to sustain the desired level 

of indoor air quality [3], [4]. Window states are one of the required pieces of information 

for modeling natural ventilation in commercial and residential buildings and its impact on 

the energy performance [5]. However, the control of windows is a product of a complex 

combination of physical drivers and behaviors of occupants [6]. This is especially true in 

residential buildings where occupants are entirely free to use their windows as they wish. 

During the design phase of a building, it is consequently cumbersome to forecast when 

windows will be opened and when they will be closed, which can result in the building 

not performing as expected. For example, if a building design relies on natural ventilation 

to prevent overheating in summer, there could be a problem of high indoor temperatures 

if occupants open their windows less frequently than expected. On the other hand, if the 

windows openings are more frequent than expected during the heating season, the 

building consumption of heat could dramatically increase. 

 

In situ observations have revealed that window opening patterns can vary significantly 

among occupants, making it difficult to assess the potential range of impact of natural 

ventilation on energy performance and comfort. Therefore, efforts have been devoted 

over the years to developing window opening models that employ probabilistic or 

T Temperature [°C] 

x Independent variable  
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machine learning approaches [7]–[11]. Probabilistic models generally calculate the 

probability of an event’s occurrence through empirical correlations created from 

measurements or aggregated statistical data. Since these models are based on 

probabilities instead of a purely static behavior (e.g., fixed schedules), they allow the 

representation of various occupant behaviors and in a simulation, every day of the year 

can have a different window opening schedule. 

 

One of the most popular modeling approach to create probabilistic window opening 

models is the “logit” equation. Calì et al. analyzed window behavior in residential 

buildings, and investigated drivers that lead occupants to interact with windows, while 

focusing on how these actions can be modeled [12]. Jones et al. conducted a field study in 

ten UK dwellings over a year, and used multivariate logistic regression to investigate the 

probability of window opening and closing in the main bedroom, based on indoor and 

outdoor environmental factors, considering the time of the day and the season as well 

[13]. Meanwhile, Yao and Zhao conducted an investigation on the factors influencing 

occupant window behavior in 19 residences in Beijing, based on the monitored state of 

windows and eight environmental parameters [14]. In their study, multivariate linear 

logistic regression was also used to establish predictive models for occupant window 

behavior, and the results indicated that outdoor temperature was the most influential 

factor. Stazi et al. investigated the relationship between window use and environmental 

stimuli in an Italian classroom, and developed a window behavior model using logistic 

regression [15]. In their study, it was found that indoor temperature was the best predictor 

for both opening and closing windows and that outdoor temperature also had a significant 

impact on the window states, but not as strong as the indoor temperature.  

 

In spite of the large number of window opening models that have been developed in the 

last decades, most models do not consider the diversity in occupant behavior, assuming 

that everyone follows the behavior (from a statistical point of view) of the “average 

occupant”. In reality, all people do not necessarily interact in the same way with the built 

environment systems and do not necessarily follow the same behavioral patterns. It has 

been shown in other studies that in low-energy buildings, the practice of using an average 
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behavior can be a major cause of the gap between the actual and predicted energy use of 

the building [16]–[19]. Not considering the diversity in occupant behavior also prevents 

the prediction of extreme values of energy demand or the assessment of the robustness of 

a given building design in front of particular behavioral patterns. Previous studies created 

behavioral classifications [20]–[24], typically consisting of three classes of behaviors: 

“low-energy” behavior, “medium” behavior and “high-energy” behavior. These 

classifications are useful to have a glimpse at the range of potential energy use of the 

building, but they do not provide the full picture of observed behaviors.  

 

A noticeable recently proposed model that includes window opening diversity is that of 

Haldi et al. [25] for apartments located in Germany and Denmark. Logit models with 

probability functions for the weights of the regression were used successfully to represent 

occupant behavior diversity. The model employs temperatures and CO2 data as 

predictors. However, the latter is an information that is not necessarily available in all 

buildings (e.g., the case study building of this paper). This could make the model difficult 

to apply to some buildings. Furthermore, only one set of European data was used to test 

this approach, in such a way that it is still unknown whether the method could be 

extended to other countries where climates and behaviors are different. 

 

Based on literature, it is also found that most window opening models so far were 

developed using data obtained in Europe or East Asia. For instance, in  their 2019 

literature review on window behavior [8], Pan et al. provided information regarding 

stochastic window opening models. Including their own model, a total of 18 window 

opening models are reported [6], [8], [9], [13]–[15], [23], [24], [26]–[34]. Out of these 18 

models, 4 were created with observations made from buildings located in UK, 4 from 

buildings located in China and the remaining 10 from buildings located in other parts of 

Europa and East Asia. No model based on North American data was reported, suggesting 

an underrepresentation in terms of available window opening behavior data and models 

for this region.  

The first objective of this study is to develop a window opening model for residential 

buildings that considers the diversity of occupant behaviors. Considering diversity in 
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occupant behavior means that when simulating the use of windows in multiple 

households with the model, results should be different between the simulated households, 

but still be consistent with what is observed in real buildings. This means that there 

should be some households that are low “window users”, some that are heavy users and 

the rest between these two extremes. The model should also include difference regarding 

how a environmental stimulus influences occupant behavior. For instance, the window 

related behavior of some people could be heavily influenced by the indoor temperature, 

whereas for others, it could be mainly driven by the indoor humidity or the time of the 

day. The purpose of this model is to reflect these differences in behavior for energy 

simulations and not to explain why these differences exist. The model is meant to be part 

of a unified occupant behavior model that simulate multiple aspects of occupant behavior 

(occupancy, set point temperatures, windows…) and that is to be coupled with energy 

simulation tools, so the window model should also be coherent with other parts of the 

unified occupant behavior tool. This means that if the “occupancy” aspect of the overall 

occupant behavior tool predicts that there is no one at home, then there cannot be any 

change in window states. This work is in line with the needs and challenges expressed by 

Yan et al. [35], among others, for the development of better methodologies to model and 

account for occupant behavior. To build this model, four years of data measured from 

eight dwellings in a case study building in Canada was used. Again, very limited 

information was found to be available on window opening monitored data and advanced 

models for the Canadian context. Bourgeois’ thesis reports on 48 eye observations of 

window states of a building on Université Laval’s campus [36], but these were for an 

institutional building and the time-resolution is quite low. Therefore, the second objective 

of this work is to present and analyze recent data on window openings in Canadian 

dwellings. The experimental dataset that was used in the present work is described in 

Section 2, as well as the building from which it was obtained. Section 3 explains the 

various steps that were followed to develop the probabilistic model. Simulation results 

and their validation are detailed in Section 4. 

 

2. Window opening behavior from experimental data 
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The data used in the present study comes from a high-performance social housing 

building that was built in 2015 and that is located in Quebec City, Canada. Out of the 40 

apartments of the building, eight dwellings have been thoroughly monitored since the 

beginning of the occupancy period of the building (August 2015). These eight dwellings 

are the apartments located on the corners of the building, so that all “extreme positions” 

in the building are covered: four on the first floor, four on the top floor (the building is 

four story high), four on the south façade, four on the north façade, four on the east 

façade and finally four on the west façade. The apartments located on the north façade of 

the building have three 80 cm × 140 cm windows in addition to a 91 cm × 214 cm patio 

door for a total window area of 5.31 m
2
 per dwelling (window-to-wall ratio of 8.5%). On 

the other side of the building, dwellings have a fourth window, increasing the total 

window area to 6.43 m
2
 (10% of WWR). The eight monitored dwellings are inhabited by 

a total population of ~18 occupants. Monitored data considered in this study include 

opened/closed state of the windows (1-min frequency), indoor temperature and relative 

humidity (10-min), outdoor temperature and relative humidity, wind speed and direction 

and solar radiation (1-hour). Linear interpolation was used to synchronize all data at a 1-

min frequency. 

 

Note that 73.9% of the data (from August 2015 to May 2018) was used to train the model 

while the remaining 26.1% (June 2018 to May 2019) was used for validation. By taking a 

whole year of data for validation, it is possible to demonstrate the ability of the model to 

replicate window opening behavior in both winter (defined in this paper as going from 

October to April) and summer (May to September). The observations made in this 

subsection come from the training data and are summarized in Table 1. Since dwellings 

have different numbers of windows and some windows are larger than others, data 

provided in Table 1 and throughout the paper are the average values found within each 

dwelling – these averaged values are weighted according to the surface areas of the 

windows. During that period of 34 months, windows were opened across the dwellings 

21.0% of the time (5.04 hours per day) – 10.2% in winter versus 36.1% in summer. Since 

there is no mechanical cooling in the building, natural ventilation is the main overheating 

mitigation strategy available to the occupants, hence the need for opening windows in 
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summer. Since the building is very airtight (0.6 air change per hour at 50 Pa) and 

considering that the mechanical ventilation system in place is often not fully used by 

households (data has shown that it is used on average 56.6% of the time), another 

potential reason for opening windows is to improve indoor air quality by increasing the 

rate of ventilation. This might explain the relatively high use of window openings during 

winter – a season in which from a thermal standpoint, the windows should be closed as 

much as possible. A window is opened on average 1.75 times per day (the mean window 

opening duration is 71.5 minutes) for the heating season. In the summer, this value goes 

up to 2.20 with an average duration of 247.5 minutes per opening. In other words, the 

number of openings is relatively similar between winter and summer, but once the 

window is opened, occupants tend to leave it opened three to four times longer in summer 

than in winter. 

 

Table 1: Global statistics on the overall use of windows in the eight monitored dwellings. 

Dwelling  

Winter Summer 

Frequency of 

opened window 

[%]  

Average number 
of window 

openings [day–1] 

Frequency of 
opened window 

[%]  

Average number 
of window 

openings [day–1] 

1 7.4 1.41 54.0 1.87 
2 1.1 1.21 36.2 2.32 
3 10.3 1.87 44.3 2.01 
4 6.9 1.64 49.2 2.22 
5 2.0 1.43 15.9 1.03 
6 3.3 1.62 22.2 2.87 
7 15.0 2.07 27.8 2.12 
8 35.9 2.93 39.4 3.14 

Total 10.2 1.77 36.1 2.20 

 

 

Looking at the various patterns found across the sample of eight monitored apartments, 

there are clear evidences that households act differently regarding their window control. 

For example, Fig. 1 presents a colormap of the probability of a window being in an 

opened state for different combinations of indoor and outdoor temperatures based on the 

measurements. In dwelling #8, there is a relatively high probability of having an opened 

window and this probability is weakly related to the outdoor and indoor temperatures. 

The probability of opened windows in dwelling #5 is also weakly linked with the 
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temperatures, because its windows are nearly always closed. On the other hand, 

temperatures have a high impact on the probability of observing an opened window in 

other dwellings. For instance, both the outdoor and indoor temperatures have a large 

effect in dwelling #1. When it is relatively cold outside and inside the dwelling, the 

windows are typically closed (probability of opened windows below 15%). If the outdoor 

temperature increases above 15°C but the indoor temperature remains below 25°C, the 

probability of a window being opened in dwelling #1 increases up to 35%. For cases 

where both the outdoor and indoor temperatures are relatively high, this value can go up 

to 70%. In dwelling #2, the outdoor temperature appears important, but not the indoor 

temperature – there is a clear shift in the frequency of opened windows on the outdoor 

temperature axis, but no such shift on the indoor temperature axis.     
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Figure 1: Colormap describing the link between the indoor and outdoor temperature and the probability of 

observing an opened window for eight apartments in the case study building based on measurements. 

 

3. Development of the window opening model  

3.1 Presentation of logit regression 

A logit regression is chosen to compute the probability of observing an open window 

given a certain set of independent variables: 

  
M

opened

opened 0 i i

i 1opened

p
logit p ln x

1 p 

 
       

  (1)  
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where openedp  is the probability of a window being opened, ix  represent the M 

independent variables considered by the model and i , their related regression 

coefficients. The logit regression is one of the most typical approaches for developing a 

probabilistic window opening model. The probabilistic nature of the model comes from 

the fact that, for a given set of parameters xi (e.g., indoor and outdoor temperatures, hour 

of the day, indoor air quality…), Eq. (1) only provides a probability of finding the 

window in an open state. In other words, using such a model can lead to different window 

states for the exact same conditions. However, this approach often assumes that all 

occupants act the same way regarding window control. When applying a model based on 

Eq. (1) on multiple households, the window opening schedule of each household will be 

different because the timings of window openings will not necessarily match, but on 

aggregate they will be highly similar with the same total frequencies of window 

openings, same reaction towards high indoor temperatures, etc. As seen in Table 1, very 

different window opening patterns can be observed in reality. To replicate this diversity, 

it is suggested to employ regression coefficients i  computed from probability density 

functions (assumed to follow normal distribution) instead of having deterministic/fixed 

values. This approach is in line with that proposed by Haldi et al. [25] which, so far, has 

only been tested once for European dwellings. Apart from the set of data on which they 

rely, there are also some other differences between the present model and that of Haldi et 

al. To name a few: in the present model, CO2 data is not included as this information is 

not always available in many buildings; in Haldi’s model, the probability of action were 

different in each room typology (e.g., kitchen, living room, etc.) whereas the present 

model is for the entire dwelling to facilitate its implementation in energy simulation 

tools; as described below, correlations between weights in the regressions were used to 

limit the number of variable weighting factors and account for observed relations 

between them (see Section 3.4). 

 

3.2 Selecting appropriate predictors for the window control model 

The influence of nine different parameters on the probability of observing an opened 

window were assessed: the indoor and outdoor temperatures, the indoor and outdoor 
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relative humidities, the minute of the day, the day of the year, the total horizontal solar 

radiation, and the wind speed and direction. These nine predictors were first ranked 

according to their importance on the window state. This was done by building univariate 

regression models for each of the predictors to understand the relationship between the 

probability of finding an opened window versus individual studied predictors. These 

univariate models were created by merging all eight monitored dwellings into a single 

dataset of window opening behavior. Fig. 2 displays the various plots obtained when 

measuring the average window states for different values of each of the predictors. 

Predictors in Fig. 2 are ranked from the most significant parameters (top row of the 

figure) to the ones that have the lowest impact (bottom row). The criterion used to rank 

the parameters was the F-test of overall significance of the regression equations, which 

was computed for each univariate regression models displayed in Fig. 2. 

 

Figure 2: Observed probability of opened windows versus each of the considered predictors for the window 

opening model individually. 
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Both indoor and outdoor temperatures are highly significant, with the probability of 

opened windows following quite closely a logit regression. Indoor relative humidity also 

appears important with the probability of observing an opened window being lower for 

dry indoor environment. However, this correlation could be explained by the fact that in 

Canada dry indoor conditions typically occur during the winter, when the outdoor air is 

very cold and thus contains a minimal amount of vapor. Since it is cold outside during the 

winter, occupants limit window openings hence lowering the probability observed for dry 

indoor environments. On the other hand, very humid indoor conditions happen during the 

warmest days of the summer, when one should expect occupants to open their windows. 

A similar explanation can be provided for the relatively strong correlation observed 

between window states and the day of the year. Fig. 2 shows that there is a peak of 

window opening happening during the summer, when it is warmer. Window openings are 

linearly proportional to solar radiation – radiation is another variable that is highly 

correlated with the outdoor temperature. As for outdoor relative humidity, wind speed, 

wind direction and the minute of the day, their impact on the occupants’ control of their 

windows seems to be insignificant. Note that a figure similar to Fig. 2 was produced for 

individual windows on different façade, and the low impact of these variables was also 

observed.  

 

To quantifiably evaluate which parameters must be considered to obtain an adequate 

window opening model, nine different multivariate models were created for each of the 

eight monitored dwellings. First, a univariate model was implemented using only the 

most significant predictor (outdoor temperature). Then, the second regression model was 

developed by adding the second most significant predictor (indoor temperature). This 

process was repeated until all nine predictors were included in the regression analysis. 

The goodness-of-fit of each model was calculated with Nagelkerke’s R
2
 value, which is 

suited for the comparison between a logistic regression model and a baseline. Table 2 

provides the Nagelkerke’s R
2
 values obtained for all 72 regression models (8 dwellings 

times 9 models per dwelling). When only considering outdoor temperature to predict the 

state of windows, the average R
2
 value found across the eight dwellings is 0.335. With 

the indoor temperature, this value increases up to 0.415 versus a value of 0.469 when all 
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predictors are considered. Considering that seven other predictors had to be added into 

the regression models to increase the average R
2
 value from 0.415 to 0.469, it appears 

that the two-variable regression models are more efficient. In fact, the adjusted R
2 

values 

of the model, which consider the number of predictors employed by the model, goes from 

an average of 0.384 for the two-predictor models to an average of 0.309 for the models 

that use all variables. Therefore, since it is able to produce adequate results, the two-

variable regression analysis strictly based on temperatures was chosen as the most 

appropriate approach to build a stochastic window state model as simple as possible that 

still accounts for occupant diversity. 

 

Table 2: Goodness-of-fit (Nagelkerke’s R2) of the logistic regression models for window states in each 

dwelling according to the considered predictors. 

Model 
Dwelling 

1 
Dwelling 

2 
Dwelling 

3 
Dwelling 

4 
Dwelling 

5 
Dwelling 

6 
Dwelling 

7 
Dwelling 

8 

Only outdoor 
temperature 

0.372 0.185 0.402 0.267 0.358 0.409 0.240 0.447 

Adding indoor 
temperature 

0.509 0.249 0.484 0.316 0.412 0.494 0.362 0.495 

Adding indoor 
relative humidity 

0.529 0.272 0.486 0.327 0.413 0.510 0.386 0.515 

Adding day of the 
year 

0.540 0.281 0.504 0.334 0.423 0.519 0.412 0.532 

Adding solar 
radiation 

0.550 0.292 0.515 0.345 0.427 0.530 0.428 0.543 

Adding outdoor 
relative humidity 

0.557 0.300 0.523 0.356 0.433 0.537 0.435 0.549 

Adding wind 
Speed 

0.561 0.305 0.529 0.362 0.439 0.543 0.437 0.553 

Adding wind 
direction 

0.562 0.308 0.529 0.363 0.441 0.546 0.438 0.555 

Adding minute of 
the day 

0.562 0.309 0.530 0.364 0.442 0.546 0.439 0.556 

 

3.3 State model versus change-of-state model 

Two types of window opening model can be created: one that predicts the state of the 

window (i.e., for a given time step, what is the probability of finding the window in an 

opened or closed state?) and one that predicts changes of the state of the window (i.e., for 

a given time step, will there be a window opening (if the window is closed), a window 
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closure (if opened) or no change of state?). For the “state model”, the logit equation is 

expressed as: 

   open

open in in out out const

open

p
logit p ln T T

1 p

 
       

 (2)  

Eq. (2) is used for all time steps in the simulations to compute the probability of 

observing an opened window according to the indoor and outdoor temperatures. A 

random number is then drawn and compared to openp  to determine if the window is 

opened or not. In the “change-of-state” or “action” model, two logit equations are 

implemented. The first one provides the probability of observing a window opening and 

thus is only used for time steps when the window is closed: 

   op

op op,in in op,out out op,const

op

p
logit p ln T T

1 p

 
       

 (3)  

Then, when the window is predicted to be opened, the model shifts to another logit 

equation to forecast when the window will eventually be closed: 

   clo
clo clo,in in clo,out out clo,const

clo

p
logit p ln T T

1 p

 
     

 
 

(4)  

A test was made with the training data to compare the performance of both 

methodologies. For each of the eight apartments, both the “state” and “change-of-state” 

models were sequentially used to predict window openings in the apartment. The 

measured indoor and outdoor temperatures from the apartment were used as inputs to 

both models. The two models yielded similar predictions for the total duration of opened 

windows (across the eight dwellings, “state” model overestimated the frequency of 

opened window by 5.1% versus an overestimation of 5.4% for the “change-of-state” 

model), but there was a major difference concerning the number of window opening 

events. The “state” model overestimated the number of window openings by a factor of 

nearly 100 – the window schedule for this model kept shifting between the “opened” and 

“closed” states with unrealistic delays between the changes of state. In comparison, the 

“change-of-state” model only overestimated window openings by 6.8%.  
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It was thus decided to develop change-of-state (window opening and closure) models 

instead of state (opened or closed window) models for the integrated occupant behavior 

model introduced above. The tests made in Section 3.1 were repeated for window 

openings and closures and yielded similar results to the ones obtained with the state 

model, so only the indoor and outdoor temperatures were used as predictors to compute 

the probability of a window event. Eqs. (3) and (4) were employed in a regression 

analysis of the measured data for each dwelling, which allowed for the estimation of the 

  coefficients (see Table 3). The regression coefficients had different values from a 

household to another, again illustrating the diversity of window opening behavior. For 

instance, op,const  goes from a value of -2.07 in dwelling #8 up to -10.09 in dwelling #7. 

In dwelling #5, the indoor temperature appears to have no effect on the probability of 

opening a window. The normal distribution assigned to each coefficient was then defined 

by each coefficient’s mean value and standard deviation. 

 

Table 3: Logit regression coefficients for the calculation of the probability of window openings and 

closures for each monitored dwelling. 

Dwelling 

Window openings Window closures 

op,in  op,out  op,const  clo,in  clo,out  clo,const  

1 0.10 0.03 -7.68 -0.11 -0.03 -1.83 
2 0.02 0.04 -5.90 -0.15 -0.03 1.08 
3 0.06 0.02 -6.72 -0.08 -0.02 -1.79 
4 0.06 0.04 -6.69 -0.06 -0.03 -1.63 
5 0.00 0.04 -5.66 -0.06 -0.05 -0.51 
6 0.01 0.03 -4.92 -0.06 -0.05 -0.54 
7 0.19 0.04 -10.09 -0.14 -0.01 0.04 
8 0.03 0.02 -2.07 -0.07 0.00 -1.79 

Mean 0.059 0.033 -6.216 -0.091 -0.028 -0.871 
Standard deviation 0.062 0.009 2.296 0.037 0.018 1.073 

 

To verify the accuracy of the eight regression models, the eight different sets of   

coefficients in Table 3 were provided to the window opening model along with the 

corresponding indoor and outdoor temperatures measured during the training period. For 

each dwelling, the model was used to perform 100 yearly simulations of the window 

opening schedules, and then the frequency of opened windows in the summer and in the 

winter were evaluated for each simulation. The results of these 100 simulations per 
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dwelling are displayed in Fig. 3 by grey crosses and compared to the real behavior of 

occupants (red diamonds). All eight measured points fall into the scatter plot generated 

by their corresponding set of simulations. This demonstrates that it is possible to replicate 

the general window behavior of occupants when using appropriate values for the   

coefficients.  

 

Figure 3 also provides the comparison between the average frequency of opened window 

measured in the case study building and the outputs of the window opening model when 

using the mean values of the regression coefficients presented in Table 3. Measurements 

and simulations are once again in agreement, so one can reproduce the aggregated 

behavior of the occupants when using averaged regression coefficients. However, the 

diversity of behaviors is not captured at all with this approach. There is thus a need to 

develop a methodology to reproduce dwelling-to-dwelling diversity, as will be explained 

below. 
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Figure 3: Comparison of the window opening model (when using specific regression coefficients for each 

dwelling) with measurements - Scatter plot of the frequency of opened window in winter and summer for 

the simulated and monitored dwellings. 100 data points were simulated for each dwelling. 

 

3.4 Effect of the number of randomly selected coefficients for the window control model 

When simulating window operations in a dwelling, one must specify the six -values 

appearing in Eqs. (3)-(4). In order to generate different possible window control 

behaviors, one could randomly select all six coefficients based on the distributions found 

above and simulate the window operation accordingly. However, doing so might induce 

unrealistic window control behaviors if an unrealistic or unfeasible combination of 

regression coefficients was randomly selected by the model. When studying the 

regression coefficients observed in each of the eight monitored dwellings, correlations 

were also found between some of the coefficients. By randomly selecting all coefficients, 

the model cannot reproduce these correlations and consequently does not reflect well 

what is observed in reality. For these reasons, it was considered preferable to randomly 

select only some of the regression coefficients and use observed correlations to compute 

the remaining coefficients that were not randomly chosen.  

 

An analysis was made to decide how many coefficients (and which ones) should be 

picked randomly and then use to calculate the others based on correlations. The number 

of   coefficients to be randomly chosen was incrementally increased from one to six. 

For the “one randomly selected coefficient” model, op,in  was picked as the variable to 

be assigned a random value from its probability density function since it was the 

coefficient that had the highest level of correlation with the other   coefficients. This 

was determined by calculating the coefficient of determination R
2
 for each pair of   

coefficients using the data of Table 3. Then, for the “two randomly selected coefficients” 

model, the correlation of each pair of the five remaining coefficients combined with 

op,in were once again computed in a two-variable regression analysis (e.g., using op,in  

and op,out  as independent variables and op,const  as the dependent one) and evaluated with 

the R
2
 value. The coefficient that shown the highest level of correlation with other 

coefficients when combined with op,in  was chosen as the second variable to pick at 
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random. This process was repeated until all six coefficients were ranked: op,in , op,out , 

clo,in , clo,const , op,const  and clo,out .  

 

The six window models were tested by simulating window openings 10,000 times for 

each model using the outdoor temperature and the indoor temperature profiles in the 

monitored dwellings. Fig. 4 shows the frequency of opened window in summer and in 

winter for each of the 10,000 simulations (grey crosses), while the red diamonds show 

where the eight monitored dwellings stand. By inspecting Fig. 4, it is clear that with only 

one coefficient selected randomly, it is not possible to reproduce the various behaviors 

observed in the monitored building as the simulation outputs produce a very narrow 

shape that is off compared to measured data. The five other models match relatively well 

with measured results, with the “two randomly selected coefficients” and “three 

randomly selected coefficients” models offering the best matches. The models using four, 

five or six randomly selected coefficients generate “shapes” in the figures such that the 

measured behaviors (red diamonds) are located at the margins or even appear to be 

outliers (the two upper-left diamonds in Fig. 4d and rightmost diamond in Fig. 4e and 4f). 

The main difference with “two randomly selected coefficients” and the “three randomly 

selected coefficients” models is that the models with three random coefficients generates 

a larger frequency of very high window opening behaviors. 5.9% of the simulations with 

this model yielded more opened windows in winter than the maximum data that was 

measured (i.e. higher than 35.9% of window opened) and 23.4% of simulations had more 

opened windows in summer than the maximum measured data (i.e. higher then 54.0%). 

For the models with two random coefficients, these values respectively are 3.4% and 

5.1%, which appears closer to the data and to typical observations in the Canadian 

context.  



19 
 

 

Figure 4:  Scatter plot of the frequency of opened window in winter and summer for the simulated and 

monitored dwellings when randomly selecting a) one, b) two, c) three, d) four, e) five and f) six regression 

coefficients in Eq. (8). Grey crosses represent the 10,000 simulations per scatter plot and the eight red 
diamond represent measured data. 

 

The “two randomly selected coefficients” methodology was then chosen for the proposed 

window opening models. It should be noted, though, that the other methodologies to 

generate the  -coefficients can also offer acceptable results and that the best approach 

might depend on the dataset. In this model, op,in  and op,out  are randomly selected from 

their probability density functions and values for other coefficients are directly calculated 

afterwards using these correlations found by regression analysis: 

 

op,const op,in op,out

clo,in op,in op,out

clo,out op,in op,out

clo,const op,in op,out

27.2 98.5 1.42

0.30 1.07 0.04

0.17 1.01

2.18 80.7 3.37

      

     

     

      

 (5)  
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Figure 5 shows different probability curves obtained with the proposed methodology for 

selecting the   coefficients in order to display how they influence the probability of 

observing a window change of state. The black lines are the probability obtained with 

Eqs. (3) and (4) when using the mean regression coefficients from Table 3. Red curves 

represent five different random draws using normal distributions for op,in  and op,out  and 

Eq. (5) for the remaining regression coefficients. Graphs on the left exhibits the 

probability curves for a window opening, whereas the right-hand side graphs represent 

the probabilities for a window closures. The top ones are for a constant outdoor 

temperature, but with a varying indoor temperature. The bottom graphs depict the 

opposite, with the indoor temperature being constant and the outdoor temperature 

changing. The fixed temperatures were set at a high value (30°C) to emphasize the 

chances of windows being opened. The differences between the curves in each graph 

reveal the high variability of window behavior that the model can produce – some 

generated households are highly influenced by temperatures in terms of window opening 

behavior whereas in some others, probabilities of a change of state of windows is mostly 

unaffected and nearly constant for all temperatures.  
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Figure 5: Example of the impact of randomly drawing regression coefficients on the probability of opening 
or closing a window. Black lines are generated using averaged regression coefficients and red lines when 

using the proposed methodology. 

 

3.5 Coupling with active occupancy model 

Since the window operation model is intended to be part of a unified occupant behavior 

model, modifications were made to ensure that the unified model remains as 

comprehensive as possible with no contradiction. For example, predicting a window 

change of state when there is no active occupancy in a dwelling (i.e., no one is awake and 

at home in the dwelling) would be a contradiction. Therefore, the window opening part of 

the unified occupant behavior model first receives the active occupancy schedule 

generated by the occupancy part of the overall model which is described extensively here 

[37], [38]. This active occupancy schedule is produced by first assigning a household size 
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for a simulated dwelling and then using Markov-chains based on data from time-use 

surveys. These surveys provide the times when people arrive and leave their home and 

are comprised of tens of thousands of journal entry. For each simulated household, a 

random “type of occupants” factor modifies the Markov-chains to reflect the fact that 

some families spend more time at home than others. When the window behavior model 

gets the active occupancy schedule, it sets the probability of a window event occurring at 

zero for time steps in which no one is predicted to be actively at home. On average 26.1% 

of the times steps of the occupancy schedules generated by the model have zero active 

occupants. Limiting the changes of window state to time steps with active occupants 

would thus reduce the number of change-of-state events by 26.1%. To balance this, 

probabilities are multiplied by a factor of 1/(1 – 0.261) = 1.35 and the new regression 

equations become:  

 

op

op,in in op,out out op,const

op

p
logit T T if Occ 0

1.35

p 0 if Occ 0

 
     

 

 

 
(6)  

Equations for the probability of a window closure have the same form as Eq. (6). An 

example of this adjustment is illustrated in Fig. 6 for a single day in January. In the 

original probability curve calculated with Eq. (3), the probability of opening a window 

oscillates between 0.82% (at 02:10) and 1.04% (at 15:50) depending on the temperatures 

observed during that day. However, in this example there is no active occupant before 

07:00, between 13:20 and 21:50 and after 22:30. There cannot be a window opening 

during these periods of time, so the new probability curve is set to zero for these time 

steps. The resulting curve is then multiplied by 1.35 to ensure that the number of window 

events throughout the year is unaffected by this change. The maximal probability to open 

a window during that day is now 1.36% and happens at 13:10.  
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Figure 6: Example of an adjustment of the probability of opening a window when considering active 

occupancy.  

  

4. Validation 

As mentioned, a complete year of data (June 2018 to May 2019) was devoted to the 

validation of the window opening model. The aim of the validation is to ensure that the 

window opening model is able to replicate both the aggregated behavior of occupants 

living in the case study building and the diversity of behaviors observed between various 

households. The ability of the model in reproducing the diversity of behaviors was 

verified by simulating window openings 10,000 times using the outdoor and indoor 

temperature profiles in the monitored dwellings during the validation year. The overall 

frequency of opened windows in winter and summer from these 10,000 simulations are 

shown in Fig. 7a, along with the measurements made from the monitored dwellings, each 

red or blue mark corresponding to one monitored dwelling. The eight dwelling window 

control behaviors are mostly covered by the scatter plot formed by simulation results.  
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Figure 7: Comparison of the proposed window opening model with measurements - Scatter plot of the 

frequency of opened window in winter and summer for the simulated and monitored dwellings. 

 

One data point is slightly out of the scatter plot. This measured data point has a frequency 

of opened window of 1.5% in winter versus ~4.0% for the minimal value found in 

simulations for the same summer opening frequency. This is caused by the fact the 

correlations between the -values expressed in Eq. (5) are not “perfect”, i.e. the winter 

and summer behaviors are not perfectly correlated. As in any correlation, there is a 

certain level of uncertainty on the result returned by the correlation, but in this case, this 

uncertainty is hard to assess due to the small sample size (i.e., 8). This uncertainty is not 

considered by the model, i.e. the results returned by the correlations are directly provided 

to Eq. (6). To test the impact of the uncertainty of the correlations, random variations 

within ±15% was assigned to the coefficients of Eq. (6) and the process behind Fig. 7a 

(e.g. simulating the window control behavior of 10,000 households) was repeated. The 

resulting figure is presented in Fig. 7b. It can be seen that with the additional 

uncertainties, the out-of-range measured data point is within the cloud of points generated 
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by the model. However, since data is limited to eight dwellings, it is difficult to have a 

thorough estimation of the uncertainties related the coefficients of Eq. (6). Consequently, 

it was deemed preferable not to include these uncertainties in the rest of the simulations 

presented in this paper, in particular since the offset between simulations from the current 

model and the single out-of-range data point is small. 

 

As for the aggregated window opening behavior, the average frequency of window 

opening in the eight monitored dwellings during the validation year was 8.7% in winter 

and 39.3% in summer. The corresponding values computed out of the 10,000 simulations 

respectively are 9.2% (relative overestimation of 5.7%) and 42.4% (relative 

overestimation of 7.9%). During the validation year, there was a total of 2.04 openings of 

window per window per day in the case study building versus a prediction of 2.10 

openings from the model.  

 

In terms of the duration of window openings, a window in the case study building stays 

opened on average 149.0 minutes per opening (66.7 minutes in winter and 239.8 minutes 

in summer). Outputs of the model predict that windows are opened 69.8 minutes per 

opening in winter and 255.8 minutes in summer for an overall average of 158.3 minutes 

per opening (overestimation of 6.2%). The distributions of the duration of window 

openings from monitored data and simulations are provided in Fig. 8. Both distributions 

follows the lognormal law with the plurality of openings having relatively low durations 

(less than 20 minutes). In the case study building, 32.3% of openings had a duration 

smaller than 20 minutes during the validation year versus 26.9% in simulations. The 

model underestimated the number of very short window openings, which could explain 

the slight overestimation of the mean duration for a window opening. An inspection of 

the measured dataset shows a relatively high number of window openings (7.2%) that 

have lasted a single minute. These really short openings should have negligible impact on 

the indoor environment and the consumption of energy, and could potentially be linked to 

a misreading by the sensors. If these 1-minute openings are taken off the measured 

dataset, the average duration for a window opening in the case study building reaches 

162.3 minutes per opening, which is closer to the simulate average. Note that the x-axis 
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of Fig. 8 cuts off at 500 minutes for the sake of visibility. In both measured and simulated 

datasets, there are few window openings that last up to 20,000 minutes (approximately 14 

days). 1.4% of the window openings in the case study building lasts more than 1,440 

minutes (a day). In the simulated dataset, 1.2% of openings lasts that long. In short, the 

simulated distribution of window opening durations follows the same pattern as the one 

from the measured data, except for an underestimation of very short window openings. 

The mean window opening duration is similar in the measured and simulated datasets.   
 

 

Figure 8: Measured and simulated distribution of the duration of window openings during the validation 

year. 

 

Another point to validate is the decision made to consider only the indoor and outdoor 

temperatures as predictors for the openings and closures of windows in the model. In 

Section 3, it was argued that correlations observed between other predictors (relative 

humidity, solar radiation…) and the probability of observing a window opened are 

mostly due to the fact that these other predictors are highly correlated with either the 

indoor or the outdoor temperature. To make sure that this statement is true and that no 
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pattern was missed by excluding other predictors, the correlations between these 

predictors and the state of the windows were computed for the validation year from both 

measured and simulated data. These correlations are shown in Fig. 9, with the red 

diamonds representing measured data from the eight monitored apartments and the black 

crosses the results of all simulations. The curve outlined by the data points of 

measurements and simulations highly fit together, proving that the correlations observed 

with measurements and simulations are mostly the same, so cutting most of the predictors 

did not leave out patterns that simulations cannot replicate. Table 4 provides the 

coefficients of determination between both data series from the nine graphs of Fig. 9. The 

only two predictors that yielded relatively poor fits between simulations and 

measurements are the wind direction (R
2
 = 0.382) and the minute of the day (R

2
 = 0.483). 

This is due to the fact that these two variables are weakly correlated with indoor and 

outdoor temperatures. Since both wind direction and minute of the day have very small 

influence on the state of the windows, these poor fits between simulations and 

measurements are not expected to affect the overall performance of the model. For other 

predictors, the coefficients of determination between measurements and simulations are 

very high, with five of them having R
2
 values above 0.9. The model is thus able to 

replicate the univariate behavior of window opening in accordance to each of the 

important predictors. 

 

Table 4: Coefficient of determination between the logistic regression models for window states from 

measured and simulated data according to the considered predictor. 

Predictor R
2
 

Outdoor 
temperature 

0.989 

Indoor temperature 0.959 
Indoor relative 
humidity 

0.946 

Day of the year 0.967 
Solar radiation 0.923 
Outdoor relative 
humidity 

0.794 

Wind 
speed 

0.702 

Wind direction 0.382 
Minute of the day 0.483 
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Figure 9: Simulated (black crosses) and observed (red diamond) probability of opened windows versus 

each of the recorded predictors for the window opening model individually during the validation year. 

 

5. Conclusions 

Since windows were found to play a significant role on indoor air quality in social 

housing buildings, developing a better understanding of how windows are controlled in 

low-income buildings and how to take that into account in the design and operation 

would be impactful for this population. A probabilistic window opening model for such 

buildings is thus developed in this paper, which includes randomly drawn coefficients to 

account for occupant behavior diversity. Observations made from a case study building 

clearly showed that there is a high variability of window opening behavior across 

different households.  
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The model developed in this paper is to be included in a unified occupant behavior tool. 

In order for this tool to be fully coherent, it was ensured that there could not be window 

opening or closure in times when no one is predicted to be awake at home. Data coming 

from eight dwellings in a high-performance social housing building was used for the 

development of the window opening model, which is a change-of-state model that 

predicts window openings and closures based on the outdoor and indoor temperatures. 

These two predictors were chosen as their effect on the frequency of open windows in a 

dwelling is much larger that of other variables such as relative humidity or solar 

radiation. Based on the logit equation, this window opening model employs a total of six 

coefficients (three to predict window openings, three to predict window closures). It was 

deemed preferable to randomly draw two of these six coefficients from normal density 

functions and to calculate the remaining terms from correlations observed between the 

coefficients. This choice was made to ensure that observed correlation between the 

coefficients measured from the case study building remain intact in the model and that 

extreme combinations of coefficients that lead to unrealistic window opening behaviors 

cannot be reached by the model.  

 

A comparison was made between the outputs of the model and the measured window 

behavior observed during a validation year. This comparison showed that the model was 

able to adequately simulate the “average” window opening behavior and the diversity of 

behaviors observed across the eight monitored dwellings during both winter and summer. 

The frequency of opened windows found in the monitored building matched with the 

predictions of the model. The same can be said for the distribution of the durations of 

window openings. Only using the outdoor and indoor temperatures as predictors for the 

change of state of windows appears sufficient, since the correlations between the state of 

windows and other variables, such as relative humidity or solar radiation, are similar in 

measured and simulated datasets. 

 

Like most probabilistic window opening models, the model developed in this paper 

employs logit regression to compute the correlation between the probability of a window 

opening and environmental stimuli. The novelty of this paper comes from the fact that 
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these correlations are not based on fixed regression coefficients, but on coefficients that 

are randomly derived from normal distributions and thus are variable from a dwelling to 

another. This additional feature means that the correlations driving the window openings 

and closures are different between households, so that they follow a different window 

opening behavior, which is closer to what is observed in reality. A similar approach was 

used by Haldi et al., but their methodology did not study the interrelation between the 

regression coefficients as was done here. This paper also describes a window opening 

model that is developed from Canadian data, which is rare in the literature where most 

studies on window behavior are from Europe and East Asia. Since occupant behavior is 

known to be highly related to culture, it is important to have access to data from different 

regions. Finally, another beneficial feature of the model is that there are only two 

predictors that are used, which makes it easy to apply to other studies. 

 

Other variables, such as CO2 levels or the zone where a window is located (living room, 

bedroom, kitchen…), could have improved the accuracy of the window opening model. 

With data coming from eight dwellings, it is impossible to quantify the full range of 

possible window opening behaviors. Although the model is able to cover all behaviors 

observed in the case study building, further studies would be needed to assess whether 

the model underestimates or overestimates the dwelling-to-dwelling variability of 

window opening in other buildings. In particular, it would be interesting to measure 

window openings in buildings with different architectural features (e.g., WWR, etc.) to 

evaluate how these affect occupant behavior. 
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