
MORI DREAM SPACES

JAMES MCKERNAN

Abstract. We explore the circle of ideas connecting finite gener-
ation of the Cox ring, Mori dream spaces and invariant theory.
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1. Hilbert’s 14th Problem

1.1. Introduction.

Problem 1.1 (Hilbert’s 14th problem). Let k be a field and let k ⊂
K ⊂ k(x1, x2, . . . , xn).

Is the ring R = K ∩ k[x1, x2, . . . , xn] finitely generated?

(Here, as elsewhere, finitely generated means finitely generated as a
k-algebra.) For an entertaining and more comprehensive treatment of
Hilbert’s 14th problem, see [23]. Even though most of what is covered in
these notes will apply to any algebraically closed field of characteristic
zero (and some of what is covered will apply to any field of characteristic
zero or even arbitrary characteristic), we will work over k = C for
simplicity. Hilbert’s original motivation for this problem comes from
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invariant theory. Suppose that we have a linear algebraic group G,
that is an algebraic subgroup G ⊂ GL(n,C). Then G acts on the
polynomial ring C[x1, x2, . . . , xn] and we can form the ring of invariant
polynomials

C[x1, x2, . . . , xn]G = { f ∈ C[x1, x2, . . . , xn] | f g = f }.

It is then natural to ask if the ring of invariants is finitely generated. If
we let K = C(x1, x2, . . . , xn)G, the field of invariant rational functions,
then we see that this is a special case of Hilbert’s 14th problem.

In general we can start with an arbitrary finitely generated ring R
(that is, a quotient of the polynomial ring C[x1, x2, . . . , xn]) and a linear
algebraic group G acting on R and consider the ring of invariants RG.
It is then natural to ask if RG is finitely generated.

Perhaps the most general result along these lines is due to Hilbert
and Mumford. We recall the definition of a reductive group.

Definition 1.2. Let G ⊂ GL(n,C) be a linear algebraic group. The
radical of G is the identity component of the maximal normal solvable
subgroup of G. An element g ∈ G is unipotent if g− In is nilpotent,
that is some power is zero.

The unipotent radical of G is the set of unipotent elements in the
radical of G. We say that G is reductive if the unipotent radical of G
is the trivial subgroup.

The main point is that if the characteristic is zero and G is a linear
algebraic group acting on a finite dimensional vector space V and W
is a G-invariant subspace then there is a G-invariant complement W ′.

If G and H are reductive groups then so is their product. On the
other hand, Gm, the group of non-zero elements of the underlying field
C under multiplication, is a reductive group, so that any torus Gk

m is a
reductive group. SL(n,C) and GL(n,C) are also reductive groups, as
are many of the classical groups.

By contrast, Ga, the group of elements of C under addition, is not
reductive. There are two ways to see this. The first is directly.

Ga = {
(

1 a
0 1

)
| a ∈ k } ⊂ GL(2, k).

The radical of Ga is Ga itself and given g ∈ Ga,

g − I2 =

(
0 a
0 0

)
,

squares to zero, so that Ga is equal to its own unipotent radical.
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On the other hand, consider the natural action of Ga on C2. Then

W = { (x, 0) |x ∈ C },

is an invariant subspace but there is no Ga-invariant complement.

Theorem 1.3 (Hilbert, Mumford). Let G be a reductive group and let
R be a finitely generated ring.

Then RG is finitely generated.

Proof. We sketch Hilbert’s amazing argument. In particular, we as-
sume for simplicity that R = C[x1, x2, . . . , xn] is the polynomial ring.
See [24] for a proof of the complete result. The key thing is that R
comes with a natural grading by the degree:

R =
⊕
n∈N

Rn and so RG =
⊕
n∈N

RG
n .

As G is reductive we may find R′n such that Rn = RG
n ⊕R′n. Let

ρn : Rn −→ RG
n ,

be the projection map with kernel R′n. The important thing is that
these maps glue together to give

ρ : R −→ RG,

and ρ has a nice linearity property:

ρ(fg) = fρ(g),

where f ∈ RG and g ∈ R. Let RG
+ be the elements of RG of posi-

tive degree and let I be the ideal they generate. By Hilbert’s basis
Theorem I = 〈f1, f2, . . . , fk〉, for some polynomials f1, f2, . . . , fk. We
may assume that f1, f2, . . . , fk belong to RG and that they are homo-
geneous. Let S be the subring generated by f1, f2, . . . , fk. We claim
that RG = S.

Clearly S ⊂ RG. Let g ∈ RG be homogeneous of degree d. We
have to show that g ∈ S. We proceed by induction on the degree
d. We suppose that any homogeneous element h ∈ RG of smaller
degree belongs to S. As g ∈ I we may write g =

∑
figi, where gi is

homogeneous of degree smaller than d. Now

g = ρ(g)

= ρ(
∑

figi)

=
∑

i

fiρ(gi).
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As ρ(gi) ∈ RG is homogeneous of degree smaller than d, by our induc-
tive hypothesis ρ(gi) ∈ S, and so g ∈ S. �

1.2. Nagata’s Example. Nagata was one of the first people to give
a counterexample to Hilbert’s 14th problem. Consider the following
general situation. Let Gn

a act on the polynomial ring

R = C[x1, x2, . . . , xn, y1, y2, . . . , yn],

as follows: an element (t1, t2, . . . , tn) ∈ Gn
a acts by the rule

xi −→ xi and yi −→ yi + tixi 1 ≤ i ≤ n.

Note that Gn
a is really nothing more than a vector space of dimension

n. Let G = Gn−r
a ⊂ Gn

a be a general linear subspace of codimension r,
where r is at least three. Nagata proved that if n = 16 and r = 3 then
the ring of invariants S = RG is not finitely generated. Much later,
Mukai proved that the ring of invariants is not finitely generated if

1

r
+

1

n− r
≤ 1

2
.

Mukai’s proof of this result is very interesting and I follow his exposition
quite closely, see for example [22]. Suppose that G is defined by linear
equations of the form,∑

aijtj = 0 where 1 ≤ i ≤ r.

This gives us a matrix

A = (aij) =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
ar1 ar2 · · · arn

 .

Possibly changing coordinates, we may assume that the rows and columns
of this matrix are pairwise independent and that no entry is zero.

The key observation is that it is easier to consider what happens if
we invert x1, x2, . . . , xn. As G fixes x1, x2, . . . , xn there is an induced
action on the ring

C[x±1 , x
±
2 , . . . , x

±
n ][y1, y2, . . . , yn] = C[x±1 , x

±
2 , . . . , x

±
n ][y1/x1, y2/x2, . . . , yn/xn].

and the action fixes the Laurent polynomial ring

C[x±1 , x
±
2 , . . . , x

±
n ],

and otherwise acts by translation

yi/xi −→ yi/xi + ti.
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It is not hard to see that the invariant ring R[x−1
1 , x−1

2 , . . . x−1
n ]G is then

generated by
n∑

j=1

aijyj/xj where 1 ≤ i ≤ r,

and that

RG = R[x−1
1 , x−1

2 , . . . x−1
n ]G ∩R.

Multiplying through by x1x2 · · ·xn, we get w1, w2, . . . , wr, which are in-
variant under the action ofG and which are polynomials in x1, x2, . . . , xn

and y1, y2, . . . , yn. The invariant ring RG contains this polynomial ring,
C[w1, w2, . . . , wr]. However the invariant ring is much bigger than
this. In fact the invariant ring is generated by the polynomials g in
x1, x2, . . . , xn and y1, y2, . . . , yn of the form f/m where f is a polyno-
mial in w1, w2, . . . , wr and m is a monomial in x1, x2, . . . , xn. Note that
the condition that g is a polynomial in x1, x2, . . . , xn and y1, y2, . . . , yn

is equivalent to requiring that f is divisible by m, when considered as
a polynomial in x1, x2, . . . , xn and y1, y2, . . . , yn.

Let us consider the geometric meaning of all of this. The polynomial
ring C[w1, w2, . . . , wr] corresponds to a copy of Pr−1. Let

pj = [a1j : a2j : · · · : arj] ∈ Pr−1 for 1 ≤ j ≤ n,

be the n points of Pr−1 corresponding to the n columns of the ma-
trix A. With a little bit of work, one can show that a polynomial
f in w1, w2, . . . , wr is divisible by xb

i if and only if f considered as a
polynomial in w1, w2, . . . , wr vanishes to order b at pi.

At this point, it might help to run through some standard notation
and results from classical algebraic geometry. There is a basic cor-
respondence between line bundles and divisors. Given a line bundle
L one can take its first Chern class to get a divisor, a formal linear
combination of codimension one subvarieties. Topologically the first
Chern class takes values in H2(X,Z) but in algebraic geometry we pre-
fer to work in a much larger group, that is to work with a much finer
equivalence relation, linear equivalence. Normally it is important to
distinguish between topological (or numerical) equivalence and linear
equivalence but in these notes we will only work on varieties with the
property that if two divisors are topologically equivalent then some
multiples are linearly equivalent. We also don’t care which multiple we
need and so we will just pretend that topological, numerical and linear
equivalence are all the same. In fact in the cases covered in these notes,
the Picard group Pic(X) of all line bundles may be identified with a
subgroup of H2(X,Z). The line bundle associated to a divisor D is
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denoted OX(D). The space of all sections is denoted H0(X,OX(D)).
The zero locus of any non-zero section is a divisor D′ ≥ 0 linearly (or
numerically) equivalent to D.

We now return to Nagata’s example. There is a standard trick in
algebraic geometry which one applies in this situation. Instead of con-
sidering functions which vanish at a collection of points p1, p2, . . . , pn ∈
Pr−1, instead blow up these points,

π : X −→ Pr−1,

and consider functions which vanish along the exceptional divisors
E1, E2, . . . , En of the blow up. There is also some standard notation
which goes with this. On Pr−1 the set of polynomials of degree d is
denoted

H0(Pr−1,OPr−1(dH)).

Here H is the class of a hyperplane and OPr−1(dH) is the associated
line bundle. On the blow up X we have introduced new divisors
E1, E2, . . . , En and new line bundles. The invariant ring is then⊕

(d,a1,a2,...,an)∈Nn+1

H0(X,OX(dH −
∑

aiEi)).

Here

H0(X,OX(dH −
∑

aiEi)),

is simply the space of degree d polynomials which vanish as pi to order
ai. The advantage of this approach is that if we present the invariant
ring this way there is a very useful grading. We recall some basic facts
about graded rings.

Definition 1.4. Let W be an abelian monoid (so that there is an as-
sociative and commutative law of addition, together with a zero). We
say that a ring R is a graded ring, graded by W , if

R =
⊕
w∈W

Rw,

where Rw ⊂ R are additive subgroups and

RwRw′ ⊂ Rw+w′ .

Note that R is naturally an R0-algebra and we say that R is finitely
generated if it is a finitely generated R0-algebra. In these talks, we will
be most interested in the case when R0 is a field and more often than
not R0 = C. Perhaps the most natural choice for W = N, the natural
numbers under addition, but there are other very interesting choices.
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Example 1.5. Let R = C[x1, x2, . . . , xn]. Then R is naturally graded
by Nn. It is also naturally graded by N, the degree. In fact there is a
morphism of monoids,

Nn −→ N,
which sends (a1, a2, . . . , an) to the sum

∑
ai and the second grading is

induced from the first by this map.
The analysis above shows that Nagata’s invariant ring has a natural

grading by W = Zn+1 = H2(X,Z).

The key point is that the grading on the ring is very useful either to
prove that the ring is finitely generated by induction on the grading or
to show that the ring is not finitely generated.

Definition 1.6. Let R be a graded ring, graded by W .
The support of R is the set

M = {w ∈ W |Rw 6= 0 }.

Example 1.7. The support has a very interesting interpretation in
terms of Nagata’s example. It is the set of divisors of the form dH −∑
aiEi such that the associated line bundle has a non-zero section.

The zero locus of this section is an effective divisor D =
∑
diDi ≥ 0

(that is the coefficients are greater than zero) numerically equivalent to
dH −

∑
aiEi. Effective divisors play a very special role in algebraic

geometry. Now given any monoid M ⊂ Zk it is natural to extend
scalars to the real numbers R:

E ⊂ Rk = Zk ⊗
Z

R.

Here E is the convex cone generated by M . Note that M is a finitely
generated monoid if and only if E is a rational polyhedron. In the case
of the monoid of effective divisors, E is called the effective cone of
divisors. It has the property that it is strongly convex, that is, it does
not contain any non-trivial linear subspaces.

Lemma 1.8. Let R be a graded ring, graded by W .
If R is a finitely generated ring then the support M of R is a finitely

generated monoid.

Proof. Suppose that r1, r2, . . . , rk generate R as an R0-algebra. We
may assume that ri 6= 0 and that each ri is homogeneous. In this case,
if ri ∈ Rwi

then w1, w2, . . . , wk generate M as a monoid. �

It is now easy to give examples of invariant rings which are not
finitely generated. If r = 3 then we are looking at P2 blown up at n
general points. Suppose that n = 9. Then we get 9 exceptional divisors
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E1, E2, . . . , E9. There is a classical way to characterise exceptional
divisors on a smooth projective surface.

1.3. Some classical geometry.

Definition 1.9. Let X be a smooth projective variety. The canonical
divisor KX is the first Chern class of the cotangent bundle, T ∗X .

If H0(X,∧nT ∗X) 6= 0 then the canonical divisor KX is the zero locus
of a non-zero section.

Theorem 1.10 (Castelnuovo). Let S be a smooth projective surface.
Then a curve E is the exceptional divisor of the blow up π : S −→ T

of a point if and only if any two of the following three conditions hold:

• E ' P1,
• E2 = −1,
• KS · E = −1.

A curve E which satisfies these conditions is called a −1-curve.
Now suppose that S is P2 blown up at nine sufficiently general points.

In this case, if α is the numerical equivalence class of a divisor such
that α2 = KS · α = −1 then there is a −1-curve E whose numerical
class is α. Further, if we have a continuous family of smooth projective
surfaces then the number of −1-curves is lower semi-continuous.

Proof. We skip the proof of the result that a −1-curve is contractible.
We first show that any two of the three conditions imply the third.

The key point is the adjunction formula

(KS + E)|E = KE.

Here KE is the canonical divisor of the curve, which is a formal linear
combination of points of the curve. If we take the degree then we get
the formula

KS · E + E2 = 2g − 2,

where g is the genus of the curve. Now note that E is isomorphic to
P1 if and only if g = 0 that is if and only if 2g − 2 = −2.

Now suppose that S is P2 blown up at nine points. Assume that α is
a curve class such that KS · α = α2 = −1. If we apply Riemann-Roch
to α we get:

χ(S,OS(α)) = α · (α−KS)/2 + χ(S,OS).

By hypothesis, h1(S,OS) = h2(S,OS) = 0 so that χ(S,OS) ≥ 1. As
the first term of the RHS is zero, the RHS is positive. Serre duality
implies that

h2(S,OS(α)) = h0(S,OS(KS − α)).
8



−KP2 is represented by a cubic. −KS is then represented by a cubic
passing through the nine points we blow up; since there is a nine di-
mensional family of cubics, it follows that −KS is represented by an
effective divisor. Further, if the points are sufficiently general then we
may find an irreducible cubic through the nine points and this implies
that −KS is represented by a prime divisor (both irreducible and re-
duced). Since −K2

S = 0 this implies that −KS is nef (recall that a
divisor D is nef if the intersection number D · C ≥ 0 for every curve
C). Since

−KS · (KS − α) = −1,

it follows that h0(S,OS(KS − α)) = 0. So α is represented by an
effective curve. Again, if the points we blow up are sufficiently general
then this implies that S contains no −2-curves (copies of P1 of self-
intersection −2) and this easily implies that the effective curve is a
−1-curve.

Suppose that St is a smooth family of surfaces over the unit disc
(parametrised by t) and that the central fibre S0 contains a −1-curve.
There are two ways to see the last part. The first is to use the fact that
every smooth fibration is topologically locally trivial. The topological
class α0 extends to a class αt on every fibre. Clearly α2

t = −1 and
KSt · αt < 0 for small t. But then αt represents a −1-curve Et.

Or one can show that there are no obstructions to deforming the
morphism f0 : P1 −→ S0, which is an isomorphism onto E0, to a family
of morphisms ft : P1 −→ St.

The only catch here is that in both cases one might need to make a
base change to kill the monodromy action. �

Lemma 1.11. Let X be a smooth projective variety.
If E ≥ 0 is a divisor which is covered by curves C such that E ·C < 0

then

H0(X,OX(E)) = C.
and E appears in any list of generators of the monoid of effective divi-
sors.

Proof. Suppose not, suppose that E is numerically equivalent to D1 +
D2 where D1 ≥ 0 and D2 ≥ 0 are effective divisors and the support of
neither D1 nor D2 contains E. Intersecting with C we get

0 > E · C = D1 · C +D2 · C.

But then Di · C < 0 for some i. This can only happen if C belongs
to the support of Di. Since C covers E this forces E to belong to the
support of Di, a contradiction. �
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To finish off we need to see that there are infinitely many −1-curves.
There are two ways to do this. One can proceed directly. Using (1.10),
if E is a −1-curve and E = dH −

∑
aiEi then we have

E2 = −1 and KX · E = −1.

On the other hand, we have already seen that Riemann-Roch on a
smooth surface implies that any divisor class which looks like a −1-
curve in fact represents the class of a −1-curve. Now KP2 = −3L,
where L is the class of a line and so KX = −3H+

∑
Ei. We are reduced

to solving the following two Diophantine equations in 10 variables:

d2 −
∑

a2
i = −1 and − 3d+

∑
ai = −1.

It is not hard to show that there are infinitely many solutions directly.
For example:

• any line spanned by two of the nine points is a −1-curve. The
self-intersection of the line is 1 and blowing up drops the self-
intersection by 2. In fact the class of the strict transform of the
line is H − Ei − Ej and we have

12 − 1− 1 = −1 and − 3 + 1 + 1 = −1.

• any conic through five points is a−1-curve. The self-intersection
starts off as 4 = 22 and drops by five. If the conic passes through
p1, p2, p3, p4 and p5 then the class of the strict transform is
2H − E1 − E2 − E3 − E4 − E5 and we have

4− 1− 1− 1− 1− 1 = −1 and − 6 + 1 + 1 + 1 + 1 + 1 = −1,

and so on.
The second approach is geometrically more appealing. Note first that

there is a unique cubic through nine general points. On the other hand,
if one picks two cubics then they will intersect in nine points and there
is a pencil of cubics through these nine points (if the cubics are defined
by F and G then the curve defined by λF +µG will also contain those
nine points). We get a morphism to P1 (with coordinates [λ : µ]) and
the fibres are cubics (the zero locus of λF +µG). The nine exceptional
divisors are nine sections of this fibration. Recall that a smooth cubic
curve in P2 is an algebraic group. A typical line in P2 will intersect the
cubic in three points. The group law is given by declaring that three
collinear points sum to zero in the group. Using the group law, the
two points p1 and p2 generate a third point pt on the cubic Ct (where
t = µ/λ, say). In fact the point pt is nothing more than the intersection
of the line spanned by p1 and p2 with Ct. Then the points p1 and pt

generate a fourth point and so. If we choose the cubics sufficiently
10



general and we consider the difference of two sections E2−E1 then this
defines an automorphism of the fibration, which has infinite order. The
translates of a section under the powers of this automorphism will then
give infinitely many −1-curves. This shows that if we choose the nine
points very carefully then we get infinitely many −1-curves. It remains
to observe that the last part of (1.10) implies that the −1-curves can
never disappear as we move the points around.

Putting all of this together we see that the ring of invariants is not
finitely generated in Nagata’s examples. The ring of invariants is the
Cox ring of Pr−1 blown up at n points. If r = 3 and n = 9 we get
a surface with infinitely many −1-curves. (1.11) implies that each
of these −1-curves generates an extremal ray of the cone of effective
divisors (which on a surface is the same as Mori’s cone of effective
curves) and so the invariant ring is not finitely generated.

2. Mori dream spaces

Definition 2.1. Let X be a smooth projective variety. Let D1, D2, . . . , Dk

be a sequence of divisors. The multi-graded section ring associated
to D1, D2, . . . , Dk is the ring

R(X,D1, D2, . . . , Dk) =
⊕
m∈Zk

H0(X,OX(D)) where D =
∑

miDi.

If k = 1 then we call R(X,D1) a section ring.
Suppose that the group of line bundles Pic(X) is a finitely generated

abelian group. Pick a set of divisors D1, D2, . . . , Dk so that the line
bundles OX(D1), OX(D2), . . . , OX(Dk), generate the group Pic(X).
Then the Cox ring of X (aka the total coordinate ring), denoted
Cox(X), is R(X,D1, D2, . . . , Dk).

Lemma 2.2. Let X be a smooth projective variety and let C1, C2, . . . , Ck

and D1, D2, . . . , Dk be two sequences of divisors on X.
If there are positive integers c1, c2, . . . , ck and d1, d2, . . . , dk such that

ciCi = diDi, 1 ≤ i ≤ k then

R(X,C1, C2, . . . , Ck),

is finitely generated if and only if

R(X,D1, D2, . . . , Dk),

is finitely generated.

Proof. It is convenient to prove the same result for rings graded by Nk.
To prove this stronger statement, by induction on k, we immediately
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reduce to the case of two rings R and R(d), graded by N, where

R(d) =
⊕
n∈N

Rdn.

Suppose that R is finitely generated. Note that there is a natural
action of the cyclic group Zd on R such that R(d) is the invariant ring.
As every finite group is reductive over C, R(d) is finitely generated.

Now suppose that R(d) is finitely generated. Note that R is integrally
closed over R(d), so that R is finitely generated by a result of Noether.

�

Note that the Cox ring is naturally graded by W = Pic(X) ⊂
H2(X,Z). On the other hand, note that it is necessary to pick a gener-
ating set, since the vector space H0(X,L) is only defined up to scalars,
if the line bundle is only defined up to isomorphism. However, the only
important question for us is whether or not the Cox ring is finitely gen-
erated, in which case we are even free to pick divisors D1, D2, . . . , Dk

which generate the Picard group modulo torsion.
We have already seen that Cox rings turn up naturally in the con-

text of Nagata’s examples. We have also seen that if X is a smooth
projective surface and the Cox ring is finitely generated then X only
contains finitely many −1-curves. There is a similar story in higher
dimensions but with one very interesting complication.

First note that if the Cox ring is finitely generated then so is every
section ring. But if the section ring is finitely generated then it is
a quotient of a polynomial ring. This realises the section ring as the
homogeneous coordinate ring of a projective variety Y ⊂ Pn. Moreover
there is an induced rational map φD : X 99K Y , where the inverse
map does not contract any divisors. In fact given any effective divisor
D ≥ 0 there is always an associated rational map fD : X 99K Pn; finite
generation implies that the image of this rational map stabilises, that is
the induced map to the image fmD = φD is independent of m, provided
that m is sufficiently large and divisible. In the case of surfaces φD is
always a morphism but the twist here is that in higher dimensions φD

is not a morphism, due to the existence of flips and flops.

Example 2.3. The easiest example of a flop is due originally to Atiyah.
Let Q ⊂ C4 be the quadric cone given by the vanishing of xt−yz. Then
the origin is a singular point of Q. Suppose that we blow up the origin
π : Y −→ Q. The exceptional divisor is a copy of the quadric cone E
sitting inside P3 (E is defined by the same equation XT −Y Z = 0). E
is a copy of P1×P1. The key point is that one can choose to contract E
in three different ways. One can contract E down to a point, to recover

12



Q. But we can also project E down to either factor. The interesting
thing is that we can realise all of this inside Y over Q, to get two
birational contractions (that is, a morphism with connected fibres which
is an isomorphism on an open subset) X1 −→ Q and X2 −→ Q. The
induced rational map X1 99K X2 is not everywhere defined, but it is
an isomorphism outside the two curves C1 and C2, both copies of P1,
which are contracted down to Q.

Anyway the Cox ring encodes the data of all possible maps φ : X 99K
Y where Y is embedded in projective space. To see how this works
in practice, we need a little more classical geometry. Suppose that
D is a divisor whose section ring R(X,D) is finitely generated. Let
φD : X 99K Y be the associated rational map. Then D = φ∗DH + E
where H is the restriction to Y of a hyperplane in Pn and E ≥ 0.
The divisor E may be characterised by the property that if D′ ≥ 0 is
numerically equivalent to D then D′ ≥ E. E is called the fixed divisor
and what is left M = D−E is called the movable part; the movable
part has the property that φD = φM (indeed the section rings are the
same). We say that D is movable if E = 0, that is the fixed divisor
is empty. H is an ample divisor; it has the property that if C ⊂ Y
then H ·C > 0. We say that D is semiample if D is movable and φD

is a morphism. In this case D is a nef divisor; it has the property that
if C is a curve on X then D ·C ≥ 0. In fact D ·C = 0 if and only if C
is contracted by φD.

Definition 2.4. Let X be a smooth projective variety.
We say that X is a Mori dream space if

• the group of line bundles Pic(X) is a finitely generated abelian
group,
• there are finitely 1 ≤ i ≤ k many birational maps fi : X 99K Xi

which are isomorphisms in codimension one, such that if D is
a movable divisor then there is an index 1 ≤ i ≤ k and a semi-
ample divisor Di on Xi such that D = f ∗i Di.

The key thing about this definition is that it allows one to run the
minimal model program (commonly abbreviated to MMP). A few more
definitions. Recall that the effective cone of divisors E is a cone inside
H2(X,R). Its closure P is called the cone of pseudo-effective divisors.
Note that the movable cone is a subcone. Put an equivalence relation
on this cone by declaring two divisors D1 and D2 equivalent if and only
if φD1 = φD2 . If X is a Mori dream space then the pseudo-effective cone
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P is divided into finitely many rational polyhedra, P1,P2, . . . ,Pm,

P =
m⋃

i=1

Pi.

The movable cone is a union of some subset Q1,Q2, . . . ,Qk of the ratio-
nal polyhedra P1,P2, . . . ,Pm and in fact the birational maps f1, f2, . . . , fk

defined in (2.4) are precisely the maps φDi
associated to a big movable

divisor Di belonging to the interior of each polytope Qi.
The aim of the MMP is to start with a pseudo-effective divisor D

and find a sequence of flips and divisorial contractions X 99K Y such
that D = f ∗D′, where D′ is semiample.

So now suppose that X is a Mori dream space and suppose we start
with a pseudo-effective divisor D. Let P1 be a cone of maximal dimen-
sion to which D belongs. Pick D′ belonging to the interior of P1. Then
D′ is big, that is φD′ is birational, as P1 has maximal dimension. Pick
an ample divisor H and suppose that H belongs to the interior of the
polyhedra P2. We may assume that H is general in P2. Draw the line
connecting H to D′. This line (starting at H, ending at D′) will cross
a finite number of walls between two polyhedra, at a general point of
the intersection of the two polyhedra. The wall crossing corresponds to
two different birational models of X. There are two cases. If the two
different birational models are isomorphic in codimension one, then the
corresponding birational map Xi 99K Xj is a D-flip. Otherwise we have
a divisorial contraction. At the end we are on a model Y = Xi such
that D is now nef and by definition of a Mori dream space the strict
transform of D is now semiample.

3. Geometric Invariant Theory

It is interesting to see this story using the language of Geometric
Invariant Theory. Geometric Invariant Theory provides a natural way
to take a quotient of a quasi-projective variety Y under the action
of a reductive group G. The Geometric Invariant Theory quotient is
denoted Y//G.

Now the natural grading on the Cox ring determines an action of a
torus of dimension r equal to the rank of Pic(X). In abstract terms
the torus is given as

G = Hom(Pic(X),Gm) ' Gr
m.

If Cox(X) is finitely generated then we can write Cox(X) as a quotient
of a polynomial ring

φ : C[x1, x2, . . . , xn] −→ Cox(X).
14



Let I be the kernel of φ and let Y ⊂ Cn be the affine variety correspond-
ing to I. It is straightforward to choose φ so that the action of G on
Cox(X) lifts to an action of G on the polynomial ring C[x1, x2, . . . , xn].
In this case the action of G on Y is induced by an action of G on Cn

and Y ⊂ Cn is a G-equivariant embedding.
Now the Geometric Invariant Theory quotient is determined not only

by an action of G on Y , one also has to choose an embedding of G
inside GL(n,C), called a linearisation of the action of G on Y . As we
vary the linearisation, we vary the quotient. In fact this is sometimes
called VGIT, Variation of Geometric Invariant Theory. Having chosen
a linearisation, one also has to throw out a proper closed subset (the
unstable points).

The simplest case is when G is a torus and Y = Cn. In this case the
quotient is a toric variety M and the locus one needs to throw away is a
finite union of linear subspaces. For example, if we start with G = Gm

and the standard action

(x1, x2, . . . , xn) −→ (tx1, tx2, . . . , txn),

then one has to throw out the origin and the Geometric Invariant The-
ory quotient is nothing more than Pn−1. On the other hand if we start
with C4 and an action of G2

m with coordinates (s, t), and the action is

(a, b, c, d) −→ (sa, sb, tc, td)

then we need to throw out two linear subspaces

{ (0, 0, c, d) | c, d ∈ C } ∪ { (a, b, 0, 0) | a, b ∈ C },
and in this case the Geometric Invariant Theory quotient is P1 × P1.
The key point is that everything to do with toric varieties is reduced
to some combinatorics, which more often that not is quite manageable.
One interesting class of toric varieties is obtained by taking Cn+1 and
taking an action of Gm, with positive weights:

(x0, x1, . . . , xn) −→ (ta0x0, t
a1x1, . . . , t

anxn),

The quotient is a toric variety M with Picard group isomorphic to Z
(here we throw away the origin). The twist is that M has quotient
singularities. Nevertheless the varieties one obtains this way are very
similar to projective space and so they are called weighted projective
space. They provide a very fertile place to look for interesting examples.

We are now able to state the main result due to Hu and Keel:

Theorem 3.1. Let X be a smooth projective variety. Suppose that
Pic(X) is a finitely generated abelian group.

The following are equivalent:
15



(1) X is a Mori dream space.
(2) Cox(X) is finitely generated.

If either condition holds then X is a Geometric Invariant Theory quo-
tient of the affine variety Y corresponding to Cox(X) by a torus of
dimension the rank of the Picard group.

Proof. We sketch the proof. For full details see [13].
Suppose that X is a Mori dream space. Then the pseudo-effective

cone P is equal to the effective cone E and both are rational polyhe-
dra (see the discussion following (2.4)). Moreover there are rational
polyhedra P1,P2, . . . ,Pm such that

P =
m⋃

i=1

Pi,

and finitely many birational maps φi : X 99K Xi such that if D ∈ P
then there is an index 1 ≤ i ≤ m such that D ∈ Pi and φD = φi.
Suppose that D1, D2, . . . , Dk are divisors which generate the cone Pi.
Clearly it suffices to prove that

R(X,D1, D2, . . . , Dk),

is finitely generated. This ring does not change if we replace X by Xi,
and in this case each Di is semiample, in which case finite generation
is well known.

Now suppose that the Cox ring is finitely generated. One can check
that X is the quotient of Y , the affine variety with coordinate ring
Cox(X), by a torus, for some natural choice of linearisation (see the
discussion at the start of §3). There are two ways to see thatX is a Mori
dream space. The first is to use the theory of Variation of Geometric
Invariant Theory. The space of all linearisations of the action of G on Y
is naturally a rational polyhedron L, which is the union of finitely many
rational polyhedra L1,L2, . . . ,Lk. The Geometric Invariant Theory
quotient corresponding to each of these polyhedra give the finitely many
birational maps fi : X 99K Xi which are isomorphisms in codimension
one. The rest is then straightforward.

Here is another way to proceed. We are given a G-equivariant em-
bedding Y ⊂ Cn, (see the discussion at the start of §3). Taking the
geometric invariant theory quotients, we get an embedding X ⊂ M ,
where M = Cn//G. M is a toric variety, as G is a torus. There are
two things to observe. The first is that M is a Mori dream space. This
is well-known and reduces to some interesting combinatorics. The sec-
ond is to observe that there is a partial correspondence between the
Mori theory on M and X. For every rational map φ : X 99K Y there
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is a rational map φ′ : M 99K N of toric varieties which induces φ by
restriction. �

The reason why the correspondence is only partial is for trivial rea-
sons. Suppose one took a threefold X in P4. Then one could take
M = P4. But one could also take M = P4 × P1. In this case the
contraction M −→ P4 induces the trivial contraction on X.

It is interesting to see examples of Mori dream spaces. Every toric
variety is a Mori dream space. If X is a hypersurface in Pn of dimension
at least 3 then X is a Mori dream space. In this case Pic(X) = Z, there
are no flips or flops and one may take Y be the affine cone over X, the
inverse of X inside Cn+1.

In fact curves C of genus g ≥ 1 are never Mori dream spaces, since
then Pic(C) is never a finitely generated abelian group. So smooth
curves of degree at least three in P2 are never Mori dream spaces. The
case of surfaces S in P3 seems quite mysterious. For most surfaces S
of degree at least four, Pic(S) = Z, generated by a hyperplane class
and S is a Mori dream space. But if S contains a line (for example)
the Picard group has rank at least two. In fact from the point of view
of Hodge theory, the locus of surfaces of degree d whose Picard group
is not generated by the class of a hyperplane would seem to be the
union of countably many components. Presumably for some surfaces
in P3 the cone of effective divisors is not a rational polyhedron, but to
determine precisely when this happens seems very subtle.

It has been proved recently that the component of the Hilbert scheme
which parametrises pairs of codimension two linear subspaces of Pn is
a Mori dream space, [6].

4. Mori theory

There are two very interesting sources for Mori dream spaces which
come from Mori theory itself. We recall the definition of kawamata log
terminal singularities:

Definition 4.1. Let X be a smooth quasi-projective variety and let
∆ =

∑
ai∆i ≥ 0 be a Q-divisor, so that a1, a2, . . . , ak are non-negative

rational numbers. We say that the log pair (X,∆) is log smooth if the
support of ∆ has normal crossings (that is, looks locally like a subset of
the coordinate hyperplanes). If (X,∆) is a log pair, then we say that a
birational map π : Y −→ X is a log resolution if the strict transform
of ∆ union the exceptional locus is log smooth. We say that (X,∆) is
kawamata log terminal if when we write

KY + Γ = π∗(KX + ∆),
17



then xΓy ≤ 0 (that is, the coefficients of Γ are less than one).

One should think of the kawamata log terminal condition as mean-
ing that the singularities of the pair (X,∆) are mild. Kawamata log
terminal singularities have very many nice properties:

Lemma 4.2. Let X be a smooth quasi-projective variety.

(1) If D ≥ 0 is an effective divisor then there is a positive rational
number ε > 0 such that the pair (X,∆ = εD) is kawamata log
terminal.

(2) More generally, if (X,∆) is kawamata log terminal and ∆+D ≥
0 then (X,∆+εD) is kawamata log terminal for any small ε > 0.

(3) If (X,∆) is kawamata log terminal and D is semiample then we
may find D′ numerically equivalent to D such that KX +∆+D′

is kawamata log terminal.

Proof. In all cases, we start by picking a log resolution π : Y −→ X of
(X,∆ +D).

We first prove (1). If we write

KY = π∗KX + E,

then E ≥ 0 so that X is certainly kawamata log terminal. On the other
hand, if we write

KY + Γt = π∗(KX + tD),

then the coefficients of Γt are linear functions of t. In particular they
are continuous functions of t and since Γt has only finitely many com-
ponents, (1) is clear.

The proof of (2) is very similar to (1).
To see (3), note that if we choose m sufficiently large then we may

find B numerically equivalent to mD such that the inverse image of
B + ∆ union the exceptional locus is log smooth. It is then clear that
KX + ∆ +D′ is kawamata log terminal, where D′ = B/m. �

The first general source of examples is due to Shokurov:

Theorem 4.3. Let X be a smooth projective variety of dimension at
most three. Let ∆1,∆2, . . . ,∆k be a sequence of Q-divisors such that
KX+∆i is kawamata log terminal. Pick mi such that Di = mi(KX+∆i)
is an integral divisor. Then the multigraded section ring

R(X,D1, D2, . . . , Dk),

is finitely generated.

Proof. See [28]. �
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In fact one may view (4.3) as the result of the work of very many
mathematicians, Kawamata, Kollár, Miyaoka, Mori, Reid and Shokurov,
to name a few. The main steps are to prove the cone theorem, to es-
tablish the existence of flips, [21] and [27], termination of flips, to prove
the abundance theorem, [14] and [20] and to prove the log abundance
theorem [15], all of this for threefolds. Finally we need (3.1). The main
obstruction to extending all of this to higher dimensions is to prove:

Conjecture 4.4 (Abundance). If (X,∆) is kawamata log terminal and
KX + ∆ is nef then it is semiample.

Using (4.3) one can prove:

Corollary 4.5. Let X be a Calabi-Yau variety of dimension at most
three.

Then X is a Mori dream space if and only if the cone E of effective
divisors is a rational polyhedron.

Proof. As X is Calabi-Yau, Pic(X) = H2(X,Z) is a finitely generated
abelian group.

One direction is clear; if X is a Mori dream space then E is always
a rational polyhedron. Now suppose that E is a rational polyhedron.
Pick generators B1, B2, . . . , Bk, where Bi ≥ 0. By (4.2) we may pick
ε > 0 such that if we set ∆i = εBi then KX + ∆i is kawamata log
terminal. As X is Calabi-Yau, KX = 0 and KX + ∆i = εBi. Now
apply (4.3). �

Given a Calabi-Yau variety X it is quite delicate to determine if
the effective cone of divisors is a rational polyhedron. This problem is
even non-trivial in the simplest possible case, a smooth K3 surface S of
Picard number two, see [25]. In this case the cone of pseudo-effective
divisors P is a rational polyhedron. On the other hand it is a quite
subtle question to determine when E = P , that is when E is closed.

Recall that D is big if φD is birational.

Theorem 4.6 (Birkar, Cascini, Hacon, -). Let X be a smooth projective
variety.

If ∆1,∆2, . . . ,∆k is a sequence of big Q-divisors such that KX + ∆i

is kawamata log terminal and we pick m1,m2, . . . ,mk such that Di =
mi(KX + ∆i) is an integral divisor then

R(X,D1, D2, . . . , Dk),

is finitely generated.

To prove (4.6) one needs two results. The first is the existence of
flips in all dimensions, due to Hacon and me, and uses Siu’s theory
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of multiplier ideal sheaves and some ideas of Shokurov, [9] and [10].
In fact Siu has proved a result very similar in spirit to (4.6), see [29].
The second is due to Birkar, Cascini, Hacon and me and uses the ideas
of Shokurov contained in [28] and establishes termination of a very
particular sequence flips in very much the same spirit as the argument
at the end of §2.

It is also interesting to note that since then Lazić has given a new
proof of (4.6) which is more direct and does not use existence and
termination of flips, see [19]. There is also some work due to Păun,
[26], who gives another proof of one of the key steps in the proof of
(4.6).

Definition 4.7. Let X be a smooth projective variety.
We say that X is a (log) Fano variety if there is a divisor ∆ such

that KX + ∆ is kawamata log terminal and −(KX + ∆) is ample.

Fano varieties are a very special class of varieties. In particular
Pic(X) = H2(X,Z) is always a finitely generated abelian group. Typ-
ical examples of log Fano varieties are toric varieties and Grassmanni-
ans. Note that if X ⊂ Pn+1 is a smooth hypersurface of degree d then
X is log Fano if and only if d ≤ n+ 1.

Lemma 4.8. Let X be a log Fano.
If D is any divisor then there is a positive rational number ε > 0 and

a big divisor ∆ such that KX + ∆ is kawamata log terminal and εD is
numerically equivalent to KX + ∆.

Proof. Let Θ be the divisor such that −(KX +Θ) is ample and KX +Θ
is kawamata log terminal. Ampleness is an open condition. So we may
pick ε > 0 such that εD− (KX + Θ) is ample. Now pick m sufficiently
large and divisible and a general divisor B numerically equivalent to
m(εD − (KX + Θ)). Let H = B/m. Then H ≥ 0 and KX + ∆ =
KX + Θ + H is kawamata log terminal and numerically equivalent to
εD. �

Corollary 4.9. Let X be a log Fano.
Then X is a Mori dream space.

Proof. We have already seen that the Picard group is a finitely gener-
ated abelian group. Moreover, the cone of effective divisor is a rational
polytope, using results of [2]. Pick generators B1, B2, . . . , Bk. As in the
proof of (4.5), using (4.8), we may assume that Bi = KX + ∆i, where
∆i is big and KX + ∆i is kawamata log terminal. Now apply (4.6). �

Recall that if S is a smooth surface and −KS is ample (which are
known classically as del Pezzo surfaces) then S is either P1 × P1 or P2
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blown up along at most eight points in general position. The geometry
of these surfaces is tied up in an intriguing way to the classification of
Dynkin diagrams and root systems. Even in this special case the alge-
bra of the Cox ring is very rich. Batyrev and Popa [1] have calculated
explicit generators and relations for del Pezzo surfaces. Levitt in his
Ph.D. thesis calculated the geometry of the embedding of S into the
toric variety M corresponding to the Cox ring in some non-trivial spe-
cial cases. Laface and Velasco have computed some other interesting
examples [17] and have also written a survey article [18] which contains
a more complete list of references.

It is interesting to wonder how close Mori dream spaces are to log
Fano varieties. Here is one interesting characterisation, which is essen-
tially due to Shokurov:

Lemma 4.10. Let X be a smooth projective variety.
If −KX is big and movable then X is a Mori dream space if and only

if X is a log Fano variety.

Proof. One direction we have already seen; if X is log Fano then X is
a Mori dream space.

So suppose that X is a Mori dream space. Then run φ : X 99K Y the
−KX-MMP until −KY is nef. As −KX is movable, φ is a composition
of −KX-flips; in particular it is an isomorphism in codimension one. As
Y is a Mori dream space and −KY is big and nef, −KY is semiample.
Pick G a general divisor numerically equivalent to −mKY , where m
is sufficiently large and divisible. Put Γ = G/m. Then KY + Γ is
kawamata log terminal and numerically trivial. Let ψ : Y 99K X be the
inverse birational map to φ. Then ψ is an isomorphism in codimension
one. ψ is a sequence of (KY +Γ)-flops, so that if ∆ is the strict transform
of Γ, then KX + ∆ is kawamata log terminal and numerically trivial.
As −KX is big then so is ∆. We may find an ample divisor A and an
effective divisor B ≥ 0 such that ∆ is numerically equivalent to A+B.
Then

KX + Θ = KX + (1− ε)∆ + εB,

is kawamata log terminal, for any ε > 0 sufficiently small. But

−(KX + Θ)

is numerically equivalent to

−(KX + ∆) + εA = εA,

so that X is log Fano. �

Note also that in the course of the proof of (4.8) we proved that X is
log Fano if and only if there is divisor ∆ such that KX +∆ is kawamata
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log terminal and numerically trivial, where ∆ is big. In particular,
using this, it is easy to see that every projective toric variety is log
Fano. If D =

∑
Di is the sum of the invariant divisors then KM +D is

numerically trivial and log canonical. D is big (as M is projective and
the components of D generate the Picard group) and perturbing D a
little we can find ∆ numerically equivalent to D such that KM + ∆ is
kawamata log terminal.

Conjecture 4.11 (Hering, Mustaţă, Payne, [12]). Let M be a smooth
projective toric variety, let E be a toric vector bundle on M and let X
be the associated projective bundle.

Then X is a Mori dream space.

Recall that a toric vector bundle is a vector bundle for which the
torus actions lifts to the vector bundle. This conjecture has been proved
if the vector bundle has rank two, see [11] and [8]. Note that it is not
expected that X is always a log Fano.

5. Examples from Moduli spaces

Let us return to the problem of showing that the ring of invariants
is finitely generated. By the results of Mukai and Nagata, we know
that the ring of invariants is not necessarily finitely generated if we
take G = Gr

a, any r ≥ 3. On the other hand, it is an old result due
to Weitzenböck, [31], that the ring of invariants is finitely generated if
G = Ga. In fact the proof of this result is very interesting. Given an
action of Ga on a ring R, one can find another ring S, and an action
of SL(2,C) on S such that the ring of invariants are the same. As the
last group is reductive, finite generation follows from Hilbert’s original
result. This suggests that one can prove that RG is finitely generated
by relating it to the Cox ring of some quotient X// SL(2,C) for an
appropriate variety X.

The unresolved case is G = Ga ⊕Ga. It is then natural to ask:

Question 5.1. Let R be a finitely generated ring and suppose that
Ga ⊕Ga acts on R.

Is the ring of invariants RG finitely generated?

Mukai answered this question affirmatively in the case of Nagata’s
action. In this case we have Pn blown up in n + 3 points and we are
asking if the Cox ring is finitely generated. It is a classic result in
projective geometry that there is a unique rational curve of degree n in
Pn containing n+ 3 points in linear general position. In fact Castravet
and Tevelev, [5], proved that the Cox ring of any blow up of Pn along
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any number of points contained on a rational normal curve is finitely
generated. In both cases, the authors write down explicit generators.

There is one very interesting class of projective varieties which are
closely related to Nagata’s example. Suppose one takes Pn and picks
n+ 2 general points (so one less than the case above) in linear general
position. In fact n + 2 points in linear general position in Pn have no
moduli; we may always choose coordinates so that the points are p1 =
[1 : 0 : 0 : · · · : 0], p2 = [0 : 1 : 0 : · · · : 0], . . . , pn+1 = [0 : 0 : 0 : · · · : 1],
and pn+2 = [1 : 1 : 1 : · · · : 1]. Now blow up these points, the lines that
connect them, the planes spanned by any three points, and so on. The
resulting space is M0,n+3, the moduli space of stable curves of genus
zero with n + 3 marked points. For obvious reasons it is convenient
to shift indices and consider M0,n. A curve C of genus zero is a tree
of P1’s with only nodes as singularities. The n marked points are n
points q1, q2, . . . , qn of C, not at the nodes. Stable means that each
component of C has at least three special points (a node or a marked
point). M0,n naturally parametrises such curves up to isomorphism.

There are many ways to see that one needs to start with Pn−3 and
blow up. One way is as follows: note that there is a unique rational
normal curve of degree n − 3 through the n − 1 fixed points and one
further point p, in linear general position. This rational normal curve
is a stable curve with n marked points. Moving p around we get an
open subset of M0,n. But if we choose p belonging to a proper linear
subspace spanned by some subset of p1, p2, . . . , pn−1 then the rational
normal curve breaks into pieces and we need to blow up. For example,
if n = 3 then M0,3 is a point. Any three points in P1 are equivalent to
0, 1 and ∞. M0,4 is a copy of P1. We fix the first three points to be 0,
1 and ∞ (recall that the action of PGL(2,C) on P1 is precisely thrice
transitive) and the fourth point is a natural parameter on M0,4. To
construct M0,5 take four points in P2 and look at the pencil of conics
containing these four points. Note that there are three degenerate
conics that contain these four points; just partition the four points into
two sets of two and take the corresponding lines. M0,5 is the blow up
of P2 in the four points.

Question 5.2 (Hu, Keel). Is M0,n a Mori dream space?

It is shown in [16] that M0,n is log Fano if and only if n ≤ 6. On the
other hand, Castravet [3] has given a direct proof of finite generation
of the Cox ring, when n = 6.

There are some very interesting related conjectures:
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Conjecture 5.3 (Faber, Fulton, Mumford). Is the cone of curves the
rational polyhedron spanned by the 1-strata of M0,n?

The cone of curves is the closure of the cone in H2(X,R) spanned
by the classes of the effective curves. M0,n is naturally stratified by
the number of components in the tree. A stable curve breaks into
two pieces in codimension one. Stable curves of genus 0 with n − 3
components therefore form a curve Σ in M0,n and the conjecture asks
if the components of Σ generate the cone of curves. In fact the space
of curves with two components is a divisor in M0,n, which is called the
boundary divisor. If D is the sum of the boundary divisors then the
log pair (M0,n, D) is log smooth. The components of the boundary
divisor are naturally indexed by all ways to partition {1, 2, . . . , n} into
two subsets S and T , where both S and T have at least two elements.
The component DS,T is a product of two copies of M0,k and M0,l where
k = |S| + 1 and l = |T | + 1. By way of induction, it therefore suffices
to prove that any curve in M0,n is numerically equivalent to a curve
inside this divisor.

Keel, Gibney and Morrison [7] have shown that (5.3) implies that
the analogous conjecture for M g,n holds. Probably a key step to prove
(5.3) would be to identify the cone of effective divisors. It is known
that this is not the cone spanned by the boundary divisors. This was
observed independently by Keel and Vermeire, [30]. Part of the prob-
lem is that given a rational polytope P it is very hard to compute the
dual polytope Q. It is known that there are very many non-trivial
contractions φ : M0,n −→ Y , but giving an exhaustive list seems quite
formidable. Nevertheless Castravet and Tevelev [4] have identified a
potentially exhaustive list of effective divisors on M0,n.
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vol. 226, Birkhäuser Boston, Boston, MA, 2004, pp. 85–103.

[2] C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models
for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468,
arXiv:math.AG/0610203.

[3] A. Castravet, The Cox ring of M0,6, Trans. Amer. Math. Soc. 361 (2009),
no. 7, 3851–3878.

[4] A. Castravet and J. Tevelev, Exceptional loci on M̄0,n and hypergraph curves,
arXiv:0809.1699v1.

[5] , Hilbert’s 14th problem and Cox rings, Compos. Math. 142 (2006),
no. 6, 1479–1498.

[6] D. Chen, I. Coskun, and S. Nollet, Hilbert scheme of a pair of codimension
two linear subspaces, arXiv:0909.5170v1.

24



[7] A. Gibney, S. Keel, and I. Morrison, Towards the ample cone of Mg,n, J. Amer.
Math. Soc. 15 (2002), no. 2, 273–294.
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