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Dynamical networks are powerful tools for modeling a broad range of complex systems, including
financial markets, brains, and ecosystems. They encode how the basic elements (nodes) of these systems
interact altogether (via links) and evolve (nodes’ dynamics). Despite substantial progress, little is known
about why some subtle changes in the network structure, at the so-called critical points, can provoke drastic
shifts in its dynamics. We tackle this challenging problem by introducing a method that reduces any
network to a simplified low-dimensional version. It can then be used to describe the collective dynamics of
the original system. This dimension reduction method relies on spectral graph theory and, more
specifically, on the dominant eigenvalues and eigenvectors of the network adjacency matrix. Contrary
to previous approaches, our method is able to predict the multiple activation of modular networks as well as
the critical points of random networks with arbitrary degree distributions. Our results are of both
fundamental and practical interest, as they offer a novel framework to relate the structure of networks to
their dynamics and to study the resilience of complex systems.
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I. INTRODUCTION

Critical breakdowns generally arise unexpectedly in
complex dynamical systems [1]. Noteworthy examples
are financial crises [2,3], epileptic seizures [4], and species
extinctions [5]. These breakdowns are typically identified
by using global-scale indicators that collapse at the critical
point, such as stock market indices, neural synchronization,
and species biomass. While much effort has been devoted
to forecast breakdowns [6], no simple and universal method
has yet been found. This is mostly due to the inherent
complexity of the problem: Real systems are composed of
multiple units that participate in the global state in highly
complicated patterns of interactions.
Network science addresses this problem and offers a

unifying framework where a complex system with N
fundamental units is described as a network of N compo-
nents (nodes). The state of each unit is encoded into an
activity variable, and the evolution of the states in the whole
system is governed by N coupled dynamical equations that

depend on both the activity variables and a set of weighted
interactions (links). Therefore, the dynamical properties of
the system strongly depend on the underlying network
structure. Although recent developments have clarified how
small targeted perturbations in the network structure can
provoke drastic changes in the structure itself [7,8], much
less is known about the dynamical effects of these pertur-
bations. One promising approach is to use dimension
reduction to transform the original N-dimensional repre-
sentation into a simplified version with n ≪ N effective
dimensions.
Recently, Gao et al. presented a dimension reduction

formalism that collapses any N-dimensional network into a
one-dimensional effective version and used it to predict the
global activity of the original network [9]. The authors
proposed measuring the global activity as the degree-
weighted average activity in which the nodes with high
degree, i.e., high number of links, contribute more to the
average than those with low degree. The rationale behind
this choice is that the highly connected nodes have a higher
impact on the dynamics. Moreover, they have shown that
the degree-weighted connectivity is sufficient to explain the
global level of activity. Their formalism can be applied to a
wide variety of complex systems, thus suggesting that the
degree-weighted averages are in fact universal predictors.
For instance, they accurately predict the minimum level of
interaction between species to prevent biomass extinction,
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the so-called critical point, of real ecosystems. Yet, this
spectacular outcome is not totally satisfactory since no
fundamental reason is provided that would explain why
degree is the key property to any network structure,
particularly those with degree correlations.
In an attempt to determine the critical points of 59

bipartite mutualistic ecosystems [10], Jiang et al. proposed
a two-dimensional reduction that divides each original
ecosystem into two populations for which they obtain the
average interaction strength. From numerical explorations,
they conclude that the degree may not always be the key
predictive property of a network. Their results also suggest
that two-dimensional reductions can lead to better predic-
tions than the one-dimensional formalism of Gao et al.
It remains unclear whether the dimension reduction

procedure of Gao et al. can lead to accurate predictions
for arbitrary network structures and why some dynamical
networks should require two-dimensional reductions.
Strong theoretical foundations are clearly lacking to answer
those questions. The goal of this paper is to address these
issues. We rely on a simple and strong hypothesis: One can
predict the evolution of a small number of variables
describing the global activities of a network. These vari-
ables are constructed as a priori unknown weighted
averages of the individual node activities. By enforcing
this hypothesis, we provide theoretical justifications for the
required number of effective dimensions and quantify the
contribution of each component to the universal global
activities. Beyond the mere improvement in precision over
existing approaches, our method allows the detection of
dynamical breakdowns that would be missed altogether
with previous reductions.
This study provides a reliable tool for researchers who

want to study critical breakdowns of complex systems.
Using our approach, once a system is framed as a network,
one can first determine the number of effective dimensions
required to adequately reduce the system at hand and then
find the variables of interest that describe the global state.
Moreover, our method also identifies the units that, if
perturbed, can induce large reactions in the system. Our
findings thus lead to a deeper understanding of how critical
breakdowns occur and how to prevent them.
The paper is structured as follows. We first present

the general framework for complex dynamical networks
(Sec. II). We then describe a general method to obtain a one-
dimensional reduction formutualistic networks (Sec. III).We
show that the reduction scheme of Gao et al. emerges as an
approximation of our general approach when specifically
considering random networks. In Sec. IV, we develop the
cycle reduction, amultidimensional approach that is useful to
reduceheterogeneous andbipartite networks.Next, in Sec.V,
we complete the method by including subdominant contri-
butions of the structure. We finally assess the goodness of
these reductions, as a function of the structure, and the nature
of the dynamics (Sec. VI).

II. MODEL DEFINITION

The diverse nature of complex systems requires that we
establish a common ground. In Sec. II A, we regroup
dynamical complex networks under a general model that
encodes the structure and the dynamics. Then, in Sec. II B,
we provide examples of contrasting models of dynamics
satisfying the formalism used afterward in the paper to
illustrate the dimension reduction methods.

A. General formalism

We consider a complex network of N units, called nodes,
for which the interactions are encoded in the weighted and
directed adjacency matrixW. The element wij ∈ R ofW is
interpreted as the strength of the directed interaction from
node j to node i.
Each node has an activity xi ∈ R whose evolution is

governed by the general equation

_xi ¼ FðxiÞ þ
XN
j¼1

wijGðxi; xjÞ; ð1Þ

where FðxiÞ and Gðxi; xjÞ are real-valued functions. For
technical reasons that will become clear in the next section,
both FðxiÞ and Gðxi; xjÞ are required to have continuous
derivatives of second order. The product wijGðxi; xjÞ
specifies the type of interactions.
If wij∂Gðxi; xjÞ=∂xj ≤ 0, the interaction is competitive

and the increase of activity of node j tends to decrease the
activity of node i. If wij∂Gðxi; xjÞ=∂xj ≥ 0, the interaction
is mutualistic, and therefore node j activity benefits node i.
For mixed dynamics of mutualistic and competitive inter-
actions, it is common to fix ∂Gðxi; xjÞ=∂xj ≥ 0 and use
negative weights wij < 0 for competitive interactions.
Unless specified, we will only consider mutualistic dynam-
ics with wij∂Gðxi; xjÞ=∂xj ≥ 0. Furthermore, we con-
centrate our studies on the possible dynamical models
(Sec. II B) in parameter ranges for which ∂Gðxi; xjÞ=
∂xj ≥ 0 such that wij are all non-negative as well.
To describe the evolution of the whole system at the

macroscopic and the mesoscopic scales, it is convenient to
focus on observables. We define an observable as a smooth
function mapping the activities x1;…; xN to a real number.
Among all observables, the linear observables, functions of
the form LðxÞ ¼ P

i aixi ∈ R, are of particular interest for
different reasons.
The first reason to use a linear observable is the

numerical evidence given by Ref. [9] that suggests that a
linear combination of the activity could be a good indicator
of the global state of the network. We have followed this
direction, which has led us to a more general linear
dimension reduction formalism. The second reason is that
a linear combination is far more intuitive than a general
nonlinear observable of the form ΩðxÞ ¼ P

n;j anjx
n
j . It is
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not excluded that such nonlinear observables could provide
adequate dimension reductions, but their interpretability
would most surely be limited. Finally, there is a more
formal and practical reason to select linear observables. The
set of all observables, which are smooth functions from RN

to R, forms a real vector space V of infinite dimension.
Dimension reduction can thus be seen as a search for n < N
observables, among infinitely many possible choices,
whose evolution can be well approximated by n coupled
differential equations. At first sight, there is no obvious way
to determine the best observables to choose. However, V
contains a subspaceL formed by all linear observables. The
dimension of L is precisely N, and one can show that any
basis of L has a dynamics that is exactly described by N
differential equations very similar to the original ones. This
simplifies the search immensely: Rather than looking in the
whole space V, the spectral properties of the adjacency
matrix to find n elements of interest in L offer themselves
as a natural choice.

B. Examples of possible dynamics

A number of dynamical systems satisfy the form of
Eq. (1). For instance, in computational neuroscience, the
Cowan-Wilson model [11] describes the firing-rate activity
of a population of neurons as

_xi ¼ −xi þ
XN
j¼1

wij
1

1þ exp½−τðxj − μÞ� ; ð2aÞ

where τ and μ are parameters controlling the steepness
of the activation function and the firing-rate threshold,
respectively [12].
In biology, the generalized Lotka-Volterra dynamics

describes the evolution of the population of species in
an ecosystem as

_xi ¼ ωxi þ xi
XN
j¼1

wijxj; ð2bÞ

where ω is the intrinsic growth rate [13], and xi is the
population of individuals of species i. To prevent
unbounded growth and account for species migration
and the Allee effect, a more complex model of ecological
networks has been proposed [9,14]:

_xi ¼ Bi þ xi

�
1 −

xi
Ki

��
xi
Ci

− 1

�

þ
XN
j¼1

wij
xixj

Di þ Eixi þHixj
; ð2cÞ

where all parameters are real numbers, Bi accounts for
the migration rate, Ki > 0 for the ecosystem capacity, and
Ci > 0 for the minimum abundance for species growth.

The parameters Di, Ei, Hi control the strengths of the
interactions between the species.
The Michaelis-Menten equation is yet another example

[15]. It applies to the gene regulatory networks and governs
the concentration of substrates as

_xi ¼ −cxai þ
XN
j¼1

wij

xbj
xbj þ 1

; ð2dÞ

where a; b; c are positive parameters.
In social networks, the spreading of a virus or rumors can

be described using the susceptible-infected-susceptible
model (SIS) [16]. In this context, the activity xi ∈ ½0; 1�
is interpreted as the probability of being infected, and it
evolves according to

_xi ¼ −xi þ γð1 − xiÞ
XN
j¼1

wijxj; ð2eÞ

with γ ≥ 0 as the normalized infection rate.

III. ONE-DIMENSIONAL REDUCTION

The systems described by Eq. (2) are N dimensional,
with their dynamics governed by N coupled differential
equations. As the number of nodes N grows, the computa-
tional cost of solving N coupled equations increases, which
raises a number of issues [17,18]. Moreover, the state of
the original system given by the N-dimensional vector x
becomes less intelligible and less insightful, and does not
provide much into the general properties of the solutions.
Hence, we must rely on measures, or observables, to

reduce N-dimensional systems to more practical and
accessible objects. For instance, the unweighted average
activity could be a measure on how dissimilar the system
state is compared to a specifically chosen state. We also
want to make predictions on those measures to anticipate
dynamical breakdowns and locate the global state of the
system on a standardized bifurcation diagram. However,
when solely based on the unweighted average activity,
the predictions are often nonrepresentative of the original
system [10].
Alternatively, a weighted activity seems more reliable as

we inject additional information on the importance of
nodes, and it has already been proven to be a promising
avenue of breakdown predictions [9,10]. In the next
subsections, we introduce a general procedure to select a
weighted activity and to predict its evolution.

A. Derivation of the reduction formalism

Let us consider a real linear observable R of the activity:

R ¼
XN
i¼1

aixi ¼ aTx; ð3Þ
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where ai ∈ R, the ith component of the column vector a, is
a normalized weight so that

XN
i¼1

ai ¼ 1Ta ¼ 1: ð4Þ

In general, some components ai can be positive or negative,
and R represents a weighted activity. In many instances,
however, ai will be non-negative; i.e., the normalized
vector a will be a probability vector, and our observable
R could then justifiably be called a weighted average
activity, where ai is the relative contribution, or centrality,
of node i to the observable.
The linear observable R is a function that takes the

instantaneous activity of each node and returns a real
number that describes the global state of the network. For
instance, for ai ¼ 1=N, R describes the unweighted aver-
age activity. Although the average activity is attractive
because of its simplicity, it may not be easy to predict its
value using only the structure of the network and the nature
of the dynamics. Thus, we hypothesize that a should be
specific to the structure.
Let us explain how the weight vector a is constrained by

the adjacency matrix W. By taking the time derivative of
Eq. (3) and using Eq. (1) (refer to Appendix A for complete
derivation), we obtain that the dynamics of R—truncated
up to second-order terms O½ðxk − RÞ2�—is given by the
one-dimensional equation

_R ≈ FðRÞ þ αGðβR; RÞ; ð5Þ

where β is a structural parameter given by

β ¼ 1

α

aTKa
aTa

ð6Þ

and K is an N × N diagonal matrix of diagonal elements
Kii ¼ kini ¼ P

N
j¼1 wij, the in-degree of node i. The param-

eter α can be measured directly on the network as the
weighted in-degree,

α ¼
XN
i¼1

aikini ¼ aTkin: ð7Þ

Interestingly, we show, in Appendix A, that the closed form
of Eq. (5) is satisfied only if a is a normalized eigenvector
of the transposed adjacency matrix WT with eigenvalue α,

WTa ¼ αa: ð8Þ

We have now obtained a single equation [Eq. (5)] that
governs the evolution of the weighted activity of a complex
network and constrained the weight vector a to be adapted
to the structure under study.

Clearly, Eq. (5) shares similarities with Eq. (1). We can
interpret the former as a reduced system of one dynamical
node that interacts with itself. The nature of its dynamics is
identical to the one from the original system, i.e., specified
by FðxiÞ andGðxi; xjÞ, and the coupling is parametrized by
α, β. The activity R of the single node describes the
weighted activity of the original network and is obtained by
solving Eq. (5), whose solutions are solely controlled by
the nature of the dynamics and the structural parameters
α, β.

B. Choice of a universal weight vector

We have seen that the weight vector a must be a
normalized eigenvector of WT so that the observable R
satisfies Eq. (5). In principle, any eigenvectors of WT ,
except those that satisfy 1Ta ¼ 0, could be used for the
dynamical reduction. However, the larger the modulus of α
is, the stronger is the influence of the structure on the
weighted activity. An eigenvector whose eigenvalue has a
low modulus leads to a linear observable R that does not
properly take into account the network structure, which in
turn leads to correction termsO½ðxk − RÞ2� greater than those
produced by eigenvectors with a highermodulus. The choice
of a as the eigenvector with the largest eigenvalue modulus
seems to impose itself: a is the dominant eigenvector.
For an arbitrary weighted adjacency matrix, the domi-

nant eigenvalue and the components of the dominant
eigenvector can be complex. In this case, the observable
R, as well as the structural parameters α and β, is complex.
The one-dimensional dynamical system of Eq. (5) becomes
complex too and can be interpreted as a two-dimensional
real dynamical system.
However, there is a large class of networks for which

the dominant eigenvalue and the components of the
dominant eigenvector are all real. For instance, strongly
connected (in practice, sufficiently connected) undirected
and directed networks with non-negative weights wij fall
into this class. In fact, the Perron-Frobenius theorem
guarantees that if the network is strongly connected, i.e.,
a path exists between each pair of nodes, and all edge
weights satisfy wij ≥ 0, then the dominant eigenvalue λD of
WT is non-negative λD ≥ 0, and the dominant eigenvector
is elementwise positive [19]. Moreover, in practice, the
dominant eigenvector can be efficiently computed using the
power method.
The procedure to apply this one-dimensional dimension

reduction is straightforward. First, we compute the dom-
inant eigenvalue α and the corresponding eigenvector vD
of WT . Second, we define the normalized eigenvector
a ¼ vD=ð1TvDÞ and obtain β according to Eq. (6). In most
cases, we want to determine the weighted activity at
equilibrium R�, determined by solving

0 ¼ FðR�Þ þ αGðβR�; R�Þ: ð9Þ
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This is a universal equation in the sense that α and β are
independent of the dynamics, controlled by FðxiÞ and
Gðxi; xjÞ; α and β only depend upon the network structure,
encoded in W. The one-dimensional reduction process
has been applied to different dynamics for small random
uncorrelated networks and has led to surprisingly accurate
predictions (Fig. 1). For larger networks, we expect the
formalism to maintain a similar level of accuracy. However,
since the number of nodes does not intervene explicitly
in the formalism, we are generally unable to analytically
describe how the quality of the reduction varies with the
network size. We must rely on a numerical investigation.
Our numerical experiments indicate that the network size

by itself has no significant impact on the quality of the
reduction. Rather, the accuracy strongly depends on the

network structure and, in particular, on the degree variance.
In a nutshell, our findings can be summarized as follows:
(a) For a given N, the larger the average number of edges

per node hkinB i [21], the better the dimensional reduc-
tion will be.

(b) For a fixed value of hkinB i, the residual error of the
reduction tends rapidly to a finite limit as N is
increased.

(c) For large enough hkinB i, the reduction error is small and
insensitive to the precise value of N [corollary of (a)
and (b)].

In Fig. 2, we examine these conclusions by comparing
different network ensembles. Although displayed for undi-
rected Erdős-Rényi (ER) networks, GðN; pÞ, the results are
representative of a larger set of calculations, and they nicely
synthesize our general conclusions on this issue. In Fig. 2(a),
dynamics on networks of different hkinB i ¼ pðN − 1Þ but
equal number of nodesN ¼ 200 is reproduced differently by
the one-dimensional reduction. Denser networks (large p,
large hkinB i) are better represented by the reduction than
sparser (small p, small hkinB i) networks. In Fig. 2(b), we
compare networks of different sizes but equal hkinB i. For a
fixed hkinB i (here hkinB i ¼ 10), the connection probability p is
adjusted to compensate for the growing number of nodes. As
the number of nodes is increased, the residual error on the

(a) (b)

(c) (d)

FIG. 1. Observable R� ¼ aTx� at equilibrium as a function of
the dominant eigenvalue α of WT , for different dynamics on
Erdős-Rényi networks of N ¼ 100 nodes and connection prob-
ability p ¼ 0.1. (a) Cowan-Wilson dynamics [Eq. (2a)] with
τ ¼ 1, μ ¼ 3, (b) SIS dynamics [Eq. (2e)] with γ ¼ 1, (c) mutu-
alistic ecological dynamics [Eq. (2c)] with Bi ¼ 0.1; Ci ¼
1; Ki ¼ 5; Di ¼ 6; Ei ¼ 0.9; Hi ¼ 0.1 [20], and (d) Michae-
lis-Menten dynamics [Eq. (2d)] with a ¼ 1, b ¼ 1, c ¼ 1.
Dashed lines are theoretical predictions obtained from Eq. (9),
while dots are equilibrium states resulting from the evolution of
the whole N-dimensional system. For each dynamics and net-
work ensemble, 100 networks are generated. For each network,
we scale the edge weights by a constant random factor as
wij ↦ cwij, so the dominant eigenvalue of the adjacency matrix
is located in the region of interest. Then, the dynamics is
integrated to equilibrium, and an orange dot is placed at the
corresponding point ðα; R�Þ. Next, the network is perturbed by
removing an edge, the dynamics is brought back to equilibrium,
and a new dot is placed at ðα0; R0�Þ. The perturbation step is
repeated 50 times for each network.

(a) (b)

FIG. 2. (a) Comparison of the observable R� ¼ aTx� at equi-
librium as a function of the dominant eigenvalue α of WT for
different connection probabilities p of undirected Erdős-Rényi
networks GðN;pÞ and the Cowan-Wilson dynamics [Eq. (2a)]
with τ ¼ 1, μ ¼ 3. For each value of p, 10 networks of 200 nodes
are generated, and their dynamics are solved for α ∈ ½4; 10�. Lines
are computed as a binned average over networks sharing the same
probability of connection. (b) Comparison of Erdős-Rényi net-
works GðN;pÞ of different sizes N ∈ f20; 100; 500g but equal
average numbers of edges per node hkinB i ¼ 10. For each N, we
adjust the connection probabilities p ∈ f0.50; 0.10; 0.02g to
match the expected value of hkinB i and solve the dynamics on
10 network realizations. Lines are computed as a binned average
over same-size networks. Dashed lines are theoretical predictions
obtained from Eq. (9). To obtain a specific α ¼ aTkin, we
multiply each edge weight by a constant scaling factor wij ↦
cwij so that the dominant eigenvalue α ↦ cα falls in the range
[4,10] using the dominant eigenvector a as a weight vector. We
then solve the dynamics at equilibrium and measure the observ-
able R� ¼ aTx�.
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prediction rapidly tends to a finite limit, and no further
deterioration of the quality of the dimensional reduction is
observed. In other words, the goodness of the reduction is
practically invariant of the network size, if large enough, and
ismostly governed by the average number of edges per node.
These observations extend to other types of networks

and confirm that the quality of the reduction is more affected
by the network connectivity than by the network size. A
dynamical explanation goes as follows. In sparse networks
(e.g.,N ¼ 200,p ¼ 0.02), onemust use large scaling factors
c > 1 (W ↦ cW, which implies W1 ¼ kin ↦ ckin, α ¼
aTkin ↦ cα) to reach the desired range of the dominant
eigenvalue α ∈ ½4; 10� (see caption of Fig. 2; the scaling does
not alter the topology, only the strength of what is injected
in the dynamical equations through the parameter α).
This accentuates the inequalities between the degrees of
the nodes, VarðkinÞ ↦ c2VarðkinÞ, and eventually splits the
populations into active and inactive nodes. Hence, the
reduction is unable to describe the two populations with a
single variable. In the opposite extreme of dense networks
(e.g., N ¼ 200, p ¼ 0.25), the edge weights must be scaled
down, c < 1, to reach the same dominant eigenvalue.
Therefore, the nodes follow a more global activation scheme
that can be described with high accuracy by the one-
dimensional reduction. This explanation matches the
observed finite limit for the quality of the reduction
[Fig. 2(b)]. For a fixed value of hkinB i ¼ pðN − 1Þ, when
N grows larger, p tends to zero so that the variance
VarðkinB Þ ≈ ðN − 1Þpð1 − pÞ tends to a limit VarðkinB Þ →
hkinB i and no further deterioration of the quality is observed.
The quantitative impact of the degree variance is best

explained by a simple example. Consider an ER network
ðN ¼ 200; p ¼ 0.1Þ with hkinB i ≈ 20 and c ¼ 1 so that the
variance of the edge weights is VarðkinÞ ≈ 18 and the
dominant eigenvalue is α ≈ 20. For a denser network
(N ¼ 200, p ¼ 0.5) with hkinB i ≈ 100, one must use a small
scaling factor, W ↦ W=5, to have the same dominant
eigenvalue α ≈ 20, and the scaled variance of the edge
weights is now VarðkinÞ ≈ 2. Therefore, the nodes in the
denser networks are more uniformly activated than in the
sparser networks and are better amenable to the one-
dimensional reduction.

C. Choice of an approximate weight vector

Recently, Gao et al. [9] introduced a different one-
dimensional reduction for dynamics of the form of Eq. (1).
In this section, we show how their reduction is a special
case of our one-dimensional reduction when applied to
uncorrelated random networks.
Uncorrelated random networks are a family of networks

for which the degree distribution can be arbitrary but the
probability of the connection between two nodes is
independent of the presence or absence of any other edge
[22]. We generate our random networks using the

configuration model [23]. We first sample the in and out
expected node degrees, κin and κout, from an arbitrary
degree distribution. Then, we connect node j to node iwith
probability

Pij ¼
κini κ

out
j

m
; ð10Þ

wherem ¼ P
i κ

out
i is the expected total number of edges. If

the resulting network is strongly connected, the Perron-
Frobenius theorem guarantees that the dominant eigenvec-
tor vD of WT will have only non-negative elements. We
may then use this dominant eigenvector to construct the
observable

R ¼ aTx ¼ vTDx
1TvD

: ð11Þ

For networks that satisfy Eq. (10), spectral graph theory
[24] informs us that the elements of the dominant eigen-
vector vD of WT (i.e., the weights of the reduced system)
can be approximated by the vector of out-degrees kout as

ai ¼ ½vD�i ≈
koutiP
N
j¼1 k

out
j

ð12Þ

if the rather mild condition

hðkoutÞ2i
hkouti >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max½kouti �

q
lnðNÞ ð13Þ

is satisfied. It then results from Eq. (7) that α measures the
average neighbor in-degree, that is,

α ≈
P

N
i¼1 k

out
i kiniP

N
i¼1 k

out
i

; ð14aÞ

and Eq. (6) reduces to β ¼ 1. Therefore, R is simply the
average neighbor activity:

R ≈
P

N
i¼1 k

out
i xiP

N
i¼1 k

out
i

: ð14bÞ

It turns out that this special case is exactly the formalism
proposed by Gao et al. [9], with R ¼ xeff and α ¼ βeff in
their notation. It also means that the formalism of Gao et al.
is mostly appropriate for random networks [Eq. (10)]
respecting Eq. (13). Moreover, a recent work [25] has
introduced a corrected eigenvalue approximation for ran-
dom networks with power-law degree distribution pðkÞ ∼
k−γ with γ > 5=2. This may further limit the accuracy of the
approach of Gao et al. with respect to our one-dimensional
reduction scheme.
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IV. MULTIDIMENSIONAL REDUCTION:
DOMINANT EIGENVECTORS

In the one-dimensional reduction, we suppose that the
dynamical global state of a network is dominated by the
information contained in a single dominant eigenvalue and
corresponding eigenvector. Therefore, we also presuppose
that other eigenvalues can be safely neglected and do not
provide relevant information about the dynamics on the
network. But, if the network admits many eigenvalues of
similarly large modulus, it is plausible to expect that all of
these eigenvalues are important as well and should be
included in an n-dimensional reduction. In this section, we
address this problem by introducing an n-dimensional
approach to predict the evolution of n coupled observables.
We argue that if the spectrum fλ1; λ2;…; λNg of WT

satisfies

jλ1j ≈ jλ2j ≈… ≈ jλnj ≫ jλnþ1j ≥ … ≥ jλN j;

then n observables should be considered, leading to an
n-dimensional reduced dynamical system.

A. Cycle reduction

Let us consider n observables Rj, 1 ≤ j ≤ n, each being
a different linear combination of the activity

Rj ¼
XN
i¼1

½aj�ixi; ð15Þ

where aj is a real-value weight vector associated with the
observable Rj and normalized

P
i½aj�i ¼ 1. As in the one-

dimensional reduction, aj are yet undetermined. While
there are several choices for aj that are a priori plausible,
we discuss the cycle reduction, which is natural when
several dominant eigenvalues are approximately of equal
modulus.
Using a similar approach as the one-dimensional reduc-

tion (see Appendix B), one finds that the evolution of the
observables is given by

_Rj ≈
�
FðRjÞ þ αjGðβjRj; Rjþ1Þ j < n

FðRjÞ þ αjGðβjRj; R1Þ j ¼ n;
ð16Þ

where

βj ¼
1

αj

aTj Kaj
aTj aj

ð17Þ

and αj is an observable of the weighted neighbor in-degree,

αj ¼
XN
i¼1

½aj�ikini : ð18Þ

To satisfy Eqs. (16), the weight vectors are constrained by
the structure and must transform according to

aj ¼
WTaj−1
αj−1

; ð19Þ

which preserves the positiveness and the required normali-
zation. Moreover, Eq. (19) needs to be a periodic appli-
cation, i.e., ajþn ¼ aj, in order to close the system to n
observables. The initial choice of a1 is then highly con-
strained to satisfy this condition. In the following section,
we explain how the weight vectors can be computed using
the dominant eigenvectors of WT .
In contrast to Eq. (5) where a single observable is used,

we have now developed a closed n-dimensional system of
observables that are coupled by a set of structural param-
eters fαj; βjgj¼1;::;n.

B. Choice of the universal weight vectors

It is yet unclear if one should use an n-dimensional
reduction or a one-dimensional reduction for a certain
network structure. By answering this question, we also
address how to set the weight vectors of the cycle reduction.
Recall that the Perron-Frobenius theorem guarantees that

WT has a non-negative dominant eigenvector vD only if W
is a connected graph. Therefore, we can rule out that it is
always possible to construct a one-dimensional reduction
relying on the dominant eigenvector.
But the same reasoning also implies that we can always

construct an n-dimensional system using the dominant
eigenvector vD of WT . One could use a1 ¼ vD and
iteratively apply Eq. (19) to obtain the set of weight vectors
fajg1;…;n, as prescribed. In doing so, the resulting weight
vectors would all be identical, a1 ¼ a2 ¼ … ¼ an ¼ vD, as
they obviously satisfy both Eq. (19) and the periodicity
condition ajþn ¼ aj. Hence, we find n identical observ-
ables R1 ¼ R2 ¼ … ¼ Rn, and the constructed n-dimen-
sional system is no better than the one-dimensional system.
For this reason, an n-dimensional cycle reduction is only
advantageous if we can construct a set of distinct weight
vectors a1 ≠ a2 ≠ … ≠ an from the dominant eigenvectors.
The maximum number of significant and distinct observ-

ables that we can construct is determined by the periodicity
of the transposed adjacency matrix WT . The periodicity n
is the number of eigenvalues λm of modulus equal to the
spectral radius r ≥ 0, i.e., jλmj ¼ r. From the Perron-
Frobenius theorem, they must be uniformly distributed
on a circle, centered at the origin, in the complex plane.
Thus, the mth dominant eigenvalue can be written as

λm ¼ re2πim=n;

for a given periodicity n. Since λm is an eigenvalue ofWT , it
must have an eigenvector vm that satisfies
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WTvm ¼ re2πim=nvm:

By multiplying both sides by ðWTÞðn−1Þ, we find

ðWTÞnvm ¼ rnvm:

Therefore, rn is an eigenvalue of ðWTÞn that is positive and
n-times degenerate. Since each eigenvector ofWT is also an
eigenvector of ðWTÞn, we can combine those eigenvectors
to construct new distinct eigenvectors of ðWTÞn with
eigenvalue rn and use them as weight vectors. We construct
the first weight vector as

a1 ¼
P

n
m¼1 cmvmP

n
m¼1 cm1

Tvm
; ð20Þ

where cm ∈ C are arbitrary coefficients. From Eq. (19), we
iteratively compute aj from aj−1. By doing so, we satisfy
the periodic condition ajþn ¼ aj and construct distinct
weight vectors.
The reduction only requires that we arbitrarily choose

c ¼ ðc1;…; cnÞ to construct a1. We propose selecting c
by minimizing the scalar product of the first two weight
vectors,

c ¼ argmin
c

jaT1a2j; ð21Þ

where a2 ¼ α−11
P

n
m¼1 cmλmvm from Eq. (19). In

Appendix C, we give a general and exact solution of c
for n ¼ 2.
In summary, the cycle reduction method goes as follows.

First, compute a set of n eigenvectors fvmgm¼1;…;n of WT

whose eigenvalues have a modulus equal to the spectral
radius r. Second, obtain fcigi¼1;…;n by solving Eq. (21).
Third, iteratively construct ai from Eq. (19). Finally,
compute αi, βi and solve Ri at equilibrium from Eqs. (16).
An interesting aspect of this method is that it allows us to

combine the information of each observable to construct a
global observable,

Rglobal ¼
Xn
j¼1

ϕjRj; ð22Þ

where ϕj ∈ R. Since Rj ¼
P

i½aj�ixi, the contribution pj of
node j to the global observable is

pj ¼
X
i

ϕi½ai�j: ð23Þ

We can then tune ϕi to reach the desired node con-
tributions. For instance, to access the unweighted average
activity Rglobal ¼ hxi, one solves Aϕ¼N−11N , where
A ¼ ½a1a2…an�. The solution is ϕ ¼ N−1Aþ1N , where
Aþ is the Moore-Penrose pseudo-inverse of matrix A [19].

C. Examples: Star and bipartite networks

We give an example of the cycle reduction for a highly
heterogeneous family of networks: star networks. We
construct a star network of N nodes, where the strength
of a directed edge to a periphery node is spc and scp for
edges directed toward the central node. Hence, the adja-
cency matrix is

W ¼

2
666664

0 scp scp … scp
spc 0 0 … 0

..

. ..
. ..

. . .
. ..

.

spc 0 0 … 0

3
777775:

One finds that WT has two eigenvalues of modulus
equal to the spectral radius, λþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

spcscpðN − 1Þp
and

λ− ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spcscpðN − 1Þp

. From the previous analysis, this
result signals that we can construct a two-dimensional
reduction. The associated eigenvectors are

vTþ ¼
h

λþ
scp

1 1 … 1
i
; ð24aÞ

vT− ¼
h

λ−
scp

1 1 … 1
i
: ð24bÞ

We construct the two-dimensional reduction by combining
the eigenvectors vþ; v− to minimize jaT1a2j and to satisfy the
normalization 1Ta1 ¼ 1. The following linear combina-
tions fulfill the requirements

a1 ¼
vþ − v−

1Tvþ − 1Tv−
; ð25Þ

a2 ¼
1

ðN − 1Þscp
ðλþvþ − λ−v−Þ
1Tvþ − 1Tv−

; ð26Þ

where the second vector has been obtained from Eq. (19).
Note that the overlap aT1a2 ¼ 0 exactly. Explicitly, in
component form, we have

½a1�i ¼ δi;1; ð27aÞ

½a2�i ¼
1

N − 1
ð1 − δi;1Þ: ð27bÞ

One also finds that β1 ¼ 1; β2 ¼ 1; α1 ¼ scpðN − 1Þ;
α2 ¼ spc. Hence, the two-dimensional reduction reads

_R1 ¼ FðR1Þ þ scpðN − 1ÞGðR1; R2Þ; ð28aÞ

_R2 ¼ FðR2Þ þ spcGðR2; R1Þ: ð28bÞ

One notes that R1 is exactly equal to the activity of the
central node, and R2 is the activity of a periphery node.
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Thus, the two-dimensional formalism is an exact reduction
in this example. This idea is confirmed in Fig. 3 where
simulations and predictions are compared for the Gao et al.,
the one-dimensional reduction, and the two-dimensional
reduction for the Cowan-Wilson dynamics.
Star networks are not the only systems conforming to the

two-dimensional reduction; all bipartite networks also
conform. Bipartite networks have nodes that can be
separated into two groups such that connections only exist
between nodes of different groups [23]. This network
architecture is common in many real systems such as
plant-pollinator interactions [26], scientific collaborations
[27], and actor-film networks [28].
Bipartite networks exhibit a remarkable and useful

spectral property. Each eigenvalue is paired, i.e.,

λj ¼ −λN−jþ1; ð29Þ

for all j ¼ 1; 2;…; N, assuming that λ1 ≥ λ2 ≥ … ≥ λN
[29]. Thus, a bipartite graph contains two eigenvalues λ1,

λN of modulus equal to the spectral radius. This suggests
that a two-dimensional representation could always be
constructed out of these two eigenvalues, following the
prescription of Sec. IVA.
We therefore gain a clear understanding of the results of

Jiang et al. [10], where they present numerical evidence
on real bipartite networks, suggesting that two-dimensional
reductions are better predictors of critical points for
bipartite networks than the one-dimensional approaches.
Moreover, our work solves the problem of selecting the
right weighted combination: The eigenvector-weighted
combination should always be favored over others.

V. MULTIDIMENSIONAL REDUCTION:
INCLUDING SUBDOMINANT EIGENVECTORS

Until now, we have developed a direct method to
construct n-dimensional reduced systems. Using only the
network structure, we can first identify the number of
dimensions, i.e., the number of eigenvalues of modulus
equal to the spectral radius, and then construct the weight
vectors aj to predict the observables Rj.
Yet, our method is compelling only if the observables Rj

are good indicators of the global states of the network,
which requires that each region of the network contributes
significantly to at least one observable Rj. Since we use the
dominant eigenvectors, we do not control the contribution
of each node. Thus, if the dominant eigenvector assigns
negligible weights to some nodes, it may result in an
incomplete description of the network. Modular networks
fall into this category. Let us introduce the stochastic block
model (SBM) to understand the underlying problem of
misrepresentation.
The SBM is a generative model of modular networks

[30]. Nodes are first assigned to modules. Then, we connect
a node from module s to a node from module r with
probability prs. This simple method accurately generates
modular random networks.
The spectrum of a SBM network is rather different than

the spectrum of a random network (Fig. 5). We first note
that we only have a single eigenvalue of modulus equal to
the spectral radius, indicating that we should use a one-
dimensional reduction. However, the eigenvalues are dis-
tributed in a multimodal distribution with as many dominant
and subdominant eigenvalues as there are modules.
For instance, let us consider a network with two

communities of equal size N=2. Using the spectral theory
of random matrices, we estimate the two dominant
eigenvalues

λ1 ¼
ðp11 þ p22Þ þ ½ðp11 − p22Þ2 þ 4p12p21�1=2

2
;

λ2 ¼
ðp11 þ p22Þ − ½ðp11 − p22Þ2 þ 4p12p21�1=2

2
;

(a)

(c) (d)

(b)

FIG. 3. (a) Schematization of the star network of N ¼ 6 nodes
where the edge weight toward the core is twice the weight of an
edge toward the periphery. (b) Average neighbor activity at
equilibrium as a function of its structural parameter using the
degree-weighted reduction of Gao et al. [9]. (c) Dominant eigen-
vector weighted activity at equilibrium R� ¼ vTDx

� as a function of
the dominant eigenvalue α for the one-dimensional reduction
[Eq. (5)]. (d) Average activity at equilibrium obtained by a
combination of two observables hxi� ¼ N−1½R�

1 þ ðN − 1ÞR�
2�,

as a function of the average out-degree hkouti ¼ N−1½α1 þ ðN −
1Þα2� computed using the two-dimensional reduction formalism
[Eq. (28b)]. Solid lines are results from simulations, and dashed
lines are theoretical predictions. The network dynamics is the
Cowan-Wilson model with τ ¼ 1, μ ¼ 3 [Eq. (2a)].
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and their corresponding eigenvectors

v1 ¼
" p12

p12þλ1−p11
1N=2

λ1−p11

p12þλ1−p11
1N=2

#
;

v2 ¼
" λ2−p22

λ2−p22þp21
1N=2;

p21

λ2−p22þp21
1N=2

#
:

If prs=prr ≈ 0 ∀ r ≠ s, the dominant eigenvector v1
assigns a negligible weight to the nodes in the community
r ¼ 1 [31]. Thus, if we solely use a one-dimensional
reduction with a ¼ v1, the observable R will not take into
account the activity of half the network. Fortunately, the
second-dominant eigenvector accounts for the remaining
nodes. Thus, we must apply the one-dimensional reduction
of Sec. III A twice and construct two uncoupled observ-
ables, one with the dominant eigenvector RD ¼ vT1x, and
one for the subdominant eigenvector RSD ¼ vT2x, for which
the dynamics follows,

_RD ¼ FðRDÞ þ αDGðβDRD; RDÞ; ð30aÞ

_RSD ¼ FðRSDÞ þ αSDGðβSDRSD; RSDÞ: ð30bÞ

To make a global prediction, we simply combine the
observables

Rglobal ¼
RD þ RSD

2
: ð31Þ

It follows that the global structural parameter is also a linear
composition

αglobal ¼
αD þ αSD

2
: ð32Þ

In general, we can construct as many uncoupled observ-
ables as the number of modules in the network, by using the
eigenvectors associated with the eigenvalues detached from
the bulk of the spectrum.
We show a numerical example of this method for a

network of two communities (Fig. 4). The Gao et al.
formalism predicts a single bifurcation, which almost
coincides with the transition of the densest community.
In Fig. 4(b), the one-dimensional reduction, using the first
dominant eigenvector, predicts the activity accurately.
However, the first dominant eigenvector omits half the
network, and we only see a single bifurcation. Thus, even if
we are highly accurate, we miss characterizing the distinc-
tive multistep bifurcation, a prominent feature of interacting

(a)

(c) (d)

(b)

FIG. 4. (a) Schematization of the undirected planted partition
network of two communities of 100 nodes each with in-densities
pin ¼ 0.4 and pin ¼ 0.7, and out-density pout ¼ 3 × 10−3.
(b) Average neighbor activity at equilibrium as a function of
its structural parameter using the degree-weighted reduction of
Gao et al. [9]. (c) Dominant eigenvector-weighted activity R ¼
vTDx at equilibrium as a function of the associated eigenvalue α for
the one-dimensional reduction [Eq. (9)]. (d) Combination of the
uncoupled observables Rglobal ¼ ðRD þ RSDÞ=2 at equilibrium as
a function of the structural parameter αglobal [see Eq. (30b)]. Solid
lines result from simulations, and dashed lines are theoretical
predictions. The dynamics is the Cowan-Wilson model with
τ ¼ 1, μ ¼ 3 [Eq. (2a)].

(a) (b) (c)

FIG. 5. Spectral density ρðλÞ for (a) random networks of 80 nodes with connection probability p ¼ 0.1, (b) the SBM with two
communities of 40 nodes with in-connection probabilities p11 ¼ 0.3 and p22 ¼ 0.7 and out-connection probabilities p12 ¼ p21 ¼ 0.01,
and (c) the SBM with four communities of 40 nodes with in-connection probabilities p11 ¼ 0.4, p22 ¼ 0.6, p33 ¼ 0.7, and p44 ¼ 0.9
and out-connection probability prs ¼ 0.05 ∀ r ≠ s. The orange lines highlight the position of the dominant and subdominant
eigenvalues in the expected network. Each spectral density is produced by collecting spectra from 500 network instances.
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networks [32]. Finally, combining observables as in
Eq. (31), we recover the bifurcations of both modules
[Fig. 4(d)].

VI. GOODNESS OF REDUCTION

The goodness of the reduction method, i.e., how accurate
the predictions of the low-dimensional representation are
compared with the observations on the original network,
depends on the nature of the dynamics and on the network
structure. For instance, some complex patterns of inter-
actions may be less amenable to a low-dimensional
formalism, resulting in disparities between the predicted
and exact values of the observables. In this section, we
explore the impact of the structure and the dynamics on the
goodness of the reduction methods.

A. Impact of the structure

To measure the impact of the structure, we introduce a
generative model of networks called the generalized pref-
erential attachment model [33]. Parameters of this model
can be continuously tuned to obtain networks ranging from
chainlike networks to star networks, with scale-free net-
works as an intermediate state. Scale-free systems are an
important family of networks, recognizable by their power-
law degree distribution pðkÞ ∼ k−γ [20]. Because of their
lack of well-defined characteristic scale, it is a priori
unclear whether these systems can be efficiently reduced.
The growth process of the generalized preferential

attachment goes as follows. We initialize the network with
two connected nodes. Then, at each time step t, we add a
new node to the network. It is connected to an existing node
chosen with probability

wiðν; tÞ ¼
sνi ðtÞPNðtÞ
j¼1 s

ν
jðtÞ

; ð33Þ

where ν ∈ R is the exponent of the attachment kernel, sjðtÞ
is the number of connections of node j at time t, andNðtÞ is
the number of nodes at time t.
The generative model is solely tuned by the kernel

parameter ν ∈ R. It controls the inequalities of the attach-
ment probability. On the one hand, if ν ≫ 1, the generated

networks are starlike as we always attach new nodes to the
richest node. On the other hand, if ν ≪ 0, the networks are
more chainlike as we always connect to the least-connected
node [33]. The classic preferential attachment model is
found for ν ¼ 1. Therefore, for 0 < ν < 1, we observe a
continuum of network organizations that gradually become
more scale-free as the parameter ν is increased. Examples
of networks generated from this model are illustrated
in Fig. 6.
From now on, we distinguish the predicted observable

from the reduced system, denoted R̃ðαÞ, and the measured
observable RðαÞ ¼ aTx from the original network.
We have applied the degree-weighted, the one-dimen-

sional, and the two-cycle reductions to networks generated
with the generalized preferential attachment model for
ν ∈ ½−1; 2�. For each network, we have computed the total
error ΔR between the measured activity R�ðαÞ ¼ aTx� at
equilibrium on the original network and the predicted
activity R̃�ðαÞ by the reduction system,

ΔR ¼
Z

∞

0

jR̃�ðαÞ − R�ðαÞjdα: ð34Þ

We have found a transition in the dimension reduction
accuracy for all methods at ν ¼ 1, corresponding to the
preferential attachment model (Fig. 7). As we enter the
starlike region ν > 1, the average error reaches a plateau to
specific values for the one-dimensional reductions, while
the two-dimensional reduction remains highly effective.
We argue that this transition is not dynamics specific but

mostly due to the network architecture. The nature of the
error can be interpreted by a careful examination of the
generative model. First, negative values of ν tend to homog-
enize the degree of the nodes. Thus, the more uniform the
network is, the easier it is to capture its behavior in a one-
dimensional reduction. For positive values of ν, the reduced
model tends to favor degree inequalities, which are best
achieved when the networks are starlike.
For 0 < ν < 1, the degree distribution resembles a power

law with exponential cutoffs [33]. However, a pure power-
law distribution is only achieved precisely at ν ¼ 1. Thus,
this transition in the degree distribution forces the reduction
of the degree-weighted reduction to predict inaccurate

FIG. 6. Network instances produced using the generalized preferential attachment model. The model tends to generate chainlike
networks for negative values of ν and star networks for positive values. The figure was inspired by Ref. [34].
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observables. Finally, the region ν > 1 is dominated by
starlike networks, which has previously been shown to be
better represented by the two-dimensional reduction than
any one-dimensional reduction (see Sec. IV C).

B. Detection of transitions

Most dynamical systems exhibit activity bifurcations
when a certain structural threshold is reached [35].
Therefore, the goodness of the reduction should display
at least qualitative changes as the structural threshold is
crossed. We investigate this kind of prediction using the
SIS model.

The SIS model has been thoroughly studied in the last
decade [36]. In the SIS model, nodes reversibly switch from
susceptible to infected states with a certain probability that
depends on their neighborhood. We can formulate this
dynamics using a mean-field approach,

_xi ¼ −xi þ γð1 − xiÞ
XN
j¼1

wijxj; ð35Þ

where xi is the probability that node i is infected and γ ≥ 0
is the normalized infection rate. In this model, the average
fraction of infected node hxi ¼ N−1P

i xi undergoes a
critical transition at a certain threshold γC. The classical
problem in the study of the SIS model consists in estimat-
ing the value of γC above which a significant fraction of
the whole system is infected [37].
However, we study a related problem: The parameter

γ is fixed, and the structure is evolving. Using the
dimension reduction procedure, we investigate the critical
structural parameter αglobal, or an equivalent parameter
depending on the reduction approach, for which the
global state at equilibrium R� undergoes a critical transition
characterized by

d2R�ðαCÞ
dα2

¼ 0: ð36Þ

In Fig. 8, we investigate the errors on the position of the
critical transition for the degree-weighted one-dimensional
approach, the eigenvector-weighted one-dimensional
approach, and the two-dimensional cycle reduction. We
use a network of N ¼ 60 nodes generated from the gener-
alized preferential attachment model with ν ¼ 1.8. We
observe that the two proposed approaches based ondominant
eigenvectors are able to accurately predict the critical
transition, while the degree-weighted approach does not.
This behavior is typical for reductions of networks generated
from ν ∈ ½1;∞Þ. Our results indicate that even if the one-
dimensional observable fails to predict the true level of
activityR, it still predicts, with high accuracy, the onset of the
epidemy.We conclude that the largest eigenvalue is a reliable
indicator of the onset for correlated networks. Perhaps this
conclusion is not surprising as it has previously been
discovered under a different approach [38]. Nonetheless, it
supports the proposed reductions as valuable candidates for
predicting the onset of critical transitions.

C. Impact of the dynamics

As previously discussed, the goodness of the reduction is
highly dependent on the network structure. The other
element that impacts the goodness of the reduction is the
nature of the dynamics. For instance, linear dynamics such
as FðxiÞ ¼ xi,Gðxi; xjÞ ¼ xj lead to exact one-dimensional
reduction. However, typical dynamics are nonlinear and

FIG. 7. (Top) Total error on the prediction of the global state
activity at equilibrium for networks obtained from the generalized
preferential attachment model [see Eq. (34)]. A gray line
indicates the classical preferential attachment model at ν ¼ 1
where a critical transition in the reduced descriptions is found.
The total error is averaged from 300 networks of N ¼ 200
generated uniformly on the domain ν ∈ ½−1; 2�. The activity on
the network is the SIS model with γ ¼ 1 [see Eq. (2e)]. (Bottom)
Instances of bifurcation diagrams for the three reduction schemes
(columns) and for ν ¼ f−1; 1; 2g (rows). For the two-dimen-
sional cycle reduction, the x axis is the average of the structural
parameters: αglobal ¼ ðα1 þ α2Þ=2. The blue dashed lines are
predictions from reduced systems, and the orange lines are the
measured activities on the original networks. The gray regions
indicate the absolute errors [see Eq. (34)].
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may add significant contributions to the quadratic terms
that have been neglected (see Appendix A). We investigate
this aspect by looking at two contrasting dynamics: the
Cowan-Wilson model and the Lotka-Volterra model.
First, let us introduce the relative error Δα on the

structural parameter that predicts the original network
activity. We compare the measured structural parameter
α ¼ aTkin on the original network with the structural
parameter α̃ that matches, from the one-dimensional
reduction, the measured activity R� ¼ aTx� on the original
network. The relative error can be written as

Δα ¼
α − α̃ðR�Þ

α
:

Notice that this is different from Eq. (34): Δα is the
horizontal error in the space ðα; RÞ, while ΔR measures
the vertical error. Both errors convey distinct information
and are complementary. However, we useΔα since it can be
written as a function that depends explicitly on the nature of
the dynamics for the one-dimensional reduction.

From Eq. (5), we obtain α̃ at the dynamical equilibrium
_R ¼ 0. This result leads to

Δα ¼ 1þ FðR�Þ
GðR�Þα : ð37Þ

One can then evaluate the error for specific dynamics as
in Ref. [39]. In the following paragraphs, we give two
examples of dynamics and compare the errors for the Gao
et al. formalism and our one-dimensional reduction.

1. Error on the Cowan-Wilson dynamics

The Cowan-Wilson dynamics describes the firing-rate
activity of populations of neurons. The evolution of a node
activity is given by Eq. (2a) and repeated here as

_xi ¼ −xi þ
XN
j¼1

wij
1

1þ exp½−τðxj − μÞ� ; ð38Þ

where τ > 0. The equilibrium solution x� cannot be found
analytically, so it must be evaluated numerically, even for
N ¼ 1. However, x� is well approximated for extreme
values of activities. We derive error estimates for extreme
regimes x�j ≫ μ and x�j ≪ μ.
In general, from Eq. (37), the error can be written as

Δα ¼ 1 −
½1þ exp½−τðR� − μÞ��R�

α
: ð39Þ

In the limit of high levels of activity x�j ≫ μ, the expo-
nential vanishes, and one finds that x� ≈W1 ¼ kin.
Therefore, the error is approximately

Δα ≈ 1 −
R�

α
≈ 1 −

aTW1
α

:

For the one-dimensional reduction, a is an eigenvector of
WT such that aTW ¼ αaT . Since a is normalized, aT1 ¼ 1,
it follows that aTW1 ¼ α. Thus, the error Δα vanishes in
the limit of large activity.
The same applies for Gao et al. formalism for high

activity. By using a ¼ kin, one finds that α ¼ ðkinÞTkout and
R� ¼ ðkoutÞTkin so that Δα → 0.
Using a similar procedure for xj ≪ μ, one can also show

that Δα ≈ 0 for both methods.
We conclude that in the extreme regimes of high and

low activities, both reduction methods provide a practically
exact solution. However, we are more often interested in
the hysteresis region where the activity collapses rapidly.
Unfortunately, analytic error estimates are lacking in this
regime. Still, numerical results and theoretical insights
suggest that the proposed one-dimensional reduction
should always be favored over the degree-weighted

(a)

(c) (d)

(b)

FIG. 8. (a) Schematization of the undirected network generated
using the generalized preferential attachment model with ν ¼ 1.8
and N ¼ 60. (b) Average neighbor activity at equilibrium as a
function of its structural parameter using the degree-weighted
reduction [9]. (c) Dominant eigenvector-weighted activity
at equilibrium R� ¼ vTDx

� as a function of the associated
eigenvalue α for the one-dimensional reduction [Eq. (5)].
(d) Solution at equilibrium of the two-dimensional system
R�
global ¼ ðR�

1 þ R�
2Þ=2 as a function of the structural parameter

αglobal ¼ ðα1 þ α2Þ=2. Solid lines are results from simulations,
and dashed lines are theoretical predictions. Dotted lines indicate
the position of the transition αglobal. The dynamics is the SIS
model with γ ¼ 0.2 [Eq. (2e)].
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reduction. This idea is confirmed below for a more tractable
dynamics.

2. Error on the Lotka-Volterra dynamics

Let us consider the Lotka-Volterra dynamics governing
the evolution of species populations. The N-dimensional
system goes as

_x ¼ ωxþ x∘Wx; ð40Þ
where ∘ denotes an elementwise multiplication. At equi-
librium, x� satisfies

−ω1 ¼ Wx�: ð41Þ
With Eq. (37), we write the expected error as

Δα ¼ 1þ ω

βαR� ¼ 1þ ω

βαaTx�
:

Using the one-dimensional reduction,

WTa ¼ αa;

or aTW ¼ αaT. Furthermore,

aTWx� ¼ −ωaT1 ¼ αaTx�: ð42Þ

Thus, the error depends only on β:

Δα ¼ 1 −
1

β
: ð43Þ

Therefore, the difference between the exact value
for aTx� and the approximate value derived from the
one-dimensional reduced system is only 1 − 1=β. Given
the expression for β [Eq. (A5)], it should be close to β ≈ 1,
so the error goes to zero, Δα ≈ 0. This result contrasts with
results derived by Tu et al. [39] for the method of Gao et al.,
where they reported nonvanishing error averages and
variances.

VII. CONCLUSION

We have built systematic methods of dimension reduc-
tion adapted to different families of networks (random,
starlike, bipartite, SBM). The activity of the reduced
systems is used as an indicator of the global activity of
large networks. Without a restriction further than imposing
a linear form of the global activity, we have found that the
dominant eigenvectors of the adjacency matrix are central
to the global states’ evolution. Moreover, when considering
the cycle reduction, the dimension of the reduced systems
corresponds to the periodicity of the adjacency matrix.
We have further shown that the proposed reduction of

Gao et al. is a special case of the general scheme when
applied to uncorrelated random networks. Moreover, the

range of applicability of our method extends to modular,
heterogeneous, and bipartite networks.
Our results suggest, both numerically and theoretically,

that the eigenvector-weighted reduction should be preferred
over the degree-weighted reduction. Originally, the degree-
weighted reduction has been used to approximate the state
of a network by the state of the average neighbor. However,
the degree of a node is only a local centrality measure since
it does not provide information about whom a node is
connected to. In contrast, in the eigenvector-weighted
reduction, the dominant eigenvector yields a more global
node centrality since it contains the information on how
each node is connected with the rest of the network [23].
Therefore, the eigenvector-based reduction brings a new
light on the influence of each node on the global states of a
network.
On a more practical side, our general method is able to

predict the correct number of bifurcation points. The
expected number of predicted bifurcation points depends
on the dimension of the reduction. Intuitively, and con-
firmed by our investigations, a single linear observable
provides a good reduction if the network is homogeneous
or if, for instance, the degree variance is small. When this is
not the case, however, different parts of the network behave
differently, and a single observable is no longer sufficient
to capture the characteristics of the global dynamics,
which effectively becomes multidimensional. In the SBM
case, the two-dimensional reduction reveals additional
bifurcation points that are missed altogether by all one-
dimensional reductions.
As a closing remark, although our reduction method has

been designed to access large dynamical networks through
low-dimensional formalisms, it was not clear from the
outset how the dimensional reductions would fare with
respect to the size of the networks. Our findings on the
matter have been comforting since size by itself has a
secondary effect on the quality of the reduction procedure,
leaving precedence to connectivity and dynamics. Hence,
beyond the addition to the theoretical arsenal, our system-
atic and versatile approach can now be used to address
concrete problems of real-world systems. To name a few, it
could be used to describe, with high accuracy, the bifurca-
tion patterns, to identify dynamical vulnerabilities, to
suggest intervention strategies to prevent dynamical break-
downs, or to classify networks on a standardized diagram.
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LAURENCE, DOYON, DUBÉ, and DESROSIERS PHYS. REV. X 9, 011042 (2019)

011042-14



APPENDIX A: DERIVATION OF
ONE-DIMENSIONAL FORMALISM

In this section, we detail the analytical derivation of the
evolution of R for the one-dimensional reduction. We
consider the observable

R ¼
XN
i¼1

aixi

with ai ∈ R and
P

i ai ¼ 1Ta ¼ 1. We first take the time
derivative and insert Eq. (1), which leads to

_R ¼
XN
i¼1

ai _xi

¼
XN
i¼1

ai

�
FðxiÞ þ

XN
j¼1

wijGðxi; xjÞ
�
:

Wewish to show that if a is chosen correctly, then the right-
hand side can be written, up to second-order corrections, in
terms of R only. To do so, we develop each function around
the observable:

FðxiÞ ¼ FðRÞ þ ðxi − RÞF0ðRÞ þO½ðxi − RÞ2�: ðA1Þ

Thus,

XN
i¼1

aiFðxiÞ ¼ FðRÞ þF0ðRÞ
XN
i¼1

aiðxi −RÞ þO½ðxi −RÞ2�

¼ FðRÞ þO½ðxi −RÞ2�:

This result means that FðxiÞ does not impose any constraint
on a. Now, for the function Gðxi; xjÞ, we develop around
xi ¼ βR and xj ¼ γR:

Gðxi; xjÞ ≈GðβR; γRÞ þ ðxi − βRÞG1ðβR; γRÞ
þ ðxj − γRÞG2ðβR; γRÞ;

where second-order terms have been neglected. Letting
α ¼ P

i;j aiwij, we find that
P

i;jaiwijGðxi; xjÞ is given by
X
i;j

aiwijGðxi; xjÞ ≈ αGðβR; γRÞ

þG1ðβR; γRÞ
X
i;j

aiwijðxi − βRÞ

þG2ðβR; γRÞ
X
i;j

aiwijðxj − γRÞ:

The left-hand side is a function of R only if the linear terms
cancel out exactly, which is possible if and only if

αβR ¼
X
i;j

aiwijxi ¼ xTKa; ðA2aÞ

αγR ¼
X
i;j

aiwijxj ¼ xTWTa: ðA2bÞ

Since R ¼ xTa, we conclude that the last two equations
are satisfied for all x ∈ RN only if a is an eigenvector
of both matrices K and WT , with corresponding eigen-
values βα and γα. Although we cannot solve these two
equations simultaneously, in general, we can enforce that
at least one equation is satisfied exactly. Choosing a as an
eigenvector of WT , we can prove that γ ¼ 1 if the vector a
is normalized 1Ta ¼ 1: If WTa ¼ λa and λ ¼ αγ, then
λ ¼ 1TWTa ¼ aTW1 ¼ aTkin ¼ α, so γ ¼ 1.
We then choose β to best satisfy Eq. (A2a) by minimiz-

ing the mean squared error (MSE):

β� ¼ argmin
β

jjKa − βαajj2; ðA3Þ

where the symbol jj · jj denotes the standard Euclidean
norm. Basic calculus leads to

β� ¼ 1

α

aTKa
aTa

¼ 1

α

P
ia

2
i k

in
iP

ia
2
i

: ðA4Þ

Note that β� is a ratio of weighted averages,

β� ¼ bTkin

aTkin
; ðA5Þ

where b is normalized, 1Tb ¼ 1, and has elements
bi ¼ a2i =

P
N
i¼1 a

2
i . From the construction of b, we deduce

that bmust be similar to a and β� close to 1, which has been
confirmed throughout most of the simulations.

APPENDIX B: DERIVATION OF THE
MULTIDIMENSIONAL CYCLE FORMALISM

For the cycle reduction, we construct n observables,

Rk ¼
XN
i¼1

½ak�ixi; ðB1Þ

with normalized weights 1Taj ¼ 1. Using Eq. (1), we find
that the dynamics of Rk is equal to

_Rk ¼
X
i

½ak�iFðxiÞ þ
X
i;j

½ak�iwijGðxi; xjÞ: ðB2Þ

As for the one-dimensional reduction, one finds thatX
i

½ak�iFðxiÞ ≈ FðRkÞ ðB3Þ
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up to the second order of corrections. We then develop
Gðxi; xjÞ around xi ¼ βkRk and xj ¼ γkRkþ1, which yields

Gðxi; xjÞ ≈GðβkRk; γkRkþ1Þ
þ ðxi − βkRkÞG1ðβkRk; γkRkþ1Þ
þ ðxj − γkRkþ1ÞG2ðβkRk; γkRkþ1Þ:

Using the same arguments as in the one-dimensional
reduction, one can prove that

P
i;j½ak�iwijGðxi; xjÞ≈

αkGðβkRk; γkRkþ1Þ, with αk ¼ aTkin, only if the following
equations are satisfied simultaneously:

xTKak ¼ βkRkαk; ðB4Þ

xTWTak ¼ γkRkþ1αk: ðB5Þ

The second equation is satisfied if

WTak ¼ αkakþ1; ðB6Þ

with γk ¼ 1. After n applications of Eq. (B6), we close the
system with anþ1 ¼ a1, which is the expected result if a1 is
an eigenvector of ðWTÞn.
As for the parameter βk, we minimize the MSE,

β�k ¼ argmin
βk

jjKak − βkαkakjj2; ðB7Þ

and find

βk ¼
1

αk

aTkKak
aTkak

: ðB8Þ

APPENDIX C: COMBINATION FOR
TWO-CYCLE REDUCTION

In this Appendix, we show that, for an adjacency matrix
WT , non-negative and of periodicity 2, the first weight
vector a1 of the reduction is an equipartition of the two
dominant eigenvectors.
For such an adjacency matrix, the Perron-Frobenius

theorem states that WT admits two eigenvalues of modulus
equal to the spectral radius. The eigenvectors satisfy

WTv1 ¼ rv1; WTv2 ¼ −rv2; ðC1Þ

where r is the spectral radius and vi are the eigenvectors
normalized as vTi vi ¼ 1.
Now, let us consider the first weight vector as a linear

combination of the dominant eigenvectors:

a1 ¼
c1v1 þ c2v2

c11Tv1 þ c21Tv2
: ðC2Þ

From transformation (19), we get the equation

a2 ¼
1

α1

c1rv1 − c2rv2
c11Tv1 þ c21Tv2

: ðC3Þ

We want to find c1, c2 such that c1 þ c2 ¼ 1 and S ¼
jaT1a2j is minimized. The former condition is chosen for
definiteness, while the latter condition favors the weight
vectors that represent almost exclusive groups of nodes.
The scalar product is then simply

S ∝ jc21 − c22j;

and it is minimized with c1 ¼ c2 ¼ 1=2.
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