
Reinventing Scheduling for Multicore Systems
Silas Boyd-Wickizer, Robert Morris, M. Frans Kaashoek (MIT)

ABSTRACT

High performance on multicore processors requires that
schedulers be reinvented. Traditional schedulers focus
on keeping execution units busy by assigning each core
a thread to run. Schedulers ought to focus, however, on
high utilization of on-chip memory, rather than of exe-
cution cores, to reduce the impact of expensive DRAM
and remote cache accesses. A challenge in achieving
good use of on-chip memory is that the memory is split
up among the cores in the form of many small caches.
This paper argues for a form of scheduling that assigns
each object and its operations to a specific core, moving
a thread among the cores as it uses different objects.

1 INTRODUCTION

As the number of cores per chip grows, compute cycles
will continue to grow relatively more plentiful than ac-
cess to off-chip memory. To achieve good performance,
applications will need to make efficient use of on-chip
memory [11]. On-chip memory is likely to continue to
come in the form of many small caches associated with
individual cores. A central challenge will be managing
these caches to avoid off-chip memory accesses. This
paper argues that the solution requires a new approach to
scheduling, one that focuses on assigning data objects to
cores’ caches, rather than on assigning threads to cores.

Schedulers in today’s operating systems have the pri-
mary goal of keeping all cores busy executing some
runnable thread. Use of on-chip memory is not explicitly
scheduled: a thread’s use of some data implicitly moves
the data to the local core’s cache. This implicit schedul-
ing of on-chip memory often works well, but can be inef-
ficient for read/write data shared among multiple threads
or for data that is too large to fit in one core’s cache.
For shared read/write data, cache-coherence messages,
which ensure that reads see the latest writes, can satu-
rate system interconnects for some workloads. For large
data sets, the risk is that each datum may be replicated
in many caches, which decreases the amount of distinct
data stored on the chip and may increase the number of
DRAM accesses.

Even single-threaded applications can use memory re-
sources inefficiently. For example, a single threaded ap-
plication might have a working set larger than a single
core’s cache capacity. The application would run faster
with more cache, and the processor may well have spare

cache in other cores, but if the application stays on one
core it can use only a small fraction of the total cache.

We advocate use of a scheduler that assigns data ob-
jects to on-chip caches and migrates threads amongst
cores as they access objects, in a manner similar to
NUMA systems that migrated threads among nodes.
This migration can decrease memory access times, since
it brings threads close to the data they use, as can also de-
crease duplication of data among the many core caches,
allowing more distinct data to be cached. We refer to
a scheduler that moves operations to objects as an O2

scheduler.
This position paper makes the following contributions:

(1) it argues that scheduling at the level of objects and
operations (O2) is important; (2) it presents some chal-
lenges in designing an O2 scheduler; (3) it presents a pre-
liminary design for an O2 scheduler, which we call Core-
Time; and (4) it presents some evidence using a synthetic
workload that even on today’s commodity multicore pro-
cessors an O2 scheduler can improve performance. The
benefits for real workloads are likely to be realized only
as the number of cores per chip grows, and with it the dif-
ference between the total amount of data those cores can
consume and the limited throughput to off-chip memory.

2 O2 SCHEDULING

The pseudocode in Figure 1 gives an example of a work-
load that can perform better under an O2 scheduler than
traditional thread based schedulers. Each thread repeat-
edly looks up a file in a randomly chosen directory. Each
directory is an object and each search is an operation.
Workloads like these can be a bottleneck when running a
Web server [14].

On a system with four cores, a thread-based scheduler
will schedule each thread to a core. Each core will inde-
pendently cache recently used directories. If the work-
ing set is less than the size of one core’s cache, perfor-
mance will be good. If the working set is larger than a
single core’s cache, then all threads will likely spend a
lot of time waiting for off-chip DRAM. This will be true
even if the working set could fit in the total on-chip mem-
ory. Thread clustering [12] will not improve performance
since all threads look up files in the same directories.

An O2 scheduler, on the other hand, will partition the
directories across all the caches to take advantage of the
total on-chip memory. The O2 scheduler will migrate
each search to the core caching the relevant directory. If

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4426231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

thread(void) {
while(1) {

dir = random_dir();
file = random_file();
/* Search dir for file */
for (i = 0; i < dir.n; i++)

if (dir.file[i].name == file)
break;

}
}

main(void) {
start(thread, "thread 0");
start(thread, "thread 1");
start(thread, "thread 2");
start(thread, "thread 3");

}

Figure 1: Pseudo code for an example directory lookup workload. Di-
rectories are objects and searches are operations.

O
ff

−
ch

ip

dir4

dir5

dir6 dir8 dir10

dir7 dir9 dir11

dir12

dir13

dir14

dir15

dir16

dir17

dir18

dir19

dir20

dir1 dir1 dir1 dir1

dir2

dir3

dir2

dir3

dir2

dir3

dir2

dir3

L3

L2

L1

(a) Thread scheduler.

dir20

dir4

dir5

dir6

dir7

dir8

dir9

dir10

dir11

dir1 dir12 dir15 dir18

dir2

dir3

dir13

dir14

dir16

dir17

dir19

(b) O2 scheduler.

Figure 2: Possible cache contents for the directory lookup workload
when using a thread scheduler and an O2 scheduler. Directories in the
“off-chip” box must be loaded from DRAM.

the working set of directories is larger than one core’s
cache and the cost of migration is relatively cheap, the
O2 schedule will provide better performance than the
thread based one.

Figure 2 shows an example of cache contents under
thread scheduling and O2 scheduling for the directory
lookup workload. In this example, the O2 scheduler
stores all the directories on-chip, but the thread scheduler
stores a little more than half of the directories on-chip.

3 CHALLENGES

Developing a practical O2 scheduler for real workloads
(or even simple ones as in Figure 1) faces the following
challenges.

An O2 scheduler must balance both objects and oper-
ations across caches and cores. It should not assign more
objects than fit in a core’s cache or leave some cores idle
while others are saturated.

The scheduler must understand enough about the
workload to schedule it well; it must be able to identify
objects and operations, find sizes of objects, and estimate
execution times of operations.

The scheduler must be able to control how objects are
stored in caches, even though typical multicore hardware
provides little explicit control over where data is cached.

Finally, the scheduler needs an efficient way to migrate
threads.

4 CORETIME

CoreTime is a design for an O2 scheduler that operates
as a run-time library for C programs.

Interface: CoreTime relies on application developers
to specify what must be scheduled. CoreTime provides
two code annotations with which the programmer marks
the beginning and end of an operation. They take one
argument that specifies the address that identifies an ob-
ject.

Figure 3 shows how the annotations could be used in
the example discussed in Section 2. ct start(o) per-
forms a table lookup to determine if the object o is sched-
uled to a specific core. If the table does not contain a
core for o the operation is executed locally, otherwise the
thread is migrated to the core returned by the lookup.
ct start automatically adds an object to the table if
the object is expensive to fetch.

CoreTime annotations provided by developers help
reduce the number of objects CoreTime considers for
scheduling, and we expect that for many applications
they will not be a huge programmer burden. For ex-
ample, most shared memory multiprocessor applications
already use locks (or other synchronization primitives),
to protect manipulations of objects that might be shared.
The code in such a critical section is likely to be a good
candidate for CoreTime annotation too, and compilers
could likely insert them automatically.

CoreTime has an alternative interface around method
invocations, but it restricts threads to migrate at the be-
ginning and end of a method, which is cumbersome. For
example, a programmer might want to migrate only part
of method invocation (e.g., the part that manipulates a
large member of an object.)

Algorithm: CoreTime uses a greedy first fit “cache
packing” algorithm to decide what core to assign an ob-
ject to. Our choice of algorithm is motivated by the ob-
servation that migrating an operation to manipulate some
object o is only beneficial when the cost of migration is
less than the cost of fetching the object from DRAM or a
remote cache. The cache packing algorithm works by as-
signing each object that is expensive to fetch to a cache
with free space. The algorithm executes in Θ(nlogn)
time, where n is the number of objects.

Cache packing might assign several popular objects
to a single core and threads will stall waiting to oper-
ate on the objects. For example, several cores may mi-
grate threads to the same core simultaneously. Our cur-
rent solution is to detect performance pathologies at run-

2

thread(void) {
while(1) {

dir = random_dir();
file = random_file();
/* Search dir for file */
ct_start(dir);
for (i = 0; i < dir.n; i++)

if (dir.file[i].name == file)
break;

ct_end();
}

}

main(void) {
start(thread, "thread 0");
start(thread, "thread 1");
start(thread, "thread 2");
start(thread, "thread 3");

}

Figure 3: Pseudo code from Figure 1 with CoreTime annotations.

time and to improve performance by rearranging objects.
As we describe next, we use hardware event counters to
detect such pathologies.

Runtime monitoring: CoreTime uses AMD event
counters1 to detect objects that are expensive to fetch and
should be assigned to a core. For each object, CoreTime
counts the number of cache misses that occur between
a pair of CoreTime annotations and assumes the misses
are caused by fetching the object. In the example in Fig-
ure 3, if each thread performs lookups on more directo-
ries than fit in a local cache, there will likely be many
cache misses for each directory search. When there are
many cache misses while manipulating an object, Core-
Time will assign the object to a cache by adding it to the
lookup table used by ct start; otherwise, CoreTime
will do nothing and the shared-memory hardware will
manage the object.

CoreTime also uses hardware event counters to detect
when too many operations are assigned to a core or too
many objects are assigned to a cache. CoreTime tracks
the number of idle cycles, loads from DRAM, and loads
from the L2 cache for each core. If a core is rarely idle
or often loads from DRAM, CoreTime will periodically
move a portion of the objects from that core’s cache to
the cache of a core that has more idle cycles and rarely
loads from the L2 cache.

Migration: When a thread calls ct start(o) and
o is assigned to another core CoreTime will migrate the
thread. The core the thread is executing on saves the
thread context in a shared buffer, continues to execute
other threads in its run queue, and sets a flag that the
destination core periodically polls. When the destination
core notices a pending migration it loads the thread con-
text and continues executing. Eventually the thread will

1Other processor have similar event counters.

call ct end, which saves the thread context and sets a
flag that indicates to the original core that the operation is
complete and the thread is ready to run on another core.

Implementation: CoreTime runs on Linux, but could
be ported to other similar operating systems. Core-
Time creates one pthread per core, tied to the
core with sched setaffinity(), and sets the pro-
cess scheduling priority to the highest possible using
setpriority() to avoid being descheduled by the
kernel. CoreTime provides cooperative threading within
each core’s pthread.

5 PRELIMINARY EVIDENCE

This section explores the performance of CoreTime with
a synthetic directory workload on a 16-core AMD sys-
tem.

Hardware: The AMD system has four quad-core
2 GHz Opteron chips connected by a square intercon-
nect. The interconnect carries cache coherence broad-
casts to locate and invalidate data, as well as point-to-
point transfers of cache lines. Each core has its own L1
and L2 cache, and four cores on each chip share an L3
cache. The latencies of an L1 access, L2 access, and
L3 access are 3 cycles, 14 cycles and 75 cycles respec-
tively. Remote fetch latencies vary from 127 cycles to
fetch from the cache of a core on the same chip to 336
cycles to fetch from the most distant DRAM bank. The
measured cost of migration in CoreTime is 2000 cycles.

Setup: We measured the performance of CoreTime
when applied to the file system using two directory
lookup benchmarks. The file system is derived from the
EFSL FAT implementation [8]. We modified EFSL to
use an in-memory image rather than disk operations, to
not use a buffer cache, and to have a higher-performance
inner loop for file name lookup. We focused on direc-
tory search, adding per-directory spin locks and Core-
Time annotations. Each directory is a CoreTime object
and each file name lookup is an CoreTime operation. The
workloads we focused on involved a thread on each core
repeatedly looking up a randomly chosen file from a ran-
domly chosen directory. Each directory contains 1,000
entries, and each entry uses 32 bytes of memory. Core-
Time could be expected to improve the performance of
these workloads when the total set of directory entries is
large enough that it does not fit in a single core’s cache.

Result: Figure 4(a) shows the performance of the file
system benchmark when it randomly selects a file name
to resolve using a uniform distribution. The number of
directories varies along the x-axis, which indicates the
total size of all directory contents. The y-axis indicates
the total number of name resolutions completed per sec-
ond.

At the extreme left of Figure 4(a) both with and with-
out CoreTime has relatively lower performance. The rea-

3

With CoreTime

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5000 10000 15000 20000

1
0

0
0

s
o

f
re

so
lu

ti
o

n
s

p
er

 s
ec

o
n

d

Total data size (Kilobytes)

Without CoreTime

 0

(a) File system results for uniform directory popularity.

With CoreTime

 500

 1000

 1500

 2000

 2500

 3000

 0 5000 10000 15000 20000

1
0

0
0

s
o

f
re

so
lu

ti
o

n
s

p
er

 s
ec

o
n

d

Total data size (Kilobytes)

Without CoreTime

 0

(b) File system results for oscillated directory popularity.

Figure 4: File system benchmark results.

son is that there are fewer than 16 directories, which re-
stricts the degree of parallel speedup. The threads have
to wait for locks both with and without CoreTime.

For total data sizes between about 512 Kbytes and
2 Mbytes, a complete copy of the entire set of directories
can fit in each of the four AMD chips’ L3 caches. With-
out CoreTime and with CoreTime perform well, since all
lookups operate out of locally cached data.

Once the total amount of data is noticeably larger than
2 Mbytes, a complete copy no longer fits in each of the
AMD chips’ L3 caches and the performance with Core-
Time is between two to three times faster than without
CoreTime. CoreTime automatically assigns directories
to caches when it detects cache misses during lookups.
Without CoreTime, the cores must read directory con-
tents from DRAM or remote caches. With CoreTime,
there is no duplication of data in the cache and each
lookup is executed on the core that holds the directory in
its cache. The total amount of cache space is 16 Mbytes
(four 2 Mbyte L3 caches and 16 512 Kbyte L2 caches),
so CoreTime can avoid using DRAM until there is more
than 16 Mbytes of data. The performance goes down
before that point as more data must be stored in the L3
rather than L2.

Figure 4(b) presents the results when number of di-
rectories accessed oscillates from the value represented

on the x-axis to a sixteenth of that value. We chose this
benchmark to demonstrate the ability CoreTime to rebal-
ance objects to achieve good performance. CoreTime is
able to rebalance directories across caches and performs
more than twice as fast for most data sizes than without
CoreTime.

6 DISCUSSION

Although the results from the synthetic benchmark in the
previous section are encouraging, there are many open
questions.

6.1 Future Multicores
On the AMD system, CoreTime improves the perfor-
mance of workloads whose bottleneck is reading large
objects (e.g. scanning directory contents). The improve-
ment possible with CoreTime for other workloads is lim-
ited by the following properties of the AMD hardware:
the high off-chip memory bandwidth, the high cost to
migrate a thread, the small aggregate size of on-chip
memory, and the limited ability of the software to con-
trol hardware caches. We expect future multicores to
adjust some of these properties in favor of O2 schedul-
ing. Future multicores will likely have a larger ratio of
compute cycles to off-chip memory bandwidth and have
larger per-core caches. Furthermore, the increasing num-
ber of CPU instructions that allow software to control
caching [1] is evidence that chip manufactures recognize
the importance of allowing software to control caching
behavior. These trends will result in processors where
O2 scheduling might be attractive for a larger number of
workloads.

The evolution of multicore hardware design may have
a substantial impact on the design of O2 schedulers. Fu-
ture processors might have heterogeneous cores, which
would complicate the design of a O2 scheduler. Proces-
sors might not have global cache-coherent memory and
might instead rely on software to manage placement of
objects. If this were the case then the O2 scheduler must
be involved in this placement. Also if active messages
were supported by hardware this could reduce the over-
head of migration.

6.2 O2 Improvements
The O2 scheduling algorithm presented in Section 4 is
preliminary. For example, it is likely that some work-
loads would benefit from object clustering: if one thread
or operation uses two objects simultaneously then it
might be best to place both objects in the same cache,
if they fit.

There are also unexplored tradeoffs in the O2 schedul-
ing algorithm. For example, sometimes it is better to
replicate read-only objects and others times it might be
better to schedule more distinct objects. Working sets

4

larger than the total on-chip memory present another
interesting tradeoff. In these situations O2 schedulers
might want to use a cache replacement policy that, for
example, stores the objects accessed most frequently on-
chip and stores the less frequently accessed objects off-
chip.

To be able use an O2 scheduler as the default system-
wide scheduler, the O2 scheduler must track which pro-
cess owns an object and its operations. With this infor-
mation the O2 scheduler could implement priorities and
fairness. Of course if there are user-level and kernel-level
O2 schedulers some interface must exist to ensure overall
good performance.

Compiler support might reduce the work for program-
mers and provide a O2 scheduler with more information.
For example, the compiler could add CoreTime-like an-
notations automatically using relationships between ba-
sic blocks. Compilers might also improve the perfor-
mance of O2 schedulers by, for example, not loading
from and storing to the stack between ct start and
ct end. This will decrease thread migration latencies,
because a thread’s stack will not have to migrate with
the thread. Compilers might also infer object clusters
statically and convey this information to the runtime to
improve performance. In high-level languages, such as
Java and Python, it might be possible to implement O2

scheduling transparently to the developer.

7 RELATED WORK

Most previous multiprocessor schedulers solve a vari-
ation of the multiprocessor scheduling problem, which
can be stated as “How can a set of threads T be exe-
cuted on a set of P processors subject to some optimiz-
ing criteria?” Scheduling techniques that improve the
use of memory resources often use thread working sets
as an optimizing criteria. For example, thread cluster-
ing algorithms [12, 13] try to improve performance by
co-locating threads that have similar working sets to the
same core, which can reduce interconnect traffic. Chen
et al. [6] investigate two schedulers that attempt to sched-
ule threads that share a working set on the same core so
that they share the core’s cache. Cho and Jin [7] inves-
tigate page migration algorithms such as used in Cellu-
lar Disco for achieving better cache locality on multicore
processors. Bellosa and Steckermeiser [3] use cache-
miss counters to do better thread scheduling.

CoreTime dynamically decides to migrate an oper-
ation to a different core, which is related to compu-
tation migration in distributed-shared memory systems
(e.g., [4, 10]) and object-based parallel programming
language systems for NUMA systems (e.g., [2, 5, 9]).
These systems use simple heuristics that do not take ad-
vantage of hardware counters, and do not consider the
technique as part of a general scheduling problem.

8 CONCLUSIONS

This paper has argued that multicore processors pose
unique scheduling problems that require an approach that
utilizes the large, but distributed on-chip memory well.
We advocated an approach based on scheduling objects
and operations to caches and cores, rather than a tra-
ditional scheduler that optimizes for CPU cycle utiliza-
tion.

REFERENCES
[1] AMD. Software Optimization Guide for AMD Family 10h Pro-

cessors, February 2009.

[2] H. E. Bal, R. Bhoedjang, R. Hofman, C. J. a nd Koen Langen-
doen, T. Rühl, and M. F. Kaashoek. Performance evaluation of the
Orca shared-object system. ACM Trans. Comput. Syst., 16(1):1–
40, 1998.

[3] F. Bellosa and M. Steckermeier. The performance implications of
locality information usage in shared-me mory multiprocessors. J.
Parallel Distrib. Comput., 37(1):113–121, 1996.

[4] M. C. Carlisle and A. Rogers. Software caching and computation
migration in Olden. In Proceedings of the 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
1995.

[5] R. Chandra, A. Gupta, and J. L. Hennessy. Cool: An object-
based language for parallel programming. Computer, 27(8):13–
26, 1994.

[6] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki,
G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry,
and C. Wilkerson. Scheduling Threads for Constructive Cache
Sharing on CMPs. In Proceedings of the 19th ACM Symposium
on Parallel Algorithms and Architectures, pages 105–115. ACM,
2007.

[7] S. Cho and L. Jin. Managing distributed, shared l2 caches through
os-level page allocation. In MICRO 39: Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 455–468, 2006.

[8] EFSL. http://efsl.be.

[9] R. J. Fowler and L. I. Kontothanassis. Improving processor and
cache locality in fine-grain parallel comput ations using object-
affinity scheduling and continuation passing. Technical Report
TR411, 1992.

[10] W. C. Hsieh, M. F. Kaashoek, and W. E. Weihl. Dynamic com-
putation migration in dsm systems. In Supercomputing ’96: Pro-
ceedings of the 1996 ACM/IEEE conference on Supercomputing
(CDROM), Washington, DC, USA, 1996.

[11] S. E. Perl and R. L. Sites. Studies of windows nt performance
using dynamic execution traces. In Proc. of OSDI, pages 169–
183, 1996.

[12] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-
aware scheduling on SMP-CMP-SMT multiprocessors. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems, pages 47–58, New York, NY, USA, 2007.
ACM.

[13] R. Thekkath and S. J. Eggers. Impact of sharing-based thread
placement on multithreaded architectures. In In Proceedings of
the 21st Annual International Symposium on Computer Architec-
ture, pages 176–186, 1994.

[14] B. Veal and A. Foong. Performance scalability of a multi-core
web server. In Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for networking and communications systems, pages
57–66, New York, NY, USA, 2007. ACM.

5

