1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
10	
17	
18	
19	
20	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 7 18 9 20 21 22 3 24 25 26 27 28 9 30 1	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 32 33 34 35 36 37 38	
32	
33	
34 25	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 51	
51 52	
5∠ 53	
53 54	
55	
56	
57	
58	
59	
60	

1	Research Letters
2	Study of mesophilic Aeromonas salmonicida A527 strain sheds light on the species lifestyles
3	and taxonomic dilemma
4	
5	Antony T. Vincent ^{1,2,3,#} , François D. Rouleau ^{1,2,3} , Sylvain Moineau ^{2,4,5} and Steve J. Charette ^{1,2,3}
6	
7	1. Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC,
8	Canada, G1V 0A6
9	2. Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de
10	génie, Université Laval, Quebec City, QC, Canada, G1V 0A6
11	3. Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec
12	(IUCPQ), Quebec City, QC, Canada, G1V 4G5
13	4. Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université
14	Laval, Quebec City, QC, Canada, G1V 0A6
15	5. Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire,
16	Université Laval, Quebec City, QC, Canada, G1V 0A6
17	
18	[#] To whom correspondence should be addressed: Antony Vincent
19	antony.vincent.1@ulaval.ca; Telephone: 1-418-656-2131, ext. 8012; Fax: 1-418-656-7176
20	Institut de Biologie Intégrative et des Systèmes (IB), Pavillon Charles-Eugène-Marchand, 1030
21	avenue de la Médecine, Université Laval, Quebec City, QC, Canada, G1V 0A6
22	
23	Keywords: Aeromonas salmonicida, taxonomy, insertion sequences, lifestyle, mesophile,
24	psychrophile

25 ABSTRACT

The Gram-negative bacterium Aeromonas salmonicida contains five subspecies: salmonicida. smithia, achromogenes, masoucida and pectinolytica. Pectinolytica is a mesophilic subspecies with the ability to thrive at a wide range of temperatures, including 37°C, while the four other subspecies are psychrophilic, thus restricted to lower temperatures. The psychrophilic subspecies are known to infect a wide range of fishes. However, there is no evidence of pathogenicity for the mesophilic subspecies *pectinolytica*. Study of the differences between the mesophilic and psychrophilic subspecies is hampered by the lack of completely sequenced and closed genomes from the mesophilic subspecies. A previous study reported that insertion sequences, which can induce genomic rearrangements at temperatures around 25°C, could be one of the determinants explaining the differences in lifestyle (mesophilic or psychrophilic) between the subspecies. In this study, the genome of mesophilic strain A527 of A. salmonicida was sequenced, closed and analyzed to investigate the mesophilic/psychrophilic discrepancy. This reference genome supports the hypothesis that insertion sequences are major determinants of the lifestyle differences between the A. salmonicida subspecies. Moreover, the phylogenetic analysis done to position strain A527 within the taxonomy raises an issue regarding the intraspecies structure of A. salmonicida.

INTRODUCTION

The first mention of the Gram-negative bacterium *Aeromonas salmonicida* was in 1894 (Emmerich and Weibel 1894). It was reported to be the subspecies *salmonicida* (named *Bacillus der Forellenseuche* at that time), causing the fish disease furunculosis. As detailed elsewhere (Austin and Austin 2016), the taxonomic positioning and the name of the bacterium became confusing over time, due to some articles that were written using different names to describe the bacterium, and in other research, the creation of novel bacterial families, including *Aeromonadaceae* (Colwell, Macdonell and De 1986).

Currently, there are five officially recognized A. salmonicida subspecies: salmonicida, smithia, achromogenes, masoucida, and pectinolytica (Martin-Carnahan and Joseph 2005). The subspecies *salmonicida* is considered to be the usual etiologic agent of furunculosis in salmonids, while the four other subspecies are designated as "atypical" according to their phenotypic and biochemical differences and their ability to infect a wide range of fishes (Martin-Carnahan and Joseph 2005; Dallaire-Dufresne et al. 2014; Austin and Austin 2016). Strains of the subspecies salmonicida, smithia, achromogenes and masoucida are psychrophilic and thus, their growth is restricted to temperatures around 25°C (Austin and Austin 2016).

In 2000, the *pectinolytica* subspecies was isolated from a polluted river (Matanza River, Argentina) but it does not have any known (fish) host (Pavan *et al.* 2000) and there is no record of its pathogenicity. This subspecies, by having the ability to grow well at 37°C, is considered mesophilic and challenged the current knowledge on *A. salmonicida*, thereby suggesting a greater diversity.

More recently, a study reported the characterization of three Indian mesophilic *A. salmonicida* strains (Y47, Y567 and Y577) from undetermined subspecies and suggested that
insertion sequences could be major determinants in the temperature-related lifestyle dichotomy

between species of A. salmonicida (Vincent et al. 2016b). This hypothesis is mainly due to the fact that genomes from mesophilic strains seem to have fewer insertion sequences and that their repertoire is different from the one of psychrophilic strains. Several studies reported experimental evidence that insertion sequences in A. salmonicida can be the cause of major genomic disturbance events when the strains are grown at temperatures above their optimal growth temperature. For example, growing A. salmonicida subsp. salmonicida at temperatures around 25°C resulted in the disruption of genes (Gustafson, Chu and Trust 1994), the loss of the type three secretion system (TTSS) locus (Daher *et al.* 2011), the loss of the small pAsal1 plasmid (Tanaka et al. 2012), and reshaping of the pAsa4 plasmids (Tanaka et al. 2016). However, complete and closed genomic sequences are only available for reference strain A449, of the salmonicida subspecies, (Reith et al. 2008) and for three likely psychrophilic strains [S44 (BioSample: SAMN07276874), S68 (BioSample: SAMN07276873) and S121 (BioSample: SAMN07276469)]. The taxonomy for these three strains is unclear, which limits genomic interpretation and analysis.

In this study, the complete genome of the mesophilic strain *A. salmonicida* A527 was
sequenced, closed and analyzed to shed light on the unusual lifestyle dichotomy of the species.
The genomic information gained herein also raised a taxonomic issue about the subspecies
delineation of *A. salmonicida*.

MATERIAL AND METHODS

A. salmonicida strain A527 was isolated in a market in Mumbai (India) from a dead giant river prawn (Macrobrachium rosenbergii) (Nagar, Shashidhar and Bandekar 2011). As indicated previously (Nagar, Shashidhar and Bandekar 2011), 25 g of the prawn was added to 225 mL of tryptic soya broth, homogenized, and incubated at 30°C for 24 h. The resulting culture was then plated on starch ampicillin agar and incubated again at 30°C for 24 h. A single colony that showed typical Aeromonas characteristics was picked at random and re-streaked as above. A first taxonomic assignment was made by sequencing the 16S rRNA gene and then by searching homologous sequences in GenBank database. Finally, a pulsed field gel electrophoresis was performed to obtain a DNA fingerprint of the strain and to compare it with reference strains of various Aeromonas species (Nagar, Shashidhar and Bandekar 2011).

Bacterial samples were recovered from frozen stocks at -80° C, plated on TSA, and incubated at 18°C for 48 h before being used in subsequent analyses. The growth kinetics were realized at 18°C and 37°C in a Tecan Infinite F200 PRO microplate reader (Tecan, USA) as already described elsewhere (Vincent et al. 2016b). Phenotypic tests were performed using API 20E strips (bioMérieux) as described by the manufacturer. The strips were incubated for 72 h at 18°C and analyzed. The tests for motility, production of pigments, catalase, oxidase, utilization of gluconate, haemolytic capacity, degradation of casein and tributyrin, growth on MacConkey agar and finally Gram/KOH were also performed as described elsewhere (Gerhardt 1994; Cowan et al. 2003).

104The DNA was extracted from strain A527 with phenol and chloroform, following a105protocol called *Extracting DNA Using Phenol-Chloroform*, provided by Pacific Biosciences106(http://www.pacb.com). The SMRT long-reads technology from PacBio was chosen to generate a107high quality assembly able to bypass the large, repeated elements, such as insertion sequences

Page 7 of 57

FEMS Microbiology Letters

	108	and ribosomal operons (Vincent et al. 2014a). PacBio reads were processed and de novo
	109	assembled with the RS_HGAP_Assembly.3 pipeline as implemented in SMRT Analysis 2.3.0
	110	[https://github.com/PacificBiosciences/SMRT-Analysis/wiki/SMRT-Analysis-Software-
)	111	Installation-v2.3.0]. The tool Circlator version 1.5.1 (Hunt et al. 2015) was used to circularize the
	112	chromosome sequence. The resulting sequence was annotated using the Prokaryotic Genome
	113	Annotation Pipeline (PGAP) of the NCBI and was deposited in GenBank under the accession
	114	number CP022550. The insertion sequences contained in the A. salmonicida A527 genome were
)	115	annotated using ISsaga (Varani et al. 2011) and manually curated.
	116	The pan-genome of all available A. salmonicida genomes (a total of 32, including the
	117	genome of strain A527 and at least one representative of each of the five official subspecies), in
	118	addition to representatives of all other Aeromonas species (a total of 28), was evaluated using
))	119	GET_HOMOLOGUES version 20170609 (Contreras-Moreira and Vinuesa 2013) (see Supp. Fig.
	120	S1 and Table S1). The sequences of the soft core genes (genes that are present in more than 95%
•	121	of taxa) were aligned by codons with TranslatorX version 1.1 (Abascal, Zardoya and Telford
, ,	122	2010), and filtered using BMGE version 1.12 (Criscuolo and Gribaldo 2010). Finally, the
;)	123	resulting 2,044 sequences (after removing the paralogous genes) were concatenated into a
	124	partitioned supermatrix with 882,290 positions. The phylogenetic analysis itself was performed
-	125	with IQ-TREE version 1.6.beta2, where the best-fit model was found for each partition by
) ; ,	126	performing 10,000 ultrafast bootstraps (UFBoot) (Nguyen et al. 2015). The resulting tree was
;	127	visualized and midpoint-rooted by FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree).
)	128	Average Nucleotide Identity (ANI) values were obtained with pyani
	129	(https://github.com/widdowquinn/pyani).
	130	The tools TXSScan (Abby et al. 2016) and PHASTER (Arndt et al. 2016) were used to

131 predict secretion systems and prophage sequences, respectively. The antibiotic resistance genes

2		
- 3 4	132	were predicted by the Resistance Gene Identifier (RGI) available online through the
5 6	133	Comprehensive Antibiotic Resistance Database (CARD) (Jia et al. 2016). Finally, the presence of
7 8 9	134	CRISPR clusters was assessed using CRISPRFinder online (Grissa, Vergnaud and Pourcel 2007).
10 11	135	
12 13	136	RESULTS AND DISCUSSION
14 15 16	137	General features
17 18	138	A. salmonicida strain A527 was isolated from a dead giant river prawn (Macrobrachium
19 20 21	139	rosenbergii) that showed no sign of disease during a sampling campaign for a study that
21 22 23	140	evaluated the presence of Aeromonas bacteria at various food retailers in Mumbai (India) (Nagar,
24 25	141	Shashidhar and Bandekar 2011). It is unclear if <i>M. rosenbergii</i> is A527's host, or if it was
26 27 28	142	contaminated with the A. salmonicida strain. Therefore, the host is considered as unknown.
20 29 30	143	Given the reported mesophilic/psychrophilic lifestyle dichotomy present in the A. salmonicida
31 32	144	species (Vincent et al. 2016b), A527's capacity to grow at 18°C and 37°C was tested.
33 34 35	145	Predictably, as the strain was initially recovered at 30°C (Nagar, Shashidhar and Bandekar 2011),
36 37	146	A527 grew efficiently at both temperatures (Fig. 1).
38 39	147	A. salmonicida strain A527 shares some signature metabolic activities with other
40 41 42	148	mesophilic A. salmonicida strains (see Supp. Fig. S2), such as the production of acid from
43 44	149	sorbitol and arabinose, and the presence of active L-lysine decarboxylase and β -galactosidase.
45 46	150	Both A527 and strain 34mel ^T of the subspecies <i>pectinolytica</i> were cytochrome c oxidase positive,
47 48 49	151	as are the psychrophilic A. salmonicida strains [NBRC 13784 ^T (subspecies masoucida) and 01-
50 51	152	B526 (subspecies salmonicida)], meaning that they can reduce molecules of oxygen to water in
52 53 54	153	the aerobic respiratory chain (Iwata 1998). Other mesophilic Indian strains Y577, Y567 and Y47
54 55 56	154	are cytochrome c oxidase negative. Notwithstanding, a clustering based on phenotypes permitted
57 58	155	the generation of two distinct groups (see Supp. Fig. S2): the first containing the psychrophilic
59 60		

1

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
10	
14	
15	
16	
17	
18	
19	
20	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
57	
58	
59	

60

subspecies *masoucida* and *salmonicida*, and a second group with the mesophilic Indian *A. salmonicida* strains (A527, Y47, Y567 and Y577) and the mesophilic subspecies *pectinolytica*.
However, it is actually impossible to assign a known subspecies to the strain A527 based on the
35 tests performed in the present study.

160 Since no closed genome from a mesophilic strain of A. salmonicida was available, the 161 A527 genome was sequenced by PacBio, which led to the assembly of a single contig. This 162 4,806,250 bp-long genome has a guanine-cytosine (GC) content of 58.66%. These values are 163 close to the ones reported for the four other A. salmonicida closed genomes (see Supplementary 164 Table S2). However, a comparison between these genomes showed major differences within their 165 architecture (Fig. 2). An investigation of the A527 genome using TXSScan (Abby et al. 2016) 166 predicted genes coding for proteins involved in putative complete Type I and II secretion 167 systems, and Type IV pilus. The same tool also predicted the mandatory genes to produce 168 flagella.

169 Recent studies reported antibiotic resistance as a major issue for treating A. salmonicida 170 subsp. salmonicida infections (Vincent et al. 2014b, 2016a; Piotrowska and Popowska 2015; 171 Trudel et al. 2016). However, little is known about the antibiotic resistance of atypical 172 A. salmonicida strains (L'Abée-Lund and Sørum 2001; Casas et al. 2005). The genome of 173 A. salmonicida strain A527 possesses several genes that code for efflux pumps putatively 174 involved in antibiotic resistance (see Supp. Fig. S3). PHASTER (Arndt et al. 2016) predicted a 175 complete prophage in the genome of A527 (including *attL* and *attR* sequences). Three distinct 176 prophages were already reported in genomes of strains of A. salmonicida subsp. salmonicida. 177 One of them, named Prophage 3 (Emond-Rheault et al. 2015), exhibits sequelog sequences 178 (Varshavsky 2004) with the prophage found in A527. No CRISPR was found in the genome of 179 A527.

1 2		
- 3 4	180	
5 6	181	Phylogenetic analysis
7 8 9	182	The phylogenetic position of this new strain was assessed by molecular phylogeny. Strain
10 11	183	A527 clustered along with other mesophilic strains (<i>pectinolytica</i> 34mel ^T , Y577, Y567 and Y47)
12 13	184	(Fig. 3). The positions of strains of the subspecies salmonicida, smithia, achromogenes and
14 15 16	185	masoucida respect the previously proposed topology (Vincent et al. 2016b; Vincent and Charette
17 18	186	2017). The two newly published A. salmonicida subsp. salmonicida Chinese strains BG and YK
19 20 21	187	(Long et al. 2016) were basal to those from Canada and Europe. Strains S44, S68 and S121, for
21 22 23	188	which the genomes are closed, form a clade with the subspecies masoucida. However, there is
24 25	189	currently no additional information on these latter strains, preventing conclusions about their
26 27 28 29 30 31 32 33 34 35	190	phylogenetic position.
	191	We correlated the phylogenetic positions with the average nucleotide identity (ANI), a
	192	measure that helps to define species boundaries (Richter and Rosselló-Móra 2009). It was
	193	previously estimated that an ANI cutoff value of 96% is appropriate for Aeromonas species
36 37	194	delineations (Colston et al. 2014). The present analysis showed, as expected, that all
38 39 40	195	A. salmonicida strains belong to the same species and that the psychrophilic and mesophilic
40 41 42	196	strains form two distinct groups, as suggested by the clustering based on the biochemical tests
43 44	197	(see Supp. Fig. S2). In addition, all psychrophilic strains share high ANI values, while mesophilic
45 46 47	198	strains are much more distant, even between each other (Fig. 3). For example, strain A527 shares
48 49	199	ANI values of 0.974 and 0.975 with strain 34mel ^T of <i>pectinolytica</i> and Y577, respectively, and
50 51	200	0.970 with A449, of the subspecies salmonicida.
52 53 54	201	The fact that the ANIs between the genomes of A527 and its closest relatives are almost
55 56	202	as distant as with a strain of a psychrophilic subspecies such as salmonicida suggest that strain

A527 should possibly be considered to be a member of a new subspecies. However, this

FEMS Microbiology Letters

2 3 4	204	reasoning could also be applied to Y577, Y567 and Y47, which are also distant. In correlation				
5 6 7 8 9 10 11	205	with the ANI values, all the mesophilic strains harbour long branch lengths compared to the				
	206	psychrophilic strains (see Supp. Fig. S4). The fact that the psychrophilic strains have short branch				
	207	lengths is of interest, because the genome architecture of reference strain A449 of subspecies				
12 13 14	208	salmonicida was shown to be divergent from those of strains S44, S68 and S121 (Fig. 2).				
14 15 16	209	Taken altogether, the above data presents a taxonomic dilemma, specifically about the				
$\begin{array}{c} 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 4\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 90\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 45\\ 46\\ 47\\ 46\\ 47\\ 46\\ 47\\ 46\\ 47\\ 46\\ 47\\ 46\\ 47\\ 46\\ 47\\ 46\\ 46\\ 47\\ 46\\ 46\\ 47\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46$	210	intraspecies structure of A. salmonicida (Austin 2011; Austin and Austin 2016). Since the				
	211	psychrophilic subspecies salmonicida, smithia, achromogenes and masoucida are considered				
	212	taxonomically different despite their high ANI values (~99%), each mesophilic strain should				
	213	perhaps also be considered to be a different subspecies, as they are even more divergent.				
	214	Although this could be due to a sampling bias, only one member of the many putative new				
	215	subspecies has been isolated, which seems unusual.				
	216	As shown in Figure 3, there is a clear sequencing bias towards <i>A. salmonicida</i> subsp.				
	217	salmonicida, mainly given its recurrent presence in fish farms (Dallaire-Dufresne et al. 2014).				
	218	More genomes from strains belonging to other subspecies should be sequenced to learn about				
	219	their genomic signatures. We now know that some strains of the species salmonicida are				
	220	mesophilic. This opens the door to sample environments that may previously not have been				
	221	considered likely locations for A. salmonicida.				
	222	The level of diversity and heterogeneity in the biochemical characteristics of the				
47 48 49	223	A. salmonicida strains is not an exact reflection of the genomic diversity and heterogeneity. As				
50 51	224	indicated above, only a few features can distinctively separate psychrophilic and mesophilic				
52 53 54	225	A. salmonicida isolates. However, analysis of other mesophilic A. salmonicida strains is required				
55 56	226	to robustly assign subspecies and biochemical signatures to them, as was done for the				
57 58 59	227	psychrophilic A. salmonicida subspecies (Austin, McIntosh and Austin 1989). For all of these				
60		10				

reasons, strain A527 has not yet been associated with a subspecies. The classification scheme for A. salmonicida must be clarified before considering defining new subspecies.

6

Investigation of the insertion sequences

Obtaining the complete closed genome of strain A527 was an opportunity to substantiate the reported trend that genomes from mesophilic A. salmonicida strains harbour fewer insertion sequences than those from psychrophilic subspecies, and that their insertion sequence repertoire is divergent (Vincent et al. 2016b). The genome of A527 was predicted to harbour 74 complete and 21 fragments of insertion sequences distributed in 19 types and 10 families (Table 1). These high numbers are close to those of well-annotated strain A449 of the subspecies salmonicida, which has 88 complete and 14 partial insertion sequences (Reith *et al.* 2008). According to the ISfinder database (Siguier *et al.* 2006), several predicted insertion sequences in A527 were previously found in A. salmonicida (Table 1). However, there is no mention regarding the strains or even the subspecies in the database. Although A527's genome includes a high number of insertion sequences, as in the genome of the A449 strain, its repertoire is different. Of the 19 types in A527, only ISAhy2 (annotated as ISAS4 in A449) and ISAs19 (not annotated) are found in the genome of A449. It is interesting to note that ISAs18, ISAs23, ISAs24, ISAs30 and ISAs31 were listed to be specific to mesophilic A. salmonicida (Vincent et al. 2016b).

Although the insertion sequences are not directly annotated in the genomes of S44, S68 and S121 as they are for A. salmonicida subsp. salmonicida A449, we investigated their presence and those shared with A527's genome. Again, only a few shared insertion sequences were found. In strain S44, insertion sequences IS5, ISKpn3 and ISEc35 were found to be present on large plasmid pS44-1 (NZ CP022176.1). Interestingly, three ISKpn3s are predicted to be present in A527's genome. This insertion sequence was originally found in Klebsiella pneumoniae plasmid

FEMS Microbiology Letters

pRDDHA (Verdet et al. 2006) and more recently in the large plasmid pAsa4c of A. salmonicida subsp. salmonicida strain JF2267 (Tanaka et al. 2016). Notably, several freestanding transposase genes, not clearly associated with known insertion sequences, were found in A527's genome. This highlights that putative new insertion sequences could eventually be found in the A527 genome and that the ISfinder database should continue to be updated (Siguier *et al.* 2006). Insertion sequences can drive novelty in terms of adaptation and genome plasticity (Vandecraen *et al.* 2017) and were already known to cause major genomic alterations in A. salmonicida, such as plasmid reshaping (Tanaka et al. 2016, 2017) and the disruption of vapA (Gustafson, Chu and Trust 1994), a gene coding for a protein involved in the A-layer virulence factor (Chu et al. 1991). A. salmonicida genomes display high rearrangement capabilities while having a slow mutation rate for coding sequences (Fig. 2 and Supp. Fig. S4). Insertion sequences could be one of the determinants causing this asymmetric evolution by driving recombination. Also, it is known that insertion sequences can modify regulation/transcription of genes (Vandecraen et al. 2017) and further studies should assess if these elements are involved in similar alterations in A. salmonicida. Conclusion This study describes the first complete sequenced and closed genome of a mesophilic A. salmonicida strain, as a reference to investigate the dichotomy between psychrophilic and

271 mesophilic *A. salmonicida* subspecies. As already suggested by another study (Vincent *et al.*

272 2016b), the content in insertion sequences is a major difference between the genomes of

273 mesophilic and psychrophilic *A. salmonicida* strains, and further studies are needed to assess if

these elements are involved in creating the lifestyle differences between psychrophilic and

275 mesophilic *A. salmonicida* subspecies. To get a more complete picture of the evolution of

2 3 4	276	A. salmonicida and to help clarify the taxonomy of this species, reference closed genomes for
5 6	277	subspecies achromogenes, smithia, masoucida and pectinolytica are required.
7 8 9	278	
10 11	279	FUNDING
12 13 14	280	This work was supported by the Ministère de l'agriculture, des pêcheries et de l'alimentation du
14 15 16	281	Québec and by the Natural Sciences and Engineering Research Council of Canada (NSERC)
17 18	282	(RGPIN-2014-04595). ATV received an Alexander Graham Bell Canada Graduate Scholarship
19 20 21	283	from NSERC. SJC is a research scholar of the Fonds de Recherche du Québec - Santé (FRQS).
22 23	284	SM holds a Tier 1 Canada Research Chair in Bacteriophages.
24 25 26	285	
20 27 28	286	ACKNOWLEDGMENTS
29 30	287	We are grateful to Vandan Nagar (Bhabha Atomic Research Centre, India) for the A527
31 32 33	288	isolate. We thank Denise Tremblay for her helpful advice.
34 35		
36 37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49		
50 51		
52		
53 54		
54 55		
56 57		
57 58		
59		
60		

1		
2 3	200	
4	289	REFERENCES
5 6	290	Abascal F, Zardoya R, Telford MJ. TranslatorX: Multiple alignment of nucleotide sequences
7	291	guided by amino acid translations. <i>Nucleic Acids Res</i> 2010; 38 :W7–13.
8	292	Abby SS, Cury J, Guglielmini J et al. Identification of protein secretion systems in bacterial
9	293	genomes. Sci Rep 2016;6:23080.
10	294	Arndt D, Grant JR, Marcu A et al. PHASTER: a better, faster version of the PHAST phage
11 12	295	search tool. Nucleic Acids Res 2016;44:W16–21.
13	296	Austin B, Austin DA. Aeromonadaceae Representative (Aeromonas salmonicida). In: Austin B,
14	297	Austin DA (eds.). Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Cham:
15	298	Springer International Publishing, 2016, 215–321.
16	299	Austin B. Taxonomy of bacterial fish pathogens. Vet Res 2011;42:20
17 18	300	Austin DA, McIntosh D, Austin B. Taxonomy of Fish Associated Aeromonas spp., with the
19	301	Description of Aeromonas salmonicida subsp. smithia subsp. nov. Syst Appl Microbiol
20	302	1989;11:277–90.
21	303	Casas C, Anderson EC, Ojo KK et al. Characterization of pRAS1-like plasmids from atypical
22	304	North American psychrophilic Aeromonas salmonicida. FEMS Microbiol Lett 2005;242:59-
23 24	305	63.
25	306	Chu S, Cavaignac S, Feutrier J et al. Structure of the tetragonal surface virulence array protein
26	307	and gene of Aeromonas salmonicida. J Biol Chem 1991;266:15258-65.
27	308	Colston SM, Fullmer MS, Beka L et al. Bioinformatic Genome Comparisons for Taxonomic and
28	309	Phylogenetic Assignments Using <i>Aeromonas</i> as a Test Case. <i>MBio</i> 2014;5:1–13.
29 30	310	Colwell RR, Macdonell MT, De J. Proposal to Recognize the Family Aeromonadaceae fam. nov.
31	311	Int J Microbiol 1986; 36 :473–7.
32	312	Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for
33	313	scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013;79:7696-
34 25	314	701.
35 36	315	Cowan ST, Steel KJ, Barrow GI et al. Cowan and Steel's manual for the identification of medical
37	316	<i>bacteria</i> . 3rd ed., 1. Cambridge, UK: Cambridge University Press, 2003.
38	317	Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software
39	318	for selection of phylogenetic informative regions from multiple sequence alignments. <i>BMC</i>
40 41	319	<i>Evol Biol</i> 2010; 10 :210.
41	320	Daher RK, Filion G, Tan SGE <i>et al.</i> Alteration of virulence factors and rearrangement of pAsa5
43	321	plasmid caused by the growth of <i>Aeromonas salmonicida</i> in stressful conditions. <i>Vet</i>
44	322	Microbiol 2011; 152 :353–60.
45	323	Dallaire-Dufresne S, Tanaka KH, Trudel M V <i>et al.</i> Virulence, genomic features, and plasticity of
46 47	324 325	Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet
48	325 326	<i>Microbiol</i> 2014; 169 :1–7. Emmerich R, Weibel E. Über eine durch Bakterien erzengte Seuche unter den Forellen. <i>Arch für</i>
49	320 327	<i>Hyg und Bakteriol</i> 1894; 21 :1–21.
50	327	Emond-Rheault J-G, Vincent AT, Trudel M V <i>et al.</i> Variants of a genomic island in <i>Aeromonas</i>
51	320	salmonicida subsp. salmonicida link isolates with their geographical origins. Vet Microbiol
52 53	330	2015; 175 :68–76.
53 54	331	Gerhardt P. <i>Methods for general and molecular bacteriology</i> . Washington: American Society for
55	332	Microbiology, 1994.
56	333	Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly
57	333 334	interspace short palindromic repeats. Nucleic Acids Res 2007; 35 :52–7.
58 59	551	interspace short pullidionne repeats. There is new new 2007,05.52 T.
60		

1		
2 3	005	
4	335	Gustafson CE, Chu S, Trust TJ. Mutagenesis of the paracrystalline surface protein array of
5	336	Aeromonas salmonicida by endogenous insertion elements. J Mol Biol 1994;237:452–63.
6	337	Hunt M, Silva N De, Otto TD <i>et al.</i> Circlator: automated circularization of genome assemblies
7	338	using long sequencing reads. <i>Genome Biol</i> 2015; 16 :294.
8 9	339	Iwata S. Structure and function of bacterial cytochrome c oxidase. <i>J Biochem</i> 1998; 123 :369–75.
10	340	Jia B, Raphenya AR, Alcock B <i>et al.</i> CARD 2017: expansion and model-centric curation of the
11	341	comprehensive antibiotic resistance database. <i>Nucleic Acids Res</i> 2016; 45(D1) :D566-73
12	342	L'Abée-Lund TM, Sørum H. Class 1 integrons mediate antibiotic resistance in the fish pathogen
13	343	Aeromonas salmonicida worldwide. Microb Drug Resist 2001;7:263–72.
14 15	344 345	Long M, Nielsen TK, Leisner JJ <i>et al. Aeromonas salmonicida</i> subsp. <i>salmonicida</i> strains isolated from Chinese freshwater fish contain a novel genomic island and possible regional-
16	345 346	
17	340 347	specific mobile genetic elements profiles. <i>FEMS Microbiol Lett</i> 2016; 363 :fnw190. Martin-Carnahan A, Joseph S. <i>Aeromonadales</i> ord. nov. In: Brenner D, Krieg N, Staley J, et al.
18	347 348	(eds.). Bergey's Manual® of Systematic Bacteriology SE - 12. Springer US, 2005, 556–87.
19	340 349	Nagar V, Shashidhar R, Bandekar JR. Prevalence, characterization, and antimicrobial resistance
20 21	350	of <i>Aeromonas</i> strains from various retail food products in Mumbai, India. <i>J Food Sci</i>
22	350 351	2011; 76 :M486–92.
23	352	Nguyen LT, Schmidt HA, Von Haeseler A <i>et al.</i> IQ-TREE: A fast and effective stochastic
24	353	algorithm for estimating maximum-likelihood phylogenies. <i>Mol Biol Evol</i> 2015; 32 :268–74.
25	354	Pavan ME, Abbott SL, Zorzópulos J <i>et al. Aeromonas salmonicida</i> subsp. <i>pectinolytica</i> subsp.
26 27	355	nov., a new pectinase- positive subspecies isolated from a heavily polluted river. Int J Syst
28	356	<i>Evol Microbiol</i> 2000; 50 :1119–24.
29	357	Piotrowska M, Popowska M. Insight into the mobilome of <i>Aeromonas</i> strains. <i>Front Microbiol</i>
30	358	2015; 6 :494.
31 32	359	Reith ME, Singh RK, Curtis B et al. The genome of Aeromonas salmonicida subsp. salmonicida
32 33	360	A449: insights into the evolution of a fish pathogen. <i>BMC Genomics</i> 2008; 9 :427.
34	361	Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species
35	362	definition. Proc Natl Acad Sci US A 2009; 106 :19126–31.
36	363	Siguier P, Perochon J, Lestrade L et al. ISfinder: the reference centre for bacterial insertion
37 38	364	sequences. Nucleic Acids Res 2006; 34 :D32–6.
39	365	Tanaka KH, Dallaire-Dufresne S, Daher RK et al. An Insertion Sequence-Dependent Plasmid
40	366	Rearrangement in Aeromonas salmonicida Causes the Loss of the Type Three Secretion
41	367	System. <i>PLoS One</i> 2012;7:e33725.
42	368	Tanaka KH, Vincent AT, Emond-Rheault J-G et al. Plasmid composition in Aeromonas
43 44	369	salmonicida subsp. salmonicida 01-B526 unravels unsuspected type three secretion system
45	370	loss patterns. BMC Genomics 2017;18:528.
46	371	Tanaka KH, Vincent AT, Trudel M V et al. The mosaic architecture of Aeromonas salmonicida
47	372	subsp. salmonicida pAsa4 plasmid and its consequences on antibiotic resistance. PeerJ
48	373	2016; 4 :e2595.
49 50	374	Trudel M V., Vincent AT, Attéré SA et al. Diversity of antibiotic-resistance genes in Canadian
51	375	isolates of Aeromonas salmonicida subsp. salmonicida: dominance of pSN254b and
52	376	discovery of pAsa8. Sci Rep 2016;6:35617.
53	377	Vandecraen J, Chandler M, Aertsen A et al. The impact of insertion sequences on bacterial
54 55	378	genome plasticity and adaptability. Crit Rev Microbiol 2017;43:709-30.
55 56	379	Varani AM, Siguier P, Gourbeyre E et al. ISsaga is an ensemble of web-based methods for high
57	380	throughput identification and semi-automatic annotation of insertion sequences in
58	381	prokaryotic genomes. <i>Genome Biol</i> 2011; 12 :R30.
59 60		
60		

1 2		
3 4	382 383	Varshavsky A. "Spalog" and "sequelog": neutral terms for spatial and sequence similarity. <i>Curr Biol</i> 2004; 14 :R181–3.
5 6 7	384 385	Verdet C, Benzerara Y, Gautier V <i>et al.</i> Emergence of DHA-1-Producing <i>Klebsiella</i> spp. in the Parisian Region: Genetic Organization of the <i>ampC</i> and <i>ampR</i> Genes Originating from
8 9	386 387	Morganella morganii. Antimicrob Agents Chemother 2006; 50 :607–17. Vincent AT, Boyle B, Derome N <i>et al.</i> Improvement in the DNA sequencing of genomes bearing
10 11	388	long repeated elements. J Microbiol Methods 2014a;107:186-8.
12 13	389 390	Vincent AT, Charette SJ. Phylogenetic analysis of the fish pathogen <i>Aeromonas salmonicida</i> underlines the dichotomy between European and Canadian strains for the <i>salmonicida</i>
14 15	391 392	subspecies. <i>J Fish Dis</i> 2017; 40 :1241–7. Vincent AT, Emond-Rheault J-G, Frenette M <i>et al</i> . Antibiotic resistance due to an unusual
16	393	ColE1-type replicon plasmid in <i>Aeromonas salmonicida</i> . <i>Microbiology</i> 2016a; 162 :942–53.
17 18	394	Vincent AT, Trudel M V, Freschi L et al. Increasing genomic diversity and evidence of
19 20	395 396	constrained lifestyle evolution due to insertion sequences in <i>Aeromonas salmonicida</i> . <i>BMC Genomics</i> 2016b; 17 :1–12.
21	397	Vincent AT, Trudel M V, Paquet VE <i>et al.</i> Detection of variants of the pRAS3, pAB5S9, and
22 23	398	pSN254 plasmids in Aeromonas salmonicida subsp. salmonicida: multidrug-resistance,
24	399 400	interspecies exchanges, and plasmid reshaping. <i>Antimicrob Agents Chemother</i> 2014b; 58 :7367–74.
25 26	400 401	
27		
28 29		
30		
31 32		
33		
34 35		
36		
37 38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53 54		
55		
56 57		
58		
59 60		

Figure 1. Growth profiles of selected *A. salmonicida* strains. Growth profiles of A527 and selected mesophilic (*pectinolytica* 34mel^{T} and Y577) and psychrophilic (*salmonicida* 01-B526) *A. salmonicida* strains at 37° C (A) and 18° C (B). The strain NBRC 13784^{T} of the *masoucida* subspecies was also added given its intermediate ability to grow at 37° C (Vincent *et al.* 2016b). All the curves were done in triplicate and the standard error bars are shown.

Figure 2. Comparison between the complete closed genomes of *A. salmonicida* strains. Only the genomes of strains A527 (CP022550), S121 (NZ_CP022175.1), S44 (NZ_CP022181.1), S68 (NZ_CP022186.1) and A449 (NC_009348.1) are compared since they are the only closed genomes available for *A. salmonicida*. The direct and inverted matches are in orange and blue, respectively. The strain A449 is the only strain in this figure with an official subspecies assignment (*salmonicida*).

Figure 3. Cladogram showing the phylogenetic relations between all available

A. salmonicida strains with a sequenced genome (draft or closed). Only bootstrap values inferior to 100 are shown at the corresponding nodes. The heatmap represents the ANI values. The complete tree with all 60 taxa is shown in supplementary material (Figure S4). The strains of the *salmonicida* subspecies cluster according to the geographical regions where they have been isolated: China, Europe (Eur.), United States (U.S.) and the Canadian provinces of New-Brunswick (N.B.) and Quebec (Que.).

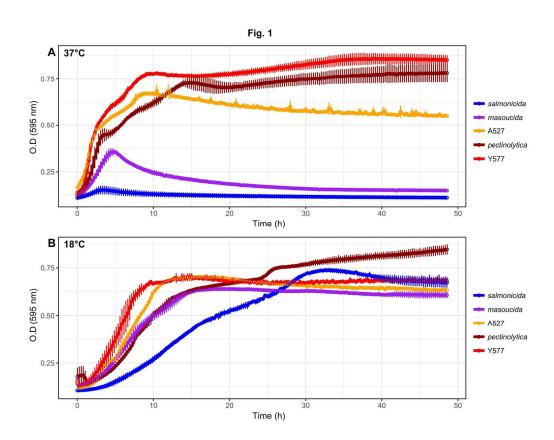


Figure 1. Growth profiles of selected *A. salmonicida* strains. Growth profiles of A527 and selected mesophilic (*pectinolytica* 34mel^T and Y577) and psychrophilic (*salmonicida* 01-B526) *A. salmonicida* strains at 37°C (A) and 18°C (B). The strain NBRC 13784^T of the *masoucida* subspecies was also added given its intermediate ability to grow at 37°C (Vincent et al. 2016b). All the curves were done in triplicate and the standard error bars are shown.

173x136mm (300 x 300 DPI)

A527

S121

S44

S68

A449

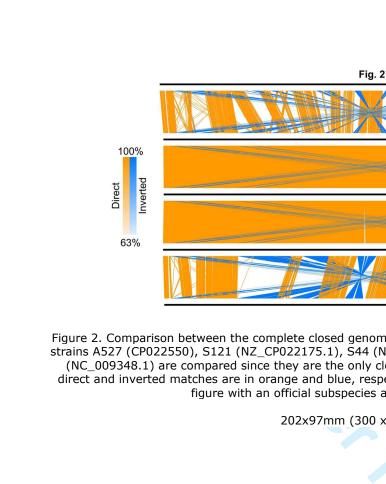
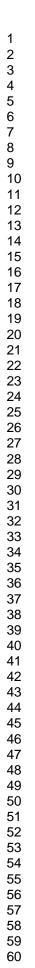



Figure 2. Comparison between the complete closed genomes of A. salmonicida strains. Only the genomes of strains A527 (CP022550), S121 (NZ_CP022175.1), S44 (NZ_CP022181.1), S68 (NZ_CP022186.1) and A449 (NC_009348.1) are compared since they are the only closed genomes available for A. salmonicida. The direct and inverted matches are in orange and blue, respectively. The strain A449 is the only strain in this figure with an official subspecies assignment (*salmonicida*).

202x97mm (300 x 300 DPI)

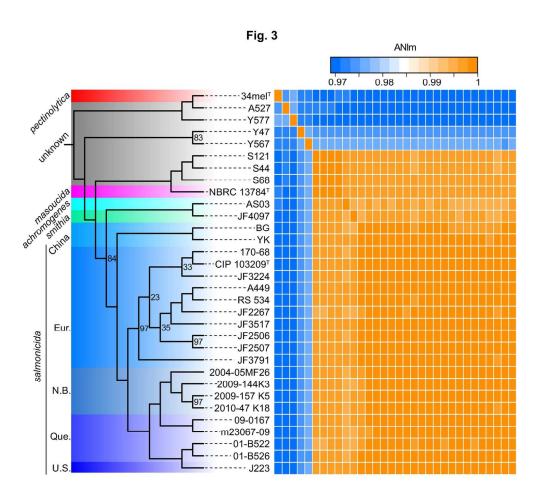


Figure 3. Cladogram showing the phylogenetic relations between all available *A. salmonicida* strains with a sequenced genome (draft or closed). Only bootstrap values inferior to 100 are shown at the corresponding nodes. The heatmap represents the ANI values. The complete tree with all 60 taxa is shown in supplementary material (Figure S4). The strains of the *salmonicida* subspecies cluster according to the geographical regions where they have been isolated: China, Europe (Eur.), United States (U.S.) and the Canadian provinces of New-Brunswick (N.B.) and Quebec (Que.).

131x119mm (300 x 300 DPI)

IS	Family	Complete	Partial	in the genome of A. salma Host ^a	Presence in other closed <i>A. salmonicida</i> genomes			
					A449	S44	S68	S121
IS <i>1396</i>	ISL3	0	1	Serratia marcescens	No	No	No	No
ISAeca4	IS <i>3</i>	7	2	Aeromonas caviae	No	No	No	No
ISAeme5	IS66	0	1	Aeromonas media	No	No	No	Yes
ISAeme17	IS <i>21</i>	1	0	Aeromonas media	No	No	No	No
ISAeme21	IS481	0	2	Aeromonas media	No	No	No	No
ISAhy2	IS <i>630</i>	8	2	Aeromonas hydrophila	Yes ^b	Yes	Yes	Yes
ISAs13	IS5	3	0	Aeromonas salmonicida	No	No	No	No
ISAs15	IS5	1	1	Aeromonas salmonicida	No	No	No	No
ISAs18	IS4	5	1	Aeromonas salmonicida	No	No	No	No
ISAs19	IS481	2	2	Aeromonas salmonicida	Yes ^c	No	No	No
ISAs23	IS <i>1595</i>	3	2	Aeromonas salmonicida	No	No	No	No
ISAs24	IS110	4	4	Aeromonas salmonicida	No	No	No	No
ISAs30	IS4	4	1	Aeromonas salmonicida	No	No	No	No
ISAs31	IS <i>3</i>	10	0	Aeromonas salmonicida	No	No	No	No
ISAve3	IS <i>3</i>	1	0	Aeromonas veronii	No	No	No	No
ISEc35	IS5	0	1	Escherichia coli	No	Yes	No	No
ISKpn3	IS <i>1595</i>	2	1	Klebsiella pneumoniae	No	Yes	No	No
ISUnCu16	IS66	20	0	uncultured bacterium	No	No	No	No
IS <i>5</i>	IS5	3	0	Escherichia coli	No	Yes	No	Yes
Total		74	21					

b: ISAhy2 showed a high identity with ISAS4 of the A. salmonicida subsp. salmonicida A449 3

4 genome.

7

5 c: This insertion sequence is currently not annotated in the A. salmonicida subsp. salmonicida

6 A449 genome.

- 2	
~	
্ব	
0	
Δ	
-	
5	
J	
6	
0	
-	
- 7	
~	
8	
- 9	
· ·	
1	n
	0
1	1
1	S
1	2
4	2
1	3
- 1	4
	_
1	5
	-
- 1	6
	~
1	7
	•
1	8
1	0
1	o
1	Э
~	\mathbf{c}
2	U
~	
-2	1
-	~
- 2	2
_	-
2	3
~	5
2	Δ
~	Τ.
2	Б
2	J
2	C
	О
~	-
	1
~	~
- 2	8
_	-
- 2	9
~	0
િર	n
0	U
্ব	1
J	
2	2
J	2
2	S
J	5
2	4
- 3	4
~	_
-3	5
	Ξ.
-3	6
5	_
3	7
J	
2	8
J	0
2	o
3	0123456789012345678901234567890
	\mathbf{O}
4	U
	A
4	1
4	2
	~
4	3
-	
4	4
Δ	
4	5
	5
4	5 6
4	5 6
4 4	5 6 7
4 4	5 6 7
4 4 4	5 6 7 8
4 4 4	5 6 7 8
4 4 4	5 6 7 8
4 4 4	5 6 7 8 9
4 4 4	5 6 7 8 9
4 4 4 5	5 6 7 8 9 0
4 4 4 5	5 6 7 8 9 0
4 4 4 5 5	5 6 7 8 9 0
4 4 4 5 5 5 5	567890123
4 4 4 5 5 5 5	567890123
4 4 4 4 5 5 5 5 5	5678901234
4 4 4 4 5 5 5 5 5	5678901234
4 4 4 4 5 5 5 5 5	5678901234
4 4 4 4 5 5 5 5 5 5 5	56789012345
4 4 4 4 5 5 5 5 5 5 5	5678901234
4 4 4 5 5 5 5 5 5 5 5	567890123456
4 4 4 5 5 5 5 5 5 5 5	567890123456
4 4 4 5 5 5 5 5 5 5 5 5	5678901234567
4 4 4 5 5 5 5 5 5 5 5 5	5678901234567
4 4 4 4 5 5 5 5 5 5 5 5 5 5	56789012345678
4 4 4 4 5 5 5 5 5 5 5 5 5 5	56789012345678
4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	567890123456789
4 4 4 4 5 5 5 5 5 5 5 5 5 5	567890123456789

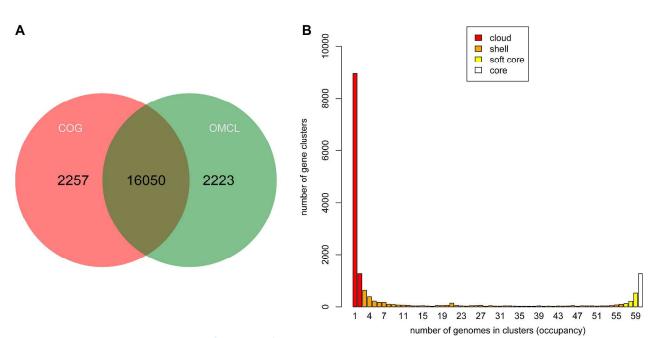
FEMS Microbiology Letters

Supplementary material

Study of mesophilic *Aeromonas salmonicida* A527 strain sheds light on the species lifestyles and taxonomic dilemma

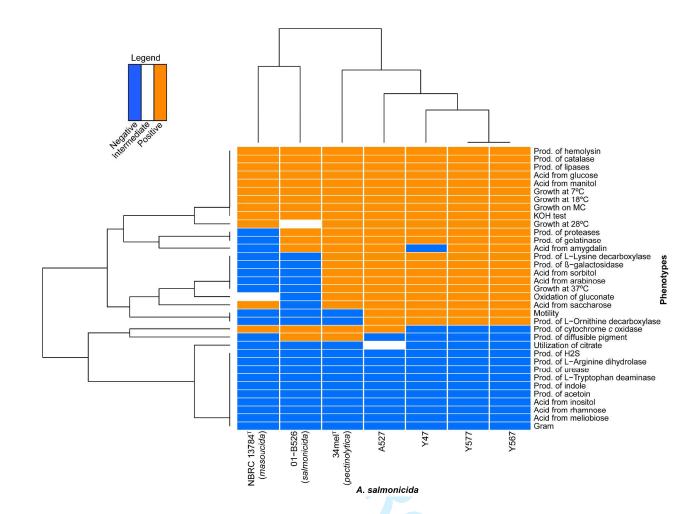
Antony T. Vincent^{1,2,3#}, François D. Rouleau^{1,2,3}, Sylvain Moineau^{2,4,5} and Steve J. Charette^{1,2,3}

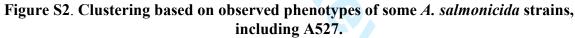
 Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada, G1V 0A6

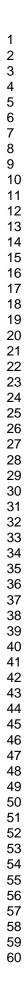

2. Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, Canada, G1V 0A6

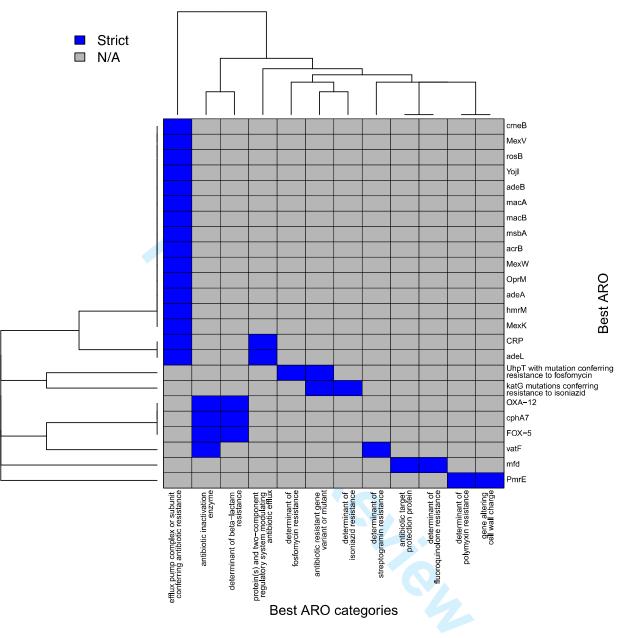
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, Canada, G1V 4G5
- 4. Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, Canada, G1V 0A6

5. Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Quebec City, QC, Canada, G1V 0A6


[#]To whom correspondence should be addressed: Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Université Laval, Quebec City, QC, Canada, G1V 0A6


antony.vincent.1@ulaval.ca; Telephone: 1-418-656-2131, ext. 8012; Fax: 1-418-656-7176




Figure S1. Pan-genome determination of all available *A. salmonicida* **genomes.** (A) Gene clusters found by COG [1] and OMCL [2] algorithms (through GET_HOMOLOGUES [3]). Only the clusters found by both were used in the present study. (B) Pan-genome distribution between four categories: cloud, shell, soft core and core, as defined by GET_HOMOLOGUES.

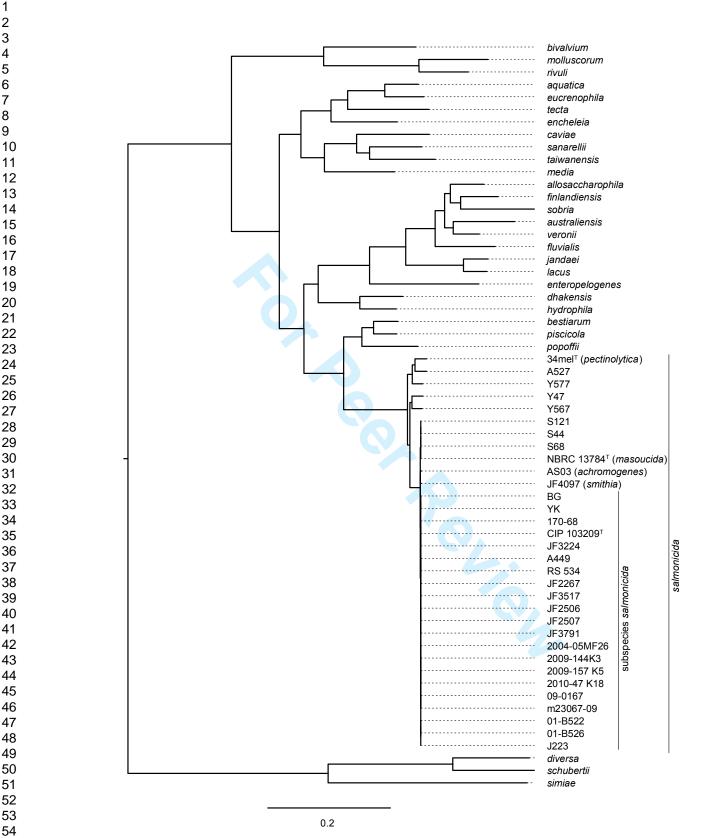


Figure S3. Antibiotic resistance genes in A527 genome. Heatmap showing the putative presence (blue squares) of antibiotic resistance genes (ordinate) and their Antibiotic Resistance Ontology (ARO) categories (abscissa) for *A. salmonicida* A527 as analyzed by CARD [4].

57

Figure S4. Phylogenetic tree containing all the 60 taxa analyzed. All the bootstrap values for the species other than *salmonicida* were at 100, while those for this subspecies are shown only in the Figure 3 of the main manuscript for clarity purpose.

Table S1. Genomes used for the phylogener	etic anal	VS1S
---	-----------	------

Species	Strain	GenBank	Reference
allosaccharophila	CECT 4199 ^T	NZ_CDBR00000000	[5]
aquatica	AE235	NZ_JRGL0000000	[6]
australiensis	CECT 8023 ^T	NZ_CDDH0000000	[5]
bestiarum	CECT 4227 ^T	NZ_CDDA0000000	[5]
bivalvium	CECT 7113 ^T	NZ_CDBT0000000	[5]
caviae	YL12	NZ_JOVP0000000	N/A ^a
dhakensis	AAK1	NZ_BAFL00000000	[7]
diversa	CDC 2478-85 ^T	NZ_APVG0000000	[8]
encheleia	CECT 4342 ^T	NZ_CDDI0000000	[5]
enteropelogenes	CECT 4255 ^T	NZ_CDDE0000000	[5]
eucrenophila	CECT 4224 ^T	NZ_CDDF0000000	[5]
finlandiensis	4287D	NZ_JRGK0000000	[9]
fluvialis	LMG 24681 ^T	NZ_CDBO0000000	[5]
hydrophila	ATCC 7966 ^T	NC_008570.1	[10]
jandaei	CECT 4228 ^T	NZ_CDBV0000000	[5]
lacus	AE122	NZ_JRGM0000000	[9]
media	WS	NZ_CP007567.1, NZ_CP007568.1	[11]
molluscorum	84	8 ^T NZ_AQGQ0000000	[12]
piscicola	LMG 24783 ^T	NZ_CDBL0000000	[5]
popoffii	CIP 105493 ^T	NZ_CDB10000000	[5]
rivuli	DSM 22539 ^T	NZ_CDBJ01000000	[5]
sanarellii	LMG 24682 ^T	NZ_CDBN0000000	[5]
schubertii	WL1483	NZ_CP013067.1	[13]
simiae	CIP 107798	NZ_CDBY0000000	[5]
sobria	CECT 4245 ^T	NZ_CDBW01000000	[5]
taiwanensis	LMG 24683 ^T	NZ_BAWK0000000	[14]
tecta	CECT 7082 ^T	NZ_CDCA0000000	[5]
veronii	B565	NC_015424.1	[15]
salmonicida	A527	CP022550	This study
salmonicida subsp. salmonicida	01-B522	MIIM0000000	[16]
salmonicida subsp. salmonicida	01-B526	AGVO0000000	[17]
salmonicida subsp. salmonicida	09-0167	LMTK00000000	[16]
salmonicida subsp. salmonicida	170-68	MIIN01000000	[16]
salmonicida subsp. salmonicida	2004-05MF26	JRYW0000000	[18]
salmonicida subsp. salmonicida	2009-144K3	JRYV0000000	[18]
salmonicida subsp. salmonicida	2009-157 K5	MIIQ0000000	[16]

salmonicida subsp. salmonicida	2010-47 K18	MIIR0000000	[16]
<i>monicida</i> subsp.	34mel ^T	ARYZ0000000	
pectinolytica salmonicida subsp.	A449	CP000644.1, CP000645.1, CP000646.1,	
salmonicida salmonicida subsp.	AS03	AY301063.1, AY301064.1, AY301065.1 AMQG00000000	[22]
achromogenes salmonicida subsp.	BG	LUHO00000000	[23]
salmonicida salmonicida subsp.	CIP 103209 ^T	CDDW00000000	
salmonicida			[5]
salmonicida subsp. salmonicida	J223	LSGV0000000	N/A ^a
salmonicida subsp. salmonicida	JF2267	MIIO01000000	[16]
salmonicida subsp. salmonicida	JF2506	MIIS01000000	[16]
salmonicida subsp. salmonicida	JF2507	MIIT00000000	
salmonicida subsp. salmonicida	JF3224	JXTA00000000	[24]
salmonicida subsp. salmonicida	JF3517	MIIU01000000	
salmonicida subsp. salmonicida	JF3791	JYFG01000000, KU499859.1	
salmonicida subsp. smithia	JF4097	JZTI00000000	[26]
salmonicida subsp. salmonicida	m23067-09	MIIP00000000	[16]
salmonicida subsp. masoucida	NBRC 13784 ^T	BAWQ01000000	N/A
salmonicida subsp. salmonicida	RS 534	JYFF00000000	
salmonicida	S121	NZ_CP022175.1, NZ_CP022170.1, NZ_CP022171.1, NZ_CP022172.1, NZ_CP022173.1, NZ_CP022174.1	
salmonicida	S44	NZ_CP022175.1, NZ_CP022176.1, NZ_CP022177.1, NZ_CP022178.1, NZ_CP022179.1, NZ_CP022180.1	
salmonicida	S68	NZ_CP022186.1, NZ_CP022182.1, NZ_CP022183.1, NZ_CP022184.1, NZ_CP022185.1	
salmonicida	Y47	JZTF00000000	[26]
salmonicida	Y567	JZTG0000000	[26]
salmonicida	Y577	JZTH0000000	[26]
salmonicida subsp. salmonicida	YK	LUHP00000000	[23]

I able k	52. General lea	luies of t	ne A. suim	oniciaa	available
Strain	Length (Mb)	GC %	Proteins	rRNA	tRNA
A527	4.8	58.6	4,308	31	125
S121	4.7	58.6	3,955	31	120
S44	4.7	58.6	3,963	31	120
S68	4.7	58.6	3,978	31	120
A449 ^a	4.7	58.5	4,007	28	108

Table S2. General features of the A. salmonicida available closed chromosomes

a: The strain A449 is the only strain in this table with an official subspecies assignment (*salmonicida*)

REFERENCES

- [1] Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A, Koonin E V., et al. A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 2010;26:1481–7.
- [2] Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res 2003;13:2178–89.
- [3] Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013;79:7696–701.
- [4] Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2016:gkw1004.
- [5] Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP. Bioinformatic Genome Comparisons for Taxonomic and Phylogenetic Assignments Using *Aeromonas* as a Test Case. MBio 2014;5:1–13.
- [6] Hossain MJ, Beaz-Hidalgo R, Figueras MJ, Liles MR. Draft Genome Sequences of Two Novel *Aeromonas* Species Recovered in Association with Cyanobacterial Blooms. Genome Announc 2014;2:e01181–14 – e01181–14.
- [7] Wu C-J, Wang H-C, Chen C-S, Shu H-Y, Kao A-W, Chen P-L, et al. Genome sequence of a novel human pathogen, *Aeromonas aquariorum*. J Bacteriol 2012;194:4114–5.
- [8] Farfán M, Spataro N, Sanglas A, Albarral V, Lorén JG, Bosch E, et al. Draft Genome Sequence of the *Aeromonas diversa* Type Strain. Genome Announc 2013;1:6–7.
- [9] Beaz-Hidalgo R, Latif-Eugenín F, Hossain MJ, Berg K, Niemi RM, Rapala J, et al. Aeromonas aquatica sp. nov., Aeromonas finlandiensis sp. nov. and Aeromonas lacus sp. nov. isolated from Finnish waters associated with cyanobacterial blooms. Syst Appl Microbiol 2015;38:161–8.
- [10] Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, et al. Genome sequence of *Aeromonas hydrophila* ATCC 7966T: Jack of all trades. J Bacteriol 2006;188:8272–82.
- [11] Chai B, Wang H, Chen X. Draft genome sequence of high-melanin-yielding *Aeromonas media* strain WS. J Bacteriol 2012;194:6693–4.
- [12] Spataro N, Farfán M, Albarral V, Sanglas A, Lorén JG, Fusté MC, et al. Draft Genome Sequence of *Aeromonas molluscorum* Strain 848TT, Isolated from Bivalve Molluscs. Genome Announc 2013;1:e00382–13.
- [13] Liu L, Li N, Zhang D, Fu X, Shi C, Lin Q, et al. Complete Genome Sequence of the Highly Virulent Aeromonas schubertii Strain WL1483, Isolated from Diseased Snakehead Fish (Channa argus) in China. Genome Announc 2016;4:e01567–15.
- [14] Wang H-C, Ko W-C, Shu H-Y, Chen P-L, Wang Y-C, Wu C-J. Genome Sequence of *Aeromonas taiwanensis* LMG 24683T, a Clinical Wound Isolate from Taiwan. Genome Announc 2014;2.
- [15] Li Y, Liu Y, Zhou Z, Huang H, Ren Y, Zhang Y, et al. Complete genome sequence of *Aeromonas veronii* strain B565. J Bacteriol 2011;193:3389–90.
- [16] Vincent AT, Charette SJ. Phylogenetic analysis of the fish pathogen *Aeromonas salmonicida* underlines the dichotomy between European and Canadian strains for the *salmonicida* subspecies. J Fish Dis 2017;40:1241-7.
- [17] Charette SJ, Brochu F, Boyle B, Filion G, Tanaka KH, Derome N. Draft genome sequence of the virulent strain 01-B526 of the fish pathogen *Aeromonas salmonicida*. J Bacteriol 2012;194:722–3.

- [18] Vincent AT, Tanaka KH, Trudel M V, Frenette M, Derome N, Charette SJ. Draft genome sequences of two *Aeromonas salmonicida* subsp. *salmonicida* isolates harboring plasmids conferring antibiotic resistance. FEMS Microbiol Lett 2015;362:1–4.
- [19] Pavan ME, Pavan EE, López NI, Levin L, Pettinari MJ. Living in an extremely polluted environment: clues from the genome of melanin-producing *Aeromonas salmonicida* subsp. *pectinolytica* 34melT. Appl Environ Microbiol 2015;81:5235–48.
- [20] Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J, et al. The genome of *Aeromonas salmonicida* subsp. *salmonicida* A449: insights into the evolution of a fish pathogen. BMC Genomics 2008;9:427.
- [21] Boyd J, Williams J, Curtis B, Kozera C, Singh R, Reith M. Three small, cryptic plasmids from *Aeromonas salmonicida* subsp. *salmonicida* A449. Plasmid 2003;50:131–44.
- [22] Han JE, Kim JH, Shin SP, Jun JW, Chai JY, Park SC. Draft Genome Sequence of *Aeromonas salmonicida* subsp. *achromogenes* AS03, an Atypical Strain Isolated from Crucian Carp (*Carassius carassius*) in the Republic of Korea. Genome Announc 2013;1:e00791–13.
- [23] Long M, Nielsen TK, Leisner JJ, Hansen LH, Shen ZX, Zhang QQ, et al. Aeromonas salmonicida subsp. salmonicida strains isolated from Chinese freshwater fish contain a novel genomic island and possible regional-specific mobile genetic elements profiles. FEMS Microbiol Lett 2016;363:fnw190.
- [24] Emond-Rheault J-G, Vincent AT, Trudel M V, Frey J, Frenette M, Charette SJ. AsaGEI2b: a new variant of a genomic island identified in the *Aeromonas salmonicida* subsp. *salmonicida* JF3224 strain isolated from a wild fish in Switzerland. FEMS Microbiol Lett 2015;362:fnv093.
- [25] Vincent AT, Emond-Rheault J-G, Frenette M, Barbeau X, Lagüe P, Attéré SA, et al. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in *Aeromonas salmonicida*. Microbiology 2016;162:942–53.
- [26] Vincent AT, Trudel M V, Freschi L, Nagar V, Gagné-Thivierge C, Levesque RC, et al. Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in *Aeromonas salmonicida*. BMC Genomics 2016;17:1–12.

