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Résumé

La duplication de gènes est l’un des plus importants mécanismes évolutifs pour la génération de diver-
sité fonctionelle. Lorsqu’un gène est dupliqué, la nouvelle copie partage toutes ses fonctions avec la
copie ancestrale car elles encodent pour des protéines identiques. Donc, les deux protéines, appelées
paralogues, auront le même réseau d’interactions physiques protéine-protéine. Cependant, dans le cas
de la duplication des gènes qui codent des protéines qui interagissent avec elles-mêmes (homomères),
la nouvelle protéine interagira aussi avec la copie ancestrale, ce qui introduit une nouvelle interaction
(heteromère) (Kaltenegger and Ober, 2015; Pereira-Leal et al., 2007). Puisque ces interactions peuvent
avoir des différents motifs de rétention et de fonction (Ashenberg et al., 2011; Baker et al., 2013; Bon-
coeur et al., 2012; Bridgham et al., 2008), il est important de mieux comprendre comment ces états
sont atteints et quelles forces évolutives les favorisent. Dans ce memoire, je cible ces questions avec des
simulations in silico de l’évolution des protéines suite à la duplication de gènes en travaillant avec des
structures crystallographiques de haute qualité, provenant de la Protein Data Bank (Berman et al.,
2000; Dey et al., 2018). Les simulations montrent que les sous-unités et interfaces partagées entraînent
une forte corrélation entre les trajectoires évolutives de ces complexes. Ainsi, les simulations prédisent
que la préservation de seulement les deux homomères ou seulement l’hétéromère ne devrait pas être
fréquente. Toutefois, la simulation qui applique la sélection seulement sur un homomère montre que
l’homomère neutre est destabilisé plus rapidement que l’hétéromère neutre. Nous avons comparé ces
prédictions avec des résultats expérimentaux du réseau d’interactions protéine-protéine de la levure.
Comme suggéré par les simulations, les patrons d’interactions les plus fréquents ont été la formation
des trois complexes (deux homomères et un hétéromère) ou la formation de seulement un homomère.
Les patrons correspondants à deux homomères sans hétéromères ou un hétéromère sans homomères
sont rares. Nos résultats démontrent l’extension de l’hétéromérisation entre paralogues dans le réseau
d’interactions physiques protéine-protéine de la levure, les mécanismes sous-jacents et ses implications.
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Abstract

Gene duplication is one of the most important evolutionary mechanisms for the generation of func-
tional diversity. When a gene is duplicated, the new copy shares all of the ancestral copy’s functions
because they encode identical proteins. Therefore, the two proteins, called paralogs, will have the same
protein-protein interaction network. However, in the case of the duplication of genes encoding proteins
that self-interact (homomers), the new protein will also interact with the ancestral copy, introducing
a novel interaction (heteromer) (Kaltenegger and Ober, 2015; Pereira-Leal et al., 2007). As these
interactions can have different retention and functional patterns (Ashenberg et al., 2011; Baker et al.,
2013; Boncoeur et al., 2012; Bridgham et al., 2008), it is important to understand better how these
states are reached and what evolutionary forces favor each of them. In this thesis, I approach these
questions by means of in silico simulations of protein evolution after gene duplication by working with
high-quality crystal structures from the Protein Data Bank (Berman et al., 2000; Dey et al., 2018).
The simulations show that the shared subunits and interfaces lead to these complexes having highly
correlated evolutionary trajectories. Thus, the simulations predict that the preservation of only the two
homomers or only the heteromer is not likely to happen often. Nevertheless, simulating evolution with
selection on only one homomer shows that the neutral homomer is destabilized faster than the neutral
heteromer. We compared these predictions against experimental results from the yeast protein-protein
interaction network. As suggested by the simulations, the most abundant interaction patterns were
either the formation of all three complexes (two homomers and one heteromer) or the formation of
only one homomer, with motifs corresponding to two homomers without a heteromer or a heteromer
without homomers being rare. Our results highlight the extent of heteromerization between paralogs
in the yeast protein-protein interaction network, the underlying mechanisms, and its implications.
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Introduction

Introduction

Protein complexes in biology

Proteins are the main workhorses of the cell. They are biomolecules formed from sequences of 20
different kinds of amino acids. They carry out a great diversity of functions, including the formation
of biological structures, metabolic processes, and signaling functions (Boeckmann et al., 2005; Pandey
et al., 2017; Scott and Pawson, 2009). Understanding how proteins get access to this wide diversity of
functions has been one of the most important questions for modern biology because it has implications
for diverse fields, such as medicine and evolutionary biology. Protein functions are conserved across
evolution because they have an influence on traits. As such, knowing how they carry out specific tasks
helps us understand better how new traits are acquired (Abrusán and Marsh, 2018; DePristo et al.,
2005; Ferrada and Wagner, 2008; Kachroo et al., 2015; Payne and Wagner, 2019). As a result, the
disruption of protein function could lead to alterations in such traits, and ultimately, diseases (Sahni
et al., 2015; Schuster-Böckler and Bateman, 2008).

Research has pointed to two critical properties of proteins that drive their function: protein folding
and the formation of protein complexes (Janin et al., 2008; Marsh and Teichmann, 2015; Pandey et al.,
2017; Scott and Pawson, 2009; Vidal et al., 2011). Protein folding refers to the three-dimensional
configuration of proteins in the cellular space. Current models of protein folding predict it to happen
in an orderly fashion by means of local interactions between amino acids (Englander and Mayne, 2014;
Maity et al., 2005). A protein’s fold then becomes important when studying how it interacts with
its environment, most notably with other proteins. Protein complexes are physical associations of
proteins, which can either be formed by identical or different chains and are found in a great diversity
of stoichiometries (Ahnert et al., 2015). The formation of complexes has been pointed out to be critical
for the function of proteins with respect to bringing components of metabolic pathways together and
carrying out basic functions in the cell, such as the production of other proteins, because the formation
of some active sites depends on complex assembly (Abrusán and Marsh, 2018; Korostelev et al., 2006).
Whereas a protein’s fold determines how proteins interact with their environment, there are proteins,
called chaperones, that contribute to the correct folding of other proteins by interacting with them
(Mayer, 2010), so folding and interactions have an impact on each other.

Even though protein complexes are constrained by having to maintain their function, they also
change throughout evolution. Consequences of the evolution of protein complexes are the gain of new
subunits (Levy et al., 2008; Marsh and Teichmann, 2014), which leads to differences in the distribution
of types of protein complexes in the different kingdoms of life (Lynch, 2012) and the appearance of
new functions (Boncoeur et al., 2012; Bridgham et al., 2008). In the light of these observations, I am
interested in modelling the evolution of protein complexes. However, in order to model it, we must
take a closer look at where proteins come from, the processes through which they evolve, and their
properties.
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Introduction

Where do proteins come from and how do they evolve?

Proteins are encoded by genes, that is, DNA sequences that organisms pass on to future generations.
This process is carried out by two successive steps: transcription of the genetic information from DNA
to RNA, and translation, in which proteins are produced based on the RNA sequence (Brenner et al.,
1961; Gros et al., 1961; Jacob and Monod, 1961). Thus, protein sequences reflect the underlying DNA
sequences of the genes that encode them, so studying genome evolution can yield insight into protein
evolution.

Genomes evolve through different processes that lead to changes in the properties that allow proteins
to perform their function, such as the efficiency of folding or binding to other molecules (DePristo et al.,
2005). These effects ultimately have an effect on the fitness and the chances of survival of organisms, as
they could lead to the appearance of a beneficial function or compromise a fundamental function. With
time, natural selection will tend to reduce the frequency of genomic variants that are less fit, while
the fitter variants will tend to increase their frequency in populations (Crow and Kimura, 1970; Orr,
2009). These processes include recombination, point mutations, and gene duplication. Recombination
is a process by which homologous DNA molecules exchange genetic information, leading to a high
variability among the individuals in a population (Kaniecki et al., 2018). Point mutations, on the
other hand, are changes in a position in the DNA sequence that can have a wide variety of effects.
They can be silent if they do not result in a change in the protein sequence due to the underlying
architecture of the genetic code (Dufton, 1983; Firnberg and Ostermeier, 2013), but they can still
be either beneficial or harmful (Parmley and Hurst, 2007). Other types of point mutations, termed
INDELs because they insert or delete nucleotides from the DNA sequence, lead to shifts in the reading
frame and result in changes to the protein sequence downstream of the mutation (Lin et al., 2017).
Finally, gene duplication results in the birth of a new copy of a gene, which initially leads to an increase
in the concentration of a protein but can lead to many different outcomes (Ohno, 1970).

Though these processes drive protein sequence evolution, there are several constraints that shape it.
Mutation rates have been described as biased towards a higher genomic AT content, which, given the
structure of the genetic code, would support the appearance of, on average, more hydrophobic residues
(Bastolla et al., 2004; Dufton, 1983; Hershberg and Petrov, 2010). To some extent, these biases are
reflected in the relative abundance of amino acids in the proteome, suggesting that evolution by neutral
expectations can lead to proteomes with similar amino acid contents. Nevertheless, there are some
deviations from those expectations, which would be imposed by natural selection (Dufton, 1983). This
bias could happen due to the specific properties of different regions within the same protein chain.
For example, proteins are exposed to a polar solvent with a largely crowded environment of different
kinds of molecules with which they can interact. As such, hydrophobic residues play important roles
for protein folding and in the binding interfaces of protein complexes, whereas more polar residues are
exposed to the solvent (Levy et al., 2012). Still, contacts between protein chains must be restricted
to very specific regions because the introduction of hydrophobic residues in other parts of the protein
surface could lead to protein aggregation, which can compromise protein function (Garcia-Seisdedos
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et al., 2017). Indeed, diseases such as sickle cell anemia and Alzheimer’s disease have been linked to
protein aggregation (Aguzzi and O’Connor, 2010; Garcia-Seisdedos et al., 2017).

Gene duplication

I am particularly interested in the evolution of proteins after gene duplication because it is one of
the main drivers of functional innovation. Sizable percentages of modern genomes arose through gene
duplication, ranging from 17% in bacterial species to 65% in Arabidopsis thaliana (Zhang, 2003). In
fact, whole-genome duplications (WGDs) have been documented several times across evolution. Some
broadly described cases are that of Saccharomyces cerevisiae (Kellis et al., 2004; Marcet-Houben and
Gabaldón, 2015; Wolfe, 2015), the two rounds of WGDs in the common ancestor of vertebrates (Dehal
and Boore, 2005), and the several rounds of WGDs of the Arabidopsis (Bomblies and Madlung, 2014)
and Paramecium lineages (Aury et al., 2006).

As gene duplication initially results in an increase of the production of a given protein, it can have
effects on fitness. For example, the high copy numbers of ribosomal genes that arose from duplication
have been conserved across evolution because their products are required at high levels (Sugino and
Innan, 2006). Duplicate genes, or paralogs, can also show distinct retention patterns in different
organisms due to the presence or absence of selective pressure on those functions. Such is the case
of the reduction of the number of functional olfactory receptor genes in human with respect to mice,
which has been attributed to a higher selective pressure on the sense of smell in mice (Rouquier et al.,
2000). Other consequences of genome duplication could be the bridging of species barriers, leading to
hybridization between species as a way to share genetic material and produce lineages that could have
access to greater fitness because of the rapid production of genetic and phenotypic diversity (Arnold
and Martin, 2010; Charron et al., 2019).

There are two classes of gene duplication events: whole-genome duplications (WGD) and small-
scale duplications (SSD). WGDs occur due to errors in cell division, both in mitosis and meiosis.
These events lead to daughter cells that have more copies of the whole set of chromosomes than
the progenitor cells (Otto and Whitton, 2000). SSDs occur through unequal crossing over during
recombination events and retrotransposition (Reams and Roth, 2015; Xing et al., 2006; Zhang, 2003).
Unequal crossing over can happen when repetitive sequences flanking a gene engage in recombination
with a slight shift, leading to the exchange of genetic material between two different loci such that
one of the chromosomes gets two adjacent copies of the locus (Reams and Roth, 2015; Zhang, 2003).
On the other hand, retrotransposons are DNA sequences that are transcribed to RNA molecules that
are then used as templates for retrotranscription to produce more DNA copies of themselves that are
later integrated elsewhere in the genome. These sequences are capable of carrying over other genetic
elements with them, including genes, which has resulted in duplication events (Xing et al., 2006; Zhang,
2003).

3
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Despite the positive effects on fitness of some gene duplications, others can have a negative effects.
A mechanism for this negative effect is the dosage balance hypothesis, which proposes that proteins are
expressed in levels required for their participation in protein complexes. In this sense, it is necessary
to distinguish between WGDs and SSDs because they have different consequences on the balance of
protein subunits (Hakes et al., 2007). WGD events imply an increase in the concentration of every
protein, so they do not cause a change in the relative abundance of the subunits of protein complexes.
SSD events, on the other hand, imply that only the concentration of one of the subunits increases,
which results in an excess of protein chains that might not participate in complexes (Edger and Pires,
2009; Papp et al., 2003). The consequences of each type of duplication lead to differences in the types
of genes that are retained after each of these and the similarity of the retained paralogs, as evidenced
by sequence identity, gene ontology (GO) terms, and shared interactions (Guan et al., 2007; Hakes
et al., 2007). As per lost duplicate genes, they often become pseudogenes, often described as "molecular
fossils" in the sense that they once were genes but lost their expression or their function (Zhang, 2003).

As some of the consequences of gene duplication can be explained through its effects on protein
complexes, it is important to study them together. Following gene duplication, the new duplicate
protein will share all of its interactions with the ancestral protein (Diss et al., 2017; Pereira-Leal et al.,
2007). As there are now two genetic loci that produce the same protein, there is some degree of redun-
dancy in their function, which results in the two paralogs buffering each other’s loss (DeLuna et al.,
2008; Hsiao and Vitkup, 2008). A potential mechanism for compensation could be the upregulation of
the maintained paralog (DeLuna et al., 2010) so that it can replace the lost one in protein complexes
(Gagnon-Arsenault et al., 2013). However, the two paralogs diverge with time as they accumulate
mutations. Potential results of this are the uncoupling of the ancestral protein’s functions as to make
these functions independent from each other. Thus, the two paralogs might split the ancestral func-
tions, a process called subfunctionalization (Baker et al., 2013; Force et al., 1999; Lynch and Force,
2000); or one of them might gain a new function, a process called neofunctionalization (Boncoeur et al.,
2012; Bridgham et al., 2008). Some studies discuss the capability of proteins to accumulate neutral
variants can prepare them later to acquire new functions, given that they maintain their proper fold,
and how these new functions might increase their frequency in populations (Innan and Kondrashov,
2010; Rastogi and Liberles, 2005; Teufel et al., 2019, 2016). Others discuss that regulatory evolution
could lead to differences in the expression patterns of paralogs, which has an impact on their retention
(Braasch et al., 2016; Gout and Lynch, 2015; Lan and Pritchard, 2016; Lien et al., 2016; Sandve et al.,
2018) and their involvement in tissue-selective diseases (Barshir et al., 2018).

A particular case that has been less studied is the duplication of self-interacting, or homomeric,
proteins. In this specific case, the two duplicate copies will share the capability of self-interaction.
Nevertheless, as they are undistinguishable at first, they will also interact with one another, leading
to the formation of heteromers (Diss et al., 2017; Kaltenegger and Ober, 2015; Pereira-Leal et al.,
2007). This phenomenon is called paralog interference because it results in a competition of the
two proteins for their participation in protein complexes. Pereira-Leal et al. (2007) described the
duplication of homomeric proteins as a way to introduce asymmetry, which they pointed out to promote
the diversification of interaction partners. Notably, they also observed that heteromers of paralogs
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are more often formed by contacts between paralogs than by contacts between identical subunits,
suggesting that duplication influences the assembly of complexes. Since then, other studies have
yielded insight into the variety of ways in which the function of protein complexes can evolve following
paralog interference. Baker et al. (2013) identified that a pair of duplicated MADS-box transcription
factors split the regulatory targets of the ancestral protein. In Kluyveromyces lactis, a species of yeast
in which the transcription factor has not been duplicated, homodimers of the MADS-box transcription
factors regulate the expression of genes involved in arginine metabolism and the Mat-α mating type.
On the other hand, in Saccharomyces cerevisiae, in which the transcription factor has been duplicated,
the homodimer of one of the duplicates regulates arginine metabolism while their heterodimer regulates
the expression of Mat-α mating type genes. Other families of transcription factors also exhibit this
pattern of different targets being regulated by homomers and heteromers (Amoutzias et al., 2008).
Boncoeur et al. (2012) described how a pair of duplicates, patA and patB, evolved to provide a new
function. The heteromer formed by these proteins is a bacterial multidrug transporter, but they are
only capable of providing this function when they are expressed together and heteromerize. Ashenberg
et al. (2011) showed that the duplicate histidine kinases EnvZ and RstB have evolved to form only
homomers in Escherichia coli by means of competition assays. They suggest that such specificity might
be achieved by the accumulation of neutral mutations and the later fixation of critical destabilizing
mutations. Finally, they explain that the loss of the heterodimer could be attributed to potential
deleterious effects of crosstalk between histidine kinases, as they tend to autophosphorylate upon
homomerization and this could extend to phosphorylation upon heteromerization.

These results have prompted other studies on the extent and importance of heteromeric interactions
between paralogs in protein-protein interaction networks. Diss et al. (2017) showed that when some
proteins are deleted, their paralogs lose some of their interactions, which suggests that these paralogs
might depend on each other to participate in protein complexes and carry out their functions. An
observation that supports this model of paralog dependency is that the deletion of proteins is sometimes
associated to the degradation of their paralogs (DeLuna et al., 2010). Interestingly, paralog dependency
can extend directly to protein function, as in the case of the Fam20A and Fam20C pair of duplicates.
Fam20A on its own is an inactive kinase, whereas Fam20C is an active kinase on its own. However, the
heteromeric association of Fam20C with the Fam20A pseudokinase was shown to have an increased
kinase activity with respect to the Fam20C homodimer (Cui et al., 2015). Generalizing this model
of paralog dependency leads to the prediction that the deletion of proteins that interact with their
paralogs should have more deleterious fitness effects than the deletion of non-interacting paralogs,
which was confirmed recently by analyses of large-scale CRISPR-Cas9 deletion datasets (Dandage and
Landry, 2019).

Considering the implications of heteromerization for the functional evolution of interfering paralogs,
my objective is to model how sequence divergence affects the retention of protein interactions from a
biophysical point of view. By means of this model, we would be able to study if there are evolutionary
constraints for the loss of heteromers and the possibility of the development of specificity. As such,
we must look at the biophysical properties of protein complexes and the available computational tools
that will allow us to model evolution in silico.
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Protein structure and biophysics

The field of protein biophysics has received considerable attention in recent years as a way to address
the long-standing questions about protein folding and the assembly of protein complexes. Protein
structures are usually solved by means of different experimental techniques, such as X-ray crystallog-
raphy, nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryo-EM), with each of these
being favored for different objectives. While X-ray crystallography is the main workhorse of structural
biology because of the atomic resolution of the structures it can generate (Shi, 2014), NMR can pro-
vide useful information about protein dynamics (Kleckner and Foster, 2011), and cryo-EM can be used
to look at larger protein complexes that are not easily crystallized (Costa et al., 2017), with recent
developments pushing cryo-EM towards the range of atomic resolutions of X-ray crystallography (Shi,
2014). These techniques have contributed to the resolution of around 150 000 protein structures, which
are deposited on databases such as the Protein Data Bank (PDB) (Berman et al., 2000), making them
an invaluable resource for structural biology. However, care must be taken when selecting structures
because the techniques used to solve them are not perfect and sometimes are subject to erroneous
interpretations. Therefore, different surveys of quality of the structural models have been carried out,
both based on the reinterpretation of results (Wlodawer et al., 2018) and the evolutionary conservation
of assemblies, which would support the biological significance of the structures (Dey et al., 2018).

The availability of structural data has led to the development of increasingly complex models
on protein structure. These include early amino acid contact potentials (Miyazawa and Jernigan,
1996); energy functions that look at the thermodynamic contributions of different kinds of interactions
(hydrogen bonding, van der Waals forces, hydrophobic interactions, etc.), such as FoldX (Guerois et al.,
2002) and Rosetta (Alford et al., 2017); and molecular dynamics simulations that integrate protein
dynamics into the model (Hollingsworth and Dror, 2018). These models provide information about
protein chain stability, that is, a measure of how favorable it is for a protein to fold the right way, and
of the binding energy of complexes, which explains how favorable it is for proteins to assemble into
complexes (Bastolla et al., 2017; DePristo et al., 2005; Liberles et al., 2012), on different levels. As
such, the choice of energy function depends on the objective and the computational resources available.
For example, molecular dynamics simulations are useful to address questions about protein dynamics
and conformational changes with a higher level of detail but often require supercomputers due to the
complexity of the calculations that must be carried out. In turn, other energy functions are more
suitable for evolutionary models because they provide reasonable estimations of the energetic values
in a shorter time frame, allowing a more extensive sampling of the sequence space.

Though based on prior knowledge of proteins, these models have led to the confirmation of hy-
potheses through simulations and the proposal of new ideas on the properties of proteins. An early
model suggested that symmetrical homomeric assemblies implied that any mutation in such complexes
that creates an interaction between residues from different chains would create them at more than
one spot. Thus, a prediction of this model was that these kinds of complexes would be more easily
acquired than heteromeric assemblies and thus more abundant (Monod et al., 1965). This hypothesis
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was confirmed later by means of simulations that showed that even random peptides have an inherent
propensity to interact with other copies of themselves (Lukatsky et al., 2007, 2006). André et al. (2008)
later observed that in simulations that selected for complex formation, symmetric complexes became
dominant over time, even if they started out as a very small fraction of the total complexes. As a
result, they concluded that the most favorable assemblies of homomers out of random samples were
symmetric, which is in line with analyses of quaternary structures (Ahnert et al., 2015; Bergendahl
and Marsh, 2017).

Other models have used fitness functions based on energetic terms to describe the evolution of
protein complexes. Kachroo et al. (2015) showed that some proteins that have similar functions in
different species, termed orthologs, are capable of complementing each other when the native one is
deleted and replaced with the one from the other species. Using simulations, they explained that com-
plementarity between complexes is maintained because the mutations that distinguish the orthologous
proteins have much lower effects on the binding energy and stability of the protein chains than ran-
dom mutations. As such, those would be the product of neutral variation that preserves the protein’s
properties and function. Teufel et al. (2019) used a similar evolutionary model to study the evolution
of a heterodimeric complex after the gene that encodes one of its subunits is duplicated. They con-
cluded that, depending on the selection scenario, the evolutionary trajectories of the simulations can
lead to quite different outcomes. In particular, when selection acts to preserve binding to one of the
duplicates but acts against the other, the model predicts that the two resulting complexes could be
quickly destabilized at first with subsequent recovery of the favored interface. This model highlights
how a heteromeric interface could become specific to only one of the two duplicates.

As per my interests, these last two models represent powerful tools to model the evolution of
duplicate genes. While Teufel et al. (2019) looked at the evolution of paralogs after gene duplication,
this model is most suitable for heteromeric interactions that are not subject to paralog interference.
Therefore, the model I am interested in working with is a model with paralog interference, in which
the ancestral protein forms a homomer and is then duplicated. As discussed above, this gives birth to
a second homomer and a heteromer of the duplicates. Considering that selection on these complexes
would have to distinguish between a protein chain binding to itself and binding to a highly similar
copy of itself, the evolution of these complexes might be subject to different evolutionary constraints to
those modelled by Teufel et al. (2019). By working with different scenarios, I will be able to evaluate
whether selection can favor or not a particular kind of complex over the other. As such, my working
hypothesis will be that different selection scenarios will lead to different outcomes, with selection on
one of the complexes maintaining it while destabilizing the others.
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Résumé

La duplication des gènes favorise l’évolution de nouvelles fonctions. La duplication des gènes codant
des protéines homomériques entraîne la formation d’homomères et d’hétéromères de paralogues, ce qui
crée de nouveaux complexes suite à un seul événement de duplication. La perte de ces hétéromères
peut être requise pour que les deux paralogues évoluent des fonctions indépendantes. En utilisant
la levure comme modèle, nous démontrons que l’hétéromérisation est fréquente entre les homomères
dupliqués et est corrélée avec la similarité fonctionnelle entre paralogues. En utilisant, l’évolution in
silico, nous démontrons que pour les homomères et les hétéromères qui partagent des interfaces de
liaison, les mutations chez un paralogue peuvent avoir des effets structuraux pléiotropiques sur les
deux interactions, ce qui entraîne des réponses fortement corrélées à la séléction. En conséquence,
l’hétéromérsiation pourrait être préservé indirectement à cause de la sélection sur la rétention des
homomères, ce qui ralentit la divergence fonctionnelle entre paralogues. Nous suggérons que les par-
alogues peuvent supérer l’obstacle de la pléiotropie structurelle grâce à l’évolution régulatrice aux
niveaux transcriptionnel et post-traductionnel.
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Abstract

Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding
homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new
complexes after a single duplication event. The loss of these heteromers may be required for the two
paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is
frequent among duplicated homomers and correlates with functional similarity between paralogs. Using
in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in
one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated
responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly
due to selection for the maintenance of homomers, thus slowing down functional divergence between
paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory
evolution at the transcriptional and post-translational levels.
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Introduction

Proteins assemble into molecular complexes that perform and regulate structural, metabolic and signal-
ing functions (Janin et al., 2008; Marsh and Teichmann, 2015; Pandey et al., 2017; Scott and Pawson,
2009; Vidal et al., 2011; Wan et al., 2015). The assembly of complexes is necessary for protein function
and thus constrains the sequence space available for protein evolution. One direct consequence of
protein-protein interactions (PPIs) is that a mutation in a given gene can have pleiotropic effects on
other genes’ functions through physical associations. Therefore, to understand how genes and cellular
systems evolve, we need to consider physical interactions as part of the environmental factors shaping
a gene’s evolutionary trajectory (Landry et al., 2013; Levy et al., 2012).

A context in which PPIs and pleiotropy may be particularly important is during the evolution
of new genes after duplication events (Amoutzias et al., 2008; Baker et al., 2013; Diss et al., 2017;
Kaltenegger and Ober, 2015). The molecular environment of a protein in this context includes its
paralog if the duplicates derived from an ancestral gene encoding a self-interacting protein (homomer)
(Figure 1). In this case, mutations in one paralog could have functional consequences for the other
copy because the duplication of a homomeric protein leads not only to the formation of two homomers
but also to a new heteromer (Figure 1) (Pereira-Leal et al., 2007; Wagner, 2003). We refer to these
complexes as homomers (HMs) and heteromers of paralogs (HETs).

Duplication

Divergence

Monomeric ancestor Homomeric ancestor

Physically independent 
paralogs

Physically interacting
and dependent paralogs 

functional space

mutation

gene

protein

Figure 1: Mutations in paralogous proteins originating from an ancestral homomer are likely to have
pleiotropic effects on each other’s function due to their physical association.
Gene duplication leads to physically interacting paralogs when they derive from an ancestral homomeric protein. The
evolutionary fates of the physically associated paralogs tend to be interdependent because mutations in one gene can
impact on the function of the other copy through heteromerization.

Paralogs originating from HMs are physically associated as HETs when they arise. Subsequent evo-
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lution can lead to the maintenance or the loss of these HETs. Consequently, paralogs that maintained
the ability to form HETs have often evolved new functional relationships (Amoutzias et al., 2008; Baker
et al., 2013; Kaltenegger and Ober, 2015). Examples include a paralog degenerating and becoming a
repressor of the other copy (Bridgham et al., 2008), pairs of paralogs that split the functions of the
ancestral HM between one of the HMs and the HET (Baker et al., 2013), that cross-stabilize and that
thus need each other to perform their function (Diss et al., 2017), or that evolved a new function to-
gether as a HET (Boncoeur et al., 2012). However, there are also paralogs that do form HMs but that
have lost the ability to form HETs through evolution. Among these are duplicated histidine kinases
(Ashenberg et al., 2011) and many heat-shock proteins (Hochberg et al., 2018). For the majority of
HETs, we do not know what novel functions, if any, contribute to their maintenance.

Therefore, one important question to examine is: what are the evolutionary forces at work for the
maintenance or the disruption of HETs arising from HMs? Previous studies suggest that if a paralog
pair maintains its ability to form HMs, it is very likely to maintain the HET complex as well (Pereira-
Leal et al., 2007). For instance, Lukatsky et al. (2007) showed that proteins tend to intrinsically interact
with themselves and that negative selection may be needed to disrupt HMs. Since nascent paralogs are
identical just after duplication, they would tend to maintain a high propensity to assemble with each
other. Hence, the two paralogs would form both HMs and HETs until the emergence of mutations that
specifically destabilize one or the other (Ashenberg et al., 2011; Hochberg et al., 2018). In addition,
the rate at which the HET is lost may depend on epistasis since it may cause mutations to be more or
less disruptive together for the HET than they are individually for the HMs (Diss and Lehner, 2018;
Starr and Thornton, 2016). Here, we hypothesize that the association of paralogs forming HETs acts
as a constraint that may slow down the functional divergence of paralogs by making mutations on one
paralog affect the function of the other.

Previous studies have shown that HMs are enriched in eukaryotic PPI networks (Lynch, 2012;
Pereira-Leal et al., 2007). However, the extent to which paralogs interact with each other has not
been comprehensively quantified in any species. We therefore analyze the physical assembly of HETs
exhaustively in a eukaryotic interactome by integrating data from the literature and by performing
a large-scale PPI screening experiment. Then, using functional data analysis, we examine the conse-
quences of losing HET formation for paralogs forming HMs. We perform in silico evolution experiments
to study whether the molecular pleiotropy of mutations, caused by shared binding interfaces between
HM and HET complexes, could contribute to maintain interactions between paralogs originating from
ancestral HMs. We show that selection to maintain HMs alone may be sufficient to prevent the loss
of HETs. Finally, we find that regulatory evolution, either at the level of gene transcription or protein
localization, may relieve the pleiotropic constraints maintaining the interaction of paralogous proteins.
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Results

Homomers among singletons and paralogs in the yeast PPI network

We first examined the extent of homomerization across the yeast proteome (see dataset in Mate-
rials and methods and the supplementary text) for two classes of paralogs, those that are small-scale
duplicates (SSDs) and those that are whole-genome duplicates (WGDs). We considered these two
sets separately because they may have been retained through different mechanisms (see below). The
dataset for this analysis, which includes previously reported PPIs and novel DHFR Protein-fragment
Complementation Assay experiments (referred to as PCA, see Materials and methods and supple-
mentary text), covers 2521 singletons, 2547 SSDs, 866 WGDs and 136 genes that are both SSDs and
WGDs (henceforth referred to as 2D). We find that among the 6070 tested yeast proteins, 1944 (32%)
form HMs, which agrees with previous estimates from crystal structures (Lynch, 2012). The propor-
tion of HMs among singletons (n = 630, 25%) is lower than for all duplicates: SSDs (n = 980, 38%,
p-value<2.0e-16), WGDs (n = 283, 33%, p-value=1.6e-05) and 2D (n = 51, 38%, p-value=1.7e-03)
(Figure 2A).

Although a large number of PPIs have been previously reported in Saccharomyces cerevisiae, it is
possible that the frequency of HMs is slightly underestimated because they were not systematically and
comprehensively tested (see Materials and methods). Another reason could be that some interactions
were not detected due to low expression levels. We measured mRNA abundance in cells grown in PCA
conditions and used available yeast protein abundance data (Wang et al., 2012) to test this possibility.
As previously observed (Celaj et al., 2017; Freschi et al., 2013), we found a correlation between PCA
signal and expression level, both at the level of mRNA and protein abundance (Spearman’s r = 0.33,
p-value = 3.5e-13 and Spearman’s r = 0.46, p-value < 2.2e-16 respectively). When focusing only on
previously reported HMs, we also observed both correlations (Spearman’s r = 0.37, p-value = 3.9e-08
and Spearman’s r = 0.38, p-value = 6.0e-08 respectively). The association between PCA signal and
expression translates into a roughly two-fold increase in the probability of HM detection when mRNA
levels change by one order of magnitude (Figure S1A). We also generally detected stronger PCA signal
for the HM of the most expressed paralog of a pair, confirming the effect of expression on our ability to
detect PPIs (Figure S1B). Finally, we found that HMs reported in the literature but not detected by
PCA have on average lower expression levels (Figure S1B-C). We therefore conclude that some HMs
(and also HETs) remain undetected because of low expression levels.

The overrepresentation of HMs among duplicates was initially observed for human paralogs (Pérez-
Bercoff et al., 2010). One potential mechanism to explain this finding is that homomeric proteins are
more likely to be maintained as pairs after duplication because they might become dependent on
each other for their stability that is enhanced through the formation of HET (Diss et al., 2017).
Another explanation is that proteins forming HMs could be expressed at higher levels and thus more
easily detected, as shown above. High expression levels are also associated with a greater long term
probability of genes to persist after duplication (Gout et al., 2010; Gout and Lynch, 2015). We indeed
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Figure 2: Homomers and heteromers of paralogs are frequent in the yeast protein interaction network.
(A) The percentage of homomeric proteins in S. cerevisiae varies among singletons (S, n = 2521 tested), small-scale
duplicates (SSDs, n = 2547 tested), whole-genome duplicates (WGDs, n = 866 tested) and genes duplicated by the two
types of duplication (2D, n = 136 tested) (global Chi-square test: p-value<2.2e-16). Each category is compared with the
singletons using a Fisher’s exact test. P-values are reported on the graph. (B and C) Interactions between S. cerevisiae
paralogs and pre-whole-genome duplication orthologs using DHFR PCA. The gray tone shows the PCA signal intensity
converted to z-scores. Experiments were performed in S. cerevisiae. Interactions are tested among: (B) S. cerevisiae
(Scer) paralogs Tom70 (P1) and Tom71 (P2) and their orthologs in Lachancea kluyveri (Lkluy, SAKL0E10956g) and
in Zygosaccharomyces rouxii (Zrou, ZYRO0G06512g) and (C) S. cerevisiae paralogs Tal1 (P1) and Nqm1 (P2) and
their orthologs in L. kluyveri (Lkluy, SAKL0B04642g) and in Z. rouxii (Zrou, ZYRO0A12914g). (D) Paralogs show
six interaction motifs that we grouped in four categories according to their patterns. HET pairs show heteromers only.
HM pairs show at least one homomer (one for 1HM or two for 2HM). HM&HET pairs show at least one homomer (one
for 1HM&HET or two for 2HM&HET) and the heteromer. NI (non-interacting) pairs show no interaction. We focused
our analysis on pairs derived from an ancestral HM, which we assume are pairs showing the HM and HM&HET motifs.
(E) Percentage of HM and HM&HET among SSDs (202 pairs considered, yellow) and WGDs (260 pairs considered,
blue) (left panel), homeologs that originated from inter-species hybridization (47 pairs annotated and considered, dark
blue) (right panel) and true ohnologs from the whole-genome duplication (82 pairs annotated and considered, light blue).
P-values are from Fisher’s exact tests. (F) Percentage of pairwise amino acid sequence identity between paralogs for
HM and HM&HET motifs for SSDs and WGDs. P-values are from Wilcoxon tests. (G) Pairwise amino acid sequence
identity for the full sequences of paralogs and their binding interfaces for the two motifs HM and HM&HET. P-values
are from paired Wilcoxon tests. (H) Relative conservation scores for the two motifs of paralogs. Conservation scores are
the percentage of sequence identity at the binding interface divided by the percentage of sequence identity outside the
interface. Data shown include 30 interfaces for the HM group and 28 interfaces for the HM&HET group (22 homomers
and 3 heterodimers of paralogs). P-value is from a Wilcoxon test.
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observed that both SSDs and WGDs are more expressed than singletons at the mRNA and protein
levels, with WGDs being more expressed than SSDs at the mRNA level (Figure S2A-B). However,
expression level (and thus PPI detectability) does not explain completely the enrichment of HMs
among duplicated proteins. Both factors, expression and duplication, have significant effects on the
probability of proteins to form HMs. It is therefore likely that the overrepresentation of HMs among
paralogs is linked to their higher expression along with other factors.

Paralogs that form heteromers tend to have higher sequence identity

The model presented in Figure 1 assumes that the ancestral protein leading to HET formed a HM
before duplication. Under the principle of parsimony, we can assume that when at least one paralog
forms a HM, the ancestral protein was also a HM. This was shown to be true in general by Diss
et al. (2017), who compared yeast WGDs to their orthologs from Schizosaccharomyces pombe. To
further support this observation, we used PCA to test for HM formation for orthologs from species
that diverged prior to the whole-genome duplication event (Lachancea kluyveri and Zygosaccharomyces
rouxii). We looked at paralogs of the mitochondrial translocon complex and the transaldolase, which
show HETs according to previous studies (see Materials and methods). We confirm that when one HM
was observed in S. cerevisiae, at least one ortholog from pre-whole-genome duplication species formed
a HM (Figure 2B-C). We also detected interactions between orthologs, suggesting that the ability to
interact has been preserved despite the millions of years of evolution separating these species. The
absence of interactions for some of these orthologous proteins may be due to the incompatibility of
their expression in S. cerevisiae or the use of a non-endogenous promoter for these experiments.

We focused on HMs and HETs for 202 pairs of SSDs and 260 pairs of WGDs. This is a reduced
dataset compared to the previous section because we needed to consider only pairs for which there
was no missing PPI data (see Materials and methods). We combined public data with our own PCA
experimental data on 86 SSDs and 149 WGDs (see supplementary text, Figures S3-S4). Overall, the
data represents a total of 462 pairs of paralogs (202 SSDs and 260 WGDs) covering 53% of the SSDs
and 50% of the WGDs. This dataset encompasses 493 binary interactions of paralogs with themselves
(HMs) and 214 interactions with their sister copy (HET).

We classified paralogous pairs into four classes according to whether they show only the HET (HET,
10%), at least one HM but no HET (HM, 39%), at least one of the HM and the HET (HM&HET, 37%)
or no interaction (NI, 15%) (Figure 2D, supplementary text). Overall, most pairs forming HETs also
form at least one HM (79%). For the rest of the study, we focused our analysis and comparisons on
HM and HM&HET pairs because they most likely derive from an ancestral HM. Previous observations
showed that paralogs are enriched in protein complexes comprising more than two distinct subunits,
partly because these complexes evolved by the initial establishment of self-interactions followed by the
duplication of the homomeric proteins (Musso et al., 2007; Pereira-Leal et al., 2007). However, we find
that the majority of HM&HET pairs could be simple oligomers of paralogs that do not involve other
proteins and are thus not part of large complexes. Only 70 (41%) of the 169 cases of HM&HET are in
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complexes with more than two distinct subunits among a set of 5535 complexes reported in databases
(see Materials and methods).

We observed that the correlation between HM and HET formation is affected by whether paralogs
are SSDs or WGDs (Figure 2E). WGDs tend to form HETs more often when they form at least one
HM, resulting in a larger proportion of HM&HET motifs than SSDs. We hypothesize that since SSDs
have appeared at different evolutionary times, many of them could be older than WGDs, which could
be accompanied by a loss of interactions between paralogs. Indeed, we observed that the distribu-
tion of sequence divergence shows lower identity for SSDs than for WGDs, suggesting the presence of
ancient duplicates that predate the whole-genome duplication (Figure S5A). Higher protein sequence
divergence could lead to the loss of HET complexes because it increases the probability of divergence
at the binding interface. We indeed found that among SSDs, those forming HM&HET tend to show a
marginally higher overall sequence identity (p=0.065, Figure 2F, Figure S5B-C). We also observed a
significantly higher sequence identity for WGD pairs forming HM&HET, albeit with a wider distribu-
tion (Figure 2F, Figure S5C). This wider distribution derives at least partly from the mixed origin of
WGDs (Figure S5D-E). A recent study (Marcet-Houben and Gabaldón, 2015; Wolfe, 2015) showed that
WGDs likely have two distinct origins: actual duplication (generating true ohnologs) and hybridization
between species (generating homeologs). For pairs whose ancestral state was a HM, we observed that
true ohnologs have a tendency to form HET more frequently than homeologs (Figure 2E). Because
homeologs had already diverged before the hybridization event, they are older than ohnologs, as shown
by their lower pairwise sequence identity (Figure S5D). This observation supports the fact that younger
paralogs derived from HMs are more likely to form HETs than older ones.

Amino acid sequence conservation could also have a direct effect on the retention of HETs, inde-
pendently of the age of the duplication. For instance, among WGDs (either within true ohnologs or
homeologs), which all have the same age in their own category, HM&HET pairs have higher sequence
identity than HM pairs (Figure S5B, C, E). This is also apparent for pairs of paralogs whose HM or
HET structures have been solved by crystallography (n = 58 interfaces). Indeed, we found that pair-
wise amino acid sequence identity was higher for HM&HET than for HM pairs for both entire proteins
and for their binding interfaces (Figure 2G). Furthermore, the conservation ratio of the binding inter-
face to the non-interface regions within the available structures is higher for those forming HM&HET,
suggesting a causal link between sequence identity at the interface and assembly of HM and HETs
(Figure 2H). We extended these analyses to a dataset of human paralogs (Lan and Pritchard, 2016;
Singh et al., 2015) to evaluate if these trends can be generalized. Whereas interfaces within PDB struc-
tures (n = 65 interfaces) are more conserved than the full sequence for both HM and HM&HET motifs
(Figure S6A), we did not observe differences in the ratio of conservation of interfaces to non-interfaces
(Figure S6B). The reasons for this difference between yeast and humans remain to be explored but it
could be caused by mechanisms that do not depend on interfaces to separate paralogous proteins in
humans, for instance tissue-specific expression.

Considering that stable interactions are often mediated by protein domains, we looked at the domain
composition of paralogs using the Protein Families Database (Pfam) (El-Gebali et al., 2019). We tested
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if differences in domain composition could explain the frequency of different interaction motifs. We
found that 367 of 448 pairs of paralogs (82%) shared all their domain annotations. Additionally,
HM&HET paralogs tend to have more domains in common but the differences are non-significant
and appear to be caused by overall sequence divergence (Figure S9A-B). Domain gains and losses are
therefore unlikely to contribute to the loss of HET complexes following the duplication of homomers.

Heteromer formation correlates with functional conservation

To test if the retention of HETs correlates with the functional similarity of HM and HM&HET
paralogs, we used the similarity of Gene Ontology (GO) terms, reported growth phenotypes of loss-
of-function mutants and patterns of genome-wide genetic interactions. These features represent the
relationship of genes with cell growth and the gene-gene relationships underlying cell growth. The use of
GO terms could bias the analysis because they are often predicted based on sequence features. However,
phenotypes and genetic interactions are derived from unbiased experiments because interactions are
tested without a priori consideration of a protein’s functions (Costanzo et al., 2016). We found that
HM&HET pairs are more similar than HM for SSDs (Figure 3 and Figure S10). We observed the same
trends for WGDs, although some of the comparisons are either marginally significant or non-significant
(Figure 3, comparison between true ohnologs and homeologs in Figure S11). The higher functional
similarity observed for HM&HET pairs could be the result of the higher sequence identity described
above. However, for a similar level of sequence identity, HM&HET pairs have higher correlation of
genetic interaction profiles, higher GO molecular function (for SSDs) and higher GO biological process
similarity (for both SSDs and WGDs) than HM pairs (Figure S12). Overall, the retention of HETs after
the duplication of HMs appears to correlate with functional similarity, independently from sequence
conservation.
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Figure 3: Maintenance of heteromerization between paralogs leads to greater functional similarity.
The similarity score is the average proportion of shared terms (100% * Jaccard’s index) across pairs of paralogs for GO
molecular functions, GO biological processes and gene deletion phenotypes. The mean values of similarity scores and
of the correlation of genetic interaction profiles are compared between HM and HM&HET pairs for SSDs and WGDs.
P-values are from Wilcoxon tests.
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Pleiotropy contributes to the maintenance of heteromers

Since molecular interactions between paralogs predate their functional divergence, it is likely that
physical association by itself affects the retention of functional similarity among paralogs. Any feature
of paralogs that contributes to the maintenance of the HET state could therefore have a strong impact
on the fate of new genes emerging from the duplication of HMs. A large fraction of HMs and HETs
use the same binding interface (Bergendahl and Marsh, 2017), so mutations at the interface may
have pleiotropic effects on both HMs and HETs (Figure 1), which would lead to correlated responses
to selection. If we assume that HMs need to self-interact in order to perform their function, it is
expected that natural selection would favor the maintenance of self-assembly. Negative selection on
HM interfaces would act on their pleiotropic residues and thus also preserve HET interfaces, preventing
the loss of HETs as a correlated response.

We tested this correlated selection model using in silico evolution of HM and HET protein com-
plexes (Figure 4A). We used a set of six representative structures of HMs defined as high-quality based
on a consensus of different quality measures including the evolutionary conservation of their quater-
nary structures and thermodynamic models (Dey et al., 2018). We evolved these HM complexes by
duplicating them and following the binding energies of the resulting two HMs and HET. We let muta-
tions occur at the binding interface 1) in the absence of selection (neutral model), 2) in the presence
of negative selection maintaining only one HM, and 3) with negative selection retaining both HMs.
In these three cases, we applied no selection on binding energy of the HET. In the fourth scenario,
we applied selection on the HET but not on the HMs to examine if selection maintaining the HET
could also favor the retention of HMs. Mutations that have deleterious effects on the complex under
selection were lost or allowed to fix with exponentially decaying probability depending on the fitness
effect (see Materials and methods) (Figure 4A).

We find that neutral evolution leads to the destabilization of all complexes derived from the sim-
ulated duplication of a HM (PDB: 1M38) (Figure 4B), as is expected given that there are more
destabilizing mutations than stabilizing ones (Brender and Zhang, 2015; Guerois et al., 2002). Selec-
tion to maintain one HM or both HMs significantly slows down the loss of the HET with respect to
the neutral scenario (Figure 4C-E). Interestingly, the HET is being destabilized more slowly than the
second HM when only one HM is under negative selection. The difficulty of losing the HET in the
simulations could explain why for some paralog pairs, only one HM and the HET are preserved, as
well as why there are few pairs of paralogs that specifically lose the HET (Figure S13). The reciprocal
situation is also true, i.e. negative selection on HET significantly decelerates the loss of stability of both
HMs (Figure 4F). These observations hold when simulating the evolution of duplication of five other
structures (Figure S14) and when simulating evolution under different combinations of the parameters
that control the efficiency of selection and the length of the simulations (Figure S15). By examining
the effects that single mutants (only one of the loci gets a nonsynonymous mutation) have on HMs
and HET, we find that, as expected, their effects are strongly correlated and thus highly pleiotropic
(Pearson’s r between 0.64 and 0.9 (Figure S16)). We observe strong pleiotropic effects of mutations for
the six structures tested, which explains the correlated responses to selection in the in silico evolution.
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Figure 4: Negative selection to main-
tain homomers also maintains het-
eromers.
(A) The duplication of a gene encoding a ho-
momeric protein and the evolution of the com-
plexes is simulated by applying mutations to
the corresponding subunits A and B. Only mu-
tations that would require a single nucleotide
change are allowed. Stop codons are disal-
lowed. After introducing mutations, the se-
lection model is applied to complexes and mu-
tations are fixed or lost. (B to F) The bind-
ing energy of the HMs and the HET resulting
from the duplication of a HM (PDB: 1M38)
is followed through time under different selec-
tion regimes applied on protein stability and
binding energy. More positive values indicate
less favorable binding and more negative val-
ues indicate more favorable binding. (B) Ac-
cumulation and neutral fixation of mutations.
(C) Selection on both HMs while the HET
evolves neutrally. (D) Selection on HM AA
or (E) HM BB: selection maintains one HM
while the HET and the other HM evolve neu-
trally. (F) Selection on HET while the HMs
evolve neutrally. (E) Selection on HM AA
or (F) HM BB: selection maintains one HM
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trally. Mean binding energies among repli-
cates are shown in thick lines and the indi-
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Fifty replicate populations are monitored in
each case and followed for 200 substitutions.
PDB structure 1M38 was visualized with Py-
MOL (Schrödinger LLC, 2015).

Additionally, mutations tend to have greater effects on the HM than on the HET (Figure S16, Figure
S17), which agrees with observations on HMs having a greater variance of binding energies than HETs
(André et al., 2008; Lukatsky et al., 2007, 2006). As a consequence, HMs that are not under selection
in our simulations show higher variability in their binding energy than HETs.

We examined the effects of double mutants (the two loci get a non-synonymous mutation at the
interface) on HET formation to study how epistasis may influence the maintenance or loss of HET
and HMs when the former or the latter are under selection. We defined epistatic effects as deviations
between the observed and the expected effects of mutations on binding energy. Expected effects on
HETs were calculated as the average of the effects on the HMs, which each have two subunits with
the same mutation. We defined positive epistasis as cases where the observed binding is stronger than
expected (more negative ∆∆G) and negative epistasis when it is weaker (more positive ∆∆G). In
terms of evolutionary responses, positive epistasis would contribute to the retention of the HET and
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negative epistasis to its loss.

Regardless of the selection scenario, the mutations sampled are slightly enriched for positive epis-
tasis, since the slope values of regression models are smaller than one (0.91 and 0.89 under selection on
HMs and HET respectively). When the HMs are maintained by selection, this slightly positive epistasis
is also visible in the mutations that are fixed because the epistatic effects are not selected upon. This
results in a similar slope for the selected mutations as for the rejected ones. Positive epistasis may
therefore contribute to the maintenance of the HET (Figure 5A). On the other hand, selection on the
HET results in a further enrichment of mutations with positive epistasis (slope = 0.51, Figure 5B). In
this case, mutations tolerated in the HETs and thus fixed are more destabilizing to the HMs. This is
also visible in the higher number of fixed substitutions when selection acts on the HET than when it
acts on both HMs, particularly for mutations having opposite effects on the HMs (Figure S18). This
is also manifested in significantly stronger positive epistasis among fixed pairs of mutations when the
HET is under negative selection (t-test, p-value = 0.009). These observations suggest that epistasis
may make HETs more robust to mutations than HMs with respect to protein complex assembly, con-
tributing to their maintenance when the HMs are under selection and contributing to the loss of HMs
when the HET is under negative selection. This effect is visible in our simulations since selection on
the HET results in a slow destabilization of the two HMs (Figure 4, Figure S14), especially when more
mutations are attempted (Figure S15), and is observed for all six structures tested (Figure S19).
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Figure 5: Epistasis favors the maintenance of HETs and the loss of HMs.
(A and B) Observed effects of double mutants on HET (y-axis) are compared to their expected effects (x-axis) based
on the average of their effects on the HMs when selection is applied on both HMs (n = 6777 pairs of mutations) (A)
or on the HET (n = 6760 pairs of mutations) (B). Dashed lines indicate the diagonal for perfect agreement between
observations and expectations (no epistasis), black regression lines indicate the best fit for the lost mutants, and red
regression lines indicate the best fit for the fixed mutants. Data were obtained from simulations with PDB structure
1M38. The regression coefficients, intercepts and R2 values are indicated on the figure for fixed and lost mutations. A
regression coefficient lower than one means that pairs of mutations have a less destabilizing effects on the HET than
expected based on their average effects on the HMs.
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Regulatory evolution may break down molecular pleiotropy

The results from simulations show that the loss of HET after the duplication of a HM occurs at
a slow rate if HMs are maintained by selection and that specific rare mutations may be required for
HETs to be destabilized. However, the simulations only consider the evolution of binding interfaces,
which limits the modification of interactions to a subset of all mutations that can ultimately affect
PPIs (Hochberg et al., 2018). Other mechanisms that would lead to the loss of HETs could involve
transcriptional regulation or cell compartment localization such that paralogs are not present at the
same time or in the same cell compartment. To test how regulatory evolution affects interactions,
we measured the correlation coefficient of expression profiles of paralogs using mRNA microarray
measurements across more than 1000 growth conditions (Ihmels et al., 2004). These expression profiles
are more correlated for both SSD and WGD paralogs forming HM&HET than for those forming
only HM (p-value = 6.5e-03 and 6.1e-03 respectively, Figure 6A). This result holds using available
single-cell RNAseq data (Gasch et al., 2017) although the trend is not significant for WGDs (Figure
S20A). Because we found that sequence identity was correlated with both the probability of observing
HM&HET and the co-expression of paralogs, we tested if co-expression had an effect on HET formation
when controlling for sequence identity. For SSDs, co-expression shows significant effects on HM&HET
formation (Figure 6C, Figure S20B) but not for WGDs (Figure 6C, Figure S20B). This is true also
when considering the two origins of WGDs separately (Figure S21A-F). The differences of expression
correlation between HM and HM&HET could be caused by cis regulatory divergence, for instance,
HM&HET pairs might have more similar transcription factor binding sites. While we do observe a
marginally higher transcription factor binding site similarity for HM&HET pairs than for HM pairs,
the tendency is not significant, suggesting other causes for the divergence and similarity of expression
profiles (Figure 6B, Figure S22).
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Figure 6: Loss of heteromerization between paralogs may result from regulatory divergence.
(A) Correlation coefficients (Spearman’s r) between the expression profiles of paralogs. The data derives from mRNA
relative expression across 1000 growth conditions (Ihmels et al., 2004). HM and HM&HET are compared for SSDs
(yellow) and WGDs (blue). P-values are from t-tests. (B) Correlation of expression profiles between paralogs forming
only HM (pink) or HM&HET (purple) as a function of their amino acid sequence identity. The data was binned into
six equal categories for representation only. (C) Similarity of GO cellular component, GFP-based localization, and
transcription factor binding sites (100% * Jaccard’s index) are compared between HM and HM&HET for SSDs and
WGDs. P-values are from Wilcoxon tests.

Finally, we find that HM&HET paralogs are more similar than HM for both SSDs and WGDs in
terms of cellular compartments (GO) and cellular localization derived from experimental data (Figure
6C, Figure S22B-C). For a similar level of sequence identity, HM&HET pairs have higher cellular
compartment and cellular localization similarity (for both SSDs and WGDs) than HM pairs (Figure
S23). The same tendencies are observed when considering the two classes of WGDs separately (Figure
S21G-I).

Overall, coexpression, localization and GO cellular component comparison results suggest that
changes in gene and protein regulation could prevent the interaction between paralogs that derive
from ancestral HMs, reducing the role of structural pleiotropy in maintaining their associations.
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Discussion

Upon duplication, the properties of proteins are inherited from their ancestors, which may affect how
paralogs subsequently evolve. Here, we examined the extent to which physical interactions between
paralogs are preserved after the duplication of HMs and how these interactions affect functional diver-
gence. Using reported PPI data, crystal structures and new experimental data, we found that paralogs
originating from ancestral HMs are more likely to functionally diverge if they lost their ability to form
HETs. We propose that non-adaptive mechanisms could play a role in the retention of physical inter-
actions and in turn, impact on functional divergence. By developing a model of in silico evolution of
PPIs, we found that molecular pleiotropic and epistatic effects of mutations on binding interfaces can
constrain the maintenance of HET complexes even if they are not under selection. We hypothesize
that this non-adaptive constraint could play a role in slowing down the divergence of paralogs but that
it could be counteracted at least partly by regulatory evolution.

The proportions of HMs and HETs among yeast paralogs were first studied more than 15 years ago
(Wagner, 2003). It was then suggested that most paralogs forming HETs do not have the ability to
form HMs and thus, that evolution of new interactions was rapid. Since then, many PPI experiments
have been performed (Chatr-Aryamontri et al., 2017; Kim et al., 2019; Stark et al., 2006; Stynen
et al., 2018) and the resulting global picture is different. We found that most of the paralogs forming
HETs also form HMs, suggesting that interactions between paralogs are inherited rather than gained
de novo. This idea is supported by models predicting interaction losses to be much more likely than
interaction gains after gene duplication (Gibson and Goldberg, 2009; Presser et al., 2008). Accordingly,
the HM&HET state can be more readily achieved by the duplication of an ancestral HM rather than
by the duplication of a monomeric protein followed by the gain of the HMs and of the HET. Interacting
paralogs are therefore more likely to derive from ancestral HMs, as also shown by Diss et al. (2017)
using limited comparative data. For two pairs of S. cerevisiae paralogs presenting the HM&HET
motif in the literature, we indeed detected HM formation of their orthologs from pre-whole-genome
duplication species, supporting the model by which self-interactions and cross-interactions are inherited
from the duplication. However, we did not detect HMs for both pre-whole-genome duplication species,
which may reflect the incorrect expression of these proteins in S. cerevisiae rather than their lack of
interaction.

We observed an enrichment of HMs among yeast duplicated proteins compared to singletons, as
reported in previous studies (Ispolatov et al., 2005; Pereira-Leal et al., 2007; Pérez-Bercoff et al., 2010;
Yang et al., 2003). Also, analyses of PPIs from large-scale experiments have shown that interactions
between paralogous proteins are more common than expected by chance (Ispolatov et al., 2005; Musso
et al., 2007; Pereira-Leal et al., 2007). Several adaptive hypotheses have been suggested to explain
the over-representation of interacting paralogous proteins. For instance, HMs may be preferentially
retained, over other duplicates, due to their capacity to provide new adaptive traits by gaining novel
functions (neofunctionalization), or by splitting the original ones (subfunctionalization). Similarly,
symmetrical HM proteins could have key advantages over monomeric ones for protein stability and
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regulation (André et al., 2008; Bergendahl and Marsh, 2017). Levy and Teichmann (2013) suggested
that the duplication of HM proteins serves as a seed for the growth of protein complexes. These
duplications would allow the diversification of complexes by the asymmetric gain or loss of interactions,
which would ultimately lead to the specialization of the duplicates. It is also possible that the presence
of HETs itself offers a rapid way to evolve new functions. Examples include bacterial multidrug efflux
transporters (Boncoeur et al., 2012) and regulatory mechanisms that evolved this way (Baker et al.,
2013; Bridgham et al., 2008; De Smet et al., 2013; Kaltenegger and Ober, 2015). Finally, cotranslational
folding has been shown to be a problem for homomeric proteins because of premature assembly of
protein complexes, particularly for proteins with interfaces closer to their N-terminus (Natan et al.,
2018). The replacement of such HMs by HETs could solve this issue by separating the translation of
the proteins to be assembled on two distinct mRNAs.

Non-adaptive mechanisms could also be at play to maintain HETs. Our simulated evolution of the
duplication of HMs leads to the proposal of a simple mechanism for the maintenance of HET that does
not require adaptive mechanisms. A large fraction of HMs and HETs use the same binding interface
(Bergendahl and Marsh, 2017) and as a consequence, negative selection on HM interfaces will also
preserve HET interfaces. Our results show that mutations have correlated effects on HM and HET,
which slows down the divergence of these complexes. Since some proteins are unstable in the absence
of their paralog and lose their capacity to interact with other proteins, cross-stabilization could be
another non-adaptive mechanism for the maintenance of the HET (Diss et al., 2017). Notably, these
proteins are enriched for paralogs forming HET, suggesting that the individual proteins depend on each
other through these physical interactions (Diss et al., 2017). Independent observations by DeLuna et al.
(2010) also showed that the deletion of a paralog was sometimes associated with the degradation of the
sister copy, particularly among HET paralogs. The Diss et al. and DeLuna et al. observations led to
the proposal that paralogs could accumulate complementary degenerative mutations at the structural
level after the duplication of a HM (Diss et al., 2017; Kaltenegger and Ober, 2015). This scenario
would lead to the maintenance of the HET because destabilizing mutations in one subunit can be
compensated by stabilizing mutations in the other, keeping binding energy and overall stability near
the optimum. While compensatory mutations could also occur at different positions within identical
subunits of the HMs (Uguzzoni et al., 2017), the HET would have access to those same mutations
in addition to combinations of mutations in the two paralogous genes. As a result, the number of
available compensatory mutations for the HET would be higher than for the HMs.

Furthermore, FoldX in our simulations predicts a slight overall enrichment towards positive epistasis
for mutations affecting the two genes whose effects are combined in the HET. This would also contribute
to the retention of the HET without adaptive mutations. Together, the smaller effect sizes of individual
mutations on HET, the expanded number of compensatory mutations, and the mutational bias toward
positive epistasis for the HET observed in our simulations suggest that the assembly of HET might
be more robust to mutations than that of HMs. Thus, our simulations show higher potential for the
specific retention of the HET than for the specific retention of the two HMs. The next step will be to
test these models experimentally.
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One of our observations is that WGDs present proportionally more HM&HET motifs than SSDs.
We propose that this is at least partly due to the age of paralogs, which would lead to more divergence.
This proposal was based on the fact that SSDs in yeast show lower sequence conservation and are
thus likely older than WGDs and that even among WGDs, homeologs show the HM&HET motif
less frequently than HMs compared to true ohnologs, which are by definition younger. However, the
mode of duplication itself could also impact HET maintenance. For instance, upon a whole-genome
duplication event, all subunits of complexes are duplicated at the same time, which may contribute to
the increased retention of WGDs in complexes compared to SSDs and thus maintain HETs. Indeed,
small-scale duplications perturb the stoichiometry of complexes whereas whole-genome duplications
preserve it (Birchler and Veitia, 2012; Hakes et al., 2007; Papp et al., 2003; Rice and McLysaght,
2017). In addition, SSDs display higher evolutionary rates than WGDs (Fares et al., 2013), which
could lead to the faster loss of their interactions. Another factor that differs is that some WGDs
are maintained due to selection for higher gene dosage (Ascencio et al., 2017; Edger and Pires, 2009;
Gout and Lynch, 2015; Sugino and Innan, 2006; Thompson et al., 2016). Therefore, the ancestral
gene sequence, regulation and function would be conserved, which ultimately favors the maintenance
of HETs among WGDs.

We noticed a significant fraction of paralogs forming only HMs but not HET, including some cases
of recent duplicates, indicating that the forces maintaining HETs can be overcome. Moreover, although
SSDs are more divergent than WGDs on average, sequence divergence and domain composition differ
slightly (not significant) between HMs and HM&HETs, suggesting a mechanism other than amino
acid sequence divergence for HET loss. Duplicated genes in yeast and other model systems often
diverge quickly in terms of transcriptional regulation (Li et al., 2005; Thompson et al., 2013) due to cis
regulatory mutations (Dong et al., 2011). Because transcriptional divergence of paralogs can directly
change PPI profiles, expression changes would be able to rapidly change a motif from HM&HET to HM.
Indeed, switching the coding sequences between paralogous loci is sometimes sufficient to change PPI
specificity in living cells (Gagnon-Arsenault et al., 2013). Protein localization can also be an important
factor affecting the ability of proteins to interact (Rochette et al., 2014). We found that paralogs that
derive from HMs and that have lost their ability to form HETs are less co-regulated and less co-
localized. This divergence suggests that regulatory evolution could play a role in relieving duplicated
homomeric proteins from the correlated effects of mutations affecting shared protein interfaces.

Overall, our analyses show that duplication of self-interacting proteins creates paralogs whose
evolution is constrained by pleiotropy in ways that are not expected for monomeric paralogs. Pleiotropy
has been known to influence the architecture of complex traits and thus to shape their evolution
(Wagner and Zhang, 2011). However, how it takes place at the molecular level and how it can be
overcome to allow molecular traits to evolve independently is still largely unknown. Here, we provide
a simple system in which the role of pleiotropy can be examined at the molecular level. Because gene
duplication is a major mechanism responsible for the evolution of cellular networks and because a large
fraction of proteins are oligomeric, the pleiotropic and epistatic constraints described here could be an
important force in shaping protein networks. Another important result is that negative selection for
the maintenance of heteromers of paralogs is not needed for their preservation, further enhancing our
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understanding of the role of non-adaptive evolution in shaping the complexity of cellular structures
(Lynch et al., 2014).

Materials and Methods

The protein-protein interactions identified in this publication have been submitted to the IMEx
http://www.imexconsortium.org consortium through IntAct (Orchard et al., 2014) and are assigned
the identifier IM-26944. All scripts used to analyze the data are available at https://github.com/
landrylaboratory/Gene_duplication_2019 (Marchant, 2019; copy archived at https://github.

com/elifesciences-publications/Gene_duplication_2019).

Characterization of paralogs in S. cerevisiae genome

Classification of paralogs by mechanism of duplication

We classified duplicated genes in three categories according to their mechanism of duplication:
small-scale duplicates (SSDs); whole-genome duplicates (WGDs) (Byrne and Wolfe, 2005); and doubly
duplicated (2D, SSDs and WGDs). We removed WGDs from the paralogs defined in Guan et al.
(2007) to generate the list of SSDs. Among paralog pairs with less than 20% of sequence identity
in the multiple sequence alignments (Edgar, 2004), we kept only those sharing the same phylome
(PhylomeDB; Huerta-Cepas et al., 2008) to make sure they were true paralogs. If one of the two
paralogs of an SSD pair was associated to another paralog in a WGD pair, this paralog was considered
a 2D. To decrease the potential bias from multiple duplication events, we removed the 2Ds and paralogs
from successive small-scale genome duplications from the data on interaction motifs. We used data
from Marcet-Houben and Gabaldón (2015) to identify WGDs that are likely true ohnologs or that
originated from allopolyploidization (homeologs).

Sequence similarity

Conversion tables between PhylomeDB IDs and systematic yeast IDs were downloaded from ftp:

//phylomedb.org/phylomedb/all_id_conversion.txt.gz on May 15th, 2019. Sequence identity
was calculated from multiple sequence alignments from phylome 0003 from PhylomeDB (Huerta-Cepas
et al., 2008). The yeast phylome consists of 60 completely sequenced fungal species, with Homo sapiens
and Arabidopsis thaliana as outgroups. Sequences in these phylomes were aligned with MUSCLE v
3.6. When two paralogs were not found in the same multiple sequence alignment from PhylomeDB (32
pairs out of 462 pairs), the sequences were taken from the reference proteome of S. cerevisiae assembly
R64-1-1 downloaded on April 16th, 2018 from the Ensembl database at http://useast.ensembl.

org/info/data/ftp/index.html (Zerbino et al., 2018) and realigned to the rest of the phylome with
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MUSCLE version 3.8.31 (Edgar, 2004). For six pairs of paralogs that did not have phylomeDB IDs
assigned to them, pairwise alignments of their sequences with MUSCLE version 3.8.31 (Edgar, 2004)
were used.

Function, transcription factor binding sites, localization of protein complexes, and
Pfam annotations

We obtained GO terms (GO slim) from SGD (Cherry et al., 2012) in September 2018. We re-
moved terms corresponding to missing data and created a list of annotations for each SSD and WGD.
Annotations were compared to measure the extent of similarity between two members of a pair of du-
plicates. We calculated the similarity of molecular function, cellular component and biological process
taking the number of GO terms in common divided by the total number of unique GO terms of the
two paralogs combined (Jaccard index). We compared the same way transcription factor binding sites
using YEASTRACT data (Teixeira et al., 2006, 2018), cellular localizations extracted from the Yeast-
GFP database (Huh et al., 2003) and many phenotypes associated with the deletion of paralogs (data
from SGD in September 2018). For the deletion phenotypes, we kept only information with specific
changes (a feature observed and a direction of change relative to wild type). We compared the pairwise
correlation of genetic interaction profiles using the genetic interaction profile similarity (measured by
Pearson’s correlation coefficient) of non-essential genes available in TheCellMap database (version of
March 2016) (Usaj et al., 2017). We used the median of correlation coefficients if more than one value
was available for a given pair. Non-redundant set of protein complexes was derived from the Complex
Portal (Meldal et al., 2015), the CYC2008 catalog (Pu et al., 2007, 2009) and Benschop et al. (2010).

We downloaded Pfam domain annotations (El-Gebali et al., 2019) for the whole S. cerevisiae
reference proteome on May 2nd, 2019 from the UniprotKB database (Consortium, 2019). We removed
pairs of paralogs for which at least one of the proteins had no annotated domains and calculated the
Jaccard index.

Homomers and heteromers identified from databases

To complement our experimental data, we extracted HMs and HETs published in BioGRID version
BIOGRID-3.5.166 (Chatr-Aryamontri et al., 2012, 2017). We used data derived from the following
detection methods: Affinity Capture-MS, Affinity Capture-Western, Reconstituted Complex, Two-
hybrid, Biochemical Activity, Co-crystal Structure, Far Western, FRET, Protein-peptide, PCA and
Affinity Capture-Luminescence.

It is possible that some HMs or HETs are absent from the database because they have been tested
but not detected. This negative information is not reported in databases. We therefore attempted
to discriminate non-tested interactions from truly non interacting pairs. A study in which there was
not a single HM reported was considered as missing data for all HMs. For both HMs and HETs, the
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presence of a protein (or both proteins for HET) as both bait and prey but the absence of interaction
was considered as evidence for no interaction. Otherwise, it was considered as missing data.

We also considered data from crystal structures. If a HM was detected in the Protein Data Bank
(PDB) (Berman et al., 2000), we inferred that it was present. If the HM was not detected but the
monomer was reported, it is likely that there is no HM for this protein and it was thus considered
non-HM. If there was no monomer and no HM, the data were considered as missing. We proceeded
the same way for HETs.

Data on genome-wide HM screens was obtained from Kim et al. (2019) and Stynen et al. (2018).
The two experiments used Protein-fragment complementation assays (PCA), the first one using the
dihydrofolate reductase (DHFR) enzyme as a reporter and the second one, a fluorescent protein (also
known as Bimolecular fluorescence complementation (BiFC)). We discarded proteins from Stynen et al.
(2018) flagged as problematic by Rochette et al. (2014); Stynen et al. (2018); Tarassov et al. (2008)
and false positives identified by Kim et al. (2019). All discarded data was considered as missing data.
We examined all proteins tested and considered them as HM if they were reported as positive and as
non-HM if tested but not reported as positive.

Experimental Protein-fragment complementation assay

We performed a screen using PCA based on DHFR (Tarassov et al., 2008) following standard
procedures (Rochette et al., 2015; Tarassov et al., 2008).

DHFR strains

We identified 485 pairs of SSDs and 156 pairs of WGDs present in the Yeast Protein Interactome
Collection (Tarassov et al., 2008)and another set of 155 strains constructed by Diss et al. (2017). We
retrieved strains from the collection (Tarassov et al., 2008) and we grew them on NAT (DHFR F[1,2]
strains) and HygB (DHFR F[3] strains) media. We confirmed the insertion of the DHFR fragments
at the correct location by colony PCR using a specific forward Oligo-C targeting a few hundred base
pairs upstream of the fusion and a reverse complement oligonucleotide ADHterm_R located in the
ADH terminator after the DHFR fragment sequence. Cells from colonies were lysed in 40 µL of 20 mM
NaOH for 20 min at 95°C. Tubes were centrifuged for 5 min at 1800 g and 2.5 µL of supernatant was
added to a PCR mix composed of 16.85 µL of DNAse free water, 2.5 µL of 10X Taq buffer (BioShop
Canada Inc, Canada), 1.5 µL of 25 mM MgCl2, 0.5 µL of 10 mM dNTP (Bio Basic Inc, Canada), 0.15
µL of 5 U/µL Taq DNA polymerase (BioShop Canada Inc, Canada), 0.5 µL of 10 µM Oligo-C and 0.5
µL of 10 µM ADHterm_R. The initial denaturation was performed for 5 min at 95°C and was followed
by 35 cycles of 30 s of denaturation at 94°C, 30 s of annealing at 55°C, 1 min of extension at 72°C and
by a 3 min final extension at 72°C. We confirmed by PCR 2025 strains from the DHFR collection and
126 strains out of the 154 from Diss et al. (2017).
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The missing or non-validated strains were constructed de novo using the standard DHFR strain
construction protocol (Michnick et al., 2016; Rochette et al., 2015). The DHFR fragments and as-
sociated resistance modules were amplified from plasmids pAG25-linker-F[1,2]-ADHterm (NAT re-
sistance marker) and pAG32-linker-F[3]-ADHterm (HygB resistance marker) (Tarassov et al., 2008)
using oligonucleotides. PCR mix was composed of 16.45 µL of DNAse free water, 1 µL of 10 ng/µL
plasmid, 5 µL of 5X Kapa Buffer (Kapa Biosystems, Inc, A Roche Company, Canada), 0.75 µL of 10
mM dNTPs, 0.3 µL of 1 U/µL Kapa HiFi HotStart DNA polymerase (Kapa Biosystems, Inc, A Roche
Company, Canada) and 0.75 µL of both forward and reverse 10 µM oligos. The initial denaturation
was performed for 5 min at 95°C and was followed by 32 cycles of 20 s of denaturation at 98°C, 15 s
of annealing at 64.4°C, 2.5 min of extension at 72°C and 5 min of a final extension at 72°C.

We performed strain construction in BY4741 (MATa his3∆ leu2∆ met15∆ ura3∆) and BY4742
(MATα his3∆ leu2∆ lys2∆ ura3∆) competent cells prepared as in Gagnon-Arsenault et al. (2013) for
the DHFR F[1,2] and DHFR F[3] fusions, respectively. Competent cells (20 µL) were combined with 8
µL of PCR product ( 0.5–1 µg/µL) and 100 µL of Plate Mixture (PEG3350 40%, 100 mM of LiOAc, 10
mM of Tris-Cl pH 7.5 and 1 mM of EDTA). Cells were vortexed and incubated at room temperature
without agitation for 30 min. After adding 15 µL of DMSO and mixing thoroughly, heat shock was
performed by incubating in a water bath at 42°C for 15–20 min. Following the heat shock, cells were
spun down at 400 g for 3 min. Supernatant was removed by aspiration and cell pellets were resuspended
in 100 µL of YPD. Cells were allowed to recover from heat shock for 4 hr at 30°C before being plated
on NAT (DHFR F[1,2] strains) or HygB (DHFR F[3] strains) plates. Cells were incubated at 30°C for
3 days. The correct integration of DHFR fragments was confirmed by colony PCR as described above
and later by sequencing (Plateforme de séquençage et de génotypage des génomes, CRCHUL, Canada)
for specific cases where the interaction patterns suggested a construction problem, for instance when
the HET was observed in one direction only or when one HM was missing for a given pair. At the
end, we reconstructed and validated 146 new strains. From all available strains, we selected pairs of
paralogs for which we had both proteins tagged with both DHFR fragments (four different strains per
pair). This resulted in 1172 strains corresponding to 293 pairs of paralogs. We finally discarded pairs
considered as leading to false positives by Tarassov et al. (2008), which resulted in 235 pairs.

Construction of DHFR plasmids for orthologous gene expression

For the plasmid-based PCA, Gateway cloning-compatible destination plasmids pDEST-DHFR
F[1,2] (TRP1 and LEU2) and pDEST-DHFR F[3] (TRP1 and LEU2) were constructed based on the
CEN/ARS low-copy yeast two-hybrid (Y2H) destination plasmids pDEST-AD (TRP1) and pDEST-DB
(LEU2) (Rual et al., 2005). A DNA fragment having I-CeuI restriction site was amplified using DEY001
and DEY002 primers without template and another fragment having PI-PspI/I-SceI restriction site
was amplified using DEY003 and DEY004 primers without template. pDEST-AD and pDEST-DB
plasmids were each digested by PacI and SacI and mixed with the I-CeuI fragment (destined to the
PacI locus) and PI-PspI/I-SceI fragment (destined to the SacI locus) for Gibson DNA assembly (Gib-
son et al., 2009) to generate pDN0501 (TRP1) and pDN0502 (LEU2). Four DNA fragments were
then prepared to construct the pDEST-DHFR F[1,2] vectors: (i) a fragment containing the ADH1
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promoter; (ii) a fragment containing a Gateway destination site; (iii) a DHFR F[1,2] fragment; and
(iv) a backbone plasmid fragment. The ADH1 promoter fragment was amplified from pDN0501 using
DEY005 and DEY006 primers and the Gateway destination site fragment was amplified from pDN0501
using DEY007 and DEY008 primers. The DHFR-F[1,2] fragment was amplified from pAG25-linker-
F[1,2]-ADHterm (Tarassov et al., 2008) using DEY009 and DEY010 primers.

The backbone fragment was prepared by restriction digestion of pDN0501 or pDN0502 using I-
CeuI and PI-PspI and purified by size-selection. The four fragments were assembled by Gibson DNA
assembly where each fragment pair was overlapping with more than 30 bp, producing pHMA1001
(TRP1) or pHMA1003 (LEU2). The PstI–SacI region of the plasmids was finally replaced with a
DNA fragment containing an amino acid flexible polypeptide linker (GGGGS) prepared by PstI/SacI
double digestion of a synthetic DNA fragment DEY011 to produce pDEST-DHFR F[1,2] (TRP1) and
pDEST-DHFR F[1,2] (LEU2). The DHFR F[3] fragment was then amplified from pAG32-linker-F[3]-
ADHterm with DEY012 and DEY013 primers, digested by SpeI and PI-PspI, and used to replace
the SpeI–PI-PspI region of the pDEST-DHFR F[1,2] plasmids, producing pDEST-DHFR F[3] (TRP1)
and pDEST-DHFR F[3] (LEU2) plasmids. In this study, we used pDEST-DHFR F[1,2] (TRP1) and
pDEST-DHFR F[3] (LEU2) for the plasmid-based DHFR PCA. After Gateway LR cloning of Entry
Clones to these destination plasmids, the expression plasmids encode protein fused to the DHFR
fragments via an NPAFLYKVVGGGSTS linker.

We obtained the orthologous gene sequences for the mitochondrial translocon complex and the
transaldolase proteins of Lachancea kluyveri (Kurtzman, 2003) and Zygosaccharomyces rouxii (Pribylova
et al., 2007) from the Yeast Gene Order Browser (YGOB) (Byrne and Wolfe, 2005). Each ORF was
amplified from appropriate gDNA using oligonucleotides. We used 300 ng of purified PCR product to
set a BPII recombination reaction (5 µL) into the Gateway Entry Vector pDONR201 (150 ng) accord-
ing to the manufacturer’s instructions (Invitrogen, USA). BPII reaction mix was incubated overnight
at 25°C. The reaction was inactivated with proteinase K. The whole reaction was used to transform
MC1061 competent E. coli cells (Green and Rogers, 2013), followed by selection on solid 2YT medium
supplemented with 50 mg/L of kanamycin (BioShop Inc, Canada) at 37°C. Positive clones were de-
tected by PCR using an ORF specific oligonucleotide and a general pDONR201 primer. We then
extracted the positive Entry Clones using Presto Mini Plasmid Kit (Geneaid Biotech Ltd, Taiwan) for
downstream application.

LRII reactions were performed by mixing 150 ng of the Entry Clone and 150 ng of expression
plasmids (pDEST-DHFR F[1,2]-TRP1 or pDEST-DHFR F[3]-LEU2) according to manufacturer’s in-
structions (Invitrogen, USA). The reactions were incubated overnight at 25°C and inactivated with
proteinase K. We used the whole reaction to transform MC1061 competent E. coli cells, followed by
selection on solid 2YT medium supplemented with 100 mg/L ampicillin (BioShop Inc, Canada) at
37°C. Positive clones were confirmed by PCR using a ORF specific primer and a plasmid universal
primer. The sequence-verified expression plasmids bearing the orthologous fusions with DHFR F[1,2]
and DHFR F[3] fragments were used to transform the yeast strains YY3094 (MATa leu2-3,112 trp1-
901 his3-200 ura3-52 gal4∆ gal80∆ LYS2::PGAL1-HIS3 MET2::PGAL7-lacZ cyh2R can1∆::PCMV-rtTA-
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KanMX4) and YY3095 (MATα leu2-3,112 trp1-901 his3-200 ura3-52 gal4∆ gal80∆ LYS2::PGAL1-HIS3
MET2::PGAL7-lacZ cyh2R can1∆::TADH1-PtetO2-Cre-TCYC1-KanMX4), respectively. Selection was
done on SC -trp -ade (YY3094) or on SC -leu -ade (YY3095). The strains YY3094 and YY3095 were
generated from BFG-Y2H toolkit strains RY1010 and RY1030 (Yachie et al., 2016), respectively, by
restoring their wild type ADE2 genes. The ADE2 gene was restored by homologous recombination of
the wild type sequence cassette amplified from the laboratory strain BY4741 using primers DEY014
and DEY015. SC -ade plates were used to obtain successful transformants.

DHFR PCA experiments

Three DHFR PCA experiments were performed, hereafter referred to as PCA1, PCA2 and PCA3.
The configuration of strains on plates and the screenings were performed using robotically manipulated
pin tools (BM5-SC1, S&P Robotics Inc, Toronto, Canada; Rochette et al., 2015). We first organized
haploid strains in 384 colony arrays containing a border of control strains using a cherry-picking 96-
pin tool (Figure S7). We constructed four haploid arrays corresponding to paralog 1 and 2 (P1 and
P2) and mating type: MATa P1-DHFR F[1,2]; MATa P2-DHFR F[1,2] (on NAT medium); MATα
P1-DHFR F[3]; MATα P2-DHFR F[3] (on HygB medium). Border control strains known to show
interaction by PCA (MATa LSM8-DHFR F[1-2] and MATα CDC39-DHFR F[3]) were incorporated
respectively in all MATa DHFR F[1,2] and MATα DHFR F[3] plates in the first and last columns and
rows. The strains were organized as described in Figure S7. The two haploid P1 and P2 384 plates
of the same mating type were condensed into a 1536 colony array using a 384-pintool. The two 1536
arrays (one MATa DHFR F[1,2], one MATα DHFR F[3]) were crossed on YPD to systematically test
P1-DHFR F[1,2]/P1 DHFR F[3], P1-DHFR F[1,2]/P2-DHFR F[3], P2-DHFR F[1,2]/P1-DHFR F[3]
and P2-DHFR F[1,2]/P2-DHFR F[3] interactions in adjacent positions. We performed two rounds
of diploid selection (S1 to S2) by replicating the YPD plates onto NAT + HygB and growing for 48
hr. The resulting 1536 diploid plates were replicated twice for 96 hr on DMSO -ade -lys -met control
plates (for PCA1 and PCA2) and twice for 96 hr on the selective MTX -ade -lys -met medium (for
all runs). Five 1536 PCA plates (PCA1-plate1, PCA1-plate2, PCA2, PCA3-plate1 and PCA3-plate2)
were generated this way. We tested the interactions between 277 pairs in five to twenty replicates each.

We also used the robotic platform to generate three bait and three prey 1536 arrays for the DHFR
plasmid-based PCA, testing each pairwise interaction at least four times. We mated all MATa DHFR
F[1,2] and MATα DHFR F[3] strains on YPD medium at room temperature for 24 hr. We performed
two successive steps of diploid selection (SC -leu -trp -ade) followed by two steps on DMSO and MTX
media (DMSO -leu -trp -ade and MTX -leu -trp -ade). We incubated the plates of diploid selection at
30°C for 48 hr. Finally, plates from both MTX steps were incubated and monitored for 96 hr at 30°C.

Analysis of DHFR PCA results

Image analysis and colony size quantification
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All images were analysed the same way, including images from Stynen et al. (2018). Images of
plates were taken with a EOS Rebel T5i camera (Canon, Tokyo, Japan) every two hours during the
entire course of the PCA experiments. Incubation and imaging were performed in a spImager custom
platform (S&P Robotics Inc, Toronto, Canada). We considered images after two days of growth for
diploid selection plates and after four days of growth for DMSO and MTX plates. Images were analysed
using gitter (R package version 1.1.1; Wagih and Parts, 2014) to quantify colony sizes by defining a
square around the colony center and measuring the foreground pixel intensity minus the background
pixel intensity.

Data filtering

For the images from Stynen et al. (2018), we filtered data based on the diploid selection plates.
Colonies smaller than 200 pixels were considered as missing data rather than as non-interacting strains.
For PCA1, PCA2 and PCA3, colonies flagged as irregular by gitter (as S (colony spill or edge interfer-
ence) or S, C (low colony circularity) flags) or that did not grow on the last diploid selection step or
on DMSO medium (smaller than quantile 25 minus the interquartile range) were considered as missing
data. We considered only bait-prey pairs with at least four replicates and used the median of colony
sizes as PCA signal. The data was finally filtered based on the completeness of paralogous pairs so we
could test HMs and HETs systematically. Thus, we finally obtained results for 241 paralogous pairs.
Median colony sizes were log2 transformed after adding a value of 1 to all data to obtain PCA scores.
The results of Stynen et al. (2018) and PCA1, PCA2 and PCA3 were strongly correlated (Figure S3B).
Similarly, the results correlate well with those reported by Tarassov et al. (2008) (Figure S3C).

Detection of protein-protein interactions

The distribution of PCA scores was modeled per duplication type (SSD and WGD) and per interac-
tion tested (HM or HET) as in Diss et al. (2017) with the normalmixEM function (default parameters)
available in the R mixtools package (Benaglia et al., 2009). The background signal on MTX was used
as a null distribution to which interactions were compared. The size of colonies (PCA scores (PCAs))
were converted to z-scores (Zs) using the mean (µb) and standard deviation (sdb) of the background
distribution (Zs = (PCAs - µb)/sdb). PPI were considered detected if Zs of the bait-prey pair was
greater than 2.5 (Figure S8) (Chrétien et al., 2018).

We observed 24 cases in which only one of the two possible HET interactions was detected (P1-
DHFR F[1,2] x P2-DHFR F[3] or P2-DHFR F[1,2] x P1-DHFR F[3]). It is typical for PCA assays
to detect interactions in only one orientation or the other (See Tarassov et al. (2008)). However, this
could also be caused by one of the four strains having an abnormal fusion sequence. We verified by
PCR and sequenced the fusion sequences to make sure this was not the case. The correct strains were
conserved and the other ones were re-constructed and retested. No cases of unidirectional HET were
observed in our final results. For all 71 pairs after reconstruction, both reciprocal interactions were
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detected.

Dataset integration

The PCA data was integrated with other data obtained from databases. The overlaps among the
different datasets and the results of our PCA experiments are shown in Figure S4.

Gene expression in MTX condition

Cell cultures for RNAseq

We used the border control diploid strain from the DHFR PCA experiment (MATa/α LSM8-
DHFR F[1,2]/LSM8 CDC39/CDC39-DHFR F[3]) to measure expression profile in MTX condition.
Three overnight pre-cultures were grown separately in 5 ml of NAT + HygB at 30°C with shaking at
250 rpm. A second set of pre-cultures were grown starting from a dilution at OD600 = 0.01 in 50 ml in
the same condition to an OD600 of 0.8 to 1. Final cultures were started at OD600 = 0.03 in 250 ml of
synthetic media supplemented with MTX or DMSO (MTX -ade -trp -leu or DMSO -ade -trp -leu) at
30°C with shaking at 250 rpm. These cultures were transferred to 5 × 50 ml tubes when they reached
an OD600 of 0.6 to 0.7 and centrifuged at 1008 g at 4°C for 1 min. The supernatant was discarded
and cell pellets were frozen in liquid nitrogen and stored at -80°C until processing. RNA extractions
and library generation and amplification were performed as described in Eberlein et al. (2019). Briefly,
the Quantseq 3’ mRNA kit (Lexogen, Vienna, Austria) was used for library preparation (Moll et al.,
2014) following the manufacturer’s protocol. The PCR cycles number during library amplification was
adjusted to 16. The six libraries were pooled and sequenced on a single Ion Torrent chip (ThermoFisher
Scientific, Waltham, United States) for a total of 7,784,644 reads on average per library.

RNAseq analysis

Read quality statistics were retrieved from the program FastQC (Andrews, 2010). Reads were
cleaned using cutadapt (Martin, 2011). We removed the first 12 bp, trimmed the poly-A tail from the
3’ end, trimmed low-quality ends using a cutoff of 15 (phred quality +33) and discarded reads shorter
than 30 bp. Raw sequences can be downloaded under the NCBI BioProject ID PRJNA494421.

Cleaned reads were aligned on the reference genome of S288c from SGD (S288C_reference_genome-
R64-2-1_20150113.fsa version) using bwa (Li and Durbin, 2009). Because we used a 3’mRNA-Seq
Library, reads mapped largely to 3’UTRs. We increased the window of annotated genes in the SGD
annotation (saccharomyces_cerevisiae_R64-2-1_20150113.gff version) using the UTR annotation from
Nagalakshmi et al. (2008). Based on this reference genes-UTR annotation, the number of mapped reads
per genes was estimated using htseq-count of the Python package HTSeq (Anders et al., 2015).
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Correlation of gene expression profiles

The correlation of expression profiles for paralogs was calculated using Spearman’s correlation from
large-scale microarray data (Ihmels et al., 2004) over 1000 mRNA expression profiles from different
conditions and different cell cycle phases. These results were compared and confirmed with a large-
scale expression data from normalized single-cell RNAseq of S. cerevisiae grown in normal or stressful
conditions (0.7 M NaCl) and from different cell cycle phases (Gasch et al., 2017).

Structural analyses

Sequence conservation in binding interfaces of yeast complexes

Identification of crystal structures

The sequences of paralogs classified as SSDs or WGDs (Byrne and Wolfe, 2005; Guan et al., 2007)
were taken from the reference proteome of Saccharomyces cerevisiae assembly R64-1-1 and searched
using BLASTP (version 2.6.0+) (Camacho et al., 2009) to all the protein sequences contained in the
Protein Data Bank (PDB) downloaded on September 21st, 2017 (Berman et al., 2000). Due to the high
sequence identity of some paralogs (up to 95%), their structures were assigned as protein subunits from
the PDB that had a match with 100% sequence identity and an E-value lower than 1e-6. Only crystal
structures that spanned more than 50% of the full protein length were kept for the following analyses.
The same method was used to retrieve PDB structures for human paralogous proteins. The human
reference proteome Homo_sapiens.GRCh38.pep.all.fa was downloaded on May 16th, 2019 from the
Ensembl database (http://useast.ensembl.org/info/data/ftp/index.html) (Zerbino et al., 2018). Pairs
of paralogs were retrieved from two different datasets (Lan and Pritchard, 2016; Singh et al., 2015).
Protein interactions for those proteins were taken from a merged dataset from the BioGRID (Chatr-
Aryamontri et al., 2017) and IntAct (Orchard et al., 2014) databases. The longest protein isoforms for
each gene in the dataset were aligned using BLASTP to the set of sequences from the PDB. Matches
with 100% sequence identity and E-values below 1e-6 were assigned to the subunits from the PDB
structures.

Identification of interfaces

Residue positions involved in protein binding interfaces (contacting and nearby residues) were
defined based on the distance of residues to the other subunit (Keskin et al., 2005; Tsai et al., 1996).
Contacting residues were defined as those whose two closest non-hydrogen atoms are separated by a
distance smaller than the sum of their van der Waals radii plus 0.5 Å. Reference van der Waals radii
were obtained with FreeSASA version 2.0.1 (Mitternacht, 2016). Nearby residues are those whose alpha
carbons are located at a distance smaller than 6 Å, since it allows inclusion of residues that make up
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the scaffold of the interface (Tsai et al., 1996). All distances were measured using the Biopython library
(version 1.70) (Cock et al., 2009).

Sequence conservation within interfaces

The dataset of PDB files was filtered to include only the crystallographic structures with the
highest resolution available for each complex involving direct contacts between subunits of paralogs.
Full-length protein sequences from the reference proteome were then aligned to their matching subunits
from the PDB with MUSCLE version 3.8.31 (Edgar, 2004) to assign the structural data to the residues
in the full-length protein sequence. These full-length sequences were then aligned to their paralogs
and sequences from PhylomeDB (phylome 0003) (Huerta-Cepas et al., 2008) with MUSCLE version
3.8.31. Only three pairs of paralogs that needed realignment were included in this analysis. Sequence
identity was calculated within interface regions, which considered the contacting and nearby residues.
Paralogs were classified as HM or HM&HET. Pairs of paralogs for which the crystallized domain was
only present in one of the proteins were not considered for this analysis.

A similar procedure was applied to the human proteins, with sequences aligned to their correspond-
ing PhylomeDB phylogenies from phylome 0076 resulting from forward and reverse alignments obtained
with MUSCLE 3.8, MAFFT v6.712b and DIALIGN-TX, and merged with M-COFFEE (Huerta-Cepas
et al., 2008). Considering that human genes code for multiple isoforms, we took the isoforms from the
two paralogs that had the highest sequence identity with respect to the PDB structure. When a gene
coded for multiple isoforms that were annotated with identical protein sequence in the human reference
proteome, we only kept one of them. This resulted in a set of 40 HM interfaces and 25 HM&HET
interfaces for a total of 54 different pairs (35 HM pairs and 19 HM&HET). Pairs of paralogs were
classified as HM or HM&HET.

Simulations of coevolution of protein complexes

Mutation sampling during evolution of protein interfaces

Simulations were carried out with high-quality crystal structures of homodimeric proteins from
PDB (Berman et al., 2000). Four of them (PDB: 1M38, 2JKY, 3D8X, 4FGW) were taken from the
above data set of structures that matched yeast paralogs and two others from the same tier of high-
quality structures (PDB: 1A82, 2O1V). The simulations model the duplication of the gene encoding
the homodimer, giving rise to separate copies that can accumulate different mutations, leading to the
formation of HMs and HETs as in Figure 1.

Mutations were introduced using a transition matrix whose substitution probabilities consider the
genetic code and allow only substitutions that would require a single base change in the underlying
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codons (Thorvaldsen, 2016). Due to the degenerate nature of the genetic code, the model also allows
synonymous mutations. Thus, the model explores the effects of amino acid substitutions in both loci,
as well as in one locus only. The framework assumes equal mutation rates at both loci, as it proposes a
mutation at each locus after every step in the simulation, with 50 replicate populations of 200 steps of
substitution in each simulation. Restricting the mutations to the interface maintains sequence identity
above 40%, which has been described previously as the threshold at which protein fold remains similar
(Addou et al., 2009; Todd et al., 2001; Wilson et al., 2000).

Implementation of selection

Simulations were carried out using the FoldX suite version 4 (Guerois et al., 2002; Schymkowitz
et al., 2005). Starting structures were repaired with the RepairPDB function, mutations were simulated
with BuildModel followed by the Optimize function, and estimations of protein stability and binding
energy of the complex were done with the Stability and Analyse Complex functions, respectively.
Effects of mutations on complex fitness were calculated using methods previously described (Kachroo
et al., 2015). The fitness of a complex was calculated from three components based on the stability of
protein subunits and the binding energy of the complex using Equation 1:

xki = −log[eβ*(∆Gk
i - ∆Gk

threshold) + 1] (1)

where i is the index of the current substitution, k is the index of one of the model’s three energetic
parameters (stability of subunit A, stability of subunit B, or binding energy of the complex), xki is the
fitness component of the kth parameter for the ith substitution, β is a parameter that determines the
smoothness of the fitness curve, ∆Gk

i is the free energy value of the kth free energy parameter (stability
of subunit A, stability of subunit B, or binding energy of the complex) for the ith substitution, and
∆Gk

threshold is a threshold around which the fitness component starts to decrease. The total fitness of
the complex after the ith mutation was calculated as the sum of the three computed values for xki, as
shown in Equation 2:

xi =

3∑
n=1

xki (2)

The fitness values of complexes were then used to calculate the probability of fixation (pfix) or
rejection of the substitutions using the Metropolis criterion, as in Equation 3:
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pfix =

1 xj > xi

e-2N*(xi - xj) xj ≤ xi
(3)

where pfix is the probability of fixation, xi is the total fitness value for the complex after i substi-
tutions; xj is the total fitness value for the complex after j substitutions, with j = i+ 1; and N is the
population size, which influences the efficiency of selection.

Different selection scenarios were examined depending on the complexes whose binding energy and
subunit stabilities were under selection: neutral evolution (no selection applied on subunit stability and
on the binding energy of the complex), selection on one homodimer, selection on the two homodimers,
and selection on the heterodimer. β was set to 10, N was set to 1000 and the ∆Gk

threshold were
set to 99.9% of the starting values for each complex, following the parameters described in Kachroo
et al. (2015). For the simulations with neutral evolution, β was set to 0. For simulations with other
combinations of parameters, we varied β and N, one at a time, with β taking values of 1 and 20 and
N taking values of 100 and 10000. The simulations with 500 substitutions were carried out with β set
to 10, and N set to 1000.

Analyses of simulations

The results from the simulations were then analyzed by distinguishing mutational steps with only
one non-synonymous mutation (single mutants, between 29% and 34% of the steps in the simulations)
from steps with two non-synonymous mutations (double mutants, between 61% and 68% of the steps).
The global data was used to follow the evolution of binding energies of the complexes over time,
which are shown in Figure 4. The effects of mutations in HM and HET were compared using the
single mutants (Figure S17). The double mutants were used to analyze epistatic and pleiotropic effects
(Figure 55, Figure S19) and to compare the rates of mutation fixation based on their effects on the
HMs (Figure S18).

Author contributions

CRL, AM and AFC designed this study. AM, AKD, IGA, DA, SA, CE and DEY performed the
experiments. AFC performed the in silico evolution experiments and the analysis of protein structures.
AM, AFC, HAJ and CRL analysed the results. CRL and NY supervised the research. AM, AFC and
CRL wrote the manuscript with input from all authors.

36



Chapter 1

Acknowledgements

This work was supported by Canadian Institutes of Health Research grants 299432, 324265 and 387697
to CRL. AM was supported by a FRQS postdoctoral scholarship. AFC was supported by fellowships
from PROTEO, MITACS, and Université Laval, as well as joint funding from MEES and AMEXCID.
SA was supported by an NSERC undergraduate scholarship. CRL holds the Canada Research Chair in
Evolutionary Cells and Systems Biology. We thank SW Michnick for sharing data before publication.
The authors thank Philippe Després, Johan Hallin and Anna Fijarczyk for comments on the paper,
Rohan Dandage for both comments on the paper and assistance on gathering the data for human
paralogs, Rong Shi for useful discussions, and Stéphane Larose for assistance on data management.

Competing interests

The authors have no competing interests to declare.

37



Discussion

2 Discussion

Gene duplication has been shown to play a prominent role in the generation of biological innovations.
One of the ways in which it can affect protein function is by altering protein-protein interaction
networks (He and Zhang, 2005; Pereira-Leal et al., 2007). However, a surprising outcome observed
in some yeast proteins is that they become dependent on the presence of their paralogs to be stable
and to interact with other proteins (DeLuna et al., 2010; Diss et al., 2017). A potential model that
could explain these observations is that the paralogs could have originated from the duplication of a
homomeric protein and subsequently evolved to retain only the heteromer. Nevertheless, the factors
that could lead to this outcome are not known. Thus, we set out to investigate the extent to which
paralogs interact in the yeast protein-protein interaction network by means of experiments, and to
simulate the evolution of protein complexes to study how mutations and natural selection can influence
the retention of protein complexes. In our simulations, we tested different scenarios to study if the
effect of natural selection on the retention of a specific protein complex could influence the retention
of the others.

Different models have suggested that the loss of interactions is more frequent than the gain of
interactions after gene duplication (Gibson and Goldberg, 2009; Presser et al., 2008). In the light of
these results, the duplication of homomeric proteins represents a way to introduce new complexes with
different contacts (Pereira-Leal et al., 2007), which can then be lost rather than gained. Given the
abundance of homomeric proteins in proteomes (32.48% of the total tested proteins in our dataset),
this mechanism is expected to happen often and offers a more parsimonious approach to the generation
of diversity and novel complexes. This is confirmed by our observations that pairs of paralogs that form
both homomers and heteromers do have self-interacting orthologs in yeast species in which the gene
duplications did not occur. We then tested if the proteins in S. cerevisiae were capable of interacting
with their orthologs in the other yeast species. Remarkably, the proteins are capable of interacting with
one another, even though they have evolved separately for millions of years. This result, similar to the
complementation by orthologs observed by other studies (Kachroo et al., 2015), suggests that selective
pressures acting to maintain the binding between paralogs can also maintain binding to orthologous
proteins. This highlights how proteins need to assemble into complexes in order to carry out their
functions.

Once the new interactions are established following gene duplication, the two proteins are expected
to diverge in sequence. Ashenberg et al. (2011) proposed that a potential mechanism for the devel-
opment of specificity in protein interactions relies on the previous accumulation of neutral mutations.
Indeed, we observed that pairs of paralogs that retain the capability to form heteromers have a higher
sequence identity, both at the whole protein level and the interface level. This is consistent with pre-
vious observations that proteins have an inherent propensity to self-interact (Lukatsky et al., 2007,
2006). As sequences diverge with time, a trend between the retention of heteromers, sequence conser-
vation, and the age of the duplication was observed, with older paralogs losing the heteromer more
often and the newer paralogs retaining it. Our data also reflect the effect of WGD and SSD on the
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retention of heteromeric complexes, with duplicates from the WGD being more likely to retain it.
Retention of heteromers has important functional consequences, as pairs of paralogs that retain the
heteromer are more similar to each other in terms of function, biological processes, phenotypes, and
genetic interactions than the ones that do not. A potential outcome of this higher functional similarity
could be that the paralogs become dependent on each other to carry out any functions acquired by the
heteromer, as in the examples reported by Cui et al. (2015), Baker et al. (2013) and Diss et al. (2017).
Remarkably, some of the studied HM&HET paralog pairs lost one of the homomers without losing the
heteromer, which suggests that there could be different evolutionary constraints on the complexes.

In order to test potential ways to reach each outcome (HM, HET, HM&HET), we turned to the
results of the evolutionary simulations. We observed that the high similarity of the subunits that make
up the three protein complexes results in highly correlated evolutionary trajectories. This results
in a constraint that slows down the exploration of sequence space of the complexes because they
are not independent of each other, particularly when selection is applied either on the heteromer or
on both homomers. Nevertheless, when selection is applied on one of the homomers and both the
other homomer and the heteromer are considered neutral, we observed that the neutral homomer is
destabilized more quickly than the neutral heteromer. This scenario would lead towards the patterns
of retained heteromers with the loss of a homomer. Such a scenario could allow the heteromer to evolve
for a longer time until it develops a new function or the second gene is lost. Indeed, previous models
for the possibility of subfunctionalization and neofunctionalization (Rastogi and Liberles, 2005; Teufel
et al., 2016) show that the probability of functional changes increases with the time of retention of the
paralogs. In our simulations, we observed that heteromers of paralogs are often preserved throughout,
so they could drift neutrally until functions are split or new functions are acquired.

Since the homomers and heteromers in our simulations share subunits, we then looked into the
extent of pleiotropy between the complexes. It is characterized by a high correlation of the effects of
single mutants on both the homomer and the heteromer, but the magnitude of the effects of mutations
was greater for the homomer. This result agrees with previous early remarks that the presence of
a mutation on both chains of a homomeric complex should amplify its effects (Monod et al., 1965)
and that the distribution of binding energies for homomers has a lower mean (higher stability) but
a greater variance than that for heteromers (André et al., 2008; Lukatsky et al., 2007, 2006). While
these observations were initially used to explain why homomers are more likely to appear de novo,
they would also suggest that mutations should have a greater effect on them than on heteromers. In
the absence of gene duplication, selective pressure would act on the homomer against the deleterious
mutants, preserving the functional state in the population. However, after gene duplication, the initial
functional redundancy might reduce the selective pressure on the complexes. Then, as the paralogs
accumulate mutations, homomers would be subject to a greater variance of effects. This explains why
in our evolutionary simulations the heteromer is preserved under selection for both homomers, favored
when under selection for the heteromer, and destabilized more slowly than the neutral homomer under
selection for one homomer. Thus, the pleiotropic constraint observed in our simulations could be a
major force in the retention of heteromeric complexes.
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Nevertheless, a potential way to overcome the pleiotropic constraint would be to separate the
expression of the protein chains. As such, we tested for the coexpression of pairs of paralogs. We
observed that paralogs that interact with each other are more often coexpressed than those that do not.
Multiple sources of information confirm this, including correlations in expression levels across different
conditions and similarity in localization component and GO cellular component terms. Furthermore,
we observed a higher similarity of transcription factor binding sites for interacting paralogs. The
consequences of the regulatory evolution of paralogs have been studied in different models. Some
paralog pairs are regulated such that the less expressed copy is slowly reduced until its expression is
lost altogether (Gout and Lynch, 2015). Protein-protein interactions are also dependent on regulation,
as exchanging the loci of pairs of paralogs can lead them to exchange places in protein complexes
(Gagnon-Arsenault et al., 2013). In vertebrates, paralogs can become expressed only in specific tissues,
which can stop them from compensating each other’s loss. Thus, mutations that affect their function
result in tissue-specific diseases (Barshir et al., 2018). Our results show that this mechanism to avoid
crosstalk between paralogs is also present in yeast and could contribute to the avoidance of interactions
and result in the separation of the paralogs’ evolution.

The balance between regulatory evolution and the pleiotropic constraint becomes a determining
factor in the retention of heteromers of paralogs. On one hand, the retention of heteromers for longer
timescales might contribute to the development of new functions, while the separation of the proteins
to prevent interactions might avoid cross-talk and dosage imbalance. Further studies should emphasize
on the contributions of each mechanism to cellular robustness, as they can have mixed effects. For
example, the pleiotropic constraint might contribute to paralogs being able to buffer each other’s
loss (DeLuna et al., 2008; Hsiao and Vitkup, 2008), but it might also introduce dependency between
paralogs that produces a more deleterious effect upon the loss of one of them (Dandage and Landry,
2019; DeLuna et al., 2010; Diss et al., 2017). Similarly, regulatory separation could be a way to avoid
dosage imbalance but could also prevent compensation between paralogs as in tissue-specific diseases
(Barshir et al., 2018). Looking at the the different properties of each case of duplicates could help
disentangle the complex contributions of gene duplicates to cellular robustness.

A particularly interesting conclusion of this work is that there are intrinsic differences in the effects
of mutations for homomers and heteromers. Besides contributing to the retention of protein-protein
interactions, mutations having smaller effects on heteromers than on homomers could have implica-
tions for the robustness of cellular networks to mutations because smaller effects would be less likely to
disrupt complexes. As disruption of protein complexes has been previously linked to diseases (Sahni
et al., 2015; Schuster-Böckler and Bateman, 2008), a way to look at this would be to look at the
distribution of disease-causing mutations in protein complexes. Schuster-Böckler and Bateman (2008)
designed a pipeline to map disease-causing mutations to protein interaction interfaces and identified
fewer mutations in heteromeric interfaces than homomeric ones. However, as the PDB is enriched for
homomeric complexes, it was not possible to evaluate whether this trend emerged because disease-
causing mutations on heteromers could not be mapped since the crystallographic structure had not
yet been solved. A way to address this bias would be to look at databases on neutral standing varia-
tion (Karczewski et al., 2019). Indeed, preliminary analyses (data not shown) point to disease-causing
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mutations being overall enriched in homomeric interfaces, even when controlling for proteins that par-
ticipate in both homomers and heteromers. However, classifying protein complexes according to other
structural variables reveals particular subsets in which it is actually the heteromers that are enriched
in disease-causing mutations (data not shown). Further analyses on this topic will yield information
on the nature of disease-causing mutations, considerations for protein design, the contribution of het-
eromers to cellular robustness, and on the evolutionary success of diploid and polyploid genomes for
multicellular organisms.

Another perspective of this work would be studying how mutations happen and if there is an overall
direction of neutral evolution. In our simulations, most of the sampled mutations were destabilizing for
both the homomer and the heteromer. Therefore, most of the available substitutions would inherently
lead towards the destabilization of the complexes in the absence of selection. Similar observations
were pointed out by Lynch (2018) in the sense that mutational input could have an opposite overall
directionality to selection. As such, if selection is not efficient enough, populations might drift away
from the overall optimum. A consequence of this model would be that traits in a population stabilize
at slightly suboptimal values, which is supported by prokaryotic enzymes having better kinetics than
eukaryotic ones, as expected by differences in the effective population sizes (Bar-Even et al., 2011).

A particular bias that was not explored in the simulations but could play a prominent role in
this could be mutational bias towards AT. This trend has been shown to be generalized in bacteria,
regardless of genomic GC content (Hershberg and Petrov, 2010). Interestingly, even though the genetic
code is organized in a way that minimizes changes in hydrophobicity (Freeland and Hurst, 1998; Haig
and Hurst, 1991), the AT bias in the genetic code leads to the appearance of more hydrophobic amino
acid residues, which would result in higher chain stability but also in higher propensity to interact
(Bastolla et al., 2017, 2004). Preliminary analyses based on neutral mutation rates from mutation
accumulation experiments in S. cerevisiae (Sharp et al., 2018; Zhu et al., 2014) allow us to infer the
expected proportions on amino acids in the long term based on neutral mutation rates and the structure
of the genetic code. Comparing these long-term expectations to the observed proportions of codons
(Nakamura et al., 2000), there is a strong correlation, suggesting that a proteome with a similar amino
acid composition to the one observed could be derived solely by neutral evolution and the architecture
of the genetic code (data not shown). Looking at the deviations from expectations reveals a strong
negative correlation with the propensity of amino acid residues to participate in interfaces, or stickiness,
as defined in Levy et al. (2012) (data not shown). In fact, the correlation with stickiness is among the
three strongest ones when checking the correlation between the deviation from expectations and 58
other amino acid metrics available in the ExPASy ProtScale server (Gasteiger et al., 2005) (data not
shown). This pattern could represent the effect of selection in the proportions of amino acids that make
up the proteome as a means to preserve protein structure and function while avoiding the deleterious
consequences of the accumulation of hydrophobic residues, such as aggregation. Further studies on
this will help identify the role that neutral evolution plays in shaping the genomes and proteomes of
different species, as well as the adaptive properties of genomes that have high GC content despite the
mutational bias towards AT.
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Conclusion

Our work looks at the extent of heteromerization between paralogs in the yeast protein-protein interac-
tion network and discusses mechanisms that can act to preserve or lose these complexes. First of all, we
reaffirm the important role of duplications of genes encoding homomeric proteins in the protein-protein
interaction network because of the abundance of homomeric proteins and the way these duplications
contribute to the generation of new complexes. Then, we characterize the mechanisms that could
break up the relationship between the two resulting paralogs, that is: the accumulation of mutations
and regulatory evolution. We find that the similarity of the complexes results in mutations having
pleiotropic effects on them that constrain their evolution because mutations affect more than one
complex. Simulations show that complexes remain stable even when selection does not act on them
because of this pleiotropic constraint, with heteromers being particularly able to explore more of the
sequence space while remaining stable because mutations tend to have smaller effects on them than
on homomers. On the other hand, regulatory evolution could separate the paralogs to make them
evolve independently from each other and overcome this pleiotropic constraint. We show that the
interplay between these two mechanisms determines the retention of heteromers of paralogs after gene
duplication. A consequence of the retention of heteromers can be the change in the proteins’ function,
which then can have distinct effects on robustness at the molecular and organism level.
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Annex

Supplementary text

Comparison of PCA results with previous studies

We performed a screen using PCA based on the DHFR (Tarassov et al., 2008) to test for PPIs among
SSDs and WGDs in Saccharomyces cerevisiae, specifically testing for self-interactions (HMs) and inter-
actions between paralogs (HETs). The yeast DHFR PCA detects direct and near direct interactions
without disturbing endogenous regulation, giving insight into the role of transcriptional regulation
in the evolution of PPIs (Barshir et al., 2018; Gagnon-Arsenault et al., 2013; Rochette et al., 2014;
Tarassov et al., 2008). PCA is one of the standard binary methods used to measure direct and near-
direct PPIs in yeast and mammalian cells (Titeca et al., 2019). PCA’s performance compares to other
standard methods when proper controls and analyses are performed. It has been used successfully by
our group and others in various contexts since its first application (Celaj et al., 2017; Chrétien et al.,
2018; Lev et al., 2014; Schlecht et al., 2017).

In general, the PCA signal in our study strongly correlates with results from previous PCA ex-
periments (Stynen et al., 2018; Tarassov et al., 2008) and other publicly available data (Figure S1).
Roughly 75% of the HMs and HETs detected in our PCA experiments were previously reported (Figure
S2), suggesting that most of the HMs and HETs that can be detected with the available tools and in
standard conditions have been discovered. While 76 HMs and 47 HETs reported in other studies were
not detected in our PCA, our experiments detected 44 HMs and 19 HETs not previously reported.
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Figure S1: Association between mRNA abundance and the probability of HM detection by PCA in this
study.
(A) The probability that PCA detects a HM is correlated with expression level, as estimated by RNAseq. The plot shows
the detection probability of HMs as a function of mRNA abundance for previously reported HMs. Kernel regression of
the HM detection (one for detected, 0 for not detected) on the number of mapped reads per gene (log10). (B) Difference
in HM formation between paralogs results in part from their differential mRNA abundance. The PCA score of paralog
1 (P1) is compared to the PCA score of paralog 2 (P2). PCA scores are median colony sizes from the PCA experiments
performed in this study. The total mRNA abundance of paralogs is shown by the size of the points and the difference of
expression levels is represented by a color gradient (red for overexpression of P2 compared to P1 and blue overexpression
of P1 compared to P2). Red points tend to be above the diagonal, blue points, below the diagonal. (C) Comparison
of expression levels of previously reported HMs for HMs undetected and detected in the PCA experiments performed in
this study. P-value from a Wilcoxon test is shown. Comparison of PCA data generated in this study with previously
published data.
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Figure S2: mRNA and protein abundance of singletons and duplicates.
(A) Comparison of mRNA abundance of genes as a function of whether they rare duplicated and of their type of
duplication. (B) Comparison of the protein abundance as a function of whether they rare duplicated and their type of
duplication. (S: singleton, SSD: Small-Scale Duplicates, WGD: Whole-Genome Duplicates). Numbers indicate p-values
from Wilcoxon tests.
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Figure S3: Comparison of PCA data generated in this study with published data.
(A) Colony size (estimated as the integrated pixel intensity) in the PCA experiment as a function of the number of times
the corresponding interaction is reported in BioGRID version BIOGRID-3.5.166 (Chatr-Aryamontri et al., 2012, 2017).
(B) Correlation between colony size of the study of Stynen et al. (2018) on homomers and of the PCA experiment
performed in this study. (C) Correlation between colony size of Tarassov et al. (2008) and of the PCA experiment
performed in this study.
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Figure S4: Intersections of detected HMs.
(A) and HETs (B) from this study and previously reported HMs and HETs. We considered HMs and HETs reported
in crystal structures from the Protein Data Bank on September 21st, 2017 (Berman et al., 2000) and by PCA based
on fluorescent proteins (BiFC) (Kim et al., 2019). We also include HMs and HETs reported in BioGRID (BIOGRID-
3.5.166; Chatr-Aryamontri et al., 2013; Chatr-Aryamontri et al., 2017) with these methods: Affinity Capture-MS, Affinity
Capture-Western, Reconstituted Complex, Two-hybrid, Biochemical Activity, Co-crystal Structure, Far Western, FRET,
Protein-peptide, Affinity Capture-Luminescence and PCA. We added data from Stynen et al. (2018) to the BioGRID
PCA data. Results of the PCA experiments from this study are highlighted in red. Turquoise-blue bars show HMs and
HETs detected in this study and previously observed. The intersections were computed and plotted using the R package
UpSetR (Lex et al., 2014).
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Figure S5: Interaction motifs and percentage of pairwise amino acid sequence identity between paralogs.
(A) Pairs of paralogs were clustered in six pairwise amino acid sequence identity groups and the distribution (in
percentage) of these groups were compared between SSD and WGD. P-values are from Fisher’s exact tests. (B) The
percentage of paralog pairs forming HM&HET among the total number of paralog pairs forming at least one HM (HM
and HM&HET) is shown as a function of the percentage of pairwise amino acid sequence identity (SSDs in yellow and
WGDs in blue). For each group, the number of HM&HET pairs and the total number are indicated above the bars.
(C) Percentage of pairwise amino acid sequence identity between paralogs for each motif. 1HM: shows one homomer
only, 2HM: shows both homomers, 1HM&HET: shows one homomer and the heteromer, and 2HM&HET: shows both
homomers and the heteromer. P-values are from Wilcoxon tests. (D) The percentage of pairwise amino acid sequence
identity among homeologs (dark blue) and true onhologs (light blue). P-value is from a Wilcoxon test. (E) Percentage of
pairwise amino acid sequence identity between paralogs for HM and HM&HET motifs for homeologs and true ohnologs.
P-values are from Wilcoxon tests.
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Figure S6: Conservation of binding interfaces of human paralogs in HM&HET complexes with solved
structures. (A) Pairwise amino acid sequence identity for the full sequences of paralogs and their interfaces are shown
for the two motifs). P-values from paired Wilcoxon tests are shown. (B) Relative conservation scores are shown for the
two motifs of paralogs. Relative conservation scores are calculated based on the protein regions solved by crystallography
as the percentage of sequence identity at the binding interface divided by the percentage of sequence identity outside
the interface. Paralog pairs were classified as HM or HM&HET. Homologous interfaces were identified in alignments of
the paralogous sequences. The list of PDB IDs used for these analyses includes 40 interfaces from homomeric structures
for the HM group and 25 interfaces for the HM&HET group (24 homomers and 1 heterodimer of paralogs). P-value is
from a Wilcoxon test.
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Figure S7: Plate organization for DHFR PCA experiments.
On the haploid arrays (MATa and MATα), each plate has two rows and two columns of control strains at the border
(blue lines). Paralogs of a pair are positioned in blocks of four strains. A given pair (example here of pair X) occupies
the same position in the MATa and MATα plates. Inside a square, paralogs are positioned horizontally in MATa DHFR
F[1,2] plates (P1 are at the top and P2 at the bottom of the square) while they are vertically positioned in MATα
DHFR F[3] plates (P1 are at the left and P2 at the right of the square). The two haploid plates were printed on top of
each other on a mating plate, generating the following crosses: P1-DHFR F[1,2]/P1 DHFR F[3] at top left, P1-DHFR
F[1,2]/P2 DHFR F[3] at top right, P2-DHFR F[1,2]/P1 DHFR F[3] at bottom left and P2-DHFR F[1,2]/P2 DHFR F[3]
at bottom right. Two diploid selections and two replications on MTX medium were performed.
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Figure S8: Density of colony size converted to z-score.
Colony sizes from the PCA experiment of this study were converted to z-score using the mean (µb) and standard deviation
(sdb) of the background distribution (Zs = (Is - µb)/sdb)). The density of z-scores is shown in black. A protein-protein
interaction was considered as detected if the corresponding z-score was larger than 2.5 (red dashed line).
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Figure S9: Comparison of Pfam domain composition similarity between pairs of paralogs.
(A) Pfam domain composition similarity (Jaccard’s index) between SSDs (yellow) and WGDs (blue) for each interaction
motif (HM or HM&HET). (B) Pfam domain composition similarity as a function of pairwise amino acid sequence identity
for HM motifs (pink) and HM&HET motifs (purple). Regression lines were smoothed using the GLM function with the
quasibinomial family.
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Figure S10: Comparison of functional similarity between HM and HM&HET pairs.
The similarity of function (100% * Jaccard’s index) between SSDs (yellow) and WGDs (blue) was estimated using GO
terms for (A) molecular functions and for (B) biological processes. The similarity of function was also estimated using
(C) growth phenotypes and (D) the correlation of genetic interaction profiles. P-values are from Wilcoxon tests.
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Figure S11: Comparison of functional similarity between WGDs, considering homeologs and true
ohnologs separately.
The similarity of function (100% * Jaccard’s index) between homeologs (dark blue) and true ohnologs (light blue) was
estimated using GO terms for (A) molecular functions and for (B) biological processes. The similarity of functions was
also estimated using (C) growth phenotypes and (D) the correlation of genetic interaction profiles. P-values are from
Wilcoxon tests.
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Figure S12: Functional similarity between paralogs as a function of their pairwise amino acid sequence
identity.
The similarity of function (100% * Jaccard’s index) between paralogs for HM (pink) and HM&HET (purple) as a function
of pairwise amino acid sequence identity for SSDs and WGDs. Similarity of function was estimated using (A) molecular
functions and (B) biological processes GO terms, (C) growth phenotypes and (D) the correlation of genetic interaction
profiles. The regression lines were smoothed using the R geom_smooth function.
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Figure S13: Percentage of interaction motifs for SSDs, WGDs and the two types of WGDs.
The data is the same as shown in Figure 2 but all four possible HM and HM&HET motifs are shown. 1HM: shows
one homomer only, 2HM: shows both homomers, 1HM&HET: shows one homomer and the heteromer and 2HM&HET:
shows both homomers and the heteromer. The percentage of motifs of interaction for SSDs (yellow) and WGDs (blue)
(left panel) and for homeologs (dark blue) and true ohnologs (light blue) (right panel). P-values are from Fisher’s exact
tests.
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Figure S14: Similar evolutionary trajectories are observed for six different PDB structures.
The binding energy of six HMs and HETs is followed through time under the same scenarios as shown in Figure 4. Panels
shown in Figure 4 are highlighted with a gray background here.
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Figure S15: Effect of changes in parameters on the observed evolution trajectories.
Simulations were run for different combinations of parameters controlling the efficiency of selection (β and N ) and the
length of the simulations for PDB structure 1M38.
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Figure S16: Single mutants have pleiotropic effects for HM and HET.
The observed effects of sampled single mutants on the HET are compared with their effects on HMs. Pearson’s correlation
coefficients are shown. Parameters used for β and N were 10 and 1000, respectively.
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Figure S17: Distribution of effect sizes of mutations on the binding energy (∆∆G) of HMs and HETs as
estimated using FoldX.
Effects of single mutants on the binding energy of HMs and HETs. Mutants were classified (x-axis) according to their
effects on the binding energy of HMs and HETs, depending on whether they stabilize or destabilize both the HM and the
HET or they only destabilized one of them. Mutations that destabilize one of the complexes have smaller effect sizes on
binding energy than mutations that destabilize or stabilize both. (A) Mutations sampled when negatively selecting for
the stability of both HMs. (B) Mutations sampled when negatively selecting for the stability of the HET. Parameters
used for β and N were 10 and 1000, respectively.
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Figure S18: Fixation rates of double mutants during the simulations.
Fixation rates of double mutants classified based on their effect on the two HMs and the complexes (both HMs or HET)
under selection. Clopper-Pearson 95% confidence intervals are shown. P-values were calculated with a two proportion
z-test. Parameters used for β and N were 10 and 1000, respectively.
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Figure S19: Contribution of epistasis to the evolution of HET for six different PDB structures.
The observed effects of double mutants on the HET are compared with their expected effects based on the effects on
the HMs throughout the simulations. Simulations were run under the same scenarios shown in Figure 5. Panels shown
in Figure 5 are highlighted with a gray background. Red points are for mutations that were fixed, gray ones those that
were eliminated by selection. The regression equations are shown for fixed and lost mutations separately. Parameters
used for β and N were 10 and 1000, respectively.
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Figure S20: The loss of HETs may result from regulatory divergence (single cell RNAseq data; Gasch
et al., 2017).
(A) Correlation (Spearman’s r) between the expression profile of paralogs are compared among the different interaction
motifs for SSDs (yellow) and WGDs (blue). P-values are from t-tests. (B) Correlation of expression profiles between
paralogs forming only HM (pink) or HM&HET (purple) as a function of their pairwise amino acid sequence identity.
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Figure S21: Expression of WGDs and consequences on interaction motifs.
Correlation coefficients (Spearman’s r) between the expression profiles of paralogs (A) from mRNA relative expression
across 1000 growth conditions (Ihmels et al., 2004) and (B) from single-cell RNAseq (Gasch et al., 2017) are compared
between homeologs and true ohnologs. Correlation coefficients (Spearman’s r) (C) across growth conditions and (D)
from single-cell RNAseq data (Gasch et al., 2017) are compared among the different interaction motifs for homeologs and
true ohnologs. Correlation coefficients (E) across growth conditions and (F) from single-cell RNAseq as a function of
the percentage of pairwise amino acid sequence identity between paralogs forming only HM or HM&HET. (G) Similarity
of transcription factor binding sites (100% * Jaccard’s index). (H) Similarity of GO cellular components. (I) Similarity
of localization. P-values are from Wilcoxon tests.
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Figure S22: Interaction motifs and similarity of functions for SSDs and WGDs.
The similarity of regulation (100% * Jaccard’s index) for (A) transcription factor binding sites, (B) GO cellular com-
ponents and (C) localization. P-values are from Wilcoxon tests.
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Figure S23: Similarity of regulation between paralogs as a function of their pairwise amino acid sequence
identity.
The similarity of co-expression of HM (pink) and HM&HET (purple) pairs was compared while controlling for pairwise
amino acid sequence identity for both SSD and WGD. Similarity of co-expression was estimated using (A) cellular
component similarity GO term, (B) similarity of localization and (C) similarity of transcription factor binding sites.
The regression lines were smoothed using glm method with quasibinomial family.
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