
Transactional Consistency and Automatic Management in an
Application Data Cache

Dan R. K. Ports Austin T. Clements Irene Zhang Samuel Madden Barbara Liskov

MIT CSAIL
txcache@csail.mit.edu

Abstract

Distributed in-memory application data caches like mem-
cached are a popular solution for scaling database-driven
web sites. These systems are easy to add to existing de-
ployments, and increase performance significantly by re-
ducing load on both the database and application servers.
Unfortunately, such caches do not integrate well with
the database or the application. They cannot maintain
transactional consistency across the entire system, vio-
lating the isolation properties of the underlying database.
They leave the application responsible for locating data
in the cache and keeping it up to date, a frequent source
of application complexity and programming errors.

Addressing both of these problems, we introduce a
transactional cache, TxCache, with a simple program-
ming model. TxCache ensures that any data seen within
a transaction, whether it comes from the cache or the
database, reflects a slightly stale but consistent snap-
shot of the database. TxCache makes it easy to add
caching to an application by simply designating func-
tions as cacheable; it automatically caches their results,
and invalidates the cached data as the underlying database
changes. Our experiments found that adding TxCache
increased the throughput of a web application by up to
5.2×, only slightly less than a non-transactional cache,
showing that consistency does not have to come at the
price of performance.

1 Overview
Today’s web applications are used by millions of users
and demand implementations that scale accordingly. A
typical system includes application logic (often imple-
mented in web servers) and an underlying database that
stores persistent state, either of which can become a bot-
tleneck [1]. Increasing database capacity is typically a
difficult and costly proposition, requiring careful parti-
tioning or the use of distributed databases. Application
server bottlenecks can be easier to address by adding
more nodes, but this also quickly becomes expensive.

Application-level data caches, such as mem-
cached [24], Velocity/AppFabric [34] and NCache [25],
are a popular solution to server and database bottlenecks.

They are deployed extensively by well-known web ap-
plications like LiveJournal, Facebook, and MediaWiki.
These caches store arbitrary application-generated data in
a lightweight, distributed in-memory cache. This flexibil-
ity allows an application-level cache to act as a database
query cache, or to act as a web cache and cache entire
web pages. But increasingly complex application logic
and more personalized web content has made it more use-
ful to cache the result of application computations that
depend on database queries. Such caching is useful be-
cause it averts costly post-processing of database records,
such as converting them to an internal representation, or
generating partial HTML output. It also allows common
content to be cached separately from customized con-
tent, so that it can be shared between users. For example,
MediaWiki uses memcached to store items ranging from
translations of interface messages to parse trees of wiki
pages to the generated HTML for the site’s sidebar.

Existing caches like memcached present two chal-
lenges for developers, which we address in this paper.
First, they do not ensure transactional consistency with
the rest of the system state. That is, there is no way to
ensure that accesses to the cache and the database re-
turn values that reflect a view of the entire system at a
single point in time. While the backing database goes
to great length to ensure that all queries performed in a
transaction reflect a consistent view of the database, i.e. it
can ensure serializable isolation, it is nearly impossible
to maintain these consistency guarantees while using a
cache that operates on application objects and has no
notion of database transactions. The resulting anomalies
can cause incorrect information to be exposed to the user,
or require more complex application logic because the
application must be able to cope with violated invariants.

Second, they offer only a GET/PUT interface, plac-
ing full responsibility for explicitly managing the cache
with the application. Applications must assign names to
cached values, perform lookups, and keep the cache up
to date. This has been a common source of programming
errors in applications that use memcached. In particular,
applications must explicitly invalidate cached data when
the database changes. This is often difficult; identifying
every cached application computation whose value may

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4426219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

have been changed requires global reasoning about the
application.

We address both problems in our transactional cache,
TxCache. TxCache provides the following features:

• transactional consistency: all data seen by the appli-
cation reflects a consistent snapshot of the database,
whether the data comes from cached application-
level objects or directly from database queries.
• access to slightly stale but nevertheless consistent

snapshots for applications that can tolerate stale data,
improving cache utilization.
• a simple programming model, where applications

simply designate functions as cacheable. The Tx-
Cache library then handles inserting the result of the
function into the cache, retrieving that result the next
time the function is called with the same arguments,
and invalidating cached results when they change.

To achieve these goals, TxCache introduces the follow-
ing noteworthy mechanisms:

• a protocol for ensuring that transactions see only
consistent cached data, using minor database modi-
fications to compute the validity times of database
queries, and attaching them to cache objects.
• a lazy timestamp selection algorithm that assigns a

transaction to a timestamp in the recent past based
on the availability of cached data.
• an automatic invalidation system that tracks each ob-

ject’s database dependencies using dual-granularity
invalidation tags, and produces notifications if they
change.

We ported the RUBiS auction website prototype and
MediaWiki, a popular web application, to use TxCache,
and evaluated it using the RUBiS benchmark [2]. Our
cache improved peak throughput by 1.5 – 5.2× depend-
ing on the cache size and staleness limit, an improvement
oonly slightly below that of a non-transactional cache.

The next section presents the programming model and
consistency semantics. Section 3 sketches the structure
of the system, and Sections 4–6 describe each component
in detail. Section 7 describes our experiences porting ap-
plications to TxCache, Section 8 presents a performance
evaluation, and Section 9 reviews the related work.

2 System and Programming Model
TxCache is designed for systems consisting of one or
more application servers that interact with a database
server. These application servers could be web servers
running embedded scripts (e.g. with mod php), or dedi-
cated application servers, as with Sun’s Enterprise Java
Beans. The database server is a standard relational
database; for simplicity, we assume the application uses
a single database to store all of its persistent state.

TxCache introduces two new components, as shown in

Cache Database

Application

TxCache Library

Data center

Figure 1: Key components in a TxCache deployment.
The system consists of a single database, a set of cache
nodes, and a set of application servers. TxCache also
introduces an application library, which handles all inter-
actions with the cache server.

Figure 1: a cache and an application-side cache library,
as well as some minor modifications to the database
server. The cache is partitioned across a set of cache
nodes, which may run on dedicated hardware or share
it with other servers. The application never interacts
with the cache servers; the TxCache library transparently
translates an application’s cacheable functions into cache
accesses.

2.1 Programming Model
Our goal is to make it easy to incorporate caching into a
new or existing application. Towards this end, TxCache
provides an application library with a simple program-
ming model, shown in Figure 2, based on cacheable func-
tions. Applications developers can cache computations
simply by designating functions to be cached.

Programs group their operations into transactions. Tx-
Cache requires applications to specify whether their trans-
actions are read-only or read/write by using either the
BEGIN-RO or BEGIN-RW function. Transactions are
ended by calling COMMIT or ABORT. Within a transac-
tion block, TxCache ensures that, regardless of whether
the application gets its data from the database or the
cache, it sees a view consistent with the state of the
database at a single point in time.

Within a transaction, operations can be grouped into
cacheable functions. These are actual functions in the pro-
gram’s code, annotated to indicate that their results can
be cached. A cacheable function can consist of database
queries and computation, and can also make calls to other
cacheable functions. To be suitable for caching, functions

2

• BEGIN-RO(staleness) : Begin a read-only transac-
tion. The transaction sees a consistent snapshot
from within the past staleness seconds.

• BEGIN-RW() : Begin a read/write transaction.
• COMMIT()→ timestamp : Commit a transaction and

return the timestamp at which it ran
• ABORT() : Abort a transaction

• MAKE-CACHEABLE(fn) → cached-fn : Makes a
function cacheable. cached-fn is a new function
that first checks the cache for the result of an-
other call with the same arguments. If not found,
it executes fn and stores its result in the cache.

Figure 2: TxCache library API

must be pure, i.e. they must be deterministic, not have
side effects, and depend only on their arguments and the
database state. For example, it would not make sense to
cache a function that returns the current time. TxCache
currently relies upon programmers to ensure that they
only cache suitable functions, but this requirement could
also be enforced using static or dynamic analysis [14, 33].

Cacheable functions are essentially memoized. Tx-
Cache’s library provides a MAKE-CACHEABLE function
that takes an implementation of a cacheable function and
returns a wrapper function that can be called to take ad-
vantage of the cache. When called, the wrapper function
checks if the cache contains the result of a previous call
to the function with the same arguments that is consistent
with the current transaction’s snapshot. If so, it returns
it. Otherwise, it invokes the implementation function
and stores the returned value in the cache. With proper
linguistic support (e.g. Python decorators), marking a
function cacheable can be as simple as adding a tag to its
existing definition.

Our cacheable function interface is easier to use than
the GET/PUT interface provided by existing caches like
memcached. It does not require programmers to manually
assign keys to cached values and keep them up to date.
Although seemingly straightforward, this is nevertheless
a source of errors because selecting keys requires reason-
ing about the entire application and how the application
might evolve. Examining MediaWiki bug reports, we
found that several memcached-related MediaWiki bugs
stemmed from choosing insufficiently descriptive keys,
causing two different objects to overwrite each other [22].
In one case, a user’s watchlist page was always cached
under the same key, causing the same results to be re-
turned even if the user requested to display a different
number of days worth of changes.

TxCache’s programming model has another crucial
benefit: it does not require applications to explicitly up-
date or invalidate cached results when modifying the

database. Adding explicit invalidations requires global
reasoning about the application, hindering modularity:
adding caching for an object requires knowing every
place it could possibly change. This, too, has been a
source of bugs in MediaWiki [23]. For example, edit-
ing a wiki page clearly requires invalidating any cached
copies of that page. But other, less obvious objects must
be invalidated too. Once MediaWiki began storing each
user’s edit count in their cached USER object, it became
necessary to invalidate this object after an edit. This was
initially forgotten, indicating that identifying all cached
objects needing invalidation is not straightforward, espe-
cially in applications so complex that no single developer
is aware of the whole of the application.

2.2 Consistency Model
TxCache provides transactional consistency: all requests
within a transaction see a consistent view of the system
as of a specific timestamp. That is, requests see only
the effects of other transactions that committed prior to
that timestamp. For read/write transactions, TxCache
supports this guarantee by running them directly on the
database, bypassing the cache entirely. Read-only trans-
actions use objects in the cache, and TxCache ensures
that nevertheless they view a consistent state.

Most caches return slightly stale data simply because
modified data does not reach the cache immediately. Tx-
Cache goes further by allowing applications to specify an
explicit staleness limit to BEGIN-RO, indicating that that
the transaction can see a view of data from that time or
later. However, regardless of the age of the snapshot, each
transaction always sees a consistent view. This feature
is motivated by the observation that many applications
can tolerate a certain amount of staleness [18], and using
stale cached data can improve the cache’s hit rate [21].

Applications can specify their staleness limit on a per-
transaction basis. Additionally, when a transaction com-
mits, TxCache provides the user with the timestamp at
which it ran. Together, these can be used to avoid anoma-
lies. For example, an application can store the timestamp
of a user’s last transaction in its session state, and use that
as a staleness bound so that the user never observes time
moving backwards. More generally, these timestamps
can be used to ensure a causal ordering between related
transactions [20].

We chose to have read/write transactions bypass the
cache entirely so that TxCache does not introduce new
anomalies. The application can expect the same guaran-
tees (and anomalies) of the underlying database. For ex-
ample, if the underlying database uses snapshot isolation,
the system will still have the same anomalies as snap-
shot isolation, but TxCache will never introduce snapshot
isolation anomalies into the read/write transactions of a
system that does not use snapshot isolation. Our model

3

could be extended to allow read/write transactions to read
information from the cache, if applications are willing
to accept the risk of anomalies. One particular challenge
is that read/write transactions typically expect to see the
effects of their own updates, while these cannot be made
visible to other transactions until the commit point.

3 System Architecture
In order to present an easy-to-use interface to application
developers, TxCache needs to store cached data, keep it
up to date, and ensure that data seen by an application is
transactionally consistent. This section and the following
ones describe how it achieves this using cache servers,
modifications to the database, and an application-side
library. None of this complexity, however, is visible to
the application, which sees only cachable functions.

An application running with TxCache accesses infor-
mation from the cache whenever possible, and from the
database on a cache miss. To ensure it sees a consistent
view, TxCache uses versioning. Each database query
has an associated validity interval, describing the range
of time over which its result was valid, which is com-
puted automatically by the database. The TxCache li-
brary tracks the queries that a cached value depends on,
and uses them to tag the cache entry with a validity inter-
val. Then, the library provides consistency by ensuring
that, within each read-only transaction, it only retrieves
values from the cache and database that were valid at
the same time. Thus, each transaction effectively sees a
snapshot of the database taken at a particular time, even
as it accesses data from the cache.

Section 4 describes how the cache is structured, and de-
fines how a cached object’s validity interval and database
dependencies are represented. Section 5 describes how
the database is modified to track query validity intervals
and provide invalidation notifications when a query’s re-
sult changes. Section 6 describes how the library tracks
dependencies for application objects, and selects consis-
tent values from the cache and database.

4 Cache Design
TxCache stores cached data in RAM on a number of
cache servers. The cache presents a hash table interface:
it maps keys to associated values. Applications do not
interact with the cache directly; the TxCache library trans-
lates the name and arguments of a function call into a
hash key, and checks and updates the cache itself.

Data is partitioned among cache nodes using a consis-
tent hashing approach [17], as in peer-to-peer distributed
hash tables [31, 35]. Unlike DHTs, we assume that the
system is small enough that every application node can
maintain a complete list of cache servers, allowing it to
immediately map a key to the responsible node. This
list could be maintained by hand in small systems, or

Key 1

Key 2

Key 3

Key 4

Now

45 50 55
Timestamp

Figure 3: An example of versioned data in the cache at
one point in time. Each rectangle is a version of a data
item. For example, the data for key 1 became valid with
commit 51 and invalid with commit 53, and the data for
key 2 became valid with commit 46 and is still valid.

using a group membership service [10] in larger or more
dynamic environments.

4.1 Versioning
Unlike a simple hash table, our cache is versioned. In
addition to its key, each entry in the cache is tagged with
its validity interval, as shown in Figure 3. This interval is
the range of time at which the cached value was current.
Its lower bound is the commit time of the transaction
that caused it to become valid, and its upper bound is the
commit time of the first subsequent transaction to change
the result, making the cache entry invalid. The cache
can store multiple cache entries with the same key; they
will have disjoint validity intervals because only one is
valid at any time. Whenever the TxCache library puts
the result of a cacheable function call into the cache, it
includes the validity interval of that result (derived using
information obtained from the database).

To look up a result in the cache, the TxCache library
sends both the key it is interested in and a timestamp
or range of acceptable timestamps. The cache server re-
turns a value consistent with the library’s request, i.e. one
whose validity interval intersects the given range of ac-
ceptable timestamps, if any exists. The server also returns
the value’s associated validity interval. If multiple such
values exist, the cache server returns the most recent one.

When a cache node runs out of memory, it evicts old
cached values to free up space for new ones. Cache
entries are never pinned and can always be discarded; if
one is later needed, it is simply a cache miss. A cache
eviction policy can take into account both the time since
an entry was accessed, and its staleness. Our cache server
uses a least-recently-used replacement policy, but also
eagerly removes any data too stale to be useful.

4.2 Invalidation Tags and Streams
When an object is inserted into the cache, it can be flagged
as still-valid if it reflects the latest state of the database,
like Key 2 in Figure 3. For such objects, the database

4

provides invalidation notifications when they change.
Every still-valid object has an associated set of inval-

idation tags that describe which parts of the database
it depends on. Each invalidation tag has two parts: a
table name and an optional index key description. The
database identifies the invalidation tags for a query based
on the access methods used to access the database. A
query that uses an index equality lookup receives a two-
part tag, e.g. a search for users with name Alice would
receive tag USERS:NAME=ALICE. A query that performs
a sequential scan or index range scan has a wildcard for
the second part of the tag, e.g. USERS:?. Wildcard invali-
dations are expected to be very rare because applications
typically try to perform only index lookups; they exist
primarily for completeness. Queries that access multiple
tables or multiple keys in a table receive multiple tags.
The object’s final tag set will have one or more tags for
each query that the object depends on.

The database distributes invalidations to the cache as
an invalidation stream. This is an ordered sequence of
messages, one for each update transaction, containing the
transaction’s timestamp and all invalidation tags that it
affected. Each message is delivered to all cache nodes by
a reliable application-level multicast mechanism [10], or
by link-level broadcast if possible. The cache servers pro-
cess the messages in order, truncating the validity interval
for any affected object at the transaction’s timestamp.

Using the same transaction timestamps to order cache
entries and invalidations eliminates race conditions that
could occur if an invalidation reaches the cache server
before an item is inserted with the old value. These race
conditions are a real concern: MediaWiki does not cache
failed article lookups, because a negative result might
never be removed from the cache if the report of failure
is stale but arrived after its corresponding invalidation.

For cache lookup purposes, items that are still valid are
treated as though they have an upper validity bound equal
to the timestamp of the last invalidation received prior to
the lookup. This ensures that there is no race condition
between an item being changed on the database and in-
validated in the cache, and that multiple items modified
by the same transaction are invalidated atomically.

5 Database Support
The validity intervals that TxCache uses in its cache
are derived from validity information generated by the
database. To make this possible, TxCache uses a modi-
fied DBMS that has similar versioning properties to the
cache. Specifically, it can run queries on slightly stale
snapshots, and it computes validity intervals for each
query result it returns. It also assigns invalidation tags to
queries, and produces the invalidation stream described
in Section 4.2.

Though standard databases do not provide these fea-

tures, we show they can be implemented by reusing the
same mechanisms that are used to implement multiver-
sion concurrency control techniques like snapshot isola-
tion. In this section, we describe how we modified an ex-
isting DBMS, PostgreSQL [29], to provide the necessary
support. The modifications are not extensive (under 2000
lines of code in our implementation). Moreover, they
are not Postgres-specific; the approach can be applied to
other databases that use multiversion concurrency.

5.1 Exposing Multiversion Concurrency

Because our cache allows read-only transactions to run
slightly in the past, the database must be able to perform
queries against a past snapshot of a database. This sit-
uation arises when a read-only transaction is assigned
a timestamp in the past and reads some cached data,
and then a later operation in the same transaction results
in a cache miss, requiring the application to query the
database. The database query must return results consis-
tent with the cached values already seen, so the query
must execute at the same timestamp in the past.

Temporal databases, which track the history of their
data and allow “time travel,” solve this problem but im-
pose substantial storage and indexing cost to support
complex queries over the entire history of the database.
What we require is much simpler: we only need to run a
transaction on a stale but recent snapshot. Our insight is
that these requirements are essentially identical to those
for supporting snapshot isolation [5], so many databases
already have the infrastructure to support them.

We modified Postgres to expose the multiversion stor-
age it uses internally to provide snapshot isolation. We
added a PIN command that assigns an ID to a read-only
transaction’s snapshot. When starting a new transaction,
the TxCache library can specify this ID using the new
BEGIN SNAPSHOTID syntax, creating a new transaction
that sees the same view of the database as the erstwhile
read-only transaction. The database state for that snap-
shot will be retained at least until it is released by the
UNPIN command. A pinned snapshot is identified by the
commit time of the last committed transaction visible to
it, allowing it to be easily ordered with respect to update
transactions and other snapshots.

Postgres is especially well-suited to this modifica-
tion because of its “no-overwrite” storage manager [36],
which already retains recent versions of data. Because
stale data is only removed periodically by an asyn-
chronous “vacuum cleaner” process, the fact that we keep
data around slightly longer has little impact on perfor-
mance. However, our technique is not Postgres-specific;
any database that implements snapshot isolation must
have a way to keep a similar history of recent database
states, such as Oracle’s rollback segments.

5

43 44 45 46 47 48 49

Tuple 1

Tuple 2

Tuple 3

Tuple 4

Commits

Validity Interval

Invalidity Mask

Query Timestamp

Invalidity Mask

Result Validity

Figure 4: Example of tracking the validity interval for a
read-only query. All four tuples match the query predi-
cate. Tuples 1 and 2 match the timestamp, so their inter-
vals intersect to form the result validity. Tuples 3 and 4
fail the visibility test, so their intervals join to form the in-
validity mask. The final validity interval is the difference
between the result validity and the invalidity mask.

5.2 Tracking Result Validity
TxCache needs the database server to provide the va-
lidity interval for every query result in order to ensure
transactional consistency of cached objects. Recall that
this is defined as the range of timestamps for which the
query would give the same results. Its lower bound is the
commit time of the most recent transaction that added,
deleted, or modified any tuple in the result set. It may
have an upper bound if a subsequent transaction changed
the result, or it may be unbounded if the result is still
current.

The validity interval is computed as the intersection
of two ranges, the result tuple validity and the invalidity
mask, which we track separately.

The result tuple validity is the intersection of the valid-
ity times of the tuples returned by the query. For example,
tuple 1 in Figure 4 was deleted at time 47, and tuple 2
was created at time 44; the result would be different be-
fore time 44 or after time 47. This interval is easy to
compute because multiversion concurrency requires that
each tuple in the database be tagged with the ID of its
creating transaction and deleting transaction (if any). We
simply propagate these tags throughout query execution.
If an operator, such as a join, combines multiple tuples to
produce a single result, the validity interval of the output
tuple is the intersection of its inputs.

The result tuple validity, however, does not completely
capture the validity of a query, because of phantoms.
These are tuples that did not appear in the result, but
would have if the query were run at a different timestamp.

For example, tuple 3 in Figure 4 will not appear in the
results because it was deleted before the query timestamp,
but the results would be different if the query were run
before it was deleted. Similarly, tuple 4 is not visible
because it was created afterwards. We capture this effect
with the invalidity mask, which is the union of the va-
lidity times for all tuples that failed the visibility check,
i.e. were discarded because their timestamps made them
invisible to the transaction’s snapshot. Throughout query
execution, whenever such a tuple is encountered, its va-
lidity interval is added to the invalidity mask.

The invalidity mask is conservative because visibility
checks are performed as early as possible in the query
plan to avoid processing unnecessary tuples. Some of
these tuples might have been discarded anyway if they
failed the query conditions later in the query plan (per-
haps after joining with another table). While being con-
servative preserves the correctness of the cached results,
it might unnecessarily constrain the validity intervals of
cached items, reducing the hit rate. To ameloriate this
problem, we continue to perform the visibility check as
early as possible, but during sequential scans and index
lookups, we evaluate the predicate before the visibility
check. This differs from regular Postgres with respect to
sequential scans, where it evaluates the cheaper visibility
check first. Delaying the visibility checks improves the
quality of the invalidity mask, and incurs little overhead
for simple predicates, which are most common.

Finally, the invalidity mask is subtracted from the re-
sult tuple validity to give the query’s final validity in-
terval. This interval is reported to the TxCache library,
piggybacked on each SELECT query result; the library
combines these intervals to obtain validity intervals for
objects it stores in the cache.

5.3 Automating Invalidations
When the database executes a query and reports that its
validity interval is unbounded, i.e. the query result is still
valid, it assumes responsibility for providing an invalida-
tion when the result may have changed. At query time,
it must assign invalidation tags to indicate the query’s
dependencies, and at update time, it must notify the cache
of invalidation tags for objects that might have changed.

When a query is performed, the database examines the
query plan it generates. At the lowest level of the tree are
the access methods that obtain the data, e.g. a sequential
scan of a heap file, or a B-tree index lookup. For index
equality lookups, the database assigns an invalidation tag
of the form TABLE:KEY. For other types, it assigns a
wildcard tag TABLE:?. Each query may have multiple
tags; the complete set is returned along with the SELECT
query results.

When a read/write transaction modifies some tuples,
the database identifies the set of invalidation tags affected.

6

Each tuple added, deleted, or modified yields one inval-
idation tag for each index it is listed in. If a transaction
modifies most of a table, the database can aggregate multi-
ple tags into a single wildcard tag on TABLE:?. Generated
invalidation tags are queued until the transaction commits.
When it does, the database server passes the set of tags,
along with the transaction’s timestamp, to the multicast
service for distribution to the cache nodes, ensuring that
the invalidation stream is properly ordered.

5.4 Pincushion
TxCache needs to keep track of which snapshots are
pinned on the database, and which of those are within
a read-only transaction’s staleness limit. It also must
eventually unpin old snapshots, provided that they are
not used by running transactions. The DBMS itself could
be responsible for tracking this information. However, to
simplify implementation, and to reduce the overall load
on the database, we placed this functionality instead in a
lightweight daemon known as the pincushion (so named
because it holds the pinned snapshot IDs). It can be run
on the database host, on a cache server, or elsewhere.

The pincushion maintains a table of currently pinned
snapshots, containing the snapshot’s ID, the correspond-
ing wall-clock timestamp, and the number of running
transactions that might be using it. When the TxCache
library running on an application node begins a read-only
transaction, it requests from the pincushion all sufficiently
fresh pinned snapshots, e.g. those pinned in the last 30
seconds. The pincushion flags these snapshots as possibly
in use, for the duration of the transaction. If there are no
sufficiently fresh pinned snapshots, the TxCache library
starts a read-only transaction on the database, running on
the latest snapshot, and pins that snapshot. It then regis-
ters the snapshot’s ID and the wall-clock time (as reported
by the database) with the pincushion. The pincushion
also periodically scans its list of pinned snapshots, re-
moving any unused snapshots older than a threshold by
sending an UNPIN command to the database.

Though the pincushion is accessed on every transac-
tion, it performs little computation and is unlikely to form
a bottleneck. In all of our experiments, nearly all pin-
cushion requests received a response in under 0.2 ms,
approximately the network round-trip time. We have also
developed a protocol for replicating the pincushion to in-
crease its throughput, but it has yet to become necessary.

6 Cache Library
Applications interact with TxCache through its
application-side library, which keeps them blissfully
unaware of the details of cache servers, validity intervals,
invalidation tags and the like. It is responsible for as-
signing timestamps to read-only transactions, retrieving
values from the cache when cacheable functions are

called, storing results in the cache, and computing the
validity intervals and invalidation tags for anything it
stores in the cache.

In this section, we describe the implementation of the
TxCache library. For clarity, we begin with a simplified
version where timestamps are chosen when a transac-
tion begins and cacheable functions do not call other
cacheable functions. In Section 6.2, we describe a tech-
nique for choosing timestamps lazily to take better advan-
tage of cached data. In Section 6.3, we lift the restriction
on nested calls.

6.1 Basic Functionality
The TxCache library is divided into a language-
independent library that implements the core functional-
ity, and a set of bindings that implement language-specific
interfaces. Currently, we have only implemented bind-
ings for PHP, but adding support for other languages
should be relatively straightforward.

Recall from Figure 2 that the library’s interface is
simple: it provides the standard transaction commands
(BEGIN, COMMIT, and ABORT), and functions are desig-
nated as cacheable using a MAKE-CACHEABLE function
that takes a function and returns a wrapped function that
first checks for available cached values1.

When a transaction is started, the application specifies
whether it is read/write or read-only, and, if read-only, the
staleness limit. For a read/write transaction, the TxCache
library simply starts a transaction on the database server,
and passes all queries directly to it. At the beginning of a
read-only transaction, the library contacts the pincushion
to request the list of pinned snapshots within the staleness
limit, then chooses one to run the transaction at. If no
sufficiently recent snapshots exist, the library starts a new
transaction on the database and pins its snapshot.

The library can delay beginning an underlying read-
only transaction on the database (i.e. sending a BEGIN
SQL statement) until it actually needs to issue a query.
Thus, transactions whose requests are all satisfied from
the cache do not need to connect to the database at all.

When a cacheable function’s wrapper is called, the
library checks whether its result is in the cache. To do so,
it serializes the function’s name and arguments into a key
(a hash of the function’s code could also be used to handle
software updates). The library finds the responsible cache
server using consistent hashing, and sends it a LOOKUP
request. The request includes the transaction’s timestamp,
which any returned value must satisfy. If the cache returns
a matching result, the library returns it directly to the
program.

In the event of a cache miss, the library calls the
cacheable function’s implementation. As the cacheable

1In languages such as PHP that lack higher-order functions, the
syntax is slightly more complicated, but the concept is the same.

7

function issues queries to the database, the library ac-
cumulates the validity intervals and invalidation tags re-
turned by these queries. The final result of the cacheable
function is valid at all times in the intersection of the
accumulated validity intervals. When the cacheable func-
tion returns, the library serializes its result and inserts
it into the cache, tagged with the accumulated validity
interval and any invalidation tags.

6.2 Choosing Timestamps Lazily
Above, we assumed that the library chooses a read-only
transaction’s timestamp when the transaction starts. Al-
though straightforward, this approach requires the library
to decide on a timestamp without any knowledge of what
data is in the cache or what data will be accessed. Lack-
ing this knowledge, it is not clear what policy would
provide the best hit rate.

However, the timestamp need not be chosen immedi-
ately. Instead, it can be chosen lazily based on which
cached results are available. This takes advantage of
the fact that each cached value is valid over a range of
timestamps: its validity interval. For example, consider
a transaction that has observed a single cached result x.
This transaction can still be serialized at any timestamp
in x’s validity interval. On the transaction’s next call to
a cacheable function, any cached value whose validity
interval overlaps x’s can be chosen, as this still ensures
there is at least one timestamp at which the transaction
can be serialized. As the transaction proceeds, the set of
possible serialization points narrows each time the trans-
action reads a cached value or a database query result.

Specifically, the algorithm proceeds as follows. When
a transaction begins, the library requests from the pin-
cushion all pinned snapshot IDs that satisfy its freshness
requirement. It stores this set as its pin set. The pin
set represents the set of timestamps at which the current
transaction can be serialized; it will be updated as the
cache and the database are accessed. The pin set also
initially contains a special ID, denoted ?, which indicates
that the transaction can also be run in the present, on some
newly pinned snapshot. The pin set only contains ? until
the first cacheable function in the transaction executes.

When the application invokes a cacheable function, the
library sends a LOOKUP request for the appropriate key,
but instead of indicating a single timestamp, it indicates
the bounds of the pin set (the lowest and highest times-
tamp, excluding ?). The transaction can use any cached
value whose validity interval overlaps these bounds and
still remain serializable at one or more timestamps. The
library then reduces the transaction’s pin set by eliminat-
ing all timestamps that do not lie in the returned value’s
validity interval, since observing a cached value means
the transaction can no longer be serialized outside its
validity interval. This includes removing ? from the pin-

set because once the transaction has used cached data, it
cannot be run on a new, possibly inconsistent snapshot.

When the cache does not contain any entries that match
both the key and the requested interval, a cache miss
occurs. In this case, the library calls the cacheable func-
tion’s implementation, as before. When the transaction
makes its first database query, the library is finally forced
to select a specific timestamp from the pin set and BE-
GIN a read-only transaction on the database at the chosen
timestamp. If a non-? timestamp is chosen, the transac-
tion runs on that timestamp’s saved snapshot. If ? is cho-
sen, the library starts a new transaction, pinning the latest
snapshot and reporting the pin to the pincushion. The pin
set is then reified: ? is replaced with the newly-created
snapshot’s timestamp, replacing the abstract concept of
“the present time” with a concrete timestamp.

The library needs a policy to choose which pinned
snapshot from the pin set it should run at. Simply choos-
ing ? if available, or the most recent timestamp otherwise,
biases transactions towards running on recent data, but
results in a very large number of pinned snapshots, which
can ultimately slow the system down. To avoid the over-
head of creating many snapshots, we used the following
policy: if the most recent timestamp in the pin set is
older than five seconds and ? is available, then the library
chooses ? in order to produce a new pinned snapshot;
otherwise it chooses the most recent timestamp.

During the execution of a cacheable function, the va-
lidity intervals of the queries that the function makes are
accumulated, and their intersection defines the validity
interval of the cacheable result, just as before. In addi-
tion, just like when a transaction observes values from
the cache, each time it observes query results from the
database, the transaction’s pin set is reduced by eliminat-
ing all timestamps outside the result’s validity interval, as
the transaction can no longer be serialized at these points.
If the transaction’s pin set still contains ?, ? is removed.

The validity interval of the cacheable function and pin
set of the transaction are two distinct but related notions:
the function’s validity interval is the set of timestamps
at which its result is valid, and the pin set is the set of
timestamps at which the enclosing transaction can be
serialized. The pin set always lies within the validity
interval, but the two may differ when a transaction calls
multiple cacheable functions in sequence, or performs
“bare” database queries outside a cacheable function.

6.2.1 Correctness
Lazy selection of timestamps is a complex algorithm,
and its correctness is not self-evident. The following two
properties show that it provides transactional consistency.

Invariant 1. All data seen by the application during
a read-only transaction is consistent with the database

8

state at every timestamp in the pin set, i.e. the transaction
can be serialized at any timestamp in the pin set.

Invariant 1 holds because any timestamps inconsistent
with data the application has seen are removed from the
pin set. The application sees two types of data: cached
values and database query results. Each is tagged with its
validity interval. The library removes from the pin set all
timestamps that lie outside either of these intervals.

Invariant 2. The pin set is never empty, i.e. the transac-
tion can always be serialized at some timestamp.

The pin set is initially non-empty: it contains the times-
tamps of all sufficiently-fresh pinned snapshots, if any,
and always ?. So we must ensure that at least one times-
tamp remains every time the pin set shrinks, i.e. when a
result is obtained from the cache or database.

When a value is fetched from the cache, its validity
interval is guaranteed to intersect the transaction’s pin set
at at least one timestamp. The cache will only return an
entry with a non-empty intersection between its validity
interval and the bounds of the transaction’s pin set. This
intersection contains the timestamp of at least one pinned
snapshot: if the result’s validity interval lies partially
within and partially outside the bounds of the client’s pin
set, then either the earliest or latest timestamp in the pin
set lies in the intersection. If the result’s validity interval
lies entirely within the bounds of the transaction’s pin
set, then the pin set contains at least the timestamp of
the pinned snapshot from which the cached result was
originally generated. Thus, Invariant 2 continues to hold
even after removing from the pin set any timestamps that
do not lie within the cached result’s validity interval.

It is easier to see that when the database returns a
query result, the validity interval intersects the pin set
at at least one timestamp. The validity interval of the
query result must contain the timestamp of the pinned
snapshot at which it was executed, by definition. That
pinned snapshot was chosen by the TxCache library from
the transaction’s pin set (or it chose ?, obtained a new
snapshot, and added it to the pin set). Thus, at least that
one timestamp will remain in the pin set after intersecting
it with the query’s validity interval.

6.3 Handling Nested Calls
In the preceding sections, we assumed that cacheable
functions never call other cacheable functions. However,
it is useful to be able to nest calls to cacheable functions.
For example, a user’s home page at an auction site might
contain a list of items the user recently bid on. We might
want to cache the description and price for each item as
a function of the item ID (because they might appear on
other user’s pages) in addition to the complete content of
the user’s page (because he might access it again).

Our implementation supports nested calls; this does
not require any fundamental changes to the approach
above. However, we must keep track of a separate cumu-
lative validity interval and invalidation tag set for each
cacheable function in the call stack. When a cached value
or database query result is accessed, its validity interval is
intersected with that of each function currently on the call
stack. As a result, a nested call to a cacheable function
may have a wider validity interval than its enclosing func-
tion, but not vice versa. This makes sense, as the outer
function might have seen more data than the functions it
calls (e.g. if it calls more than one cacheable function).
Similarly, any invalidation tags from the database are
attached to each function on the call stack, as each now
has a dependency on the data.

7 Experiences
We implemented all the components of TxCache, in-
cluding the cache server, database modifications to Post-
greSQL to support validity tracking and invalidations,
and the cache library with PHP language bindings.

One of TxCache’s goals is to make it easier to add
caching to a new or existing application. The TxCache
library makes it straightforward to designate a function
as cacheable. However, ensuring that the program has
functions suitable for caching still requires some effort.
Below, we describe our experiences adding support for
caching to the RUBiS benchmark and to MediaWiki.

7.1 Porting RUBiS
RUBiS [2] is a benchmark that implements an auction
website modeled after eBay where users can register
items for sale, browse listings, and place bids on items.
We ported its PHP implementation to use TxCache. Like
many small PHP applications, the PHP implementation
of RUBiS consists of 26 separate PHP scripts, written
in an unstructured way, which mainly make database
queries and format their output. Besides changing code
that begins and ends transactions to use TxCache’s inter-
faces, porting RUBiS to TxCache involved identifying
and designating cacheable functions. The existing im-
plementation had few functions, so we had to begin by
dividing it into functions; this was not difficult and would
be unnecessary in a more modular implementation.

We cached objects at two granularities. First, we
cached large portions of the generated HTML output
(except some headers and footers) for each page. This
meant that if two clients viewed the same page with the
same arguments, the previous result could be reused. Sec-
ond, we cached common functions such as authenticating
a user’s login, or looking up information about a user or
item by ID. Even these fine-grained functions were often
more complicated than an individual query; for example,
looking up an item requires examining both the active

9

items table and the old items table. These fine-grained
cached values can be shared between different pages; for
example, if two search results contain the same item, the
description and price of that item can be reused.

We made a few modifications to RUBiS that were not
strictly necessary but improved its performance. To take
better advantage of the cache, we modified the code for
display lists of items to obtain details about each item
by calling our GET-ITEM cacheable function rather than
performing a join on the database. We also observed that
one interaction, finding all the items for sale in a particu-
lar region and category, required performing a sequential
scan over all active auctions, and joining it against the
users table. This severely impacted the performance of
the benchmark with or without caching. We addressed
this by adding a new table and index containing each
item’s category and region IDs. Finally, we removed a
few queries that were simply redundant.

7.2 Porting MediaWiki
We also ported MediaWiki to use TxCache, to better un-
derstand the process of adding caching to a more complex,
existing system. MediaWiki, which faces significant scal-
ing challenges in its use for Wikipedia, already supports a
variety of caches and replication systems. Unlike RUBiS,
it has an object-oriented design, making it easier to select
cacheable functions.

MediaWiki supports master-slave replication for the
database server. Because the slaves cannot process up-
date transactions and lag slightly behind the master, Me-
diaWiki already distinguishes the few transactions that
must see the latest state from the majority that can accept
the staleness caused by replication lag (typically 1–30
seconds). It also identifies read/write transactions, which
must run on the master. Although we used only one
database server, we took advantage of this classification
of transactions to determine which transactions can be
cached and which must execute directly on the database.

Most MediaWiki functions are class member functions.
Caching only pure functions requires being sure that func-
tions do not mutate their object. We cached only static
functions that do not access or modify global variables
(MediaWiki rarely uses global variables). Of the non-
static functions, many can be made static by explicitly
passing in any member variables that are used, as long
as they are only read. For example, almost every func-
tion in the TITLE class, which represents article titles, is
cacheable because a TITLE object is immutable.

Identifying functions that would be good candidates
for caching was more challenging, as MediaWiki is a
complex application with myriad features. Developers
with previous experience with the MediaWiki codebase
would have more insight into which functions were fre-
quently used. We looked for functions that were involved

in common requests like rendering an article, and mem-
ber functions of commonly-used classes. We focused on
functions that constructed objects based on data looked
up in the database, such as fetching a page revision. These
were good candidates for caching because we can avoid
the cost of one or more database queries, as well as the
cost of post-processing the data from the database to fill
the fields of the object. We also adapted existing caches
like the localization cache, which stores translations of
user interface messages.

8 Evaluation
We used RUBiS as a benchmark to explore the perfor-
mance benefits of caching. In addition to the PHP auction
site implementation described above, RUBiS provides a
client emulator that simulates many concurrent user ses-
sions: there are 26 possible user interactions (e.g. brows-
ing items by category, viewing an item, or placing a bid),
each of which corresponds to a transaction. We used
the standard RUBiS “bidding” workload, a mix of 85%
read-only interactions (browsing) and 15% read/write in-
teractions (placing bids) with a think time with negative
exponential distribution and 7-second mean.

We ran our experiments on a cluster of 10 servers, each
a Dell PowerEdge SC1420 with two 3.20 GHz Intel Xeon
CPUs, 2 GB RAM, and a Seagate ST31500341AS 7200
RPM hard drive. The servers were connected via a gigabit
Ethernet switch, with 0.1 ms round-trip latency. One
server was dedicated to the database; it ran PostgreSQL
8.2.11 with our modifications. The others acted as front-
end web servers running Apache 2.2.12 with PHP 5.2.10,
or as cache nodes. Four other machines, connected via
the same switch, served as client emulators. Except as
otherwise noted, database server load was the bottleneck.

We used two different database configurations. One
configuration was chosen so that the dataset would fit
easily in the server’s buffer cache, representative of appli-
cations that strive to fit their working set into the buffer
cache for performance. This configuration had about
35,000 active auctions, 50,000 completed auctions, and
160,000 registered users, for a total database size about
850 MB. The larger configuration was disk-bound; it had
225,000 active auctions, 1 million completed auctions,
and 1.35 million users, for a total database size of 6 GB.

For repeatability, each test ran on an identical copy
of the database. We ensured the cache was warm by
restoring its contents from a snapshot taken after one hour
of continuous processing for the in-memory configuration
and one day for the disk-bound configuration.

For the in-memory configuration, we used seven hosts
as web servers, and two as dedicated cache nodes. For the
larger configuration, eight hosts ran both a web server and
a cache server, in order to make a larger cache available.

10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

64MB 256MB 512MB 768MB 1024MB

Pe
ak

 r
eq

ue
st

s/
se

c

Cache size

No consistency
TxCache

No caching (baseline)

(a) In-memory database

 0

 100

 200

 300

 400

 500

 600

 700

 800

1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB

Pe
ak

 r
eq

ue
st

s/
se

c

Cache size

TxCache
No caching (baseline)

(b) Disk-bound database

Figure 5: Effect of cache size on peak throughput (30 second staleness limit)

0%

20%

40%

60%

80%

100%

64MB 256MB 512MB 768MB 1024MB

C
ac

he
 h

it
ra

te

Cache size

(a) In-memory database

0%

20%

40%

60%

80%

100%

1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB

C
ac

he
 h

it
ra

te

Cache size

(b) Disk-bound database

Figure 6: Effect of cache size on cache hit rate (30 second staleness limit)

8.1 Cache Sizes and Performance
We evaluated RUBiS’s performance in terms of the peak
throughput achieved (requests handled per second) as
we varied the number of emulated clients. Our baseline
measurement evaluates RUBiS running directly on the
Postgres database, with TxCache disabled. This achieved
a peak throughput of 928 req/s with the in-memory config-
uration and 136 req/s with the disk-bound configuration.

We performed this experiment with both a stock copy
of Postgres, and our modified version. We found no
observable difference between the two cases, suggesting
our modifications have negligible performance impact.
Because the system already maintains multiple versions
to implement snapshot isolation, keeping a few more
versions around adds little cost, and tracking validity
intervals and invalidation tags simply adds an additional
bookkeeping step during query execution.

We then ran the same experiment with TxCache en-
abled, using a 30 second staleness limit and various cache
sizes. The resulting peak throughput levels are shown
in Figure 5. Depending on the cache size, the speedup
achieved ranged from 2.2× to 5.2× for the in-memory
configuration and from 1.8× to 3.2× for the disk-bound
configuration. The RUBiS PHP benchmark does not per-
form significant application-level computation; even so,
we see a 15% reduction in total web server CPU usage.

Cache server load is low, with most CPU overhead in
kernel time, suggesting inefficiencies in the kernel’s TCP
stack as the cause. Switching to a UDP protocol might
alleviate some of this overhead [32].

Figure 6(a) shows that for the in-memory configura-
tion, the cache hit rate ranged from 27% to 90%, increas-
ing linearly until the working set size is reached, and
then growing slowly. Here, the cache hit rate directly
translates into a performance improvement because each
cache hit represents load (often many queries) removed
from the database. Interestingly, we always see a high
hit rate on the disk-bound database (Figure 6(b)) but it
does not always translate into a large performance im-
provement. This workload exhibits some very frequent
queries (e.g. looking up a user’s nickname by ID) that can
be stored in even a small cache, but are also likely to be
in the database’s buffer cache. It also has a large number
of data items that are each accessed rarely (e.g. the full
bid history for each item). The latter queries collectively
make up the bottleneck, and the speedup is determined
by how much of this data is in the cache.

8.2 Varying Staleness Limits
The staleness limit is an important parameter. By raising
this value, applications may be exposed to increasingly
stale data, but are able to take advantage of more cached

11

0x

1x

2x

3x

4x

5x

6x

7x

8x

 0 20 40 60 80 100 120

R
el

at
iv

e
th

ro
ug

hp
ut

Staleness limit in seconds

TxCache (in-memory DB, 512MB cache)
TxCache (larger DB, 9GB cache)

No caching (baseline)

Figure 7: Impact of staleness limit on peak throughput

data. An invalidated cache entry remains useful for the
duration of the staleness limit, which is valuable for val-
ues that change (and are invalidated) frequently.

Figure 7 compares the peak throughput obtained by
running transactions with staleness limits from 1 to 120
seconds. Even a small staleness limit of 5-10 seconds
provides a significant benefit. RUBiS has some objects
that are expensive to compute and have many data depen-
dencies (indexes of all items in particular regions with
their current prices). These objects are invalidated fre-
quently, but the staleness limit permits them to be used.
The benefit diminishes at around 30 seconds, suggesting
that the bulk of the data either changes infrequently (such
as information about inactive users or auctions), or is
accessed multiple times every 30 seconds (such as the
aforementioned index pages).

8.3 Costs of Consistency
A natural question is how TxCache’s guarantee of trans-
actional consistency affects its performance. We explore
this question by examining cache statistics and compar-
ing against other approaches.

We classified cache misses into four types, inspired by
the common classification for CPU cache misses:

• compulsory miss: the object was never in the cache
• staleness miss: the object has been invalidated, and

its staleness limit has been exceeded
• capacity miss: the object was previously evicted
• consistency miss: some sufficiently fresh version of

the object was available, but it was inconsistent with
previous data read by the transaction

Figure 8 shows the breakdown of misses by type for four
different configurations. Our cache server unfortunately
cannot distinguish staleness and capacity misses. We see
that consistency misses are the least common by a large
margin. Consistency misses are rare, as items in the cache
are likely to have overlapping validity intervals, either
because they change rarely or the cache contains multiple
versions. Workloads with higher staleness limits experi-
ence more consistency misses (but fewer overall misses)
because they have more stale data that must be matched

in-memory DB disk-bound
512 MB 512 MB 64 MB 9 GB
30 s stale 15 s stale 30 s stale 30 s stale

Compulsory 33.2% 28.5% 4.3% 63.0%
Stale / Cap. 59.0% 66.1% 95.5% 36.3%
Consistency 7.8% 5.4% 0.2% 0.7%

Figure 8: Breakdown of cache misses by type. Figures
are percentage of total misses.

to other items valid at the same time. The 64 MB-sized
cache’s workload is dominated by capacity misses, be-
cause the cache is smaller than the working set. The
disk-bound experiment sees more compulsory misses be-
cause it has a larger dataset with limited locality, and few
consistency misses because the update rate is slower.

The low fraction of consistency misses suggests that
providing consistency has little performance cost. We
verified this experimentally by modifying our cache to
continue to use our invalidation mechanism, but to read
any data that was valid within the last 30 seconds, blithely
ignoring consistency. The results of this experiment are
shown as the “No consistency” line in Figure 5(a). As
predicted, the benefit it provides over consistency is small.
On the disk-bound configuration, the results could not be
distinguished within experimental error.

9 Related Work
High performance web applications use many different
techniques to improve their throughput. These range from
lightweight application-level caches which typically do
not provide transactional consistency, to database repli-
cation systems that improve database performance while
providing the same consistency guarantees, but do not
address application server load.

9.1 Application-Level Caching
Applying caching at the application layer is an appeal-
ing option because it can improve performance of both
the application servers and the database. Dynamic web
caches operate at the highest layer, storing entire web
pages produced by the application, requiring them to be
regenerated in their entirety when any content changes.
These caches need to invalidate pages when the underly-
ing data changes, typically by requiring the application to
explicitly invalidate pages [37] or specify data dependen-
cies [9, 38]. TxCache obviates this need by integrating
with the database to automatically identify dependencies.

However, full-page caching is becoming less appealing
to application developers as more of the web becomes
personalized and dynamic. Instead, web developers are
increasingly turning to application-level data caches [4,
16, 24, 26, 34] for their flexibility. These caches allow
the application to choose what to store, including query
results, arbitrary application data (such as Java or .NET

12

objects), and fragments of or whole web pages.
These caches present to applications a

GET/PUT/DELETE hash table interface, so the ap-
plication developer must choose keys and correctly
invalidate objects. As we argued in Section 2.1, this
can be a source of unnecessary complexity and software
bugs. Most application object caches have no notion of
transactions, so they cannot ensure even that two accesses
to the cache return consistent values. Some support
transactions within the cache, allowing applications to
atomically update objects in the cache [34, 16], but none
maintain transactional consistency with the database.

9.2 Database Replication
Another popular alternative is to deploy a caching or repli-
cation system within the database layer. These systems
replicate the data tuples that comprise the database, and
allow replicas to perform queries on them. Accordingly,
they can relieve load on the database, but offer no benefit
for application server load.

Some replication systems guarantee transactional con-
sistency by using group communication to execute
queries [12, 19], which can be difficult to scale to large
numbers of replicas [13]. Others offer weaker guarantees
(eventual consistency) [11, 27], which can be difficult to
reason about and use correctly. Still others require the
developer to know the access pattern beforehand [3] or
statically partition the data [8].

Most replication schemes used in practice take a pri-
mary copy approach, where all modifications are pro-
cessed at a master and shipped to slave replicas, usually
asynchronously for performance reasons. Each replica
then maintains a complete, if slightly stale, copy of the
database. Several systems defer update processing to
improve performance for applications that can tolerate
limited amounts of staleness [6, 28, 30]. These protocols
assume that each replica is a single, complete snapshot
of the database, making them infeasible for use in an
application object cache setting where it is not possible to
maintain a copy of every object that could be computed.
In contrast, TxCache’s protocol allows it to ensure con-
sistency even though its cache contains cached objects
that were generated at different times.

Materialized views are a form of in-database caching
that creates a view table containing the result of a query
over one or more base tables, and updating it as the base
tables change. Most work on materialized views seeks to
incrementally update the view rather than recomputing
it in its entirety [15]. This requires placing restrictions
on view definitions, e.g. requiring them to be expressed
in the select-project-join algebra. TxCache’s application-
level functions, in addition to being computed outside
the database, can include arbitrary computation, making
incremental updates infeasible. Instead, it uses invalida-

tions, which are easier for the database to compute [7].

10 Conclusion
Application data caches are an efficient way to scale
database-driven web applications, but they do not inte-
grate well with databases or web applications. They break
the consistency guarantees of the underlying database,
making it impossible for the application to see a consis-
tent view of the entire system. They provide a minimal
interface that requires the application to provide signifi-
cant logic for keeping cached values up to date, and often
requires application developers to understand the entire
system in order to correctly manage the cache.

We provide an alternative with TxCache, an
application-level cache that ensures all data seen by an
application during a transaction is consistent, regardless
of whether it comes from the cache or database. TxCache
guarantees consistency by modifying the database server
to return validity intervals, tagging data in the cache with
these intervals, and then only retrieving values from the
cache that were valid at a single point in time. By using
validity intervals instead of single timestamps, TxCache
can make the best use of cached data by lazily selecting
the timestamp for each transaction.

TxCache provides an easier programming model for
application developers by allowing them to simply des-
ignate cacheable functions, and then have the results of
those functions automatically cached. The TxCache li-
brary handles all of the complexity of managing the cache
and maintaining consistency across the system: it selects
keys, finds data in the cache consistent with the current
transaction, and automatically detects and invalidates po-
tentially changed objects as the database is updated.

Our experiments with the RUBiS benchmark show that
TxCache is effective at improving scalability even when
the application tolerates only a small interval of staleness,
and that providing transactional consistency imposes only
a minor performance penalty.

Acknowledgments
We thank James Cowling, Kevin Grittner, our shepherd
Amin Vahdat, and the anonymous reviewers for their
helpful feedback. This research was supported by NSF
ITR grants CNS-0428107 and CNS-0834239, and by
NDSEG and NSF graduate fellowships.

References
[1] C. Amza, E. Cecchet, A. Chanda, S. Elnikety, A. Cox,

R. Gil, J. Marguerite, K. Rajamani, and W. Zwaenepoel.
Bottleneck characterization of dynamic web site bench-
marks. TR02-388, Rice University, 2002.

[2] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Ra-
jamani, W. Zwaenepoel, E. Cecchet, and J. Marguerite.
Specification and implementation of dynamic web site

13

benchmarks. Proc. Workshop on Workload Characteriza-
tion, Nov. 2002.

[3] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed
versioning: consistent replication for scaling back-end
databases of dynamic content web sites. In Proc. Middle-
ware ’03, Rio de Janeiro, Brazil, June 2003.

[4] R. Bakalova, A. Chow, C. Fricano, P. Jain, N. Kodali,
D. Poirier, S. Sankaran, and D. Shupp. WebSphere dy-
namic cache: Improving J2EE application experience.
IBM Systems Journal, 43(2), 2004.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,
and P. O’Neil. A critique of ANSI SQL isolation levels.
In Proc. SIGMOD ’95, San Jose, CA, June 1995.

[6] P. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and
P. Tamma. Relaxed-currency serializability for middle-tier
caching and replication. In Proc. SIGMOD ’06, Chicago,
IL, 2006.

[7] K. S. Candan, D. Agrawal, W.-S. Li, O. Po, and W.-P.
Hsiung. View invalidation for dynamic content caching in
multitiered architectures. In Proc. VLDB ’02, Hong Kong,
China, 2002.

[8] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC:
flexible database clustering middleware. In Proc. USENIX

’04, Boston, MA, June 2004.
[9] J. Challenger, A. Iyengar, and P. Dantzig. A scalable

system for consistently caching dynamic web data. In
Proc. INFOCOM ’99, Mar 1999.

[10] J. Cowling, D. R. K. Ports, B. Liskov, R. A. Popa, and
A. Gaikwad. Census: Location-aware membership man-
agement for large-scale distributed systems. In Proc.
USENIX ’09, San Diego, CA, June 2009.

[11] A. Downing, I. Greenberg, and J. Peha. OSCAR: a system
for weak-consistency replication. In Proc. Workshop on
Management of Replicated Data, Nov 1990.

[12] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database
replication using generalized snapshot isolation. In Proc.
SRDS ’05, Washington, DC, 2005.

[13] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers
of replication and a solution. In Proc. SIGMOD ’96,
Montreal, QC, June 1996.

[14] P. J. Guo and D. Engler. Towards practical incremental
recomputation for scientists: An implementation for the
Python language. In Proc. TAPP ’10, San Jose, CA, Feb.
2010.

[15] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. In Proc. SIGMOD ’93, Wash-
ington, DC, June 1993.

[16] JBoss Cache. http://www.jboss.org/jbosscache/.
[17] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,

M. Levine, and D. Lewin. Consistent hashing and random
trees: distributed caching protocols for relieving hot spots
on the World Wide Web. In Proc. STOC ’97, El Paso, TX,
May 1997.

[18] K. Keeton, C. B. Morrey III, C. A. N. Soules, and
A. Veitch. LazyBase: Freshness vs. performance in infor-
mation management. In Proc. HotStorage ’10, Big Sky,
MT, Oct. 2009.

[19] B. Kemme and G. Alonso. A new approach to developing
and implementing eager database replication protocols.
Transactions on Database Systems, 25(3):333–379, 2000.

[20] L. Lamport. Time, clocks, and ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–
565, July 1978.

[21] B. Liskov and R. Rodrigues. Transactional file systems
can be fast. In Proc. ACM SIGOPS European Workshop,
Leuven, Belgium, Sept. 2004.

[22] MediaWiki bugs. http://bugzilla.wikimedia.org/.
Bugs #7474, #7541, #7728, #10463.

[23] MediaWiki bugs. http://bugzilla.wikimedia.org/.
Bugs #8391, #17636.

[24] memcached: a distributed memory object caching system.
http://www.danga.com/memcached.

[25] NCache. http://www.alachisoft.com/ncache/.
[26] OracleAS web cache. http://www.oracle.com/

technology/products/ias/web_cache/.
[27] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,

and A. J. Demers. Flexible update propagation for weakly
consistent replication. In Proc. SOSP ’97, Saint Malo,
France, 1997.

[28] C. Plattner and G. Alonso. Ganymed: scalable replication
for transactional web applications. In Proc. Middleware

’05, Toronto, Canada, Nov. 2004.
[29] PostgreSQL. http://www.postgresql.org/.
[30] U. Röhm, K. Böhm, H. Schek, and H. Schuldt. FAS: a

freshness-sensitive coordination middleware for a cluster
of OLAP components. In Proc. VLDB ’02, Hong Kong,
China, 2002.

[31] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-
to-peer systems. In Proc. Middleware ’01, Heidelberg,
Germany, Nov. 2001.

[32] P. Saab. Scaling memcached at Facebook. http://www.
facebook.com/note.php?note_id=39391378919, Dec.
2008.

[33] A. Salcianu and M. C. Rinard. Purity and side effect
analysis for Java programs. In Proc. VMCAI ’05, Paris,
France, Jan. 2005.

[34] N. Sampathkumar, M. Krishnaprasad, and A. Nori. In-
troduction to caching with Windows Server AppFabric.
Technical report, Microsoft Corporation, Nov 2009.

[35] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for internet applications.
Transactions on Networking, 11(1):149–160, Feb. 2003.

[36] M. Stonebraker. The design of the POSTGRES storage
system. In Proc. VLDB ’87, Brighton, United Kingdom,
Sept. 1987.

[37] H. Yu, L. Breslau, and S. Shenker. A scalable web cache
consistency architecture. SIGCOMM Comput. Commun.
Rev., 29(4):163–174, 1999.

[38] H. Zhu and T. Yang. Class-based cache management for
dynamic web content. In Proc. INFOCOM ’01, 2001.

14

http://www.jboss.org/jbosscache/
http://bugzilla.wikimedia.org/
http://bugzilla.wikimedia.org/
http://www.danga.com/memcached
http://www.alachisoft.com/ncache/
http://www.oracle.com/technology/products/ias/web_cache/
http://www.oracle.com/technology/products/ias/web_cache/
http://www.postgresql.org/
http://www.facebook.com/note.php?note_id=39391378919
http://www.facebook.com/note.php?note_id=39391378919

	Overview
	System and Programming Model
	Programming Model
	Consistency Model

	System Architecture
	Cache Design
	Versioning
	Invalidation Tags and Streams

	Database Support
	Exposing Multiversion Concurrency
	Tracking Result Validity
	Automating Invalidations
	Pincushion

	Cache Library
	Basic Functionality
	Choosing Timestamps Lazily
	Correctness

	Handling Nested Calls

	Experiences
	Porting RUBiS
	Porting MediaWiki

	Evaluation
	Cache Sizes and Performance
	Varying Staleness Limits
	Costs of Consistency

	Related Work
	Application-Level Caching
	Database Replication

	Conclusion

