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Abstract 
The focus of this thesis is on understanding coherent structures of a turbulent bound­

ary layer subjected to a severe adverse pressure gradient and which has also experienced 
an abrupt transition from strong favourable to strong adverse pressure gradients. The 
experimental set-up was designed to achieve flow conditions corresponding to trailing-
edge stall of an airfoil. Large sets of instantaneous velocity fields are acquired by "Parti­
cle Image Velocimetry" in streamwise-wall-normal planes at three different streamwise 
positions in the adverse pressure gradient region. Investigation of the instantaneous 
velocity fields shows that the upper region of the boundary layer is densely populated 
with signatures of hairpin vortices and hairpin packets qualitatively similar to those 
encountered in zero-pressure-gradient turbulent boundary layer. Since hairpin packets 
propagate with small velocity dispersion, groups of hairpin vortices appear to be co­
herently arranged along the streamwise direction. It is found that packets of hairpin 
vortices sometimes extend over a length of 25 and contain 3 to 12 vortices. In addition, 
both two-point spatial correlations between the swirling strength of prograde/prograde 
vortices and linear stochastic estimation reveal also imprints which are qualitatively 
similar to the hairpin packets found in the instantaneous fields. The hairpin packets 
average growth angle in the streamwise direction is approximately 11°, which is more 
important than in the zero-pressure-gradient turbulent boundary layer. The individual 
hairpin vortices are also slightly more inclined with respect to the wall and more closely 
spaced in the adverse-pressure-gradient turbulent boundary layer. These differences of 
hairpin properties are consistent with the differences in the mean strain rates in both 
flows. The swirl intensity of hairpin heads scaled by the Zagarola-Smits time scale has 
higher value in the zero-pressure-gradient case in comparison to the present flow and 
in the lower half of the boundary layer it decreases in the streamwise direction of the 
present flow. The hairpin population decreases in the streamwise direction close to the 
wall, while it increases in the upper region. These various trends of the swirl intensity 
and hairpin populations are consistent with those of the Reynolds stresses and turbu­
lence production. This is also consistent with the reported results that hairpin vortices 
are the major source of turbulence production. Finally, the size of vortices with respect 
to the boundary layer thickness decreases slightly in the streamwise direction. Since the 
mean flow evolves rapidly in the present flow, it is therefore possible that the turbulent 
structures respond with a certain delay to the changes of the mean flow. 
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Résumé 
L'objet de cette thèse porte sur la compréhension des structures cohérentes d'une 

couche limite turbulente soumise à un fort gradient de pression adverse, et qui a aussi 
subie une transition brusque de fort gradient de pression favorable à un gradient de pres­
sion adverse. L'installation expérimentale permet d'obtenir des conditions d'écoulement 
correspondant au décrochage d'une aile. De grands ensembles de champs de vitesse in­
stantanée sont acquis par "Particle Image Velocimetry" dans des plans à la paroi alignés 
avec l'écoulement à trois positions différentes dans la direction de l'écoulement dans la 
région de gradient de pression défavorable. Les investigations sur les champs instan­
tanés de vitesse prouvent que la région supérieure de la couche limite est densément 
peuplée avec des signatures de tourbillons hairpin et des paquets de hairpins quali­
tativement semblables à ceux rencontrées dans la couche limite turbulente à gradient 
de pression nul. Puisque les paquets de hairpin voyagent avec la petite dispersion de 
vitesse, les groupes de hairpin semblent être arrangés de façon cohérente dans la di­
rection de l'écoulement. On constate que les paquets de hairpins se prolongent parfois 
au-delà d'une longueur de 2<5 et contiennent 3 à 12 tourbillons. En plus, l'estimation 
stochastique linéaire et les corrélations spatiales entre l'intensité des tourbillons "pro-
grade/prograde" indiquent également que les empreintes sont qualitativement sem­
blables aux paquets de hairpin trouvés dans les champs instantanés. L'angle moyen 
de croissance des paquets de hairpin dans la direction de l'écoulement est approxima­
tivement 11°, ce qui est plus important que dans la couche limite turbulente à gradient 
de pression nul. Les hairpins individuels sont aussi légèrement plus inclinés par rapport 
à la paroi et plus rapprochés dans la couche limite turbulente avec gradient de pression 
adverse. Ces différences de propriétés de hairpin sont consistantes avec les différences 
de taux de déformations moyens dans les deux écoulements. L'intensité des têtes de 
hairpin normalisée par l'échelle de temps de Zagarola-Smits a une valeur plus élevée 
dans le cas à gradient de pression nul par rapport à l'écoulement présent et, dans la 
moitié inférieure de la couche limite diminue dans la direction de l'écoulement dans ce 
dernier. Tout proche de la paroi, la population de hairpins diminue dans la direction de 
l'écoulement, alors qu'elle augmente dans la région supérieure. Ces différentes tendances 
des populations et d'intensité de hairpin sont compatibles avec celles des tensions de 
Reynolds et de la production de turbulence. C'est également compatible aux résultats 
rapportés que des hairpins sont la source majeure de la production de turbulence. Fi­
nalement, la taille des tourbillons normalisée par l'épaisseur de la couche limite diminue 
légèrement dans la direction de l'écoulement. Puisque l'écoulement moyen évolue rapi­
dement, il est donc possible que les structures turbulentes répondent avec un certain 
retard aux changements de l'écoulement moyen. 
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Nomenclature 

APG Adverse pressure gradient 
DNS Direct numerical simulation 
LSE Linear stochastic estimation 
TBL Turbulent boundary layer 
ZPG Zero pressure gradient 
D Effective diameter of vortex 
H Shape factor, S*/d 
Px Random uncertainty of x 
U, V Streamwise and wall-normal mean velocity components 
u, v Streamwise and wall-normal instantaneous velocity components 
Ue, Ve Streamwise and wall-normal freestream velocity 
Uc, Vc Streamwise and wall-normal mean convection velocity 
u c , vc Streamwise and wall-normal ins tantaneous convection velocity 
Uz s Zagarola-Smits velocity, Ue5*/S 
x Streamwise coordina te 
y Wall-normal coordina te 
x c , yc Coordina tes of vortex center 
() Ensemble average of a variable 

a Neck angle of hairpin 
/3 Inclined shear layer angle 
( 3 Z S Pressure gradient pa ramete r with Zagarola-Smits scaling, ( ô /U z s )dU e / dx 
S Boundary layer thickness 
S* Displacement thickness 
7 Growth angle of hairpin packet 
72 S Velocity ra t io wi th Zagarola-Smits scaling, U z s /U e 

r] Kolmogorov length scale 
Xd Swirling s t reng th 
X r m s T h e root -mean-square of swirling s t rength 
^cithr Swirling r a t e after applying the thresholds 
Xd \C i normalized by A r m s 

A ĵ Swirling s t r eng th of prograde vortices (Xci < 0) 
A£j Swirling s t r eng th of re t rograde vortices (Xci > 0) 
A T h e ar i thmet ic average of swirling s t rength in each vortex (swirl intensity) 
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Aman The maximum of swirling strength value in the instantaneous field 
n Probability of occurence of spanwise vortices 
n p Probability of occurence of prograde spanwise vortices 
n r Probability of occurence of retrograde spanwise vortices 
n2S Pressure gradient parameter, (3ZS/^ZS 

6 Momentum thickness 
PxpXp Two-point correlation coefficient between prograde/prograde swirl 
pxp{x + r) The two-point correlation between swirling strength and the streamwise 

velocity fluctuation 
a The size of Gaussian filter window 
ax Standard deviation of the variable x 
u>z Vorticity component in z direction 
^p(r) Vortex probability fractions of prograde (retrograde) spanwise vortices 
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Chapter 1 

Motivation and Objectives 

1.1 Introduction 

The present chapter describes the motivation, objectives, methodology and organiza­
tion of the thesis. Although understanding the behaviour of turbulent boundary layers 
subjected to severe adverse pressure gradients leading to separation is of great techno­
logical interest, there is little information on the corresponding turbulence structures 
in such flows. In the present study a turbulent boundary layer subjected to a severe 
adverse pressure gradients that has suffered from an abrupt transition from strong fa­
vorable to strong adverse pressure gradients is experimentally studied using Particle 
Image Velocimetry. The motivation, objective and methodology of the present study 
are explained in the following sections. 

1.2 Motivation 

Although our understanding of canonical turbulent wall flows (zero-pressure-gradient 
turbulent boundary layer, fully developed pipe and channel flows) is far from complete, 
our knowledge of the details of turbulence in these flows has improved steadily over the 
past decades. It is nowadays generally recognized that coherent structures play an im­
portant role in the turbulence production and in the transport of mass and momentum 
in such flows. This is why a large number of the recent research efforts focuses on bet­
ter understanding the properties, dynamics and interactions of coherent structures for 
canonical turbulent wall flows. In contrast, not much is known about the characteristics 
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and behaviours of coherent structures in adverse-pressure gradient turbulent boundary 
layers. Studying turbulent boundary layers subjected to a strong adverse pressure gra­
dient is no doubt of great technological interest. For instance, such flow conditions are 
encountered in many aerodynamic devices, such as airfoils, turbine blades and diffusers, 
and usually cause performance degradation. Similar studies and investigations to those 
done about coherent structures for the canonical turbulent wall-bounded flows can be 
very useful for the adverse-pressure-gradient turbulent boundary layers because of its 
great applications and technological interest. 

The numerous studies that exist have usually focused on the statistical proper­
ties of adverse-pressure-gradient turbulent boundary layers. Recent studies of adverse-
pressure-gradient turbulent boundary layers using direct numerical simulations have 
provided some insight into the turbulent structures found in these flows. However, 
these studies pertained to separation bubbles at very low Reynolds numbers with fairly 
rapid distortion of the upstream boundary layer. In addition, the focus was only on 
the near-wall structures. Thus in spite of the existence of these numerous studies on 
adverse pressure gradient turbulent boundary layer and on adverse pressure gradient 
induced separation, much still remains to be understood especially in terms of the 
turbulence behaviour in such flows. This is even more so for trailing edge stall of an 
airfoil which corresponds to the following nonequilibrium flow category: high-Reynolds-
number turbulent boundary layer that has suffered from an abrupt transition from very 
strong favorable pressure gradient to very strong adverse pressure gradient, leading to 
a non-reattaching large separation zone. 

The processes of interaction between turbulence structures (ejections, evolution, 
breakup and sweeps) in the different regions of the boundary layer are extremely com­
plex and are not well understood for adverse pressure gradient turbulent boundary 
layers. It is important to mention that despite a general agreement on the layers found 
in zero pressure gradient turbulent boundary layers (viscous sub-layer, buffer layer, 
log-layer and wake layer) the layers structure of adverse pressure gradient turbulent 
boundary layers has not yet been unanimously established. In addition, the processes 
of interaction between turbulence structures in boundary layer can not be calculated at 
high Reynolds numbers and complex geometries even with modern computational fluid 
dynamics methods. They can however be investigated experimentally even if there are 
some difficulties in experimental methods. Since the flow is affected by large viscous 
zones due to the boundary layer separation and rapid growing of endwall boundary 
layers in such laboratory flows, the three-dimensional terms would be also more impor­
tant in adverse pressure gradient turbulent boundary layers. This is because of their 
vorticity which is severely skewed by the presence of significant levels of transverse 
strain rates. So, providing the two dimensional conditions for the mean flow with the 
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presence of the large viscous zones in such flows, which introduce important blockage 
effects, needs special cares. Endwall effects can no longer be neglected in such flows. 
In addition, investigation of three dimensional coherent structures via two dimensional 
velocity fields that result from experimental measurements is not easy. 

The dynamics of coherent structures is very complex. This is why progress in the 
understanding of turbulent structures has been slow for canonical turbulent wall flows, 
despite the existence of numerous experimental and numerical research works over the 
past decades. Indeed, there is still no generally accepted theory about the mechanisms of 
their generation, evolution and dissipation. This is much worse for the adverse pressure 
gradient turbulent boundary layer. While most previous efforts have focused on canon­
ical wall-turbulent flows, real flows are usually subjected to adverse pressure gradient, 
which makes the real flows more complicated. Studying of the coherent structures in 
such flows could help us to discover a way to break down the complex three-dimensional 
and random fields of turbulent motion into simpler and more organized motions which 
called turbulence structures. This is why understanding the effect of pressure gradients 
on the coherent structures is important. 

1.3 Objectives and Approach 

The general objective of the thesis is to gain a better understanding of coherent struc­
tures in the outer region of a turbulent boundary layer subjected to a strong adverse 
pressure gradient. To achieve this objective a detailed experimental study is performed 
in an adverse pressure gradient turbulent boundary layer similar to those found on the 
suction side of airfoils in trailing-edge post-stall conditions, for which separation occurs 
at the trailing edge and moves upstream when the angle of attack increases. 

Previous experimental and DNS studies showed that the hairpin vortex, the term 
hairpin is used here as a general term to represent cane, hairpin, horseshoe or arch-
shaped vortices, or any deformed versions of them (see section 2 2 2 for details), is one 
of the most frequently encountered structure within wall bounded canonical turbulent 
flows. Furthermore, most of researchers agree that hairpin vortices very frequently oc­
cur in groups, and that the individuals within these groups propagate at nearly the same 
convective velocity, so that they form a travelling packet of hairpin vortices. Various 
autogeneration mechanisms have also been proposed for their formation. The char­
acteristics of these coherent structures have not been investigated in adverse pressure 
gradient turbulent boundary layer. The objective of this study is to answer some spe­
cific questions in order to better understand the structures of a turbulent boundary 
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layer subjected to a severe adverse pressure gradient. 

• The first question is, do hairpins and hairpin packets exist in such flows? 

• If the hairpins and hairpin packets exist, what are the typical arrangements and 
orientations of individual hairpins and of hairpin packets? 

• What is the size and swirl intensity of hairpin vortices? 

• What is the effect of pressure gradient on hairpin and hairpin packet characteris­
tics? 

• What are the statistical characteristics of hairpin vortices and their contribution 
to turbulence production and Reynolds stresses? 

Particle image velocimetry (PIV), an optical technique that measures velocity com­
ponents in a desired region of flow, is employed to acquire the instantaneous velocity 
fields in streamwise/wall-normal (xy) planes. Once the instantaneous velocity fields are 
obtained, fluctuations, gradients, Reynolds stresses and coherent structures can also be 
determined. The measurements are performed at various streamwise locations across 
the adverse pressure gradient zone. Indeed, data are acquired from a position near 
the pressure peak to the separation point. This enables a comparison of the structures 
across the adverse pressure gradient zone. With the help of the velocity gradient tensor, 
vortical structures can be investigated. 

1.4 Organization of the Thesis 

The present thesis is organized in six chapters. Chapter one is an introductory part 
including motivation, objectives of this thesis and organization of the thesis. In the next 
chapter, previous studies on turbulence structures for wall-bounded turbulent flows 
are briefly presented. In chapter three, experimental setup and instrumentation are 
presented. The two next chapters focus on the acquired results. The results of spanwise 
vortices are explained and discussed in chapter four, and the results of hairpin vortices 
are discussed in chapter five. The conclusions of this research are described in the last 
chapter and some future works are also proposed in this chapter. 



Chapter 2 

Literature Review 

2.1 Introduction 

Due to motion complexity, turbulence was initially thought to contain only random 
fluctuations, but this idea has been changed during the past several decades by numer­
ous research works. Now it is known that coherent structures exist in turbulent flows. 
Furthermore, turbulence structures play an important role in the turbulence production 
and Reynolds stress also centers around vortices and streaks of low speed fluid near the 
wall. In other words, the coherent motions are responsible for most of the production 
and turbulence transport in a turbulent boundary layer. For this reason, researchers are 
trying to better understand the behaviour of turbulence structures in different layers of 
turbulent wall-bounded flows. 

In the present thesis, the main goal of literature review is to concentrate on the wall 
turbulence for two general categories of flow, i.e. canonical turbulent wall flows (zero-
pressure-gradient turbulent boundary layer, fully developed pipe and channel flows), 
and adverse-pressure-gradient turbulent boundary layers. Over the last decades, series 
of experimental and numerical studies have been performed to study the characteris­
tics of turbulence structures and their relationship with Reynolds stresses turbulence 
production. 
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2.2 Canonical Flows 

Numerous researchers reported the existence of coherent structures in wall bounded 
turbulent boundary layers, fully developed channel flows and pipe flows during the 
several past decades. The reported results of coherent structures of turbulent wall-
bounded flows can be categorized in two groups. The first group deals with turbulence 
structures in inner layer and the second describes the structures of the outer layer. 

2.2.1 Inner Layer 

This layer includes the viscous sublayer (corresponds roughly to y+ < 5), buffer layer 
(5 < y+ < 30) and overlap layer. Most of teams working on near-wall turbulence 
proposed that the regions of sweeps (u' > 0 and v' < 0) and ejections (u' < 0 and 
v' > 0) are the major sources of turbulence production. In the regions of sweeps, 
high-speed fluid away from the wall is pushed towards the wall, while in the regions of 
ejections the low-speed fluid close to the wall is pushed upwards. 

Before presenting the previous studies, it is useful to describe a general view of the 
reported results and proposed categories of self-sustaining mechanisms. Over the several 
past decades the researchers found that (independent of the technique that they were us­
ing to study the flows such as smoke visualization, hot wire anemometer, particle image 
velocimetry, direct numerical simulations) the pattern of streaks and quasi-streamwise 
vortices are the most frequent structures in the canonical turbulent wall flows within 
the inner layer. In other words, streaks and quasi-streamwise vortices are universal and 
are almost always observed in the inner region of wall-bounded turbulent flows. Most of 
researchers agree that streaks contribute to the production of turbulent energy. So, two 
main categories are proposed for the self-sustaining mechanism of wall turbulent flows. 
In the first category, parent vortices interact with the wall and produce offsprings. This 
idea implies the existence of regeneration of turbulence structures by themselves in a 
close cycle. In this hypothesis, vortices produce the streaks and streaks generate vor­
tices. In the second category, streak velocity profiles are unstable and produce vortices. 
In other words, a primary structure like streaks in some cases appears directly from 
flow disturbances and generates a vortex. The generated vortex is pushed up far from 
the wall and regenerates other vortex or breaks down to smaller structures. 

Blackwelder (1978), Blackwelder and Eckehnann (1979) and Blackwelder (1997), 
described a conceptual model of wall structure before arrival of the sweep (figure 2.1). 
In their model, two counter-rotating quasi-streamwise vortices exist in a region of a 
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strong mean velocity gradient, wherein the quasi-streamwise vortices cause fluid from 
the viscous layer at the wall to lift away from the wall and form the near-wall low-
speed streaks that are commonly observed in the buffer layer. In other words, with this 
simple model, the low-speed streaks are explained as the viscous, low-speed fluid that is 
induced to move up from the wall by the quasi-streamwise vortices. Smith and Walker 
(1997) also proposed a similar scenario of eruption. They believe that the presence of 
counter-rotating quasi-streamwise vortices guarantees the existence of low-speed zones 
which are pumped away from the wall, while high-speed fluid is pushed toward the 
wall by sweep events. These processes transfer the energy to inner layer (production) 
while energy dissipates in outer layer. In spite of this scenario that two counter-rotating 
quasi-streamwise vortices are necessary to generate low-speed flows, Robinson (1990) 
and Robinson (1991) believed that low-speed streaks can be generated by only a single 
quasi-streamwise vortex. Robinson also concluded that streamwise vortices populate 
the inner region, transverse vortices populate the outer layer and overlap layer contains 
a mixture of streamwise and transverse vortices (figure 2.2). Perry and Chong (1982) 
suggested a model for turbulence structures within the inner layer in which attached 
eddies are formed in the viscous sublayer. These eddies are stretched and either die 
from viscous diffusion and vorticity cancellation, or they pair and become a second 
hierarchy of attached eddies. 

Blackwelder and Kaplan (1976) studied wall structure of the turbulent boundary 
layer using hot-wire rakes. The authors found a broad movement of fluid towards the 
wall (consistent with sweep) at y+ = 15 and a strong velocity motion of fluid away from 
the wall at this position. This is associated with a deficit in the streamwise velocity 
component. Thus the low-speed streamwise momentum is being lifted away from the 
wall in this region. Furthermore, their results present a maximum Reynolds shear 
stress at y+ = 15. This is associated with the bursting structure at y+ = 15. In fact, 
the authors found high content of Reynolds shear stress during the bursting process. 
Blackwelder and Eckehnann (1979) studied the vortex structures associated with the 
bursting phenomenon, similar to Blackwelder and Kaplan (1976), using hot-film sensors 
and flush-mounted wall elements. The authors proposed a model of the wall structure 
before the arrival of the sweep similar to that proposed by Blackwelder (1978) as shown 
in figure 2.1. Blackwelder and Eckelmann concluded that fluid is pumped away from 
the wall to form a low-speed streak between a pair of counter-rotating vortices. The 
pumping action is interrupted by a sweep imposed by the outer flow field. This high­
speed fluid (sweep) flowing over the low-speed streaks destroys the quasi-streamwise 
vortices and forms a strongly inflexional velocity profile. The authors also indicated 
that most of the turbulent production occurred by the ejection from the wall of part 
of the low-speed streak and by its subsequent interaction with the incoming high-speed 
fluid. Bernard and Wallace (1997) similarly proposed that quasi-streamwise vortices 



Chapter 2. Literature Review 

\ s ^ ' - f 

upflow downflow low-speed 
streaks 

t 1 

H high-speed fl 
■ L region M E 

/ / ^ " /* / / / / / ^ * 

high-speed 
region 

/ / / / / U W m / 
(b) 

Figure 2.1: (a) Model of near-wall structures in turbulent wall-bounded flows (proposed 
by Blackwelder 1978). (b) End-view schematic of instantaneous velocity field in the 
cross-flow plane. 
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Figure 2.2: Idealized schematic of vortical structure populations in the different regions 
of the turbulent boundary layer (Robinson 1991). 

are responsible for the majority of turbulent momentum and consequently turbulent 
kinetic energy production in wall-bounded shear flow. The authors also found that 
these vortices happen singly or less frequently in hairpin loop configurations. Robinson 
(1991) believed that turbulence production occurs during alternate extreme outward 
ejection of low speed streaks and during the sweep of high-speed fluid at a shallow 
angle toward the wall. 

Kline et al. (1967) studied the wall turbulent flow using hot-wire anemometry in a 
fully developed water channel. They believe that burst event plays an important role in 
determining the structure of the entire turbulent boundary layer. They also proposed 
that the burst phenomenon dominates the transfer process of turbulent kinetic energy 
between the inner and outer layers and makes remarkable contributions to turbulence 
production during bursting occurrence. The authors also found that low-speed streaks 
are about 80-100 wall units (Az+) and can be in the order of 1000 wall units (Ax+) in 
length. 

Kim et al. (1971) suggested that the bursting process can be described in three 
stages: i) a turbulent burst begins when a low-speed streak is perturbed and begins 
to oscillate and the streak gradually lifts up and also moves downstream, ii) when the 
low-speed streak has reached some critical distance from the wall at which their rate of 
ejection increases significantly (called low-speed-streak-lifting by the authors), iii) when 
a low-speed streak lifts, it creates a narrow inflexional zone containing two reversals of 
slope-gradient and an inflexion point in the instantaneous velocity profile, iv) then 
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the low-speed streak oscillates and the oscillations increase in magnitude, away from 
the wall, v) finally the oscillation is terminated and breakup but there is well-defined 
motion into more random or chaotic motions accompanied by a return to the wall of 
the low-speed streak, and a more quiescent flow. The authors also mentioned that 
most of the turbulence production occurs in the buffer layer (5 < y+ < 100), during 
bursting, and little or no production occurs on the average during non-bursting times. 
Smith and Metzler (1983) studied the near-wall structures using a single-sensor hot-
film anemometer system. The authors proposed that the bursting process is a primary 
mechanism for the production of turbulent kinetic energy in the inner region of the 
boundary layer. It appears as a violent ejection of low-speed fluid from the regions very 
near to the wall. They also found that the spanwise spacing of low-speed streaks is 
essentially invariant with Reynolds number (A+ ~ 100). 

Hanratty and Papavassiliou (1997) also proposed a conceptual model of turbulence 
production cycle for the turbulent boundary layer, which involves ring-like vortices that 
scale on the wall variables, ejections, sweeps, near-wall streamwise vortices, hairpins and 
streaky structures. When the sizes of vortices grow and their energy increases, then 
they lift up from the viscous layer and provide energy to the outer layer. 

More recent works also proposed similar scenario of streak motion and near-wall 
quasi-streamwise vortices. Jimenez et al. (2005) introduced a concept of streak mo­
tion. They proposed that the streaks grow initially in intensity independent of the 
vortices strengthening. Then the streaks move away from the wall because of an in­
stability in which vortices are created, and eventually the streaks breakup. Another 
simplified model is described by Sanglii and Aubry (1993). The authors identify the 
coherent structures in a random flow using proper orthogonal decomposition. With 
respect to their results, low-speed streak is generated by a pairs of counter-rotating 
streamwise vortices in the sublayer. Then the low-speed streak is lifted away from the 
wall while the streamwise vortices and low-speed streaks propagate downstream. When 
the low-speed streak has reached some critical distance from the wall, it moves up more 
sharply (the rate of ejection increases significantly). Then an inflexional velocity pro­
file is formed and an inflexion point arises at the interface between streak and sweep. 
Finally, the structures experience by a sudden breakup that is like a burst. Moreover, 
Sanglii and Aubry (1993) found that the structures are converted downstream at the 
mean velocity value during the burst events. They also proposed that the structures 
involved in these motions are streamwise rolls, streaks, sweeps, horseshoe vortex lines, 
and vertical and horizontal shear layers which are consistent with previous studies. 

The near wall turbulence structures in a turbulent boundary layer have also been 
studied by Chernyshenko and Baig (2005) and Toll and Itano (2005) using direct nu-
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merical simulations. The authors believe that streaks may be a primary structure 
appearing directly from an unstructured background. The weak wall streak tends to dis­
sipate due to viscosity or merge into other streaky motions to become a stronger. Then 
the streaks can produce other structures and each of them repeat the self-sustaining 
cycle. Finally the last structure in the above-mentioned chain is broken-up into more 
random or chaotic motions. These motions may be accompanied by a return to the 
wall of the low-speed streak, and a more quiescent flow. The study of flow structures 
in a zero pressure gradient turbulent boundary layer over a wide range of Reynolds 
numbers were done by Osterlund et al. (2003) using a MEMS-type of hot-film. Their 
results confirmed the existence of low-speed streaks near the wall that lift-up and eject 
outwards for different Reynolds numbers. 

Schoppa and Hussain (2002) presented a new mechanism for near-wall vortices us­
ing direct numerical simulations in a turbulent channel flow. They proposed a new 
streak transient growth mechanism in which generates larger linear amplification of 
x-dependent disturbances. They show that vortex formation can in fact occur in the 
absence of a parent vortex, and the dynamics of generation of streamwise vortices are 
definitely different from those of parent-offspring. The authors show that streamwise 
vortices are generated from the more numerous normal-mode-stable streaks, via this 
new streak transient growth mechanism based scenario that transient growth of pertur­
bations leading to formation of a sheet of streamwise vorticity. 

With respect to the results of researchers over the several past decades the low-
speed streaks and quasi-streamwise vortices occur frequently within the inner layer 
of wall turbulent flows. Two general ideas were proposed for the near-wall turbulence 
structures. First, the low-speed streaks are formed by quasi-streamwise vortices and lift 
up to generate the vortices. In other words, parent of vortices interact with the wall and 
produce parent-offspring. This is a close cycle regeneration of turbulence structures. In 
the second category, primary low-speed streaks appear directly from flow disturbances 
and produces vortices. Then these vortices move up far from the wall and regenerate 
other vortices. 

2.2.2 Outer Layer 

The outer layer is commonly known as a layer with y+ > 100 that includes the overlap 
(log) and wake regions. While the shear decreases from a maximum amount at the 
wall to zero at the outer edge of the boundary layer, the vortical structures become 
larger as they move up away from the wall to the outer edge of the boundary layer. In 
general, although large eddies exist in the outer region, small eddies possibly populate 
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within this region. Robinson (1990. 1991) reported that the dynamics of the outer 
layer is controlled by these eddies (low-speed streaks, streamwise vorticity, ejections 
and sweeps). 

Many recent experimental and computational studies support the existence of hair­
pin structures in the log and wake regions of the canonical turbulent wall flows. Adopt­
ing the terminology of Adrian et al. (2000) the term hairpin is used here as a general 
term to represent cane, hairpin, horseshoe or arch-shaped vortices, or any deformed 
versions of them. 

Theodorsen (1952) proposed the first physical model of coherent structure (called 
horseshoe vortex) of turbulent boundary layers. He imagined that horseshoe vortices 
move up away from the wall (figure 2.3). In his conceptual model, since the layer farther 
from the wall has higher mean flow velocity in comparison to the layer close to the wall, 
as the structures move downstream, as well as experiencing a high degree of stretching, 
the head (spanwise part) undergoes a lifting movement from the wall. This motion 
of the vortex results in the head of the vortex lifting upward toward the free stream 
allowing higher velocities to carry the head downstream faster than the legs. This ac­
tion leads to a stretching of the legs as the hairpin vortices are convected downstream. 
This motion of vortices transports low-speed fluid away from the wall and produces 
Reynolds stresses. Kovasznay et al. (1970) studied the turbulence structures in the 
outer region of turbulent wall flow using hot-wire anemometer. The authors confirmed 
the existence of large scale motions in the outer region. Robinson (1991) studied the co­
herent structures of turbulent wall flow using the direct numerical simulations of Spalart 
(1988). He proposed that horseshoe vortex contains three parts; legs, neck and head. 
This model shown in figure 2. 1 is similar to the model of Head and Bandyopadhyay 
(1981). Recently Hut chins et al. (2005) also detect a similar structure to the model of 
Head and Bandyopadhyay (1981) using particle image velocimetry. Chong et al. (1998) 
proposed that wall structures form vortex tube or arch and their results present a strong 
link between these structures and Reynolds stresses. 

Many researchers agree that hairpin vortices naturally occurring in different fully 
developed wall-bounded turbulent shear flows as well as in transitional flows suggest 
the existence of a basic mechanism responsible for hairpin regeneration process, under 
various base flow conditions. Numerical results of Doligalski and Walker (1984) illus­
trated that convected discrete vortical motions are observed to be an important feature 
of the outer-layer of turbulent wall flows. The authors found that once detached eddies 
occur in the boundary-layer flow, intense variations in the velocity field begin to de­
velop near the eddy that the streamlines in the boundary layer near the upstream side 
of the detached eddies are ultimately deflected in a direction which is almost normal 
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Figure 2.3: Horseshoe (hairpin) concept of Theodorsen (1952). 
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Figure 2.4: Geometry and nomenclature for arch-shaped and hairpin-shaped vortices 
(Robinson (1991), after Head and Bandyopadhyay (1981)). 
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to the wall. Doligalski and Walker (1984) also reported that the apparently active vor­
tices near the wall have a typical lengthscale of the order of 100 wall-layer units; these 
convected vortices are three-dimensional. Smith and Walker (1997) proposed that the 
legs of hairpin squeeze rapidly together in the spanwise direction in the inner region 
where shear increases, while the hairpin head expands as it moves up where shear de­
creases. So the hairpin vortex reforms to an omega shape vortex. The concentration 
of streamwise vortices increases near the wall, when the legs penetrate into this zone. 
Hence, new quasi-streamwise vortices appear near the wall. The weak legs dissipate or 
amalgamate with other legs whereas the strong legs penetrate to the inner layer and 
generate new vortices. On the other hand, the upper part of hairpin (head) moves up 
away from the wall and become larger in spanwise scale. 

Zhou et al. (1999) tried to reproduce the auto-generation mechanism of the coher­
ent structures in a turbulent channel flow using direct numerical simulations. The 
base flow consists of the turbulent mean velocity profile free from any fluctuations and 
at low Reynolds number. A symmetric input disturbance, symmetry hairpin-like vor­
tex, is applied to this turbulent channel flow. They found that this initial structure, 
symmetry hairpin-like vortex, evolves into a hairpin vortical structure, called primary 
hairpin vortex shown in figure 2.5. Once the primary hairpin is generated, depending 
on its strength and distance from the wall, it generates secondary and tertiary hairpin 
vortices in upstream and possibly a downstream hairpin vortex depending on vortex 
strength. So the important conclusion of this study is generation and regeneration 
of single hairpin vortices and creation of a group of hairpins via the auto-generation 
mechanism via a hairpin-like disturbance. They found that stronger initial vortices 
participate in the formation of a hairpin packet, while weaker initial hairpin-like vortex 
structures do not result in the autogeneration of additional hairpins. Additionally, if 
this aforementioned process is started with an asymmetric initial vortex as an input 
disturbance, the authors observed that the streamwise spacing between the vortices 
reduces under asymmetry condition, and the new hairpins form more readily in rapid 
succession in comparison to the case with a symmetric input disturbance. It is worth 
noting that their observation under asymmetry condition is in better comparison with 
the experimental results. Haidari and Smith (1994) generated a single hairpin vortex 
by an initial impulsive injection of fluid into the flow through a thin slot in the wall. 
The injection velocity and injection time duration were varied. Below a certain ejection 
velocity the fluid diffuses without producing a hairpin. For higher level injection of 
velocity and duration, a single hairpin vortex is formed. For yet higher velocities, the 
vortex is strong enough to eventually produce three hairpin vortices. 

Suponitsky et al. (2005) performed a numerical study to investigate of coherent 
structures in fully developed turbulent flows, to understand their self-generation ability. 



Chapter 2. Literature Review 15 

To reproduce the generation mechanism and characteristics of the coherent structures 
that naturally occur in turbulent bounded shear flows, the authors made an effort to 
examine the capability of a simple model of interaction, between a localized vortical 
disturbance and laminar uniform unbounded shear flow. They found that a vortical 
disturbance with small-amplitude generates a pair of streamwise vortices, whereas a 
vortical disturbance with large-amplitude produces a hairpin vortex or a packet of 
hairpin vortices. Kim et al. (2008) have also examined the autogeneration process of 
hairpin vortices. A new hairpin vortex is created from a sufficiently strong hairpin-like 
disturbance leading to the formation of a hairpin packet, in a fully turbulent channel 
flow using direct numerical simulation for both a clean background condition (similar 
to Zhou et al. (1999) and with background noise. Kim and co-workers studied the 
effect of background noise on packet formation. They found that the global properties 
of hairpin and hairpin packets are almost the same for all systems, regardless of the 
presence of background noise; however, the details of auto-generation of hairpin vortices 
are sensitive to the initial background noise. The hairpins become asymmetric under the 
effect of initial noise, and resulting more complicated packet structures in comparison 
to the symmetric hairpin vortex for the case of clean background. In addition the initial 
background noise leads to decrease the minimum Q2 strength required to trigger auto­
generation. In other words, they found that background noise enhances autogeneration, 
especially in the buffer layer. 

Adrian et al. (2000) investigated with PIV measurements the shape and characteris­
tics of single and multiple hairpins in a streamwise-wall-normal plane of the outer region 
of a zero pressure gradient turbulent boundary layer. They showed that the hairpins 
generally occur in groups and individual hairpins are aligned upwards in a coherent 
pattern, hairpin packet, in the streamwise direction at a mean angle of approximately 
12°. They further proposed a conceptual model of nested hairpin packets shown in 
figure 2.6. In this model, the primary hairpin originates at the wall from a low-speed 
streak disturbance. Once the primary hairpin is formed, it is stretched and intensified 
as it moves up away from the wall and propagates downstream. This primary hair­
pin grows continuously in time and changes from a hairpin-shape to an omega-shape 
(the same hypothesis of Zhou et al. (1999). A secondary hairpin is generated upstream 
the primary hairpin if its strength is sufficient. The secondary hairpin also increases 
in size as time progresses and it moves up and propagates downstream and begins to 
create a tertiary hairpin. The new hairpin usually participates to autogenerate another 
hairpin if its strength is sufficient. The formed packets align in the streamwise direc­
tion and coherently add together to create large zones of nearly uniform streamwise 
momentum. Moreover the authors proposed that smaller packets move more slowly 
because they induce faster upstream propagation. The effect of older, larger packets 
over-running smaller, younger packets result in multiple zones of uniform momentum 
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Figure 2.5: The sequence of vortices identifed at t+ = 297 by the iso-surface of A^ with 
2% of its maximum, (a) perspective view; (b) side view; (c) top view. The location 
of the five (z, y)-cross-sections (C1-C5) at x+ = 252, 576, 720, 990, and 1440, shown 
in the perspective view (a) are also marked in the top view (c). The (x,y) velocity 
vector plots shown in (a) and (b) correspond to the spanwise centre of the box and 
cuts through the hairpin heads. PHV, primary hairpin vortex; SHV, secondary hairpin 
vortex; THV, tertiary hairpin vortex; DHV, downstream hairpin vortex; QSV, quasi-
streamwise vortices (Zhou et al., 1999). 
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as shown in figure 2.7. The zone I corresponds to the interior of a young packet, while 
the zone II is associated with the interior of an older packet. This latter result, associ­
ation of uniform momentum zones and hairpin heads, is consistent with the results of 
Meinhart and Adrian (1995). The authors reported that the flow is decelerated because 
of the backflow induced by several hairpins that are aligned in a coherent pattern in 
the streamwise direction. So, the long region of uniformly retarded flow in each zone is 
associated with the backflow induced by one or more groups of hairpins. The authors 
also observed that hairpin vortices combine to create long structures in the streamwise 
direction. These long structures (hairpin packets) grow in the streamwise direction de­
pending on the coherent alignment of successive hairpins. Tomkins and Adrian (2003) 
have found that these structures exist even in the buffer layer and that they grow 
linearly with distance from the wall in the buffer and log layers. 

The aforementioned studies of hairpin vortex signature show that this structure is 
also fully consistent with the existing body of results on the structure of wall turbulence. 
A stagnation point flow occures when an induced downflow, Q4 (u' > 0, v' < 0), from an 
upstream vortex head, encounters a low-speed upflow, Q2 (u' < 0, v1 > 0), induced by 
an adjacent downstream vortex. An inclined shear layer is caused by stagnation-point 
flow resulting from the Q2/Q4 interaction. These phenomenon, Q2/Q4 interaction and 
ISL event, are consistent with a VITA event as defiened by Blackwelder and Kaplan 
(1976). Liu et al. (1991) studied structures of wall turbulence in the streamwise wall-
normal plane of a fully developed low-Reynolds-number turbulent channel flow using 
particle image velocimetry. The authors observed the inclined shear layers similar 
to those abovementioned, with inclination angle less than 45°. These ISLs usually 
terminate in regions of rolled-up spanwise vorticity which probably were interpreted to 
be a hairpin head. 

Christensen and Adrian (2001) studied the turbulence structures in the outer region 
of a turbulent channel flow using particle image velocimetry. The statistical results 
using linear stochastic estimation supports that the outer layer of wall turbulence is 
populated by specially coherent groups of vortices which is similar to the signature 
of hairpin vortex packet. These results are consistent with previous reported results 
on hairpin vortices. For instance, these conditional hairpin vortex heads are inclined 
upwards in the streamwise direction at angle of approximately 12° — 13° which is close 
to the results of Adrian et al. (2000). 

Ganapathisubramani et al. (2003) measured all three instantaneous velocity compo­
nents using stereoscopic particle image velocimetry in streamwise-spanwise planes (xz 
planes). They found both symmetric and asymmetric hairpin vortices. Their results 
also reveal that hairpin vortices appear with two legs usually. Ganapathisubramani and 
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Figure 2.6: Conceptual scenario of nested packets of hairpins or cane-type vortices 
growing up from the wall. The envelope of the packet is a linearly growing ramp. 
Smaller packets move more slowly because they induce faster upstream propagation 
(Adrian et al., 2000). 
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Figure 2.7: Realization of the Ree = 930 boundary layer, contours of constant u-
momentum (Adrian et al., 2000). 
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co-workers also investigated the association between Reynolds shear stress and events 
with large streamwise coherence in the stream wise-spanwise plane. They found that 
the presence of hairpin structures and packets producing considerable Reynolds shear 
stress was a common and recurrent feature in the log layer. Similar study of spanwise 
lengthscales of hairpin vortices was done by Tomkins and Adrian (2003). The instanta­
neous velocity fields in the streamwise-spanwise plane of a turbulent boundary layer are 
measured from the buffer layer to the top of the logarithmic region using particle image 
velocimetry. They studied how the spanwise dimensions of hairpin vortices behave at 
different wall-normal locations using linear stochastic estimation. Tomkins and Adrian 
(2003) observed that large scale motions extend 2(5 or more in the streamwise direction 
and 0.1(5 — 0.4(5 in spanwise direction, and grow with wall distance from the wall. Two 
spanwise lengthscales, the mean width of the low speed regions (as estimated by quanti­
tative flow visualization) and the width of the stochastically estimated low-momentum 
region, increase linearly with distance from the wall (y). Ganapathisubramani et al. 
(2005) used two-point correlations on stereoscopic particle image velocimetry data to 
reveal the spanwise width which is consistent with hairpin vortex signature. The au­
thors found that two spanwise lengthscales, the mean width of the low speed regions (as 
estimated by quantitative flow visualization) and the width of the stochastically esti­
mated low-momentum region, increase with distance from the wall (y). In other words, 
spanwise width (separation between legs) increased away from the wall and the rate 
of growth is found to be approximately linear across the boundary layer, and growth 
rate is higher in the log region than the wake region. In addition, they found that long 
low-speed zones are statistically more occurred than high-speed zones in the log region. 
This result is consistent with the idea that the long region of uniformly retarded flow is 
the backflow induced by several hairpins that are aligned in a coherent pattern in the 
streamwise direction. 

Marusie and Perry (1995) detected the "A" or "horseshoe" types of structures in a 
ZPG TBL which have vortex lines that reach the wall, and produce a finite Reynolds 
shear stress at the wall (at least outside the viscous zone). Spanwise characteristics of 
coherent structures were also investigated by Ganapathisubramani et al. (2006). They 
also proposed a hypothetical "A" shape eddy and its projection on the streamwise-
spanwise plane. They illustrated that the hairpin vortices are the most frequent struc­
tures and these vortices are most frequently inclined downstream at an angle of 45° 
with the wall. Hutchins et al. (2005) and Hambleton et al. (2006) have also performed 
stereoscopic particle image velocimetry, which measurements were taken simultaneously 
in streamwise-spanwise and streamwise-wall-normal planes in a zero-pressure-gradient 
turbulent boundary layer, to study the characteristics and dynamics of coherent struc­
tures. They used linear stochastic estimation (LSE) based on a condition of positive 
swirl in the vertical plane, slightly above the log region, and the LSE results reveals an 
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average three-dimensional structure that is consistent with the hairpin packet model. 
The acquired result in the vertical plane reveals a strong swirl at the condition point 
and a packet angle of approximately 13° with the wall. This result is consistent to those 
presented by many researchers. A unique feature of this study is to having the simulta­
neous view of the horizontal and vertical planes. A clear large-scale coherence is noted 
with the condition event in the vertical plane being accompanied by two pronounced 
swirling motions that occur just upstream of the condition point. This indicates that 
the time-averaged conditional event is an inclined hairpin structure, with an inclina­
tion angle of close to 45°. In the horizontal plane, there is a pronounced elongated 
low-speed region extending some distance up and downstream of the condition point, 
which is consistent to Q2 region between the legs of this conditional eddy. Moreover, 
in the vertical plane (from the LSE results within a small bounding box), a clockwise 
spinning swirl event appears above and downstream of the counter-clockwise spinning 
swirl at the condition point. This pattern is consistent with an omega-shaped vortex or 
vortex ring structure.Li et al. (2006) studied the turbulence structures in a turbulent 
channel flow. Asymmetric hairpin vortices were usually found in their results. More­
over, they proposed the formation of low-speed streaks due to hairpin vortex packets. 
Carlier and Stanislas (2005) also tried to bring some new experimental information 
using particle image velocimetry (PIV) to characterize and to better understand the 
near-wall turbulence structures. Their visualization of instantaneous velocity fields 
shows that counter-rotating adjacent vortices are the most probable configuration in 
the spanwise direction. Their results also show a larger number of eddy structures with 
positive vorticity (opposite to mean shear) than other authors. The authors discovered 
that adjacent vortices with the same sign are extremely rare. 

Three-dimensional structures of a low Reynolds number turbulent boundary layer 
were investigated using a volumetric imaging technique by Delo et al. (2004). They 
observed groups of large scale structures that were frequently assembled into lumps 
measuring up to 5(5 in length. Moreover, they found that ejections of near wall fluid 
appeared to be spatially organized and related to the passage of large scale motions. 
Toh and Itano (2005) also suggested that the large scale structures (two counter-rotating 
large scale circulations for their study) are linked with near wall structures and sus­
tained by their interactions. 

Natrajan et al. (2007) studied spatial signatures of retrograde spanwise vortices in 
wall turbulence using PIV. Two-point spatial correlations between the swirling strengths 
of retrograde and prograde vortices are computed to reveal that prograde cores are typ­
ically oriented either upstream of and below or downstream of and above the retrograde 
vortex. In addition, conditionally averaged velocity fields given the presence of a retro­
grade core were also calculated in a bounding box to further explore its average velocity 
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signature. The results of these averages are also consistent to the results of two-point 
spatial correlations. Boundary layer velocity measurements in a water tunnel were per­
formed by Volino et al. (2007) using laser-Doppler velocimeter to study the effect of 
roughness on coherent structures. The authors found the existence of hairpin vortex 
packets in the outer region of both smooth-wall and rough-wall turbulent boundary 
layers. Moreover, an excellent qualitative agreement between the turbulence structures 
for both rough-wall and smooth-wall boundary layers are observed. This agreement 
confirmed that structures in the outer region are independent from the wall roughness, 
whereas the inner region structures can be affected by roughness. Flores et al. (2007) 
also studied the effect of wall roughness on the turbulence structures in a turbulent 
channel flow. They also reported that outer layer structures are independent of the 
wall roughness and near wall details. 

Turbulent pipe and channel flows were studied by Monty et al. (2007) using hot­
wire. They illustrated that the width of large-scale structures increases away from the 
wall. 

In the two latter sections, sections 2.2.1 and 2.2.2, a brief literature review of tur­
bulent structures in both inner and outer regions is presented. In the inner layer, two 
main categories are proposed for the self-sustaining mechanism of wall turbulent flows. 
In the first category parent vortices interact with the wall and produce offspring. In this 
hypothesis, vortices produce the streaks and streaks generate vortices. In the second 
category streak velocity profiles are unstable and produce vortices. Many researchers 
believed that the most frequent structures are low-speed streaks and quasi-streamwise 
vortices within the inner layer. In the outer layer, many studies support that the hairpin 
vortex is the most frequent structure that populates the outer layer of canonical tur­
bulent wall flows. In addition, a few researchers also found that hairpin vortices occur 
in the inner layer. In fact, the legs of hairpin vortices usually attach to the wall as the 
quasi-streamwise vortices. The flow is retarded by these vortices and low-speed streaks 
are generated. The legs of hairpin squeeze rapidly together in the spanwise direction 
in the inner region where shear increases, while the hairpin head expands as it moves 
up where shear decreases. So the hairpin vortex reforms to an omega shape vortex and 
new vortices formed beneath the streamwise-elongated vortex legs. Then the legs of 
the vortex are stretched into a hairpin shape as it traveled downstream. On the other 
hand, the upper part of hairpin (head) moves up away from the wall and become larger 
in spanwise scale. In other words, in this autogeneration mechanism, which proposed 
by some researchers, once the primary hairpin is generated, it generates the secondary 
hairpin if it has sufficient strength. The secondary hairpin generates the tertiary hairpin 
and similarly new hairpins are formed. Consequently many researchers believe that, 
with a few exceptions, the interaction of hairpin vortices and turbulence structures in 
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the inner region, low-speed streaks and quasi-streamwise vortices, is responsible for the 
most part of Reynolds stresses and turbulence production. 

2.3 Adverse Pressure Gradient TBL 

Although our understanding of canonical turbulent wall flows is far from complete, 
our knowledge of the details of turbulence in these flows has improved steadily over 
the several past decades. In contrast, not much is known about the characteristics 
and behaviour of coherent structures in adverse-pressure-gradient turbulent boundary 
layers. The numerous studies that exist have usually focused on the statistical proper­
ties of adverse-pressure-gradient turbulent boundary layers. Recent studies of adverse-
pressure-gradient TBL using direct numerical simulations and hot wire anemometry 
have provided some insight into the turbulent structures found in such flows. It is im­
portant to mention that these studies focus only on the near-wall structures at very low 
Reynolds numbers. 

Kline et al. (1967) reported that the bursts appear to play a key role in transport­
ing turbulent kinetic energy to the outer regions of the boundary layer. In addition 
the authors found that a positive pressure gradient tends to make the bursting more 
violent and more frequent; on the other hand, negative pressure gradients reduce the 
rate of bursting. Krogstad and Skare (1995) found that Q2 and Q4 events are equally 
important near the wall in the ZPG TBL, while APG TBL is strongly dominated 
by turbulent motions in the fourth quadrant. Moreover, Krogstad and Skare found 
that observed Q4 motions have higher frequency and last much longer than in the 
ZPG TBL, while the frequency for Q2 events was reduced, especially for strong events. 
Skote et al. (1998) performed direct numerical simulations to study turbulent boundary 
layers in adverse pressure gradients. The authors investigated two cases, where in the 
first adverse-pressure-gradient case the pressure gradient is close to that for which the 
corresponding laminar boundary layer would separate and the second case is strong 
adverse-pressure-gradient. Skote and co-workers proposed that streaks become shorter 
in the inner layer of adverse-pressure-gradient turbulent boundary layers in compari­
son to ZPG TBL. Moreover, the streaks become shorter and wider when they move 
toward the separation point. In such flows, the long streaks occur close to the wall 
and the shorter streaks appear in the upper part of the inner layer of boundary layer. 
They also showed that turbulence bursts exist in the near wall region and larger scale 
vortical structures can be seen in the outer part of the adverse-pressure-gradient tur­
bulent boundary layer but the bursting action seems almost totally suppressed in such 
flows. Furthermore, Skote et al. (1998) reported that there is only a slight difference 
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of turbulence structures in inner layer between the ZPG and APG turbulent boundary 
layers (except near the separation point), whereas in the outer region there is a clear 
difference. Their results present an outer peak of the production term in the turbulent 
energy budget for the higher pressure gradient case. The authors believe that this outer 
peak in the turbulent energy and production might be related to the enhanced streak 
formation in the outer part of the boundary layer. Similar scenario of low speed streaks 
was proposed by Skote and Henningson (2002) that near-wall streaks are weakened by 
the ad verse-pressure-gradient, and the spacing increases in viscous units. The authors 
also found that the low-speed-streaks may reappear in a separated region if the back-
flow is strong enough and do not immediately appear after the reattachment but are 
clearly visible after a certain distance. 

Adams and Johnston (1988) found that the bursting rates in the upstream of reat­
tachment region of an adverse-pressure-gradient separated boundary layer (separation 
bubble) is very close to the bursting rates in a ZPG turbulent boundary layer, whereas 
the detection rates of bursts in the backflow region (downstream of the reattachment 
region) are a factor of 4/10 lower than ZPG flow. Simpson et al. (1981) and Pronchick 
(1983) noted that the lack of ejections in the near-wall region may be the reason for lower 
detection of bursts in adverse-pressure-gradient boundary layer. Nagano et al. (1998) 
studied the turbulence structures in an adverse-pressure-gradient turbulent boundary 
layer using hot wire anemometer. The authors found that the turbulence intensity 
reduced in the wall region when the pressure gradient increases, but the outer region 
remains unchanged. Moreover, the occurrence of ejection and sweep become equivalent 
in an APG turbulent boundary layer whereas the sweep motions follow the ejections 
phenomenon in zero pressure gradient TBL. 

The study of a separated turbulent boundary layer over a flat plate using direct 
numerical simulation was performed by Na and Moin (1998). The studied flow contains 
a separation bubble. The authors found that turbulent structures emanate upstream 
of the separation bubble. Then these structures move upwards into the shear layer in 
the detachment region and then turn around the bubble. Upstream of the separation 
bubble, vortical structures are mainly confined to the inner region of the boundary 
layer, while they are lifted into the shear layer above the bubble. In the detachment 
region, vorticity appears to be negligible near the wall. Xa and Moin (1998) found that 
most of the vortices which arrive from the upstream boundary layer are weakened in 
the middle of the detachment region and convect downstream and impinge on the wall 
in the reattachment region. Furthermore, the maximum Reynolds shear stress occurs 
close to the wall downstream of the separation bubble, while local Reynolds shear stress 
maxima are significantly reduced up to the middle of the reattachment region. Since 
the turbulent structures move up and turn around the bubble, it can be inferred that 
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the local Reynolds shear stress maximum is in the middle of the shear layer developing 
around the separation bubble. 

It is important to mention that there is not much information about coherent struc­

tures in the outer region of adverse­pressure­gradient turbulent boundary layer. 

2.3.1 Scaling 

Now we turn our attention to the scaling of the mean flow and the turbulent stresses 
for adverse­pressure­gradient turbulent boundary layers as the modeling of such flows is 
one of the most challenging of all flow phenomena. The analysis of turbulent boundary 
layers under adverse pressure gradient has been going on for a long time. Although 
different velocity scalings have been proposed over the years, an open question still 
exits for the proper mean velocity scaling of both outer and inner regions in strong 
adverse pressure gradients and separated turbulent boundary layers. Indeed, despite 
the large number of attempts, most of these approaches do not seem to be completely 
satisfactory. 

The classical theory of scaling (uT) and the inner­outer mixed scaling of u' (a new 
scaling) of De Graaff and Eaton (2000) appear to only hold in zero pressure gradient 
flows and as soon as the flow is subjected to even a mild pressure gradient no scaling 
has been found to collapse the turbulence stress data onto a simple profile. 

The fundamental idea of equilibrium was introduced by Rotta (1953). According 
to Clauser (1956), turbulent boundary layers where the velocity defect normalized with 
the local friction velocity uT is self­similar for Re —> oo are called equilibrium boundary 
layers. For such a boundary layer, a pressure gradient parameter, called Rotta­Clauser's 
pressure gradient parameter, (3T = ^ ^ = f­"^ (where A is Rotta­Clauser length 
scale, S*Ue/uT) has to be constant. Here, TW is the wall shear stress and dpe/dx is the 
freestream pressure gradient. The zero­pressure­gradient boundary layer is, therefore, 
in equilibrium in the sense described by Clauser. Mellor and Gibson (1966) found that 
the work started by Clauser (1956) was far from complete and did not provide a base 
from which to construct a more complete theory. They tried to attain a relatively 
complete and detailed knowledge of the behaviour of equilibrium turbulent boundary 
layers. The authors used a pressure velocity upress = J—■&, as the velocity scale for 
the outer layer, only when rw —+ 0. 

Skote and Henningson (2002) performed a study of turbulent boundary layer flows 
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subject to a strong adverse pressure gradient where the boundary layer is everywhere 
attached, and without separation bubble. They found that in the overlap and wake 
regions the mean velocity profiles could be collapsed using a pressure gradient velocity 
scale of up = ( - g j , while in such flows uT is not the relevant velocity scale. Indeed, 
the velocity scale up should be used instead of uT close to separation, where uT « uv. 
The authors developed further the analysis where the local pressure gradient is the key 
factor. So Skote and Henningson (2002) used uT or up as the velocity scale for the inner 
region of attached boundary layers. The authors developed an expression for the shear 
stress (TP = r/(pu2)) as a function of yp = yup/u as follows 

where yp is y scaled by up/u. Equation 2.1 has the asymptotic form rp = yp when sepa­
ration is approached. Thus, in this rescaled form, the singularity (using the traditional 
scaling) is avoided. 

«p = f = l(yp?+(-)2yp (2.2) 
up 2 \ u p J 

where uP is the velocity scaled by up. 

For the overlap region, neither uT nor up as a velocity scale results in a self-similar 
expression. However, equation 2.1 can be formulated as 

T" ' h ( % - <«v>) • (2-3> 
where u« is a velocity scale that depends on y and can be expressed in either viscous 
or pressure gradient units as follow 

u l = u2
T + Uy (2.4) 

Finnaly, for the separated boundary layer TP can be experessed as (or equation 2.1 can 
can be formulated as) 

"-•-£)' (2-5) 
and for the velocity in the viscous sub-layer of the separated boundary layer, the ex­
pression becomes 

A new extended inner scaling is proposed for the wall layer of wall-bounded flows 
under the influence of streamwise pressure gradient by Manhart et al. (2008). They 
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demonstrated that the velocity profiles are not linear if the streamwise pressure gradient 
is much higher than the wall shear stress even in the viscous sublayer. The authors 
defined the nondimensional velocity U* and length y* as follows 

U* = — (2.7) 
uTp 

y* = V-^ (2.8) 

where uTp = y/u2 + u2 and up = \ ^ % \ 
1/3 

With this scaling, the velocity profile in the viscous region including pressure gradi­
ent effects can be written in nondimensional form as a function of only two nondimen­
sional parameters 

U* = f(y*,a) 
2 2 

where a = ?T 2 = $£-. The range of validity of y* strongly depends on how high the 
Reynolds number and fast the convective terms gain weight in the momentum balance 
when moving away from the wall. Angele and Muhammad-Klingmann (2006) studied a 
separating adverse-pressure-gradient turbulent boundary layer at high Reynolds number 
using PIV. The authors examined different outer scaling for the acquired data. Angele 
and co-workers found that the mean velocity profiles in the outer part of the boundary 
layer around the separation bubble are self-similar when using both a velocity scale 
based on the local pressure gradient, namely up = \ J — ^ , and the scaling suggested by 
Perry and Schofield (1973). Indeed, these two different scalings are closely comparable. 

Indinger et al. (2006) showed that the logarithmic law does not work well for adverse-
pressure-gradient turbulent boundary layers using water-tunnel experiments. They ana­
lyzed their experimental results for the outer region and also experimental results from 
several independent research groups using classical scaling for zero-pressure-gradient 
turbulent boundary layers, the scaling by Castillo and George (2001), and the scaling 
by Zagarola and Smits (1998) (Uzs = c7eÇ). Indinger and co-workers found that the 
outer scaling originally proposed by Zagarola and Smits (1998) is the most suitable 
for the mean velocity defect profile, even for very strong adverse-pressure-gradients. 
Buschmann and Gad-el Hak (2005) found that the Zagarola-Smits scaling works well 
even in the inner region of zero-pressure-gradient turbulent boundary layer, channel 
and pipe flows. The results show good agreement with the classical scaling (uT). 

Maciel et al. (2006a) studied a very strong adverse-pressure-gradient turbulent bound­
ary layer leading to separation and suffering from an abrupt transition from strong 
favourable-pressure-gradient to strong adverse-pressure-gradient using PIV. It is worth 
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noting that the experimental setup of this latter study is exactly the same experimental 
setup of the present study, and, the mean flow conditions are also the same in both 
studies. The authors showed that Uzs scales all the Reynolds stresses in the outer re­
gion of such flows, while U2 and u2 were definitely not appropriate outer scales for the 
Reynolds stresses. Maciel et al. (2006a) also reviewed adverse-pressure-gradient data 
from several experiments (i.e. Maciel et al. (2006b) and group of Castillo), and they 
presented that the Zagarola-Smits scaling works well. 

Castillo and George (2001) proposed Ue as the outer velocity scale, while Panton 
(2005) believed that Ue is not a proper scale for turbulent velocity since it does not 
scale with the Reynolds shear stress. Since the Zagarola-Smits velocity scale is def­
initely the most pertinent outer velocity scale for the mean flow in general pressure-
gradient conditions and the works of Castillo and George (2001), Castillo et al. (2004) 
and Castillo and Wang (2004) also revealed the potential of Uzs as an outer velocity 
scale and they found that Uzs is successful in collapsing the defect profiles for general 
pressure-gradient conditions, Maciel et al. (2006a) proposed the new pressure gradient 
parameters Uzs a n d Pzs a s follows 

Pzs = - — — = ~—U' e (2.9) 
Tzs Ue Uzs 

3 (53 U' 
Izs S*2 Ue 

where 7ZS = jf- = Ç and U'e = ^ . These parameters are definitely more apt than 3 
to characterize turbulent boundary layers in general pressure-gradient conditions. 

Recently, Lôgdberg et al. (2008) focused on the mean velocity distribution of turbu­
lent boundary layers near, at, and after separation. They found that the mean velocity 
defect profiles are self-similar in the regions between separation and the position of 
maximum mean reverse flow. The authors also found that the Zagarola-Smits velocity 
scaling for mean velocity defect profiles is useful not only for the region near separation 
but also for cases of different adverse-pressure-gradients. With regards to these results, 
since the Zagarola-Smits scaling can be used in all flow conditions (favourable-pressure-
gradient, zero-pressure-gradient, ad verse-pressure-gradient, complex-pressure-gradient, 
rough wall and other conditions) of turbulent wall flows, it appears to be more uni­
versal than uT. In the present work, we also apply the Zagarola-Smits scaling on the 
acquired data using PIV. The Zagarola-Smits scaling is used as an outer velocity scale 
for the Reynolds stresses and as an outer time scale for the swirling strength and swirl 
intensity. 



Chapter 3 

Experimental Set-up and 
Instrumentation 

3.1 Introduction 

The experiments in this study are performed in an open-circuit suction-type wind tunnel 
with a modified test section. The wind tunnel is specially designed to facilitate the 
investigation of an adverse pressure gradient turbulent boundary layer. The wind tunnel 
is installed in the Laboratoire de mécanique des fluides (LMF), at the Mechanical 
Engineering Department of Laval University. This chapter presents the experimental 
facilities and measurement techniques. 

3.2 Wind Tunnel 

3.2.1 Entrance 

The entrance of the wind tunnel is made mainly of two parts, the settling chamber 
and the convergent section (see figures 3.1 and 3.2). The settling chamber is located 
upstream of the convergent section and consists of a honeycomb followed by three 
screens with decreasing mesh size. The entrance of the wind tunnel is 2.29 x 0.61 m, 
after which there is a hexagonal honeycomb cell flow straightener. The honeycomb 
is used to straighten and make more homogeneous the entering flow by breaking the 
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convergent part settling chamber 

Flow direction 
< 

Figure 3.1: Schematic of wind tunnel. 

vortical structures which may exist in the flow. After the honeycomb, the flow passes 
through three screens of decreasing mesh size which are separated by a distance of 
about 200 mesh sizes. The dimensions of the settling chamber are 2.29 m high, 0.61 
m wide, and 0.97 m length. 

Figure 3.2: Inlet of wind tunnel. 

3.2.2 Test Section 

Before proceeding, it should be noted that an airfoil profile model is not used in these 
experiments. First, in presence of an airfoil the dimension of the test section should 
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be increased enough to have a potential flow around the airfoil. The presence of large 
viscous zones in the flow due to the boundary layer separation on the trailing edge intro­
duces important blockage effects. Next the endwall effects can no longer be neglected. 
The adverse pressure gradient causes the endwall boundary layers to grow rapidly and 
probably separate too. Their vorticity is also severely skewed by the presence of signifi­
cant levels of transverse strain rates. Finally the complexity of interaction between the 
endwall boundary layers and the airfoil is spatially widespread. So, in order to reduce 
the aforementioned undesired effects, a small airfoil model with a large aspect ratio 
should be used to achieve an acceptable flow. On the other hand using a small model 
reduces the achievable Reynolds number, increases the manufacturing tolerances of the 
model, complicates measurements seriously and reduces their accuracy and scope. 

These drawbacks partly explain why the test section is modified instead of using an 
airfoil model in a regular test section of wind tunnel. As a result, it is not necessary to 
use a large wind tunnel in order to achieve high Reynolds numbers when the measure­
ments can be done directly on the floor of the wind tunnel. Additionally, the boundary 
layer is much thicker when it develops on the floor of the test section. A thick bound­
ary layer facilitates measurements and also improves the maximum achievable spatial 
resolution. Finally, flow measurement and visualization on a flat plate is also easier to 
perform. Although the flow can be performed at higher equivalent Reynolds numbers, 
which are closer to reality, and with thicker boundary layers using the wind tunnel 
floor, the initial conditions are different for the boundary layer in two cases and have 
different curvature effects. 

The strategy adopted is to change the shape of the roof and floor of the test section, 
in order to produce the desired pressure conditions in a relatively small wind tunnel. 
Indeed, the rectangular test section was modified to a test section including a convergent 
part and a divergent part. It is assumed that the mean flow is in the x-direction, y-
direction is perpendicular to the floor where the studied boundary layer develops and z 
is the spanwise direction. The origin of the coordinate system is situated at the entrance 
of the test section, at the mid-span and on the floor (figure 3.3). 

This modified test section, which is shown in figure 3. 1, was designed to reproduce 
external flow conditions corresponding to the suction side of an airfoil in trailing-edge 
post-stall condition. For such an airfoil separation starts at the trailing edge and grad­
ually moves upstream as the angle of attack is increased (see figure 3.5). Julien (2004) 
designed the modified test section during his Master's thesis. The desired pressure dis­
tribution is achieved by means of a deformed ceiling and a small bump on the floor. 
This small bump partially reproduces the effect of the leading edge of an airfoil (figure 
3.1 i-b) that the pressure coefficients Cp down to —16 were attained. To design the form 
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Figure 3.3: a) Top view and b) side view of the modified test section of the boundary-

layer wind tunnel, c) Pressure coefficient distribution along the floor of the test section: 
experimental results (+); potential flow calculation (solid); pressure distribution on the 
suction side of the NACA 2412 airfoil at 18° for comparison purposes, chord length of 
2.5 m (dashed). 
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Figure 3.4: Test section of wind tunnel. 

Separation position/ 
FPG \ APG 
dp/dx < 0 \ dp dx > 0 

Figure 3.5: Schematic of flow around NACA 2412 airfoil at high angle of attack. 

of this small bump, an iterative procedure using a potential flow solver and a boundary 
layer solver was used. The inviscid and viscous solvers were matched by direct mode 
via surface transpiration (two dimensional computations only). Combinations of two 
matched cubic polynomials were used for the geometry of both the converging section 
at the entrance of the wind tunnel and the small bump on the floor (figure 3.3). The 
reference pressure distribution used for the design was that of the NACA 2412 airfoil 
set at an angle of attack of 18° and at Rec = 2.5 x 106. It is important to note however 
that the aim was not to reproduce exactly the pressure distribution of the NACA 2412 
airfoil but rather to reproduce qualitatively its features. In the present study, Reynolds 
number Rec reaches to 1.5 x 106 with an effective chord length of approximately 2.5 
meters. As shown in figure 3.3-c, pressure decreases drastically in the convergent sec­
tion and then it increases in the divergent section, transition strong favorable to strong 
adverse pressure gradient, within the test section. 

The ceiling was designed with special care in order to avoid a separation bubble 
in the concave part and to minimize the strain rate (dU/dy) at small bump location 
(x = 800 mm) where the pressure peak occurs. Moreover, special care has also been 
taken to reduce the possibility of re-laminarization in the area of strong favourable 
pressure gradient. Decreasing the possibility of re-laminarization also leads to reducing 
the risk of generation of a separation bubble on the bump. The shape of the ceiling 
of test section is shown in Figure 3.3. Final adjustments of the geometry were done in 
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Figure 3.6: a) Schematic of side view of wind tunnel, b) Zoom on small bump at the 
floor of test section. 

the laboratory. Tufts have been used to visualize the flow in order to confirm that the 
flow remained attached everywhere on the ceiling. Moreover the set-up was designed so 
that separation occurs after a relatively long length of development in the test section 
in order to be able to study the boundary layer prior to separation (see figure 3.3). 
More details on the design and tests of the test section are given in the master's thesis 
of Julien (2004). 

Control and Validation of the Flow 

Venisse (2004) developed a control system to reduce the end-wall and corners effects 
during his Master's thesis. A brief description of his work is presented here. 

The boundary layer developes at the lateral walls of the test section. Since the 
boundary layer coarsens much more rapidly in a strong adverse pressure gradient tur­
bulent boundary layer in comparison to canonical wall-bounded turbulent flows, the 
development of boundary layer at the lateral walls of test section is much worse for the 
present flow. Moreover, large vortical structures appear at the corners between floor 
and the lateral walls of the wind tunnel. These vortices increase the three dimensional 
effects of the boundary layer and probably interfere with the main flow. A control sys­
tem was developed to reduce the effects of the lateral wall boundary layers and corner 
eddies. The control system consists in 19.05 mm thick Plexiglas splitter plates that 
start at x = 510 mm (285 mm before the suction peak, figure 3.3-a). The leading edge 
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of each splitter plate is a half ellipse with an axis ratio of 2:1. The distance between the 
splitter plates and lateral walls of wind tunnel is 31.75 mm in order to suction the whole 
boundary layer. Two adjustable perforated plates are installed at the main channel exit 
in order to insure proper splitting of the flow between lateral and main channels. 

The splitter plates reduce non-uniformities of the flow significantly. Skin friction 
was measured after the suction peak at x = 0.86 m in the spanwise direction. Good 
uniformity of the spanwise distribution of skin friction was found. The variations were 
less than 1% in the central 50% of the wind-tunnel span. Additionally, the wall stream­
lines were found to be parallel and aligned with the streamwise direction using oil film 
visualization. This is seen everywhere in the test section at least up to x = 1.2 m. Since 
the skin friction is too small to displace the oil film downstream of that position, flow 
visualization was not possible further downstream. Detailed information can be found 
in the Master's thesis of Venisse (2004) . 

To further validate the flow, extensive PIV measurements were made with horizontal 
(x, z) planes. These planes covered a large area centered on the midspan (z = 0) and 
located at the start of the separation zone. The detachment point is at x = 1.615 
m, see figure 3.3-b,c. These measurements were done to characterize the flow further 
downstream in the detachment zone. It was also found that the mean flow streamlines 
in the boundary layer remain everywhere parallel and aligned with the streamwise 
direction except very near the wall just prior to detachment. Moreover, the turbulence 
was not affected by the three dimensional character of the mean flow close to the 
wall. A detailed description of these measurements and of the results can be found in 
Maciel et al. (2006b) and Rossignol (2006). 

Optical Access 

A modular design was used to construct the test section of the wind tunnel in order to 
have an adaptable test section. The divergent part of the ceiling and the lateral walls 
of the test section are made from plexiglass or glass plates that can be fitted together. 
These glass and plexiglass plates allow an excellent optical access for the laser sheet and 
the cameras of the PIV system or for flow visualization in the test section. The wind 
tunnel floor consists in of several 12.52 mm (0.5 in) thick inter-changeable aluminum 
plates and plexiglass plate. Each aluminum plate can be replaced by a plexiglass plate 
in order to have optical access at the location of interest. The modular design of the 
test section also allows easy physical access, for instance to install a probe or to carry 
out the calibration of a digital camera (in the case of PIV measurements, see section 
3. 1) within the test section. More details about the design of the test section can be 
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Figure 3.7: Perspective view and front view of the wind tunnel outlet, 

found in the Master's thesis of Julien (2004). 

3.2.3 Outlet 

The air flow exits from the wind tunnel through a diverging section with circular cross-
section where the propeller is placed. This circular diverging section is connected to 
the square test section with a junction mode of foam. The length of the divergent 
part is 0.91 m. The circular section has a length of 0.79 m. The length of the short 
adaptor part which makes the transition from the square to circular cross-section is 
0.66 m. Figure 3.7 shows pictures of the outlet of the wind tunnel. The divergent cone 
has a small inclination to avoid the separation of the boundary layer. The propeller 
is driven by an electric motor of 5.5 kW. The rotation speed can be adjusted with a 
frequency drive to control the flow velocity in the test section. The frequency drive can 
be controlled remotely from a computer via serial port. 

3.3 Instrumentation 

This section of the chapter provides a general description of the instrumentation which 
was used during the study to characterize the flow. Most of the information is provided 
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based on the Master's thesis of Venisse (2004) . 

3.3.1 Data Acquisition System 

A Dell computer with an Intel Pentium IV at 2.4 GHz CPU and 1 GB of RAM is 
used to acquire the data. Two network cards with 100 Mb/s are installed in order 
to connecting to the network of Laval University and to controll the SystemHub for 
PIV measurements. The FlowMap System Hub is a core member of the FlowMap 
system and like the rest of the system it has a modular structure. This unit provides 
physical communication links between the Hub and other elements in the system such 
as illumination devices (laser), digital cameras and PC. The FlowManager software, 
published by Dantec Dynamics, is used to input the desired delay between the two 
frames of the double image, and to take the many sets of double frame images are to be 
taken. When the program is started, FlowManager communicates with the FlowMap 
System Hub, which then outputs two separate signals - one signal to the laser and 
another to the camera. These signals are already synchronized when coming out of the 
hub. With this set-up, one laser pulse occurs in each of the two frames of a double 
image, resulting in clear, frozen images of droplets. The Flowmap System Hub also 
stores pairs of images. Afterwards, the acquired images have to be transferred from the 
Flowmap System Hub to the PC before another set can be taken. 

Two HP HEWLETT PACKARD 34401A Multimeters are used to measure the 
reference velocity and temperature. The signals from a pressure transducer which is 
connected to two taps at the convergent part are used to measure the static pressure 
(see section 3.3.2). 

The flow velocity in the test section can be controlled by the angular velocity of 
the fan. The rotating speed of the fan is controlled using a control box. A visual basic 
program, previously prepared, is used to inputs the desired RPM. Once the desired 
rotating speed is entered, the PC communicates with the control box via a serial bus 
and the fan starts rotating. In the present work, the reference velocity is 9 ± 0.01 m/s 
to have the same flow in all cases. The rotating speed of the fan is about 1300 ± 10 
rpm for this reference velocity. 

The stands of the cameras are robust displacement systems which have stepper mo­
tors. These motors are controlled by a control box. Moreover, this positioning system 
has a very stable base with four legs as shown in figure 3>. Similar to the controller 
of the fan, the user inputs the desired displacement. When the desired displacement 
is entered, the PC communicates with the control box via a serial bus and the stepper 
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motor begins to rotate. Each stand has two controllable stepper motors. One motor 
controls the vertical displacement and the other motor controls the horizontal displace­
ment. The accuracy of displacement is ±0.05 mm using this system. This system 
allows us to position the cameras with high accuracy. Actually, we need high precision 
displacement systems for this study as two cameras are used simultaneously in both 
side of the test section to capture the images. More details are given in section 3.5. 

Figure 3.8: Displacement system. 

3.3.2 Pressure Measurement 

The atmospheric pressure and ambient temperature are measured directly using a mer­
cury barometer of Fortin type and a mercury thermometer. A MKS Baratron 223BD 
pressure transducer is used to measure the pressure in the wind tunnel. Its range of 
operation is from —1 to 1 inch of water (—249.1 Pa to 249.1 Pa) for an output signal 
from —1 to 1 Volt. The measurement accuracy provided by the manufacturer is ±0.5% 
of the range (±1.25 Pa). The static pressures at the beginning of the convergent sec-
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tion, after the settling chamber, and at the end of it are measured by this pressure 
transducer. To measure the pressures this pressure transducer is connected to two taps 
which are placed at the beginning and at the end of the convergent part on the lat­
eral wall. The dynamic pressure can be determined using these static pressures. To 
calculate the dynamic pressure a preliminary calibration is required. This preliminary 
calibration was done by Vénisse (2004) using a Pitot-static-tube which was placed at 
the centre of the test section without pressure gradient (no bump at the floor and the 
ceiling). The Pitot-static-tube is placed 1.35 m downstream of the entrance of test 
section. The dynamic pressure is measured as follow 

f dynamics l . O U l X L \ r S i a t i c s \à-*-) 

where the APs ta t ics is the difference of static pressures at the beginning and the end 
of convergent part. The Pdynamics is u s e d to calculate the reference velocity that is 
described in the next section. 

3.3.3 Measurement of Reference Velocity 

The reference velocity (Uref) is determined using the dynamic pressure, Pdynamics- Once 
the Pdynamics is determined as explained in section 3.3.2, the reference velocity can be 
calculated as follow 

* X f dynamics j j I " " •* aynamics / 0 n \ 
Uref = \ (3.1) 

where p is the air density in the test section and equals to p = Patm/(286.9 x T). T is 
the temprature of air. The calculation of T is explained in the next section. 

3.3.4 Temperature Measurement 

The temperature in the converging section is measured using a linearized Omega Ther­
mistor Composite 44018. The temperature is determined by the following equation 
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Figure 3.9: Schematic of the two-hot-wires probe. 

which is provided by the manufacturer. 

T = - 1 4 7 . 1 3 - ^ ±95.79 (3.3) 

where 
T is the temperature in degrees Celsius, 
E in is the input voltage in volt, 
Eout is the output voltage in Volts. 
The accuracy of measurements is ±0.15° C according to the manufacturer report, 

3.3.5 Friction Measurement 

In order to measure the skin friction, a pierced aluminum plate is placed at the floor 
of the test section as one of its modules. A probe with two hot wires is located in each 
holes of the pierced plate. The hot wires are perpendicular to the flow and have the 
same level of height with the floor (figure 3.9). A calibration channel with a special 
design is used to calibrate the probe for this technique. The calibration of the probe 
and the measurements in the wind tunnel were done by Pageau (2004). More detailed 
can be found in her technical report. 
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Figure 3.10: Schematic of different elements and working principle of PIV. 

3.4 Particle Image Velocimetry System 

Particle image velocimetry (PIV) is an optical method used to measure velocities and 
related properties in fluid flows. The fluid flow is seeded with particles for the purposes 
of the PIV. These tracer particles are sufficiently small that they faithfully follow the 
fluid motion and do not alter the fluid properties or flow. It is the motion of these seeding 
particles that is used to calculate the flow velocity. Typical PIV apparatus consists of 
one or two digital cameras, a high power double-pulsed laser, an optical arrangement to 
convert the laser output light to a light sheet (normally using a cylindrical lens). The 
planar laser light sheet is pulsed twice as a photographic flash for the digital cameras, 
and the particles in the fluid flow scatter the light. So images of fine particles lying in 
the light sheet are recorded using digital camera. Once a sequence of two light pulses 
is recorded, the recorded images are typically processed offline on a digital computer. 
First, the particle-image patterns are divided in small sub-domains, or interrogation 
zones. The interrogation zones from each image frame are cross-correlated with each 
other to provide the displacement of the seeding particles in the interrogation zone 
resulting a single instantaneous velocity vector. A velocity vector map over the whole 
target area is obtained by repeating the cross-correlation for each interrogation area 
over the two image frames captured by the camera. The working principle of PIV is 
schematically described in figure 3.10. More information on this subject can be found 
in Raffel et al. (1998). 
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The velocity measurements of this study were made with PIV (figure 3.10). The 
laser pulses are generated using a two cavity, frequency doubled 120 mJ New Wave 
Research Solo PIV Nd:YAG laser. The maximum energy of laser beam is 120 mJ at a 
wavelength of 532 nm. The pulse width is 3-5 ns and beam diameter is 4.5 mm. The 
maximum repetition rate of the laser is 15 Hz. The frequency of acquisition rates are 
however limited to 4 Hz by the framing rate of the cameras. A multi-joint optical arm 
is used to bring the laser light to the place of interest for measurements. Therefore, it is 
convenient to install the head of arm accessing all around the test section. A spherical 
lens is placed at the head of the optical arm. This spherical lens allows to focussing 
the laser sheet at the place of interest. A cylindrical lense is installed at the end of 
the arm after the spherical lens. This cylindrical lense converts the circular laser beam 
into a planar laser sheet with a divergence angle of 30°. The light sheet thickness was 
roughly 1 to 2 mm depending on the dimensions of measurement areas. The laser sheet 
thickness reaches a minimum at the focal length. It is tried to adjust the focal length 
at the middle of measurement planes in order to have the minimum thickness in the 
area of interest. 

A SAFEX Nebelgerat fog generator is used to seed the flow using SAFEX Inside 
NebelFluid Normal fog fluid. Special care was made to optimize the seeding so that 
a homogenous fog enters the wind tunnel with an acceptable density. The produced 
particles sizes are distributed uniformly and remain sufficiently in the flow to pass the 
test section before disappearing. They scatter the laser light to illuminate the CCDs 
of cameras. The fog generator is installed under the converging section of wind tunnel 
entrance (see figure 3.11). A plate at the front of fog generator inhabits fog to move 
directly toward the wind tunnel inlet. Two vertical fans are set on both sides of the 
converging section along with the fog generator. The fans help to push the fog toward 
the inlet of the wind tunnel in both sides. The fans help to improve mixing of fog 
clouds around the wind tunnel inlet and allows having a uniform mix of fog cloud and 
air. The fog generator can control the flow rate of fog, so the seeding density is adjusted 
with special care before each acquisition in order to obtain the best possible quality of 
images. 

Two HiSense digital cameras equipped with a 1280 x 1024 pixels CCD array are 
used to capture the images. Nikkor lenses with focal lengths of 60 mm and 105 mm 
were used. The cameras are mounted on a displacement system (figure 3.8) which can 
be easily adjusted. Movement of each displacement system is controlled by computer 
in both horizontal and vertical directions with an excellent precision (about 0.05 mm 
displacement) as explained in the section 3.3.1. 

The FlowMap System Hub unit provides physical communication links between the 
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Figure 3.11: Schematic of side view and front view of the wind tunnel inlet and fog 
cloud. 

Hub and other elements in the system such as the Solo Nd:YAG laser, the digital cam­
eras and the computer (see figure 3.12). This unit is controlled by the application PC 
using Dantec Dynamics FlowManager software. The FlowMap System Hub communi­
cates with the application PC via a 100 Mb/s network card and also with a 1 Gb/s 
Ethernet. The 100 Mb/s network card is always used for control command between the 
FlowMap system Hub and the other elements, but data (images) are transferred to the 
hard disk of application PC through the 1 Gb/s network card. The 1 Gb/s network card 
transfers data in the range 8 to 20 MByte/s. These rates are average performance for 
continuous data transfer, meaning that peak performance may be considerably higher. 

Figure 3.12 shows a schematic of the FlowMap System Hub. A measurement se­
quence begins with the synchronisation board, where a sequence of events is loaded 
from the application PC to the FlowMap System Hub. The synchronisation may for 
example warm up the laser, before the first camera trigger is sent, ensuring that stable 
light conditions has been obtained before the image acquisition begins. After receiving 
a trigger, the cameras transmit the image maps to the System Hub bus, via their frame 
grabbers, either for storage in the LIFO buffer or for direct uploading to the PC, where 
application processing takes place. 

3.4.1 Software 

The acquired images are processed using Dantec Dynamics FlowManager software. 
Image interrogation was done with the adaptive cross-correlation (using FFT and it­
erations for offsetting the second interrogation window). The calculation begins with 
bigger interrogation zones, usually in the range of 64 x 64 pixels. In this step a velocity 
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Figure 3.12: Architecture of the FlowMap System Hub with two cameras. The images 
are routed from the camera via the frame grabber onto the bus in the System Hub. 
The images then stream into the LIFO buffer or directly onto the 1 Gb/s Ethernet; and 
ends up in the Application PC. The synchronisation-board directs the events that take 
place in a timely matter. 

vector corresponding to the movment of particles is determined. This vector is then 
used to shift the second interrogation zone of the second image, when smaller interro­
gation zone are taken into account in the next step (see figure 3.13). This method is 
more accurate than simple cross-correlation and achieves a better spatial resolution. In 
this project, the final size of interrogation zone was 16 x 16 pixels with 50% overlap of 
the interrogation zones and the number of refinement steps was fixed as two resulting 
in interrogation zone of 64 x 64 pixels, 32 x 32 pixels and 16 x 16 pixels. Two iterative 
steps were also done for each size of interrogation zone, and the 3 x 3 local median 
validation and substitution during the adaptive cross-correlation procedure was used. 

The same software is used to calculate velocity statistics of the instantaneous velocity 
fields of measurement (about 1000 fields in each position). 

3.5 Measurements 

This section describes the methodology used to obtain PIV data to study the turbulence 
structures in the APG turbulent boundary layer. The proposed approach consists of two 
overlapping large x-y planes in streamwise dimension (i.e. two cameras, see figure 3.1 1-
a). This method is chosen to increase the spatial resolution and extend the streamwise 
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Figure 3.13: Schematic of the adaptive cross-correlation technique. 

dimension in order to study the vortex packets. It is explained in more details in section 
3.5.1. 

In the present experiment, the measurements were made at three streamwise posi­
tions covering the adverse pressure gradient region between the suction peak and the 
detachment point (figure 3.1 1-b). These positions cover a position near the pressure 
peak up to the separation point in order to study the evolution of turbulence structures 
in the adverse pressure gradient zone. Furthermore, these positions are chosen based 
on the previous study done by Rossignol (2006). The areas cover most of Rossignol's 
measurements zones in order to validate our results. Table 3.1 and figure 3.15 show 
different streamwise positions and interrogation zone dimensions (real size in mm and 
normalized size) for both the present study and Rossignol's study. 

3.5.1 Methodology 

Each acquired velocity field should cover all the thickness of boundary layer to enable 
the study of the turbulence structures in all layers. In other words, the PIV plane 
dimensions should be greater than the boundary layer thickness at each streamwise po-
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Figure 3.14: Measurement set­up: a) configuration of the two image planes, b) position 
of measurement planes. 

sition. On the other hand, a large streamwise dimension of the PIV measurement plane 
is necessary to study the hairpin packets characteristics. That is why the dimension of 
the PIV measurement planes is chosen to be about 3<5 in streamwise direction at each 
streamwise position. 

The CCD panel of the digital camera has a resolution of 1280x1024 pixels. So the 
images are rectangular with the ratio of bigger side to smaller side equal to 1.25. Thus if 
the interest plane has 3r5 in streamwise direction, the other side of planes will be about 
2.48. The area y > S is of no interest. Although the plane with 3<5 x 2AS dimensions 
covers the entire boundary layer thickness, the spatial resolution is not optimal. High 
spatial resolution is crucial to resolve the velocity fluctuations and vortices. Conse­

quently, to increase the spatial resolution and to have a large extended dimension in 
the streamwise direction, measurements were made simultaneously with two overlap­

ping large xy planes (i.e. two cameras, see figure 3.1 l­a). The combination of the two 
xy planes results is 38 in the streamwise direction. Each camera therefore sees a region 
of about 1.6(5 x 1.38 that has an overlap zone in the streamwise direction with other 
camera. The overlap zone is used to validate the results. So, an extended instantaneous 
velocity field in streamwise direction is obtained after matching two simultaneously ob­

tained fields with an overlap zone. To cover an area of about 38 x 1.38, the y dimensions 
of images are chosen to be about 24 mm at the first position, 48 mm at second position 
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x (mm) Pixel2 mm2 Ax/8, Ay/8 Ax+, Ay+ 

Present study 1128-1185 16 x 16 0.38 x 0.38 0.014 x 0.014 13.2 x 13.2 
Rossignol (2006) 1136-1162 32 x 16 0.029 x 0.014 0.64 x 0.32 24 x 12 

Present study 1285-1400 16 x 16 0.78 x 0.78 0.016 x 0.016 15.2 x 15.2 
Rossignol (2006) 1312-1337 32 x 16 0.64 x 0.32 0.016 x 0.008 14 x 7 

Present study 1509-1705 16 x 16 1.32 x 1.32 0.014 x 0.014 -
Rossignol (2006) 1482-1507 32 x 32 0.64 x 0.64 0.011 x 0.011 -
Rossignol (2006) 1601-1627 32 x 32 0.64 x 0.64 0.008 x 0.008 -
Rossignol (2006) 1693-1717 64 x 64 1.28 x 1.28 0.014 x 0.014 -

Table 3.1: Interrogation area dimensions in different streamwise positions in the present 
study and Rossignol's study. Normalized values of Ax, Ay are taken at x = 1156, 1392, 
1600 mm, and the center of measurement planes for Rossignol's positions. 
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Figure 3.15: PIV measurement planes, the small planes are those of Rossignol's mea­

surements and the big planes are those of the present study. 



Chapter 3. Experimental Set-up and Instrumentation 47 

and 83 mm at the last position. These are the dimensions of the wall-normal direction 
which is the smaller side of the images. 

It is important to mention that the measurement planes are placed about 0.9 mm 
(y/S = 0.13 at the middle of measurement plane) above the floor of the test section 
at the last streamwise position (x = 1509 mm), while they are close to the floor for 
other streamwise positions. It means there is not information for the inferior region 
(y/S < 0.13) as the acquired PIV images are taken over the y/S > 0.13. This is because 
of the image dimensions which should be chosen as small as possible to have a bet­
ter spatial resolution. Since the spatial resolution is directly dependent to interrogation 
window width and the resolution of cameras are constant (1280x 1024 pixels), the image 
dimensions should be decreased as much as possible to improve the spatial resolution. 
On the other hand, the upper region (y/S > 0.2) which includes the large scale struc­
tures is more interesting to study in the present work. This is why the measurements 
are just done for the y/S > 0.13 at x = 1509 mm. 

So the streamwise (x) size of images is 30 mm at first position, 61 mm in the second 
position and 104 mm at the last position. Figure 3.16 shows the cameras when they 
are installed in side-by-side configuration. The distance between the center of cameras 
is 90 mm. So, the acquired images using this set-up can have an overlap zone only 
when the dimension of the images are more than 90 mm. The overlap dimension can 
be calculated as follow 

H = L — d\B 

where 
H is the dimension of overlap zone, 
L is the streamwise dimension of image, 
d^B is the distance between centers of two cameras. 

Consequently, the cameras can be installed side-by-side only when the streamwise 
dimension of the image is larger than 90 mm. Only the last streamwise position has 
streamwise dimension greater than 90 mm. Thus, the side-by-side configuration of 
cameras is used at this position as is shown in figure 3.16. The cameras are next to 
each other and overlap zone dimension is about 14 mm in this position (10.6 times the 
interrogation zone width). So the streamwise dimension of the entire image is 194 mm 
after matching the two images (about 38). The side-by-side configuration of cameras 
can not be used in the other streamwise positions since the streamwise dimensions 
are less than 90 mm. Therefore, the cameras are installed at both sides of the wind 
tunnel (figure 3. IN) at the first and second positions (figure 3.1 I-b). In this case, it was 
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Figure 3.16: Schematic of the cameras in side-by-side configuration (used only at x = 
1509 - 1705 mm). 

tried to locate the cameras at the same height precisely (less than 2 pixels difference). 
Moreover, the streamwise positioning was done precisely to get predetermined overlap 
zone dimensions. This is explained rigorously in section 3.5.2. 

In conformity with the image dimensions, the biggest lens (105 mm) is used for the 
first location and the 60 mm lens for the last two positions. 

3.5.2 Calibration of Cameras and Laser 

It is important that the images of cameras have the same scale factor and coincide in the 
overlap zone, since their corresponding velocity fields are fused into a single extended 
field. Adjusting the cameras is easy when they are located side-by-side, whereas special 
care is needed to adjust them when they are located on both sides of the wind tunnel. 
Moreover the overlap dimension should be chosen precisely. The supports of the cameras 
(figure 3.8) let us move the cameras in wall-normal and streamwise directions precisely 
(±0.05 mm). The cameras are located in the spanwise direction (z) at the same distance 
from the center line of test section in order to obtain the same scale factor (figure 3.18). 
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A transparent ruler is put in the measurement area as a target. Since the letters of 
the transparent ruler are seen by the both cameras simultaneously, using one point as 
a reference (figure 3.17) let us adjust the cameras in both of the streamwise and the 
wall-normal directions in order to have a desired overlap zone width and regulate the 
height of cameras. Using the streamwise position of the reference point, the overlap 
width is adjusted. The size of the overlap zone is tried to be a multiple of the final 
interrogation zone width (16 pixels). This size allows us to have a uniform mesh after 
deleting some columns from each velocity field in the overlap zone as each column covers 
8 pixels (50% overlap of the interrogation zones). The three main goals of having an 
overlap zone are checking the positioning of the cameras, avoiding the poor quality of 
correlations which happens at the borders of the images and checking the validity of 
the velocity results. Since the quality of the correlations is low at the border of the 
images, some columns are always deleted at the border of each image. The overlapping 
area includes 19 vector columns. So, the last ten vector columns of image A and the 
first nine vector columns of image B were deleted. 

In these measurements, the optical axes of the cameras are positioned perpendicular 
to the walls of the wind tunnel (see figure >.ls). The camera aperture is adjusted 
between f/2.8 and f/5.6 depending on image dimensions. The diaphragm was more 
opened (smaller f-stop) when the image size was bigger in order to maintain the same 
depth of field (about 3 mm). Thus special care is taken to have sufficient depth of 
field covering the entire thickness of the laser sheet. The optimum depth of field is a 
bit larger than laser sheet thickness because large depth of field increases image noise. 
Higher intensity of laser light is needed when the diaphragm is less open. In the last 
streamwise position, because of the image dimensions, the head of optical arm should 
be located far from the target area in order to have a large laser sheet covering the 
entire measurement plane. Since the energy of the laser is constant, the light intensity 
decreases when the size of laser sheet increases leading to need smaller f-stop. 

Once the cameras are adjusted using the Plexiglas ruler, the main target is put in 
the measurement area for final adjustment of cameras and laser light. The target plate 
is placed on a machined support to be upright and perpendicular to the wind tunnel 
floor. The cameras and laser light are aligned using the target. The face of the target 
should be in the middle of depth of field and laser sheet thickness. Aligning the laser 
is done using a support which holds the head of the optical arm and moves in three 
directions. When half of the light sheet thickness is blocked by the target and the rest 
light sheet sweeps its face, the laser light is aligned in spanwise direction. Similarly, 
when the target is at the middle of the light sheet width and laser sheet focal line at the 
middle of target, the streamwise alignment is done. The focal lengths of the cameras 
are changed manually until the target appears to be in the middle of the depth of field. 
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Figure 3.17: Ruler (as a target) images of both cameras: a) ruler picture in image A 
and B, b) zoom on reference point (x = 1285 — 1400 mm). 
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Figure 3.18: Schematic of PIV system set-up (dimensions are in meter). 

Figure 3.19 shows the images of the target. It also illustrates the good alignment of 
cameras since the reference point is at the same height (22.53 mm) in the two images. 
The horizontal position of the reference point is used to measure the overlap width. 
Finally the ruler is used once again in order to do a final check of the alignment of the 
cameras. 

3.5.3 Laser and Laser Timing 

The laser sheet comes from beneath the floor of the wind tunnel. A Plexiglas plate 
was designed specially for PIV measurements. This plate allows passing the laser sheet 
without much loss of intensity or spreading the laser light. The optical arm is placed 
at a distance of about 20 cm from the floor of the wind tunnel (see figure 3.18) in order 
to obtain a very thin sheet over the whole boundary layer thickness. The laser sheet 
thickness is about 1.5 mm at the focal line. 

The timing and the pulse separation of the laser pulses and the cameras are con­
trolled using the FlowManager software. The maximum displacement of the particle 
in the correlation vector map is used as a reference to determine the optimal timing 
between the laser pulses (At). The time delay between the illumination pulses must 
be long enough to be able to determine the displacement of the tracer particles with 
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Figure 3.19: Target images of both cameras at x = 1285 — 1400 mm: a) whole image, 
b) zoom on reference point. 
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sufficient resolution and short enough to avoid particles with an out-of-plane velocity 
component leaving the light sheet between subsequent illuminations. For this reason, 
the maximum displacement is usually chosen to be about 10 pixels. So, the optimal 
time is determined using this reference and a trial and error method. (At) is 12 ps, 25 
^s and 30 ps at the first, second and last streamwise position respectively. 

3.5.4 False Vector Detection and Substitution 

The adaptive cross-correlation procedure (16 x 16 pixels with 50% overlap) yields 20193 
vectors per image set. The velocity vector fields are contaminated by spurious vectors 
as mentioned previously. Effects of background noises, displacement gradient across 
the interrogation window, out-of-plane motion and poor quality of images cause these 
vectors because identifying the real correlation peak associated with the movement 
of particles in an interrogation zone becomes difficult (Westerweel, 1994). The false 
vectors can be recognized by comparing each vector with its neighbours. Considering 
a threshold for our comparisons, if any component of the vector of interest is different 
from its nearest neighbours' median component, the vector would be false. The purpose 
of the validation is to eliminate all false vectors and replace them with a median value 
of neighbouring vectors if at least a given number of valid neighbours exist. 

Since it is very important to eliminate false vectors form velocity, a validation al­
gorithm has been developed by Rossignol (2006) and modified and improved in the 
present study. This algorithm, named ValidationLocale.m, is programmed in Matlab. 
The basic principles used for chosing the validation method comes from the works of 
Westerweel (1994) and Westerweel and Scarano (2005). 

The algorithm works based on the comparison of each vector with its eight neigh­
bours' vectors. Rossignol (2006) used a constant threshold for identification of false 
vectors. This is justified by the fact that large variations in the flow speed should not 
happen in a short distance. Obviously, this method is largely dependent on spatial 
resolution. When the spatial resolution is low and the velocity gradient is high, there 
is a risk of eliminating good vectors. The investigation of vectors to indentify the false 
and good vectors is done based on each component of the velocity vector. The equation 
3.-1 shows how the constant threshold is used in this method. 

\Ui,j,pixel "median,pixel] *"-- ^u 

I *i,j,pixel » median,pixel \ ^ ^v \ ^ - ^ ) 
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The variables Uij^xei and Vi,j,PiXei identify the components of the displacement vec­
tor, in pixels. The vector with indices i and j should be validated. The Umedian,p%xei 
and Vmedian.pixei a r e the median components of valid neighbour vectors. An absolute 
criterion (eu, ev) is used to identify the false vectors. The vectors for which one or both 
of its components exceeds the criterion value when compared to the median value, are 
eliminated. 

The principle and effectiveness of this method was demonstrated for velocity fields 
with low-gradients of velocity, for which a constant detection threshold can be applied. 
In contrast, using a fixed criterion of detection reduces the effectiveness of this method 
when significant velocity gradients exist or in uniform flow region. This means when 
a fixed detection criterion applied to the entire flow domain, a part of valid vectors 
may be rejected, while it would not occurr when using a proper criteria. That is 
why another method is used in the present study. In this new method, which was 
proposed by Westerweel and Scarano (2005), an adjustable detection threshold is used. 
The adjustable detection criterion works based on the root-mean-square of velocity 
fluctuations (au) calculated using its neighbours. It is worth noting that few number 
of samples is available to estimate au and that the local neighbourhood may contain 
spurious measurement data too. These effects may make an unreliable estimation of 
au . Thus, this will make it more difficult to detect the false vectors in the presence of 
other spurious data. 

An adaptation of the original median test which uses a median estimate of a u is used 
in order to reduce the effects of spurious measurement data in the neighbourhood. The 
3 x 3 neighbourhood data of a displacement vector denoted by Uo called U\, U%, ••• , U$. 
The median of U\, U^, ... ,Us is called Um. A residual r* is defined as r; = \Ui — Um\ 
(Westerweel and Scarano, 2005). The r* is determined for each vector U where i = 
1,...,8. The median of this residual r, (ri , r2, ... , r8) is determined and called rm . The 
r m is used to normalize the residual of UQ as follows 

, u0 - U„ 
r o u = 

r„ 

< = ^ (3-5) 
' m v 

where u and v are the velocity components. 

This adjustable outlier detection value can be used to process a large variety of 
data with significant velocity gradients. Westerweel and Scarano (2005) found that the 
histograms of normalized r0 defined in equation 3.5 approximately collapse on a single 
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curve and become independent of the turbulence level. Moreover, it was found that 
r0 shows elevated values for regions with very low turbulence intensities. In fact, the 
normalization factor rm tends to zero when the flow is purely uniform. This can be 
compensated by assuming a minimum normalization level e, i.e.: 

rou = 
U0 - Ur, 

r o v = 
vo 

+ e 
-Vm 

+ 6 
(3.6) 

where e may represent the acceptable fluctuation level due to cross-correlation. It was 
found that a suitable value for e is about 0.1 pixel, which would correspond to the 
typical rms noise level of the PIV data (Westerweel, 2000). 

The two steps of this method can be summarized as: 1- the r^ are determined for 
both u and v components of velocity. 2- The calculated residuals are compared with a 
defined threshold to distinguish the false vectors, i.e.: 

Rn Oui 

R Or, 

Oui 

0vt 
(3.7) 

ft = Fi 
Ouvij y 1 

-Rn,, + -Ri Ou toi, 

where r-]u. and r-]v are calculated using equation 3.6. A vector is detected as a false 
vector if RQUV. > Thr. Where Thr is the threshold which should be determined by 
user. Thr = 2.5 and e = 0.1 in the present work. 

The program can be used iteratively (see Rossignol's thesis, 2006). The validation 
process is based only on the vectors that have not previously been identified as false 
vectors. Note that there are 3 types of vectors, according to the convention used in the 
FlowManager software (see Table 3.2). 

State Code 
rejected 
validated 

substituted 

1 
0 
16 

Table 3.2: Status code of vectors for the FlowManager and the program ValidationLo-
cale.m. 
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These status codes are also used in the validation phase. For border points of the 
velocity field, the validation test is different. In this case, each point has five neighbours 
instead of eight neighbours. A similar problem also exits at the corners where each point 
has just three neighbours. Figure 3.2(1 shows the three possibilities. 

(a) (b) 

1 ̂ 4 ^ 6 S * 

2 ^ ^ 7 ^ 

3 ̂ 5 ^ 8 ^ 

> ^ 2 ^ ( c ) 

^ 3 ^ 

Figure 3.20: Three possibilities of neighbourhood points. 

The false velocity vectors have generally non-zero components. It is also possible to 
observe zero vectors because of significant reflections within the images. These vectors 
are also false because they have no physical sense, and should be eliminated. Therefore 
all the velocity vectors which have zero-value components are detected as false vectors 
by the program. 

Once a vector is detected as a false vector, it goes through the validation phase 
and will be substituted if the user desires. Two conditions are necessary to substitute 
a false vector. Firstly, the percentage of false vectors in the velocity field must not 
exceed a certain percentage which is defined by the user. It is usually supposed 40% 
in this study. The entire velocity vector field is rejected if more than forty percents of 
its vectors are false. Secondly, in order to obtain a valid outlier threshold a minimum 
number of valid vectors must be available in the neighbourhood of the vector. This 
number is proposed five for the internal points, three for the borders points and two 
for the corners points in the present study. The false vector is rejected if the number 
of valid vectors is less than the minimum validation criteria. 

Several parameters can be adjusted in the program in order to make the method 
flexible. The first parameter is the number of iterations that the program performs to 
do validation process specified equal to two in our case. Actually the iteration number 
helps to eliminate the false vectors as much as possible, but we found that there is no 
significant improvement when we boost it. The adjustment of the threshold is done 
by visual observation of validated velocity vector fields. It should eliminate the false 
vectors as much as possible without elimination of visually correct vectors. 
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Finally, it is important to note that the program also uses a velocity conversion factor 
from m/s unit to pixel unit. This step is necessary as the false vectors identification is 
calculated based on pixel unit. Once the validation is complete, velocity vector units 
must be converted to m/s to be compatible with FlowManager entries, because any 
input velocity to FlowManager (i.e. from Matlab) is considered to be in m/s. 

3.5.5 Applying the Gaussian Filter 

Having excellent spatial resolution is importance to detect and follow the turbulence 
structures. For that reason the smallest possible interrogation window width within 
the correlation process is chosen. Since acquiring velocity fields without noises or fewer 
noises are strongly depended to image quality and interrogation window width, the 
obtained velocity fields are contaminated with more experimental noises when smaller 
interrogation window width is chosen. To reduce experimental noise in the velocity field, 
a two-dimensional homogeneous Gaussian filter is used to smooth the instantaneous PIV 
velocity fields. The sizes of the spatial filtering window are chosen depending on the 
analysis performed. The spatial filtering window was set at 0.028(5 for the study of the 
spanwise vortices, the hairpin vortices and packets. More details are given in appendix 
A. 

3.6 Validation of the Velocity Fields 

3.6.1 Checking Positioning and Calibration of Cameras 

Matching of the instantaneous velocity vectors in the overlap zone was found to be 
always very good at each streamwise position (figures 3.21-3.23). So this good matching 
of instantaneous velocity vectors confirms that both cameras look precisely the same 
points in the overlap zone and the accuracy of the measurement. Therefore, a continuous 
velocity vector field can be achieved after deleting some columns from each image. It is 
worth recalling that the cameras are placed side-by-side at the last streamwise position, 
while they are placed in both sides of the wind tunnel for other ones. So, the streamwise 
location of one camera relative to other one can not be adjusted precisely like the other 
positions. So, the overlap zone does not include 10 interrogation zone widths exactly, 
while this is not the case for the other positions. This is why; the instantaneous vectors 
are not at the same x in figure fig:InsVelX1509. Furthermore, the points at the border 
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Figure 3.21: Instantaneous velocity vectors fields obtained with both cameras showing 
good match of vectors in the overlap zone (One vector out of 4 in x-direction for clarity), 
in region x = 1128 — 1185 mm. 

of velocity fields are not used in the analysis procedure as these points can not be 
validated perfectly. 

3.6.2 Validation of Mean Flow Results 

Since the experiments are performed over a large period of time and several measure­
ments at different streamwise positions are done; it is necessary to use a methodology 
which can establish a consistent set of conditions for all experiments. For this reason, it 
is tried to have approximately the same Reynolds number as those studied by Rossignol 
(2006). Since, the fluid properties do not vary in the laboratory, and the wind tunnel 
dimensions are also the same for the both studies, fixing the reference velocity (Uref ) 
for all the experiments leads to have approximately the same Reynolds number. In the 
present study Uref is chosen 9 m/s, ±0.02 m/s similar to the study of Rossignol. 

Before comparing the statistical characteristics of the flow in the present and Rossig­
nol's (2006) studies, an example of the variation of mean streamwise velocity compo­
nent in the x direction is illustrated in figure 3.24. The different curves show the mean 
streamwise velocity variation at different heights of the boundary layer. Matching the 
results in the overlap zone confirms the good positioning and calibration of cameras 
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Figure 3.22: Instantaneous velocity vectors fields obtained with both cameras showing 
good match of vectors in the overlap zone (One vector out of 4 in x­direction for clarity), 
in region x = 1285 — 1397 mm. 
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Figure 3.23: Instantaneous velocity vectors fields obtained with both cameras showing 
good match of vectors in the overlap zone (One vector out of 4 in x­direction for clarity), 
in region x = 1509 — 1680 mm. 



Chapter 3. Experimental Set-up and Instrumentation 60 

18 

16 

14 

12 

10 

I mage A 
mageB 

1 ^ T T T T ^ m n m i 

Cliiii-niiiiiiiit] 

1150 1155 1160 1167 
x (mm) 

Figure 3.24: Variation of mean streamwise velocity component in x direction (in region 
x = 1128 — 1185 mm) obtained with both cameras. One out of ten curves at constant 
y are shown and one out of two values in the streamwise direction for clarity. 

(the difference of U is about 0.05 m/s). The statistical characteristics of the flow were 
previously studied by Rossignol (2006). As explained in section 3.5.1, the measure­
ment areas in the present study cover most of the streamwise positions of Rossignol's 
measurements (2006). As a result, the boundary layer parameters in the present study 
and Rossignol's study should be approximately the same as the Reynolds numbers are 
similar in both studies. Figure 3.25 shows 5, 8* and 6 of boundary layer for both cases. 
Matching of all parameters in both studies is found to be very good except at the second 
streamwise position (x = 1300 mm). The streamwise evolutions of all three parameters 
of our results are more consistent than those of Rossignol's results. Figure 3.26 shows 
the mean velocity profile in the present study and Rossignol's study, as well as the 
zero pressure gradient turbulent boundary layer (Oesterlund 2000). It also shows an 
excellent agreement. Figure 3.27 shows the streamwise Reynolds normal stress normal­
ized by Ue in both present and Rossignol (2006) studies. The results agree very well 
except at the last streamwise position (x = 1600 mm). Since the spatial resolution in 
this region is higher in the Rossignol's study in comparison to the present study, this 
exception may be due to the effect of spatial resolution. 
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Figure 3.25: Boundary layer thicknesses (8, 8*, 0) for the present study and Rossignol 
(2006). One data point out of 8, 4 and 2 for the first, second and the last streamwise 
positions respectively for the others for clarity. 

3.7 Streamwise Evolution and Global Parameters 
of Mean Flow 

This section is intended to give a brief description of the mean flow characteristics. 
The evolution of streamwise and wall-normal components of mean velocity scaled by 
Ue, U/Ue and V/Ue are shown in figures 3.26 and 3.28 respectively. These evolutions 
show clearly the effect of the pressure gradient on the boundary layer. The pressure 
gradient decelerates the flow and leads to detachment of the boundary layer. The last 
U/Ue profile is at the detachment point, x = 1615 mm, inflection points appear in the 
velocity profiles. 

The most important parameters of boundary layer are shown in table 3.3. The 
parameters corresponding to ZPG TBL are taken from Adrian et al. (2000). Fifty 
instantaneous velocity fields from this reference are also used in the present study for 
comparison purposes. Since the PIV measurements of Adrian et al. (2000) were also 
done in xy-plane and at high Reynolds number, this PIV database is actually a good 
reference for the ZPG TBL. In fact, the PIV data of our study and their study are 
interpreted in the same manner. In chapters ! and 5, this enables us to have an 
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Figure 3.26: Mean streamwise velocity profile for the present and Rossignol (2006) 
studies at x = 1156 mm, x = 1392 mm and x = 1600 mm. The ZPG profile at 
Re = 12633 of Oesterlund (2000) is also shown. One data point out of 2 for the present 
study and one data point out of 3 for the others for clarity. 

D Present data 
A Rossignol (2006) 

0.8 

0.6 

0.4 

0.2 

□A 

0.01 0.02 
<u'2>/U2< 

0.03 0.04 

Figure 3.27: Streamwise Reynolds normal stress normalized by Ue, for the present and 
Rossignol (2006) studies at x = 1156 mm, x = 1392 mm and x = 1600 mm. 
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Figure 3.28: Evolution of V/Ue in streamwise direction. 



Chapter 3. Experimental Set-up and Instrumentation 64 

equivalent basis of comparison to compare the different parameters and characteristics 
in such flows. 

x (mm) ZPG 1156 1392 1600 
No. of realizations - 1688 885 770 
Ax, Ay 1.134 0.19 0.39 0.66 
Ax/<5, Ay/8 0.015 0.009 0.009 0.009 
Ax+, Ay+ 30 6.6 7.6 -
8+ 2216 765.9 836.7 ^ = o 
Ree 7705 5329 8638 12095 
P 0 8660 32200 oc 
Pzs 0 0.048 0.067 0.041 
8 83.1 21.0 42.8 73.7 
8* 14.40 7.40 19.96 38.94 
0 10.35 4.12 7.50 10.34 
H 1.39 2.03 2.86 3.65 
Ue 11.4 22.1 19.2 18.2 
Uzs 1.97 7.78 8.95 9.63 
UT 0.41 0.553 0.297 &=0 
uT /u e 0.0360 0.0251 0.0152 -

uT /u z s 0.2081 0.0711 0.0331 -
u/UT 0.0375 0.0276 0.0515 -

Table 3.3: Vector spacings (Ay = Ax) and boundary layer parameters for the reference 
streamwise positions. Lengths in mm and velocities in ms - 1 . In both studies vector 
spacing is half of interrogation window width (50% overlap). 

The global parameters of the boundary layer are also affected by the pressure gra­
dient as presented in table 3.3 and figure 3.25. The displacement thickness (8*) and 
momentum thickness (9) increase significantly in the streamwise direction. These be­
haviours are similar to those occurring on the suction side of an airfoil with high angle 
of attack. The streamwise evolutions of Reynolds stresses scaled by Uzs are shown in 
figure 3.29. These results also present strong dependency of Reynolds stresses to pres­
sure gradient especially for y/8 < 0.6. Furthermore, it is illustrated that the maximum 
Reynolds stresses occurs near the wall for ZPG TBL, while in the APG case they have 
a maximum peak around y/8 = 0.6, and decrease towards the wall. 
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Figure 3.29: Profiles of a) (u'2) /U2
S, b) (v'2) /U2

S, c) (u'v') /U2
ZS for all streamwise 

positions and ZPG TBL. ZPG TBL, Spalart is from Spalart (1988) at Re = 1410 and 
ZPG TBL, DeGraaff is from experiments of De Graaff and Eaton (2000) at R6 = 5160. 
One data point out of 2 for clarity except for DeGraaff. 



Chapter 4 

Spanwise Vortices 

4.1 Introduction 

Although it is widely accepted that turbulent flows found in nature and in engineering 
applications are full of vortices, and that these vortices play important roles in these 
flows, a generally accepted mathematical definition of a vortex and the understand­
ing of vortex dynamics (i.e. generation, evolution, interaction, and decay of vortical 
structures) are still lacking or incomplete. Indeed, defining a vortex is surprisingly a 
challenge for fluid dynamicists. A brief survey dealing with vortex identification meth­
ods and especially those that are based on Aci (the phrase "swirling strength" hereon 
refers to Aci) are presented. The statistical results of spanwise vortices characterization 
(i.e. population trends and spatial signatures of spanwise vortices) are also discussed 
in the present chapter. 

4.2 Spatial Resolution 

In the present study, since we were considering the outer region, we were careful to 
adjust the PIV mesh (scale factor) with the outer length scale 8. So we used an outer-
scale-consistent grid and it is barely sufficient to resolve all the scales of interest in a 
fairly uniform manner. Moreover, the PIV grid spacing in outer units is changing rapidly 
even within a xy-plane. So, each streamwise position will have a different outer-scaled 
grid spacing, meaning that we are resolving different minimum length scales as we move 
downstream. This behaviour will have a dramatic effect on counting of vortices because 
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there would be no consistency in the range of scales resolved at different streamwise 
locations. The most important thing to consider is the consistency of scales being 
resolved. In this regard, the only way to quantitatively compare one streamwise position 
results with another would be to exactly replicate the spatial resolution in outer units 
as well as the exact methodology used to identify the vortices themselves. This latter 
point is also extremely important because the absolute number and the size of vortices 
identified can also be dependent on the method used for identification and any threshold 
one must set to achieve that identification. With respect to the aforementioned, the 
various vortex parameters are studied statistically at certain x-positions having the 
same spatial resolution. In this way, the effect of Gaussian filter bandwidth on the size 
and swirling strenght of vortices is also the same at these streamwise positions. Table 
3.3 shows the boundary layer parameters and number of realizations for these selected 
streamwise positions. 

4.3 Vortex Identification 

What is a vortex? A general accepted definition for a vortex is a spinning or any spiral 
motion with closed streamlines, but the consensus on the generic definition of a vortex 
does not exist. For a vortex identification, the importance of a rational definition of 
a vortex can not be overemphasized. Vorticity has traditionally been used to detect 
vortices, but it has been recently emphasized by many authors (i.e. Jeong and Hussain 
(1995); Kida and Mima (1998); Cucitore et al. (1999)) that vorticity is not suitable for 
the identification of a vortex as it cannot distinguish between pure shearing motions 
and the actual swirling motion of a vortex. This is why an accurate vortex extrac­
tion method is required to identify and track the vortical structures. Various tools 
and algorithms have been developed and proposed by many investigators for the iden­
tification of vortices. The traditional technique employs the iso-surface of vorticity 
magnitude (Kim et al., 1987). Local methods were developed recently where according 
to a criterion based on the point values, each point can be classified as inside or out­
side a vortex. The most widely used local methods for vortex identification are based 
on the kinematics implied by the velocity gradient tensor, Vu, thereby making them 
Galilean invariant. Depending on the method, the local criteria is based on the vari­
able A2 (Jeong and Hussain, 1995), A (Perry et al., 1990), Q (Hunt et al., 1988) and 
Xd (Zhou et al., 1999). 

Perry et al. (1990) used the regions of complex eigenvalues of the velocity gradient 
tensor for vortex identification. Zhou et al. (1999) followed the work of Perry et al. 
(1990) in their general classification of the three-dimensional velocity field around a 
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critical point. Zhou and co-workers have used the iso-surfaces of the imaginary part of 
the complex eigenvalue of the local velocity gradient tensor (Xd) to visualize vortices 
in a turbulent channel flow. The advantages of vortex identification via Xd or Q or A2 

or A also are 

1. Since the iso-surfaces of the imaginary part of the eigenvalues contain only the 
local velocity with circular or spiralling streamline, choosing a proper frame of 
reference for swirling strength is not necessary, while it is necessary for Galilean 
decomposition. In other words, vortex identification via Xd, Q, A2, A is Galilean 
invariant. 

2. These methods automatically eliminates regions having vorticity but no local 
spiralling motion, such as shear layers, while it is the most important challenge 
in the traditional technique that employs the iso-surface of vorticity magnitude. 

In the present study, we detected and investigated the vortices using the local criteria 
based on ACj which was proposed by Zhou et al. (1999). The mathematical and physical 
meaning of Aci is presented in appendix B. 

Since the swirling strength is defined as the imaginary part of the complex eigenvalue 
of the local velocity-gradient tensor; it does not indicate the sense of the rotation. So, 
it is signed here according to the sign of the spanwise vorticity component as follows 

Aci = ^ r A a (4.1) 
\u> z I 

where uiz is the instantaneous fluctuating spanwise vorticity. The Aci has therefore a 
negative sign for prograde vortices (spanwise vortices with rotation in the same sense 
as the mean circulation). The ACj with positive sign are retrograde vortices (spanwise 
vortices with rotation in the opposite sense compared to the mean circulation). 

The calculated swirling strength is contaminated by noise as it is calculated based on 
the velocity gradient tensor. To remove noise from the instantaneous swirling strength 
fields and to identify the boundaries of individual vortices, three thresholds on A„ were 
used. These thresholds are defined based on i) the root-mean-square value of the Xd, 
ii) maximum value of the |A l̂ within each instantaneous field, iii) the number of mesh 
containing the Xd-

First, let us introduce the threshold based on the root-mean-square value of the 
Xd- This is called the main threshold because most of the noises are eliminated by 
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applying this threshold. Wu and Christensen (2006) proposed this threshold because 
they believed that the selection of a universal Ad threshold would be possible as Q and 
Xd yield comparable vortex identification results (Chakraborty et al., 2005). Although, 
from theoretical grounds, this threshold can be chosen to be zero, the surface with some 
threshold appears significantly smoother, allowing easy interpretation of vortices. Since 
the Xd is non-zero only within vortices and commonly zero elsewhere, the mean Xd is 
significantly smaller than its root-mean-square. Wu and Christensen (2006) proposed 
Arms as a representative of the characteristic magnitude of Aci and they concluded that 
Arms is a good scale for the magnitude of the swirling strength at a given (x,y) location. 
Hence they defined a normalized Xd by Arms as follows 

Arms 

where Xrms is the local root-mean-square value of Aci computed from the ensemble of 
all instantaneous fields (including zero-values). 

Since the flow parameters vary considerably in x-direction, Xrms is calculated at each 
point of the velocity field. Figures 1 1 -a, b and c present probability density functions 
(pdf) of Xd, when no threshold is applied, at the three streamwise stations and at several 
wall-normal locations in the region 0.2 < y/8 < 0.8, while figures 1.1-d, e and f present 
the same pdfs except the zero probability (A = 0 events) is excluded from the samples. 
The probability of Aci = 0 events is extremely high for all positions. Indeed, most of the 
surface of the flow fields does not contain swirling motions as mentioned before. Similar 
pdfs of Xd were reported by Wu and Christensen (2006) for turbulent channel flow and 
ZPG turbulent boundary layer at different Reynolds numbers. Comparing these pdfs 
with the pdfs of Wu and Christensen (2006), they turn out to be narrower in our case 
(smaller Xci). It may be partly because of the Gaussian filter and spatial resolution. 
Since smoothing the velocity field is done by applying the Gaussian filter; the swirling 
strength is also affected by it. Indeed the value of Ad is underestimated by applying 
a filter. Moreover the spatial resolution in the study of Wu and Christensen (2006) is 
higher than the one used in the present study (Ax/8, Ay/8 = 0.005 vs. Ax/<5 = 0.009 
for the present study). The Xd is affected by spatial resolution and the Xd increases 
when width of the interrogation window decreases (see section 1.5). So the Xd is more 
underestimated for the present study compared to the study of Wu and Christensen 
(2006), because of the effect of the width of the interrogation window. 

Wu and Christensen (2006) proposed that the probability density function of the 
Acj displays both Reynolds-number and flow insensitivity for canonical flows. Figure 
1.2 shows that the pdfs of Xd are almost identical at the three streamwise positions. 
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The fact that the shape and the probability values of the pdfs remain unchanged is an 
astonishing result. It means that although the vortices might change in size and swirl 
intensity, the probability of occurrence of vortices and the distribution of the normalized 
swirling strength, including the distribution between prograde and retrograde swirl, are 
unaffected by the varying strong adverse pressure gradient conditions. Moreover, this is 
the case all the way up to detachment since the last streamwise station is the position of 
detachment of the boundary layer. The distribution characteristics of the vortices are 
therefore persistent flow properties in such a flow. Additionally, figure 1. i illustrates the 
pdf of Xd at several wall-normal locations in the region 0.2 < y/S < 0.8 and confirms 
that this pdf does not vary significantly with y. Figure 1.3 presents wall-normal profiles 
of the ensemble average of Â (see equation 1.7 in section 1.4) normalized by Arms. The 
ensemble average is carried out separately for the prograde and retrograde vortices, thus 
the two values we get on figure 1.3. The collapse of the profiles and nearly constant 
values of (Â) /X rms in figure 1.3 and the collapse of the pdfs at different wall-normal 
locations (figure 1.1) confirm that ACj is a good scale for the magnitude of non-zero ACJ 
(i.e. swirling strength of vortices) at a given x,y location; similar to the conclusion of 
Wu and Christensen (2006). 

With respect to the aforementioned, the threshold value for |Ad| was first chosen the 
same as that of Wu and Christensen (2006). They found that a threshold of |Aci| > 1.5 
defined well the boundaries of the vortex cores while minimizing experimental noise. 
To explore the best value for |A^|, the iso-contours of swirling strength and associated 
Galilean frame of instantaneous velocity field are examined. If the swirling strength 
patches and velocity signatures in moving frame of reference show acceptable feature 
the appropriate value of |Ad| is employed, otherwise we settle on a slightly larger or 
smaller threshold (by about 3%). It means the acquired swirling strength clusters, after 
applying the thresholds, are superimposed in different Galilean frames. This let us to 
see both the velocity patterns and the Xd clusters simultaneously. So, if each detected 
Xd patch corresponds to a vortex which can be revealed in moving frame of reference, 
the |Ad| value is chosen appropriately. The final threshold value for |Aci| is 1.45 for the 
present study. Figure 1. 1 presents pdf of Aci, when threshold is applied, at the three 
streamwise stations and at several wall-normal locations in the region 0.2 < y/8 < 0.8. 

\Xd(x,y)\>1.45Xrms(x,y) (4.3) 

Investigating many instantaneous fields show that the Aci works very well within 
the boundary layer, but does not work for the potential flow region. Since, there is 
no shearing in the potential flow vortices should not also exist in such flow. It means, 
the swirling strength should be also zero within this region. Appearing the Xd clusters 
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Figure 4.1: Probability density functions of A^ for 0.2 < y/8 < 0.8 in regions a) 
1128 - 1185 mm, b) x = 1285 - 1397 mm, c) x = 1509 - 1680 mm. (d-f) correspond to 
a-c in respective order but by excluding the zero values from the samples. 
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a­ — x =1156 mm 
f x =1392 mm 
e x =1600 mm 

Figure 4.2: Probability density functions of Aci at y/8 = 0.5 for all streamwise positions, 
a) including the zero values in the samples, b) excluding the zero values from the 
samples. 
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Figure 4.3: Normalized ensemble average of swirl intensity by Xrms, (one data point out 
of 5 for clarity). 
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(a) 0.8 

Figure 4.4: Probability density functions of Xd when the thresholds are applied, (a-c) 
for 0.2 < y/S < 0.8 at x = 1156 mm, x = 1392 mm and x = 1600 mm respectively, d) 
at y/S = 0.5 for the three streamwise positions. 
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with non-zero values across this region can be caused by the noises in the velocity 
fields. It is worth noting that these iso-regions of swirling strength have lower intensity 
compared to the Xd clusters within the boundary layer, that turbulence activity is high, 
as expected. Although, the Xd value is low within the potential flow region, but the 
Xd value is also low in this region as it is calculated locally. Therefore, the criteria of 
Ad > 1-45 does not work properly for the potential flow region. Since it does not work 
well for this region where vortices occur, the threshold 10% of the maximum value of 
swirling strength within the instantaneous field is applied as follows 

I Ac 
A, >0.1 (4.4) 

where Amax is the maximum of |Acj| in the instantaneous field. 

The size of the smallest resolvable vortex is inherently limited by the width of the 
interrogation window of the PIV measurements. Indeed, the grid spacing in the velocity 
field defines the size of the smallest vortex that one can resolve. As such, the Aci patches 
with fewer than two meshes across their span in both x and y (4 grid points of surface) 
satisfying Xd > 1.45 are not considered vortices due to insufficient spatial resolution. 
Hence, if clusters of Xd contain less than four grid points, they are considered as noise 
and removed from the field. 

The applied thresholds on swirling strength can be summarized by equations 1.5 
and 1.6. 

Ki(x,y) = < 

Xd(x,y) < -1.4hXrms(x,y) and 
Xd(x,y) if { Xd(x,y) < 0.1Amin and 

A A > 4 (4.5) 

0 otherwise 

Kifav) = < 
Xd(x,y) if 

Xd(x,y) > 1.45A 
Xd(x,y) > 0.1 A 
A r A>4 

xs\x,y) a n d 
and 

(4.6) 

otherwise 

where X^(x,y) and Ad(x,y) represent the prograde (Xd < 0) and retrograde (Aci > 0) 
vortices respectively, Amin and Amax are the minimum and maximum of ACj in each 
instantaneous field and Nx is the number of grid points for each patch. 
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Figure 1.5 shows an example of swirling strength detected via the mentioned tech­
nique. Figure i ~i-a illustrates the iso-regions of A^ before applying the thresholds. It 
can be seen that the A^ field is contaminated with noise associated with differentiation 
of the PIV velocity data. This noise is removed from the Xd field by the thresholds as 
illustrated in figure 1.5-b. 

Figure 1.6 presents an example of vortex identification via swirling strength using an 
instantaneous velocity field in the xy-plane at the second streamwise position. Instan­
taneous velocity vectors are viewed in a frame-of-reference convecting at uc = 0.5<7e and 
vc = 0.6K in figure l.d-a. Since a constant convection velocity was used, as opposed 
to a local one adjusted for each vortex, this Galilean decomposition reveals only those 
spanwise vortices convecting at this speed. Contours of instantaneous A^ are also su­
perimposed in the background of figure 1.6-a. When the local velocities at the positions 
of the local maxima of Xd are used as the convection velocities, as in figure 1.6-b orbital 
streamlines become visible over these patches of swirl and the centre of these vortices 
coincide with the local maxima of the swirling strength. Figure 1.6-b confirms that all 
regions of non-zero Xd are associated with circular streamline patterns. Figure 1.6-b 
also highlights the large populations of prograde and retrograde spanwise vortices that 
can exist in APG turbulent boundary layer as 20 retrograde and 35 prograde vortices 
are identified in this realization. In addition, although these cores represent spanwise 
vortices in the xy-plane, their orientations relative to the measurement plane cannot be 
determined from the two-dimensional fields. It is worth mentioning that if the inclina­
tion of vortices with respect to the xy-plane is small, Xd does a poor job at identifying 
them. 

4.4 Spanwise Vortex Parameters 

Before discussing the various flow parameters, it is useful to explain the different steps 
used to obtain vortices parameters. Once the spanwise vortices have been detected 
using the local method based on Xd value and the thresholds have also been applied, 
one needs to develop an automated procedure to acquire the different parameters of 
spanwise vortices. The details of this automated procedure to identify the vortex core 
characteristics are described below. It is worth mentioning that what are truly measured 
are not spanwise vortices per say but rather turbulence vortices with a spanwise vorticity 
component. In other words, the presented spanwise vortices here are the cross sections 
of three dimensional turbulence structures in streamwise/wall-normal plane. 

Step 1: All points from a cluster of swirling strength are marked with the same 
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Figure 4.5: Example of swirling strength in an instantaneous, two­dimensional velocity 
field at second streamwise position (x = 1285 — 1397 mm): a) swirling strength iso­

regions within the instantaneous field, b) as figure (a), but the thresholds are applied 
on Xd­ The dark areas represent Aci < 0 and the light areas A„ > 0. 
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1 i i 

Figure 4.6: Example of vortex identification and extraction in an instantaneous, two-
dimensional PIV velocity field in region x = 1285 — 1397 mm: (a) Galilean decompo­
sition of the instantaneous velocity field with uc = 0.5<7e and vc = 0.614 with contours 
of instantaneous Aci in the background (one vector out of 4 for clarity); (b) localized 
Galilean decomposition of vortices identified using Xd- Retrograde spanwise vortices 
are presented with light patches and prograde vortices with dark patches. 
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number. It means all the grid points with non-zero value of A^ have a unique number 
associated with a spanwise vortex at that position. Scanning the vortices begins at 
the left/bottom corner of each instantaneous swirling strength field and continues in 
x-direction line by line. So, the first number corresponds to a vortex at left/bottom 
corner of Aci field. The total number of vortices is known in each instantaneous field as 
it is the maximum number within the field. The numbered vortices are useful tool to do 
the statistics on vortices as each vortex can be identified by its corresponding number. 

Step 2: The arithmetic average of swirling strength in each vortex (A, the phrase 
"swirl intensity" hereon refers to A) is calculated as follows 

Lml ^ C i , j 

~x = H v T (4-7» 

where Acij is the Aci value at j t h point of swirling strength cluster corresponded to a 
spanwise vortex and N\ is the number of grid points with non-zero value of Xd in the 
spanwise vortex. 

Figure 1.7 shows the pdfs of Â scaled by Xrms for both prograde and retrograde 
vortices. This figure confirms that X/Xrms is also insensitive to pressure gradient like 
the pdfs of Xd/Xrms. It is worth noting that each vortex is accounted only once in the 
present pdfs, whilst all the points corresponded to a vortex within the bounded box are 
accounted in figures 1.1, 1.2 and 1.1. So the pdfs in this latter figure are not affected 
by the size of vortices, whereas the pdfs shown in figures 1.1, 4.2 and 1. 1 are affected 
by the size of vortices. 

Step 3: Calculating the effective diameter of vortices has also been done using 
the numerated Xd patches. The effective diameter is the diameter of a circle with an 
equivalent area corresponding to the Aci patch (figure i>). This calculation is done as 
follows 

, - r / i ^ - ,4, , 

where D is the effective diameter and dA is the area of a single mesh. Since the mesh 
width Ax/8 = 0.009 for the x-positions is considered and only clusters with at least four 
continuous points with non-zero ACj were considered to form a vortex core, this study 
is restricted to vortical structures with an effective diameter exceeding approximately 
0.025. It is worth noting that the effective diameter is overestimated because the velocity 
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(a) 1 

X/X x/x 

Figure 4.7: Probability density functions of A normalized by Arms when the thresholds 
are applied, (a-c) for 0.2 < y/8 < 0.8 at x = 1156 mm, x = 1392 mm and x = 1600 
mm respectively, d) at y/8 = 0.5 for the three streamwise positions. 
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Figure 4.8: Iso-region of A,̂  consisting of a single two-dimensional spanwise vortex core, 

vector fields are smoothed by Gaussian filter (more details in section 1.5). 

Step 4: Next, the centers of vortices are determined. To determine the center 
positions of spanwise vortices, we refer to the isolated regions with Xd ^ 0. The x and 
y coordinates consistent with the center of a vortex are calculated as follows 

X r — j i f ^ e 

(4.9) 
„ ._ Vs+Ve 
yc — 2 

where xc and yc are the coordinates of vortex center, xs and xe are the first and last 
point of the A^ patch in x-direction and ys and ye are the first and last point of the Aci 

patch in y-direction (see figure i >). The xs, xe, ys and ye can be easily obtained using 
the numerated of isolated regions with Aci -̂ 0. Once the coordinates of vortex centers 
are obtained, they are saved in the ASCII files for future applications. 

Step 5: The convection velocity of vortex structures (uc, vc) is defined as the 
mean traveling velocity of vortex cores. When a vortex core is viewed in an appropriate 
moving frame of reference, it appears as a circular streamline pattern. Since the velocity 
is theoretically zero at the center of the vortex core; it should be also zero at the center 
of vortex core in the experimental results when viewed in a proper convecting frame. 
Hence, the convection velocity of individual structures is the instantaneous velocity at 
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the center position of an isolated region with Aci -̂ 0 as follows 

uc = u(xc, yc) 
(4.10) 

uc = v(xc, yc) 
where u and v are the streamwise and wall-normal components of the instantaneous 
velocity. So uc and vc are known when xc and yc are determined. 

Step 6: Probability distributions, fractions of resolved prograde and retrograde 
spanwise vortices, population densities and ensemble average of different parameters of 
spanwise vortices are studied using the parameters obtained in steps 1 to 5. 

4.5 Effect of Spatial Resolution and Filter on Vor­
tex Parameters 

Before discussing and delving into analyzing the vortex parameters like swirl intensity 
and diameter of vortices, it is useful to present the effect of filter, mesh width and 
interrogation window width (spatial resolution) on these parameters. It is important to 
mention that they are the only parameters significantly affected by spatial resolution. In 
both the present work and the ZPG turbulent boundary layer database of Adrian et al. 
(2000), the mesh width is half of the interrogation window width since 50% overlap was 
used within the correlation process. 

The effective diameters of vortices are sensitive to "interrogation window width 
(PIV resolution)" , "mesh width" and "size of filter window". It means the 
D could be changed and affected by any small or large variation of PIV resolution and 
size of filter window. The hypothetical distribution of vortices diameter can be divided 
schematically in three parts as shown in figure 1.9. 

1. The first part scales with n (Kolmogorov length scale) and is sensitive to Ax/7/, 
cr/r/, where Ax and a are the mesh width and standard deviation of Gaussian 
filter respectively. 

2. In the intermediate region the vortices may be scaled with 77 or 8. 

3. The third part scales with probably 8 and is sensitive to a/8 and variation of 
Ax/8 in each streamwise position. 
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Figure 4.9: Schematic of the probability density function of the vortex diameter. 

This sensitivity of D to the mentioned parameters is shown in figure 1.10. Figure 
1. Id-a illustrates that the diameter of vortices increases when the size of filter window 
increases. With respect to the definition of swirling strength, the bigger size of filter 
window causes more smoothing within the velocity fields and therefore causes more grid 
points to contain non-zero value of ACj in each patch. On the other hand, the boundary 
layer coarsens significantly within the adverse pressure gradient, and it is worth noting 
that the PIV resolution is scaled by 5 approximately in the present study and it is not 
scaled by n. Therefore, the PIV resolution vs. by 8 varies about 25% to 30% in each 
PIV measurement plane. Figure 1.10-b presents the pdf of vortices diameter at the 
start point (x = 1515 mm) and the last point (x = 1667 mm) of instantaneous swirling 
strength field in region x = 1509 — 1680 mm, where the Ax/8 decreases by about 30% 
(Ax/8 = 0.011 at x = 1515 mm and Ax/5 = 0.008 at x = 1667). It is because, 
the mesh grid (PIV resolution) is uniform and the 8 increases in x-direction, so the 
spatial resolution (Ax/8) decreases. The figure 1. lii-b shows that D/S decreases when 
the Ax/8 decreases. In this case, the cut-off of the vortices by the Xd threshold does 
not have the same minimum limit value, and this minimum limit value decreases when 
the Ax/S decreases (see figure 1.10-b). Indeed, the smaller vortices can be detected 
by better spatial resolution which is the case at the last part of instantaneous swirling 
strength field. Based on these aforementioned, comparing the D/S should be done with 
the same conditions (the same filter size and the same spatial resolution). 
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Figure 4.10: Probability density functions of D/S for spanwise vortices at y/8 = 0.5 
in region x = 1509 — 1680 mm: a) at the same streamwise position (same spatial 
resolution) and different size of filter window (2cr), b) the same size of filter window 
and different streamwise positions for which the spatial resolution changes by about 
30%. 

Since the ACj is calculated based on the velocity gradient tensor, it is affected by 
changing the velocity gradients. The velocity fields are smoothed with a Gaussian filter 
as previously mentioned, and therefore the velocity gradients decrease. In this case, 
the Xd also decreases when the velocity gradients decrease. Indeed, the Xd is affected 
by filter and it is underestimated when a filter is applied on the velocity fields. The 
deviation of the acquired ACj value from its real value increases, as the filter bandwidth 
increases. 

To provide a better idea about the effect of "interrogation window width (PIV 
resolution)" , and "mesh width" on the vortices diameter and Xd, the ensemble 
average of these parameters are presented as a function of "interrogation window 
width" , and "mesh width" (see figures 1.11 and 1 12). First, it is useful to explain 
the method used for studying the effect of spatial resolution on the vortices diameter 
and swirling strength. In order to study the effect of mesh width and interrogation 
window width, each velocity field is divided into many subregions (14 subregions in the 
case of spanwise vortices and 6 subregions in the case of hairpin vortices, the detection 
of hairpin vortices is discussed in section 5 2.1) in the streamwise direction. Although 
the ideal case is to calculate the ensemble average of D/8 and of Â at each x position 
as the spatial resolution is constant at each point in streamwise direction, but we 
have to include some x positions in each subregion to increase the accounted samples. 
Indeed, the lack of samples at each x position leads us to chose an interval with many 
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x positions. Since the sample numbers is high in the case of spanwise vortices, the 
width of subregions can be chosen small enough, whereas the subregions have to be 
wider for the hairpin case. The spanwise vortices with effective diameters greater than 
4% of boundary layer thickness (D/8 > 0.04) are compiled to study the effect of both 
mesh width and interrogation window width on the diameter and swirling strength. It 
is important to mention that a similar study (studying the effect of both mesh width 
and interrogation window width on A and D/8) was not done for the hairpin heads as 
there is not information for A and D/8 based on both mesh width and interrogation 
window width in the acquired database of hairpins. Additionally, a large number of 
samples resulted in a well converged statistical result for the case of spanwise vortices. 
The number of spanwise vortices is about 70000 (in 1000 fields) while it is only 600 
for the hairpin heads (in 50 fields). These typical numbers indicate that around 17% 
of spanwise vortices with D/S > 0.04 are hairpins inside hairpin packets. The rest of 
spanwise vortices could be interpreted as other structures or individual hairpin vortices. 
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Figure 4.11: Ensemble average of hairpin head parameters in outer units for y/S > 0.2: 
a) average effective diameter as a function of mesh width, b) average of A as a function 
of interrogation window width. 

The ensemble average of vortices diameter and of A are calculated in each subregion. 
The spatial resolution is roughly the same in these subregions, while it varies by about 
30% from the first subregion to the last subregion in one plane as previously mentioned. 
Since the spatial resolution varies in different subregions, the effect of spatial resolution 
on the ensemble average of vortices diameter and of A should be seen. 

Figure i. ! 1 -a presents the ensemble average of diameter of hairpin heads in outer 
unit as a function of mesh width. Each symbol represents (D/8) in one subregion. 
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Figure 4.12: Ensemble average of spanwise prograde cores (with effective diameter 
greater than 0.048) parameters in outer units: a) average effective diameter as a function 
of mesh width, b) average of Â as a function of interrogation window width. Empty 
symbols correspond to the results obtained using a mesh width half the interrogation 
window width (50% overlap), and filled symbols correspond to the results obtained 
using mesh width and interrogation window width of same size (no overlap). One data 
point out of 2 for clarity. 

This figure illustrates that the effective diameter of hairpin heads is a function of mesh 
width. Figure 1.12-a presents the ensemble average diameter of spanwise vortices with 
D > 0.048 in outer unit as a function of mesh width. The diameter of vortices is 
calculated based on two different mesh widths while the interrogation window width is 
the same in both cases. In the first case there is no overlap zone during the adaptive 
correlation of PIV images, while 50% of overlap is applied in the second case. This figure 
illustrates that the effective diameter of vortices is affected by both the mesh width, 
the interrogation window width and the filter bandwidth. The variation of ensemble 
average of diameter in figures i l I-a and 1.12-a within different subregions, at each 
streamwise position, is only because of the effect of mesh width and of interrogation 
window width. The second principle contribution is to interpret the effect of mesh 
width and of interrogation window width on D/8 separately. Is the vortex diameter a 
function of mesh width, of interrogation window width or both of them? To answer 
this question, figure 1.12-a provides a clear idea to interpret the effect of these widths. 
If we suppose that the presented curve for the first case decreases linearly, then this 
curve passes under the curve for the second case when the mesh width is 50% smaller. 
It means smaller diameters are obtained when D/8 is calculated based on interrogation 
window width variations compared to the acquired results using mesh width variations. 
So, it seems that the effective diameter of vortices is a function of both mesh width and 
of interrogation window width. 
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Since (D/8) decreases when the mesh width decreases, the diameter of vortices is 
overestimated for both the present study and ZPG TBL. The effective diameter of 
hairpin heads are less overestimated in the present study compared to ZPG TBL. It 
is hard to estimate the deviation of calculated (D/8) from the real diameter via the 
present results as we do not know the tendency when the mesh width tends to zero. It 
is worth recalling that the vortices decrease slightly in size, with respect to S, between 
the first streamwise position and the last one (see section 1.6.3). In other words, the 
effective diameter of vortices in streamwise direction does not follow the boundary layer 
thickness coarsening in the adverse pressure gradient region and the increasing of vortex 
diameter is slower than boundary layer thickness. This effect is also seen in figures 4.11-
a and 1.12-a. (D/8) for the last streamwise position is slightly lower comparing to other 
positions. 

The swirl intensity for hairpin heads is presented as a function of interrogation 
window width in figure 1.1 i-b. (A) for spanwise vortices with D > 0.048 is illustrated 
as a function of interrogation window width in figure 1.12-b. In this latter (A) is 
calculated using two different mesh sizes. In the first case there is no overlap for the 
interrogation zone during the correlations while 50% overlap for the interrogation zone 
is used during the correlations for the first case. Collapse of the symbols for both 
cases confirms that the swirl intensity is only a function of interrogation window width 
and (A) is independent of the mesh width. It is worth recalling that the swirling 
strength is calculated based on the velocity gradient tensor (see section 1.3). Since the 
velocity gradients can be changed by interrogation window width, (A) is also changed 
by interrogation window width. Figures 1.1 1-b and 1.12-b illustrate (A) increases when 
interrogation window width decreases. So (Â) is underestimated for both the present 
study and ZPG TBL, because of the effect of the interrogation window width. (A) is 
more underestimated in the ZPG TBL compared to the present study since the spatial 
resolution is higher in the present study than the ZPG TBL. Once again, it is hard to 
estimate the deviation of the calculated (A) from the real swirl intensity via the present 
results as we do not know the tendency as the interrogation window width tends to zero. 

Finally the effect of "interrogation window width" , "mesh width" and "size 
of filter window" on the vortices diameter and swirling strength can be summarized 
as follow. 

• The (D/8) decreases when the interrogation window width and the mesh width 
decreases. 

• The (D/8) increases when the filter bandwidth increases. 

• The (A) increases as interrogation window width decreases and it is independent 
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to the mesh width. 

• The (Â) decreases as the filter bandwidth increases. 

4.6 Statistical Analysis of Spanwise Vortices Da ta 

At the onset of this study, the state of knowledge suggested that APG turbulent bound­
ary layers contained many spanwise vortices. Several of prograde spanwise vortices are 
forward-leaning hairpin-shaped vortices and various mechanisms have been proposed 
for their formation and existence (see sections 2.2.2, and 5.2). In this study, Aci is used 
to identify vortex cores as previously discussed. The swirling strength isolates regions 
that have swirling motion about an axis aligned normal to the plane of measurements. 
Therefore, we are looking at vortices with a spanwise component of vorticity. 

4.6.1 Probability Trend 

Vortex Probabili ty and Characteristics of Vortices 

The characteristics and probability trends of the spanwise vortices are now investigated 
in a manner similar to the study done by Wu and Christensen (2006) in ZPG TBLs 
and channel flows. It is worth noting that Wu and Christensen (2006) calculated the 
population surface density, while the probability of occurrence of vortices at a given 
x, y location is acquired in the present study. In fact, the population density in the 
present flow is not appropriate because of the issue of strong streamwise dependency 
of the trends (see appendix f '). This is why we use a pointwise definition instead of 
a vortex population surface density. The probability trends of prograde (retrograde) 
vortices, Hp'r)(y/8), are defined herein as the ensemble averaged number of prograde 
(retrograde) spanwise vortices as follows 

nP(r)(y/S) = ^ (4.ii) 
' s 

where Yip(y/8) and Ur(y/8) are the probability of occurrence of prograde and retrograde 
vortices respectively, Np<r) is the number of prograde (retrograde) spanwise vortices and 
Ns is the total number of samples. 
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Figure 1.13 illustrates the probabilities of occurrence of prograde and retrograde 
vortices, n p and n r , as a function of y/8 at the three different streamwise stations and 
for ZPG TBL. The ZPG TBL data is taken from the database of Adrian et al. (2000). 
These wall-normal trends reveal that the largest populations of prograde vortices occur 
near the wall (for the first two stations and ZPG TBL where measurements exist in 
that region) with a sharp decrease as we move away from the wall. In addition, near the 
wall, this probability has higher values in the ZPG TBL compared to the present flow, 
and it also decreases in the streamwise direction of the present flow. The minimum 
available y/S for such PIV plane begins around y/S = 0.04, 0.02 and 0.13 for the first, 
second and for the last streamwise positions respectively (see section 3.5.1). In the 
upper region, y/8 < 0.1, n p continues to decrease monotonically in ZPG TBL, but at 
a much slower rate than near the wall. This is also the case for the first streamwise 
position, x = 1156 mm, of the present flow, but at a slower rate than the ZPG TBL, 
while this trend changes for the other two locations. The probability of occurrence 
of prograde vortices slightly increases in the upper region, with a maximum around 
y/S = 0.6 in the last two streamwise locations. Furthermore, contrary to the near wall 
trend, this probability increases slightly in the streamwise direction within the upper 
region of the present flow. As a result, n p is therefore affected by the pressure gradient. 
The maximum population of these vortices shifts from near the wall to the outer region 
when the boundary layer is subjected to an adverse pressure gradient. Shifting the 
maximum population of prograde spanwise vortices to the upper region in the adverse 
pressure gradient zone, as separation is approached, is consistent with the results of 
Chong et al. (1998). Chong and co-workers have suggested that detached eddies are 
more frequently encountered near the detachment point. 

We turn now our attention to the population trends of retrograde vortices. Figure 
1.13-b presents the population densities of retrograde spanwise vortices, n r , as a func­

tion of y/8 for all streamwise stations and ZPG TBL. The profiles of n r are also found 
to be remarkably similar for the three streamwise stations. In all streamwise positions 
and ZPG TBL, in contrast to np , the population of retrograde spanwise vortices grows 
away from the wall up to y/8 = 0.25 and then gradually decreases. Furthermore, the 
probability of occurrence of retrograde vortices is small and very similar for both flows, 
while it is not the case for the probability of occurrence of prograde vortices. 

At this point, a qualitative comparison can be made with the profiles of vortex 
population densities obtained by Wu and Christensen (2006) in their ZPG TBL ex­
periments. Note that a quantitative comparison cannot be done because of the differ­
ent parameters used in both studies: pointwise probability in our case, surface den­
sity for Wu and Christensen (2006). The near-wall behaviour of Up is found to be 
qualitatively similar to that of the prograde vortex population densities obtained by 
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Figure 4.13: Probability of occurrence of prograde and retrograde vortices. 

Wu and Christensen (2006) in their ZPG TBL experiments. Similar to the profile of 
n p for ZPG TBL shown in figure 1.13-a, the population densities continue to decrease 
monotonically for y/8 > 0.1, but at a much slower rate than near the wall. 

According to Wu and Christensen (2006), these wall-normal trends can be explained 
by two possible scenarios. First, the average streamwise spacing between prograde 
vortices seems to increase as these vortices grow away from the wall and advect. This 
scenario is supported by Christensen et al. (2004) and also figure 4.15-a and b. This 
latter figure presents the pdf of streamwise spacing of all prograde vortices at different 
wall-normal positions. It exhibits results similar to Christensen et al. (2004) who found 
that the average streamwise spacing of vortices within outer-layer increases with y. 
In the second scenario, the monotonie decrease of population density with y would 
be due to the vortex merging mechanism which would predominantly take place in 
the outer region. A vortex merging mechanism has been proposed in the attached-

eddy model of Perry and Chong (1982), Perry and Marusic (1995) and in the study of 
hairpin structures by Tomkins and Adrian (2003). We may also offer a complementary 
explanation that in canonical turbulent wall flows, a large portion of the prograde 
vortices are generated near the wall and that a fraction of them do not evolve away 
from it. 

Turning now our attention to the population trends of prograde vortices, Up, for 
the present study. In the wall proximity, U.p is higher in ZPG TBL compared to the 
APG TBL an also Up is higher in the first streamwise position compared to the second 
station. This tendency is expected as dU/dy also decreases in the streamwise direction. 
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Figure 4.14: Variation ofdU/dy normalized by Uzs/8 at different streamwise positions, 
a)use linear scale for y axis to show the tendency of dU /dy in outer region, b) use log 
scale for y axis to present the significant difference of dU /dy between the ZPG TBL 
and the present flow near the wall. One symbol out of 2 for clarity except for ZPG 
TBL profile. 

Figure 111 shows that dU/dy is much higher within the inner region of the ZPG TBL 
while it decreases when moving downstream in the adverse pressure zone. Thus it is 
expected to have higher probability occurrence of vortices close to the wall when dU/dy 
is high because of shearing effect. Next, as mentioned previously, a clear difference exists 
between the outer regions of this APG TBL and the ZPG TBL. In this APG TBL, the 
population of prograde vortices remains fairly constant in the region 0.1 < y/8 < 0.8 
while it monotonically decreases in the ZPG TBL cases. One possible explanation for 
this difference lies in the fact that the prograde vortices are adverted away from the 
wall faster in a strong APG TBL because wall-normal component of convection velocity 
(vc) is more important in the outer region of a strongly decelerated flow than in that 
of a ZPG TBL. The fact that the hairpin vortices were found to be more inclined in 
APG TBL compared to the ZPG TBL supports this explanation (see section 5.3.2 
and 5.3.3). Furthermore, to verify the first scenario mentioned by Wu and Christensen 
(2006) (streamwise spacing of prograde vortices) the pdfs of scaled streamwise spacing of 
prograde vortices by 8 are presented in 1.15. The collapse of the pdfs (except for y/8 > 
0.8) illustrates that the average streamwise spacing within the outer-layer is roughly 
constant in the wall-normal direction for 0.1 < y/8 < 0.8. The Ax/8 increases near 
the boundary layer edge. As a result, the previously mentioned scenarios of streamwise 
dispersion of the vortices may be less important in a strong APG TBL than in a ZPG 
TBL. 
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Figure 4.15: Probability density functions of Ax/<5 of prograde vortices at different y/S 
for all streamwise positions and ZPG TBL (a, c, e and g) Ax/<5 for the vortices at 
upstream of the event location, (b, d, f and h) Ax/<5 for the vortices at downstream of 
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Vortex Probabili ty Fractions 

The proportion of the probability trends of the prograde and retrograde spanwise vor­
tices as a function of y can now be determined as follows 

™n--d$-3m (4'12) 
where ^p(r) is the fraction of prograde (retrograde) spanwise vortices as a function of 
wall-normal direction. 

The profiles of \I/r are presented in figure 1.16 ($tp is not shown since V&p = 1 — \&r). 
As expected from the trends of Up and of n r shown in figure 1.13, the profiles of ^ r 

collapse for the three streamwise stations in the outer region. Figure 1.16 shows that \Pr 

increases with y in the inferior region where y/8 < 0.25, but ^ r decreases slowly in the 
region 0.25 < y/8 < 0.75 of the boundary layer for all streamwise positions. Moreover, 
this is the case all the way up to detachment since the last streamwise station is the 
position of detachment of the boundary layer. At y/8 = 0.2, 20% of the spanwise 
vortices are retrograde and this proportion drops to 10% near the edge of the boundary 
layer. A similar behaviour is seen for n r in the ZPG TBL below y/8 = 0.25, but n r is 
fairly constant at 20-25% for y/S > 0.25 (see figure 1.13). Similarly, in the ZPG TBL 
experiments of Wu and Christensen (2006) data, the proportion of retrograde vortices 
was fairly constant at 25-30% for y/8 > 0.2. Retrograde vortices seem therefore to be 
less prevalent near the edge of the boundary layer in a strong APG TBL. Contrary of 
the upper region, retrograde vortices seem to be less prevalent within the inner region 
of the boundary layer in a ZPG TBL compared to APG TBL as shown in figure 1.1G. 

It is possible that hairpin vortices are more stretched near the wall and less omega-
shaped hairpin vortices therefore occur in this region. Natrajan et al. (2007) presented 
evidence that a portion of retrograde vortices have a well-defined spatial relationship 
with neighbouring prograde vortices in canonical wall-bounded turbulent flows. Like 
Hambleton et al. (2006), they found that the preferred orientation is a prograde span-
wise vortex positioned downstream and above the retrograde core. They conjectured 
this pattern to be on occasion the imprint of an omega-shaped hairpin structure. In 
the strong APG TBL studied here, the hairpin vortices seem to be more stretched (see 
section 5.3.2) and move away faster from the wall. Omega-shaped hairpin structures 
are therefore less likely to occur. By studying conditional averages of the local veloc­
ity field around detected retrograde vortices, we have not clearly found evidence of a 
preferred orientation between prograde and retrograde vortices, while Natrajan et al. 
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(2007) found clear evidence for ZPG TBL. The reduced presence of omega­shaped hair­

pin structures may partly explain why the proportion of retrograde spanwise vortices 
is less in a strong APG TBL. Alternatively, as mentioned previously the merging of 
hairpin structures may be less frequent in a strong APG TBL. This would also trans­

late into less retrograde spanwise vortices since vortex merging can generate isolated 
retrograde structures (Adrian et al. (2001), Tomkins and Adrian (2003)). 
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Figure 4.16: Fraction of retrograde spanwise vortices (*&,.) at the three streamwise 
positions and ZPG TBL. One data point out of 2 for clarity. 

4.6.2 Ensemble­Averaged Swirling Strength per Vortex 

Figure 117 shows probability density functions (pdf) of the swirl intensity per vortex 
(X) normalized by Uzs/8. The latter can be considered to be the inverse of the outer time 
scale for the mean flow and the large­scale scale turbulent structures. Since the pdfs 
at the three different streamwise positions shown in figure 1.17 cover similar ranges 
of A­values (figure 1.17­d), Uzs/8 is indeed a good scale for X (see also figure 1.18). 
Similar to pdfs of Xd (before and after applying the thresholds) and X/Xrms shown in 
figures 1.2, 11 and 1.7 respectively, this figure also shows that the pdf of X8/Uzs is 
qualitatively similar at the three streamwise positions. Contrary to Ad and X/Xrms, the 
X8/Uzs is affected by varying strong adverse pressure gradient. The pdfs are broader 
at first streamwise position compared to second and third locations. In fact, the pdfs 
become narrower in streamwise direction, where the pressure gradient increases. To 
provide a better idea, the average and standard deviation of X/Xrms and X8/Uzs are 
presented in table 11 for prograde and retrograde vortices. The mean value of X8/Uzs 
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X5/U7 XrÔ/U, 

Figure 4.17: Probability density functions of Â normalized by Uzs/8 for y/8 = 0.2 — 0.8 
in the insets a-c and at y/8 = 0.5 in the inset d. a) x = 1156 mm, b) x = 1392 mm, c) 
x = 1600 mm, d) for all streamwise positions (One data point out of 3 for clarity). 

decreases in streamwise direction (specially in the inner region), while it is constant for 
the X/Xrms. In addition, the value of (X)8/Uzs also decreases in x-direction, whereas 
it remains unchanged for the X/Xrms. Furthermore, the pdfs of X/Xrms do not to vary 
significantly with respect to y in the range 0.2-0.8, while the pdfs of X5/Uzs vary in 
y-direction. 

To provide a better idea about the variation of X8/Uzs in y-direction, the normalized 
A by 8/Uzs is now determined as a function of y/8. Figure 1.18 presents wall-normal 
profiles of the ensemble average of A normalized by Uzs/8. This figure shows that the 
prograde and retrograde spanwise vortices have approximately the same swirl intensity 
as the mean values also present in table 1.1. It is also seen that the level of swirl, 
normalized by Uzs/8, decreases in the streamwise direction in the region below y/8 < 0.6 
while it remains approximately constant above that region. It is worth recalling that 
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X = 1156 mm x = 1392 mm x = 1600 mm 
y/8 < 0.2 y/8 > 0.2 y/8 < 0.2 y/8 > 0.2 y/8 > 0.2 

Prog -4.3 -4.1 -3.0 -3.6 -3.8 
(X)5/Uzs ^A 1.15 1.41 0.87 1.15 1.25 

Retrog 4.0 3.7 2.9 3.2 3.4 

<y\ 0.81 1.19 0.63 0.94 1.02 

Prog -2.1 -2.3 -2.1 -2.2 -2.2 
\X/Xrmsj n \ 0.57 0.69 0.57 0.67 0.67 

Retrog 2.0 2.1 2.0 2.1 2.0 

0"A 0.40 0.54 0.40 0.49 0.41 

Table 4.1: Ensemble average of normalized Â by Uzs/8 and by Arms at different stream-
wise positions. <j\ is the standard deviation of normalized A distribution in figures 1.17 
and 1.1. 

contrary A scaled by Uzs/S the values of X/Xrms are approximately the same within the 
entire boundary layer as seen in figure 1.3. Such a behaviour of X8/Uzs in y-direction is 
consistent with that of the Reynolds stresses already reported by Maciel et al. (2006b). 
To illustrate this, figure 3.29 presents the profiles of (u'), (v1) and (u'v1) normalized by 
Uzs/8 at roughly the same streamwise positions. Streamwise evolutions of the profiles 
similar to that of the profiles of X8/Uzs are observed. This suggests the strong link 
between the vortices and the Reynolds stresses, although the Reynolds stresses are 
second-order moments which are not solely the result of spanwise vortices. 

4.6.3 Effective Diameter of Vortices 

Probability density functions of the effective diameter of prograde and retrograde vor­
tices scaled by 8 are shown in figure 1.19 for the three streamwise positions. Table 
1.2 presents the ensemble average and standard deviation of D/S for prograde and ret­
rograde vortices. The collapse of pdfs of diameter is seen within the outer region of 
boundary layer, 0.2 < y/8 < 0.8, for all streamwise positions. The fact that the shape 
and the probability values of the pdfs remain roughly unchanged wrt y/8 in the range 
0.2-0.8 at each streamwise position is an astonishing result. In other words, it is found 
that the size of the vortices scales well with <5. A trend can nonetheless be seen from 
the pdfs. To illustrate this, figure 1.20 presents the ensemble average of diameter nor­
malized by 8, (D/8), as a function of y/8 for all streamwise positions and ZPG TBL. 
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Figure 4.18: Normalized ensemble average of A by Uzs/8, (One data point out of 3 for 
clarity). 

x = 1156 m m x = 1392 m m x = 1600 m m 
y/8 < 0.2 y/8 > 0.2 y/S < 0.2 y/8 > 0.2 y/8 > 0.2 

Prog 0.040 0.044 0.045 0.049 0.041 
(D/S) (To 0.017 0.020 0.019 0.021 0.018 

Retrog 0.034 0.034 0.038 0.037 0.031 
Ob 0.011 0.012 0.012 0.013 0.011 

Table 4.2: Ensemble average of diameter of prograde and retrograde vortices at different 
streamwise positions. <rD is the standard deviation of D/8 distribution in figure 1.19. 

This figure shows that the (D/S) is approximately constant in ^-direction within the 
outer region. The effective diameter decreases significantly close to wall. 

Now we turn our attention to the evolution of (D/8) in streamwise direction. The 
vortices decrease slightly in size, with respect to 8, between the first streamwise position 
and the last one as shown in figure 1.20 and table 1.2. Furthermore, (D/8) is higher 
in the ZPG TBL compared to the results of present study for the first streamwise 
position (0.06 vs 0.045). Since the mesh width is also bigger in the ZPG TBL, (D/8) 
is affected by mesh width and interrogation window width as explained in section 1.5. 
So, the higher value of (D/8) in the ZPG TBL compared to the APG TBL could 
be caused by the effects of both mesh width and interrogation window width. The 
mean flow evolves rapidly in this strong APG TBL. It is therefore possible that the 
turbulent structures respond with a certain delay to the changes of the mean flow. 
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Figure 4.19: Probability density functions of D normalized by 8 for y/S = 0.2 — 0.8 in 
the subfigures a-c and at y/8 = 0.5 in the subfigure d. a) x = 1156 mm, b) x = 1392 
mm, c) x = 1600 mm, d) for all streamwise positions (One data point out of 3 for 
clarity). 
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Figure 4.20: Ensemble average of diameter scaled by 8 as a function of y/S: a) progarde 
vortices, b) retrograde vortices (One data point out of 3 for clarity). 

It means the size of vortices in streamwise direction does not follow the boundary 
layer thicknesses coarsening in the adverse pressure gradient region. In other words, 
increasing the size of vortices is slower than boundary layer coarsening, as the boundary 
layer coarsens abruptly across the adverse pressure gradient region (specially near the 
separation point). It is worth recalling that the spatial resolution relative to 8 is the 
same for three streamwise positions of the present study as mentioned in section 1.2 in 
order to eliminate the effects of spatial resolution and filter band size. 

Finally, it is found that the retrograde spanwise vortices are generally smaller than 
the prograde vortices. As seen in figure 1.19 the maximum size of prograde vortices 
is about 0.12(5, while it is about 0.085 for the retrograde vortices. The maximum 
probability of D/8 of prograde spanwise vortices is around 0.045, while it is 0.035 for 
the retrograde vortices. 

4.6.4 Convection Velocities 

The statistical results of convection velocities for prograde and retrograde vortices are 
presented in this section. Figure 1.21 presents the mean streamwise convection veloc­

ities, uc, of both prograde and retrograde spanwise vortices as a function of y/8 for 
the three streamwise positions. It is found that both prograde and retrograde span­

wise vortices are convected with velocities close to the mean streamwise velocity at all 
streamwise positions. Similar behaviours were reported by Wu and Christensen (2006) 
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and Carlier and Stanislas (2005) for ZPG TBL and channel flow. 

(a) 1.2 

i 

0.8 

f , 0.6 

0.4 

0.2 

0 

(b)1.2 

u/ue 
Uc /Ue, Prog. & Retrog. vortices 
Uc AJe, Prog, vortices 
Uc /Ue, Retrog. vortices ner 

0.2 

J> r 
0.4 0.6 0.8 

(C) 1-2 

Figure 4.21: Mean advection velocities of prograde and retrograde spanwise vortices 
versus y/8 in a) x = 1156 mm, b) x = 1392 mm, c) x = 1600 mm (one data point out 
of 6 for clarity). 

Probability density functions of the prograde and retrograde convection velocities, 
uc and vc at five different wall-normal locations, are presented in figures 1.22 and 1.23 
(for brevity, only the pdfs for the first streamwise position are presented as the other 
streamwise positions exhibit similar trends). The distributions of convection velocities 
present strong wall-normal dependence, while the mean convection velocities of these 
vortices are close to the local streamwise mean (figure 121). The widths of pdfs decrease 
significantly with increasing y. In fact, the pdfs have broad widths in the inner region 
and narrow widths within the upper region. Comparing the pdfs of convection velocities 
of the present study with those of ZPG TBL (Wu and Christensen, 2006) indicates 
more variation of uc in the APG TBL. With respect to these results, the distribution of 
convection velocities are greatly dependent to distance from the wall in the APG TBL 
whereas it is less dependent to wall-normal distance in ZPG TBL as the velocity gradient 
is also low within the upper region of ZPG TBL. This is much important especially for 
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the wall-normal component of convection velocity, vc. In fact vc is negligible in the ZPG 
TBL, while the wall-normal component of convection velocity has important values in 
the APG TBL. 

(a) 12 

10 

3 

2<j„/U = 0.40 Prog & Retrog vortices 
Prog vortices -

Figure 4.22: pdfs of prograde and retrograde vortex convection velocities (streamwise 
component uc/U) at a) y/8 = 0.1, b) y/S = 0.25, c) y/S = 0.5, d) y/S = 0.75, e) 
y/8 = 0.95. 

4.7 Conclusion 

PIV measurements are employed to examine the structure of the spanwise vortices in 
the adverse pressure gradient zone of a turbulent boundary layer. The dimensions of 
planes were chosen carefully to adjust the PIV mesh with the outer length scale 5. The 
iso-contours of A« are employed to detect vortices. 

The presented results show that prograde and retrograde spanwise vortices occur 
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Figure 4.23: pdfs of prograde and retrograde vortex convection velocities (wall-normal 
component vc/U) at a) y/8 = 0.1, b) y/8 = 0.25, c) y/8 = 0.5, d) y/8 = 0.75, e) 
y/8 = 0.95. 

frequently throughout the entire of boundary layer. Despite the presence of a very 
different pressure environment in this flow in comparison to the ZPG TBL, the gross 
features of the spanwise vortices remain essentially the same, even as separation is 
approached. The fact that the pdfs of Acj at the different streamwise locations remains 
fairly similar is an astonishing result. It means that although the vortices might change 
in size and swirl intensity in absolute terms, the probability of occurrence of vortices and 
the distribution of the normalized swirling strength, including the distribution between 
prograde and retrograde swirl, are almost unaffected by the varying strong adverse 
pressure gradient conditions. Moreover, this is the case all the way up to detachment 
since the last streamwise station is very close to the position of detachment of the 
boundary layer (x = 1615 mm). The population trends and distribution characteristics 
of the vortices are therefore persistent flow properties in such a flow. 
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Additionally, the wall-normal trends reveal that the largest populations of prograde 
vortices occur near the wall with a sharp decrease as we move away from the wall. 
This near wall trend decreases in amplitude from ZPG TBL to APG TBL and in 
the streamwise direction in the present study. Indeed, n p is higher in the ZPG TBL 
compared to the first streamwise position of the present work, and further decreases 
at the second streamwise location. This would be because of the mean shearing effect 
within the near wall region that is high in ZPG TBL and decreases within the adverse 
pressure gradient zone of APG TBL. The sharp decrease in Up stops around y/S = 0.1 
in the APG TBL while continues to decrease monotonically for y/8 > 0.1 in ZPG 
TBL, but at a much slower rate than near the wall. This is also the case for the first 
streamwise position of the present flow but at a slower rate than the ZPG TBL. On 
the other hand, contrarily to the situation in the ZPG TBL and the first streamwise 
position, the population of prograde vortices increases slightly with increasing wall-
normal distance in region 0.1 < y/8 < 0.8 in other locations. Finally, instead of the 
near wall trend, the probability of occurrence of prograde vortices increases slightly in 
the streamwise direction within the upper region of the present flow. 

The proportion of retrograde vortices with respect to prograde vortices is also less 
in a strong APG TBL and the prograde vortices are more frequent than retrograde 
vortices. In particular, the fraction of retrograde vortices decrease with wall-normal 
position for y/8 > 0.25 in the present study while it remains roughly constant in the 
ZPG TBL. Tentative explanations for these various dissimilarities were given resting 
on the fact that the mean strain rates are more important in a strong APG flow. 

The pdfs of A scaled by Uzs/S at the three different streamwise positions presents 
that it is affected by varying strong adverse pressure gradient. The pdfs of X8/Uzs are 
broader at first streamwise position compared to second and third locations. In fact, the 
pdfs become narrower in streamwise direction, where the pressure gradient increases. 
Furthermore, the pdfs of X8/Uzs vary in j/-direction. X8/Uzs is shown as a function of 
y/8 to provide a clear idea about the variation of X8/Uzs in y-direction. The wall-normal 
profiles of the ensemble average of A normalized by Uzs/8 shows that the prograde and 
retrograde spanwise vortices have approximately the same swirl intensity. It is also seen 
that the level of swirl, normalized by Uzs/8, decreases in the streamwise direction in the 
region below y/S < 0.6 while it remains approximately constant above that region. For 
the ZPG TBL, the (A) 8/Uzs is maximum near the wall and monotonically decreases 
in y direction. It is seen that the (A) 8/Uzs is higher for the ZPG TBL compare to the 
present study for y/8 < 0.6. Such behaviour is consistent with that of the Reynolds 
stresses. This suggests the strong link between the vortices and the Reynolds stresses, 
although the Reynolds stresses are second-order moments which are not solely the result 
of spanwise vortices. 
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It was also found that the size of the vortices scales well with 5 in y direction and 
a trend can nonetheless be seen from the profile of (D/8) in t/-direction within the 
outer region, 0.2 < y/8 < 0.8, of both APG and ZPG TBLs. The diameter of vortices 
are much smaller close to the wall, y/8 < 0.1. Furthermore, the D/8 decreases from 
ZPG TBL to APG TBL and in the streamwise direction in the present study. Since 
the D/8 is affected by spatial resolution, the higher value of (D/8) in the ZPG TBL 
compared to the APG TBL would probably be because of the effects of both mesh width 
and interrogation window width. In the APG TBL case, since the mean flow evolves 
rapidly, it is therefore possible that the turbulent structures respond with a certain 
delay to the changes of the mean flow. It means the size of vortices in streamwise 
direction does not follow completely the boundary layer thicknesses coarsening in the 
adverse pressure gradient region. It is important to recall that the spatial resolution 
relative to 5 is the same for the three streamwise positions of the present study in order 
to eliminate the effects of spatial resolution and filter bandwidth size. 

Finally, it was found that prograde and retrograde vortices travel, on average, with 
a velocity close to the local mean velocity, while the distribution of their instantaneous 
convection velocities significantly changes in the ^-direction. Moreover, the distribution 
of convection velocities in APG TBL are more dependent to y-direction compare to 
ZPG TBL. This dependency would be related to the gradient of velocities, dU /dy and 
dV/dy. The dU /dy is higher in the ZPG TBL compare to the present study, especially 
for y/8 < 0.6, whilst the dV/dy is much lower in the ZPG TBL. 



Chapter 5 

Hairpin Vortices and Packets 

5.1 Introduction 

As mentioned previously, the instantaneous velocity fields are obtained using PIV in 
streamwise/wall-normal (xy) planes at three streamwise positions in the adverse pres­
sure gradient region between the peak of pressure and the separation point. Inves­
tigation of the instantaneous velocity fields show that the boundary layer is densely 
populated with velocity signatures associated with hairpin vortices. The term hairpin 
vortex, introduced in section 2.2.2 is here taken to represent horseshoe, cane, hairpin, or 
omega-shaped vortices. A cross-section of three dimensional structures can be viewed 
via planar PIV data if the laser sheet cuts the mid-plane of the structures. 

Before analyzing the statistical behaviours and various parameters of hairpin vor­
tices, it is useful to study the instantaneous velocity vector fields, in order to describe 
qualitatively the instantaneous structures. A technique similar to that of Adrian et al. 
(2000) is used to identify the presence of hairpins and hairpin packets in the present 
study. The hairpins are then characterized qualitatively by analyzing the associated 
instantaneous velocity vector patterns. Finally the statistical parameters of these struc­
tures like neck inclination, inclined shear layer (ISL), diameter of hairpin heads, stream-
wise spacing and swirling strength are determined and analyzed. 
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5.2 Instantaneous Results 

The geometric structure of typical vortices in a turbulent boundary layer is much de­
bated. There are various viewpoints on the shapes and sizes of vortices that may be 
present. However, there is significant evidence that in the logarithmic region and be­
yond, the ZPG turbulent boundary layer contains many hairpin-shaped vortices (with 
one or two legs). A simple coherent structure which was described as a hairpin vortex 
was previously presented by many researchers (see section 2.2.2). 

This section describes the individual and group of hairpin vortices which are detected 
in the instantaneous velocity fields. It explains how the various parameters of a 3D 
vortex called hairpin and of packets of hairpins are obtained through a 2D instantaneous 
velocity signature. 

5.2.1 Individual Hairpin Vortex Signature 

The hairpin properties which have been found experimentally in the present work are 
qualitatively comparable with those found in the works presented in section 2.2.2. Many 
of these 3D structures, which are randomly located in the boundary layer, cross the laser 
sheet of the PIV system which was set in a streamwise/wall-normal (xy) orientation. 
These structures leave signatures in the measured instantaneous velocity fields. It is 
important to mention that based on this planar information, we can not distinguish 
between symmetric or asymmetric hairpin vortices, nor can we distinguish between 
omega shape vortices, cane shape vortices, horseshoe vortices and hairpins. So in this 
study, a hairpin vortex can be symmetric or asymmetric and narrow or wide. 

It is necessary to determine how three dimensional coherent structures can be rec­
ognized from two dimensional experimental results acquired via PIV measurements. 
Adrian et al. (2000) presented an idealized model of a hairpin vortex which is shown in 
figure 5.1. In planar PIV, identification of these vortices typically requires identification 
of hairpin vortex signatures: in the case of xy plane data, the 2-D velocity vector pat­
tern created when the measurement volume slices between vortex legs. The qualitative 
signature of the instantaneous velocity field induced by a hairpin vortex which crosses 
a streamwise/wall-normal plane is also shown in figure 5 1 and figure 5 2 using our PIV 
data. So the instantaneous velocity pattern in a streamwise/wall-normal cross-section 
of the hairpin, and in a frame moving with the hairpin, contains the following features: 
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Stagnation point 

(b) 

\ 

t N> ^ 

Figure 5.1: (a)Schematic of a hairpin vortex attached to the wall and the induced mo­
tion, (b) Signature of the hairpin vortex in the streamwise-wall-normal plane. The 
signature is insensitive to the spanwise location of the plane and independent of sym­
metric or asymmetric the real hairpin vortex, until it intersects the concentrated core 
forming either side of the hairpin (proposed by Adrian et al. (2000)). 
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Figure 5.2: Single hairpin vortex signature (iso-regions of swirling strength are super­
imposed). 

1. a spanwise vortex core rotating in the same direction as the mean velocity circu­
lation which is the head of the hairpin; 

2. a region of low-speed fluid (second-quadrant ejections: u — uc < 0, v — vc > 0) 
which is located below and upstream of the vortex head. This low-speed fluid is 
caused by vortex induction from the legs and the head of the hairpin. The spatial 
extent of the region of second-quadrant vectors is approximately the same as the 
diameter of the region of circular streamlines; 

3. an inclination of this region occurs on a locus inclined at 35° — 90° with respect 
to the x-direction; 

4. A fourth-quadrant region (u — uc > 0, v — vc < 0) is habitually found to face 
the second-quadrant event from upstream, as can be seen in figure 5.2. The 
sharp frontier between the Q2 and Q4 events consists of a stagnation point that 
resembles a saddle point and an inclined shear layer. 

The second-quadrant vectors fall along regions inclined at about 60 degrees to the x-
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direction. Adrian (2007) proposed that each Q2 event has a local maximum of the flow 
speed (see figure 5.1 ). The observed local maximum of Q2 event can not be produced by 
a straight spanwise vortex, but an arch shaped vortex can generate it. Additionally, Q2 
events are usually stronger (greater speed) than the Q4 events due also to the existing 
curvature of the head and neck of the hairpin which focuses induction in the inboard 
region and defocuses it in the outboard region. 

The aforementioned velocity signature associated with a hairpin vortex was also 
observed by Zhou et al. (1999) via a DNS study (see figure 2.5). This latter figure ex­
hibits the correspondence between a three dimensional hairpin vortex and its signature 
in the xy plane. The similarities between our results and the hairpin signatures of Zhou 
and co-workers also provide a strong basis for associating the two-dimensional velocity 
patterns with three-dimensional hairpin vortex signature. 

5.2.2 Hairpin Detection Method 

A hairpin vortex identification technique similar to that of Adrian et al. (2000) is used to 
detect the presence of hairpins and hairpin packets in the present study. This technique 
can be summarized as follows. 

First, all prograde spanwise vortices are identified using the calculated swirling 
strength (section 1.3). The prograde vortices are found everywhere and some of them 
are hairpin heads. Then it must be determined which identified vortices are hairpin 
vortices. 

Since only hairpin packets are studied in the present study and isolated hairpin 
vortices are not considered, we consider only series of three or more prograde vortices 
in close spatial proximity to each other in the streamwise direction (see figure 5.3). A 
series of three or more prograde spanwise vortices in close spatial proximity to each 
other are potential to be considered a hairpin packet. Although a series of two hairpins 
could probably form a hairpin packet, hairpin packets with three or more hairpins 
propose more systematical characterization avoiding random positioning and undesired 
parameter determination. This fact motivates us to pick hairpin packets with three or 
more hairpins in this study. 

Finally, the selected prograde vortices are analyzed to determine if they are part 
of a velocity signature typical of a hairpin. The simplest possible approach for the 
present xy plane PIV data is to perform Galilean decomposition of the instantaneous 
velocity vector fields using a constant advection velocity vector (uc, vc). This is used 
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Figure 5.3: Circled iso­regions of swirling strength in close spatial proximity to each 
other in the streamwise direction can correspond to hairpin vortex signatures within 
a packet. Dark areas correspond to prograde vortices (Xd < 0) and light clusters 
correspond to retrograde vortices (Aci > 0). Region x = 1509 — 1680 mm. 

to decompose the instantaneous velocity field into a convection velocity and the devia­

tions therefrom. The reference frame moving at the convection velocity illustrates the 
deviation vectors. Figure 5.2 shows an example of a hairpin signature revealed by this 
procedure when the convection velocity matches that of the vortex head. If the decom­

posed velocity vector field contains the hairpin vortex components mentioned above, 
this signature is probably that of a hairpin vortex. 

Adrian et al. (2000) used the coincidence between the concentrated vorticity iso­

regions and the boundaries between the zones of uniform momentum to detect hairpin 
packets, while we used the local maximum of swirling strength clusters within a series of 
three or more prograde vortices in close spatial proximity to each other in the streamwise 
direction. Depending on the number of hairpins within the field, different frames are 
used in our case to truly see the hairpin signatures and for different packets. The 
convection velocities are obtained directly with the probe tool of Tecplot by clicking on 
the local maxima of swirling strength patches (see section 1.4). Indeed, it is supposed 
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that the convection velocities are the instantaneous velocities at the local maxima of 
swirling strength iso-regions. 

A vortex core appears to be a circular streamline pattern when the velocity vector 
fields are viewed from the viewpoint of a moving reference frame with the appropriate 
convection velocity. Figure 5. I illustrates an isolated turbulent eddy and the super­
imposed swirling strength iso-regions. The velocity vector field is viewed in different 
Galilean frames in this figure to illustrate the effect of convection velocity on the in­
stantaneous velocity signature when it varies by about 15% of Ue. The velocity-vector 
map is viewed in a proper convective frame of reference in figure 5. 1-b, whereas in­
stantaneous velocity vectors are viewed in frame of references moving with convection 
velocities about 15% lower and higher than the proper convection velocity in figures 
5.4-a and 5.1-c respectively. Although the vortex core apears as circular streamlines in 
all cases when uc varies by about 15% of Ue, the local maximum of swirling strength 
and the vortex core are at the same point in figure 5. 1-b, and the center of the vortex 
is under or over the local maximum of Ac, in figures 5. 1-a and 5. 1-c respectively. The 
vortex core does not appear to be a circular streamline pattern when the convection 
velocity varies by more than 20% of Ue from the appropriate uc. It is important to 
mention that other components of hairpin vortex signature (Q2, Q4 and ISL) are sen­
sitive to convection velocity as shown in figure 5.5. Having the appropriate convection 
velocity is necessary to determine the proper parameters of the hairpin vortices. 

u = 0.55 U u = 0.65 U u =0.75U 

Figure 5.4: Variation of moving frame velocity (about 15%) for an individual spanwise 
vortex. Velocity field obtained by subtracting the prescribed uc. 

Using the aforementioned technique, we find that there are many hairpin vortices in 
all the acquired velocity vector fields at all streamwise positions. The detected hairpin 
vortices qualitatively agree well with available results for canonical flows (Chong et al. 
(1998), Zhou et al. (1999) and Adrian et al. (2000)). It is important to note that the 
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Figure 5.5: Effect of varying the moving frame velocity (by about 10%) on the hairpin 
components. Velocity-vector map is viewed in a proper convective frame of reference in 
b, while the convection velocities are about 10% lower or higher than the appropriate 
convection velocity in a and c respectively. 

depiction of a vector field for a given value of convection velocity does not clearly show 
all of the hairpin vortices as the convection velocity varies from one packet to another 
packet and sometimes from one hairpin to another hairpin in one packet because of 
dispersion. Figure 5.6 shows this point clearly in which there are many regions of 
concentrated vorticity. The circled swirling strength regions (shown in figure 5.6-a) 
correspond to hairpin vortex signatures but they can only be clearly identified if the 
convection velocity is properly chosen. 

Our strategy of detecting hairpins is illustrated and explained using the data in 
figures 5.7 and 5.S for a single realization of the PIV data in region x = 1128 — 1185 
mm. The circled swirling strength patches in figure 5.7 correspond to vortex heads 
of hairpin signatures. They form streamwise away inclined with respect to the wall. 
These away associated with hairpin packets (see section 5.2. 1). To detect the hairpin 
vortex signatures, the velocity field corresponding to figure 5.7 is viewed in different 
Galilean frames (figure 5.8). It can be clearly seen that the velocity vector patterns 
appear to be circular streamlines pattern if the convection velocity matches the velocity 
at the centre of the vortex as mentioned before. The swirling strength iso-regions 
are also superimposed in this figure to illustrate that the vortex cores and the local 
maxima of Xd match. The heads of the hairpin vortices are labeled A-R and the reader 
can see by inspection where the other elements of the hairpin vortex signature occur. 
The convection velocities are uc = 0AUe, vc = 0.414 for figure "J *-a and uc = 0.7Ue, 
vc = 1.114 for figure 5.N-b and uc = 0.9£/e, vc = 1.714 for the inset of figure ô v-b. The 
vortices A-G are visualized in figure 5.Va and vortices I-M and R can be seen in the 
large graph of figure 5 x-b and N-P in the inset of figure "j s-b. Non-circular streamlines 
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Figure 5.6: Instantaneous field in region x = 1285 — 1397 mm: a) iso­regions of swirling 
strength show spanwise vortices, b) velocity vector field shown using Galilean decom­

position (vectors viewed in a frame­of­reference convecting at uc = 0.5L4, vc = 0.4514). 
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Figure 5.7: Circled iso­regions of swirling strength corresponding to hairpin vortex 
signatures in region x = 1128 — 1185 mm. Dark contours surfaces : A^ < 0 (prograde), 
light contours surfaces : ACj > 0 (retrograde). The solid lines are contours of constant 
streamwise velocity. 

(i.e. H in figure 5 v­a and N­P in figure 5 ,^­b) can be observed if the advection velocity 
differs from Ue by about 10­20%. 

Reynolds decomposition is the traditional technique for decomposing turbulent ve­

locity fields. In this method the decomposed vector patterns are obtained by subtracting 
the long­time­averaged velocity field from the instantaneous velocity field. The instan­

taneous structures are however often distorted when the vector patterns are viewed 
using Reynolds decomposition (Adrian et al., 2000). It is because the Navier­Stokes 
equations are not Reynolds invariant and all the vortices do not convert with long­

time­averaged mean velocity. These distortions may actually mislead the analysis of 
the structures. Figure 5.') shows the velocity vector field corresponding to figure 5.7 in 
Reynolds decomposition frame. In order to see the mentioned events more clearly, close 
zooms of figures ">.8­b and 5 ' I are presented in figures 5. II <­a and 5. II i­b respectively. It 
can be seen that certain features in figure "3.11 i­a can also be observed in figure 5. i u­b, 
but many of the structural elements are distorted. If the vortices (corresponding to 
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Figure 5.8 (a), for caption see next page. 

hairpin heads) would travel with the long-time-averaged mean velocity, the vortices 
would be visualized clearly by Reynolds decomposition. The head of hairpin vortex J 
is clearly revealed in figure 5. Id-b, whilst the Q4 events and inclined shear layers (in 
the range 0.45 < y/S < 0.65) do not appear. It is because of the variation of convection 
velocity in Reynolds decomposition (U) at each point, while uc is constant in Galilean 
frame. 

As explained by Adrian et al. (2000), the decomposed instantaneous velocity fields 
via Galilean decomposition have additional properties that are useful for interpretation. 
First of all, the vectors have small magnitude in the regions where velocities are nearly 
equal to the convection velocity. So these regions contain vectors that appear light to 
the eye usually. Whereas the regions where the instantaneous velocities differ greatly 
from the convection velocity appear dark to the eye. Additionally, the Navier-Stokes 
equations are invariant with respect to Galilean decomposition as mentioned, and the 
shear zones adjacent to vortex structures are preserved in all Galilean frames. 



Chapter 5. Hairpin Vortices and Packets 115 

(b) 

0.025-1= 

0.02-

0.015-
£ 

0.01-

0.005-

ss - r i z <<> 

Figure 5.8: Velocity vector field corresponding to figure 5.7, shown using several dif­
ferent Galilean decompositions (one vector out of 4 in large plots for clarity). Vectors 
viewed in frames of reference convecting at: a) uc = 0AUe, vc = 0.414, b) uc = 0.7Ue, 
vc = 1.114 and uc = 0.9Ue, vc = 1.714 for the inset (contours of swirling strength are 
superimposed). 



Chapter 5. Hairpin Vortices and Packets 116 

0.02-

1.13 1.135 1.14 1.145 
x(m) 

1.15 1.155 1.16 

Figure 5.9: Reynolds decomposed fluctuating velocity field corresponding to figure 5.1 
One vector out of 4 for clarity and iso-regions of swirling strength are superimposed. 
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Figure 5.10: a) Close zoom corresponding to figure v-b, b) Close zoom corresponding 
to figure 5.9. 
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5.2.3 Qualitative Features of Hairpins 

Fifty instantaneous velocity fields at each streamwise position were treated via the afore­
mentioned hairpin identification technique (section 5.2.2). The parameters of hairpin 
vortex signature (Q2 angle, neck angle, ISL angle, diameter of spanwise vortex associ­
ated with hairpin head, swirl intensity of the spanwise vortex) and the parameters of 
hairpin packets (growth angle, streamwise spacing between the hairpin vortices, posi­
tion of hairpin vortices in the boundary layer) are determined accurately as much as 
possible in this step. Moreover, 50 instantaneous velocity fields from the data base 
of Adrian et al. (2000) were inspected with the same method in order to compare the 
results of APG and ZPG turbulent boundary layers. 

Like for the zero pressure gradient TBL (Adrian et al., 2000), hairpin vortex signa­
tures are revealed in all the velocity vector fields and all streamwise positions in the 
present flow. They can also be found throughout the boundary layer from the wall to 
the edge of the boundary layer. 

The angle at which the plane formed by the head and neck of the hairpin is inclined 
to the wall can be estimated with the angle of the locus of the Q2 region beneath 
the head (see figure 5.2). This angle cannot however be determined with accuracy 
from the hairpin signatures. The values given here are therefore only rough estimates. 
In the present flow, the neck angle is found to vary between 25° and 90° (±5°) for all 
streamwise positions. The same values are found in the zero pressure gradient turbulent 
boundary layer. The Q2 events are always obvious and easy to see in the appropriate 
Galilean frame of reference, whereas the Q4 events are not always seen in the frame 
moving with the centre of the vortex. So the stagnation point and ISL events are not 
present in these cases. The calculation techniques for the parameters of hairpin and 
hairpin packet are described with more details in section 5.3.1. 

Zhou et al. (1996, 1999) using computation methods, reported that the hairpin 
vortices which appear close to the wall have long legs that are consistent with the 
quasi-streamwise wall vortices. These quasi-streamwise vortices are associated with the 
low-speed streaks in the buffer layer. Kim (1987) and Kim (1989) also found a simi­
lar behaviour using direct numerical simulations. Since it is impossible to detect the 
hairpin legs and low-speed-streaks with the present two dimensional PIV data in xy 
plane, we do not know if they exist in the present flow. On the other hand, maximum 
turbulence production happens around y/8 = 0.6 in the present flow as is shown in 
figure 5.1 I, whereas the maximum turbulence production take places close to the wall 
in ZPG turbulent boundary layers. There exists an unanswered question of knowing 
what is the turbulence production mechanism in APG turbulent boundary layers? Is 
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Figure 5.11: Turbulence production as a function of wall-normal distance at all stream-
wise positions showing that the maximum occurs around y/8 = 0.6. 

the turbulence production mechanism similar to those proposed in the ZPG turbulent 
boundary layer? We can only suppose that hairpin packets are probably involved in 
turbulence production with the acquired PIV data in the present flow. The strong Q2 
events associated with the hairpins support that hypothesis. Three dimensional infor­
mation acquired using DNS or equivalent methods is necessary to study the production 
mechanisms in adverse pressure gradient TBL. 

5.2.4 Hairpin Packets 

We almost always found that hairpin vortices occur in streamwise-aligned packets in 
the outer layer like in the ZPG case. Individual hairpins within one group travel at 
nearly the same streamwise velocity. In other words, the hairpin vortices within the 
hairpin packets propagate with small velocity dispersion. Hairpin packets are also found 
throughout the outer layer for all streamwise locations. The patterns that are identified 
as the signatures of hairpin packets are qualitatively very similar to the packets created 
via the auto-generation mechanism (Zhou et al. (1996) and Zhou et al. (1999), see figure 
2.5) and also very similar to the PIV results of Adrian et al. (2000). 

The present two-dimensional PIV data is compared with the xy plane patterns of 
Zhou et al. (1999) for channel flow. Zhou ef al. (1999) studied the auto-generation 
mechanism of hairpin packets in a channel flow using DNS. Based on their results a pri­
mary hairpin with a certain strength and height can give birth to a packet. Kim et al. 
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(2008) have also found similar results in a turbulent channel flow using DNS with both 
clean background and background noise (see section 2 2 2 for more details). If a xy plane 
(i.e. laser sheet of PIV) passes through the middle of a hairpin packet, the instantaneous 
velocity vector field would possess velocity signatures similar to those found in the xy 
plane patterns of Zhou et al. (1999) shown in figure 2.5. The similarities seen between 
the present PIV results and the results of Zhou and co-workers provide a strong basis for 
associating the observed two-dimensional patterns with three-dimensional hairpin pack­
ets. For instance, the point-by-point similarity between our PIV results and Zhou et al. 
(1999) results (spanwise vortex, Q2, Q4 and ISL) are clearly shown when comparing 
figures 5.1 2-a and b with figure 2.5. The primary hairpin vortex would be the biggest 
one, similar the Zhou et al. (1999) results, that spawns the secondary hairpin vortex. 

We found at least one hairpin vortex packet in 98% of all examined PIV data. Figure 
5.13 illustrates examples of hairpin packets at three streamwise positions (solid lines 
are associated with the frontier of uniform momentum zones). It is worth recalling that 
a minimum of three hairpin vortex signatures in close spatial proximity to each other 
is necessary for us to define it as a packet. Moreover, the hairpin packets are the most 
commonly observed structure in our PIV data. So the APG turbulent boundary layer 
is densely populated with hairpin vortex signatures similar to what was described for 
canonical turbulent wall flows by many researchers (see section 2.2.2). The convection 
velocity can vary from packet-to-packet at different given ^/-locations like the individual 
vortices. Figures 5.1 1-a and b show two examples of hairpin packets which occur re­
spectively close to that wall and at the edge of the boundary layer. The hairpin heads 
within the packet 1 occur between y/S = 0.07 and 0.16 in figure 5.1 1-a, whereas the 
hairpin packet in figure 5.1 1-b goes up to y/8 = 1. 

The convection velocities in figures 5.1 1-a, b and c vary in the range uc = 0.56 — 
0.67t7e and vc = 0 — 0.4614. Since the convection velocities may vary from one hairpin to 
another within a packet because of dispersion, some hairpins within a packet may not be 
revealed within moving frame of reference because they would convect with a different 
convection velocity (for instance hairpins N, O and P in figure 5.8-b). There exist cases 
where some hairpin heads may not be clearly seen even with different Galilean frames. 
Figure 5.15 presents an example of a hairpin packet in which hairpin vortex signature 
labeled A is not circular in the presented Galilean frame in large graph. It is tried to 
have the best possible moving frame of reference in the inset, but hairpin vortex labeled 
A is only barely seen. Moreover, the associated swirling strength patch is smaller in 
size and strength than other iso-regions of swirling strength. These features indicate 
that it can probably be a case of a twisted hairpin packet. The hairpins within a packet 
are not perfectly aligned in the streamwise direction. Zhou et al. (1999) believed that 
an asymmetric hairpin leads to twist the hairpin packet and Kim et al. (2008) reported 
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Figure 5.12: Streamwise/wall-normal velocity vector fields shown using Galilean decom­
position (the point-by-point similarity with the results of Zhou et al. (1999) in figure 
_' 5 is illustrated), vectors viewed in frames-of-reference convecting at: a) uc = 0.79c/e, 
vc = 0.514 in region x = 1128 — 1185 mm, b) uc = 0.67t7e, vc = 0 in region 
x = 1285 - 1397 mm. 
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Figure 5.13 (a), for caption see next page. 
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Figure 5.13: Streamwise/wall-normal velocity vector fields shown using Galilean de­
composition (one vector out of 4 in large plots for clarity). Vectors viewed in frames-
of-reference convecting at: a) uc = 0.56Ue, vc = 0 in region x = 1128 — 1185 mm b) 
uc = 0.56t7e, vc = 0 in region x = 1285 — 1397 mm, c) uc = 0.67Ue, vc = 0.4614 in region 
x = 1509 — 1680 mm. The solid lines are contours of constant streamwise momentum. 
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Figure 5.14: Streamwise/wall-normal velocity vector fields shown using Galilean decom­
position as vectors viewed in frames-of-reference convecting at: a) uc = 0.55C/e, vc = 0 
in region x = 1128 - 1185 mm, b) uc = 0.89Ue, vc = 0.7514 in region x = 1509 - 1680 
mm. 
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that background noises cause the hairpin packets to become complicate. Since in the 
case of a twisted hairpin packet, the xy plane would not be exactly at the mid-plane of 
some hairpins, the head of these hairpins can not be clearly revealed in the associated 
Galilean frames, while the Q2 events associated with the hairpin would be seen. So 
hairpin A in figure 5. i 5 may not be centered on the xy plane. 

To provide a better idea of the spanwise characteristics of hairpin packets, a new 
series of measurements in an inclined streamwise/spanwise plane were done. These 
measurements were done by the present worker, Saeed Rahgozar (new PhD student) 
and Diego Lopez (an undergraduate student). The same reference velocity and the 
same streamwise position (the first one) were used in order to have the same flow. 
Figure 5.16 illustrates the side-view of the test section and the positions of the inclined 
planes for different streamwise positions. The direction of 160° with respect to the 
flow direction (x-direction) is chosen based on the upper neck angle of hairpin vortex 
signatures discovered in the xy plane. The statistical results of neck angle are presented 
in section 5.3.2. The results show that the neck angle varies between 25° and 90° with 
a maximum peak of occurrence around 70° to the x-direction (the average neck angle 
is about 69°). So the chosen inclined plane with 160° is approximately perpendicular 
to the plane of the hairpin arch (70° + 90° = 160°). 

The component of velocity fluctuation in the xi60-direction within the inclined 160°-
plane is hereafter referred to as u'l60. Figure 5.1 7-a shows the uniform regions of u'im 

in the inclined plane (in region x = 1128 — 1185 mm). The dark regions are low-speed 
regions (it'160 < 0) and the white regions are the high-speed regions (u'160 > 0). The 
vortices associated with hairpin necks usually surround the low-momentum regions. 
The necks of hairpins within a hairpin packet are indeed expected to cause a strong 
retarded streamwise momentum in the inboard regions (between the necks of hairpins), 
while they cause accelerated streamwise momentum in the outboard regions (see figure 
5.18). Hence, a high velocity gradient exists between the inboard and the outboard 
regions. A similar behaviour in xy plane is also seen at the heads of hairpin vortices 
where significant du/dy exists as illustrated in figure 5.20. 

Two hairpin packets are detected in figure 5 I 7-b. With regard to hairpin geometry 
which could be one-sided or two-sided, strong u'160 < 0 can be generated in two manners: 
i) beside the one-sided prograde or retrograde vortices (for example D2p in figure 5.1 7-
b), ii) between the necks of a two-sided hairpin (for example J2p and J^r in figure 
5.17-b). If a group of vortices (with appropriate signs) in close spatial proximity to 
each other are aligned in the x160-direction and surround the low-momentum regions, 
they are potential candidates to form a hairpin packet. It is clearly seen that hairpin 
packets are not perfectly aligned in the streamwise direction. If the xy plane crosses 
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Figure 5.15: Streamwise/wall-normal velocity vector field shown using Galilean decom­
position in region x = 1128 — 1185 mm and vectors viewed in a frame-of-reference 
convecting at uc = 0.51t7e, vc = 0.4314 in large graph and uc = 0A6Ue, vc = 0.1314 in 
the inset (iso-regions of swirling strength are superimposed). 
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Figure 5.16: Side view of test section showing the inclined planes. 

the first packet (labeled packet 1, xy plane 1), we would see only the hairpin vortex 
labeled Cl. So the other vortices of this packet can not be detected in this xy plane 
since the packet is twisted. If the second proposed xy plane crosses another hairpin 
packet (labeled packet 2, xy plane 2), it is possible to detect two separate groups of 
hairpin vortices as two hairpin packets. The first group includes A2 to D2 vortices and 
the second group contains G2 to L2 vortices. If the hairpin vortex has a strong and 
wide Q2 event, it is possible that the Q2 event is seen in the xy plane whilst the head 
of related vortex can not be detected. 

Based on these descriptions we can conclude that the number of hairpin vortices 
per packet is often underestimated in the xy planes. Additionally, a single packet is 
sometimes interpreted as two or probably more than two hairpin packets. 

5.2.5 Hairpin Packets and Uniform Momentum Zones 

Meinhart and Adrian (1995) reported that large regions of the flow in the turbulent 
boundary layer, which have relatively uniform values of the streamwise momentum, 
are separated by thin zones with significant velocity gradient (du/dy). Analysis of our 
PIV results shows that almost always the instantaneous velocity fields contain zones 
having these properties too. Figures 5.1! !-a to c illustrate the uniform momentum zones 
corresponding to figures 5.1 1-a to c respectively. The uniform momentum zones have 
been separated by contour lines of constant u and the dashed circles are the positions 
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Figure 5.17: Hairpin packets identified using the iso-regions of out-of-plane swirling 
strength in spatial proximity to each other which have roughly the same convection 
velocity in 160° inclined plane; a) regions of w'160 < 0, b) concentrated regions of swirling 
strength associated with hairpin necks or legs. 
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Figure 5.18: Idealized hairpin vortex signature in 160° inclined plane (the idea of this 
schematic was taken from Tomkins and Adrian (2003)). 

of hairpin heads. The lines pass commonly through the centres of the hairpin heads as 
seen in figures 5.8 and 5.13. 

The coincidence between uniform momentum boundaries and the hairpin heads 
clearly demonstrates an association between hairpin packets and uniform momentum 
zones as reported by Adrian et al. (2000). This association is further substantiated by 
the data in figures 5.20-a and b. In these figures vertical profiles of streamwise velocity 
component are superimposed on the Xd iso-regions. The circled Xd are associated with 
the heads of hairpin vortices. The hairpin heads create regions of significant du/dy along 
the boundaries between uniform momentum zones. In other words, the «-component 
changes significantly at the boundaries of uniform momentum zones, whereas it remains 
roughly constant within the zones. It is important to note that packets of vortices may 
also align with other packets to create even longer zones. Therefore, a single zone of 
uniform momentum may be related to more than one packet. 

Since, often three and sometimes more than three hairpin packets are present in one 
vector field at different heights above the wall, the relation between uniform momen­
tum zones and hairpin packets can be summarized as follows. Meinhart and Adrian 
(1995) and Adrian et al. (2000) suggested that the zones of uniformly retarded flow are 
the backflow induced by hairpin packets which are aligned in the streamwise direction. 
Indeed, the induced flow from each hairpin vortex adds coherently with the flows from 
following vortices in a packet to create a low momentum region. Therefore, the gen­
erated low momentum region of flow within a packet is significantly longer than the 
low-momentum region induced by any single hairpin. 
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Figure 5.19: Contours of constant u and hairpin vortex heads (circles) along the bound­
aries separating regions of uniform-momentum fluid (corresponding to figure 5.13). The 
black lines separate the flow field into zones, in which the streamwise momentum is ap­
proximately uniform in regions: a) x = 1128 — 1185 mm, b) x = 1285 — 1397 mm, c) 
x = 1509 - 1680 mm. 
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Figure 5.20: Circled iso-contours of Ari associated with the heads of the hairpin vortices 
and super-imposed profiles of streamwise velocity showing the «-component changes 
largely at hairpin heads in regions: a) x = 1128— 1185 mm corresponding to figure Vs, 
b) x = 1285 — 1397 mm. Profiles correspond to the x-positions of vortices I-P for a, 
and A-L for b. 
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5.2.6 Relation to u'v' 

Figure V_'; presents the streamwise histories of streamwise fluctuations, wall-normal 
fluctuations and — u'v' of the upper hairpin packet shown in figure 5.N. These histo­
ries are given at three different heights (y/8 = 0.61, 0.89 and 0.98). The characteristic 
features of the hairpin vortex signatures in figure 5.8 create clear imprints in the stream-
wise variation. For. instance, figure 5.21-a exhibits six peaks of high Reynolds stresses 
between x = 1.135-1.16 m, each of which corresponds to fluid directly underneath the 
heads of hairpins K-R. This fluid has low momentum because it is being ejected away 
from the wall by the hairpins as the «'-component is positive. The u' and v' compo­
nents change signs at x = 1.1327 m and x = 1.1346 m. These points correspond to 
the stagnation points on the inclined shear layers associated with the hairpins labeled 
J and K. The maximum values of —u'v' occur fore and aft of the stagnation points. 
Streamwise histories of streamwise fluctuations, wall-normal fluctuations and —u'v' at 
y/8 = 0.89 is shown in figure 5.21-b. The zone of low momentum and of high —u'v' 
between x = 1.145-1.155 m corresponds to fluid directly underneath the heads of hair­
pins N-P. The maximum of —u'v' occurs at x = 1.147 m which corresponds to the head 
of hairpin N. The streamwise histories of u', v' and of — u'v' at y/8 = 0.98 are given 
in figure 5.21-c. Similarly, local maxima of u!', v' and of —u'v' corresponding to the 
heads of hairpins O and P occur at x = 1.151 m and x = 1.154 m. These results show 
that the presence of hairpin packets producing considerable Reynolds shear stress is a 
common and recurrent feature in the outer layer. 

These results are consistent with results that were reported by Ganapathisubramani 
(2004) for ZPG TBL. He found hairpin structures and packets producing considerable 
Reynolds shear stress as a common and recurrent feature in the log layer. So, it can 
be proposed that turbulence production is inseparable from the dynamics of hairpin 
vortices in wall-bounded turbulent flows and it would be the case for the present flow. 
It can even be conjectured that the hairpin vortices would be responsible for the main 
part of turbulence production in APG turbulent boundary layers. As was pointed out by 
Adrian et al. (2000), Bogard and Tiederman (1986) and Luchik and Tiederman (1987) 
observed that several Q2 events often occur in temporal series of measurements. These 
researchers believe a turbulent burst consists of several Q2 events. Their idea can be 
discussed by the concept of hairpin vortex packet. Each Q2 event is associated with a 
hairpin vortex. So a series of Q2 events corresponds to the hairpin vortices occurring in 
a hairpin packet. Consequently, the temporal histories on which Bogard and Tiederman 
(1986) and Luchik and Tiederman (1987) based their work are similar to the streamwise 
histories shown in figure 5.21. 
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Figure 5.21: Traces of the instantaneous u', v' and u'v' through the vector field in 
figure 5.M show that the form of the variation of u'v' is associated with the hairpin 
vortex signature; a) y/8 = 0.61, b) y/S = 0.89, c) y/8 = 0.98. 
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5.3 Statistical Results 

Although the vast majority of instantaneous realizations illustrate that hairpin vortex 
organization is a common feature of the upper region, the parameters of these pat­
terns must be investigated statistically. Statistical results from the two-dimensional 
PIV datasets in xy planes are presented in this section. Various statistical quantities 
were computed at different streamwise positions and are compared. Theses parameters 
are employed to study the evolution of the hairpins and hairpin packets parameters 
within the adverse pressure gradient zone between the pressure peak and separation 
point. Indeed, the ensemble average and other statistics are obtained to represent the 
properties of interest. Moreover the obtained hairpin characteristics for the present 
study and ZPG TBL are also compared. 

5.3.1 Definition of Parameters and Computation Procedure 

The parameters of hairpins and hairpin packets are computed with the help of inter­
mediate data files of the instantaneous fields. These files are the same ones that were 
used to identify the hairpins and the packets as explained in section 5.2.2. They con­
tain coordinates (x and y), x and y scaled by boundary layer thickness (x/5 and y/8), 
instantaneous velocity components (u and v), swirling strength (A^), swirl intensity for 
each vortex (Â) and scaled diameter of vortices (D/8). The calculation methods of A 
and D/8 are explained in sections 1.1. 

Once two-dimensional instantaneous velocity fields and swirling strength patches 
are visualized in Tecplot, the hairpins parameters are determined with the help of the 
probe tool of Tecplot. Clicking on the local maxima of Ad patches using the probe tool 
of Tecplot directly gives A, D/8, x/5, y/S, uc and vc for each vortex core considered 
to be a hairpin head, x/5 is used to calculate the streamwise spacing between the 
hairpin vortices. Subtracting the x/5 values of two neighbour hairpin heads- gives the 
streamwise spacing (Ax/5) for these vortex cores. Since the boundary layer thickness 
varies by about 30% along a field, the scaled coordinates and diameters are calculated 
with local boundary layer thickness instead of an average 5. 

The neck angle and ISL angle can be determined when the velocity field is decom­
posed in a proper Galilean frame using uc and vc. The angle at which the plane formed 
by the head and neck of the hairpin is inclined to the wall a can be estimated with the 
angle of the locus of the Q2 region beneath the head (see figure 5.2). A linear curve 
is matched on the ISL to determine the angle of ISL event p. The angle of this line 
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x/5 y/s D/8 A a 
(°) 

P 
(°) 

Ax/5 7 
(°) 

No of 
hairpin 

uc/Ue Vc/Ve 

0.71 0.13 0.05 -1503.8 60 45 0.09 17 6 0.39 0.87 
0.80 0.17 0.07 -2989.9 70 - 0.12 0.48 -1.3 
0.92 0.19 0.07 -2185.3 78 50 0.07 0.54 -1.1 
0.99 0.24 0.06 -1838.4 90 60 0.15 0.62 -1.6 
1.13 0.24 0.08 -2047.9 65 45 0.19 0.61 -0.12 
1.13 0.28 0.06 -2996.9 73 40 0.62 -1.4 

Table 5.1: Example of written hairpin vortices parameters in region x = 1128 — 1185 
mm 

and streamwise direction is the ISL angle as is shown in figure 5.2. These angles are 
determined using a virtual protractor. Since the virtual protractor has subdivisions 
of 10°, the measured angles have an estimated uncertainty of ±5°. This virtual pro­
tractor is superimposed on the Q2 region to determine the neck angle. Similarly it is 
also superimposed on the ISL line to determine p. The growth angle 7 is determined 
by fitting a linear curve passing through the hairpin heads (figure 5.13). So, once the 
straight line is drawn, the virtual protractor is superimposed on this line to measure the 
growth angle. Table 5.1 illustrates a sample of parameters related to a hairpin packet 
registered in the database. 

This database compiles the results of fifty investigated instantaneous velocity fields 
at each streamwise position for the present study and also fifty instantaneous fields for 
ZPG TBL from the database of Adrian et al. (2000). The total number of detected 
hairpin vortices within the fifty fields is 615, 609 and 551 for the first, second and third 
streamwise positions respectively and 463 hairpins for the ZPG TBL. Table 5.2 presents 
the ensemble average number of packets per field and number of hairpin vortices per 
packet. It is worth mentioning once again that the number of hairpins per packet is 
underestimated because some hairpins are missed when investigating xy-p\anes (see 
section ~>.2. i). Figures 5.22 and 5.23 show the distribution of population of hairpin 
vortices and hairpin packets as a function of y/S. In the subplots a of these figures, 
each point is computed on an interval of 0.24 of y/8 in region y/8 = 0.04— 1.00, while in 
subplots b each point is computed on an interval of 0.2 of y/8 in region y/8 = 0.2 — 1.0. 
The points are at the center of each interval. In figure 5.22, if the core of a hairpin 
head is within an interval, i.e. 0.04 < y/8 < 0.28, this hairpin is accounted in this 
interval. Similar computation is done for the figure 5.23, but the last hairpin in the 
streamwise direction which is usually the oldest one in a hairpin packet is accounted 
for each group of hairpins. In the ZPG case, the maximum of hairpin population is 
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No. of hairpins 
per packet 

No . of packets 
per field 

ZPG TBL 3.9 2.4 

x = 1128 mm 4.0 3.1 

x = 1285 mm 3.8 3.2 

x = 1509 mm 3.7 3.0 

Table 5.2: Ensemble average of number of hairpins per packet and number of packets 
per instantaneous field for the different streamwise positions and for the ZPG TBL. 

near the wall, and decreases in wall-normal direction. In the present flow, although the 
figures 5.22 and 5.23 indicate that the hairpin population decreases near the wall in 
streamwise direction, but the distribution of hairpin population for the first streamwise 
position is roughly similar to the ZPG TBL. Contrarily to the first streamwise position, 
the population of hairpins and hairpin packets increase with wall-normal distance in 
other locations and have a maximum value in the upper region. The hairpin population 
has a maximum around y/8 — 0.4 for the second streamwise position (figures 5.22-a 
and 5.23-a) and around y/S = 0.7 for the last streamwise position (figures 5.22-b and 
5.23-b). It is worth noting that the points of y/S = 0.4 and y/S = 0.7 are related to the 
interval of 0.28 < y/8 < 0.52 and 0.6 < y/8 < 0.8 respectively. Based on these results, 
first streamwise position is similar to ZPG TBL and the second location is in between 
the first and last streamwise positions. It is clear that the hairpin population is affected 
by pressure gradient. Furthermore, similar trend, but weaker, is also found for the 
prograde spanwise vortices as shown in figure 1.13. Shifting the maximum population 
of spanwise vortices, hairpins and hairpin packets to the upper region in the adverse 
pressure gradient zone, as separation is approached, is consistent with the results of 
Chong et al. (1998). Chong and co-workers have suggested that detached eddies are 
more frequently encountered near the detachment point. 

5.3.2 Hairpin Vortex Parameters 

Before presenting and discussing the statistical characteristics and behaviours of hair­
pin vortices, it is important to mention that all statistical results associated with the 
parameters of hairpins and of hairpin packets are obtained using the aforementioned 
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Figure 5.22: Histogram of hairpin population as a function of y/8: a) for region from 
y/8 = 0.04­1.00, b) for region from y/8 = 0.2­1.0. Each point is computed on an interval 
of 0.24 of y/S for a and 0.2 of y/8 for b. The points are at the center of each interval. 
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Figure 5.23: Histogram of hairpin packet population as a function of y/8: a) for region 
from y/8 = 0.04­1.00, b) for region from y/8 = 0.2­1.0. Each point is computed on an 
interval of 0.24 of y/8 for a and 0.2 of y/8 for b. The points are at the center of each 
interval. 
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database in section 5.3.1 except for mentioned cases. Moreover, it is worth recalling 
that there is no information for y/8 < 0.2 at the last streamwise position for the present 
study (see section 3.5.1). Probability density functions (pdf) are computed for various 
parameters of individual hairpin vortex signature and presented in this section. The 
proposed layers for ZPG TBL (viscous sublayer, buffer layer, logarithmic sublayer and 
the wake layer) are presented in sections 2.2.1 and 2.2.2. Since these subdivisions do not 
apply in the case of strong APG TBL, two regions are proposed for APG TBL in the 
present study. The region close to the wall that is called inner region (y/S < 0.2) where 
the viscosity and wall can have considerable effect and the upper region (y/8 > 0.2) 
where the effect of viscosity is less important. These divisions are chosen to study the 
variation of various parameters in ^/-direction. It is worth noting that these devisions 
have no theoritical foundation. In fact, the initial idea to define the inner and upper 
regions of strong APG TBL and their limits is taken from the reported results for ZPG 
TBL. The pdfs of hairpin parameters in each region are acquired separately providing 
an idea of variation of hairpin characteristics in the wall-normal direction. The hair­
pin packet parameters are presented in the next section. Moreover the parameters of 
hairpins and of packets are studied before and after detachment for the last streamwise 
position (x = 1509 — 1680 mm). 

Before analyzing the swirling strength and the diameter of vortices, it is worth re­
calling that these parameters are affected by the filter bandwidth, mesh width and 
interrogation window width. It is important to mention that they are the only param­
eters significantly affected by these effects. Since 50% overlap zone was used within the 
correlation process in both the present work and the ZPG turbulent boundary layer 
database of Adrian et al. (2000), the mesh width is half of the interrogation window 
width. 

Swirling Strength 

The probability density function of Â of hairpin heads scaled by Uzs/8 is shown in 
figure 5.24 for three streamwise positions of the present study and ZPG TBL. Table 
5.3 presents the ensemble average of non-normalized swirl intensity and A scaled by 
Uzs/5, uT/S and also X+ (X+ -= Xv/u2). It is worth mentionning that hereafter, the 
computations of random uncertainty for different parameters of hairpin vortices and of 
hairpin packets, which is due to number of samples, is done based on 95% confidence 
(more details are presented in Appendix D). 

Before presenting and analysing the swirl intensity using the pdf of X8/Uzs, we turn 
our attention first to the effect of spatial resolution on the swirl intensity. As explained 
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Figure 5.24: Probability density functions of A associated with hairpin heads for all 
streamwise positions and ZPG TBL: a) lower region where y/8 < 0.2, b) upper region 
where y/8 > 0.2. 

in section 1.5 the swirling strength is significantly affected by spatial resolution. The 
value of A is underestimated when spatial resolution decreases as shown in figures 1.1 1-b 
and 4.12-b. In addition, it is shown in this figure that swirl intensity is much higher 
in the ZPG TBL in comparison to the present study. So, to interpret the results 
presented here, the effect of spatial resolution should also be considered. The maximum 
probability of Â scaled by Uzs/8 within the inner region of the ZPG TBL occurs at higher 
values in comparison to the present flow as shown in figure 5.2 1-a. Moreover, the values 
of (A) 8/Uzs presented in table 5.3 is also show this tendency. Combining the results of 
the pdfs of X8/Uzs, the value of (A) 5/Uzs and the profile of (A) 8/Uzs in ^-direction (see 
figure 5.25) within the inner region, it is found that in the ZPG TBL the swirl intensity is 
higher in comparison to the present flow. It is worth recalling that the swirling strength 
is more underestimated in the ZPG TBL because of the effect of spatial resolution, so 
the pdfs shown should be also shifted to higher negative value of (A). We can suppose 
that the swirl intensity is clearly affected by the pressure gradient but can not know 
the real differences between values of X5/Uzs in such flows. In addition, the form of 
pdfs are changed in different cases and the width of the pdf distribution decreases as 
standard deviation is 1.57, 1.14 and 0.99 for the ZPG TBL, first and second streamwise 
positions for the present study respectively. 

In the upper region (y/8 > 0.2), since the PIV data now also exist for the last 
streamwise position, it is possible to interpret the results up to the point of detachment 
of the flow. Turning back now our attention once again to figures 1.1 1-b and 1.12-b, 
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(Â) (s-1) (x)s/uza " \ (X)5/uT <Â+) 

ZPG TBL y/8 < 0.2 -186 -7.91 ±0.30 1.57 -37.2 -0.018 
y/8 > 0.2 -146 -6.28 ±0.18 1.67 -29.25 -0.014 

x = 1128 mm y/8 < 0.2 -1847 -4.89 ±0.15 1.14 -66.3 -0.082 
y/8 > 0.2 -2071 -5.51 ±0.14 1.35 -74.4 -0.092 

x = 1285 mm y/S < 0.2 -983 -4.20 ±0.19 0.99 -212.6 -0.127 
y/8 > 0.2 -1107 -4.82 ±0.10 1.14 -239.3 -0.143 

x = 1509 mm y/8 < 0.2 - - - - -

y/8 > 0.2 -683 -5.09 ±0.12 1.37 - -

Table 5.3: Ensemble average of A associated with hairpin heads at different streamwise 
positions and ZPG TBL. o\ is the standard deviation of X8/Uzs distribution in figure 
5.21. 

it is seen that XS/UZS is slightly lower for the last streamwise position of the present 
study compared to the other ones. Based on these results, it seems that A is slightly 
affected by pressure gradient (at least near the separation point). The absolute values 
of (X)8/Uzs in upper region are 6.28, 5.51, 4.82 and 5.09 for the ZPG TBL, first, 
second and third streamwise positions respectively (table 5.3). It is worth mentioning 
that the variation range of spatial resolution in various streamwise positions is Ax/5 = 
0.020 - 0.016, Ax/<5 = 0.024 - 0.018 and Ax/5 = 0.022 - 0.014 for the first, second 
and last streamwise positions respectively. In fact, the interrogation window widths are 
equal at the middle of fields for the first and last streamwise positions (Ax/5 = 0.018) 
whilst it is slightly higher in the second streamwise position (Ax/5 = 0.021). Hence, A 
is more underestimated in the second streamwise position compared to the other ones. 
This might explain, at least partially, why Â is slightly lower at the second streamwise 
position in comparison to the other ones, while it is expected to be comparable to the 
first station (see figure 1.11-b). The pdfs of X5/Uzs for upper region (figure 5.2 1-b) also 
present that X5/Uzs has higher absolute value for first streamwise position compared 
to the last one. Since the spatial resolution is approximately the same in the first and 
last stations, the results presented in figures 5.2 1-b and 1.1 !-b indicate that the swirl 
intensity is slightly affected by pressure gradient, at least near the separation point. 

To provide a better idea of the variation of swirl intensity in ^/-direction and also in 
streamwise direction, the wall-normal profiles of the ensemble average of Â normalized 
by Uzs/5 are presented in figure 5.25. The error bars indicate the random uncertainty 
which is calculated based on the number of realizations in each interval. It is worth 
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recalling that the probability event of hairpin vortices is not constant in t/­direction as 
illustrated in figure 5.22. Each point in figure 5.25 is computed on an interval of 0.096 
of y/S, i.e. 0.088 is related to 0.04 < y/5 < 0.136, in region y/S = 0.04 ­ 1.00. The 
ensemble average of XS/UZS is calculated in each interval to acquire one point in this 
latter figure. First, figure 5.25 confirms that X5/Uzs is affected by pressure gradient. It 
is shown that (A) 5/Uzs decreases in the streamwise direction for y/S < 0.5 except for 
the second streamwise position which has roughly the same value as for the last station 
(taking into account the underestimation effect of spatial resolution and the random 
uncertainty). 

B ­
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ZPG TBL 
x = 1128-1185 m m 
x = 1285-1397 m m 
x = 1509-1680 m m 

0.4 0.6 
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Figure 5.25: Ensemble average of X scaled by 8/Uzs and associated with hairpin heads 
for different streamwise positions and ZPG TBL. Each point is an average over an 
interval of 0.096 of y/8 from y/8 = 0.04 to 1.00. The points are at the center of the 
intervals. The error bars indicate the random uncertainty which is calculated based on 
the number of realizations in each interval. 

Another feature shown in figure 5.25 is the variation of (A) S/Uzs in ^­direction. It is 
important to recall that the swirl intensity is significantly affected by spatial resolution 
(figure 1.1 1 ). Indeed, the related curve to ZPG TBL should be shifted to higher negative 
value of swirl intensity (shifted down) if it is calculated with the same spatial resolution 
as the present study. In the ZPG TBL case, the absolute value of (Â) S/Uzs increases 
monotonically toward the wall, while it has a maximum value around y/8 = 0.4 — 0.6 
and decreases near the wall in the present flow. Similar behaviours are also obtained 
for the spanwise vortices (for both prograde and retrograde vortices) as shown in figure 
1.18. As explained in section 1.6.2, such a behaviour in the APG case is consistent with 
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that of the Reynolds stresses reported by Maciel et al. (2006b). To provide a better 
view of the Reynolds stresses variation in streamwise direction of the present study and 
also ZPG TBL, a similar analysis is redone here for both the ZPG and APG turbulent 
boundary layers (figure 3.2! i). In the case of ZPG TBL, the maximum Reynolds stresses 
occur close to the wall (y/8 < 0.1) and decrease monotonically in ^-direction, whilst the 
Reynolds stresses are maximum around y/8 = 0.6 and decrease near the wall for APG 
TBL. In the ZPG TBL, the Reynolds stresses normalized by Uzs are significantly higher 
than in the present flow. Furthermore, the Reynolds stresses decrease in the streamwise 
direction for the present flow. These results show that the turbulence activity decreases 
near the wall in the adverse pressure gradient region while approaching the separation 
point. Such behaviours are also found for the ensemble average of A scaled by Uzs/8 
of all spanwise vortices as shown in figure !.1N . As a result, it can be supposed that 
there is an association between the swirl intensity (vortices) and turbulence activity. 
It is important to mention that the differences of the Reynolds stresses (figure 3.29) 
are slightly higher than the differences of the swirl intensity (figure 5.25). This can be 
because of the Reynolds stresses are second-order moments which are not solely the 
result of vortices. Moreover, the variation of turbulence production in ^-direction is 
also calculated at each streamwise position and also for ZPG TBL (figure 5.1 1). The 
turbulence production also presents similar trends to swirl intensity. This comparison 
will be further discussed in section 5.4. 

Comparisons of the probability density functions of swirl intensity scaled by Uzs/S 
for the prograde spanwise vortices and hairpin heads are presented in figure 5.26. The 
maximum probability occurs at higher values of X8/Uzs for the hairpin vortices than 
the spanwise vortices. It means that the head of hairpin vortices have generally higher 
swirl intensity than all spanwise prograde vortices. It is important to mention that 
the hairpin heads are also accounted for in the pdfs and profiles of spanwise vortices. 
Figure 5.27 presents the wall-normal profiles of the ensemble average of A normalized by 
Uzs/8 for both hairpin heads and spanwise vortices. These profiles also show lower swirl 
intensity for the spanwise vortices compared with the hairpin heads for all streamwise 
positions. Haidari and Smith (1994) and Zhou et al. (1999), see section 2.2.2, believed 
that an initial hairpin vortex can participate in the auto-generation mechanism to form 
a hairpin packet when it has sufficient strength. So, higher swirl intensity for the hairpin 
heads associated with the hairpin packets in the present study is consistent with this 
idea. 

Turning now our attention to the different scalings used here to scale Â. As men­
tioned in section 2.3, the traditional inner and outer time scales, v/u2

T and 8/uT, are 
not valid in strong adverse-pressure-gradient TBLs. Furthermore, the Zagarola-Smits 
velocity scale has been found to be a useful turbulent outer velocity scale for general 
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Figure 5.26: Probability density functions of A for prograde spanwise and hairpin vor­

tices at all streamwise positions: a) in region x = 1128 — 1185 mm for y/S < 0.2, b) 
in region x = 1128 — 1185 mm for y/8 > 0.2, c) in region x = 1285 — 1397 mm for 
y/8 < 0.2, d) in region x = 1285 ­ 1397 mm for y/8 > 0.2, e) in region x = 1509 ­ 1680 
mm for y/S > 0.2. 
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Figure 5.27: Ensemble average of A scaled by 8/Uzs for prograde cores and hairpin 
heads in regions: a) ZPG TBL, b) x = 1128 - 1185 mm, c) x = 1285 - 1397 mm, d) 
x = 1509 — 1680 mm. For hairpin vortices, each point is an average over an interval of 
0.096 of y/S in region y/8 = 0.04 — 1.00. The points are at the center of the intervals. 
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pressure-gradient turbulent boundary layers. Indeed, the Zagarola-Smits scaling works 
well not only for the region near separation but also for cases of different adverse-
pressure-gradients. The results presented in table 5.3 confirm that the traditional inner 
and outer time scales are not appropriate scales for Â. 

Diameter of Hairpin Heads 

It is shown in section 1.5 that the vortices diameter is significantly affected by mesh 
width and interrogation window width. Figure II 1-a illustrates that the effective di­
ameter of hairpin heads is a function of mesh width. Figure 1.12-a also shows that 
the effective diameter of vortices is a function of both mesh width and of interroga­
tion window width. These results reveal that (D/8) decreases when the mesh width 
decreases. It means diameter of vortices is overestimated for both the present study 
and ZPG TBL. Since the mesh width is lower for the present study in comparison to 
Adrian et al. (2000) ZPG TBL database, the effective diameter of hairpin heads are 
also less overestimated in the present study compared to ZPG TBL. Because of these 
effects it is hard to interpret the presented differences between D/8 in figure 5.28 and 
table 5. 1. The pdfs and the ensemble average of D/8 in the lower region (y/8 < 0.2), 
shown in figure 5 _)s-a and table 5. 1, illustrate that the effective diameter is lower for 
the present flow compared to the ZPG TBL (0.058 vs. 0.073). These differences could 
be due to the effect of mesh width on the diameter of vortices. So, it is hard to tell 
if the diameter of vortices is higher in the ZPG TBL compared to the present flow or 
D/8 are approximately the same in both flows. 

In the upper region, figures 1.11-a and 1. i _'-a show that the vortices decrease slightly 
in size, with respect to 5, between the first streamwise position and the last one. The 
related pdf of D/8 at the last streamwise position is shifted to lower values of D/S 
compared to the pdf of D/8 for the first streamwise position. The (D/8) is also higher 
at the first streamwise position compared to last one (0.068 vs. 0.062). It means that 
the pdfs of D/8 and the ensemble average of diameter also illustrate the same tendency 
except at the second streamwise position (V2s-b and table 5. i). So, it seems that D/8 
is affected by pressure gradient, at least near the separation point but only slightly. It 
is worth recalling that although these results show higher diameter of vortices for the 
ZPG TBL in comparison to the first and second streamwise positions of the present 
flow, these differences can be due to the effect of mesh width on the size of vortices as 
mentioned before. 

Since the size of the spanwise vortices varies with y near the wall (figure 1.20), 
we are also interested to have knowledge of the variation of hairpin heads in size in 
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Figure 5.28: Probability density functions of diameter for hairpin vortices within the 
hairpin packets at all streamwise positions and ZPG TBL: a) lower region where y/8 < 
0.2, b) upper region where y/8 > 0.2. 

(D/S) ± Px °v (D+) 

ZPG TBL y/8 < 0.2 0.073 ± 0.003 0.017 146 
y/8 > 0.2 0.082 ± 0.002 0.021 160 

x = 1128 mm y/8 < 0.2 0.058 ± 0.002 0.019 49 
y/8 > 0.2 0.068 ± 0.002 0.019 56 

x = 1285 mm y/8 < 0.2 0.072 ± 0.004 0.019 64 
y/8 > 0.2 0.072 ± 0.002 0.021 64 

x = 1509 mm y/8 < 0.2 - - -

y/8 > 0.2 0.062 ± 0.002 0.020 -

Table 5.4: Ensemble average of diameter of hairpin vortices associated with hairpin 
packets at different streamwise positions and ZPG TBL. erD is the standard deviation 
of D/8 distribution in figure 5.2N. 
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y­direction. To provide this knowledge, the ensemble average of hairpin heads diameter 
normalized by 5, (D/8), are calculated as a function of y/S for all streamwise positions 
and ZPG TBL as shown in figure 5.29. It is important to mention that the probability 
event of hairpin vortices is not constant in wall­normal direction as shown in figure 
5.22. Each point in figure 5.29 is computed on an interval of 0.096 of y/S in region 
y/S = 0.04 ­ 1.00, i.e. 0.088 is related to 0.04 < y/S < 0.136. The ensemble average of 
X8/Uzs is calculated in each interval to acquire one point in this latter figure. The points 
are at the center of intervals. The error bars indicate the random uncertainty which is 
calculated based on the number of realizations in each interval. Figure 5.29 shows that 
(D/8) is approximately constant in ^/­direction within the outer region (0.2 < y/8 < 
0.8). Additionally, this latter figure also presents that D/8 decreases slightly in size 
between the first streamwise position and the last one. Another feature in this figure is 
the variation of D/S near the wall. Figure 5.29 indicates that D/8 decreases near the 
wall. 
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Figure 5.29: Ensemble average of D scaled by 5 for hairpin heads associated with hairpin 
packets for different streamwise positions and ZPG TBL. Each point is an average over 
an interval of 0.096 of y/8 in region y/8 = 0.04 — 1.00. The points are at the center of 
the intervals. The error bars indicate the random uncertainty which is calculated based 
on the number of realizations in each interval. 

The higher value of diameter normalized by 8 at the first streamwise position com­

pared to the last one would be because of the effect of pressure gradient. In fact, the 
adverse pressure gradient causes that the mean flow evolves rapidly in this strong APG 
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experiment especially near the separation point. It is therefore possible that the tur­
bulent structures respond with a certain delay to the changes of the mean flow. As a 
result, the increase of vortices diameter is slower than boundary layer coarsening (at 
least near the separation point). 

A comparison of the probability density function of effective diameter scaled by 5 for 
all the prograde vortices and for hairpin heads are presented in figure 5.30. This figure 
shows that spanwise vortices have generally smaller diameter compared to the head of 
hairpin vortices. It is worth noting that the hairpin heads are also accounted for in 
the pdfs of prograde spanwise vortices. Figure 5.30 shows that the peak of distribution 
of D/8 is around 0.035 for the spanwise vortices, whilst this peak is around 0.075 for 
the hairpin heads. As mentioned in section 1.5, around 17% of the prograde spanwise 
vortices with D/8 > 0.04 are hairpin heads within packets. Since, the presented pdfs 
in figure 5.30 include all sizes of spanwise vortices, less than 17% of the prograde cores 
would be related to the hairpin heads. With regards to these aforementioned, it seems 
that the most probable size of spanwise prograde vortices is not related to hairpin 
vortices (associated with hairpin packets). On the other hand, the spanwise vortices 
have generally lower swirling rate compared with the hairpin heads as illustrated in 
figures 5.26 and 5.27. These results confirm that hairpin vortices have in general higher 
swirl intensity and are larger than most other vortices. 

Convection Velocity 

In turbulent shear flows, coherent structures are convected downstream once they are 
generated. In the present study, once the vortices are identified, the instantaneous com­
ponents of convection velocities of the vortices are determined as explained in section 
1.1. The mean streamwise component of convection velocities, Uc, of both prograde 
and retrograde spanwise vortices as a function of wall-normal position were previously 
presented for three streamwise positions (see section 1.6. 1). It is found that, on aver­
age, both prograde and retrograde spanwise vortices travel with the mean streamwise 
velocity for all streamwise positions. 

The results for the hairpin heads show a similar behaviour to that found for the 
spanwise vortices. The mean convection velocities of the hairpin heads almost collapse 
on the local streamwise mean velocity as illustrated in figure 5 31. These results are 
consistent with the observations of Adrian et al. (2000) for the ZPG TBL. In the APG 
TBL case, the turbulence structures are decelerated while the flow is also decelerated. 
However, while the mean convection velocities of these vortices collapse on the local 
streamwise mean, the distributions of convection velocities about the mean exhibit 
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Figure 5.30: Probability density functions of D/S for prograde spanwise vortices and 
hairpin vortices at all streamwise positions: a) in region x = 1128 — 1185 mm for 
y/8 < 0.2, b) in region x = 1128 - 1185 mm for y/8 > 0.2, c) in region x = 1285 - 1397 
mm for y/8 < 0.2, d) in region x = 1285 — 1397 mm for y/8 > 0.2, e) in region 
x = 1509 - 1680 mm for y/8 > 0.2. 
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strong wall-normal dependence. This dependency is more important in the present 
flow in comparison to ZPG TBL. 

It is found that the most probable value of vc/Ue is about 0 (figure 5.32) for the 
ZPG TBL as expected. In the APG TBL case, contrarily to the ZPG TBL, vc/Ue 

has important values. It was mentioned previously in section 1.6.4 that wall-normal 
component of convection velocity of vortices is negligible in the ZPG TBL while it is 
important in the present study. This idea is confirmed here by the results in figure 5.32. 

Neck Inclination 

The neck angle measurement technique was explained in section 5.3.1. Based on this 
technique, the a values given here (figure 5.3 1) are measured with a random uncertainty 
of about ±6°. The neck angle of the hairpin vortex is determined using the angle of 
the locus of the Q2 region as shown in figure 5.33-b (see also section 5.3.1). It is 
worth noting that these values present the average upper neck angle of hairpin vortex 
signatures, but the neck angle of the hairpin vortex is not constant since the vortex is 
not straight. The hairpin neck is less inclined near the legs, whereas it takes a near 
vertical orientation close to the head of the hairpins as shown in figure 5.33-b. The 
probability density functions and ensemble averages of a indicate that the neck angle 
is approximately the same in the lower and upper regions for the present flow (figure 
5.34, table 5.5), whereas (a) is higher in the inner region compared to the upper region 
for the ZPG TBL (66° vs. 60°). In the lower region, the neck angle is roughly equal for 
both the present flow and the ZPG TBL as the pdfs of a are superimposed (figure 5.3 1-
a) and the mean values of a are also approximately the same (table 5.5). Contrarily 
in the upper region, a is smaller in the ZPG TBL since the pdf of ZPG TBL is shifted 
slightly to lower values of a (figure 5.3 1-b) and the mean values of a are also higher for 
the present flow (67° vs. 60°). 

To provide a better idea of the variation of the neck angle in y-direction, the profile 
of a in wall-normal direction is shown in figure 5.35. It is important to recall that 
the population of hairpin vortices is not constant in y-direction as presented in figure 
5.22. Figure 5.35 shows that the neck angle is approximately constant in wall-normal 
direction for the present work, whereas it decreases slightly in y-direction for the ZPG 
turbulent boundary layer. In the ZPG TBL, the present results contradict the results of 
Adrian et al. (2000) that showed that the neck angle increases with increasing distance 
from the wall. They reported that the head takes a near vertical orientation in the 
upper region of the boundary layer, while near the wall it takes a more conventional 
angle, whereas the present investigation shows that this angle decreases monotonically 
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Figure 5.31: The profiles of Uc/Ue and U/Ue for different streamwise positions: a) in 
region x = 1128 — 1185 mm, b) in region x = 1285 — 1397 mm, c) in region x = 
1509 — 1680 mm. Each point is an average over an interval of 0.1 of y/8 in region 
y/S = 0.0 — 1.0. The points are at the center of the intervals. The error bars indicate 
the random uncertainty which is calculated based on the number of realizations in each 
interval. 
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Figure 5.32: Probability density functions of wall-normal component of convection ve­
locity for hairpin vortices within the hairpin packets at all streamwise positions and 
ZPG TBL: a) lower region where y/8 < 0.2, b) upper region where y/S > 0.2. 
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Figure 5.33: a) Schematic of a two-dimensional vortex tube, b) Side view of the 
schematic model of a hairpin vortex attached to the wall and the induced Q2 event. 
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Figure 5.34: Probability density functions of neck angle for hairpin vortices within 
the hairpin packets at all streamwise positions and ZPG TBL: a) lower region where 
y/S < 0.2, b) upper region where y/8 > 0.2. 

(a) ± Px 0 Q 

ZPG TBL y/S < 0.2 66 ±1.8 9.2 
y/S > 0.2 60 ±1.5 14.5 

x = 1128 mm y/S < 0.2 67 ±1.7 12.8 
y/8 > 0.2 67 ±1.3 13.3 

x = 1285 mm y/S < 0.2 64 ± 3.0 15.1 
y/S > 0.2 68 ±1.2 13.5 

x = 1509 mm y/8 < 0.2 - -

y/8 > 0.2 65 ±1.2 14.7 

Table 5.5: Ensemble average of neck angle of hairpin vortices associated with hairpin 
packets at different streamwise positions and ZPG TBL. aa is the standard deviation 
of a distribution in figure 5..3 1. 
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Figure 5.35: Variation of neck angle in wall­normal direction at different streamwise 
positions and ZPG TBL. Each point is an average over an interval of 0.24 of y/S in 
region y/8 = 0.04 — 1.00. The points are at the center of the intervals. The error bars 
indicate the random uncertainty which is calculated based on the number of realizations 
in each interval. 

from about 67° near the wall to 58° at the edge of the boundary layer. It is worth noting 
that Adrian and co­workers determined the neck angle using the angle of inclined shear 
layer which is different from the method used in the present analysis. 

The aforementioned differences between the upper regions of ZPG TBL and of the 
present flow can probably be explained by the fact that the mean strain rates are 
different in those flows. The mean velocity gradients, dU /dx and dV/dy, are more 
important in the upper region of a strongly decelerated flow (i.e. present flow) than in 
the upper region of a ZPG TBL (see figure 5.31 >). It is worth mentioning that the profiles 
of dU /dx and dV/dy are not shown for the ZPG TBL in this figure, as the values of 
dU /dx and dV/dy are negligible in the ZPG TBL in comparison to the present flow. 
To illustrate the role of the mean strain rates on the vortex inclination, a simplified 
inviscid analysis is presented here. The mean strain rate tensor may be expressed as 
follows 

Sij = 2 [dUi/dxj + dUj/dxi] (5.i; 
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Figure 5.36: Variation of velocity gradients through the boundary layer at different 
streamwise positions: a) mean streamwise contraction rate, dU/dx scaled by Uzs/8, 
b) mean wall-normal extension rate, dV/dy scaled by Uzs/8 (One symbol out of 2 for 
clarity). 

If for a two-dimensional flow dV/dx is neglected, equation 5.1 becomes 

where 

Sij — 
dU/dx \dU/dy 
\dU/dy dV/dy 

= ~2dU/dy a 1 
1 b 

(5.2) 

a = 
dU/dx 
kdU/dy and b = 

dV/dy 
\dU/dy 

Now, the vorticity equation can be expressed as 

Duij to. 
= LûjSij ± V 

Dt 3 13 dxjdxj 
(5.3) 

Some simplifications are now made. First, viscous diffusion is neglected. Second, 
only the mean values of the strain rate component (equation 5.2) are considered. Third, 
dV/dx is assumed negligible as mentioned before. Finally the analysis is restricted to 
a vortex tube with only two components of vorticity: UJX and u)y. Based on these 
assumptions equation 5.3 can be expressed as follows 
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Dujx dU l d U 
~ D T - U x ~ d x ~ + ^ [ 2 ~ d y ] 

Du y A 9 U . dV 
- m = U À 2 - d y ) + U J y - d y -

(5.4) 

or 

D u x . . 1 dU 

(5.5) 
Du y . , 1 9 / 7 
"ÔT = [<* + * * ] ââf 

This ordinary differential equation system has a solution in the form 

UJ = C!XieAlt + c2x2eA2t (5.6) 

where Ai and X2 are the eigenvalues of the mean strain rate tensor and Xi and x 2 are 
eigenvectors corresponding to Ai and A 2 respectively. 

Figure 5.37 shows the variations of a, the ratio of the mean streamwise contraction 
rate and the mean shear rate, and b, the ratio of the mean wall-normal extension rate 
and the mean shear rate, in the ^-direction, a and b are roughly constant with respect 
to y /8 in the range 0.2-1 as shown in this latter figure. The values presented in table 
5.6 are the average values of a and b in the range 0.2 to 1 of y/S. If a and b are zero or 
equal (same sign and value), then the vortex tube is inclined at 45°. In the present flow, 
a and b have approximately the same absolute values but different signs as presented in 
table 5.6. Positive dV/dy tends to stretch the structures in the wall-normal direction 
and negative dU /dx decelerates the structures and compresses them in the streamwise 
direction. So, more inclined hairpin vortices are expected when the values of a and 
b increase. The vortex tube angles obtained with this simplified inviscid analysis are 
49.0°, 51.6° and 53.9° for the first, second and third streamwise positions respectively 
in comparison to about 45° for the canonical flows. Since the velocity gradients (dU/dx 
and dV/dy) are negligible within the upper region of ZPG TBL, the values of a and b 
are also negligible compared to their values in the APG TBL. So, hairpin vortices are 
therefore expected to be more inclined in the APG TBL in comparison to the upper 
region of ZPG TBL. In other words, tilting and wall-normal stretching of the legs and 
necks of the hairpins is more important in APG TBL, leading to more inclined hairpins. 
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Figure 5.37: Variation of a and b parameters in wall-normal direction at different 
streamwise positions (one symbol out of 2 for clarity). 

a b Q 

x = 1128 mm -0.145 0.139 49.0 

x = 1285 mm -0.227 0.231 51.6 

x = 1509 mm -0.285 0.304 53.9 

Table 5.6: The average values of the mean strain rate ratios a and b and the vortex 
tube angle calculated via the simplified two-dimensional inviscid analysis. 

Since the most downstream hairpins in a hairpin packet are also normally the older ones, 
the increased titling and stretching may also imply that the growth angle of the packet 
should be larger. This latter effect is explained in section •J..3..J. 

Although, from the inviscid analysis, it is expected that the neck angle of hairpin 
vortices increases slightly in the streamwise direction of APG TBL, the experimental re­
sults show roughly the same values of ensemble average of a for all streamwise positions 
(table 5.5). Moreover, the average hairpin neck angles obtained from the PIV database 
are much higher than the vortex tube angles calculated via the inviscid analysis (67° vs. 
50°). This significant difference between the results shows that the hairpin inclinations 
can be caused by the shape of real hairpins as the upper neck part inclination is only 
measured in the present study. It is worth recalling that regarding the form of real 
hairpins, the neck takes a near vertical orientation near the head while the legs take a 
more conventional angle. Second, the dynamic complexity of hairpin vortices changes 
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the form and orientations of hairpins. Finally, the instantaneous flow and complexity 
of turbulence also affects the turbulence structures. 

Angle of Inclined Shear Layer 

It is worth recalling that a stagnation point flow occurs when a second-quadrant ejec­
tions (Q2, u' < 0, v' > 0) encounters a fourth-quadrant sweep (Q4, u' > 0, v' < 0) 
of higher-speed fluid moving toward the back of the hairpin (see figures 5. ! and 5.2). 
Based on the measurement technique of ISL mentioned in section 5.3.1, the ISL angle, 
P, (figure 5.38) is measured with a random uncertainty of about ±6°. 

The probability density function and the ensemble average of ISL angle, P, are 
shown in figure 5.38 and table 5.7 respectively. For both flows (ZPG TBL and APG 
TBL), the range of ISL angles vary from 0° to 90° with a mean of about 40° for the 
lower region and 0° to 90° with a mean of about 40°-50° for the upper region. Figure 
5.39 shows the ensemble average of P as a function of wall-normal distance (y/8). It is 
worth mentioning that the population of hairpin vortices is not constant in wall-normal 
direction as shown in figure 5.22. Although it is hard to interpret the differences of 
P in this latter figure as the differences of P at different heights are not large when 
compared to the intervals of random uncertainty, it seems that the ISL angle increases 
slightly with increasing distance from the wall in all cases. If this is the case, then 
this difference can probably be explained by the nature of the fourth-quadrant (Q4) in 
different regions. Since the inclination of Q2 events (a + 90°) remains constant in the 
present flow and even slightly decreases with wall distance in the ZPG TBL case, it can 
be supposed that the high-speed regions are more inclined near the wall, resulting in 
less inclined ISL, and more horizontal far from the wall, resulting in more inclined ISL. 
On the other hand, despite differences of the neck angle between the APG and ZPG 
turbulent boundary layers in the upper region, the ISL has roughly the same inclination 
in both APG and ZPG turbulent boundary layers. This is the case in both lower and 
upper regions of these flows. 

Adrian and co-workers proposed that the neck of hairpin vortex signatures is usually 
more inclined than ISL. This scenario has been substantiated by the direct experimental 
observations of Adrian et al. (2000). This scenario is also confirmed by our results. In 
the upper region, the ensemble average of a and P show that the neck is inclined about 
20° more than the ISL in the APG TBL and around 14° more in the ZPG TBL. The 
higher difference of value between the neck and ISL angles for the APG TBL (20° vs. 
14°) is because of the higher value of a for the present study compare to ZPG TBL 
(67° vs. 60°), while the ISL angle is approximately the same in both flows as previously 
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Figure 5.38: Probability density functions of average of ISL angle for hairpin vortices 
within the hairpin packets at all streamwise positions and ZPG TBL: a) lower region 
where y/8 < 0.2, b) upper region where y/S > 0.2. 

(P) ± Px ff0 

ZPG TBL y/S < 0.2 38 ±3.2 16.1 
y/8 > 0.2 46 ±1.7 16.2 

x = 1128 mm y/8 < 0.2 38 ±2.3 17.1 
y/8 > 0.2 49 ±1.90 18.6 

x = 1285 mm y/8 < 0.2 38 ±4.2 21.1 
y/8 > 0.2 46 ±1.8 20.2 

x = 1509 mm y/S < 0.2 - -

y/S > 0.2 44 ±1.5 18.0 

Table 5.7: Ensemble average of ISL angle of hairpin vortices associated with hairpin 
packets at different streamwise positions and ZPG TBL. ap is the standard deviation 
of ISL angle distribution in figure 5.38. 
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Figure 5.39: Ensemble average of ISL angle P as a function of y/8 for hairpin vortices 
within the hairpin packets at all streamwise positions and ZPG TBL. The bars represent 
random uncertainty. Each point is an average over an interval of 0.24 of y/S in region 
y/8 = 0.04 — 1.00. The points are at the center of the intervals. The error bars indicate 
the random uncertainty which is calculated based on the number of realizations in each 
interval. 



Chapter 5. Hairpin Vortices and Packets 161 

mentioned. 

5.3.3 Hairpin Packet Parameters 

The parameters associated with hairpin packets are presented in this section. These 
parameters are streamwise spacing and growth angle. It is important to recall that 
there is no information for the inferior region (y/8 < 0.2) at the last streamwise position 
(x = 1509 mm) as mentioned in section 3.5.1. 

Streamwise Spacing 

Figure 5. Hi shows the probability density function of streamwise spacing (Ax/5) for 
the identified hairpin vortex signatures, and table 5.8 presents the ensemble average 
and the standard deviation associated with theses pdfs. The streamwise spacing is 
the streamwise distance between the cores of two neighbour hairpin vortices (see figure 
5.13). 

fl A ZPG TBL 
/ I - - fl - - x= 1128-1185 mm 

a I m x= 1285-1397 mm 
/ir>Vi °" x=1509-1680mm 

Figure 5.40: Probability density functions of streamwise spacing for all streamwise 
positions and ZPG TBL: a) lower region where y/8 < 0.2, b) upper region where 
y/8 > 0.2. 

The presented pdfs are similar in both lower and upper regions for the APG turbu-
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(Ax/5) ± Px 0Ax (Ax+) 

ZPG TBL y/8 < 0.2 0.190 ±0.017 0.092 380 
y/8 > 0.2 0.204 ± 0.010 0.090 408 

x = 1128 mm y/8 < 0.2 0.138 ±0.008 0.057 117 
y/8 > 0.2 0.145 ±0.006 0.055 122 

x = 1285 mm y/8 < 0.2 0.145 ±0.015 0.074 128 
y/8 > 0.2 0.150 ±0.007 0.074 133 

x = 1509 mm y/8 < 0.2 - - -

y/8 > 0.2 0.126 ±0.005 0.064 -

Table 5.8: Ensemble average of streamwise spacing of hairpin vortices in different 
streamwise positions and ZPG TBL. a^x is the standard deviation of Ax/5 distribution 
in figure 5. 10. 

lent boundary layer. This is also the case for the ZPG TBL. The calculated ensemble 
average of streamwise spacing, (Ax/5), is roughly the same in the lower region and the 
upper region for those flows (see table 5.8). We turn now our attention to the differences 
in the pdfs between the two flows. First, the pdfs of Ax/5 for the ZPG case are shifted 
towards slightly higher values of Ax/5 when compared to the pdfs for the present flow. 
Table 5.8 also provides a clear view that (Ax/5) is larger for the ZPG TBL compared 
to the present flow (0.2 vs. 0.145). Furthermore, the forms of pdfs are not exactly the 
same in these flows. In the ZPG case, the pdf of Ax/5 is slightly wider, higher standard 
deviation, in comparison to the present flow. These results also present that the pdf 
at the last streamwise position is shifted towards lower Ax/5 values when compared to 
the other streamwise positions. Table 5.8 shows that (Ax/5) is indeed lower at the last 
streamwise position compared to the other ones (0.126 vs. 0.145). Finally, there is a 
bump in the pdfs of Ax/5 at Ax/5 « 0.25 for both the ZPG and APG cases. Since 
the hairpin packets are not perfectly aligned in the streamwise direction, as explained 
previously in section 5.2.2, some hairpins may be missed in xy plane measurements. 
This can explain why there is an artificial probability increase at a value of Ax/5 which 
is the double of the most probable spacing. As a result, the average streamwise spacing 
is slightly over-estimated. 

The ensemble average of Ax/5 as a function of y/8 is shown in figure 5. 11. It 
is important to recall that the population of hairpin vortices is not constant in y-
direction as shown in figure 5.22. The streamwise spacing slightly increases in wall-
normal direction for both the ZPG case and the present flow. It is worth mentioning 



Chapter 5. Hairpin Vortices and Packets 163 

0.18 

0.15 

0.12 ­

OO 
0.09 ­

0.06 -

0.03 
­A ZPG TBL 
■B ­ ­ x= 1128­1185 mm 
. . v x= 1285­1397mm 
■O x= 1509­1680 mm 
_ i I i i i I i i i L 

0.2 0.4 0.6 
y/S 

0.8 

Figure 5.41: Ensemble average of streamwise spacing scaled by 8 and associated with 
hairpin heads for different streamwise positions and ZPG TBL. Each point is an average 
over an interval of 0.096 of y/S in region y/8 = 0.04 — 1.00. The points are at the center 
of the intervals. The error bars indicate the random uncertainty which is calculated 
based on the number of realizations in each interval. 

that this tendency should be interpreted with caution as the differences are within the 
intervals of random uncertainty. Nonetheless, the trend is similar for all profiles. So, 
it could be supposed that the streamwise spacing steadily increases in y­direction. In 
other words, the distance of hairpin vortices in streamwise direction increases as they 
move up from the wall. Since the hairpin vortices within a hairpin packet are expected 
to grow upwards in the streamwise direction, it is possible that the older hairpins travel 
slightly faster than the younger ones and that the spacing between hairpins increases 
as these hairpins age. Next, the profile of (Ax/5) for ZPG TBL shows higher values 
of Ax/5 compared to the present flow. Moreover, (Ax/5) decreases in the streamwise 
direction in the present flow. It is worth noting that these differences of (Ax/5) are 
within the intervals of random uncertainty. They are however confirmed by the averages 
of table 5.8. Ax/<5 is therefore affected by pressure gradient. The increase in hairpin 
spacing does therefore not follow the boundary layer coarsening in the adverse pressure 
gradient region. 

The aforementioned differences between streamwise spacing can be caused by differ­

ent parameters of flow and of vortices (i.e. strain rates, hairpin generation and mutual 
repulsion mechanisms and population of symmetric or asymmetric hairpin vortices). 
First, the effects of mean strain rates are described. The gradient of the mean stream­
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wise velocity component in x-direction (dU/dx) increases in absolute value within the 
adverse pressure gradient region as shown in figure 3.31 i. Moreover, this gradient is much 
lower for the ZPG TBL because of the nature of this flow. The streamwise spacing of 
hairpin vortices within a packet is probably reduced by streamwise deceleration dU /dx 
during the generation of the hairpins and during their life once they are generated. 

Furthermore, the effect of swirling strength on the streamwise spacing can also 
be discussed here. Zhou et al. (1999) believed that stronger hairpins generate newer 
ones sooner than weaker hairpins. Moreover, once a hairpin vortex is generated by a 
stronger hairpin, it is pushed far from the parent hairpin, and the streamwise spacing 
would also be increased when the swirling strength increases. In other words, the rate 
of separation between two sequential hairpin vortices could be changed based on Q2 
intensity. So, it is expected that higher strength of Q2 leads to increased streamwise 
spacing when other parameters are the same. Hence, Ax/5 is expected to decrease in 
the streamwise direction, since the swirling strength also decreases in the streamwise 
direction for the present flow albeit only slightly (see figure 1.1 1 ). Finally, the evolutions 
of both symmetric and asymmetric structures were investigated by Zhou et al. (1999) 
in a channel flow. They found that in the asymmetric case the streamwise distance 
between the heads of hairpins are smaller than the streamwise spacing in the symmetric 
case. In the present study, we are not able to distinguish between the symmetric 
and asymmetric hairpins as mentioned before, but it may be possible that asymmetric 
hairpins are densely populated in the present flow. 

Figures 5. 12-a to 5. 12-e show the pdfs of streamwise spacing for the hairpin vortices 
and all prograde spanwise cores. The pdfs of the prograde spanwise vortices indicate 
smaller streamwise spacings than the pdfs for hairpins only. In other words, hairpin 
vortices tend to be further apart from each other than other types of spanwise vortices. 

Growth Angle 

Before discussing and presenting our results of growth angle, it is useful to present the 
method used by Adrian et al. (2000) to measure the growth angle in order to clarify 
the comparison of the results. Adrian and co-workers determined the growth angle 
by fitting a linear curve to the edge of a low momentum zone wherever one occurred, 
independent of the distance from the wall, whereas growth angle corresponds to the 
angle between a line passing through the hairpin heads and the wall as shown in figure 
5. 13 in the present study. Since the hairpin heads are usually aligned at the edge of low 
momentum zones as explained in section 5.2.5, the results acquired using both methods 
should be similar. In addition, the statistical information was gathered based on just 
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Figure 5.42: Probability density functions of streamwise spacing for spanwise and hair­
pin vortices at all streamwise positions: a) in region x = 1128 — 1185 mm for y/8 < 0.2, 
b) in region x = 1128 — 1185 mm for y/S > 0.2, c) in region x = 1285 — 1397 mm for 
y/S < 0.2, d) in region x = 1285 - 1397 mm for y/8 > 0.2, e) in region x = 1509-1680 
mm for y/8 > 0.2. 



Chapter 5. Hairpin Vortices and Packets 166 

positive ramp angle in their work, while the ensembles of the present study contain 
both positive and negative ramp angles (figures 5. 13 and 5. i I). The ZPG results of 
Adrian et al. (2000) are that the mean value of growth angle is 10.5° with the angles 
ranging from 3° to 35°, whereas our results obtained using their database for ZPG TBL 
show that the mean value of growth angle is about 5° (table 5.9) with the angles ranging 
from —45° to 50°. The fact that Adrian and co-workers did not account for the negative 
ramp angles while they are accounted for in the present effort is probably the reason 
for these differences. They also proposed 12° as the mean angle instead of 10.5°, which 
agrees well with the simulations of Zhou et al. (1999). 

The regions of linear growth are a notably frequent feature, while the details of the 
flow patterns are not the same from realization to realization. It is important to mention 
that although simple linear ramp structures were found, various other complex growth 
of hairpin packets have also been observed (figure 5.8). For instance, the hairpin packet 
far from the wall grows upward roughly linearly for hairpins I to P in the streamwise 
direction, whereas the hairpin packet close to the wall has a more complex growth. 
The pdfs of growth angle for APG and ZPG turbulent boundary layers are shown 
in figure 5. 15 and the ensemble average and standard deviation of the ensembles are 
presented in table 5.9. In the ZPG turbulent boundary layer, it was found that the 
hairpin packets grow upwards in the streamwise direction at a mean angle of about 5°, 
with the angles ranging from —45° to 50° with a probability peak around 5° to 10°. In 
the APG turbulent boundary layer, individual packets grow upwards in the streamwise 
direction at a mean angle of approximately 11° with the angles ranging from —25° to 
55° with a probability peak around 10°-15°. It is worth noting that lower angles are 
usually found near the wall. The comparison of the pdfs of growth angle shows that 
the range of variation of growth angle is more important in the present flow compared 
to the ZPG TBL. Since the growth angle is affected by the mean strain rates and the 
latter are more dependent on wall-normal direction in the present flow compared to the 
ZPG TBL, the narrower pdf of growth angle in the ZPG TBL may be related to the 
effect of the mean strain rates. 

Indeed, higher growth angles in the APG turbulent boundary layer are probably 
due, at least partly, to the different mean strain rate environment. The individual hair­
pins are stretched in the wall-normal direction by dV/dy, so the wall-normal distance 
between the head of two neighbour hairpins would also be increased in y-direction. 
Indeed, older hairpins would be stretched more than younger hairpin vortices. In ad­
dition, dU /dx causes the vortices to decelerate, so the streamwise spacing would be 
decreased as explained before. As a result, since dV/dy and dU/dx in the present flow 
are much more important than in the ZPG TBL as discussed before, higher values of 7 
are also expected in the present flow. 
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Figure 5.43: Streamwise wall-normal instantaneous field in region x = 1285 — 1397 
mm, velocity vector field shown using Galilean decomposition as vectors viewed in a 
frame-of-reference convecting at uc = 0.55Ue, vc = 0 (one vector out of 4 in large plot 
for clarity), showing the growth angle for a single realization of a hairpin packet. 

( l )±P x (T-, 

ZPG TBL 4.9 ±2.3 12.5 

x = 1128 mm 11.6 ±2.4 15.4 

x = 1285 mm 11.3 ±1.8 11.6 

x = 1509 mm 11.0 ±1.8 11.3 

Table 5.9: Ensemble average of growth angle at different streamwise positions and ZPG 
TBL. er7 is the standard deviation of 7 distribution in figure 5.15. 
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Figure 5.44: Streamwise wall­normal instantaneous field in region x = 1128— 1185 mm, 
velocity vector field shown using Galilean decomposition (vectors viewed in a frame­

of­reference convecting at uc = 0A6Ue, vc = 0.5314), showing a hairpin packet with 
negative growth angle in x­direction. 
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Figure 5.45: Probability density functions of growth angle for all streamwise positions 
and ZPG TBL. 
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Figure 5.46: Variation of growth angle in wall­normal direction at different streamwise 
positions and ZPG TBL. Each point is an average over an interval of 0.24 of y/8 in 
region y/8 = 0.04 — 1.00. The points are at the center of the intervals. The error bars 
indicate the random uncertainty which is calculated based on the number of realizations 
in each interval. 

Figure 5. HJ presents the ensemble average of growth angle as a function of y/8. It 
is important to mention that the probability event of hairpin packets is not constant 
in wall­normal direction as shown in figure 5.23. Each point in figure 5. Id is computed 
on an interval of 0.24 of y/8, i.e. 0.16 is related to 0.04 < y/S < 0.28, in region 
y/8 = 0.04 — 1.00. The ensemble average of 7 is calculated in each interval to acquire 
one point in this figure. The points are at the center of intervals. The error bars indicate 
the random uncertainty which is calculated based on the number of realizations in each 
interval. The associated height of each packet is taken as the height of the last hairpin 
head in the streamwise direction. The last hairpin in a hairpin packet is usually the 
parent hairpin. 

5.3.4 Hairpin Parameters Before and After Separation 

The purpose of the present section is to study the parameters of hairpin vortices before 
and after the separation point. As mentioned before, the middle of xy plane at the last 
streamwise position, x = 1509 — 1680 mm, is at the separation point (x = 1615 mm). 
It is worth recalling that only PIV data for upper region (y/8 > 0.2) is available at 
this streamwise position. To study the characteristics of hairpin vortices, the xy plane 
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Figure 5.47: Hairpin parameters before and after separation point for y/8 > 0.2. 

is divided into two regions in x-direction. The first part includes the region before the 
separation point, x = 1509-1615 mm, and the second region is in the detachment zone 
(x = 1615-1680 mm). Then, the different parameters of hairpins are calculated for both 
regions separately. Figure 5. 17 and table 5.10 present the obtained results of hairpin 
parameters for both regions, before and after separation point. 

These results show that the hairpin parameters remain essentially the same before 
and after the separation point. The hairpin vortices are not affected by the detachment 
of the flow at least in region just after detachment. Since the results presented are only 
available for the upper region, the recirculating region near the wall is not included. 
Hence, the hairpin structures at the begining of the separated shear layer appear to be 
similar to those just upstream of detachment. 
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Before separation After separation 
mean a mean a 

(Â) -6.0 1.8 -6.0 1.5 
(D/8) 0.008 0.002 0.008 0.002 

(a) 64 16 64 13 

(P) 52 18 50 114 

Table 5.10: Average hairpin parameters before and after the separation point for y/8 > 
0.2. a is the standard deviation of the parameter. 

5.3.5 Two-point Correlations 

Before discussing the results of two-point correlations or linear stochastic estimations 
it is worth noting that all the instantaneous velocity fields at each streamwise position 
are accounted for in the two point correlations, conditionally averaged velocity fields 
and linear stochastic estimations, while only fifty instantaneous velocity fields were 
used to compute the hairpin and hairpin packet statistics of the previous section. In 
addition, all the spanwise vortices are included in the results of the present treatment. 
It is worth mentioning that since the main objective of this work is to explore the 
instantaneous structures of the APG TBL using PIV, this PIV data are less ideal 
for the statistical analysis presented hereafter. The number of instantaneous fields 
(number of realizations) are 1600, 885 and 770 for the first, second and last streamwise 
positions respectively. Since a large number of realizations is needed for good statistical 
convergence of correlations and conditional averages, these are not sufficient even for 
the first streamwise position. Even so, the statistical results are informative as it will 
be seen in the following. 

Since hairpin packet organization is a dominant and robust feature of the present 
flow, the statistics of the flow should be affected by the imprint of these structures. 
However, the imprint of coherent structures can be destroyed in the averaging process 
if variations between instantaneous realizations of packets are large enough. 

The instantaneous imprint of hairpin packet signature in xy-plane was previously 
presented (section 5.2.4) when the measurement plane cross the heads of hairpin vor­
tices (the mid-plane of a hairpin vortex, see figure 5.1-a). In this section two-point 
spatial correlation coefficients between prograde swirling strength and itself (equation 
5.7) are calculated in order to explore the spatial characteristics of hairpin packets. 
Since the hairpin packet organization is a dominant and robust feature of APG TBL, 
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it is expected to see correlated areas of negative swirling strength (associated with pro-
grade vortices) below/upstream and above/downstream of the reference position. The 
population of prograde vortices is approximately constant in y-direction from y/8 = 0.1 
to y/8 = 0.8, so several reference heights are chosen at y/8 = 0.2, 0.3, 0.4, 0.5 and 0.6 
to calculate the correlation coefficient px A . Since large extent dimensions (especially 
in streamwise direction) are required to detect the hairpin packet parameters, the two-
point correlation is calculated in a bounding box of width 1.35 and height 0.35<5 around 
the reference position. 

= (A^(xre/, yreî)Xp
ci(xTeS + rx,y)) .g ? . 

" rms \X r e f , yref ) " r m s \ X r e f ± Tx , y ) 

where A£ms is the root-mean-square of X^. Xp
ci is the swirling strength of prograde 

vortices described in Section 1.3. 

Figure 5. lv presents the two-point correlation coefficient px x at the first streamwise 
position (x = 1128 — 1185 mm) for the reference point at y/8 = 0.5. It is worth 
mentioning that the acquired results at all reference points are similar to this figure 
but are not shown for brevity. This figure shows that the correlation coefficient is 
one (maximum) at the reference point and near zero elsewhere except in special areas 
in both upstream and downstream of the reference point. Although the correlation 
is not well converged, the correlated areas of swirling strength grow upwards in the 
streamwise direction at an angle of approximately 14°. This orientation is similar to 
the average growth angle of hairpin packets (see table 5.9) which is around 11°±2.5°. In 
addition, the mean streamwise spacing between the cores of correlated swirling strength 
clusters is about 0.25, which is approximately equal to the hairpin streamwise spacing, 
Ax/8, presented in table 5.8 (0.145 ± 0.007). Since the two-point correlations is not 
well converged, the presented streamwise spacing here is only a rough estimate. The 
two-point spatial correlation is consistent with the features of hairpin packets observed 
in the instantaneous velocity fields (section 5.2. 1) and the results of Zhou et al. (1996, 
1999) and Adrian et al. (2000). 

5.3.6 Linear Stochastic Estimation 

Statistical evidence of hairpin packets using linear stochastic estimation (LSE) has been 
reported by Christensen and Adrian (2001) in turbulent channel flow and Hambleton et al. 
(2006) in ZPG TBL. They found a series of vortices which are located along an in­
clined line (about 12°) with respect to the wall using the conditionally averaged flow 
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CO 

Figure 5.48: Two-point spatial correlation coefficient between Xd and Xp
t, px x at 

yref = 0.55 at the first streamwise position where the number of sample is 1600. Cut 
off at p. . = 0.3. 

field associated with a prograde vortex. The same question of Christensen and Adrian 
(2001) can be posed here: what is the average fluctuating velocity field associated 
with a single spanwise prograde vortex core (believed to frequently be a hairpin head)? 
Therefore, LSE will be used to estimate the conditional average of the velocity field, 
(u'(x + r) \X^(x) ) where u ' = (u', v') and x = (x, y), given the presence of a prograde 
vortex core. For the case of the streamwise velocity component, the linear estimate can 
be defined as 

(u'(x + r)\Xp
cl(x)) 

(Xp
a(x)u'(x + r ) ) x 

(\Ux)K.(x)) *&(* ) (5.8) 

where XH is signed swirl where Xd < 0 (prograde swirl), u' is the streamwise component 
of instantaneous velocity fluctuation and the angled brackets indicate ensemble average 
over all the available instantaneous fields. This equation allows one to reconstruct the 
average velocity behaviour associated with a given value of Xp

ci(x) at x. To estimate the 
conditionally averaged velocity field given a vortex core it is necessary to compute the 
two-point correlation functions between swirling strength and velocity. The two-point 
correlation between swirling strength and the velocity fluctuation can be defined as 
follows 

Pxu(x + r ) = 
(Xl(x)u'(x + r)) 

XPrms(x)u' rms(x + T ) 
(5.9) 
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where A£ms and u'rms are the root-mean-square of A^ and u' respectively, and other 
parameters as in equation 5.8. In this study, pXn and pXv are calculated from all instan­
taneous velocity fields at each streamwise position (1600. 885 and 770 are the number 
of instantaneous fields for the first, second and third streamwise positions respectively). 
They are therefore not well converged for the last two positions and even for the first 
position. 

Figure 5. 19 illustrates the iso-regions of pXu and of pXv in region x = 1128—1185 mm 
which is associated with the linear stochastic estimation of figure 5.51 i-a. The maximum 
value of correlation functions for both wall-normal and streamwise components occur 
close to the reference point as expected. The contour of zero value of pXu inclined 
in the x-direction separates the regions of negative and positive pXu. pXu is negative 
below this contour and positive above. Additionally the contour of zero value of pXu is 
inclined about 13° with respect to the x-direction which is consistent with the typical 
growth angle of hairpin packets. These characteristics of pXu are consistent with the 
idea that the head of hairpin vortices lie along an inclined line and a region of relatively 
uniform low-momentum fluid is created by the collective induction of the vortices. pXv 

is positive to the left of and negative to the right of the reference position. Moreover, 
the correlated zone below the reference point is bigger than the correlated zone above 
the event location for the streamwise correlation function. Similarly the correlated 
zone is bigger to the left of the reference location than to the right for the wall-normal 
correlation function. As indicated by Christensen and Adrian (2001) these behaviours 
are consistent with the Q2 events induced by the head and legs of hairpin vortices (see 
section 5.2.1). 

Since the conditional average estimation is only a function of unconditional two-
point spatial correlation data, equation 5.8 allows to reconstruct the average velocity 
behaviour associated with a given value of ACj at x=(xref,yref). It is worth noting that 
the conditionally averaged velocity field would be the same for all values of Aci < 0, 
because the values of the velocity vectors within a given field estimate are only amplified 
or attenuated by the chosen value of Ac;. 

The conditionally-averaged velocity field obtained via the linear stochastic estimate 
given a negative swirl event (prograde core) at y/8 = 0.5 is shown in figure 5.50. It is 
worth mentioning that all vectors were set to unit magnitude by normalizing each with 
its magnitude because the stochastically estimated velocity field is strongest around 
the reference point. Thus the velocity vectors tend to be very small away from the 
reference point. These direction velocity fields in the xy plane reveal general features 
similar to those presented in Christensen and Adrian (2001) for turbulent channel flow 
and Hambleton et al. (2006) for a ZPG TBL. As expected, a strong prograde swirl is 
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Figure 5.49: Two­point correlation coefficients between velocity and swirling strength 
in region x = 1128 — 1185 mm for yref = 0.55, a) pXu, b) pXv. 
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centered at the condition point (shown by a cross). This swirling motion is accompanied 
by swirling motions that occur both upstream and downstream of the condition point, 
except for x = 1285 — 1397 mm where no swirling motion exists downstream. This 
exception could be due to the lack of statistical convergence. The swirling motions are 
smeared both upstream and downstream of the reference point as shown in figure 5.50. 
This smeared appearance is probably due to the variation of the relative position of the 
vortices naturally varies slightly from packet to packet. In other words, if the relative 
position of vortices was fixed from packet to packet, the swirling motions would appear 
much more circular. 

The stochastically estimated velocity fields shown in figure 5.50 also illustrate a 
prograde core as the head of hairpin and a Q2 event just upstream and below the head. 
So this swirling motion would be consistent with the hairpin vortex signature. Com­
paring the results of the stochastically estimated velocity fields of figure 5.50 and the 
instantaneous fields shown in figures 5.1 ! and 5. 13 and the results of two-point spatial 
correlations shown in figure 5.18 present a clear qualitative similarity between them. 
The correlated vortices within the conditionally averaged pattern lie along a line which 
is inclined from the wall at an angle of about 13° for the first and second streamwise 
positions and 20° for the last one. These angles are approximately equal to those found 
via the hairpin detection method (table 5.9) except at the last streamwise position. The 
major difference is that the vortex spacing is not the same in stochastically estimated 
field. The streamwise spacing is about 0.3-0.45 for the stochastically estimated velocity 
fields, while the mean value of Ax/5 is about 0.155 (table 5.8). 

5.3.7 Conditionally-Averaged Velocity Fields 

Before presenting the results of conditionally-averaged velocity fields, it is useful to look 
at the measurement plane and its prospect association with a hairpin vortex signature. 
For this reason following Natrajan et al. (2007), a hypothetical model of an omega-
shaped hairpin vortex is shown in figure 5.51 together with two measurement planes. 
It is important to note that the hairpin vortices are not necessarily always of an omega 
shape. If the measurement plane crosses the hairpin vortex at its center, a velocity 
pattern like figure 5.2 should usually be observed as explained in section 5.2.1. If the 
measurement plane crosses the neck of the hairpin a prograde vortex above and down­
stream of the retrograde core would be detected as shown in figure 5.51. To investigate 
if such scenario occurs frequently, conditionally-averaged velocity fields associated with 
the presence of a retrograde vortex core are computed. Since the largest population of 
retrograde vortices occurs in the range 0.15 < y/8 < 0.35 (figure 1.13), the reference 
height for the calculation of the conditionally-averaged velocity fields was chosen at 
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0.2 0.3 0.4 0.5 

Figure 5.50: Direction field from linear stochastic estimation of velocity based on neg­
ative signed swirl at y/8 = 0.5 ( ( u ' ( x + r)\Xd(x))) , a) x = 1128 - 1185 mm, b) 
x = 1285 — 1397 mm, c) x = 1509 — 1680 mm. Vectors have been normalized to 
unity by their respective magnitudes to highlight swirling motions away from the event 
location. 
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Omega vortex 

Measurement planes 

Figure 5.51: Schematic of an omega-shaped hairpin vortex signature which is sliced 
through one shoulder by streamwise-wall-normal measurement planes. R.V., retrograde 
vortex, and P.V., prograde vortex. Adapted from schematic of Natrajan et al. (2007). 

y/8 = 0.25. The conditional-averages of velocity are done within a bounding box of 
width 0.225 and of height 0.25 centered at each identified retrograde vortex core located 
at y/8 = 0.25. The advection velocity of the vortex is removed from the instantaneous 
velocity field within the local bounding box, yielding the local velocity field in the mov­
ing reference frame of the retrograde core. The decomposed velocity fields (u — uc and 
v — vc) within the bounding box are sorted into four different ensembles based on the 
orientation of its closest prograde core. The angular orientation of the closest prograde 
core is 0° < a < 90° for the first quadrant, 90° < a < 180° for the second quadrant, 
180° < a < 270° for the third quadrant and 270° < a < 360° for the fourth quadrant. 
Then the conditional ensemble averages are calculated for each orientation subset. 

Figures 5.52-5.54 illustrate the conditionally-averaged velocity fields for retrograde 
vortices which are centered at y/8 = 0.25 for all streamwise positions. The subplots 
(a) in figures 5.52-5.54 include the conditionally-averaged velocity fields for which the 
closest prograde vortex to the identified retrograde core is in the first quadrant. These 
subplots reveal a well-defined prograde vortex above and downstream of the retrograde 
spanwise vortex. It is important to mention that the convection velocities of the pro-
grade and retrograde vortices are not exactly the same within the bounding box and 
that these vortices change in shape and location (prograde one) from one realisation to 
another. Therefore, the conditionally-averaged prograde core can appear as a deformed 
vortex. In order to further clarify the averaging effect, conditionally-averaged swirling 
strength is also computed for each quadrant. For instance, figure 5.55-a corresponds 
to figure 5.52-a. It is clearly seen that the maximum position of conditionally-averaged 
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Figure 5.52: Conditionally-averaged velocity fields given a retrograde vortex at y/8 = 
0.25 for which its closest prograde vortex is located in quadrants: a) one, b) two, c) 
three and d) four, in region x = 1128 — 1185 mm. 

swirling strength is above and upstream of the revealed prograde core in the velocity pat­
tern. The orientation angle of Xmax is about 66° (6 « 66°). This orientation is roughly 
consistent with the average of neck angle noted in table (5.5). The conditional-averages 
are also consistent with the model shown in figure 5.51. Moreover, similar velocity 
signatures are observed in many instantaneous velocity fields at different heights. For 
instance figure 5.56 shows two examples of similar events at y/8 ~ 0.5. Another feature 
is the distance between the conditionally-averaged prograde and retrograde cores. This 
distance is about 0.075. The found distance, 0.075, is consistent with the results of 
Natrajan et al. (2007) for the ZPG TBL, 0.0585. 

In the quadrants two and four (the subplots b and d in figures 5.52-5.54), the 
conditionally-averaged velocity fields are devoid of prograde vortices. It can be sup­
posed that most prograde vortices are randomly orientated with respect to their closest 
retrograde neighbour in the second and fourth quadrants. These results confirm the 
expected velocity pattern associated with the model of hairpin vortex signature shown 
in figure 5.51 and they are also consistent with the results reported by Natrajan et al. 
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Figure 5.54: As figure 5.52 but in region x = 1509 — 1680 mm. 
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Figure 5.55: Conditionally­averaged velocity fields given a retrograde vortex at y/8 = 
0.25 for which its closest prograde vortex is located in quadrants a) one and b) three 
and iso­regions of conditionally­averaged swirling strength, in region x = 1128 — 1185 
mm. 
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Figure 5.56: Examples of prograde vortex (labeled P) in first quadrant with respect 
to the retrograde core (labeled R): a) in region x = 1128 — 1185 mm, uc = 0.80Ue, 
vc = —1.314, b) in region x = 1285 — 1397 mm, uc = 0.61Ue, vc = 0.5514, (one vector 
out of 4 in large plots for clarity and iso-regions of swirling strength are superimposed). 
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(2007) for the ZPG TBL. 

Based on the hypothetical model, a well-defined prograde vortex above and down­
stream of the retrograde spanwise vortex (subplots a in figures 5.52-5.54) would be 
caused by the of omega-shaped hairpin vortices as they occur frequently everywhere. 
It is important to note that this prograde vortex either is the effect of presence of 
hairpins or the effect of other structures. Furthermore, a well-defined prograde vortex 
also occurs in quadrant three, below and upstream of the reference point, at the first 
streamwise position as shown in figure 5.52-c. According to Natrajan et al. (2007), this 
prograde vortex can be explained by two possible scenarios. First, this prograde vortex 
is the imprint of detached ring-like structures. When an omega-shaped hairpin vortex 
travels downstream, the head and shoulders of this hairpin move up and expand, while 
its legs squeeze in the inner region. This may leads to detachment of its omega por­
tion (legs detach from the head and shoulder), and the detached omega portion may 
form a ring-like structure. Furthermore, this pattern, retrograde/prograde pairs in the 
quadrant-three orientation, would be also represented two different vortical structures. 
For instance, if a hairpin vortex exists below and downstream of an omega-shaped hair­
pin structure within a hairpin packet, this pattern (retrograde/prograde pairs in the 
quadrant-three orientation) can occurr. In this case, the retrograde vortex would be a 
part of the omega-shaped hairpin structure and the prograde vortex would represent 
the head of the upstream hairpin vortex. In the second and third streamwise positions, 
there is not a well-defined prograde vortex in the quadrant three. This could be due to 
the lack of statistical convergence, or these scenarios (ring-like structures and existence 
of a hairpin vortex below and downstream of an omega-shaped hairpin structure) are 
less frequent in these locations. 

Even if retrograde vortices are often related to prograde vortices the inverse is not 
expected. For instance, this is not the case when the measurement plane crosses 
the mid-plane of a hairpin vortex (figure 5. i-a). The expected velocity pattern in a 
streamwise/wall-normal cross-section for the hairpin vortex signature is mentioned in 
section 5.2.1. In fact, isolated prograde structures are expected most of the time since 
they outnumber retrograde vortices (see section 1.6.1). To explore this idea, similar con­
ditional averages are also computed around identified prograde vortices instead of retro­
grade vortices. Figures 5.57-5.59 illustrate conditionally-averaged velocity fields given 
a prograde vortex at y/S = 0.25. The subplots a to d are related to closest retrograde 
vortex which is oriented in quadrant one to four relative to prograde vortex at event 
location. The conditionally-averaged velocity fields are devoid of retrograde vortices. 
Any preferred orientation of a retrograde vortex with respect to a prograde vortex does 
not therefore occur frequently enough to leave an imprint in the conditionally-averaged 
velocity fields. These results are consistent with those of Natrajan et al. (2007) for the 
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Figure 5.57: Conditionally­averaged velocity fields given a prograde vortex at y/8 = 
0.25 for which its closest retrograde vortex is located in quadrants: a) one, b) two, c) 
three and d) four, in region x = 1128 — 1185 mm. 

ZPG TBL. 

5.4 Discussion of Results 

Hairpin vortex signatures are found throughout the lower and upper regions for all 
streamwise locations and for all of the PIV realizations. In addition the hairpin vortex 
signatures generally appear in groups of hairpins, with individual hairpins within one 
group traveling at nearly the same convection velocity, so that they form a traveling 
packet of hairpin vortices. Since hairpin packets propagate with small velocity disper­

sion, the streamwise spacing and arrangement of the individual hairpins within a packet 
remain coherent for long times. It is found experimentally that packets of hairpin vor­

tices sometimes extend over a length of 25 and contain 3 to 12 vortices. It is worth 
recalling that the number of hairpins per packet is usually underestimated in xy­plane 
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Figure 5.58: As figure 5.51 but in region x = 1285 — 1397 mm. 
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because the hairpin vortices within a packet are not typically aligned in the streamwise 
direction and are sometimes twisted at small or large angles in the spanwise direction 
(see section 5.2.1). 

Moreover, it can be drawn from the present experimental observations that despite 
the presence of a very different pressure environment in this flow in comparison to 
the ZPG TBL, the gross features of the hairpin vortices and hairpin packets remain 
essentially the same and qualitatively agree well with available results for canonical 
wall-bounded turbulent flows even as separation is approached. 

Now we turn our attention to the differences between the characteristics of hairpin 
vortices and hairpin packets in those flows. As found and explained in sections 5.3.2 
and 5.3.3, the neck and growth angles are larger in the APG TBL than in the ZPG TBL 
(67° vs. 60° for a and 11° vs. 5° for 7). These differences can probably be explained 
by the fact that the mean strain rates are different in those flows. The absolute values 
of the mean velocity gradients, dU /dx and dV/dy, are more important in the upper 
region of APG TBL than in that of a ZPG TBL. Hairpin vortices are more stretched 
when dV /dy increases. This is probably why, the neck angle is higher in the present 
flow in comparison to the ZPG TBL. Furthermore, the hairpin vortices are decelerated 
when -dU/dx increases. Two parameters of hairpin packets, Ax/5 and 7, are affected 
by this phenomenon. First, the streamwise spacing would become shorter for higher 
value of -dU/dx because of decelerating effect. In fact, when the effect of the streamwise 
and wall-normal velocities gradients (-dU/dx and dV/dy) becomes more pronounced, 
the hairpin vortices are increasingly stretched in the wall-normal direction, while the 
spatial streamwise spacing in the streamwise direction between them decreases. It is 
important to mention that the streamwise spacing may also be affected by swirl intensity 
and asymmetric/symmetric population of hairpin vortices. The stretching of hairpins 
in y-direction and decrease spatial spacing in x-direction can effect on hairpin packet 
inclination (growth angle). Moreover, it was found that the neck angle is approximately 
constant in wall-normal direction for the present flow, whereas it decreases slightly on 
the ZPG turbulent boundary layer (figure 5.35). This result contradicts the result 
of Adrian et al. (2000) that believed the neck angle increases with increasing distance 
from the wall. In fact, Adrian and co-workers believe that the head takes a near vertical 
orientation in the upper regions of the boundary layer, while near the wall it takes a 
more conventional angle. 

Although the neck angles increase with the effect of the adverse pressure gradient, 
the ISL has roughly the same inclination in both APG and ZPG turbulent boundary 
layers. Moreover, the ensemble average of p is larger in the upper region (table 5.7) 
than in the lower region. It can be because of the nature of sweep, Q4, events in 
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different regions, as the ISL angle is affected by the Q4 inclination. It can be supposed 
that the high-speed regions are more inclined near the wall (resulting in lower values 
of P) and more horizontal far from the wall (resulting in higher value of P). Finally, 
the inclination angle of the neck of hairpin vortices is found to be larger than the ISL 
angles. This result is consistent with the scenario proposed by Adrian et al. (2000). 

The swirl intensity of hairpin heads scaled by Uzs/8 is slightly lower in APG TBL 
compared to the ZPG TBL, especially close to the wall. In addition, it is lower for the 
last streamwise position in comparison to the other ones for the present flow. Another 
feature is the form of the profile of (A) 8/Uzs in y-direction for those flows. In the 
ZPG case, (Â) 8/Uza is maximum near the wall and monotonically decreases in wall-
normal direction, while (Â) 8/Uzs has a maximum value around y/S = 0.5 — 0.6 and 
then decreases near the wall. Such behaviours are consistent with those of the Reynolds 
stresses as shown in figure 3.29. The link between hairpin vortices and the Reynolds 
stresses and turbulence production is further discussed in chapter 6. 

Besides the effect of dU /dx, the decrease of the streamwise spacing can also be 
related to the swirl intensity as previously mentioned. Zhou et al. (1999) found that 
stronger hairpins, hairpins with higher swirl intensity, generate newer ones sooner than 
weaker hairpins. Furthermore, the newly generated hairpin would be faster repelled 
because of stronger vortex induction. The streamwise spacing would also be affected by 
the swirl intensity effect as the swirl intensity is lower at the last streamwise position 
of the present flow than in the first one. For the same reasons Ax/5 is higher for the 
ZPG TBL compared to the present flow. The diameter of hairpin heads scaled by 8 
was also found to be bigger in ZPG TBL (table 5. 1), but see chapter 0 regarding the 
effect of mesh width and interrogation window width on the diameter of vortices. The 
acquired results also show that D/8 is slightly smaller at the last streamwise position 
in comparison to other ones for the present flow. It means that the size of vortices 
are affected by pressure gradient, at least near the detachment point. As the mean 
flow evolves rapidly in this strong APG TBL, especially near the separation point, it 
is possible that the turbulent structures respond with a certain delay to the changes of 
the mean flow. 



Chapter 6 

Conclusions and Recommendations 

In this study, PIV data are taken in streamwise/wall-normal planes of an adverse-
pressure-gradient turbulent boundary layer at three streamwise positions to study the 
turbulence structures in the outer region. These positions go from a position near the 
pressure peak up to the separation point in order to study the evolution of the turbulence 
structures in the adverse-pressure-gradient zone. The last streamwise station covers the 
position of detachment of the boundary layer. The principle contribution of the present 
study is the detailed characterization of the spanwise vortices and the hairpin vortices. 
The vortices are detected using the local criteria based on ACj proposed by Zhou et al. 
(1999). 

Inspection of the contour plots of swirling strength reveals that prograde and ret­
rograde vortex cores densely populate the entire boundary layer. The hairpin vortices 
and hairpin packets are also found throughout the boundary layer in the adverse pres­
sure gradient zone. The evidence presented here is believed to be the first experimental 
study that offers strong quantitative support for the existence of hairpin vortices in a 
strong adverse-pressure-gradient turbulent boundary layer at high Reynolds number. 

There are several similarities between the results obtained for the present flow and 
the available results for the canonical wall-bounded turbulent flows. A primary con­
clusion drawn from the present experimental observations is that despite the presence 
of a very different pressure environment in this flow in comparison to the ZPG TBL, 
the gross features of the spanwise vortices, hairpin vortices and hairpin packets re­
main essentially the same in the outer region (y/8 > 0.2) and qualitatively agree well 
with available results for canonical wall-bounded turbulent flows even as separation 
is approached. Like in many recent PIV studies in ZPG TBL, hairpin vortex signa­
tures frequently occur in groups. In fact, the APG turbulent boundary layer contains 
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a collection of randomly located hairpins and hairpin packets. Since hairpin packets 
propagate with small velocity dispersion, the streamwise spacing and arrangement of 
the individual hairpins within a packet remain coherent for long times. As in the ZPG 
TBL case, it is found that packets of hairpin vortices sometimes extend over a length 
of 25 and contain 3 to 12 vortices in this study. It is worth recalling that the number 
of hairpins per packet is usually underestimated in xy-plane measurements because the 
hairpin vortices within a packet are not perfectly aligned in the streamwise direction. 

The wall-normal trends of probability of occurrence of spanwise prograde vortices 
reveal that the largest populations of prograde vortices occur near the wall with a sharp 
decrease as one moves away from the wall. In addition, near the wall, this probability 
has higher values in the ZPG TBL compared to the present flow, and it also decreases 
in the streamwise direction of the present flow. In the upper region, the probability 
continues to decrease monotonically for y/8 > 0.1 in ZPG case, but at a much slower 
rate than near the wall. This is also the case for the first streamwise position of the 
present flow, but at a slower rate than the ZPG TBL, while this trend changes for 
the other two locations. The probability of occurrence of prograde vortices slightly 
increases in the upper region, with a maximum around y/S = 0.6 — 0.7 in the last two 
streamwise locations. Furthermore, contrary to the near wall trend, this probability 
increases slightly in the streamwise direction within the upper region of the present 
flow. In contrast, the probability of occurrence of retrograde vortices is small and very 
similar for both flows. The wall-normal trends of probability of occurrence of hairpin 
vortices are roughly similar to those of prograde vortices but they are more pronounced. 
It means that the probability of occurrence of hairpins, close to the wall, decreases in the 
streamwise direction of the present flow. Additionally, this probability decreases with 
distance from the wall for the ZPG TBL and the first streamwise position of the present 
flow, while it increases and has a maximum in the upper region for the last location. 
The probabilities of occurrence of spanwise vortices and hairpins are therefore affected 
by the pressure gradient. The maximum population of these vortices shifts from near 
the wall to the outer region when the boundary layer is subjected to an adverse pressure 
gradient. 

The forms of the probability density functions of swirling strength and vortex 
average swirl intensity of the spanwise vortices are very similar to those found by 
Wu and Christensen (2006) in a ZPG TBL. In addition, an astonishing outcome is 
that they remain fairly similar at the different streamwise locations. It means that 
although the vortices change in size and swirl intensity in absolute terms, the distri­
butions of the swirling strength normalized by the standard deviation of the distribu­
tion are almost unaffected by the varying strong adverse pressure gradient conditions. 
Wu and Christensen (2006) also found that the probability density functions of the 
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swirling strength of spanwise vortices display both Reynolds-number and flow insensi-
tivity. Therefore, the shape of the distributions of swirling strength of spanwise vortices 
are almost independent of y, Reynolds number, flow type and pressure gradient. Con­
trarily to the swirling strength scaled by its root-mean-square, the probability density 
functions of swirl intensity scaled by the Zagarola-Smits time scale, X8/Uzs, for both 
spanwise vortices and hairpin vortices are affected by the pressure gradient. The pdfs 
of X8/Uzs of the hairpin heads are broader for the ZPG TBL case. The wall-normal 
trends of (Â) 8/Uzs indicate that the swirl intensity of hairpin heads has higher value in 
the ZPG case in comparison to the present flow. The swirl intensity also decreases in 
the streamwise direction of the present flow except at the second streamwise position 
which is slightly lower than the last location. This exception may be due to the effect 
of spatial resolution on swirl intensity as the spatial resolution at the second stream-
wise position is slightly lower than the other ones. The shapes of the profiles are also 
different. In the ZPG TBL, (A) 8/Uzs is maximum near the wall and monotonically 
decreases in wall-normal direction, while for the present flow it increases in wall-normal 
direction up to y/8 = 0.5 — 0.7 and then decreases. In addition (A) S/Uzs decreases in 
the streamwise direction in the region below y/8 = 0.5 — 0.7 while it remains approx­
imately constant above that region. Similar behaviour is also found for all spanwise, 
prograde and retrograde, vortices. Finally, higher swirl intensity for the hairpin heads 
than the prograde spanwise vortices was found, which is consistent with the results of 
Haidari and Smith (1994) and Zhou et al. (1999). 

It is found that the size of the vortices scales well with boundary layer thickness, 5, 
except near the wall for both spanwise and hairpin vortices. The diameter of vortices 
decreases near the wall, for y/8 < 0.1, while it is roughly constant for y/8 > 0.1. 
Although the results show higher diameter of vortices scaled by 5 for the ZPG TBL in 
comparison to the present flow, these differences could be due to the effect of mesh width 
and interrogation window width on the size of vortices. However, taking into account 
these effects, it is found that the diameter of vortices scaled by 5 decreases slightly in 
the streamwise direction of the present flow. Since the mean flow evolves rapidly in this 
strong APG TBL, it is therefore possible that the turbulent structures respond with a 
certain delay to the changes of the mean flow. As a result, the increase in size of the 
vortices in the streamwise direction does not follow the boundary layer coarsening in 
the adverse pressure gradient region. Moreover, the average diameter of all prograde 
spanwise vortices is smaller than that of the hairpin heads. Hence, the hairpin vortices 
associated with hairpin packets are usually the largest vortical structures in boundary 
layers. 

Turning our attention to the orientations of individual hairpins, the average inclina­
tion angle with respect to the wall of the upper neck part of hairpins is about 70° and 
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60° for the present flow and ZPG TBL respectively. These values are consistent with 
the results of Zhou et al. (1999). It is worth recalling that a characteristic tilt of 45° is 
sometimes quoted for hairpin inclination for canonical turbulent wall flows. This angle 
value represents usually a rough estimate for the complete hairpin (legs and necks) 
orientation while the present results are obtained from direct measurements and they 
apply only to the upper neck part. The aforementioned hairpin inclination differences 
between the ZPG TBL and the present strong APG flow (70° vs. 60°) can probably 
be explained by the fact that the mean strain rates are different in both flows. The 
velocity gradients -dU/dx and dV/dy are much more important in the outer region of 
a strongly decelerated flow than in that of a ZPG TBL. Consequently, tilting and wall-
normal stretching of the legs and necks of the hairpins should also be more important in 
the present flow in comparison to ZPG TBL, leading to more inclined hairpins. Finally, 
the results show that the neck angle is approximately constant in y-direction for the 
present flow, whereas it decreases slightly in the ZPG turbulent boundary layer. This 
latter result contradicts the result reported by Adrian et al. (2000) that believed the 
neck angle increases with increasing distance from the wall. Adrian and co-workers be­
lieve that the head takes a near vertical orientation in the upper regions of the boundary 
layer, while near the wall it takes a more conventional angle. 

The streamwise spacing between two vortex cores, in both cases of spanwise vortices 
and hairpin heads, is also affected by pressure gradient. The acquired results show 
smaller streamwise spacing when scaled by 8 in the present flow compared to the ZPG 
TBL. Moreover the streamwise spacing decreases in the streamwise direction for the 
present flow. Since -dU/dx is much more important in the outer region of a strongly 
decelerated flow than in that of a ZPG TBL, the hairpin vortices probably decelerate 
in the APG TBL case as they travel downstream. In other words, the streamwise 
distance between neighbour hairpins would decrease when the effect of -dU/dx is more 
important. Furthermore, streamwise spacing may be affected by swirl intensity (in 
relation to hairpin generation and mutual repulsion mechanisms) and the proportion of 
asymmetric hairpins as discussed in section 5.3.3. 

Similar to the neck inclination of the individual hairpins, the growth angles of hairpin 
packets are also higher in the present APG TBL when compared to ZPG TBL (11° vs. 
5°). Since the longer, usually most downstream hairpins in a hairpin packet are also 
normally the older ones, the increased titling and stretching of hairpins in the APG 
TBL also implies that the growth angle should be larger. 

Since hairpin packets are commonly observed in the instantaneous realizations of the 
present flow, conditional statistics of the flow should be affected in some manner by the 
imprint of hairpin vortex signatures. The results of conditionally-averaged velocity fields 
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are consistent with the omega-shaped hairpin vortex signature. The orientation between 
the retrograde/prograde vortices in the imprint of conditionally-averaged velocity fields 
is approximately equal to the neck angle of hairpin vortices. Moreover, both two-point 
spatial correlations between the swirling strength of prograde/prograde vortices and 
linear stochastic estimation reveal also imprints which are qualitatively similar to the 
hairpin packets found in the instantaneous fields. For instance, the velocity pattern 
obtained by linear stochastic estimation reveals a group of prograde vortices which 
lie along a line which is inclined from the wall at an angle approximately equal to 
the measured growth angles of the hairpin packets. Several enhanced correlated areas 
of two-point correlations between swirling strength of prograde/prograde vortices also 
grow upwards in the streamwise direction at an angle approximately equal to the average 
growth angle of the hairpin packets. Additionally, the streamwise spacing between the 
correlated areas is consistent with those found for the hairpins. Finally, these results 
are consistent with the reported results for canonical wall turbulent flows. 

We turn now our attention to the link between the hairpin characteristics and 
Reynolds stresses and turbulence production. First, the trends observed for the prob­
ability of occurrence of hairpins and swirl intensity in the present flow and ZPG TBL 
are consistent with those of the Reynolds stresses. For instance, in the ZPG TBL, 
Reynolds stresses are maximum close to the wall, while they have a maximum value 
around y/S = 0.6 for the present flow. Additionally, the Reynolds stresses decrease in 
the streamwise direction of the present flow. This suggests the strong link between the 
hairpin vortices and the Reynolds stresses, although the Reynolds stresses are second-
order moments which are not solely the result of vortices. However, the differences in 
levels of the Reynolds stresses between the two flows are slightly different to those of 
the probability of occurrence and swirl intensity of hairpins. The decrease of hairpin 
population and swirl intensity near the wall in the APG case is not as strong as the 
decrease of Reynolds stresses. Even in the outer region, Reynolds stresses are much 
higher in the ZPG TBL than in the present flow which is consistent with the differ­
ence of swirl intensity of hairpin heads in those flows, while it is not consistent with 
the trends hairpin population. This later point may be related to the high value of 
Reynolds stresses near the wall in the ZPG TBL, which is the result of hairpin vortices 
and other types of structures. So, the near wall turbulence energy may also affect the 
Reynolds stresses in the outer region. In fact, the near wall region transfers much more 
turbulent energy to the upper region in the ZPG TBL case, while this is much less the 
case for the present flow. 

The tendency of swirl intensity and hairpin population of the hairpin heads are 
also consistent with the difference of turbulence production between the ZPG TBL and 
the present flow in the lower region of the boundary layer. As found, the turbulence 
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production normalized by the Zagarola-Smits scales is much higher in the ZPG TBL 
than in the present flow in the lower region of boundary layer. This may be related 
to, at least in part, the swirl intensity of hairpin vortices as the hairpin packets are 
responsible, at least in part, for the turbulence production. In addition, near the wall 
the decrease in the streamwise direction of the present flow of the swirl intensity and 
the hairpin population are consistent with the variation of turbulence production. It 
would be possible that the hairpin vortices are more detached in the present flow as 
separation is approached compared to ZPG TBL case. Since turbulence production is 
in some cases affected by the hairpin vortices, this detachment of hairpins can affect 
the turbulence production in the lower region. 

As is so often the case with research in the field of wall-bounded turbulent flows, in 
the present study many unanswered questions remain. In spite of the success achieved 
in the investigation of hairpin vortices and hairpin packets and on how they are affected 
by the pressure gradient, there remain very critical gaps in knowledge. First, this study 
does not provide information on the spanwise characteristics of hairpins and hairpin 
packets. This investigation is currently being done by another PhD student in the fluid 
mechanics laboratory. Next, the near-wall structures could not be investigated as it 
needs higher spatial resolution and different types of measurements to interpret and 
detect the fine structures. The creation and evolution of hairpin vortices and of hairpin 
packets have not been investigated too. Hopefully, future works would include the 
study of fine structures, especially close the wall, and of the time evolution of hairpin 
vortices and packets. The hope is that this study can serve as a building block for any 
such future work that would add to the knowledge base on adverse-pressure-gradient 
turbulent boundary layers. 
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Appendix A 

Gaussian Filtering 

A.l Brief Description 

The Gaussian smoothing operator is a convolution operator that is employed to remove 
noises from images or data. The Gaussian filter is the filter type that results in the most 
gradual pass band roll-off and the lowest group delay. As the name states, the Gaussian 
filter is derived from the same basic equation used to derive the Gaussian distribution. 
The significant characteristic of the Gaussian filter is that the step response contains 
no overshoot at all. 

A.2 Gaussian Distribution 

One-dimensional Gaussian distribution has the form: 

9<i) - ̂ e x p H ? ) (A-I) 

where a is the standard deviation of the Gaussian distribution. We have also assumed 
that the distribution has a mean of zero (i.e. it is centered at x = 0). The distribution 
is illustrated in figure A.l. 
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Figure A.l: Centered one dimensional Gaussian distribution with o = 0.5. 

The two-dimensional Gaussian distribution has the following form 

9(x) 
2ixo-xoy 

exp x 
2a2

x 2o-2
y 

(A.2) 

The idea of Gaussian smoothing is to use this two-dimensional distribution to 
smooth images or data and remove details and noise. Since the PIV data of present 
study is stored as a collection of discrete data we need to produce a discrete approxi­
mation for the Gaussian function before we can perform the smoothing. 

Once a suitable kernel has been calculated, then the Gaussian smoothing can be 
performed by convolution or in Fourier space. 

A.3 Properties of the Gaussian Filter 

The degree of smoothing is determined by the standard deviation of the Gaussian 
function (Larger standard deviation of Gaussian function, of course, removes fewer 
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noise compared to smaller standard deviation of Gaussian distribution). 

One of the principal justifications for using the Gaussian function, as a smoothing 
filter, is due to its frequency response. Most convolution-based smoothing filters act 
as low pass frequency filters. This means that their effect is to remove high spatial or 
temporal frequency components from the data. The frequency response of a convolution 
filter, i.e. its effect on different spatial frequencies, can be seen by taking the Fourier 
transform of the filter. 

A.4 Fourier Transform 

A.4.1 Brief Description 

The Fourier Transform is an important image and data processing tool which is used 
to decompose an image or data into its sine and cosine components. In the case of 
spatially evolving data, the output of the transformation represents the data in the 
Fourier, frequency or wave number domain, while the input data is the spatial domain 
equivalent. In the Fourier domain of data, each point represents a particular spatial 
frequency or wave number contained in the spatial domain of data. 

A.4.2 Discrete Fourier Transform 

The discrete Fourier transform (DFT) of a function with infinite limits can not be com­
puted. Anyway the temporal or spatial domain is always finite in practical applications. 
Moreover, since the discrete data is olny interpreted in the present study, we focus on 
discussing the Discrete Fourier Transform here. 

Finite Fourier transform: 

F(wx, wy) = f [X f(x, y)e~2^*^dxdy \ ° ~ % ~ * (A.3) 
io io [ 0 < y < Y 

where kx = 2TTWX and ky = 2nwy as kx and ky are the wave numbers in x and y 
directions respectively. wx and wy are the spatial frequencies (cycle per meter). 
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Discretization of spatial domain: 

For a continuous function f (x ,y) consider the discrete form as f ( x m , y n ) where: 

xm = (m — l)Ax m = 1, 2, 3 , . . ­,NX 

yn = ( n ­ l)Ay n = 1,2,3,.. ■ , N y 

* * ­ & 

**—k 

(AA) 

The DFT is the sampled Fourier Transform and therefore does not contain all fre­

quencies forming an image or data­set, but it contains a set of samples which is large 
enough to fully describe the spatial domain of data. The number of spatial frequencies 
corresponds to the number of data points in the spatial domain, i.e. the data in the 
spatial and Fourier domain are of the same size. 

Discretization of frequency domain: 

If we define the sampling frequency as WDXS = ^ and W£>ya = ­h\ then we can 
determine a signal character for the frequencies of WDX

 a n d woy as follow 

­ ­ ­ W D X ­ J^ ~ N x A x 

W D y . _ 1 
^ D y = ^ = 

(A.5) 
N v A y 

then 

WDX = % ­ l )Aw D x 

WDy = (ly ~ l )Aw D y 

So, the DFT of discrete function, f ( x m , y n ) , can be defined as follow 

NX Ny 

(A.6) 

x A A v ^ v ^ , , x ( n \ ( ! z ­ ­ ) ( m ­ l ) ( L ­ l ) ( n ­ l ) l \ 
F(wDx,wDy) = AxAyY,J2^ x ^y^ e x p {­ 2 7 r l A? + N J 

771=1 7 1 = 1 ^ t X V J / 
(A.7) 
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Because of discretization, the DFT is periodic with periods (see figures A.2, A.5 and 
A.!)) as follow 

P = -1-
1 I D T A ~ 

1_ 
Ax 

P = 
-* i nn 

wy 
1 

Ay 

(A.8) 

Thus F(WDX,
 wDy) is unique in the range: 

0 < wDx < ^ 

0 < wDy < ^ f 

which correspond to 

0 < wDx < 2 ^ if Nx even 

0 < wDx < ^ 
0 < wDy < ^ 

0 < WDy < ^ 

if Nx odd 
if Ny even 

if Ay odd 

(A.9) 

' l 1) 2, d, . . ^ + 1 
• ' 2 ' 

for Ax even 

' i = 1) 2, 3 , . . ■ ' 2 ' for Nx odd 

/ — 1 9 3 
i y i . _ . - j . . . 

^ + 1 • ' 2 ~ for Ny even 

(y = 1, 2, 3 , . . ■ ' 2 ' for Ay odd 

(A.10) 

.vu Because of periodicity, the remaining values that are, -f — 1, -^ — 1 for even Nx, Ny 

and ^ t i — 1, —*£— — 1 for odd Nx ,Ny , correspond to the negative range of wDx and 
wDy. So: 

WDx = 

wDy = 

N-+1-U 
NxAx 

Ny+l-ly 
NyAy 

(A.11) 
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where 

l x 2 ' ' 2 

lx = ^ + 2, 

3 . . . .N r 

N . - l 

Nv Nv 

1 - ^ y - 1 _ |_0 N v ~ 1 

l y — r, T £>, 9 

3 . . . . Nx 

t f + 2/-f + 3. . . .Ny 

3 . . . . N„ 

for N r even 

for N r odd 

for Ny even 

for iVj, odd 

(A.12) 

If WDX is written as wi \, we have the following sequence for even Nx values 

w0 = 0, wi = 
NxAx ,w2 NxAx , . . .w k = 

k 
NxAx 

w N x / 2 2Ax 

and 
WNjr_ + 1 = —WNx._v WN^+2 = —WN^_2, . . . , WNx-\ = —W\ 

On the other hand, the amplitude of F(wDx,WDy) is changed due to discretization, 
and it is equal Ax Ay \F(wx, wy)\. In the other words, the coefficients of Ax and Ay is 
the scaling factors used to approximate the equivalent of the continuous Fourier trans­
form. It is because of periodicity due to discretization.The other effect of discretization 
is periodicity. 

The fast Fourier transform (FFT) is used in the DFT area. A FFT is an efficient 
algorithm to compute the discrete Fourier transform and its inverse. FFTs are of great 
importance to a wide variety of applications, from digital signal processing, to solve 
partial differential equations for quickly multiplying large integers. The two-dimensional 
DFT is given by equation A.7. 

Where f(xm ,yn) is the data in the spatial domain and the exponential term is the 
basis function corresponding to each point F(wr)X,ujDy) in the Fourier space. The 
equation can be interpreted as the value of each point F(wDx,wr)y) is obtained by 
multiplying the spatial data with the corresponding base function and summing the 
result. 

In a similar way, the Fourier data can be re-transformed to the spatial domain. The 
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inverse Fourier transform is given as follow 

r ( l x - l ) ( m - l ) + ( l y - l ) ( n - l ) 
f ( x m , Vn) = A w D x A w D y ^ 5 Z F ^ W D x , W D y )exp I 27TC 

iVx Ny 

(A.13) 

Which is the discrete equivalent of the following function 
r w y a rw X s 

f ( x , y ) = / F(wx,Wy)exp(2iTi(wxx + wyy))dwxdwy (A.14) 
Jo Jo 

Note: The scaling factors, Awx and Awy, have to be used because the DFT is 
employed with Ax and Ay. The scaling factors for DFT and inverse DFT can be 
written as follow 

Scaling factor for DFT Scaling factor for inverse DFT 
1 M 7Ùrv 

A x A y <—r A w D x A w D y = j v 1 
V N x A x N y Ay 

A double sum has to be calculated for each data point to obtain the results for 
the above equations. However, because the Fourier Transform is separable, it can be 
written as follow 

Ny y 2 ^ . v 

F(wDx,wDy) = AwD y '^rP(wD x ,yn)exp [ - J 7 - ( l y - !)( n ~ l ) J (A.15) 
71=1 v iv / 

where 

Nl ( 2m \ 
P(WDX, Vn) = AwDx ̂ 2 fixm, Vn)exp l——(l x - l ) (m- l ) j (A.16) 

m=l \ * / 

Using these two formulas, the spatial domain data is first transformed into an in­
termediate data using Nx one-dimensional Fourier Transforms. This intermediate data 
is then transformed into the final data, again using Ny one-dimensional Fourier Trans­
forms. Expressing the two-dimensional Fourier Transform in terms of a series of Nx + Ny 

one-dimensional transforms decreases the number of required computations. 
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The ordinary one­dimensional DFT has actually complex even with these computa­

tional savings. This can be reduced if the Fast Fourier Transform (FFT) is employed 
to compute the one­dimensional DFTs. This is a significant improvement, in particular 
for large digital images and large amount of data. 

The Fourier Transform produces a complex number valued output data which can 
be displayed with two series of data, either with the real and imaginary part or with 
magnitude and phase. In image and data processing, often the magnitude of the Fourier 
Transform is only displayed, as it contains most of the information of the geometric 
structure of the spatial domain data. However, if we want to re­transform the Fourier 
image into the correct spatial domain after some processing in the frequency domain, 
we must make sure to preserve both magnitude and phase of the Fourier data. 

The Fourier domain data has a much greater range than the data in the spatial 
domain. Hence, to be sufficiently accurate, its values are usually calculated and stored 
in float values. 

A. 5 Filtering 

If we have a sampled signal of f(x) and we want to filter it by g(x), the response of 
filtering (// i t ter(x)) is: 

f(u)g(x­u)du (A.17) 
■oo 

This convolution can be done by multiplying the Fourier transform of f(x) and g(x). 
Thus the following operations should be done to caculate this convolution: 

1. Calculating the Fourier transform of f(x) and g(x) that the results are F(wx) and 
G(wx) in spectral domain. 

2. Multiplying the results in step 1 to obtain the filtered f(x) in Fourier transform 
\ " filter \WX ))• 

F f uteri­Ox) = F ( w x ) G ( w x ) (A. 18) 

3. Calculating the inverse Fourier transform of Fjuter(wx) that results the filtered 
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ffuter(x) in spatial domain. 

/

oc 

F f i l t e r(wx)e2™*xdwx (A.19) 
-oc 

A.5.1 Digital Filtering 

As the discrete form of data is used here, we discus the digital filtering. If the discrete 
form of f (x) is written as f (x m ) where x m = (ra — 1) Ax and m = 1 ,2 , . . . , Nx , a similar 
definition applies for g(xm) , then the ffuter(xm) can be obtained as follow 

N x 

ffuter(xm) = f (x m ) * g(xm) = ^ f(( l x - l )Ax)g ([(m - 1) - (lx - 1)] Ax) (A.20) 
. 1 = 1 

This operation can be done using DFT as follow 

Nx / 9 ' \ 
F(w D x ) = AxY_] f (x m )exp l—fi -Vx - l)(m - 1)J (A.21) 

17! = 1 * ' 

Nx ( 2m \ 
G(wD x) = Ax 2 2 9(^m)exp I - — ( l x - l ) (m - 1) J (A.22) 

m — 1 \ X / 771 = 1 

where 

Then: 

ix — L, z, o , . . . , iVx 

Ffuter(wDx) = F(w D x )G(w D x ) (A.23) 

and the ffuter(x) can be calculated by inverse DFT as follow 

97TZ 
ffiiter(xm) = Aw D x ^ F / U t e r (wD x )exp[—-(( / x - l ) (m - 1))] (A.24) 

Nx i x =i 
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A.6 Computational Method 

The computational method includes the following steps: 

1. Since in the FFT, calculations are based on variations of signals around zero 
values and regarding the fact that u and v have significant deviations from zero, 
we are have to use u' and v' those have variations around zero. Then their filtered 
values, u'j i l ter and v'jilter, should add to U and V values to obtain filtered u and v 
(Ufilter = U + u' fMer , Vfuter = V + V f iUer). 

The u' and v' are obtained as follow 

u1 = u - V (A.25) 

v' = v - V (A.26) 

2. Next the DFT of u' and v' are calculated as it is explained in the section of A.5.1 
(it is done by two-dimensional FFT). 

N y N x J 

U'D(WDx, WDy) = Y^ ^ e X P ( 
n = l m = l 

-2iri 
" ( m - l ) ( l x-

Nx 

- l ) + (n --Wv-
Ny 

- 1 ) 1 j u(xm,yn) 

(A.27) 

where 
1 < lx < Nx 

1 < l y < N y 

3. In this step the Gaussian distribution in spectral domain is caculated as follow 

f( x) = e~ax2 —> F(wx) = H e-ax2e-2mw*xdx = J - l e - ( ^ ^ ) 2 / ^ (A.28) 

so for the following Gaussian distribution: 

9(x) = - V e x p ( -Û) (A-29^ 
ax\/2iT V 2 a i l 
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the Fourier transform of g(x) is obtained as follow 

_, . / (27r)2w2
xa

2
x 

G(wx) = exp ­ ­ — ' 

and for 2­D Gaussian distribution we have: 

(A.30) 

g(x,y) = 
2­Koxay 

exp 
2 2 

x y 
2 ^ |

 + 2 ^ 

G(wDx, wDy) = exp ( ­
(2*)2w2

Dxo
2
x | Ww^oj 

(A.31) 

(A.32) 

The standard deviation in spectral domain is obtained with the following equa­

tions 
011V. 

1 
2nax 

1 
awv~2^c7„ 

so equation A.32 can be written as: 

G(wDx,wDy) = exp ­ w bx WDy 
+ 

wx wy 
(A.33) 

We use this definition such that |G(0, 0)| = 1, so during the filtering the amplitude 
of the u' and v' will not be changed. On the other hand due to periodicity of the 
DFT we calculate the G(wDx, wDy) for lx = 1, 2 , . . . , ^ + 1 and ly = 1,2,..., ­£­ + 1 
if Nx and Ny are even. Therefore 

( exp 2rr2 ' 2rr2 
^ u w X

 u wy 

G(wDx,wDy) = < 

e X P ^ [ ~°lx ■ + ■ 2clv ­\) 

1 < lx < ^ + 1 

1 < ly < % + 1 

Nx 

N, 

+ 2 < l x < N x 

!f + 2 < l y < N y 

(A.34) 

4. To filter M' and v' we multiply U'(WDX­,
 wDy) by G(WDX,

 wDy) a s follow 

U'filter(wDx,wDy) = U'(wDx,wDy)G(wDx,wDy) (A.35) 
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5. Finally we calculate the inverse Fourier transform of the result in the latter step. 
TConsequently, the filtered u' and v' in spatial domain are obtained and can be 
derived as follow 

Ny N x , , x 1 v ^ v ^ ( n . \(m - l)(lx - 1) ( n - l ) ( L - l ) l \ „ „ 
«Wr(̂ -2/n) = f ¥ E E e x P 2 " " j r + N jUi^x^Dy) 

X y ly=\lXmm\ ^ ^ ^̂  V 1 / 

(A.36) 

6. The filtered u and v are obtained by adding the u'j i l ter and v'jilter to U and V. 

The values of ox and oy are chosen 0.0145. 

A. 7 Examples 

In this section, some examples of Gaussian distribution and filtered data are presented. 
The variables are as follow in this section: 

• °™DX = 2ÏcTx= 5 2 2 - 7 (cycle/m) 

• G^DV = ^ - v = 5 2 2 - 7 (cycle/m) 

• 'ko. = £ = 3284 (rad/m) 

• GkDy = j - y = 3284 (rad/m) 

Nx = 300, Ny = 127 

Ax = 1.91 e"004 m, Ay = 1.9291 e"004 m 

• 

• AwDx = j ^ = 17.5 (rad/m), AwDy = - j ^ = 40.8 (rad/m) 

• A A : ^ = 7 & = 1 1 0-2 (rad/m), A«;Ds = ^ = 256.5 (rad/m) 

Figures A ! to A.10 show the Gaussian distribution, filtered data and unfiltered 
data in spatial and spectral domain. 
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A.7.1 Examples of Test of Fourier Transform 

The Gaussian distribution in spectral domain corresponds to a Gaussian distribution in 
spatial domain can be acquired using different methods. The motivation of this section 
is to obtain the Gaussian distribution in spectral domain using different methods and 
to compare the acquired results by these methods. The used methods are analytical 
solution, DFT series and function of Matlab (FFT for one-dimensional and FFT2 for 
two-dimensional Gaussian distribution). Figures A.l ! to A.13 show the obtained the 
Gaussian distribution in spectral domain using different methods. The collapse of dif­
ferent results confirm that the Fourier transform of Gaussian distribution using different 
methods are always the same and identical. 

• Analytic solution is the analytic Fourier transform of the function. 

• 

• 

Series function uses the summation in the DFT formulation (see equations A. 13 
and A.7). 

Matlab function is the function FFT (for one-dimensional distribution) or FFT2 
(for two-dimensional distribution) uses the Fast Fourier transform. 

A.7.2 Examples of Fil tered and Unfiltered Velocity Fields 

In this section there are some examples of the filtered velocity fields that are filtered by 
Gaussian filtering and unfiltered velocity fields (see figures A l l and A. I '>). 
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SigmaX = 0 015 'delta 
SigmaY = 0 015*delta 
delta = 0.0203 m 
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Figure A.2: Centered two-dimensional Gaussian distribution in spectral domain: a) 
whole Gaussian distribution, b) First quarter of Gaussian distribution (o~x = o~y = 
0.0003). 
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Figure A.3: Filtered and unfiltered of streamwise fluctuation profile, u', in streamwise 
direction. 

Figure A.4: Filtered and unfiltered of streamwise fluctuation profile, u', in wall­normal 
direction. 
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o o x104 
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Figure A.5: Filtered streamwise fluctuation distribution, u', in spectral domain. 
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Figure A.6: First quarter of filtered streamwise fluctuation distribution, u', in spectral 
domain. 
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Figure A. 7: Filtered and unfiltered of wall­normal fluctuation profile, v', in streamwise 
direction. 
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Figure A.8: Filtered and unfiltered of wall-normal fluctuation profile, v', in wall-normal 
direction. 



Appendix A. Gaussian Filtering 221 

12000 

0 0 x10 
Ky (Rad/m) Kx (Rad/m) 

Figure A.9: Filtered wall-normal fluctuation distribution, v', in spectral domain. 
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Figure A. 10: First quarter of filtered wall-normal fluctuation distribution,v', in spectral 
domain. 
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Figure A.ll: Centered one-dimensional Gaussian distribution in spectral domain 
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Figure A.12: First quarter of one-dimensional Gaussian distribution in spectral domain 
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Figure A. 14: Velocity vector field (one vector out of 2 for clarity), a) unfiltered velocity 
field, b) filtered velocity field. The filter bandwidth is 0.028(5 (a = 0.014<5). 
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Figure A. 15: Velocity vector field shown using Galilean decompositions, same position 
and same field as figure A.l I, a) unfiltered velocity field, b) filtered velocity field. The 
filter bandwidth is 0.028(5 (a = 0.014(5). 



Appendix B 

Mathematical and Physical meaning 
of Xd 

The mathematical discription and physical meaning of ACj, defined by Zhou et al. (1999), 
is presented in this appendix. First of all, the local velocity field around a point can be 
expressed by the position vector r in linear order as equation B.l. 

u ( r + Sr) = u(r) + DSr+0(\\Sr\\2) (B.l) 

where D is the velocity gradient tensor (Vu). Its characteristic equation is given by 

A3 + PA2 + QX + R = 0 (B.2) 

where P = -trace(D) = -div(u), Q = \ [P 2 - trace(DD)] and R = | [ P 3 + 3PQ -
trace(DDD)] are invariants of the velocity gradient tensor. The discriminant for this 
characteristic equation is 

l . \ 2 ( \ ^ 
A= [~2R\ + I - Q ) (B.3) 

where R = R + | , P 3 - \ P Q andQ = Q - \ P 2 . 

If A is positive, then the velocity gradient tensor has a real eigenvalue and a pair of 
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conjugated complex eigenvalues. Zhou et al. (1999) decomposed the velocity gradient 
tensor D in cartesian coordinates as 

D = [dij] = [Vr Va- Vd] Acr Ac 

A r i A, . 

[vr Va- Vd] l (B.4) 

where Ar is the real eigenvalue corresponding to eigenvector vr and A .̂ ± A^i are 
the conjugate pair of complex eigenvalues with complex eigenvectors «„. ± vCii. 

In a local (curvilinear) coordinate (yx, y2, 2/3) system defined by the three vectors 
vr, Vçr, Vd, the local streamlines can then be expressed as 

yi(t) = C rexp\ rt, 

i y2(t) = exp\crt[C^cos(Xcit) + C2sin(Xcit)], 

y3(t) = expXcrt[C2cos(Xcit) - Clsin(Xcitj\, 

(B.5) 

where Cr, Cl, and C2 are constants. The local flow may be stretched or compressed 
along the axis vr as shown in figure I i i , while the flow is swirling on the plane spanned 
by the v^. and vCi. Furthermore, the rotation rate is quantified by Xd, and therefore 
Zhou and co-workers used the imaginary part of the complex eigenvalue pair as the 
local swirling strength of the vortex. If Xci is equal to zero then there is no swirling 
motion or local circular streamline. 

The iso-contours of A^ were employed to visualize vortices by Zhou and co-workers. 
Since Q and A^ criteria yield comparable vortex-identification results of Chernyshenko and Baig 
(2005), Wu and Christensen (2006) also employed A^ to indentify the spanwise vortices 
in a two-dimensional experimental PIV data. The Xci criteria for vortex identification 
has also been applied to the present experimental PIV data. The two-dimensional form 
of the velocity gradient tensor can be written as 

Vu = du/dx du/dy 
dv/dx dv/dy 

(B.6) 
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Figure B.l: The local streamline pattern in the coordinates of eigenvectors of the 
velocity gradient tensor in the neighbourhood of a vortex core (Zhou et al., 1999). 

the discriminant for this characteristic equation is 

A = trace(Vu)2 - 4det(Vu) (B.7) 

Xci is the imaginary part of conjugate pair of the complex eigenvalues of Vu as 
mentioned before and it is not zero when A > 0. 



Appendix C 

Mesh Dependency of Population 
Density of Vortices 

A brief description of mesh dependency of population density, a parameter used by 
some researchers, is presented in this appendix. In fact, the population density of 
vortices is strongly dependent on the relative grid spacing of the velocity field, while 
the probability trends of vortices is mesh independent. 

To illustrate the mesh dependency of vortex population density we will consider the 
limiting case shown in figure C.I. In this case, the area of fine mesh is \ of the coarse 
mesh size. A bounding box, to calculate the population density, is chosen to cover the 
four mesh nodes in the coarse mesh and nine mesh nodes of fine mesh. A schematic 
vortex is also shown to calculate its area. The population density is obtained based on 
equation CM. 

P, = % (CD 

where p\ is the population density, N\ is the number of nodes of the A^ cluster 
within the bounding box and At is the area the bounding box (A\ = N^dA, where Nb 
is the number of nodes within the bounding box). 

In the presented case, Nx is 9 for the coarse mesh and 37 for the fine mesh. So px 
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Figure C.I: Arithmetic average of each node of the grid for a) fine mesh, b) coarse 
mesh, c, d) schematic vortex and bounding box. 

is obtained as follows 

Fine mesh 
Coarse mesh 

Px Nx ­
Ax ' 

37 _ 37 
(22xl8)dA/4 Ab 

9 __ _9_ 
(llx9)<14 Ab 

(C.2) 

Since we divide the number of nodes by the surface, vortex population density 
increases as the mesh refinement increases as shown in equation ( '._'. This problem 
has also been confirmed with our data in an adverse­pressure­gradient TBL where the 
boundary layer thickens rapidly. The vortex population density was found to vary 
greatly in short distances because the relative mesh refinement (wrt S) was also varying 
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rapidly. The problem comes from the fact that we have to use an averaging window with 
a discretized surface. It becomes therefore impossible to compare the vortex population 
density quantitatively between different experiments or different streamwise stations if 
the mesh size is not the same. 

The streamwise-wall-normal planes cover roughly 3(5 in the streamwise direction 
and 1.3(5 in the wall-normal one. Over 3<5, the boundary layer thickness can grow by 
20% to 30%. When considering one plane, the absolute number of vortices remains 
fairly constant everywhere in the outer region in both x and y, except of course close 
to the wall and at the outer edge. But because the relative grid spacing varies in the 
streamwise direction due to the strong variation of <5, the population density artificially 
grows by as much as 70% from one end of the plane to the other. This growth is much 
more important than the one between planes which are roughly 6(5 apart. This is why 
the population density is not an appropriate parameter because of the issue of strong 
streamwise dependency of the trends. We should therefore use a pointwise definition 
(probability of occurrence of a vortex at a given x, y location) instead of a vortex 
population surface density. 



Appendix D 

Random Errors 

D.l Systematic and Random Uncertainties 

This is the inescapable fact that every time you repeat a measurement, you will get a 
slightly different value. The values will be distributed about the mean (average) value, 
and the way they are distributed can be used to establish the statistical uncertainty of 
the measurement. 

There are two basic kinds of uncertainties, systematic and random uncertainties. 
Systematic uncertainties are those due to faults in the measuring instruments or in 
the techniques used in the experiments, and cause a measurement to be skewed in a 
certain direction, i.e., consistently large or consistently small. Random uncertainties 
are associated with unpredictable variations in the experimental conditions under which 
the experiment is being performed, or are due to a deficiency in defining the quantity 
being measured. Random errors may be reduced by improving the measurement or the 
technique, but they cannot be eliminated. The size of the random uncertainty may 
be obtained only by making a set of repeated, independent observations. This sort of 
uncertainty cannot be eliminated but can be reduced by making lots of measurements 
and averaging. There is no general procedure for estimating the magnitude of systematic 
uncertainties as there is for random uncertainties. 

If an experiment has low systematic uncertainty it is said to be accurate. If an exper­
iment has low random uncertainty it is said to be precise. Obviously an experiment can 
be precise but inaccurate or accurate but imprecise. When thinking about uncertainty, 
it is important to remember these associations, so they are worth repeating: 
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• Random uncertainty decreases the precision of an experiment. 

• Systematic uncertainty decreases the accuracy of an experiment. 

The mean of a set of numbers is defined as the sum of all the numbers divided 
by the number of them. In mathematical language, if we have N observations and X\ 
represents any one of the observations (i.e. i can have any integer value from 1 to A), 
then the arithmetic mean, which we designate by the symbol, x, is given by 

x = ^ i (D.l) 

Having obtained a mean or "best" value, x, it is important to have a way of stating 
quantitatively how much the individual measurements are scattered about the mean. 
For a precise experiment we expect all measurements to be quite close to the mean 
value. The extent of scatter about the mean value gives us a measure of the precision 
of the experiment, and thus, a way to quantify the random uncertainty. 

A widely accepted quantitative measure of scatter is the sample standard deviation, 
Sx. For the special case where all data points have equal weight, the sample standard 
deviation is defined by the equation, 

Sx = J E ^ X l _ - ~XY (D.2) 

Although this equation may not be intuitive, inspection of it reveals that Sx becomes 
larger if there is more scatter of the data about the mean. This is because (xt — x)2 for 
any particular i will on the average increase with greater scatter of the data about the 
mean so that Yl(.xi ~~ x ) 2 increases. Note that Sx has the same units as X{ or x since 
the square root of the sum of squares of differences between Xi and x is taken. 

The standard deviation Sx defined by equation 1 » _ provides the random uncertainty 
estimate for any variable x. Intuitively we expect the mean value of the measurements 
to have less random uncertainty than any one of the individual measurements. It can 
be shown that the standard deviation of the mean value of a set of measurements Sx, 
when all measurements have equal statistical weight, is given by 

C - , U2i--l(Xi ^F J ^ /TX OL 
^ " V N ( N - l ) - v/AT {D-S) 
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Note that Sx is necessarily smaller than Sx. When we speak of the uncertainty S of 
a set of measurements made under identical conditions, we mean that number Sx and 
not Sx. It is most important that we distinguish properly between standard deviation 
associated with individual data points, Sx, and standard deviation of the mean of a set 
of data points, SX. 

D.2 Confidence Intervals in Sample Populations 

Random uncertainties always occur and have the effect of producing different results 
(within a certain narrow range) for successive measurements of a given quantity. It 
is important to try to minimise random uncertainties as much as possible by careful 
attention to the experimental procedure and by reading all instruments as accurately 
as possible. If a set of readings of a particular quantity has been taken, the average 
value or arithmetic mean is obviously more reliable than an individual value. Do not, 
however, average widely differing values as these may indicate a peculiar non-random 
error in a certain experiment and show that the experiment should be repeated. The 
rigorous way to estimate random uncertainty in a quantity is to measure the quantity 
a large number of times and to examine the spread in values obtained using rigorous 
statistical methods. 

To calculate confidence intervals in sample populations, suppose that N readings 
of an experiment have a Gaussian distribution population with a mean value x and 
standard deviation Sx. If one more reading Xj is taken, the interval of 95% con­
fidence that this reading would fall within the interval can be obtained as follows 
(Coleman and Steele, 1999) 

r = ^ (D.4) 
iJx 

where r can be obtained form table A.l of Coleman and Steele (1999). For instance r = 
1.96 for 95% confidence (for the Prob(r) = 0.95 in the table A.l). So, the probability 
expression can be written as follow 

Prob ( -1.96 < ^ ^ < 1.96 J =0.95 (D.5) 

or 
Prob(x - 1.965x < x> < x + 1.96SX) = 0.95 (D.6) 

So, based on equation I >.(>, 95% of the measuring data lies within ±1.%SX of the 
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mean x. In other words, a single reading will fall within the ±1.965^ with 95% confi­
dence. 

Turning now our point of view in determining a 95% confidence interval around a 
single reading Xj. Indeed, we expect to have an interval around x* that the mean value 
of distribution of Xj (x) within this interval lies at a confidence level of 95%. In other 
words, we can say with 95% confidence that the mean value of Xj is within ±1.96SX 

of a single reading from that distribution. This can be obtained by rearranging the 
equation 1 ).(> as follow 

Prob(x{ - 1.96SX < x < xt + 1.96SM = 0.95 (D.7) 

Finally the random uncertainty, P, can be calculated as 

Px = tSx (D.8) 

f 9 
Px = tSx = ^ = (D.9) 

y/N K ' 
where t can be obtained from table A.2 of Coleman and Steele (1999). 


