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Département de Mathématiques et de Statistique

Université Laval
Québec
Canada

Patrick Desrosiers
Centre de Recherche de L’Institut Universitaire en Santé Mentale de Québec and
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Abstract

We apply combinatorial tools, including Pólya’s theorem, to enumerate all possible
networks for which (1) the network contains distinguishable input and output nodes
as well as partially distinguishable intermediate nodes; (2) all connections are directed
and for each pair of nodes, there are at most two connections, that is, at most one
connection per direction; (3) input nodes send connections but don’t receive any, while
output nodes receive connections but don’t send any; (4) every intermediate node
receives a path from an input node and sends a path to at least one output node; and
(5) input nodes don’t send direct connections to output nodes. We first obtain the
generating function for the number of such networks, and then use it to obtain precise
estimates for the number of networks. Finally, we develop a computer algorithm that
allows us to generate these networks. This work could become useful in the field of
neuroscience, in which the problem of deciphering the structure of hidden networks
is of the utmost importance, since there are several instances in which the activity
of input and output neurons can be directly measured, while no direct access to the
intermediate network is possible. Our results can also be used to count the number of
finite automata in which each cell plays a relevant role.

1 Introduction

The problem of counting networks, graphs or digraphs with a given set of conditions has
a rich mathematical history that was greatly influenced by the seminal work of Pólya and
Harary [22, 12, 13]. Results in this field have many applications in scientific fields such as
chemistry, resources allocation and number theory [19, 1, 3, 7]. Several versions of the graph
(or digraph) enumeration problem have been investigated, depending on whether the vertices
are labelled (distinguishable) or not (indistinguishable) or whether directed, connected or
simple graphs are considered [5, 21, 6].

In some applications, such as the description of neural networks or cellular automata and
network coding theory, graphs describe the flow of information from a set of input nodes to
output ones [16, 2, 26]. In such cases, the input and output nodes are often called sources and
sinks, respectively. An intermediary node (neuron or cell) is relevant to the global behaviour
of the system only if it is (directly or indirectly) connected to both an input and an output
element. Enumeration problems of such structures have raised interest in the field of finite
cellular automata [24, 11], where the size of a given class of automata can be related to the
computing power of this class [10, 23]. Moreover, in some instances of neuroscience, it is
possible to directly measure the input and the output of a neural network without having
access to direct measurement of the intermediate hidden network as in the investigation of
the pain processing network of the spinal cord where [20]. The question as to what extent
it is possible to infer this structure from the input-output relation is of great importance to
the field of computational neuroscience and poses fascinating problems from a mathematical
point of view.
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1.1 The problem

In the present paper, we enumerate the possible networks for a given number of input,
output and intermediate nodes. Since we assume that interactions (input manipulation or
data retrieval) are only possible or relevant with input and output nodes, we consider these
as labelled while we treat the intermediate nodes as unlabelled. We also differentiate between
two types of intermediate nodes. In the context of neural networks, this could correspond to
differentiating between excitatory and inhibitory interneurons for instance. The techniques
we develop could be used to treat the cases in which the intermediate nodes are subdivided
into an arbitrary number of subtypes which could describe automata composed of many
types of fundamental units.

Specifically, we enumerate the networks composed of nodes (neurons or cells) and links
(connections) that satisfy the following conditions:

1.1 Every node belongs to one and only one of the following types : input nodes, interme-
diate node of type I, intermediate node of type II, output node.

1.2 All input and output nodes are distinguishable (labelled).

1.3 All intermediate nodes of type I are indistinguishable and all intermediate nodes of
type II are indistinguishable.

2.1 All links are directed.

2.2 There is at most one link from a given node to another node.

3.1 All input nodes send outward links but don’t receive inward links.

3.2 All output nodes receive inward links but don’t send outward links.

3.3 There are no direct link from input nodes to output nodes.

4.1 Every intermediate node receives a path from at least one input node.

4.2 Every intermediate node sends at least a path to an output node.

Recall that the adjacency matrix A of a network with N nodes is a square matrix con-
taining N ×N elements, Ai,j , such that Ai,j = 1 if there is a link from node i to node j and
Ai,j = 0 otherwise. Conditions 3.1, 3.2 and 3.3 thus imply that the adjacency matrix A has
the following form:

A =





0m×m Bm×n 0m×k

0n×m Cn×n Dn×k

0k×m 0k×n 0k×k



 ,

where the subscripts indicate the size of the submatrices, 0p×q stands for a submatrix whose
elements are all equal to zero, Bm×n and Dn×k are binary matrices with no special form, and
Cn×n is a binary matrix whose diagonal elements are all equal to zero.
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Figure 1: Admissible and non-admissible networks. Black, green, red, and blue represent input nodes,

intermediate nodes of type I and II and output nodes respectively. Left: Admissible network. Middle:

Non-admissible network. The intermediate node at the center do not send a path to an output node. Right:

Non-admissible network. The intermediate node at the center do not receive any path from an input node.

Conditions 4.1 and 4.2 are equivalent to the fact that every intermediate node is relevant
in the network. Indeed, the activity of an interneuron that would not receive a path from an
input neuron or that would not send a path to an output neuron could not be detected from
input/output measurements. Similarly, in the context of finite automata, such a cell would
not impact the function computed by the automata. Note that the indistinguishableness
of the intermediate node imposes a significant constraint on our enumeration problem :
permutations of the intermediate nodes of the same type are only counted once. Any network
that complies with all the above conditions is characterized as admissible. Examples of
admissible and non-admissible networks are given in Figure 1.

We write N(m,n1, n2, k) as the number of admissible networks with m input nodes, n1

intermediate nodes of type I, n2 intermediate nodes of type II and k output nodes. For
the sake of brevity, we also write n = n1 + n2. For illustration, we display in Figure 2 all
the admissible networks counted by N(1, 2, 0, 1), where the input node is on the left of each
network, the intermediate nodes (in green) in the middle and the output one on the right.
From this list of examples we conclude that N(1, 2, 0, 1) = 10.

1.2 Results summary

We set N(m,n1, n2, k; x) as the generating function of the number of admissible networks
networks counted by N(m,n1, n2, k). Explicitly,

N(m,n1, n2, k; x) =
∑

j

cjx
j

where cj denotes a function ofm,n1, n2, and k that counts the number of admissible networks
with exactly j connections. We thus have

N(m,n1, n2, k) =
∑

j

cj.

For instance, from the case illustrated in Figure 2, we infer that if m = 1, n1 = 2, n2 = 0,
and k = 1, then

c1 = 0, c2 = 0, c3 = 1, c4 = 5, c5 = 3, c6 = 1, cj = 0 (j ≥ 7).
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Figure 2: All admissible and non-equivalent networks with one input node (left), two intermediate node of

type I (green) and one output node (right).

We need some more notation. We define N∗(m,n1, n2, k) as the number of networks
satisfying all conditions, except possibly conditions 4.1 and 4.2. We will refer to this quantity
as the total number of networks. We also write

N∗(m,n1, n2, k; x) =
∑

j

c∗jx
j

where c∗j counts the number of such graphs having exactly j connections. Note that c∗j ≥ cj
for all j. We write n for the total number of intermediate nodes, i.e., n = n1 + n2. For a
nonnegative integer n, we write λ ⊢ n if λ is an integer partition of n and we write λ =
(1a1 , 2a2 , . . . , nan), where aj ≥ 0 stand for the number of occurrences of the integer j in the
partition λ. Moreover, we write λ1∪λ2 for the union of the partitions λ1 and λ2 such that if
λ1 = (1a1 , 2a2 , . . . , nan) and λ2 = (1b1 , 2b2 , . . . , nbn) then λ1∪λ2 = (1a1+b1 , 2a2+b2 , . . . , nan+bn).

Theorem 1. The generating function for the total number of networks is

N∗(m,n1, n2, k; x) =
∑

λ1⊢n1
λ2⊢n2

ω(λ1)ω(λ2)

n1!n2!
H(λ1 ∪ λ2,m, k; x)

where

ω(λ) = n!
∏

1≤j≤n

1

jajaj!
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and

H(λ,m, k; x) =
∏

aj>0

(

1 + xj
)aj(k+m+j−1)+j(aj−1)

∏

j≥1
ℓ>j

(

1 + xlcm(j,ℓ)
)2jℓajaℓ/ lcm(j,ℓ)

.

In Theorem 13, we obtain a recursive formula for N(m,n1, n2, k; x) which we implemented
in Python to obtain a list of values of N(m,n1, n2, k) given in Table 1. This yields in
particular the following striking example:

N(5, 5, 5, 5) = 108844524790336539487420588884391944954279893619583184.

We also obtain accurate estimates for both N∗(m,n1, n2, k) and N(m,n1, n2, k).

Theorem 2.

N∗(m,n1, n2, k) =
2(n+m+k−1)n

n1!n2!

(

1 +

((

n1

2

)

+

(

n2

2

))

2−2n−m−k+3

+

(

2

(

n1

3

)

+ 2

(

n2

3

))

2−4n−2m−2k+8

+

((

n1

2

)(

n2

2

)

+ 3

(

n1

4

)

+ 3

(

n2

4

))

2−4n−2m−2k+10

)

+O

(

2(n+m+k−1)n

n1!n2!
n72−6n−3m−3k

)

.

Theorem 3.

N(m,n1, n2, k) =
1

n1!n2!
2(n+m+k−1)n −

n

n1!n2!
2(m+n+k−1)n−n−m+1

+
n

n1!n2!
2(m+n+k−1)n−n−k+1 +O

(

2(n+m+k−1)nn3

n1!n2!

(

2−2n−min(m,k)
)

)

.

The following asymptotic formulas immediately follow from Theorem 2 and Theorem 3.

Corollary 4. As n → ∞,

N(m,n1, n2, k) ∼ N∗(m,n1, n2, k) ∼
2(m+n+k−1)n

n1!n2!

and

N∗(m,n1, n2, k)−N(m,n1, n2, k) ∼
n
(

2(m+n+k−1)n−m−n+1 + 2(m+n+k−1)n−k−n+1
)

n1!n2!
.

In Section 4, we also provide an algorithm that can generate, for a given tuple (m,n1, n2, k),
all connectivity matrices associated with the admissible networks.
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2 Notation and preliminary results

2.1 Notation and the Pólya enumeration

Following the standard notation, we let Sn stand for the set of permutations of 1, 2, . . . , n.
As in [4], we write λ ⊢ n if λ is an integer partition of n. We denote partitions by the
Greek letters λ or µ and use the frequency representation λ = (1a1 , 2a2 , . . .) to mean that
the integer j appears aj times in the partition λ. For a given permutation s ∈ Sn and a
partition λ ⊢ n, we say that s is of type λ (type(s) = λ = (1a1 , 2a2 , . . .)) if s has precisely aj
disjoint cycles of length j. For example, if n = 4 and s = (2, 1, 3, 4) then s can be written as
the following product of disjoint cycles (1, 2)(3)(4) so type(s) = (12, 21). For a collection of
partitions λj, we write aj for the frequency vector associated with the permutation λj. We
also let φ stand for an empty partition.

The Pólya enumeration theorem gives the generating function associated with the count-
ing of graphs satisfying certain conditions by considering the orbits induced on the con-
nections of the graph by the permutations of its nodes. If H(x) is the generating function
associated with the counting of graphs satisfying certain conditions (where the coefficient of
xn stands for the number of such graphs with n connections) and if G stands the group of
permitted node permutations, we have

H(x) =
1

#G

∑

s∈G

∞
∏

j=1

(1 + xj)α(j,s) (1)

where α(j, s) is the number of disjoint orbits of length j induced on the connections of the
graphs by the permutations of nodes s. The expression

∞
∏

j=1

(1 + xj)α(j,s)

can be thought as the generating function of labelled graphs left invariant by the permutation
s. For example, if we consider the networks with 1 input node, 2 intermediate nodes of type
1 and 1 output node, the only admissible permutations are these of the two indistinguishable
intermediate nodes. The admissible permutations are thus s1 = (1, 2) with type(s1) = (12)
and s2 = (2, 1) with type(s2) = (21). There are six possible connections represented in
the figure below. Given that s1 leaves all six connections fixed (induces six disjoint orbits
of length one), the term of the generating function associated with s1 is (1 + x)6. The
permutation s2 induces 3 orbits of length 2 on the connections of the network so the term
of the generating function associated with s2 is (1 + x2)3. This yields

N(1, 2, 0, 1; x) =
1

2

(

(1 + x)6 + (1 + x2)3
)

.
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Orbits induced by s2

a −→ b −→ a, c −→ d −→ c, e −→ f −→ e.

In many cases, as in the present paper, the values of α(j, s) depend only on the permutation
type λ = type(s) so we can write

H(x) =
1

#G

∑

λ⊢n

#{s ∈ G : type(s) = λ}
∞
∏

j=1

(1 + xj)α(j,λ). (2)

In order to compute #{s ∈ G : type(s) = λ}, we will make use of the following result:

Lemma 5. For a positive integer n and a partition type λ ⊢ n, if we define

ω(λ) := #{s ∈ Sn : type(s) = λ}

then

ω(λ) = n!
∏

1≤j≤n

1

jajaj!
.

For example, if n = 4, the number of permutations of the type (12, 21) is

4!

122!211!
= 6.

Proof. An elementary proof of this classical result can be found in [14].

For two permutations s1 and s2 acting on disjoint sets of nodes, we write s1 · s2 as the
usual permutation product. Provided that type(s1) = λ1 and that type(s2) = λ2, we also
define

λ1 ∪ λ2 = type(s1 · s2). (3)

This is well defined since λ1 ∪ λ2 doesn’t depend on the particular choices of s1 and s2. For
example, if λ1 = (11, 21, 32) and λ2 = (11, 41), we have λ1 ∪ λ2 = (12, 2, 32, 4). For an integer
N ≥ 2, we generalize this notation to

λ1 ∪ λ2 ∪ · · · ∪ λN+1 = (λ1 ∪ λ2 ∪ · · · ∪ λN) ∪ λN+1.
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For two partitions λ1, λ2 and any permutation s such that type(s) = λ1 ∪ λ2 we define

Ω(λ1, λ2) := #{(s1, s2) : type(s1) = λ1, type(s2) = λ2, s1 · s2 = s}.

For example, suppose that λ1 = (1, 2) and λ2 = (1) so that λ = (12, 2). A canonical choice
of s (written as a product of disjoint cycles) is s = (1)(2)(3, 4). The possible choices for the
pair (s1, s2) are s1 = (1)(34) and s2 = (2) as well as s1 = (2)(34) and s2 = (1). We thus have
Ω(λ1, λ2) = 2. For partitions λ1, λ2, . . . , λN we recursively extend the definition of Ω to

Ω(λ1, λ2, . . . , λN)

= Ω(λ1 ∪ · · · ∪ λN−1, λN)Ω(λ1 ∪ · · · ∪ λN−2, λN−1).

We can obtain the following explicit expression for Ω(λ1, . . . , λN)

Lemma 6.

Ω(λ1, λ2, . . . , λN) =
∏

j

aj!
N
∏

y=1

1

ayj !

where a is the frequency vector of λ1 ∪ λ1 ∪ · · · ∪ λN and the ays are the frequency vectors of

λy.

Proof. Lemma 6 follows directly from the observation that the aj cycles of length j have to
be distributed between N permutations such that the yth permutation receives exactly ayj
of these cycles. The number of ways to achieve this is exactly

aj!
N
∏

y=1

1

ayj !
.

Remark 7. It is implicit in the definition of Ω that the value of Ω(λ1∪λ2) doesn’t depend on
the particular choice of the permutation s of type λ1 ∪ λ2 which indeed follows from Lemma
6 and its proof.

2.2 Auxiliary functions

We derive the components of the generating function N(m,n1, n2, k; x) associated with the
number of networks counted by N(m,n1, n2, k). We let F (λ; x) stand for the action of a
permutation s of type λ on connections between two nodes permuted by s. In other words,
for a permutation s of type λ, F (λ; x) is the generating function of labelled graphs left
invariant by this permutation. We have

Lemma 8.

F (λ; x) =
∏

aj>0

(

1 + xj
)aj(j−1)+jaj(aj−1)

∏

j≥1

∏

y>j

(

1 + xlcm(j,y)
)2jyajay/ lcm(j,y)

.
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Proof. The expression
∏

aj>0

(

1 + xj
)aj(j−1)

corresponds to the action of a permutation of type λ on edges between two nodes in the
same cycle. Indeed, since we are considering oriented connections, the length of the orbit of
the connections induced by a node cycle of length j is also j. Given that there are j(j − 1)
possible connections between nodes permuted by the same cycle, the number of orbits is
j(j − 1)/j = j − 1. Since there are aj ways of choosing a cycle of length j, the exponent
must be multiplied by aj.

On the other hand, the expression

∏

aj>0

(

1 + xj
)jaj(aj−1)

corresponds to the action of a permutation of type λ on connections between nodes permuted
by different cycles of the same length. Indeed, the length of the orbits induced on the
connections is the same as the length of the node cycle: j. For two disjoint cycles of length
j, there are 2j2 possible connections between a node of the first cycle and one of the second.
The number of disjoint connection orbits is thus 2j2/j = 2j. Furthermore the number of
ways of choosing two node cycles of length j is

(

aj
2

)

so the exponent is equal to

aj(aj − 1)

2
2j = jaj(aj − 1).

Finally, the expression
∏

j≥1

∏

y>j

(

1 + xlcm(j,y)
)2jyajay/ lcm(j,y)

corresponds to the action of a permutation of type λ on connections between two nodes
belonging to different cycles of different lengths. Indeed, on connections between a node
belonging to a cycle of length j and a node belonging to a cycle of length y, the node
permutation will induce orbits of length

lcm(j, y).

Given that the number of such possible connections is 2jy, the number of such orbits is equal
to

2jy/ lcm(j, y).

Moreover, the number of ways of choosing a node cycle of length j and a node cycle of length
y is ajay so the exponent is

2jyajay/ lcm(j, y).
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If s1 and s2 are permutations respectively of type λ1 and λ2 acting on disjoint sets of
nodes, we define D(λ1|λ2; x) as the generating function counting the number of labelled

graphs left invariant by s1 · s2 under the following restriction: Only connections from nodes
permuted by s1 to nodes permuted by s2 are permitted. Observe that by symmetry, it follows
from this definition that D(λ1|λ2; x) = D(λ2|λ1; x). We will use the following result.

Lemma 9.
D(λ1|λ2; x) =

∏

j≥1

∏

y≥1

(

1 + xlcm(j,y)
)jya1ja

2
y/ lcm(j,y)

.

Proof. Cycles of length j and y will induce orbits of length lcm(j, y) on connections from
nodes permuted by the cycle of length j to nodes permuted by the cycle of length y. Given
that we only allow connections in one direction, the total number of possible connections is
jy. It follows that the number of disjoint orbits is jy/ lcm(j, y). Furthermore, the number
of ways of choosing a node cycle of length j in a permutation of type λ1 and a node cycle of
length y in a permutation of type λ2 is a1ja

2
y from which Lemma 9 follows.

If s1 and s2 (respectively of type λ1 and λ2) are two permutations acting on disjoint sets
of nodes, we define I(λ1|λ2; x) as the generating function of the number of labelled networks
left invariant by s1 · s2 under the following restrictions: 1. Only connections from nodes
permuted by s1 to nodes permuted by s2 are permitted. 2. Each node permuted by s1
must send at least one connection to a node permuted by s2. We have the following explicit
expression for I(λ1|λ2; x).

Lemma 10.

I(λ1|λ2; x) =
∏

a1j>0









∏

a2y>0

(

1 + xlcm(j,y)
)jya2y/ lcm(j,y)



− 1





a1j

.

Proof. Let cj be a node cycle of length j of s1 and let s2 be a permutation of type λ2 acting
on a disjoint set of nodes. The action of s2 · cj on connections to nodes permuted by s2 from
nodes permuted by cj is given by

∏

a2y>0

(

1 + xlcm(j,y)
)jya2y/ lcm(j,y)

. (4)

Since we impose that at least one connection actually exists, we must remove from (4)
the instance of no connection which corresponds to 1 in the generating function. We thus
obtain I(λ1|λ2; x) by performing the product

∏

ay>0

(

1 + xlcm(j,y)
)jya2y/ lcm(j,y)

− 1

over all cycles of a permutation s1 of type λ1 which proves Lemma 10.
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Observe that by symmetry I(λ1|λ2; x) is also the generating function associated with the
number of networks such that: 1. Only connections to nodes permuted by s1 from nodes
permuted by s2 are permitted. 2. Each node permuted by s1 must receive at least one
connection from a node permuted by s2. For illustration, if λ1 = (21) and λ2 = (21), then

I(λ1|λ2; x) =
(

1− x2
)2

− 1 = 2x2 + x4

and the corresponding networks are:

• •

• •

• •

• •

• •

• •

For a permutation type s1 of type λ1 and a permutation s2 of type λ2 acting on disjoint sets
of nodes, we define T (λ1|λ2; x) as the generating function counting the number of labelled
networks left invariant by s1·s2 and satisfying the following properties: 1. The only permitted
connections are these between two nodes permuted by s1 or from a node permuted by s1
to a node permuted by s2. 2. Every node permuted by s1 sends a path to at least a node
permuted by s2. We obtain the following recursive relation for T (λ1|λ2; x)

Lemma 11. The following relation holds:

T (λ1|λ2; x) = I(λ1|λ2; x)F (λ1; x)+
∑

µ1∪µ2=λ1
µ1 6=φ,µ2 6=φ

Ω(µ1, µ2)I(µ1|λ2; x)F (µ1; x)D(µ1|µ2; x)T (µ2|µ1; x),

which allows us to compute T (λ1|λ2; x) recursively.

Proof. The term I(λ1|λ2; x)F (λ1; x) corresponds to the situation in which all nodes permuted
by s1 (of type λ1) send a direct connection to at least a node permuted by s2 (of type λ2).
Otherwise, we write s1 = ℓ1 · ℓ2 with type(ℓ1) = µ1 and type(ℓ2) = µ2 where ℓ1 permutes the
nodes sending a direct connection to at least a node permuted by s2. The factor T (µ2|µ1; x)
then imposes that every node permuted by ℓ2 sends a path to a node permuted by s2 through
a node permuted by ℓ1. The factor D(µ1|µ2; x) accounts for the possible connections from
nodes permuted by ℓ1 to the nodes permuted by ℓ2.

For illustration, we assume that λ1 = (11, 21) and that λ2 = (11). We then have

T (λ1|λ2; x) = I
(

(11, 21)|(11); x
)

F ((11, 21); x)

+I
(

(21)|(11); x
)

F
(

(21); x
)

D
(

(21)|(11); x
)

T
(

(11)|(21); x
)

+I
(

(11)|(11); x
)

F
(

(11); x
)

D
(

(11)|(21); x
)

T
(

(21)|(11); x
)

.
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Using T ((11)|(21); x) = I ((11)|(21); x)F ((11); x) and T ((21)|(11); x) = I ((21)|(11); x)F ((21); x)
we obtain

T (λ1|λ2; x) = x3
(

1 + x2
)3

+x2
(

1 + x2
)

(1 + x2)x2 + x(1 + x2)x2
(

1 + x2
)

= x9 + x8 + 4x7 + 2x6 + 5x5 + x4 + 2x3.

We draw the corresponding networks under the convention that the node on which s2 acts
is in black while the nodes on the 2-cycle of s1 are in green and the node left fixed by s1 is
in blue.
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3 Main results

We now demonstrate the main results of the article, namely: 1) An exact expression for the
total number of networks 2) A recursive formula yielding the exact value ofN(m,n1, n2, k; x),
3) Sharp analytic bounds for N∗(m,n1, n2, k), 4) Sharp analytic bounds for N(m,n1, n2, k).

3.1 Exact series

3.1.1 Total number of networks

Theorem 12.

N∗(m,n1, n2, k; x) =
∑

λ1⊢n1
λ2⊢n2

ω(λ1)ω(λ2)

n1!n2!
G(λ1 ∪ λ2; x)

with

G(λ; x) = F (λ; x)D(λ|(1m); x)D(λ|(1k); x).

13



Proof. Since the intermediate nodes of type I are distinguishable from these of type II, we
only consider partitions λ1 ∪ λ2 with λ1 ⊢ n1 and λ2 ⊢ n2. In the expression G(λ; x), the
factor F (λ; x) stands for the action of a permutation of type λ on connections between
intermediate nodes. The factor D(λ|(1m); x) stands for the action of a permutation of type
λ on the connections from the m input nodes to the intermediate nodes. Finally, the factor
D(λ|(1k); x) stands for the action of a permutation of type λ on the connections from the
intermediate nodes to the k output nodes.

3.1.2 Number of admissible networks

The following result gives an effective recursive formula for N(m,n1, n2, k; x) which we im-
plemented in Python to obtain the values of N(m,n1, n2, k) = N(m,n1, n2, k; 1) given in
Table 1.

Theorem 13.

N(m,n1, n2, k; x) =
∑

λ1⊢n1
λ2⊢n2

ω(λ1)ω(λ2)

n1!n2!
C(λ1 ∪ λ2; x) (5)

where C(λ; x) can be obtained recursively through the following equation

C(λ; x) = G(λ; x)−
∑

µ1∪µ2∪µ3∪µ4=λ

µ2∪µ3∪µ4 6=φ

Ω (µ1, µ2, µ3, µ4)C(µ1; x) (6)

T (µ2|µ1 ∪ (1m); x)T (µ3|µ1 ∪ (1k); x)F (µ4; x)D(µ2 ∪ µ4|µ3; x)D(µ2|µ4; x)

with C(φ; x) = 1.

Proof. Theorem 13 follows rather directly from the definitions of the auxiliary functions.
The intermediate nodes of a network can be divided in four disjoint groups (regardless if
they are of type I or type II) as follows:

1. Intermediate nodes of the first group, tagged as ‘connected’ intermediate nodes, both
receive a path from an input node and send a path to an output neuron. Other
intermediate nodes are tagged as ‘unconnected’.

2. Unconnected intermediate nodes in the second group receive a path from an input node
but send none to an output node.

3. Unconnected intermediate nodes of the third group send a path to an output node but
receive no path from an input node.

4. Unconnected intermediate nodes of the fourth group neither receive a path from an
input node nor send a path to an output node.

14



We write µj, 1 ≤ j ≤ 4 as the types of the permutations acting on the intermediate nodes
belonging to group j. Assuming that a network is not counted by N(m,n1, n2, k) then
µ2 ∪ µ3 ∪ µ4 6= φ since at least one intermediate node doesn’t belong to the first group.
Equation (6) subtracts from all possible networks these in which some intermediate nodes
are unconnected.

The factor C(µ1; x) corresponds to the action of a permutation of type µ1 on the con-
nections between two ‘connected’ intermediate nodes as well as on connections between con-
nected intermediate nodes and input/output nodes. The factor T (µ2|µ1 ∪ (1m); x) accounts
for the action of permutations types µ1 and µ2 on the connections between two intermediate
nodes of the second group as well as on connections from a connected intermediate node or
from an input node to intermediate nodes of the second group. The factor T (µ3|µ1∪ (1k); x)
accounts for the action of permutations of types µ1 and µ3 on connections between two in-
termediate nodes of group 3 as well as on connections from intermediate nodes of group 3
to connected intermediate nodes or to output nodes. The factor F (µ4; x) accounts for the
action of the permutation type µ4 on connections between two intermediate nodes of group
4. The factor D(µ2 ∪ µ4|µ3; x) accounts for the action of permutation types µ2, µ3 and µ4

on connections from intermediate nodes of group 3 to intermediate nodes of either group
2 or group 4. Finally, the factor D(µ2|µ4; x) accounts for the action of permutation types
µ2 and µ4 on connections from an intermediate node of group 4 to an intermediate node of
group 2. Given that in formula (6), the partition µ1 is a partition of an integer which is
strictly smaller than the integer partitioned by λ, the recurrence process is convergent. The
argument of the proof is illustrated in the schematic below.

Input Output

Gr. 1

Gr. 2 Gr. 3

Gr. 4

3.2 Asymptotic series

3.2.1 Total number of networks

Asymptotic formulas for graph enumeration have been obtained for several graph enumera-
tion problems including [15]. In this direction, Theorem 12 allows us to derive the following
approximation for N∗(m,n1, n2, k).

15



Theorem 14.

N∗(m,n1, n2, k) =
2(n+m+k−1)n

n1!n2!

(

1 +

((

n1

2

)

+

(

n2

2

))

2−2n−m−k+3

+

(

2

(

n1

3

)

+ 2

(

n2

3

))

2−4n−2m−2k+8

+

((

n1

2

)(

n2

2

)

+ 3

(

n1

4

)

+ 3

(

n2

4

))

2−4n−2m−2k+10

)

+O

(

2(n+m+k−1)n

n1!n2!
n72−6n−3m−3k

)

.

Proof. The proof is technical but rather straightforward. The idea behind it is that the
main contributions to N∗(m,n1, n2, k) come from the permutations leaving all or almost all
intermediate nodes fixed. We will quantify exactly these contributions and show that the
others can be neglected. The right hand side in the statement of Theorem 14 could be further
expanded, but we limited ourselves to four terms for the sake of simplicity. If we define the
partition λ1 by λ1 := (1n), we have

ω(λ1) = 1 and G(λ1; x) = (1 + x)(n+m+k−1)n (7)

so the contribution of the identity permutation to N∗(m,n1, n2, k) is equal to 2(m+n+k−1)n

n1!n2!
.

We will now show that the contributions of other permutation types are small compared to
this.

Let λ2 = (1n−2, 21), we have

∑

µ1⊢n1,µ2⊢n2
µ1∪µ2=λ2

ω(µ1)ω(µ2) =

(

n1

2

)

+

(

n2

2

)

(8)

and G(λ2; x) = (1 + x)(n+m+k−3)(n−2)(1 + x2)1+2(n−2)+m+k.

Let λ3 = (1n−3, 31), we have

∑

µ1⊢n1,µ2⊢n2
µ1∪µ2=λ3

ω(µ1)ω(µ2) = 2

(

n1

3

)

+ 2

(

n2

3

)

(9)

and G(λ3; x) = (1 + x)(n+m+k−4)(n−3)(1 + x3)2+2(n−3)+m+k.

Let λ4 = (1n−4, 22), we have

∑

µ1⊢n1,µ2⊢n2
µ1∪µ2=λ4

ω(µ1)ω(µ2) =

(

n1

2

)(

n2

2

)

+ 3

(

n1

4

)

+ 3

(

n2

4

)

(10)

and G(λ4; x) = (1 + x)(n+m+k−5)(n−4)(1 + x2)6+4(n−4)+2m+2k.
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Let λ5 = (1n−4, 41), we have

∑

µ1⊢n1,µ2⊢n2
µ1∪µ2=λ5

ω(µ1)ω(µ2) = 6

(

n1

4

)

+ 6

(

n2

4

)

(11)

and G(λ5; x) = (1 + x)(n+m+k−5)(n−4)(1 + x4)3+2(n−4)+m+k.

Let λ6 = (1n−5, 2, 3), we have

∑

µ1⊢n1,µ2⊢n2
µ1∪µ2=λ6

ω(µ1)ω(µ2) = 2

(

n1

2, 3

)

+ 2

(

n2

2, 3

)

+ 2

(

n1

2

)(

n2

3

)

+ 2

(

n1

3

)(

n2

2

)

(12)

G(λ6; x) = (1 + x)(n+m+k−6)(n−5)(1 + x2)1+2(n−5)+m+k(1 + x3)2+2(n−5)+m+k

×(1 + x6)2.

Finally, let λ7 = (1n−5, 5). We have

∑

µ1⊢n1,µ2⊢n2
µ1∪µ2=λ7

ω(µ1)ω(µ2) = 24

(

n1

5

)

+ 24

(

n2

5

)

(13)

and G(λ7; x) = (1 + x)(n+m+k−6)(n−5)(1 + x5)4+2(n−5)+m+k.

For h a nonnegative integer, we define the set γ(h) as

γ(h) := {λ : ∃µ1 ⊢ n1, µ2 ⊢ n2, µ1 ∪ µ2 = λ, aλ1 = n− h}

that is the set of partitions of n with exactly n− h cycles of length 1. From equation (7) we
have

∑

λ1⊢n1,λ2⊢n2
λ1∪λ2∈γ(0)

ω(λ1)ω(λ2)

n1!n2!
G(λ1 ∪ λ2; 1) =

1

n1!n2!
2(n+m+k−1)n. (14)

From equation (8) we have

∑

λ1⊢n1,λ2⊢n2
λ1∪λ2∈γ(2)

ω(λ1)ω(λ2)

n1!n2!
G(λ1 ∪ λ2; 1) =

(

n1

2

)

+
(

n2

2

)

n1!n2!
2(n+m+k−1)n−2n−m−k+3. (15)

From equation (9) we have

∑

λ1⊢n1,λ2⊢n2
λ1∪λ2∈γ(3)

ω(λ1)ω(λ2)

n1!n2!
G(λ1 ∪ λ2; 1) =

2
(

n1

3

)

+ 2
(

n2

3

)

n1!n2!
2(n+m+k−1)n−4n−2m−2k+8. (16)
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From equations (10) and (11) we have

∑

λ1⊢n1,λ2⊢n2
λ1∪λ2∈γ(4)

ω(λ1)ω(λ2)

n1!n2!
G(λ1 ∪ λ2; 1)

=

(

n1

2

)(

n2

2

)

+ 3
(

n1

4

)

+ 3
(

n2

4

)

n1!n2!
2(n+m+k−1)n−4n−2m−2k+10

+
6
(

n1

4

)

+ 6
(

n2

4

)

n1!n2!
2(n+m+k−1)n−6n−3m−3k+15. (17)

While finally from equations (12) and (13) we have:

∑

λ1⊢n1,λ2⊢n2
λ1∪λ2∈γ(5)

ω(λ1)ω(λ2)

n1!n2!
G(λ1 ∪ λ2; 1)

=
2
(

n1

2,3

)

+ 2
(

n2

2,3

)

+ 2
(

n1

2

)(

n2

3

)

+ 2
(

n1

3

)(

n2

2

)

n1!n2!
2(n+m+k−1)n−6n−3m−3k+13

+
24
(

n1

5

)

+ 24
(

n2

5

)

n1!n2!
2(n+m+k−1)n−8n−4m−4k+24. (18)

From equations (14-18) we obtain

N∗(m,n1, n2, k) =
2(n+m+k−1)n

n1!n2!

(

1 +

((

n1

2

)

+

(

n2

2

))

2−2n−m−k+3

+

(

2

(

n1

3

)

+ 2

(

n2

3

))

2−4n−2m−2k+8

+

((

n1

2

)(

n2

2

)

+ 3

(

n1

4

)

+ 3

(

n2

4

))

2−4n−2m−2k+10

)

+O

(

2(n+m+k−1)n

n1!n2!
n52−6n−3m−3k

)

+
n
∑

h=6

∑

λ1⊢n1,λ2⊢n2
λ1∪λ∈γ(h)

ω(λ1)ω(λ2)

n1!n2!
G(λ1 ∪ λ2; 1). (19)

Assuming that a permutation s is of type λ ∈ γ(h), we can count the number of connec-
tions that will not be fixed by s. We have that h(m+ k) connections between intermediate
nodes and input/output nodes will have orbits of length greater than one while h(h − 1)
connections between two intermediate nodes which are not fixed by s will have orbits of
length greater than one. Finally, 2h(n− h) connections between an intermediate node that
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is fixed by s and one that is not fixed by s will be in orbits of length greater than one. The
total number of connections in orbits of length greater than one is thus equal to

h(m+ k) + h(h− 1) + 2h(n− h).

Given that the total number of connections is equal to (n + m + k − 1)n, the number of
connection orbits induced by a permutation of type λ ∈ γ(h) will thus be less or equal than

(n+m+ k − 1)n−
h(m+ k) + h(h− 1) + 2h(n− h)

2
.

Therefore
λ ∈ γ(h) ⇒ G(λ; 1) ≤ 2(m+n+k−1)n−h(m+k+2n−h−1)/2. (20)

We also have

∑

λ1⊢n1,λ2⊢n2
λ1∪λ2∈γ(h)

ω(λ1)ω(λ2) ≤

min(n1,h)
∑

h1=0

(

n1

h1

)(

n2

h− h1

)

h1!(h− h1)! ≤

min(n1,h)
∑

h1=0

nh ≤ nh+1. (21)

Equations (20) and (21) imply

n
∑

h=6

∑

λ1⊢n1,λ2⊢n2
λ1∪λ2∈γ(h)

ω(λ1)ω(λ2)

n1!n2!
G(λ1 ∪ λ2; 1) ≤

2(m+n+k−1)n

n1!n2!

n
∑

h=6

nh+12−h(m+k+2n−h−1)/2

≪
2(m+n+k−1)n

n1!n2!

n
∑

h=6

nh+12−h(m+k+n)/2 (22)

= O

(

2(n+m+k−1)n

n1!n2!
n72−6n−3m−3k

)

.

And the proof of Theorem 14 follows from (19) and (22).

3.2.2 Number of admissible networks

Probabilistic interpretation shows that assuming that each potential connection is equally
likely to exist or not, almost all graphs are connected as the number of nodes increases
[9]. The next result shows that a similar phenomenon occurs in the context of the problem
investigated in the present paper as N(m,n1, n2, k) ∼ N∗(m,n1, n2, k) when the number of
nodes increases.

Theorem 15. Assuming that min(m, k) > 1, we have

N(m,n1, n2, k) =
1

n1!n2!
2(n+m+k−1)n −

n

n1!n2!
2(m+n+k−1)n−n−m+1

−
n

n1!n2!
2(m+n+k−1)n−n−k+1 +O

(

2(n+m+k−1)nn3

n1!n2!

(

2−2n−min(m,k)
)

)

.
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Proof. We will now provide a proof of Theorem 15 following the same general idea as in the
proof of Theorem 14 namely that the contribution to N(m,n1, n2, k; x) from permutations
other than the identity permutation are relatively small. Furthermore, when subtracting the
networks not satisfying the connectivity conditions, the main contribution to the subtracted
quantity comes from the case where only one intermediate node belongs to the unconnected
group. From equations (20) and (21) we have:

∑

h≥2

∑

λ1⊢n1,λ2⊢n2
λ1∪λ2∈γ(h)

ω(λ1)ω(λ2)

n1!n2!
C(λ1 ∪ λ2; 1) ≤

∑

h≥2

∑

λ1⊢n1,λ2⊢n2
λ1∪λ2∈γ(h)

ω(λ1)ω(λ2)

n1!n2!
G(λ1 ∪ λ2; 1)

≤
2(m+n+n+k−1)n

n1!n2!

n
∑

h=2

nh+12−h(m+k+2n−h−1)/2

= O

(

2(n+m+k−1)n

n1!n2!
n32−2n−m−k

)

. (23)

This means that for the purpose of Theorem 15, all permutations except the identity can
be neglected. For the remainder of the proof, we will thus assume λ = (1n). We have from
Theorem 13

C((1n); x) = G((1n); x) (24)

−
n
∑

h=1

∑

µ1∪µ2∪µ3∪µ4=(1n)

µ2∪µ3∪µ3=(1h)

C(µ1; x)Ω(µ1, µ2, µ3, µ4)U((µ2, µ3, µ4), µ1; x)

where the sum on h is performed over all the possible number of unconnected intermediate
nodes and

U((µ2, µ3, µ4), µ1; x) =

T (µ2|µ1 ∪ (1m); x)T (µ3|µ1 ∪ (1k); x)F (µ4; x)D(µ2 ∪ µ4|µ3; x)D(µ2|µ4; x).

We now show that the contribution of instances with more than 1 unconnected intermediate
node is relatively small. Assuming that µ2 ∪ µ3 ∪ µ4 = (1h) we have that µ1 = (1n−h). The
number of forbidden connections is at least

h((n− h) + min(m, k)).

Therefore
C(µ1; 1)U((µ2, µ3, µ4), µ1; 1) ≤ 2(n+m+k−1)n2−h((n−h)+min(m,k)). (25)

The number of ways of choosing the h unconnected intermediate nodes is equal to
(

n
h

)

. The
number of ways of choosing which of these unconnected intermediate nodes will not send a
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path to an output neuron is equal to 2h. We thus have

∑

µ1∪µ2∪µ3∪µ4=(1n)

µ2∪µ2∪µ3=(1h)

C((1n−h); 1)Ω(µ1, µ2, µ3, µ4)U((µ2, µ3, µ4), (1
n−h)) (26)

≤ 2(n+m+k−1)n

(

n

h

)

2h2−h((n−h)+min(m,k)).

Given that under the assumption that min(m, k) > 1 we have

n
∑

h=2

(

n

h

)

2−h((n−h)+min(m,k)−1) = O
(

n22−2n−2min(m,k)
)

we can obtain the following from equations (24) and (26)

C((1n); 1) = 2(n+m+k−1)n (27)

−
∑

µ1∪µ2∪µ3∪µ4=(1n)
µ2∪µ2∪µ3=(1)

C(µ1; 1)Ω((µ1, µ2, µ3, µ4), (1
n))U((µ2, µ3, µ4), µ1; 1)

+O
(

n22(n+m+k−1)n−2n−2min(m,k)
)

.

Assuming that only one intermediate node is unconnected, this neuron can be in either group
2, group 3 or group 4. In each instance Ω((µ1, µ2, µ3, µ4), (1

n)) = n. If the unconnected
intermediate node is in group 2, we have U(((1), φ, φ), (1n−1); 1) = 2n−1+k, if it is in group 3
we have, U((φ, (1), φ), (1n−1); 1) = 2n−1+m while if it is in group 4, U((φ, φ, (1)), (1n−1); 1) =
1. Using

C((1n−1); 1) = 2(n+m+k−2)(n−1)
(

1 +O(n2−n)
)

this yields

∑

µ1∪µ2∪µ3∪µ4=(1n)
µ2∪µ2∪µ3=(1)

C(µ1; 1)Ω(µ1, µ2, µ3, µ4)U((µ2, µ3, µ4), µ1; 1) (28)

= 2(n+m+k−1)nn
(

2−(n−1+k) + 2−(n−1+m) + 2−(2n−2+m+k)
)

+O
(

n22−2n−m−k
)

.

From equations (27) and (28)we have

C((1n); 1) = 2(n+m+k−1)n
(

1− n
(

2−m−n+1 + 2−k−n+1
))

(29)

+O
(

2(n+m+k−1)nn2
(

2−2n−min(m,k)
))

.

The proof of Theorem 15 then follows directly from (23) and (29).
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4 Algorithms and numerical results

4.1 An algorithm to obtain N(m,n1, n2, k)

We used the tools developed in the previous sections to compute N(m,n1, n2, k) exactly. We
implemented the exact formula in Python 3.2 and obtained the values of N(m,n1, n2, k) for
a total number of up to twenty neurons (see table). The value of N(5, 5, 5, 5) is larger than
1050 and was obtained in roughly 1 hour on a personal computer, as follows from Theorem
14 and Theorem 15, the ratio N∗(m,n1, n2, k)/N(m,n1, n2, k) tends to 1 as the total number
of nodes tends to infinity. A potential way to improve the running time of our algorithm
would be to generate tables for the recursively defined functions C and T , avoiding multiple
computations of the same values, but we didn’t observe any practical gain in computation
power.

4.2 An algorithm to generate the networks

While counting the networks satisfying a given set of conditions is interesting in its own
right, we also provide an algorithm to generate the adjacency matrix associated with the
networks counted by N(m,n1, n2, k). As discussed below, in future works, generating these
networks will allow us to perform several tests on the relationships between their structure
and dynamical behaviour.

With each network with N nodes, we associate the adjacency matrix A = (Ai,j)
N
i,j=1,

which is such that Ai,j = 1 if there is a connection from node i to node j and Ai,j = 0
otherwise. In our case, N = m + n + k and we adopt the following convention regarding
the labelling of the nodes: i = 1, . . . ,m for the input nodes, i = m + 1, . . . ,m + n for the
intermediate nodes, and i = m+ n+ 1, . . . ,m+ n+ k for the output nodes. We define E as
the following set

E = {(i, j) : the connection i → j is permitted }.

For every pair (i, j), we define the rank of (i, j) as

rank(i, j) = #{(i1, j1) ∈ E : i1 < i}+#{(i1, j1) ∈ E : i1 = i, j1 < j}

so this function provides an ordering of the pairs (i, j) from 0 to (n+m+ k − 1)n− 1. We
can then assign a single integer index to each adjacency matrix A as follows:

Index(A) :=
∑

(i,j)∈E

A(i, j)2rank(i,j)

which is the most compact representation for a binary adjacency matrix given the forbidden
connections of the present problem.

A Boolean value is attributed to each possible index value depending on whether or
not the corresponding matrix is counted by the function N(m,n1, n2, k). In order to check
if an adjacency matrix A corresponds to a network satisfying the connectivity conditions
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(m,n1, n2, k) N(m,n1, n2, k), (N/N∗)
(1, 2, 0, 1) 10, (0.27778)

(1, 1, 1, 1) 18, (0.28125)

(2, 1, 1, 1) 102, (0.39844)

(1, 2, 2, 1) 142982, (0.53653)

(2, 2, 2, 1 2694498, (0.63728)

(2, 2, 2, 2) 51866550, (0.76982)

(3, 2, 2, 2) 884419998, (0.82206)

(2, 3, 2, 2) 78187273596, (0.85166)

(2, 3, 3, 2) 455361619832116, (0.90933)

(3, 3, 3, 2) 29832388255291748, (0.93118)

(3, 3, 3, 3) 1955846953939134676, (0.95407)

(4, 3, 3, 3) 126638097270451278260, (0.96531)

(3, 4, 3, 3) 13070591789841196037595, (0.97299)

(3, 4, 4, 3) 34667056916819114999482177172, (0.98449)

(4, 4, 4, 3) 8909372636328795000677433447860, (0.98834)

(4, 4, 4, 4) 2289737167377258878090980801663700, (0.9922)

(5, 4, 4, 4) 5873165118545144771100744785795825940, (0.99415)

(4, 5, 4, 4) 7709370994349444222506223806797006161890, (0.99561)

(4, 5, 5, 4) 103675627514386351527569061315028472168329351376, (0.99756)

(5, 5, 5, 4) 106228616378925332256701907433326875374372326146256, (0.99817)

(5, 5, 5, 5) 108844524790336539487420588884391944954279893619583184, (0.99878)

k := number of input nodes
n1 := number of intermediate nodes of type I
n2 := number of intermediate nodes of type II
m := number of output nodes

Table 1: Total number of connected networks
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mentioned in the Introduction, we used two basic facts: (1) Aℓ
i,j corresponds to the number

of paths of length ℓ from the i-th to the j-th vertex, and (2) the shortest path between two
nodes has length at most n+ 1. It follows that, if we define

connec =
n+1
∑

ℓ=1

Aℓ,

then connecs,t > 0 iff there is a path from the s-th node to the t-th neuron.
Lastly, to avoid counting isomorphisms of the same network, we make a list of all permu-

tation matrices different from the identity that permute intermediate nodes of type I among
themselves and intermediate nodes of type II among themselves. For all such permutation
matrices P , the matrix P TAP corresponds to the adjacency matrix of a network which is
an isomorphism of a network corresponding to the matrix A. We again implemented this in
Python as described in Algorithm 1, and on a personal computer we could generate billions
of networks in roughly 1 hour.

While many efficient algorithms that check network connectivity have been developed,
such as those based on breadth-first search or depth-first search [18], we preferred to use
the procedure explained above because it is the simplest, it avoids passing from adjacency
matrices to lists of edges, and it does not have a significant impact on the running time of
the whole algorithm. The most costly part of the algorithm is obviously the last one, which
generates permutations of an adjacency matrix. Consequently, any significant algorithmic
improvement would have to involve a conceptually new way to make sure that isomorphism
of admissible networks are counted only once.

5 Conclusion

Beyond the stand alone interest of enumerating digraphs with a given set of sources and
sinks, the present paper is relevant to structure enumeration in scientific fields such as
neuroscience and the study of finite automata. In neuroscience, the encoding capacity of
a network depends on the number of possible combinations of network structures, transfer
functions and synaptic weights[16, 8, 27]. Hence, network counting can give hints with
respect to the computational power of neural systems. Techniques of network enumeration
can also be used to investigate the frequency of motif occurrences in neural networks [17]
which can help to determine the local impact of global rules [25]. The number of functions
that can be computed by a class of automata is also directly related to the size of this class.
Since automata not satisfying the conditions given in the present paper would contain cells
which behaviour would be irrelevant to the global behaviour of the automaton, we hope that
the enumeration techniques here developed will eventually lead to a better understanding of
the descriptive power of given classes of finite automata.

A first implication of the results of this paper is that, given the rate of increase of N as a
function of the number of nodes, the naive idea of unambiguously inferring the structure of a
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Algorithm 1 Generating networks satisfying the connectivity conditions

INPUT: Integers m,n1, n2, k.
OUTPUT: A Boolean B of length 2n(n+m+k−1), where n = n1 + n2, such that Bj = true iff
the two following conditions are satisfied: 1) j is the index of an admissible network, 2) If
j1 is the index of an isomorphic network, then j ≤ j1.

INITIALIZATION
Set M = 2n(n+m+k−1).
Initialize B, a Boolean vector of length M with all its values equal to None.
Let perm be the list of all the permutation matrices different from the identity permuting
intermediate nodes of type I and intermediate nodes of type II.

IDENTIFY ADMISSIBLE MATRICES
for j in range (0,M):
if Bj is equal to None:
compute the adjacency matrix A corresponding to the index j
compute the connectivity matrix connec =

∑n+1
h=0 A

h

set check = 1
for s in range (0, n):
update Check with

check = check (
∑m

u=1 connecu,m+s)
(

∑k
u=1 connecm+s,m+n+u

)

if check > 0 :
Bj = True

else:
Bj = False

for P in perm:
compute ℓ, the index associated with the matrix P TAP
set Bℓ = False
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hidden network from input-output relationships is unrealistic under physiological data. Our
results can also be used to derive bounds on the quantity of information needed to derive
the network structure. Namely, the number of bits necessary to infer the network structure
is at least

log(N(m,n1, n2, k))

log(2)
.

Finally, we not only counted the admissible networks but also provided an efficient algo-
rithm to generate these networks. In future works, this could be used to perform extensive
searches over all admissible networks or to randomly sample networks over the set of all
possibilities.
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