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Résumé

Dans cette thèse, nous étudions la robustesse d’un modèle multimodal de détection d’objets
en 3D dans le contexte de véhicules autonomes. Les véhicules autonomes doivent détecter et
localiser avec précision les piétons et les autres véhicules dans leur environnement 3D afin de
conduire sur les routes en toute sécurité. La robustesse est l’un des aspects les plus impor-
tants d’un algorithme dans le problème de la perception 3D pour véhicules autonomes. C’est
pourquoi, dans cette thèse, nous avons proposé une méthode pour évaluer la robustesse d’un
modèle de détecteur d’objets en 3D.

À cette fin, nous avons formé un détecteur d’objets 3D multimodal représentatif sur trois
ensembles de données différents et nous avons effectué des tests sur des ensembles de données
qui ont été construits avec précision pour démontrer la robustesse du modèle formé dans
diverses conditions météorologiques et de luminosité. Notre méthode utilise deux approches
différentes pour construire les ensembles de données proposés afin d’évaluer la robustesse. Dans
une approche, nous avons utilisé des images artificiellement corrompues et dans l’autre, nous
avons utilisé les images réelles dans des conditions météorologiques et de luminosité extrêmes.

Afin de détecter des objets tels que des voitures et des piétons dans les scènes de circulation,
le modèle multimodal s’appuie sur des images et des nuages de points 3D. Les approches
multimodales pour la détection d’objets en 3D exploitent différents capteurs tels que des
caméras et des détecteurs de distance pour détecter les objets d’intérêt dans l’environnement.
Nous avons exploité trois ensembles de données bien connus dans le domaine de la conduite
autonome, à savoir KITTI, nuScenes et Waymo.

Nous avons mené des expériences approfondies pour étudier la méthode proposée afin d’évaluer
la robustesse du modèle et nous avons fourni des résultats quantitatifs et qualitatifs. Nous
avons observé que la méthode que nous proposons peut mesurer efficacement la robustesse du
modèle.
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Abstract

In this thesis, we study the robustness of a multimodal 3D object detection model in the
context of autonomous vehicles. Self-driving cars need to accurately detect and localize pedes-
trians and other vehicles in their 3D surrounding environment to drive on the roads safely.
Robustness is one of the most critical aspects of an algorithm in the self-driving car 3D per-
ception problem. Therefore, in this work, we proposed a method to evaluate a 3D object
detector’s robustness.

To this end, we have trained a representative multimodal 3D object detector on three different
datasets. Afterward, we evaluated the trained model on datasets that we have proposed and
made to assess the robustness of the trained models in diverse weather and lighting conditions.
Our method uses two different approaches for building the proposed datasets for evaluating
the robustness. In one approach, we used artificially corrupted images, and in the other one,
we used the real images captured in diverse weather and lighting conditions.

To detect objects such as cars and pedestrians in the traffic scenes, the multimodal model
relies on images and 3D point clouds. Multimodal approaches for 3D object detection exploit
different sensors such as camera and range detectors for detecting the objects of interest
in the surrounding environment. We leveraged three well-known datasets in the domain of
autonomous driving consist of KITTI, nuScenes, and Waymo.

We conducted extensive experiments to investigate the proposed method for evaluating the
model’s robustness and provided quantitative and qualitative results. We observed that our
proposed method can measure the robustness of the model effectively.
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Introduction

Every year, car accidents are one of the main reasons for death and serious injuries worldwide.
Self-driving cars may make the roads safer than they are today and decrease the number of
car accidents. Hence, the efforts to improve technologies such as driver assistance and fully
autonomous vehicles are valuable. However, it is necessary to solve various technical difficulties
and other important issues before using autonomous vehicles commercially.

Since the cause of most traffic accidents leading to severe injuries or even death is the error
of drivers [7], the use of self-driving cars can be expected to prevent accidents that arise from
human error and reduce the casualties. To achieve this goal, we need to leverage accurate and
robust control systems and perception algorithms in autonomous vehicles, capable of working
in diverse environmental situations.

The study of autonomous vehicles is an application domain that currently attracts considerable
attention from industrial and scientific communities. It is an active research area due to the
promising results of utilizing perception systems based on multimodal deep learning methods
for 3D object detection.

Due to the need for having high accuracy, robustness, and real-time performance for self-
driving cars, developing perception systems based on multimodal deep learning approaches
is particularly challenging [8]. Among several difficulties in achieving practical algorithms,
evaluating the model’s robustness, which quantifies the stability of the model’s performance
to the disturbances in input data, is one of the most challenging [9].

In modern cars, various technologies such as driver assistance are already in operation and
help prevent accidents and reduce road casualties. For instance, they help drivers avoid drifting
into adjacent lanes or changing the lane unsafely. These driver assistance technologies can also
warn drivers while other cars are behind them, and there is a risk of an accident. Another
example is an automatic braking system that activates when a car ahead brakes and slows
suddenly or stops. These safety technologies help cars to find out safety risks and warn drivers.

To have fully autonomous cars, perception of the driving environment is a prerequisite. An
autonomous vehicle (AV) needs an accurate and robust perception of its surroundings to
operate reliably. Towards enabling autonomous driving, the perception system of an AV usually
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exploits machine learning algorithms. More specifically, deep learning methods are widely used
to transform sensory data into semantic information.

Perception is the first component in the computational pipeline for the reliable functioning
of an autonomous vehicle. Moreover, object detection is a vital function of this perception
system. By leveraging 3D object detection methods and considering the third dimension, it
is possible to reveal more relevant information about the object’s size and location in the
surrounding environment.

Accurate, robust, and real-time 3D detection of objects is crucial for autonomous vehicles.
Autonomous vehicles are usually equipped with different sensors to perceive their environment
and make correct decisions based on the perception of the environment. Therefore, fusing
data gathered by these different sensors and extracting relevant information while considering
different modalities is necessary.

3D object detection methods have become popular in recent years since they can provide
a more detailed description of objects than 2D object detectors. 3D object detection aims
to recover the 6 DoF (Degrees of Freedom) pose and the 3D bounding box dimensions for
all objects of interest in the scene. 3D object detection, which classifies the object category
and estimates oriented 3D bounding boxes of physical objects, is essential for 3D perception
tasks. It serves as an essential basis of visual perception, motion prediction, and planning for
autonomous driving.

The datasets for training models in a supervised learning approach are as important as the
models. Moreover, the evaluation of the results is critical. Therefore, in this research, the
impact of the exploited datasets and evaluation methods on the state-of-the-art multimodal
model, Frustum PointNets [6], are investigated.

One of the most notable aspects of the supervised learning approach in machine learning is
having a large and proper dataset for training the models. The KITTI [4], nuScenes [5], and
Waymo [1] datasets are all public multimodal datasets containing 3D bounding box annota-
tions for objects of interest such as cars and pedestrians.

KITTI dataset is one of the oldest datasets for training models for 3D object detection for
self-driving cars, and its evaluation method is used widely. However, the KITTI dataset does
not consist of diverse scenes, and all images are taken in the daytime while the weather is
sunny. The nuScenes and Waymo datasets contain more images captured in both night and
day and different weather conditions such as rainy weather.
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0.1 Statement of Problem

Operating a vehicle on public roadways is a complicated task due to the number of interactions
with other objects, which are usually unpredictable, including vehicles, pedestrians, cyclists,
and animals. Robust perception of the surrounding environment and extracting relevant in-
formation are crucial for safe navigation on the roads.

One of the reasons that prevent self-driving cars from being used widely is that their perception
systems’ inability to function well in adverse weather and lighting conditions [10]. Considerable
progress is needed before autonomous vehicles can operate reliably in mixed urban traffic or
heavy rain and snow. In other words, without further improvements in the robustness of
models, it is not possible to achieve the full potential of self-driving cars.

The principal question in the study of self-driving cars is : how a vehicle can be capable
of perceiving its environment and moving between two arbitrary locations safely, with little
or no human intervention. An accurate and robust perception system is a precondition for
autonomous vehicles that can safely drive by themselves in complex driving environments.

Although many models and algorithms are recently proposed for 3D object detection in self-
driving car scenarios, there is no appropriate method for evaluating models’ robustness. Given
a trained deep neural network model, the main objective of robustness verification methods
is providing a robustness certificate for verifying the model’s generalization capability and its
ability to work in diverse conditions.

Current metrics often concentrate on examining the model’s accuracy. Nevertheless, it is ne-
cessary to develop and adapt proper methods and metrics to measure the model’s robustness
for multimodal perception problems.

In this work, the problem of evaluating the robustness of a model in various scenarios, inclu-
ding diverse lighting and weather conditions, is investigated. More precisely, the question is :
how can we evaluate the robustness of a trained model in a self-driving car scenario. In order
to answer this question, we propose several robustness test sets. One of the proposed data-
sets contains images with synthetic corruptions, and the others contain images with natural
corruptions due to diverse weather and lighting conditions.

To make the dataset of synthetic corrupted images, we exploited 15 different corrupting me-
thods, each with five diversities. For the datasets of images with diverse weather conditions,
we leveraged images captured in rainy weather. To test the robustness of the model for diverse
lighting conditions, we collected images captured during the nighttime.
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0.2 Scientific Objectives

Generally, in many research areas, utilizing challenging datasets as a benchmark is widespread
since it is possible to exploit them as a standard comparison between different models and set
objectives for solutions [11]. Therefore, we investigate two different approaches to cope with
benchmarking for evaluating the robustness in this work.

In the first approach, we consider a dataset and then divide it into training and test subsets.
We induce different artificial corruptions with various severities on the data of the test subset.
After training the model on the training subset, we evaluate the trained model on the original
test subset and the subsets we made by inducing corruptions. By comparing the results, we
can evaluate the robustness of the model.

The advantage of this method is the ability to exploit it on an arbitrary dataset. Moreover, it
can effectively measure a trained model’s robustness against some noises and digital corrup-
tions such as JPEG compression. However, this method can not accurately assess the model’s
robustness in real-world conditions such as diverse weather or lighting conditions. Hence, we
investigate a second method to examine the model’s robustness with real data to solve this
problem.

To this end, we leverage datasets that consist of captured data in rainy weather and also
at night. We divide them into three sub-datasets corresponding to clear, rainy, and night
conditions. Then we first train and evaluate the model on the clear sub-dataset. Afterward,
to estimate the robustness, we evaluate the trained model on rainy and night sub-datasets.

In this thesis, the robustness and accuracy of a state-of-the-art model in an autonomous
vehicle scenario are investigated and discussed. The proposed approaches are useful for auto-
nomous driving and robotic perception. In general, achieving accurate and robust algorithms
for perceiving the environment is a significant and fundamental problem.

0.3 Outline of Following Chapters

Chapter 1 presents the necessary and relevant theoretical concepts for this research. Moreo-
ver, at the end of the first chapter, a brief review of related works in 3D object detection
for autonomous vehicles is provided. In chapter 2, the methodology, proposed datasets, and
evaluation metrics are presented. Chapter 3 presents extensive quantitative evaluations and
rich qualitative results for understanding the proposed method’s strengths and limitations. At
the end, the conclusion is provided.
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Chapitre 1

Literature Review and Theoretical
Background

1.1 Object Detection

When we look at an image, one question that arises could be : "what objects are there in
the image ?". This question is one of the fundamental questions that algorithms in computer
vision try to answer. This question is categorized as image classification. When we find out
the answer to this question, another important question that can be asked is, "where are
the objects in the image ?". Object detection in computer vision tries to answer these two
questions for images.

Although, in many cases, recognizing and detecting objects in an image are easy tasks for
humans and can be done accurately and rapidly, these are significantly complicated and chal-
lenging tasks for computers. Due to the definition of the object is a philosophical question that
philosophers asked it through history [12], in some cases, the answer to the question "what are
the objects in the image ?" can be different for different observers. However, this problem is
beyond the scope of this research. In this thesis, we suppose that the definition of the objects
of interest includes cars, pedestrians, and other traffic participants are determined.

In fact, in supervised learning, we accept the correctness and accuracy of annotators’ judgments
and opinions and the verification processes during labeling the datasets. Therefore, we expect
that the model trained on the part of a dataset that we call the training subset can classify
and localize the objects of interest in another part of the dataset called the test subset.
Furthermore, the model does not use the test subset to update the model’s parameters during
training.

For several decades, object detection has been an active area of research in the computer vision
community [13, 14]. Object detection is one of the most primary yet challenging problems
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in computer vision. An object detector aims to determine whether there are any instances
of objects from given categories in an image and if it exists, finding the spatial location and
extent of each object instance by returning appropriate bounding boxes that delimit the entire
object of interest. The object categories for detecting could be any object of interest in the
images, such as cars, pedestrians, and cyclists in the self-driving car scenarios. A wide range
of applications uses object detectors. For example, the object detection algorithms are already
used in autonomous vehicles, vision for robots, human-machine interactions, augmented reality,
and intelligent video surveillance.

Object detectors are essential parts of the perception systems [7]. Several works have tried
to solve the object detection problem by proposing different methods, including 2D object
detection and 3D object detection. The majority of the proposed methods are 2D detectors.
However, 2D detection methods do not provide information about the depth and heading
angle of objects, while these are necessary for many tasks. For example, path planning and
collision avoidance are crucial tasks for self-driving cars, requiring depth and heading angle
information of detected objects. On the other hand, the 3D object detection methods give
information about detected objects’ depth and heading angle in a 3D space. However, 3D
object detectors’ accuracy is usually lower than the accuracy of 2D object detectors.

1.1.1 2D Object Detection

The input of a 2D object detector is an image, and its output is 2D bounding boxes with a class
label for all objects of interest in the given image. The 2D bounding box is usually a rectangle
aligned with the image coordinate system’s axis, containing all parts of the associated object
of interest while its size is minimum.

For the 2D object detection task, there are two approaches, namely two-stage and one-stage ap-
proaches [13]. Two-stage detection frameworks, which are also called object proposal approach,
involve a pre-processing step for producing object proposals. One-stage detection frameworks,
or regression-based frameworks, are based on a single proposal method. This approach does
not separate the process of generating the detection proposal step from classifying proposals as
background or category-specific objects and post-processing detection to improve their fitness
to objects.

It is possible to present a 2D bounding box with four parameters. They could be the coordinates
of two opposite corners of the bounding box, (xmin, ymin, xmax, ymax), or the height, width
and center coordinates, (xcenter, ycenter, height, width). An example of 2D bounding boxes is
illustrated in figure 1.1.
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Figure 1.1 – Illustration of the ground truth 2D bounding boxes for a sample from the rainy
subset of Waymo dataset [1].

Two-stage 2D Object Detectors

The two-stage object detector framework first generates a set of proposal bounding boxes that
possibly contain objects by using region proposal methods such as selective search [15]. It then
passes the detected object proposals to the CNN (Convolutional Neural Network) classifiers
to determine whether they are backgrounds or a specific object class.

Proposal-based object detectors such as R-CNN (Regions with CNN features) [16], extract
several potential object candidates called regions of interest (ROI) or region proposals (RP)
from an image in their first step. Then, these candidates are verified, classified, and refined in
terms of classification scores and locations.

By introducing the spatial pyramid pooling layer (SPPNet) in [17], the speed of the original
R-CNN was improved because of allowing the classification layers to reuse features computed
over feature maps generated at different image resolutions.

Afterward, by exploiting the advantages of R-CNN and SPPNet, the Fast R-CNN [18] is
proposed, which speeds up the network’s convolution processing time by sharing computation.
The Fast R-CNN’s design gives the possibility to use a multi-task loss function and minimize
the loss related to prediction scores and bounding box regression simultaneously in an end-to-
end fashion. Fast R-CNN leverages the selective search method [15] to produce object region
proposals. In the next step, the detection stage uses these proposals and the entire image.
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In this step, a CNN backbone extracts the feature map of the image. The model produces a
feature vector by projecting the region proposals into the extracted feature map and using the
pooling function. Afterward, two fully-connected branches use this feature vector to predict
the offsets for proposed bounding boxes and their confidences. Fast R-CNN uses only one CNN
forward pass during training and inferring, leading to a remarkable speed improvement.

However, Fast R-CNN still needs an external method to obtain region proposals. This require-
ment prevents the application of end-to-end training and causes efficiency degradation of the
model. Faster R-CNN [19] model tries to solve this problem by introducing a Region Proposal
Network (RPN) that shares the entire image feature map with the second stage detection
network. Faster R-CNN extracts a global feature map of the image by utilizing a CNN at
the first step. Next, both the RPN and the Fast R-CNN detection stage use the same global
feature map. This method enables end-to-end training of the Faster R-CNN. The architecture
of Faster R-CNN is depicted in figure 1.2.

Figure 1.2 – This figure illustrates the Faster R-CNN pipeline. Initial layers are convolutional
layers, which share the feature map with the RPN, that generates region proposals to be fed
into the classifiers and the Fast RCNN module (figure reproduced from [19]).

One-stage 2D Object Detectors

The one-stage object detectors are regression-based object detection methods formulated as
a regression problem with spatially separated bounding boxes and associated class probabili-
ties. This method uses the extracted features directly to regress bounding boxes and obtain
classification scores by a unified CNN model. One-stage 2D object detectors such as different
versions of YOLO (You Only Look Once) [20, 21, 22], SSD (Single Shot Detector) [23, 24] and
RetinaNet [25] are simpler in comparison with object proposal-based methods because they
do not require proposal generation.

One of the well-known one-stage object detectors is YOLO. It divides the input image into
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sparse grids. Then, by leveraging the extracted features by convolutional layers, it proposes
potential bounding boxes for each grid cell along with their confidence scores. Compared
with the RPN-based approach, YOLO exploits the entire image’s feature map to predict each
bounding box. The confidence scores indicate the model’s reliance on the predicted bounding
box’s size and the confidence that the box contains an object of interest. If there is no object
in a grid cell, the model assumes a zero confidence score.

The one-stage object detectors are faster and easier to optimize. However, their accuracy
is typically lower than two-stage object detectors [8]. In general, two-stage object detectors
like Faster R-CNN [19] and Mask R-CNN [26] can achieve better performance for detection
accuracy due to the region proposal generation and refinement methods. The drawback of
two-stage methods in comparison with one-stage approaches is higher inference time.

1.1.2 3D Object Detection

A 3D object detector aims to locate, classify, and estimate oriented bounding boxes in the 3D
space (figure 1.3). In the context of 3D object detection, each object is usually associated with
a 3D bounding box (cx, cy, cz, l, w, h, θ) , where cx, cy, cz represent the center coordinates, l,
w, h are the length, width, height, and θ denotes the heading angle of the bounding box.

Compared to 2D detection, 3D detection is more challenging since the object’s depth in the
3D environment needs to be estimated. A 3D object detection framework can take different
sensors data as input and outputs a 3D bounding box with a class label for all objects of
interest in the sensors’ field of view (FOV). 3D object detectors are essential parts of the
visual perception system of self-driving cars. Modern autonomous driving cars are usually
equipped with multiple sensors.

Based on the exploited sensors for estimating the 3D bounding boxes of objects of interest in
the environment, the 3D object detector methods can be generally broken down into various
subcategories such as image based, point cloud based and multimodal based detectors.

In the image based approaches, the monocular or stereo images of the surrounding environment
captured by RGB cameras are exploited to detect the objects of interest and their locations
in the images. The detection results are 3D bounding boxes in the camera coordinate, and
by leveraging the calibration of cameras, the coordinate of 3D bounding boxes in real-world
coordinates can be calculated.

Several models and techniques were proposed to detect the objects of interest in 3D space by
exploiting LiDAR point clouds. For instance, VoxelNet [28] divides the point clouds into voxels
and then leverages point-wise features extracted directly on a 3D voxel grid. Another approach
to cope with unstructured point clouds is projecting them onto the 2D plane. This technique
makes it possible to deal with point clouds as 2D images where 2D convolutions are applicable.
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Figure 1.3 – An image and its corresponding point cloud with projected ground truth 3D
bounding boxes from rainy subset of Waymo [1] dataset. The point cloud illustration is created
using Mayavi [27].

For example, PIXOR [29] is a one-stage object detector that efficiently exploits the 2D Bird’s
Eye View (BEV) representation of the point clouds of the scene. It is also possible to use
the unstructured point clouds directly. For instance, RoarNet [30] processes 3D point clouds
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directly. Furthermore, multimodal based algorithms such as AVOD [31] and PointFusion [32],
leverage both images and point clouds in a sensor fusion manner to improve the performance.

1.2 Multimodal Deep Learning

Deep learning is a machine learning approach that leverages multiple network layers to extract
features progressively. The concept of learning based artificial neural networks was first intro-
duced in the 1940s. It attracted attention significantly throughout the 1970s and 1980s, and
basic methods such as backpropagation and automatic differentiation are developed. However,
throughout the 1990s and 2000s, research in artificial neural networks has slowed down due
to various reasons [33]. Nevertheless, in recent years, research in artificial neural networks has
gained attention again due to the rapid growth of computational power and data, combined
with advances in network architecture and training strategies. Notably, deep learning-based
methods have demonstrated great potentials.

The development of algorithms and methods that consider multiple aspects of perception in
the multimodal platform is necessary to perceive the environment with human-like capabilities.
The modality refers to the way that something happens or is experienced. It is usually related
to sensory modalities. For example, brightness and colors can be captured by RGB cameras,
while range sensors such as LiDAR or RADAR can measure the distances to the objects in
the environment.

On the other hand, by exploiting data from different modalities, one is more likely to capture
the correspondences between modalities and achieve a comprehensive understanding of the
environment [34]. Deep learning provides the possibility of obtaining information about a
scene by extracting the features of data from different modalities [35].

Moreover, deep learning techniques have emerged as a powerful strategy for learning feature
representations directly from different types of data and have led to remarkable breakthroughs
in the field of generic object detection [13]. Sensor fusion leverages multiple types of sensors
with complementary characteristics to enhance 3D perception.

The systems that only use mono-camera for 3D object detection tasks can not provide reliable
results because of the lack of depth information. Although stereo cameras can provide 3D
geometry, they have problems in diverse weather and lighting conditions. Furthermore, high
occlusion and textureless environments can limit their performance [33]. On the other hand,
range sensors can provide accurate 3D geometry, which does not depend on lighting conditions
but is limited by low resolution, low refresh rates, and high cost. Many recent works exploited
these two complementary sensors to cope with this challenge and demonstrated remarkable
performance improvements.

There are three main approaches for integrating different sensing modalities in deep learning
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[8]. It is possible to fuse data from two modalities in the early, middle, or late stages (figure
1.4). Each of these methods has its advantages and drawbacks. For instance, architectures
with late and middle fusion are more flexible than models with early fusion, while early fusion
needs less memory and computation resources.

Figure 1.4 – Several possibilities for fusing two modalities in different stages in deep learning
models. Fusion operation could be the concatenation of features or addition operations (figure
reproduced from [8]).

1.3 Autonomous Vehicles

Decades after the first cars’ production, the automotive industry has witnessed developments in
various fields. More safety and comfort for the occupants, higher power, more speed, and more
efficient fuel consumption are among the advantages of today’s cars over their predecessors.
Despite all these advances, as yet, a human driver’s need to operate a car is inevitable.

Recently, extensive efforts have been made to build driverless cars. Today, with the deve-
lopment of computer algorithms for information processing and increasing processors’ speed,
besides developments in sensors, hopes have been created to enable vehicles to recognize their
surrounding environment. The first step to achieve this goal is to have a system that can
understand its surroundings to take appropriate action in various situations based on its per-
ception.

Autonomous vehicles are complicated robotic systems that operate in unpredictable environ-
ments. A fully automated vehicle could provide new mobility options for older people and
those with disabilities. Autonomous vehicles are usually equipped with a wide range of on-
board sensors. By leveraging the data from different sensors, self-driving cars can perceive
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their environment and make decisions in different conditions. The steering, acceleration, and
braking are the main output commands of an autonomous vehicle’s control system.

Various installed sensors on the car gather environmental information. An efficient algorithm
must then be used to process the collected information to extract the relevant information and
allow the car to perceive its surrounding. The quality and quantity of information acquired
by an autonomous vehicle directly relate to the utilized sensors’ type and performance.

The prototypes of fully autonomous vehicles already exist. However, they are currently in
the development and testing stage. Despite the progress, many technical improvements are
necessary before a practical self-driving car can operate without human intervention under
all diverse conditions [2]. Reliable self-driving car technologies have a long way to go before
becoming widely available. Figure 1.5 demonstrates an example of fully autonomous vehicles.

Figure 1.5 – Waymo is one of the pioneering companies in the autonomous vehicle industry
that practically launched transporting passengers in limited regions by self-driving cars. The
image illustrates one of Waymo’s fully autonomous cars [2].

1.3.1 Sensing Modalities

For empowering self-driving vehicles to perceive the surrounding world, sensors play an es-
sential role [35]. It is possible to improve self-driving cars’ safety and reliability by leveraging
more sensors to obtain a precise perception of the environment.

Each type of sensor has its benefits and limitations. Therefore, cooperation between multiple
sensors installed on an autonomous vehicle can directly improve its safety. For instance, ca-
meras can accurately capture the objects’ textures and color distributions while they can not
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work correctly at night. On the other hand, range sensors can work at night perfectly. However,
their output is sparse.

Various kinds of cameras, LiDARs, and RADARs are typically adopted sensors in autonomous
vehicles [35]. Notably, cameras and LiDARs (Light Detection and Ranging) are the most
popular sensors for multimodal perception in autonomous vehicles because these two types of
sensors are currently the most informative sensors [33]. Table 1.1 presents the usual sensors
for perception in self-driving cars. In various environmental conditions, the reliability and
performance of different sensors can change significantly. Hence, the fusion of information
gathered by a multi-sensor setup can improve the performance of perception tasks. Moreover,
the calibration and alignment of sensors can significantly impact the accuracy and robustness
of multimodal perception systems.

Sensor Type Advantages Disadvantages Max Working
Distance

Camera Capturing the
contour, texture,

and color
distribution

accurately, Low
price

Vulnerable to
diverse lighting and
weather conditions,
Heavy calculation

burden

250m (depending on
the lens)

LiDAR Applicable for all
lighting conditions,

High range
resolution, High
angle resolution

High price, Sparse
output

200m

RADAR Long working
distance, Applicable

for all weather
conditions

Unapplicable for
static objects,

Generating false
detection easily

5m-200m

Ultrasonic Inexpensive Low resolution,
Inapplicable for

high speed

2m

Table 1.1 – Summary of different sensors for object detection in autonomous vehicles. Among
them, LiDAR and camera are more popular for perception tasks while RADAR and Ultrasonic
sensor are less common [35].

Camera

The camera is the primary choice for companies and researchers in the domain of the self-
driving car. Most main autonomous driving industry players have the camera as their primary
sensors in their vehicle sensor suite. The camera’s advantage is that it can accurately capture
the contour, texture, and color distribution information. These abilities help to detect different
objects under various environment conditions precisely.
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The role of the camera in the perception pipeline of autonomous vehicles is like the eyes of
humans. The captured images by cameras can help the self-driving cars detect different traffic
participants such as other cars and pedestrians, and predict their behaviors and track their
movements. Moreover, it is also possible to exploit these images to detect and localize road
markings, signals, and signs to empower the car to safe and lawful self-driving.

Images captured by the camera convert the 3D information into the 2D one. It is necessary to
establish the relationship between the pixels and the real-world to obtain the target’s position
from the image. For this purpose, we utilize camera calibration.

Visual cameras are passive sensors that mean they do not actively emit any signal for mea-
surements. Hence they do not interfere with other systems [36]. Among various sensors for
autonomous vehicles, cameras are the most informative sensors [35] that provide detailed
texture information of a vehicle’s surroundings.

However, cameras have certain disadvantages. They are sensitive to lighting and weather
conditions. One must consider that the image can become unreliable in some cases, such as
the sudden change of light or even the near inability to perceive the surrounding environment
at night. Moreover, the cameras cannot directly provide depth information for 3D perception
tasks [8]. Extensive researches have been done to enhance monocular camera-based depth
perception. Nevertheless, self-driving cars need to use modalities for which diverse lighting
and weather conditions can not significantly affect them [36].

Light Detection And Ranging (LiDAR) Scanners

The LiDAR is the most commonly used laser rangefinder type of sensor for self-driving cars.
Many autonomous vehicle manufacturers and researchers adopt LiDAR as one of their primary
sensors for the 3D object detection task, and it plays an increasingly significant role in self-
driving cars.

A LiDAR operates based on measuring the duration between emitting laser beams and de-
tecting their reflections by objects and using this time-of-flight to calculate objects’ distance
to the sensor. Depending on the number of emitter-detector pairs, also called channels, there
are several kinds of LiDARs on the market. For instance, there are LiDARs with 32, 64, or
128 channels. Although a LiDAR with more channels is more expensive than a LiDAR with
few channels, it can acquire more points and provide denser point clouds of the surrounding
environment.

The illumination condition of the environment does not influence the functioning of LiDAR,
and practically it can provide accurate measurement of the distance of obstacles during both
day and night. Moreover, diverse weather conditions such as rain and snow have less impact on
LiDAR operation than visual cameras. However, in rainy or foggy weather, the high amount
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of water in the atmosphere and on the surface of objects has negative impacts on the atmos-
pheric transmission of the laser beam and target reflectance. Hence, due to environmental
water impact on atmospheric extinction and target surface reflectance [37], diverse weather
conditions slightly decrease the LiDAR performance.

1.4 Point Cloud

Point clouds are geometric point sets that are collections of points in the Euclidean space.
From a mathematical point of view, a point cloud is a set of 3D points {Pi|i = 1, ..., n}, where
each point Pi is a vector of its (x, y, z) coordinates. It can also include additional dimensions
for representing other local or global features such as normal or intensity of received laser
beam by LiDAR.

Figure 1.6 – An example of point cloud representation of a 3D horse model from two different
viewpoints (3D model from SHREC database [3]).

While pixel arrays in images or voxel arrays in volumetric grids have structured arrangement,
a point cloud is a group of points without a specific order, therefore invariant to its members’
permutations [8]. The points are from a vector space with a distance metric. The distance
from origin for a point (x, y, z) is

√
x2 + y2 + z2. Figure 1.6 illustrates an example of a point

cloud of a horse from two different viewpoints.

For autonomous driving applications, many 3D object detection algorithms exploit point
clouds as their input data [36]. Specifically, there are 3D object detectors with architectures
capable of extracting features directly from point clouds.
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1.4.1 Point cloud Processing and Representation

There are three main methods for processing and representing the point clouds [8]. 2D view
representation, volumetric representation, and point representation are standard approaches
for addressing the point cloud processing and representation problem.

The volumetric representation method is based on discretizing the 3D space into 3D voxels and
assigning the points to the voxels. In the point representation approach, the model directly
learns over 3D point clouds in continuous vector space without voxelization. PointNet [38] and
its improved version PointNet++ [39] extract all individual point features and then by utilizing
the max-pooling technique, they extract the features of several points. 2D view representation
approaches represent the point cloud as a collection of projected 2D image views, to which 2D
convolutional layers can be applied.

In volumetric representation, first, we divide the point cloud into a 3D grid. A simple ap-
proach for partitioning considers equal size voxels that make it possible to exploit standard
3D convolution on the voxels. Nevertheless, by increasing the number of voxels to achieve
higher resolution voxel space, computation and memory costs increase remarkably. Moreover,
the number of voxels that do not contain any point grows significantly.

It is possible to use methods that leverage tree-like structures to obtain high-resolution voxel
space without increasing computational costs and the number of empty voxels [33]. In this
approach, the number of voxels in different regions of point cloud depends on the density of
points in that region. Therefore, regions with lower point densities have lower resolutions and
require less computation and memory.

Before leveraging the 2D convolution and popular CNN architectures for processing the point
clouds, it is necessary to project the point cloud to a particular 2D view plane. This technique
helps to have an image-like feature map that is suitable to use by CNNs. The most famous
views in self-driving car applications are the top-down view or the Bird’s Eye View (BEV) [33].
The advantages of BEV include minimizing perspective occlusions. Moreover, raw information
about objects’ orientation does not change.

Point representation based methods use raw point cloud. In [38], a novel deep neural network,
PointNet, is proposed that directly consumes point clouds. The proposed network provides a
unified approach to various 3D recognition tasks, including object classification, part segmen-
tation, and semantic segmentation. The proposed model learns global point cloud features that
can be used for object classification. The PointNet architecture consumes directly unstructured
point clouds and uses max-pooling layers in the middle to extract global features.

The basic idea of PointNet, which allows the processing of unordered data, is to employ
symmetric functions such as max-pooling. This method is invariant to rigid transformation
and permutation. PointNet is highly robust to small perturbation of input points such as
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corruption because of outliers or missing data [38]. In fact, PointNet learns a spatial encoding
of each point and then accumulates all individual point features to a global point cloud feature
map.

1.5 Robustness

Achieving a high level of robustness is an important goal for machine learning and computer
vision models. Moreover, having robust models and algorithms is essential for creating deep
learning systems capable of being deployed in safety-critical applications. For instance, self-
driving cars need to be able to cope with widely varying outdoor conditions such as fog, frost,
snow, or sand storms.

In comparison with existing computer vision systems, the human vision system is significantly
more robust [40]. Unlike current classifiers and object detectors implemented by deep learning
methods, humans’ vision system can not be misled by small changes in images. Besides, many
forms of corruption, such as changing contrast, adding noise, manipulating the brightness, and
other combinations of these corruptions, can not confuse the human vision system. Noticeably,
humans can handle even abstract changes in the structure and style of images and their
contents.

In recent years, models based on the deep neural network have achieved high accuracy on
many classification and object detection tasks in 2D and 3D spaces. However, measuring the
uncertainty of their predictions remains a challenging problem [41]. In many applications such
as self-driving cars or medicine, finding methods for predicting a model’s robustness could be
useful. These robustness estimation methods can help determine the generalization capability
of the model.

Deep learning has recently profoundly influenced various machine learning tasks, such as object
detection, speech recognition, and natural language processing. Nevertheless, the shortage of
methods to assess the model’s robustness to perturbation of input is one of the most critical
limitations of deep neural networks [13], which currently restricts their utilization in real-world
applications.

1.6 Related Work

In [42], an approach for monocular 3D object detection from a single RGB image is propo-
sed. As opposed to other methods in the literature, this approach does not take additional
information as input like depth obtained from LiDAR or other depth estimators. The authors
introduced a monocular 3D object detection network, MonoDIS, to estimate the objects’ size
and orientation at different scales. A two-stage architecture is used, which consists of a one-
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stage 2D detector (first stage) with an additional 3D detection head (second stage) constructed
on top of features pooled from the detected 2D bounding boxes.

In [43], a method for 3D object detection and pose estimation from a single image is proposed.
The proposed approach produces 3D bounding boxes by combining the estimation of stable
3D object properties, which is regressed by using a deep convolutional neural network with
geometric constraints provided by a 2D object bounding box. The constraint that the 3D
bounding box fits into the 2D detection window requires that each side of the 2D bounding
box be touched by the projection of at least one of the 3D box corners.

In [44], a stereo R-CNN based 3D object detection method in autonomous driving scenarios is
proposed. This method extends Faster R-CNN for stereo inputs to simultaneously detect and
associate objects in the left and right images. Extra branches are added after stereo Region
Proposal Network (RPN) to predict sparse keypoints, viewpoints, and object dimensions,
which are combined with 2D left-right boxes to calculate a coarse 3D object bounding box
and then recover the accurate 3D bounding box by a region-based photometric alignment
using left and right ROIs.

In [28], the authors leveraged the point set feature learning and the RPN (region proposal
network) for 3D detection. They also introduced a method that converts the point cloud
into a dense tensor structure. To reach these goals, they introduced VoxelNet, which directly
operates on the raw point cloud and produces the 3D detection results using a single end-
to-end trainable network. Specifically, VoxelNet divides a point cloud into equally spaced 3D
voxels and transforms a group of points within each voxel into a unified feature representation
through the newly introduced voxel feature encoding (VFE) layer.

In [45], an approach for 3D object detection by utilizing both LiDAR and image data is
introduced. In the proposed method, the idea of utilizing multimodal information is used to
perform region-based feature fusion. The proposed Multi-View 3D object detection network
(MV3D) fuses the 2D projections with the camera image to bring additional information. In
fact, the MV3D takes multimodal data as input and predicts the full 3D extent of objects in
3D space.

In [46], a two-stage 3D object detection framework that exploits the advantages of voxel-based
and point-based methods is proposed. The first stage is a proposal generation network that
uses raw point clouds as input to generate accurate proposals, while the second stage is for
box prediction.

In [32], PointFusion, an early fusion model for 3D box estimation, is proposed, which directly
learns to combine image and depth information optimally. The proposed model takes full
advantage of combining the heterogeneous image and 3D point cloud data sources without
introducing any data processing biases for 3D object box regression. The proposed model
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performs 3D bounding box regression from a 2D image and a corresponding 3D point cloud
typically produced by LiDAR sensors.

In [47], Semantify-NN, a model-agnostic and generic robustness verification approach against
semantic perturbations for neural networks is proposed. It is possible to insert the proposed
semantic perturbation layers (SP-layers) to any given model’s input layer. Semantify-NN can
support robustness verification against a wide range of semantic perturbations. The proposed
SP-layers allow us to explicitly define the dimensionality of perturbations and put explicit
dependence between the manner and the effect of the semantic perturbation on different
pixels of the image. However, the approach is proposed for classification tasks with RGB
images input, and it is not described how it is possible to use it for regression tasks such as
3D object detection.

In [40], to evaluate the robustness of classifiers, ImageNet-C and ImageNet-P are introduced
that are obtained by corrupting the ImageNet [48] test set with classical corruptions, such
as blur, different types of noise and compression, and simulated weather corruptions such as
snow and fog. These datasets include corrupted images by a total of 15 noise, blur, weather,
and digital corruption types, each appearing at five severity levels or intensities.

In [10], an approach to evaluate 2D object detection models’ performance when images are
synthetically corrupted is introduced. It is shown that a range of usual object detection mo-
dels experiences a drastic performance loss on corrupted images. Similar to [40], the authors
proposed 15 corruptions on five severity levels to evaluate the impact of different corruption
types on the 2D object detection models. Moreover, the authors focused on the less extreme
but far more common problem of perceptible image distortions like blurry images, noise, or
simulated natural distortions like snow and fog.
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Chapitre 2

Method

The multimodal deep learning approach has achieved impressive 3D object detection results
for self-driving cars where the training and testing distributions match. However, in the real-
world, the conditions in which the models are deployed can often differ significantly from
the model’s training conditions. It is necessary to understand the impacts that dataset shifts
have on the performance of these models. This problem has gained considerable attention,
and several research projects [10, 49, 40] have shown unexpectedly high sensitivity of object
detectors to various weather and lighting conditions.

In this work, we develop two different datasets to measure the robustness of a model. The first
dataset contains artificially corrupted images with 15 different corruption types, each with five
severity levels. The other dataset is a set of images consisting of scenes with diverse weather
and lighting condition, including images in the night and rainy weather.

2.1 Datasets

Large volumes of high-quality training data are necessary to achieve successful machine lear-
ning models. Datasets are crucial for researchers and developers because algorithms and models
for self-driving cars have to be trained and tested before the vehicle can go on the road. Par-
ticularly, big data has had a remarkable impact on the success of deep learning in computer
vision. Recent works suggest that there is significant potential to increase object detection
performance by utilizing even larger datasets [50, 36]. A self-driving car needs to be prepared
to drive in different situations and confront rare scenarios on the roads. Hence, proper datasets
for both training and testing of a self-driving car should consist of diverse scenes.

Supervised learning is the approach that most deep multimodal 3D object detection algorithms
are exploiting [8]. Small datasets are insufficient to train high-capacity models that require
to capture the further complexity caused by considering a third dimension in the estimation
problem [51]. Hence, for training multimodal deep neural networks, large multimodal data-

21



sets with various driving conditions, object labels, and sensors are necessary. In other words,
leveraging large multimodal datasets can remarkably enhance the accuracy and robustness of
multimodal 3D object detectors.

The obtained results in [49] suggest that, for models with sufficient capacity, it is possible to
improve the evaluation results by increasing the amount of training data without additional
changes. Moreover, using large supplemental datasets for extra pre-training can enhance the
robustness remarkably.

Although several datasets exist for multimodal deep learning, their size is relatively smaller
than datasets for images [8]. Furthermore, for autonomous vehicles, the variation and scale of
the environments that the data are acquired are not diverse [1], and the datasets are usually
recorded in limited driving scenarios, weather conditions, and sensor setups. Moreover, they
are usually imbalanced datasets with more cars than pedestrians and cyclists in the scenes.

Throughout the history of object recognition research, datasets have played an important role
[13]. Researchers exploited datasets for measuring and comparing the performance of compe-
ting algorithms. Furthermore, benchmarks can encourage researchers to address complex and
challenging problems. Table 2.1 provides an overview of well-known datasets for autonomous
vehicle scenario that we leverage in this work.

Recently, to train the models for self-driving car applications, many new datasets are provided
by companies and researchers. For instance, the CADC dataset [52] aims to promote research
to improve self-driving in adverse weather conditions. This is the first public dataset to focus
on real-world driving data in snowy weather conditions. Another example is the ApolloScape
dataset [53] that contains large and rich labeling including semantic point cloud for each
site, stereo, pixel-wise semantic labeling, lane-mark labeling, instance segmentation, 3D car
instance, and highly accurate location for every frame in various driving videos from multiple
sites, cities and day times.

We have chosen the KITTI, nuScenes, and Waymo datasets for creating our robustness test
datasets. The main motivation behind this choice is the fact that these datasets are well-known
in the self-driving car domain and they are leveraged widely by researchers to evaluate the
models. The proposed benchmarks including accepted methods for evaluation of the results
that help to increase the comparability of the test results on these datasets.

2.1.1 KITTI Dataset

Although the KITTI dataset [54] is one of the most widely used datasets for autonomous
driving research, the diversity of its recording conditions is relatively low, and it is obtained
from a narrow domain [8]. The scenes are collected by driving through a mid-sized German
city - Karlsruhe - in clear weather during the day.
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KITTI nuScenes Waymo
Scenes 22 1000 1150
Hours 1.5 5.5 6.4

3D Boxes 80K 1.4M 12M
Lidars 1 1 5

Cameras 4 6 5
AVg. Points/Frame 120K 34K 177K

Maps No Yes No
Visited Area (km2) - 5 76

Table 2.1 – An overview and comparison of the KITTI, nuScenes, and Waymo datasets that
we have used in our work [1].

The 3D object detection benchmark of KITTI includes 7481 training images and 7518 test
images, and the corresponding point clouds, consisting of a total of 80K labeled objects. Only
the ground truth for training is provided, and the ground truth for the test set is not available
to the public. Hence, we used the training set in this work and following [45, 55], we divided it
into two almost equal and fixed subsets for training and testing the model in all experiences.
In figure 2.1 two samples from the KITTI dataset contain objects from Pedestrian, Car, and
Cyclist classes with their corresponding ground truth 2D bounding boxes are illustrated. The
KITTI dataset acquired point clouds with a 64-beam LiDAR sensor.

2.1.2 nuScenes Dataset

In the context of autonomous vehicles, one of the largest datasets with ground truth labels is
the nuScenes dataset [5], with overall 1000 different scenes. Each scene is a 20 seconds record for
different sensors installed on a car. They are scenes captured in two cities in different lighting
and weather conditions. the sensors include six cameras that captured panoramic views of the
car’s surrounding. It also contains LiDAR and RADAR sensors. It includes nearly 1.4 million
frames.

The nuScenes dataset is a publicly available dataset that leverages a 32-beam LiDAR with
20Hz sweep capture frequency, a front camera with 1600 × 900 resolution, and a horizontal
FOV (Field Of View) of 70◦. The nuScenes dataset contains 390,000 LiDAR sweeps.

The nuScenes dataset has limitations, such as leveraging a low-quality LiDAR sensor with
32-channel that acquires 34K points per frame. Moreover, the dataset covers 5km2 effective
area that limits its geographical coverage diversity. However, the nuScenes dataset includes
additional data about the roads and sidewalks for all scenes by providing top-down semantic
maps of the related areas. In figure 2.2 various samples of nuScenes dataset are illustrated.
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Figure 2.1 – Visualization of the ground truth 2D bounding boxes for two sample images
from the KITTI dataset [4]. Green bounding boxes correspond to the car, pedestrian, and
cyclist object classes.

2.1.3 Waymo Dataset

Waymo dataset [1] is a new large-scale dataset for training and evaluating models in the
context of autonomous vehicles. The Waymo dataset includes 1150 scenes with 20 seconds
duration. Waymo dataset is a diverse dataset consisting of well synchronized and calibrated
high-quality LiDAR and camera data captured across diverse geographical areas at different
times.

The Waymo dataset contains numerous manually annotated 3D bounding boxes for the LiDAR
data and 2D bounding boxes for the camera images. The Waymo dataset contains around 12
million LiDAR box annotations. Figure 2.3 illustrates various samples from Waymo dataset
in diverse weather and lighting conditions.

2.1.4 Robustness Evaluation Datasets

We adopted various datasets to evaluate the trained model’s robustness. We derived these
datasets from three well-known and widely used datasets for multimodal 3D object detection
for self-driving cars, including KITTI, nuScenes, and Waymo datasets.

Following [40, 10], we built the KITTI-C dataset that contains images from the KITTI dataset
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Figure 2.2 – Visualization of the ground truth 2D bounding boxes for three sample images
in clear, night, and rain from the nuScenes dataset [5]. Red bounding boxes correspond to the
car object class ground truth.

by applying 15 various corruptions with five levels of severity for each one. The applied corrup-
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Figure 2.3 – Visualization of six sample images with their ground truth 2D bounding boxes
in diverse weather and lighting conditions from the Waymo dataset [1].

tions and perturbations include zoom blur, brightness, fog, glass blur, motion blur, impulse
noise, defocus blur, pixelate, frost, snow, elastic transform, JPEG compression, shot noise,
Gaussian noise, and contrast (figure 2.5).

Some of the proposed artificial corruptions try to simulate the effects of diverse weather condi-
tions on the images. These corruptions include snow, fog, and frost. Figure 2.4 demonstrates
them for all five severity levels in the KITTI-C dataset.

Despite the benefits of leveraging artificial corruptions for assessing the model’s robustness
against some kinds of distortions, including noises, digital and blur corruptions, and using
them to augment the training data, the fact is, an autonomous vehicle in practice needs to
cope with naturally diverse weather conditions. Therefore, we need to estimate the robustness
of the model against natural and realistic images.
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Figure 2.4 – Three corruptions for simulating natural phenomena including snow, fog, and
frost for the arbitrary images from KITTI-C for all five severity levels. We cropped the images
to be able to illustrate all cases in limited space.

To provide robustness evaluation against natural corruptions, by using descriptions provided
during the annotation of scenes in nuScenes, we have divided scenes into three categories :
nuScenes-Night, nuScenes-Rainy, and nuScenes-Clear, as illustrated in figure 2.6. We exploited
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Figure 2.5 – An arbitrary image from KITTI-C for all different corruptions with severity
level 2. We cropped the images to be able to illustrate all corruptions in limited space.

the nuScenes Night and Rainy subsets only to evaluate the model’s robustness in diverse
weather and lighting conditions, and we did not use them during training. We did not consider
the scenes that their description contained both rainy and night. We used the Clear subset
for training the model. We did the same procedure for breaking down the Waymo dataset to
Clear, Night, and Rainy subsets. Table 2.2 provides the number of samples in our proposed
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sub-datasets.

Clear Rainy Night
nuScenes 8,501 5,927 3,503
Waymo 27,365 2,498 2,641

Table 2.2 – The number of images and their corresponding point clouds in Waymo-Clear,
Waymo-Rainy, Waymo-Night, nuScenes-Clear, nuScenes-Rainy, and nuScenes-Night.

 

Rainy Clear Night 

nuScenes / Waymo 

Figure 2.6 – The nuScenes dataset is divided into three subsets, including the Clear subset
that contains scenes captured during the day in a good weather condition, the Night subset
that includes scenes captured at night, and the Rainy subset for scenes in rainy weather. We
did the same procedure for dividing the Waymo dataset into three subsets.

2.2 Model Architecture

2.2.1 Frustum PointNets

The Frustum PointNets [6] is one of the best models among multimodal methods that exploits
both 3D point clouds and 2D images to detect objects of interest in a 3D environment. In this
section, we present the model introduced by Qi et al. in [6] that we leveraged in this research
to show the effectiveness of our robustness test datasets.

In comparison with 3D object detectors, 2D object detectors are investigated better, and there
are larger datasets with labels for training them, which can help achieve better results and
performance [8]. Hence, it is possible to use a 2D object detector’s output to achieve better
results in the case of multimodal 3D object detectors.
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Frustum PointNets proposes leveraging a 2D object detector to predict 2D bounding boxes
and categories of objects as the first step. Then it exploits these 2D bounding boxes for
extracting frustums in point clouds for each object. In the second step, Frustum PointNets
leverages these point clouds within the frustums for finding the 3D bounding boxes. In fact,
utilizing the frustums helps reduce the search space in point clouds and improves the model’s
performance.

As illustrated in figure 2.7, the pipeline of the Frustum PointNets consists of several modules.
First, by extruding 2D bounding boxes of objects of interest from a 2D object detector’s
outputs, the 3D bounding frustums of objects are extracted. Then, by using two variants
of PointNet [38], in the 3D space trimmed by each of the 3D frustums, 3D object instance
segmentation, and 3D bounding box regression are performed. The PointNets use multilayer
perceptron (MLP) networks of various sizes. The segmentation network predicts the 3D mask
of the object of interest. The regression network estimates the 3D bounding box, which covers
the entire object even if only part of it is visible.

Figure 2.7 – The architecture of the Frustum PointNets pipeline for 3D object detection
(figure reproduced from [6]).

3D Instance Segmentation PointNet

This module of the Frustum PointNets pipeline performs instance segmentation on the points
within frustums. Since the objects are naturally separated in physical 3D space, segmentation
in a 3D point cloud is much more natural and straightforward than in images where pixels from
distant objects can be nearby [6]. The schematic illustration of this network is demonstrated
in figure 2.8.
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Figure 2.8 – The architecture of 3D Instance Segmentation PointNet. The input is a frustum
point cloud with n points. The points can optionally include the intensity of reflection. The
outputs are point-wise class prediction scores. k is the number of object categories (figure
reproduced from [6]).

3D Box Estimation PointNet

The 3D Instance Segmentation module’s output feeds to 3D Box Estimation PointNet, and this
module estimates the 3D bounding box of the object. It leverages a box regression PointNet
[38], a transformer network, and the T-Net simultaneously to obtain the oriented 3D bounding
box of the object. The T-Net module predicts the center point of the 3D bounding box. The
schematic overview of 3D Box estimation PointNet and T-Net are demonstrated in figures 2.9
and 2.10 respectively.

Figure 2.9 – The architecture of 3D Box Estimation PointNet. k is the number of classes. NS
is the number of size templates, and NH is the number of equally split angle bins. The model
classifies both sizes and headings (NS scores for size, NH scores for heading) and predicts
residual values (figure reproduced from [6]).

Multi-task Losses

Localization and classification are two purposes of object detection. Under object detection
evaluation metrics, the accuracy of localization is an essential calculable indicator [11]. Conse-
quently, increasing localization accuracy can improve detection performance, notably. Desi-
gning a novel loss function to measure predicted boxes’ accuracy is an effective way to increase
localization accuracy.
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Figure 2.10 – The architecture of T-Net. This module regresses residuals for the 3D bounding
box center position. It uses the object point cloud as input. T-Net is actually a modified version
of the PointNet [38] classification network (figure reproduced from [6]).

At the same time, all three modules i.e. 3D instance segmentation PointNet, T-Net, and box
estimation PointNet, are optimized with multi-task losses [6]. In equation 2.1, Lseg represents
the loss for 3D Instance Segmentation PointNet module, Lc1−reg is for T-Net and Lc2−reg is
for center regression of box estimation network. Lh−cls and Lh−reg are losses for heading angle
prediction. Ls−cls and Ls−reg are for box size. We use Softmax for classification tasks and
Huber loss for regression tasks.

Lmulti−loss = Lseg+λ(Lc1−reg+Lc2−reg+Lh−cls+Lh−reg+Ls−cls+Ls−reg+γLcorner) (2.1)

The corner loss (Lcorner) aims to penalize the center, size, and yaw angle estimates simulta-
neously to achieve optimal 3D bounding box estimation. For this purpose, we calculate the
sum of the L1 distances between the eight corners of the ground truth 3D bounding box
and the predicted one [6]. λ and γ are weights for 3D bounding boxes loss and corners loss,
respectively.

2.3 Evaluation Metrics

Evaluation metrics are used to assess the quality of deep learning models. Evaluating deep
learning models and algorithms is necessary for any research project. Using evaluation metrics
helps us to ensure that the model is operating correctly and optimally. Various evaluation
metrics are available to evaluate the performance of a model. One of the principal metrics for
evaluating the performance of a model is Average Precision (AP).

Average precision is derived from precision and recall. AP is usually evaluated in a category-
specific manner and computed for each object category separately. The AP metric makes a
summary of the shape of the precision-recall curve. For this purpose, we leverage the modified
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definition of AP metric by KITTI benchmark [4, 42] which is the mean precision at a set of
40 equally spaced recall levels :

AP =
1

40

∑
r∈{ 1

40
, 2
40

,...,1}

ρinterp(r) (2.2)

Following the [56], we consider that the precision at each recall level r is interpolated by taking
the maximum precision measured for which the corresponding recall exceeds r :

ρinterp(r) = max
r′ :r′≥r

ρ(r
′
) (2.3)

For each object category, we obtain the precision-recall curve from a method’s ranked output.
In equation 2.4, for a given threshold, the recall is the number of true positive predictions over
the sum of false negatives and true positives. The number of true positive predictions over the
number of all predictions is precision.

precision =
TP

TP + FP
recall =

TP

TP + FN
(2.4)

Where TP is the abbreviation for True Positive, which shows the number of objects that the
model predicted correctly, and FP is False Positive and shows the number of detected objects
that do not have a corresponding ground truth and the prediction is false. FN is False Negative
and shows the number of objects in the ground truth that the model could not detect.

The usual way to evaluate object detection methods is the average precision (AP) [8]. There-
fore, we adopt this approach in our work. Considering intersection over union (IoU), we can
judge the regression quality estimation with the IoU between the predicted bounding box and
its corresponding assignment ground truth box.

2.3.1 Assessing the Robustness

In this work, we have introduced datasets for evaluating the robustness of models. To examine
our proposal’s effectiveness, we have chosen a state-of-the-art multimodal model, trained it on
different datasets, and then evaluated and compared its robustness with our robustness test
datasets.

We exploited two different approaches to make our datasets for testing robustness. In the first
scenario, following [10, 40], we first built a synthesized dataset based on the KITTI dataset,
KITTI-C, which contains corrupted images by applying various synthetic corruptions. Overall,
we used 15 different corruptions, each with five different severity levels, to fully evaluate the
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models’ robustness. Although this method gives us a good overview of our model’s capability
facing corrupted images, the lack of considering real scenes is its drawback.

In order to assess the performance of the model on KITTI-C, we follow [10] and leverage
relative performance under corruption (rPC) in equation 2.6. The mean performance
under corruption (mPC) for NC corruptions, each one with NS severities is :

mPC =
1

NC

NC∑
c=1

1

NS

NS∑
s=1

Pc,s (2.5)

Where the Pc,s is the model’s performance under corruption c with severity s, and in this
work, we use AP metric as discussed in the previous section for evaluating the performance
of the model. In equation 2.6, Pclean is the model’s performance on clean data, which is the
original dataset, before applying any corruption.

rPC =
mPC

Pclean
(2.6)

To have a realistic evaluation of robustness, we proposed four other datasets that contain
images from large-scale nuScenes and Waymo datasets captured in diverse weather and lighting
conditions. The annotations of nuScenes and Waymo datasets contain records that annotators
have written short descriptions about each scene. Using these descriptions, we have separa-
ted scenes of nuScenes and Waymo captured during the night as the datasets for evaluating
extreme lighting conditions’ performance.

The nuScenes dataset has descriptions for scenes that are captured during rainy days. There-
fore, we leveraged these descriptions to build the nuScenes-Rainy dataset, while Waymo has
no descriptions for weather conditions, so for Waymo, we separated rainy scenes manually.
We use these subsets of nuScenes and Waymo for measuring the robustness of the multimodal
model, Frustum PointNets, in the rainy weather for real scenes. In the table 2.3, the number
of objects in each labeled category for all our subsets of nuScenes and Waymo is provided.

Clear Rainy Night
nuScenes Waymo nuScenes Waymo nuScenes Waymo

Car 36,885 221,788 34,649 26,599 12,036 17,798
Pedestrian 17,231 131,783 6,002 13,412 4,738 6,720
Cyclist 906 3,419 445 60 601 117

Table 2.3 – Labeled objects of interest counts in Waymo-Clear, Waymo-Rainy, Waymo-Night,
nuScenes-Clear, nuScenes-Rainy, and nuScenes-Night.

In all cases, during training, our model has not seen the images from our proposed robust-
ness test datasets. This condition is a prerequisite for our method to assess a given model’s
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robustness accurately and provide meaningful results.
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Chapitre 3

Experimental Results and Discussion

In this chapter, different experiments and evaluations are conducted to verify the effectiveness
of our proposed robustness test datasets to assess the robustness of Frustum PointNets as a
sample model. Moreover, quantitative and qualitative results are provided. At the end of this
chapter, we have a comprehensive discussion of the results and future work.

We created KITTI-C dataset by applying various common corruptions to the standard KITTI
dataset, as discussed in detail in chapter two. Then we leveraged all subsets of the KITTI-C
dataset to evaluate the robustness of the Frustum PointNets model.

We have built nuScenes-Rainy, nuScenes-Night, Waymo-Rainy, and Waymo-Night subsets of
nuScenes and Waymo datasets. Then we evaluated the Frustum PointNets model on these
proposed subsets to test its robustness in case of natural adverse weather and lighting condi-
tions.

3.1 Preparing Data

One of the difficulties when evaluating a model’s performance on different datasets is linked to
the fact that different datasets use different sensor setups. Moreover, the annotation formats of
datasets are different. We have converted all sub-datasets of nuScenes and Waymo to KITTI
benchmark format to cope with this problem.

To this end, we leveraged the captured images by the front camera in nuScenes and Waymo
datasets. Furthermore, the KITTI benchmark considers three different levels of difficulty for
objects of interest, include Easy, Moderate, and Hard, according to their size on the 2D images
and their occlusion and truncation levels. Following [57], for nuScenes and Waymo datasets,
we exploited the depth ranges of objects of interest to determine their level of difficulty for
the detection task. Therefore, we replaced the pixel size, occlusion, and truncation thresholds
criteria on 2D bounding boxes in the KITTI benchmark with 30, 50, 70 meters on object depths
for Easy, Moderate, and Hard levels of difficulty for Waymo and nuScenes sub-datasets.
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3.2 Evaluating the Robustness

In this section, we leveraged the proposed approach to assess the robustness of the Frustum
PointNets model. We exploited similar 2D object detector architecture for predicting the 2D
bounding boxes of the objects of interest in the 2D images in all experiences. Moreover, we
have used the same architectures for the 3D Instance Segmentation PointNet and 3D Box
Estimation PointNet modules in all tests. Following [6], we set the weights for 3D bounding
boxes loss and corners loss in multi-task losses in equation 2.1 to λ = 1 and γ = 10 respectively.

3.2.1 Evaluation of Frustum PointNets on KITTI-C

In this experience, we have exploited KITTI dataset for training the Frustum PointNets mo-
del, and then we have evaluated the robustness of the trained model by our KITTI-C dataset.
For 2D detector, we used well-known model, Faster R-CNN [19] with Resnet [58] for extrac-
ting the features. The Resnet backbone of the 2D detector of the pipeline is pre-trained on
Imagenet classification dataset [48] and COCO object detection dataset [59] and further, it
is fine-tuned on the KITTI 2D object detection dataset to classify and predict 2D bounding
boxes of instances.

Classes/APs AP2D APBEV AP3D

easy moderate hard easy moderate hard easy moderate hard
Car 95.79 88.68 80.02 81.68 74.26 72.71 73.97 63.19 60.04

Pedestrian 77.65 74.07 66.37 67.40 58.97 51.63 63.73 52.18 45.05
Cyclist 81.58 58.61 56.96 67.07 44.88 43.32 64.65 43.71 41.58

Table 3.1 – Results for Average Precision (AP in %) in 2D, 3D, and BEV scenarios on the
KITTI test set without any corruption (clean KITTI). The results for easy, moderate, and
hard difficulties for Car, Pedestrian, and Cyclist classes are provided.

Classes/(mPC,rPC) 2D (mPC/rPC) BEV (mPC/rPC) 3D (mPC/rPC)
easy moderate hard easy moderate hard easy moderate hard

Car 64.60/0.67 56.30/0.63 50.68/0.63 61.73/0.75 52.56/0.71 47.11/0.65 56.10/0.76 45.67/0.72 41.14/0.68
Pedestrian 46.35/0.59 41.17/0.55 36.60/0.46 40.85/0.60 34.97/0.59 30.37/0.59 37.91/0.59 32.12/0.61 27.99/0.62
Cyclist 38.52/0.47 26.98/0.46 25.99/0.45 32.51/0.48 22.50/0.50 21.14/0.49 30.96/0.48 21.42/0.49 20.21/0.48

Table 3.2 – Results for mean performance under corruption (mPC in %) and relative
performance under corruption (rPC) in equations 2.6 and 2.5 in 2D, 3D, and BEV scena-
rios on the KITTI-C. The results for easy, moderate, and hard difficulties for Car, Pedestrian,
and Cyclist classes are provided.

Since the ground truth for the KITTI test set is not available, and the access to the test server
is limited, following [45, 55], we divided 7481 training images and their corresponding point
clouds of the training data of KITTI into a training set and a test set, which results in 3712
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data samples for training and 3769 data samples for test. The split avoids samples from the
same sequence being included in both the training and the test subsets.

We used the training subset of the KITTI to train the 2D object detector and Frustum
PointNets models. We extracted frustums of the objects of interest during the training stage
by leveraging ground truth 2D bounding boxes for Car, Pedestrian, and Cyclist categories.
We leveraged the trained model for detecting the objects in the test subset.

The average precision for 3D detection and bird’s eye view (BEV) detection is calculated
using the KITTI benchmark’s official evaluation method. We provided the obtained results
for the evaluation of the trained model on the KITTI dataset in table 3.1. We denoted average
precision (AP) for 2D, 3D and BEV detection tasks by AP2D, AP3D and APBEV respectively.

To assess the robustness of the model against synthetic corruptions, we leveraged our KITTI-C
dataset. The summary of the detection results for Car, Pedestrian, and Cyclist categories with
moderate difficulty for all 15 corruptions with various severities is demonstrated in figures 3.2,
3.4, and 3.3 for AP2D, APBEV , and AP3D respectively. The table 3.2 shows the results for
mean performance under corruption (mPC) and relative performance under corruption (rPC)
in equations 2.6 and 2.5 in 2D, 3D, and BEV scenarios for Car, Pedestrian, and Cyclist classes
with different difficulties.

3.2.2 Evaluation of Frustum PointNets on nuScenes-Rainy and
nuScenes-Night

To evaluate the robustness of Frustum PointNets on subsets of nuScenes dataset that include
rainy and night scenes, we first trained the 2D detector on the nuScenes-Clear dataset. This
subset of the nuScenes dataset contains only clear scenes captured during the daytime while
the weather is not rainy.

The nuScenes-Clear dataset consists of 8501 images captured by the front camera among six
cameras used to build the original nuScenes dataset. The related point clouds to these scenes
are also available. After training the 2D detector as the first step of the pipeline used in the
Frustum PointNets model, we used the ground truth 2D bounding boxes to extract frustums
of instances for training the model to predict 3D bounding boxes.

We have trained the 2D object detector for 100 epochs with batch size 64. We exploited the
model, which is pre-trained on the KITTI dataset, to use transfer learning advantages. For
training the 2D detector, we used Stochastic Gradient Descent (SGD) optimizer with the
learning rate equal to 0.0025 and momentum equal to 0.9. We set the weight decay equal to
0.0001. We trained the 3D Instance Segmentation PointNet and 3D Box Estimation PointNet
modules for 60 epochs with suggested hyper-parameters in [6].

The evaluation results of the Frustum PointNets on nuScenes-Rainy, nuScenes-Night, and test
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set of nuScenes-Clear for 2D, BEV and 3D scenarios are provided in tables 3.3, 3.4, and 3.5.
The figure 3.5 demonstrates the 3D detection results for two samples from the nuScenes-Rainy
dataset. In the figure 3.6, results of detection of 3D bounding boxes for two samples from the
nuScenes-Night are illustrated.

Class Clear Rainy Night
easy moderate hard easy moderate hard easy moderate hard

Car 73.87 65.66 56.96 28.41 23.24 18.53 28.66 23.10 20.71
Pedestrian 73.29 58.91 50.99 21.80 18.21 14.52 20.22 15.74 14.63
Cyclist 76.18 60.72 56.72 2.73 2.67 2.78 9.09 9.09 9.09

Table 3.3 – The evaluation results (AP2D in %) of the Frustum PointNets on nuScenes-Rainy,
nuScenes-Night, and test set of nuScenes-Clear for 2D detection.

Class Clear Rainy Night
easy moderate hard easy moderate hard easy moderate hard

Car 35.18 26.62 23.24 12.72 9.89 8.27 26.80 21.88 19.80
Pedestrian 34.75 26.88 24.63 10.07 8.12 6.88 13.19 10.77 10.60
Cyclist 16.18 12.11 11.25 0.07 0.07 0.07 3.03 3.03 3.03

Table 3.4 – The evaluation results (APBEV in %) of the Frustum PointNets on nuScenes-
Rainy, nuScenes-Night, and test set of nuScenes-Clear for BEV detection.

Class Clear Rainy Night
easy moderate hard easy moderate hard easy moderate hard

Car 20.75 14.85 13.30 3.50 2.67 2.67 16.89 13.35 12.64
Pedestrian 22.97 18.00 16.41 3.57 3.19 3.19 10.20 9.09 9.09
Cyclist 6.36 5.90 5.76 0.05 0.05 0.05 0.70 0.70 0.70

Table 3.5 – The evaluation results (AP3D in %) of the Frustum PointNets on nuScenes-Rainy,
nuScenes-Night, and test set of nuScenes-Clear for 3D detection.

3.2.3 Evaluation of Frustum PointNets on Waymo-Rainy and
Waymo-Night

In this section, we provide the results of applying our method on Waymo sub-datasets. To this
end, first, we have trained our 2D object detector and Frustum PointNets on Waymo-Clear.
Then we evaluated the trained model on Waymo-Rainy and Waymo-Night sub-datasets.

We have trained Faster R-CNN as our 2D detector for 60 epochs with batch size 64. We le-
veraged Stochastic Gradient Descent (SGD) as the optimizer with the learning rate equal to
0.0025, momentum 0.9, and weight decay 0.0001. Then we exploited this trained model for
predicting the 2D bounding boxes in all experiments on Waymo sub-datasets. We leveraged
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the ground truth 2D bounding boxes to extract frustums and trained the 3D Instance Seg-
mentation PointNet and 3D Box Estimation PointNet modules on extracted frustums for 60
epochs with hyper-parameters following [6].

In the tables 3.6, 3.7, and 3.8, the evaluation results of the Frustum PointNets on Waymo-
Rainy, Waymo-Night, and test set of Waymo-Clear for 2D, BEV, and 3D scenarios are pro-
vided. The figure 3.7 illustrates the 3D detection results for two samples from Waymo-Rainy.
In figure 3.8, the 3D detection results of two samples from Waymo-Night are demonstrated.

Class Clear Rainy Night
easy moderate hard easy moderate hard easy moderate hard

Car 90.75 90.66 89.64 60.22 60.52 50.46 13.41 14.56 9.09
Pedestrian 79.91 81.08 80.95 51.39 50.19 41.61 9.09 9.09 9.09
Cyclist 84.31 85.96 87.66 17.67 17.67 17.67 - - -

Table 3.6 – The evaluation results (AP2D in %) of the Frustum PointNets on Waymo-Rainy,
Waymo-Night, and test set of Waymo-Clear for 2D detection.

Class Clear Rainy Night
easy moderate hard easy moderate hard easy moderate hard

Car 57.00 59.84 53.57 41.92 42.77 35.25 13.98 16.09 15.54
Pedestrian 52.10 57.17 56.52 26.97 26.03 21.01 9.09 9.09 9.09
Cyclist 50.24 50.91 54.39 17.67 17.67 17.67 - - -

Table 3.7 – The evaluation results (APBEV in %) of the Frustum PointNets on Waymo-Rainy,
Waymo-Night, and test set of Waymo-Clear for BEV detection.

Class Clear Rainy Night
easy moderate hard easy moderate hard easy moderate hard

Car 34.42 40.08 35.67 24.51 23.60 17.40 10.76 14.45 9.09
Pedestrian 45.81 52.92 46.73 19.59 19.27 17.66 9.09 9.09 9.09
Cyclist 44.32 48.11 49.63 17.67 17.67 17.67 - - -

Table 3.8 – The evaluation results (AP3D in %) of the Frustum PointNets on Waymo-Rainy,
Waymo-Night, and test set of Waymo-Clear for 3D detection.

3.3 Discussion and Future Work

As we can see in the table 3.1, the detection results for the Car category is better than the
results for the Pedestrian and Cyclist categories. The reason could be the fact that there
are more car instances (28,742 instances) than pedestrians and cyclists instances (4,492 and
only 1,627 instances for pedestrian and cyclist, respectively) in the KITTI dataset. Therefore,
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during training, the model learns to detect cars more accurately than pedestrians and cyclists.
Moreover, in the same distance, a car is a bigger object than a pedestrian or a cyclist, so it
has more points in point clouds, and the model can estimate its bounding box more precisely.

In the table 3.2, we can observe that the rPC of our trained model for 3D and BEV object
detection for all difficulties are greater than rPC of the 2D object detector. Therefore, by
leveraging the synthetic corruptions method, we found that the 3D object detector is more
robust than the 2D object detector, due to the point clouds, as one of the modalities of
the input of our multimodal object detector, are not affected by inducing the corruptions to
images. Moreover, in all cases, rPC for the Car class is better than rPC for the Pedestrian and
the Cyclist classes. In fact, it follows the pattern of results in the table 3.1.

We can observe in plots of detailed results across different corruption types in the figures
3.2, 3.3, and 3.4 that the model performance degraded by increasing the level of severity of
corruptions. However, for some corruptions, such as zoom blur, the degradation is severe, while
for some others, like elastic transform, the model is more robust. These results can help to
select appropriate data augmentation during the training of the model.

The difference between the degradation rate of the results for various corruptions depends
on the nature of the corruption and the method that the model leverages to extract the
features. The CNNs, as the backbone of the first stage of Frustum PointNets, are vulnerable
to some types of corruptions such as Gaussian and blur noises more than elastic transform
or brightness. The reason could be the fact that convolution operation performs locally on
nearby pixels. Therefore, for corruptions such as noises, although only some pixels change
severely, it has a drastic negative impact on CNN’s result. In contrast, for corruptions such as
elastic transform and brightness, the nearby pixels change at the same rate, and they degrade
the image globally. Hence they are less problematic for CNN to extract the features, and the
model is less sensitive to the increase of severity for these corruptions.

In figure 3.9, we demonstrated the evaluation results for class Car with easy and hard diffi-
culties for all 15 corruptions with various severity levels. As we can see in this figure, in all
cases, the zoom blur and snow corruptions have the most negative impact on the results. Due
to the importance of the textures for object recognition by CNNs compared to the shape of
the objects [60], the severe impact on the objects’ texture by zoom blur and snow corruptions
leads to a severe decrease in results.

Furthermore, in the figure 3.9, we can surprisingly observe that the AP3D for class Car with
easy difficulty, slightly increased for defocus blur and glass blur corruptions with severity one
and two. The reason could be the positive impact of these corruptions with low severity on
estimating the 2D bounding boxes that leads to better frustum extraction in 3D space and
achieve better 3D detection results than the evaluation results on the clean KITTI test set.
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In our experience, we exploited simple data augmentation including horizontal flip of images
and random translation and scaling of 2D bounding boxes. The most critical weakness of
leveraging synthetic corruption to measure robustness is that we can always improve the
model’s performance against a specific corruption by using that corruption for data augmen-
tation during training the model. Therefore, measuring robustness by exploiting the artificial
corruptions can not give us an accurate estimation of the model’s robustness for practical
applications.

In figure 3.1, we can observe the impact of increasing the corruption severity for a sample
with synthetic snow corruption. At a higher level of severity, the model has missed some
of the objects. For instance, in the highest severity, the model could not detect any object.
Although in severity with level four, the model detected a car, it could not estimate the heading
angle correctly, causing a severe problem in the practical implementation of the model in a
self-driving car. More qualitative detection results for other corruptions are provided in the
appendix A.

To evaluate the model’s robustness in case of real-world corruptions such as adverse weather
or lighting, we have leveraged nuScenes-Rainy, nuScenes-Night, Waymo-Rainy, and Waymo-
Night datasets. According to the results, we can observe that the model’s performance in
diverse weather and lighting conditions decreased significantly. For example, as we can see in
table 3.5, the 3D average precision (AP3D) of the model on the nuScenes-Clear test set for the
Car class with moderate difficulty is 14.85% while in the rainy weather it decreased to 2.67%,
and at night, it is 13.35%.

As we can see in the tables 3.6, 3.7, and 3.8, the Frustum PointNets model that is trained
on Waymo-Clear dataset could not detect any instance from the Cyclist category in Waymo-
Night. Furthermore, we can observe in tables 3.3, 3.4, and 3.5 that the 2D, BEV, and 3D
average precisions of the Cyclist class are heavily degraded for nuScenes-Rainy and nuScenes-
Night. The reason could be the lack of a sufficient number of cyclist instances in the rainy
weather and night time. Moreover, the pedestrian and cyclist are smaller objects than cars,
and diverse weather and lighting conditions impact the detection of these objects severely.

As we mentioned in the preparing data section, we have used only the depth of objects in the
3D space to determine their level of detection difficulty for nuScenes and Waymo. However,
we observed that this approach is not always accurate without considering occlusion and
truncation of instances. For example, in table 3.8, the AP3D of the Pedestrian class with
moderate difficulty for the Waymo-Clean dataset is 52.92% while it is 45.81% for the easy
difficulty. In other words, we may have a heavily occluded and truncated nearby object in the
3D scene, which is a problematic instance for detecting by the model.

The multimodal model that we have exploited for examining our approach has a cascade
architecture, which means that each stage’s output feeds to the next stage. More precisely, if
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the first stage of Frustum PointNets, the 2D object detector, could not detect an instance in
the 2D image, the model would not detect the 3D bounding box for that instance. For example,
in the figures 3.6 and 3.8 that belong to nuScenes-Night and Waymo-Night respectively, some
objects are not detected due to inability of the 2D detector to detect those objects in 2D
images.

The need to estimate the third dimension in 3D space can cause a drop in results when we
compare the 3D detection with 2D detection results. Furthermore, by comparing the 2D and
3D results, the 3D detection results for Waymo and nuScenes decreased more than the KITTI
dataset due to a higher probability of consisting of heavily occluded objects. For example,
the average number of car instances per image is 8.1 for Waymo-Clean, while it is 3.84 for
the KITTI dataset. Therefore, it is likely that we have more nearby objects in Waymo-Clean
than KITTI. When two extracted frustums are close, it is hard for the Instance Segmentation
module of Frustum PointNets to segment them precisely because the model supposes that
there is one object in each frustum. Moreover, in the nuScenes dataset, the point clouds are
more sparse than the point clouds of KITTI and Waymo and it impacts 3D detection results.
The nuScenes dataset exploited the 32-beam LiDAR for acquiring the point clouds, while
KITTI and Waymo leveraged 64-beam LiDAR.

On the other hand, the model’s performance dropped significantly in rainy weather due to
the impact of rain on the performance of the LiDAR [37]. For instance, in the figures 3.5 and
3.7 that illustrate the detection results for samples from nuScenes-Rainy and Waymo-Rainy
datasets, we can observe that the model detected some objects. However, it could not estimate
their 3D bounding boxes accurately.

To show the effectiveness of our proposed method in practical applications, we have conducted
an example experiment to demonstrate how evaluating the robustness with proposed datasets
containing real images captured on rainy days and at night can help choose the right direction
during training.

In this experiment, we exploited augmentation to enrich our training data for the Waymo-
Clear dataset. To this end, we have applied all corruptions with severity two that introduced
for making KITTI-C on 1000 random images from the test set of the Waymo-Clean dataset.
We trained the model that we leveraged in previous experiments on this sub-dataset with the
same parameters. Next, we evaluated the trained model on Waymo-Rainy, Waymo-Night, and
Waymo-Clean test set while excluding the images we exploited for training. The results are
provided in tables 3.9, 3.10, and 3.11 for AP2D, APBEV , and AP3D respectively.

In this example experiment, we observed that by exploiting this set of corruptions for aug-
menting the dataset and fine-tuning the model, the evaluation results on the Waymo-Night
for the Car class increased remarkably. In contrast, the results for Waymo-Rainy decreased
slightly while the results for the Waymo-Clean test set decreased significantly. According to
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these results, we can conclude that the exploited augmentation approach in this experiment
improved the robustness of the trained model for samples captured at night while decreasing
the robustness for samples captured on rainy days. Therefore, according to this conclusion, we
can choose an appropriate approach for training the model for various practical situations.

Class Clear Rainy Night
easy moderate hard easy moderate hard easy moderate hard

Car 88.51 88.45 81.09 59.29 59.97 50.67 25.45 24.49 16.78
Pedestrian 71.66 72.01 71.45 50.19 50.28 42.26 17.07 9.09 9.09
Cyclist 67.76 68.07 69.71 12.09 12.09 12.09 - - -

Table 3.9 – The evaluation results (AP2D in %) of the Frustum PointNets after leveraging
augmentation, on Waymo-Rainy, Waymo-Night, and test set of Waymo-Clear for 2D detection.

Class Clear Rainy Night
easy moderate hard easy moderate hard easy moderate hard

Car 54.79 58.11 52.96 38.83 41.11 34.27 24.54 24.03 16.40
Pedestrian 48.05 54.93 53.98 25.46 26.10 21.14 15.85 9.09 9.09
Cyclist 41.17 41.06 46.40 12.09 12.09 12.09 - - -

Table 3.10 – The evaluation results (APBEV in %) of the Frustum PointNets after levera-
ging augmentation, on Waymo-Rainy, Waymo-Night, and test set of Waymo-Clear for BEV
detection.

Class Clear Rainy Night
easy moderate hard easy moderate hard easy moderate hard

Car 31.69 38.20 30.50 22.42 24.47 16.26 20.57 15.22 13.76
Pedestrian 41.10 49.72 44.82 18.36 18.78 17.46 9.09 9.09 9.09
Cyclist 38.58 37.95 43.17 12.09 12.09 12.09 - - -

Table 3.11 – The evaluation results (AP3D in %) of the Frustum PointNets after leveraging
augmentation, on Waymo-Rainy, Waymo-Night, and test set of Waymo-Clear for 3D detection.

In this work, we have introduced robustness test datasets for assessing the model’s robustness
for rainy days and at night. The proposed method’s future development needs to consider more
diverse weathers that a self-driving car may experience in practice, such as snowy or foggy
weather. Moreover, we require evaluating the robustness of a model for autonomous vehicle
applications in more challenging conditions, including rainy or foggy nights. Furthermore,
the robustness test dataset needs to involve more diverse geographical locations to become a
reliable method to assess the robustness.

In the multimodal models’ designing process, it is necessary to pay attention to the model’s
architecture to prevent the model’s inability to provide results in case of loss of a modality. To
this end, the model requires to extract features from different modalities in parallel and fuse
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them to obtain the final results. Moreover, the robustness test dataset can be expanded to in-
clude sub-datasets to evaluate the robustness against abnormally in point clouds or misaligned
sensors from different modalities.

We leveraged the proposed evaluation metric by the KITTI benchmark. This evaluation me-
thod is appropriate for assessing the model’s performance in mild weather and lighting condi-
tions such as sunny days due to the need for high IoU thresholds for considering a detected
object as true positive, such as the 0.7 IoU threshold for Car class. However, to evaluate the ro-
bustness, we can modify the thresholds or propose new evaluation metrics to cover robustness
evaluation requirements.
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Figure 3.1 – Ground truth and detection results for a sample from the KITTI-C dataset for
snow corruption. From top to bottom : ground truth, without corruption, and corruption with
severity 1 to 5. In this example, the model could not detect any object in the corrupted scene
with maximum severity.
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Figure 3.2 – The KITTI-C evaluation results of Frustum PointNets for Car, Pedestrian, and
Cyclist classes with moderate difficulty for all 15 corruptions with various severities for 2D
detection (AP2D in %).
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Figure 3.3 – The KITTI-C evaluation results of Frustum PointNets for Car, Pedestrian, and
Cyclist classes with moderate difficulty for all 15 corruptions with various severities for 3D
detection (AP3D in %).
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Figure 3.4 – The KITTI-C evaluation results of Frustum PointNets for Car, Pedestrian, and
Cyclist classes with moderate difficulty for all 15 corruptions with various severities for Bird’s
Eye View (BEV) detection (APBEV in %).
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Figure 3.5 – Ground truth and detection results for a sample from nuScenes-Rainy. Green
bounding boxes represent the ground truth, and the red bounding boxes represent the detection
results.
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Figure 3.6 – Ground truth and detection results for a sample from nuScenes-Night. Green
bounding boxes represent the ground truth, and the red bounding boxes represent the detection
results.
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Figure 3.7 – Ground truth and detection results for samples from Waymo-Rainy. Green
bounding boxes represent the ground truth, and the red bounding boxes represent the detection
results.
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Figure 3.8 – Ground truth and detection results for samples from Waymo-Night. Green
bounding boxes represent the ground truth, and the red bounding boxes represent the detection
results.
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Easy

Hard

Figure 3.9 – Illustration of evaluation results (AP2D, APBEV , AP3D in %) on KITTI-C for
class Car with Easy and Hard difficulties for all 15 types of corruptions with five severity
levels. Zero severity belongs to evaluation results on the clean KITTI test set.
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Conclusion

In this research, to assess the robustness of a multimodal 3D object detector in the autonomous
vehicle scenario, we proposed a new method by introducing two different types of robustness
test datasets including artificially corrupted images and real challenging scenarios as scenes
captured at night or in rainy weather.

We conducted extensive experiences to investigate our method’s effectiveness on a trained
model to evaluate its robustness in diverse conditions. Moreover, we evaluated the robustness
of a 3D multimodal object detector against synthetic corruptions by leveraging the mean
performance under corruption and relative performance under corruption on our KITTI-C
dataset and provided the results for demonstrating the impacts of individual corruption with
different severity levels.

We observed that detecting objects of interest in the adverse weather and lighting conditions
appears to be a challenging task, resulting in drastic drops in accuracy levels. We can conclude
that when the trained multimodal 3D object detector is tested on the datasets involve rainy
or night scenes, in order to evaluate the robustness, it failed dramatically.

The proposed robustness test datasets in this thesis are created for evaluating the robustness of
a model in specific conditions including rainy weather and night conditions that are important
and problematic for self-driving car applications. However, we can generalize the method for
other different conditions, such as snowy weather, by leveraging the data that was captured
during that specific condition.

The main principle for this application-specific robustness test method is collecting problema-
tic real-world data with the same distribution while the collected test dataset has sufficient
diversity. This robustness evaluation method can be useful for guiding design choices by esti-
mating the robustness of different models for a specific application.

Overall, considerable progress is required before self-driving cars can operate reliably in mixed
urban traffic, heavy rain and snow, in different daytime and lighting conditions, and assessing
the robustness of a 3D perception system in these diverse conditions is a necessity.
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Annexe A

Qualitative Results For Different
Corruptions
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Figure A.1 – Ground truth and detection results for two samples from the KITTI-C dataset
for contrast and elastic transform corruptions. From top to bottom : ground truth, without
corruption, and corruption with severity 1 to 5.
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Figure A.2 – Ground truth and detection results for two samples from the KITTI-C dataset
for fog and brightness corruptions. From top to bottom : ground truth, without corruption,
and corruption with severity 1 to 5.
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Figure A.3 – Ground truth and detection results for two samples from the KITTI-C dataset
for Gaussian noise and motion blur corruptions. From top to bottom : ground truth, without
corruption, and corruption with severity 1 to 5.
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Figure A.4 – Ground truth and detection results for two samples from the KITTI-C data-
set for glass blur and zoom blur corruptions. From top to bottom : ground truth, without
corruption, and corruption with severity 1 to 5.
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Figure A.5 – Ground truth and detection results for two samples from the KITTI-C dataset
for shot noise and frost corruptions. From top to bottom : ground truth, without corruption,
and corruption with severity 1 to 5.
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Figure A.6 – Ground truth and detection results for two samples from the KITTI-C dataset
for impulse noise and defocus blur corruptions. From top to bottom : ground truth, without
corruption, and corruption with severity 1 to 5.
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Figure A.7 – Ground truth and detection results for two samples from the KITTI-C dataset
for pixelate and JPEG transform corruptions. From top to bottom : ground truth, without
corruption, and corruption with severity 1 to 5.
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