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Abstract: We present a simple, highly modular deep neural network (DNN) framework to
address the problem of automatically inferring lens design starting points tailored to the desired
specifications. In contrast to previous work, our model can handle various and complex lens
structures suitable for real-world problems such as Cooke Triplets or Double Gauss lenses. Our
successfully trained dynamic model can infer lens designs with realistic glass materials whose
optical performance compares favorably to reference designs from the literature on 80 different
lens structures. Using our trained model as a backbone, we make available to the community a
web application that outputs a selection of varied, high-quality starting points directly from the
desired specifications, which we believe will complement any lens designer’s toolbox.
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1. Introduction

Learning-based approaches, in particular those that build on recent advances in deep learning
(DL) [1], have shown promising benefits over traditional approaches in many optical signal
processing applications such as superresolution microscopy [2,3] or computational imaging [4,5].
In contrast to standard classification or regression problems, DL does not lend itself as naturally
to design problems in optics due to the scarcity of relevant designs in datasets, generally harsh
cost function landscapes (presence of discontinuities, abundance of poor local minima), and the
unsuitability of DL to one-to-many mappings. Nevertheless, applications using DL have emerged
in the design of metasurfaces [6,7], thin films [8], freeform surfaces [9] and nanostructures [10].

Lens design in particular is an area where there is much to gain by casting the problem
as a learning task, thus taking advantage of known and successful design forms. In contrast,
most known lens design approaches such as evolutionary algorithms [11–13] and other global
optimization methods [14], local search [15,16], and saddle point construction [17], do not make
use of previous knowledge other than by the mechanism of the starting point, and therefore must
start from scratch with every new design process.

Because of the importance of starting points in lens design optimization [18,19], and to
alleviate the hassle of parsing through databases and reoptimizing approximate matches to
new specifications, [20] used DL to infer lens design starting points directly from the desired
specifications. It was shown that a deep neural network (DNN) model could be trained to
automatically produce high-quality starting points by extrapolating from known designs, though
the experiments were conducted on simple air-spaced and cemented doublets only. The DNN
parameters were optimized by applying differentiable ray tracing to the inferred lens designs
and by optimizing an optical loss based on the meridional RMS spot size. The ray-tracing
module was implemented in the automatic differentiation framework PyTorch [21], which enables
backpropagation, a necessary component in training deep neural networks. Moreover, reusing
known designs from the literature to provide a supervision signal was key in being able to train
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the DNN to optimize optical performance despite the discontinuities, non-linearity and numerous
local minima of typical lens design optimization functions.

In following work [22], the approach was expanded to provide the DNN with a dynamic
architecture that allows a single model to adopt a shared representation for different lens structures,
in this case any sequence of glass elements or air gaps. The core idea was to use a recurrent neural
network (RNN) [23] as the backbone of the model. RNNs have met considerable success on
many learning-related tasks involving sequential, variable-length data as in machine translation
[24–26] or speech recognition [27]. Likewise, an RNN can capture the sequential structure of
lens designs and infer every piece of a design sequentially. Though the use of a dynamic model
allowed a shared representation of various lens structures, the aperture stop was assumed to lie
on the first surface of the system; thus, the framework was still limited to a restrained number of
different lens structures unsuitable to real-world lens design problems.

In this paper, we address most limitations of this previous framework, most notably by allowing
the aperture stop to be anywhere in the design, by including vignetting factors as specifications, by
inferring glass variables that closely approximate the behavior from the discrete glass materials
in the widely used Schott catalog [28], and by implementing a more powerful differentiable
ray-tracing module that handles oblique rays and precise aperture stop ray aiming. This allows us
to (1) model a significant variety of lens structures that closely reflect real-world problems, (2)
learn from a large number of diversified lens designs from the literature, which allows the DNN
to learn and reproduce general lens design practices and tendencies, and (3) infer high-quality
starting points on a wide variety of lens structures and specifications. This framework is a
promising tool for both novice and experienced lens designers, as its parameters can be saved and
shared for future use once it is trained, and the only task required of the user in order to obtain
high-quality starting points is to enter their desired specifications as input.

We successfully train our DNN model on 80 different lens structures by extrapolating from
150 reference designs found in the literature [29]. Our trained model acts as a backbone for a web
application called LensNet that we make readily available to the community for starting points
queries [30]. In the paper, we provide a qualitative demonstration of the web application to show
the simplicity of the framework for users: for the desired combination of effective focal length
(EFL), f-number (defined by EFL/EPD) and half field of view (HFOV), the DNN model can
be queried simultaneously for all appropriate lens structures, then the lens designer can choose
among the inferred selection of starting points for a suitable compromise between the number of
optical elements and the performance achieved. Unlike lens design databases, our framework
provides starting points from diverse lens configurations for the same first-order specifications,
which means that their performance can be directly compared on an equal footing without the
need to fine-tune each of them to the same specifications. Additionally, we provide a quantitative
assessment of the optical performance of the designs based on RMS spot size and distortion, and
show that they compare favorably to the reference designs.

2. Method

Our method is summarized as follows: the DNN model takes as input the desired specifications
(EPD, HFOV, vignetting factors and lens structure), and directly infers all the variables required
to fully define a lens design, namely the curvatures c, thicknesses t, refractive indices nd and
Abbe numbers v. We consider the object at infinity and use a solve on the last curvature to
enforce a unit EFL so the model doesn’t have to learn how to scale designs. Those are scaled to
the desired EFL outside training.

We train the DNN model using a combination of supervised and unsupervised training schemes,
as illustrated in Fig. 1. With supervised training, reference lens designs found in the literature are
used to guide the training, by successively (1) giving the specifications that those lens designs
were optimized for as inputs to the model, and (2) minimizing a supervised loss term by stochastic
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gradient descent (SGD) so that the model replicates the reference designs. Supervised training
alone cannot successfully generalize to unseen specifications because lens designs found in
databases are too scarce. Thus, we combine this with unsupervised training in which we compute
and optimize the optical performance of the designs using our differentiable ray-tracing module.
We jointly and successively apply the following unsupervised training steps until convergence:
(1) a large variety of input specifications are given to the model, which infers a lens design for
every set of specifications, (2) the optical loss function is computed from the RMS spot size
of the inferred designs as well as penalty terms to penalize ray failures, overlapping surfaces,
poor glass element shapes, and glass variables deviating from Schott glasses [28], and (3) the
model parameters are updated by SGD so that the optical performance of all designs is optimized.
Intuitively, the model learns good priors by being forced to reproduce reference designs with
supervised training, and this allows unsupervised training to narrow its search within known
design forms instead of exploring the whole solution space and getting stuck in poor local minima.

input
specifications DNN model

output
lens design

Inference

differentiable
ray tracing

unsupervised
loss Lu

Unsupervised training

MSE loss
computation

reference
lens

supervised
loss Ls

Supervised training

Fig. 1. Overview of the DL framework. The model learns to maximize optical performance
and design viability through unsupervised learning. The process is assisted by injecting
knowledge from reference designs through supervised training.

2.1. Deep neural network model

Our DNN architecture builds on the dynamic architecture introduced in [22]. In Fig. 2 is shown
a schematic view of the DNN model used to infer the lens designs, configured for a single-lens
design for clarity. We use a lens structure-agnostic model architecture: the same curvature ("c"),
glass ("g"), thickness ("t") and aperture stop ("s") building blocks are rearranged dynamically to
support any sequence of glass elements or air gaps and any aperture stop location; thus, a single
model with a predefined number of parameters can be trained or queried simultaneously on all
desired lens structures.

The model inputs consist of the input sequence, which is used to dynamically arrange the
building blocks, as well as the input specification vector composed of the desired EPD, HFOV
and vignetting factors vh and vl. A randomly generated vector z completes the specification
vector, only to allow a variety of lens designs to be inferred from a given set of specifications,
i.e. a one-to-many mapping instead of one-to-one. This prevents a problem that occurs in the
presence of multiple reference designs for the same lens structure and specifications, in which
the model erroneously tries to reproduce the average of the designs instead of reproducing each
design separately.

In the DNN, four learnable linear projection layers me,s, me,c, me,g and me,t are used to generate
high-dimensional embeddings based on the specification vector and the element type. There, a
dynamic network md collects and processes the variable-length sequence of embeddings. We
use a variant of a recurrent neural network (RNN) model to represent md, namely a stacked
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Fig. 2. Dynamic DNN architecture used to learn multiple lens structures at once. The
configuration – illustrated here for single-lens designs where the second surface acts as the
aperture stop – is changed dynamically to accommodate any desired lens structure. a) The
input sequence specifies how the curvature ("c"), glass ("g"), thickness ("t") or aperture stop
("s") building blocks are to be arranged, while the specification vector is fed to the embedding
layers. b) The embedding layers generate a variable-length sequence of high-dimensional
embeddings, which are processed by the dynamic network, then the output layers map the
variable-length sequence of output vectors to lens parameters. All components m of the
model have learnable parameters. c) The intermediate lens parameters are converted to
viable parameters using non-learnable functions. The last curvature is solved for to obtain a
unit EFL.

bidirectionnal [23] gated recurrent unit (GRU) [24] network. For the current experiments, we
instantiate md with 6 layers and an input dimensionality of 128. Next, three learnable linear
projection layers mo,c, mo,g and mo,t transform the high-dimensional dynamic model outputs into
the curvatures c, glass variables g1, g2 and normalized thicknesses t′.

In a final step, the normalized thicknesses are smoothly rectified to positive values according
to t = ln(1 + exp(t′)) while the glass variables are converted to viable refractive indices nd and
Abbe numbers v.

2.2. Glass model

As refractive indices nd and Abbe numbers v of real glass are correlated, we use a disentangled
representation for our glass variables g by computing the principal component analysis (PCA) on
real glass variables from the Schott Catalog [28]. Then, we go from one representation to the
other using the PCA model:

g1, g2 = PCA(nd, v) . (1)

In contrast to [20], we allow the glass variables to have any value. We transfer the task of
bounding the glass variables to the unsupervised loss function instead.

In this work, we consider that the partial dispersion of all inferred glasses varies linearly with
the Abbe number v and use the same model as Smith [31].
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2.3. Training domains

When training the model using unsupervised steps, for every lens structure we must decide on a
training domain Ds from which we will uniformly and randomly sample the specifications (EPD,
HFOV, vh and vl), except for the random vector z ∼ U(−1, 1). Each lens structure has a specific
training domain that is chosen to encompass the specifications of the reference lens designs used
for supervision (see Fig. 3). For the current experiments, we follow a simple rule: for every
reference design r, we establish a domain Dr between 80% and 120% of the HFOV and EPD
of the reference design. Likewise, we define a range of vignetting factors for Dr by adding or
subtracting 0.05 to the reference values, but avoiding negative vignetting factors. Then, to obtain
a single domain Ds per lens structure, we combine the domains Dr belonging to the structure
so that Ds encompasses all Dr. When querying the model, the specifications entered must be
within the training domains, otherwise it will generalize poorly.
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Fig. 3. Domains on which the model is trained for different lens structures, named after
their sequence of Glass elements, Air gaps and aperture Stop. The dots represent reference
designs used for supervision in our experiments. With a unit EFL, the EPD is the inverse
of the f-number. Only lens structures with at least 3 reference designs are shown to avoid
clutter.

2.4. Optical performance-based unsupervised loss function

Here we describe the loss function used to improve the optical performance of designs inferred
on a wide variety of specifications. The high-level goal of the unsupervised loss function is
to provide functional starting points that are optimized for image quality. Thus, we target four
factors: (1) optical performance, estimated by the RMS spot size of the designs at the image
plane, (2) ray behavior, as to avoid overlapping surfaces, total internal reflexion (TIR) and missed
surfaces, (3) glass materials, so that the inferred glass materials closely approximate the behavior
of real and widely available glass materials, and (4) glass element shape, which should be neither
too brittle nor too thick. To this end, we use our ray-tracing module implemented in PyTorch
[21], which enables us to (1) compute the derivatives of the loss with automatic differentiation
instead of numerical differentiation, (2) exploit GPU computing capabilities by parallelizing
the ray tracing on many designs at once, regardless of the lens structure, and (3) have complete
access to intermediate ray-tracing data and use them to shape our loss function. Our ray-tracing
module is more powerful than the one described in [20], as it considers vignetting, aperture stop
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placement, precise aperture stop ray aiming, and skew ray tracing that covers the whole entrance
pupil instead of the meridional plane only. Similar to previous work [20], we use RMS spot
size as our performance metric instead of, e.g., modulation transfer function (MTF), wavefront
error or Seidel aberrations, because it can be computed efficiently and usually provides a good
estimation of optical performance for non-diffraction-limited systems.

Ray tracing and spot size. For all lens designs, we consider three field angles H that
correspond to {0, 0.7, 1} times the HFOV, three wavelengths w consisting of the C, d and F
Fraunhofer lines, and 64 pupil intersections p that span the pupil uniformly in a pseudo-random
way. With the object at infinity, we initialize the rays at the paraxial entrance pupil and propagate
them across all surfaces k up to the image plane. For simplicity, we only consider two vignetting
factors vh and vl – also given as inputs to the model – that respectively represent the higher and
lower vignetting factors on the y-axis, and assume negligible vignetting on the x-axis. When
applying vignetting, the relative yp coordinates at the entrance pupil are updated according to:

y′p =
(︂
1 − λH

vh + vl
2

)︂
yp − λH

vh − vl
2

, (2)

where λH is a field-dependent parameter that we set to {0, 0.6, 1} for the fields {0, 0.7, 1}.
We apply a ray-aiming correction to off-axis rays to prevent them from deviating from the real

aperture stop in the presence of pupil aberrations. We consider a linear relationship between the
entrance pupil coordinates yp and the aperture stop coordinates ys:

∆ys ≈ ∆yp
dys
dyp

. (3)

We can compute the derivative term nearly exactly by tracing real marginal rays from the paraxial
entrance pupil to the aperture stop, then applying automatic differentiation. We compute the real
aperture stop diameter by tracing an on-axis marginal ray. We then apply a single correction step
to all computed xp and yp coordinates for off-axis rays so that the marginal meridional and sagittal
rays hit the border of the real aperture stop. In practice, we found that this single correction
step guarantees negligible ray-aiming error for most considered lens designs. When choosing
reference designs, we screen out those that have non-negligible ray-aiming error even after this
correction step (e.g., wide-angle lenses).

We obtain the mean RMS spot size s by computing the field-wise RMS spot size over all
wavelengths and pupil intersections, and by averaging the results over the fields:

s = avg
H

[︄√︃
avg
w,p

[︁(xw,p − x)2 + (yw,p − y)2]︁ ]︄ . (4)

Penalty terms. Ray-tracing failures, namely missed surfaces and TIR, happen respectively
when the angle of incidence I or the angle of refraction I ′ are invalid. These situations can be
avoided by enforcing | sin(I)|<1 and | sin(I ′)|<1. Rays that encounter ray failures are ignored
from further computations. Another form of undesired ray behavior is backward traveling, which
is used to detect and penalize situations where optical surfaces overlap. This is avoided by
enforcing that no ray at a given surface has a negative longitudinal displacement: ∆z>0. We
design a ray behavior penalty term qbvr for a given lens design by combining those constraints in
a piecewise-differentiable way to provide a well-behaved training signal:

qbvr = avg
H,w,p,k

[max(| sin IHwpk | − 1, 0) +max(| sin I ′Hwpk | − 1, 0) +max(−∆zHwpk, 0)] . (5)

In [20], glass variables were bounded to prevent them from deviating too far from the average
glass in the Schott catalog [28]. Here, as glass variables are not bounded, we need to include
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a glass penalty term qglass to keep them close to real glass variables. For every inferred glass
variables gm of a lens design, where m iterates over all glass elements, we compute its L2 distance
with respect to the nearest neighbor gm,NN from the Schott catalog, and we average:

qglass = avg
m

[︁∥gm − gm,NN∥2
]︁

. (6)

To output good starting points, we also want to avoid glass elements that are too thick or too
brittle. We design a lens element shape penalty term qshape that targets each glass element’s
diameter-to-thickness ratio Rm. We define lower and upper thresholds Rl and Ru that we set to 3
and 12, respectively, and penalize values outside this range linearly:

qshape = avg
m

[max (Rm − Ru,−(Rm − Rl), 0)] . (7)

Unsupervised loss. The unsupervised loss for a single design is the product of the spot size
and the shaped penalty terms:

Lu = s(1 + λbvrqbvr)(1 + λglassqglass)(1 + λshapeqshape) , (8)

where λbvr, λglass and λshape are parameters used to scale the behavior, glass and shape penalty
terms that we set to 10000, 10 and 0.01, respectively. The choice of using multiplicative instead
of additive loss terms, although uncommon in the machine learning literature, has done well on
this learning task as it allows us to weigh the penalty terms easily – despite the mean spot size
decreasing by more than a hundredfold during training.

When we average the mean unsupervised loss for the entire batch before updating the DNN
parameters, we use a geometric mean instead of an arithmetic mean to scale all designs equally,
independently of the magnitude of the RMS spot size:

Lu = exp
(︃
avg

b

[︁
log Lu,b

]︁ )︃
. (9)

Since optimizing for RMS spot size alone can lead to designs whose performance has a high
sensitivity to manufacturing precision, we add tolerancing noise from a normal distribution
(σ = 10−3) to all curvatures before ray tracing during training. It is an uncomplete but efficient
way of addressing the issue of tolerancing in lens design optimization.

2.5. Supervised and joint loss

A supervised training sample is composed of a single reference lens design and the specifications
that this design was optimized for. Before training, every reference design is given a random
vector z that is held fixed throughout training. We set the size of z to 2, which is sufficient to allow
the model to reproduce different reference designs with the same specifications. The supervised
loss function for a given training sample is simply the MSE between all lens variables θk inferred
by the model for the given specifications and their reference values θ ′k:

Ls = avg
k

[︂
(θk − θ ′k)2

]︂
, (10)

where θ = {c1 . . . cN−1, t1 . . . tN , g1,1, g1,2 . . . gM,1, gM,2}, N is the number of optical surfaces
excluding the image plane, and M is the number of glass elements.

In contrast to the unsupervised loss, we average a batch of samples using the arithmetic mean:

Ls = avg
b

[︁
Ls,b

]︁
. (11)

In practice, we train the model by successively applying joint training steps until convergence:
(1) we randomly sample an unsupervised batch and a supervised batch of 512 training samples
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each, (2) we compute the respective mean losses according to Eq. (9) and Eq. (11), (3) we
combine them according to Lj = Lu + λsLs, where λs is set empirically to 0.2, (4) we compute
the derivative of Lj with respect to every DNN parameter using automatic differentiation, and (5)
we update the weights using the Adam optimizer [32], which is a variant of SGD.

2.6. Training details

When generating training samples, we sample between all possible lens structures evenly for
unsupervised training, and between all reference designs evenly for supervised training. We set
the values β = (0.9, 0.99) for the Adam optimizer and use gradient clipping with a threshold of
0.1 to prevent blow-ups due to the strong non-linearity of ray tracing. We train over 500000 steps
with a warm-up phase where the learning rate is linearly increased from 4× 10−6 to 4× 10−4 over
100000 steps, then progressively decayed to the original value over the remaining steps following
a cosine half-cycle. Training takes about 50 hours using a single Nvidia Tesla P100 GPU. In
contrast, once the model is trained, inference time is very short as about 20000 designs can be
inferred per second, assuming a large batch size (4096) to fully load the GPU.

3. Results

We train a single instance of the model using the previously described method to produce the
following results, with supervision from 150 reference designs from the Zebase 6 collection [29]
shared among 80 different lens structures. We use the model to infer various lens designs and
assess their performance both qualitatively and quantitatively.

3.1. Demonstration and web interface

To provide a more convenient way of using our framework, we created an interface that
automatically generates a selection of starting points and ensures that the designs are inferred
within the training domains. An example of results obtained when using this interface is provided
in Fig. 4. Here, the user supplies the desired EFL, f-number and HFOV, and the model generates
one lens design for each lens structure relevant to these specifications, i.e. whose training
domain encompasses those specifications. The vignetting factors are selected automatically as
the minimum values in the respective training domains, as to minimize vignetting. The inferred
designs are scaled to satisfy the required EFL. Then, the user may compare the designs on
different performance metrics, e.g. with distortion, field curvature, lateral color or ray fan plots,
which should provide a rough idea of the limitations of each lens structure. In contrast to starting
points found in traditional lens design databases, here all the suggested designs are preoptimized
for the same first-order specifications, and as such can be compared on equal grounds. In
practice, the user could select a given design, e.g. one with low manufacturing complexity that
approximately meets the requirements of the problem at hand, and further optimize it using
available optical optimization software. This interface, called LensNet, is hosted online [30] (see
Visualization 1 for a demonstration video).

3.2. Design viability

In Table 1, we gather statistics to show the viability of the inferred lens designs. The statistics are
gathered from 100 000 lens designs inferred in equal proportion from 80 lens structures, with
specifications drawn randomly and uniformly in the respective training domains Ds. Experiments
indicate that only a slight proportion of rays experience failure (2.7 × 10−6) or backward
traveling (9.3 × 10−5), and that the vast majority of the inferred glass elements have suitable
diameter-to-thickness ratios (6.3 ± 3.9).

To assess the feasibility of the inferred glass variables, for each inferred pair of variables
(g1, g2) we find the closest Schott catalog glass in the normalized g-space, then compute the

https://lvsn.github.io/lensnet
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Fig. 4. Designs obtained automatically when querying the framework for a 25 mm EFL,
a f-number of 3 and a HFOV of 12◦, without manual selection, editing or additional
optimization. Some common aberration plots are shown (units are in mm). The framework is
used to produce a design for every lens structure whose domain includes these specifications.
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Table 1. Statistics on the viability of the inferred designs regarding the fulfillment of the first-order
specifications, the diameter-to-thickness ratio of the glass elements, and the correspondence

between the inferred glass variables and real glass materials.

Proportion of ray failures 2.7 × 10−6

Proportion of backward-traveling rays 9.3 × 10−5

Diameter-to-thickness ratio of glass elements 6.3 ± 3.9

Refractive index deviation from closest Schott glass (1.2 ± 2.8) × 10−4

Abbe number deviation from closest Schott glass (1.5 ± 4.0) × 10−2

difference between the two refractive indices nd and Abbe numbers v. Based on the result, we
see that the average deviation between inferred glass materials and their closest neighbor in the
Schott catalog is minor. For reference, our average deviation in refractive indices and Abbe
numbers is below standard manufacturing tolerances (called Step 3), of ±5 × 10−4 for refractive
indices and ±0.5% for Abbe numbers (about ±0.1 in a best-case scenario) [33].

3.3. Optical performance

The fact that the performance of a design is ultimately defined by its suitability to the problem
at hand, for which there exists no universal metric, combined with the scarcity of expertly-
designed lenses to compare with, precludes us from making a satisfying global assessment
of the performance of the inferred designs. Instead, in Fig. 5 we settle on showing that the
performance of the inferred designs does not deviate very far from that of the reference designs,
while recognizing that optical performance, e.g. RMS spot size, cannot be compared directly
for different EPD, HFOV or vignetting factors. For every reference design r, we infer 1000
designs from sets of specifications that are randomly and uniformly sampled from the domain
Dr. We average their performance on two different metrics, RMS spot size and distortion at
full field of view, using the geometric instead of the arithmetic mean since the performance can
sometimes span multiple orders of magnitude. We compare their performance to the reference
designs. When a given structure is represented by more than one reference design, we average
both the mean performance of the inferred designs and the performance of the reference designs
by applying the geometric mean in order to compute the final score.

From Fig. 5, we see that the optical performance of the inferred designs, as measured by the
RMS spot size, compares favorably to the reference designs for most lens structures. Distortion,
on the other hand, more often than not exceeds the reference value. This can be attributed to our
unsupervised training scheme since it only takes RMS spot size into account and is thus blind to
distortion. However, in most cases where the distortion strongly exceeds the reference value, the
RMS spot size will be significantly lower than the reference, meaning that the inferred starting
points trade distortion correction for sharper image quality.

In some cases, the RMS spot size of our designs is well below the reference value. This may
be because not all reference designs were optimized for performance alone; some may have
additional performance-limiting constraints such as targeting a specific back focal length (BFL)
or using specific glass materials.

3.4. Ablation study

In Table 2, we show the impact of dropping some of our methodology choices, which is commonly
referred to as an ablation study in the machine learning literature. We compare the performance
of different model instances by computing the geometric average of the spot size from 100 000
lens designs inferred in equal proportion from the 80 lens structures, with specifications drawn
randomly and uniformly in the respective training domains Ds.
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Fig. 5. Mean performance of designs inferred from specifications randomly and uniformly
sampled around the specifications of every reference design r (lower is better). The relative
spot size for a given structure is the mean spot size of the inferred designs normalized with
the reference design spot size.
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Table 2. Statistics on the inferred designs after training with different methodology choices. We
show the geometric mean of the RMS spot size of designs inferred from the model (with unit EFL)

with and without inclusion of tolerancing noise during evaluation. Also shown when relevant is the
distribution of the diameter-to-thickness ratio of the inferred glass elements.

Training methodology Noise in eval. Ratio distribution Spot size

Baseline No 6.3 ± 3.9 0.000117

Yes – 0.000170

No tolerancing noise No – 0.000111

Yes – 0.000176

No glass element shape penalty No 14 ± 24 0.000119

No ray behavior penalty No – Diverges

No supervision signal No – 0.000394

We train the model with and without tolerancing noise or supervision signal, and evaluate
it with and without tolerancing noise. From the results, we see that omitting tolerancing noise
during training leads to a larger decrease in performance when we include the tolerancing noise
during the evaluation. This suggests that adding tolerancing noise on the curvatures during
training makes the designs less sensitive to fabrication tolerances.

We can also see that the inclusion of the glass element shape penalty is necessary in order to
obtain viable glass element diameter-to-thickness ratios. Otherwise, the model tends to output
glass elements that are overly brittle or thick. Fortunately, there is no performance cost associated
with this penalty term as is seen by comparing the average RMS spot size. This may be attributed
to the known lens design practice that interchanging glass and air thicknesses is oftentimes
unimportant compared to other variables.

Omitting the ray behavior penalty term makes the training diverge because the optimization
process can no longer keep track of the rays that experienced ray-tracing failure. On this note,
when the model is randomly initialized at the beginning of the training process, an overwhelming
proportion (>40%) of the traced rays experience ray failure. This shows just how important it is
to target them in the optical loss function. In contrast, traditional lens design often neglects this
aspect since good starting points should already be devoid of ray failures.

Finally, omitting the supervision signal during training (or equivalently, setting λs to 0) results
in a very poor mean RMS spot size. This is not surprising: the model generates random lens
designs at first because of its initial random parameterization; thus, omitting the supervision
signal amounts to solving millions of lens design problems simultaneously with deficient starting
points, i.e. a process bound to fail. Incidentally, when the size of the random vector z is too large,
the model seems to ignore the other specifications and this results in a behavior similar to the
omission of the supervision signal.

4. Conclusion

Here, we have introduced a framework that enables users to automatically obtain high-quality
lens design starting points that are tailored to the desired specifications for a wide variety of lens
structures. The framework is hosted online and readily available for starting point queries, which
we believe will be useful both to experienced and novice lens designers. We have shown that the
optical performance of the inferred designs compares favorably to expertly-designed lenses from
the literature, as the mean RMS spot size and distortion of the inferred designs are lower than the
reference values in 75% and 49% of the lens structures considered, respectively. The inferred
glass materials are realistic and their mean deviation from Schott glasses is below the standard
manufacturing tolerances.
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Our DNN model has a highly modular architecture that could be expanded in the future. We
are excited about the possibilities of scaling this framework to more applications and more lens
components, e.g. by adding more types of building blocks for aspherical and freeform surfaces,
GRIN components, etc., or by refining the vignetting model.

In this work, we used RMS spot size as our only optical performance target. It may be
desirable for the lens design community to extend our framework to custom merit functions
with other performance targets (distortion, MTF, encircled energy), constraints (BFL, TTL), or
wavebands (SWIR, MWIR, LWIR). Adding inputs for every possible requirement would increase
the number of reference designs needed as well as the training complexity, whereas adding
arbitrarily weighted specific constraints and performance targets to the optical loss function would
introduce a loss of generality. Instead, one possibility would be to use a form of meta-learning in
which the model could quickly adapt to custom optical loss functions. This could be an important
area of improvement for this framework in the future.

Another area of improvement would be to force the model to output more diverse lens designs
for the same structure and specifications. Injecting noise with the random vector z is a step in this
direction, but the model can ignore it quite easily during learning as its only goal is to optimize
the optical loss function. Research on generative models suggests more sophisticated ways of
generating diverse outputs, which is something that could be explored in the future.

We believe our tools could be useful in the emerging field of end-to-end optics design, which
consists in modeling the image acquisition and processing pipeline in an end-to-end differentiable
way, then simultaneously optimizing every component involved with respect to the downstream
task. Doing this, instead of optimizing the optics for traditional image quality metrics, one can
design optical components that outperform traditional optics at a specific task, e.g. achromatic
extended depth of field and super-resolution imaging [34], high dynamic range estimation [35,36]
and depth estimation [37,38]. In this regard, the use of our differentiable ray-tracing module
to compute the optical point spread function (PSF) could enable the use of multi-element lens
designs, while our lens design generating model could be used upstream to infer lens designs
specialized to a given computer vision task.
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