
DANIELA BLESSENT 

INTEGRATION OF 3D GEOLOGICAL AND 
NUMERICAL MODELS BASED ON 

TETRAHEDRAL MESHES FOR 
HYDROGEOLOGICAL SIMULATIONS IN 

FRACTURED POROUS MEDIA 

Thèse présentée 
à la Faculté des études supérieures de l'Université Laval 

dans le cadre du programme de doctorat en Sciences de la Terre 
pour l'obtention du grade de Philosophiae Doctor (Ph.D.) 

DEPARTEMENT DE GEOLOGIE ET DE GENIE GEOLOGIQUE 
FACULTÉ DES SCIENCES ET DE GÉNIE 

UNIVERSITÉ LAVAL 
QUÉBEC 

2009 

Daniela Blessent, 2009 



Abstract 

A new modeling approach for fractured geological media represented by a deterministic 

discretely-fractured conceptual model is presented in this thesis. The main objective of this 

study is to reproduce the heterogeneity and the complexity typical of fractured media in a 

three-dimensional geometrical model required to execute numerical simulations, with the 

objective to improve numerical modeling capabilities in hydrogeology. This objective is 

accomplished with the coupling between a geological modeling platform (GOCAD) and a 

numerical code (HydroGeoSphere). The main challenges to overcome are the geometrical 

representation of the network of fractures, the selection of a suitable mesh for the spatial 

discretization of the simulation domain, and the adaptation of the numerical code to this mesh. 

The new approach consists of three phases (1) 3D geological modeling (2) generation of a 3D 

tetrahedral mesh and (3) numerical simulation of saturated groundwater flow and contaminant 

transport. Tetrahedral meshes are generally more suitable than block or prism based-meshes to 

discretize complex geometries, such as the fractured media considered here. Moreover, an 

alternative definition of the dual grid, which is essential to apply the Finite Element - Control 

Volume numerical method used by HydroGeoSphere, is discussed and implemented in the 

numerical code. 

The enhanced numerical code is initially verified with simple analytical and numerical 

simulation scenarios whose solutions are known. Then, the complexity of the simulation 

scenarios is gradually increased. The modeling approach is finally applied to the site of 

Olkiluoto (Finland), where an underground rock characterisation facility is being built to 

evaluate the feasibility of a deep geological repository for high-level nuclear waste. The selected 

geological modeling techniques allow for a straightforward geometrical modeling of the 

fractures identified through in situ geological characterization. Moreover, the numerical model 

is shown to be adequate for the simulation of groundwater flow and solute transport at this 

complex site. 

This research presents a contribution to the development of the techniques of hydrogeological 

modeling for fractured geological media. 
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Résumé 

Une nouvelle approche de modélisation des milieux géologiques fracturés représentés par un 

modèle conceptuel de fractures discrètes et déterministes est présentée dans cette thèse. 

L'objectif principal de l'étude est de reproduire l'hétérogénéité et la complexité des milieux 

poreux fracturés dans un modèle géométrique tridimensionnel afin d'effectuer des simulations 

numériques dans le but d'améliorer les capacités de modélisation en hydrogéologie. Ceci est 

réalisé à travers le couplage entre une plateforme de modélisation géologique (GOCAD) et un 

code numérique (HydroGeoSphere). Les principaux défis à relever sont: la représentation 

géométrique du réseau de fractures, la sélection d'un maillage approprié pour la discrétisation 

spatiale du domaine de simulation et l'adaptation du code numérique à ce maillage. 

La nouvelle approche est basée sur une première phase de modélisation géologique 3D, suivie 

par la génération d'un maillage tétraédrique 3D et par la simulation numérique de l'écoulement 

souterrain en conditions saturées et du transport de solutés. En général, le maillage tétraédrique 

s'avère plus adéquat que les maillages de blocs ou de prismes pour discrétiser les geometries 

complexes telles que les milieux fracturés. De plus, une définition alternative du 

maillage "dual", qui est essentiel pour appliquer la méthode numérique élément finis - volume 

de contrôle utilisée par HydroGeoSphere, est analysée et intégrée dans le code numérique. 

Le code numérique proposé est d'abord vérifié par l'intermédiaire de simples scénarios de 

simulation dont les solutions, analytiques et numériques, sont déjà connues. La complexité des 

simulations est augmentée de façon graduelle. L'approche de modélisation est finalement 

appliquée au site Olkiluoto (Finlande) où un laboratoire de recherche souterrain est en 

construction afin d'évaluer la faisabilité du stockage géologique profond de déchets nucléaires 

à haute activité. Les techniques de modélisation géologique mises au point permettent de 

modéliser facilement la géométrie des fractures identifiées à travers la caractérisation 

géologique in situ. De plus, le modèle numérique s'avère adéquat pour la simulation de 

l'écoulement et du transport de solutés dans ce site complexe. 

Ce travail de recherche présente une contribution au développement des techniques de 

modélisation hydrogéologique des milieux fracturés. 
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Chapter 1 

Introduction 

1.1 Problem definition 

Geological modeling is an area that has experienced a great expansion in recent years thanks to 

new tools and techniques designed to build and visualize a computerized representation of 

subsurface geological structures, such as layers, faults, folds, and fracture networks. This 

representation is based on discrete models that approximate the real geometry of geological 

structures. This discrete representation, with spatial mesh, is also required for numerical 

modeling in hydrogeology. In fact, hydrogeological modeling is based on the numerical 

solution of governing equations, such as groundwater flow and contaminant transport, on a 

spatial mesh that covers the simulation domain. Therefore, the two disciplines, geological 

modeling and hydrogeological modeling converge into the discrete representation of geological 

systems. This representation is called Geomodel by Mallet (2002). The terms "Geomodel" and 

"geological model" are used interchangeably in this thesis. A larger and better exploitation of 

Geomodels can significantly increase the capabilities in hydrogeological modeling, which is 

often affected by limitations on the discretization of complex domain geometries. In fact, it is a 



key challenge to generate a discretized Geomodel that incorporates the structural complexity 

of the geology while maintaining model sizes that are practical for flow simulations (Prévost et 

al., 2004). More specifically, integration between Geomodels and numerical models can be 

considered for studies in fractured geological media, which are generally characterized by a 

geometry that is difficult to capture. 

Computational simulations of physical phenomena and processes start with the acquisition of 

boundary data, which may be in the form of output from a Computer-Aided Design (CAD) 

system. These data are used to give a geometric configuration to the simulation domain. A 

geometry definition is suitable if it provides the appropriate level of detail, and sufficient 

fidelity to the "real" geometry to make solution effects due to geometry inaccuracy small 

compared to the overall accuracy of the analysis (Thompson et al., 1999). For geological 

applications, a new breed of CAD especially dedicated to the modeling of natural objects, such 

as those encountered in geology, has been developed (Mallet, 2002). Contrary to classical CAD 

methods, this new generation of tools is designed to address the complexity and the enormous 

quantity of available geoscientific data and to perform spatial analysis. Moreover, CAD-

Systems and hydrogeological models have been increasingly combined to study fractured rocks 

because of their capabilities to represent and visualize complex 3D geological objects, such as 

fractures. 

Once the boundary of the simulation domain is defined, it must be discretized, such that a 

specific numerical code can be used to simulate physical processes. Therefore, a mesh 

generation phase, representing the connection between geological and numerical models, is 

necessary to discretize the 3D Geomodel. More precisely, the simulation of groundwater flow 

and contaminant transport in geological formations requires three steps: (1) characterizing the 

geology and developing conceptual models of the hydrogeology and hydrologie material 

properties, (2) building the computational grid and prescribing initial and boundary conditions 

and (3) applying numerical models for fluid flow, energy transport, and/or chemical transport 

(Gable et al., 1996b). 

This research addresses fractured geological media. From a hydrogeological point of view, 

fractured rocks are complex and are characterized by a porous rock mass dissected by various 



types of discontinuities. A distinctive feature of these discontinuities is that they cover a wide 

scale range from millimetric fissures to long faults of hundreds of kilometers (Adler and 

Thovert, 1999). The general term "fractures" may refer to cracks, fissures, joints and faults. In 

the context of modeling groundwater flow and transport, a finer distinction is not usually 

necessary (Berkowitz, 2002). Permeability of fractures may be reduced by mineral deposition, 

brecciation, cataclasis, such as mentioned by Gleeson and Novakowski (2009) who 

reinterpreted lineaments as watershed-scale hydraulic barriers, in contrast to previous 

interpretations as fractured conduits that focus recharge and flow. In this thesis only relevant 

conductors of groundwater flow are considered and it will be referred to as fractures. The rock 

mass typically has a low permeability and high storage capacity, while hydraulically-active 

fractures have high permeability but lower storage capacity because of their lower contribution 

to the total porosity of the rock mass. Because they are permeable, fractures can therefore be 

preferential pathways for contaminants. Transport processes in fractured rocks include 

molecular diffusion, mechanical dispersion and advection. In the rock matrix, molecular 

diffusion usually dominates over advection, in such a way that the porous rock mass may 

attenuate and retard the advective propagation of contaminants along fractures (Tang et al., 

1981; Therrien and Sudicky, 1996). Depending on the investigation scale and on the fracture 

properties, two main conceptual models exist to represent fractured media: the equivalent 

continuum model, where fractures in the rock mass are not explicitly represented, and the 

discrete fracture model, where discontinuities are discretized. This investigation addresses the 

discrete fracture representation and focuses on the discretization of individual fractures. 

Interest for fractured rock can be found in the discontinuities, which play a major role in the 

formation of ore deposits, in the exploitation of petroleum, gas, and geothermal reservoirs. 

Moreover, fractured aquifers and fracture zones in bedrock terrains are also important as a 

source of groundwater to wells and flow through permeable fractures is also of interest to 

mining and geotechnical engineers (Neuman, 2005). Finally, the interest for low permeability 

fractured rocks has mainly increased in recent years because of their potential suitability as 

deep geological repositories for high level nuclear waste (IAEA, 1999; OECD, 1999; ANDRA, 

2005; NWMO, 2005). Of the various disposal options examined, deep geologic disposal is 

potentially the most appropriate means of long-term management. According to OECD 

(1999), it conforms to ethical concerns, it is technically feasible, and it has been found to 



provide a high degree of public safety, security from malicious intervention, and protection of 

the environment both in the short and long term. No matter what is the interest for fractured 

rocks, 3D hydrogeological modeling is the tool required to characterize and predict the future 

behavior of these geological systems. Thus, all work that contributes to improve modeling 

capabilities of groundwater flow and contaminant transport is of great interest in different 

geoscientific applications. 

1.2 Prior study on fractured geological media 

The simplest conceptual model adopted to study fractured media is based on the equivalent 

continuum approach, as mentioned in Section 1.1. Historically, this approach has been the first 

one used for modeling flow and transport in fractured media (Bodin et al., 2003). It should be 

theoretically valid only if a representative elementary volume, REV, exists. The definition of 

REV (Bear, 1988) is based on average properties of the geological medium. Nevertheless, it is 

often difficult or an extreme simplification to attribute hydraulic properties that represent the 

average behavior of both fractures and porous rock matrix. The equivalent porous model may 

be applied to finely and highly fractured media, which may behave as an equivalent porous 

formation. Some authors have developed a different approach based on two continuums, 

which are used to make a distinction between the roles played by the fractures and the rock 

matrix in groundwater flow problems (Barenblatt et al., 1960; Warren and Root, 1963). 

According to this approach, two REVs are defined and two different sets of average properties 

are attributed to the fractures and the rock matrix, respectively. However, the precise location 

and properties of single fractures is overlooked, such that the geometry of the network of 

fractures is disregarded. 

If discrete modeling of fractured media is considered, an important distinction should be made 

between fracture network models, where the surrounding porous rock matrix contribution is 

neglected, and discretely-fractured porous media, where fluid flows simultaneously along 

fractures and through the porous rock matrix surrounding fractures (Berkowitz, 2002). A 

fracture network is generally defined as a set of individual fractures which may or may not 

intersect (Adler and Thovert, 1999). Investigations focused on the transport of contaminants 



should be conducted using the discretely-fractured porous media model. In fact, molecular 

diffusion, mechanical dispersion and advection contribute in a different way to the whole 

transport process, depending on the presence of fractures or porous rock matrix (Tang et al., 

1981; Therrien and Sudicky, 1996). Representation of all fluid flow and transport processes is 

required to realistically simulate the hydrogeological behavior of fractured rocks. Thus, an 

exhaustive conceptual model should include both the fractures and the surrounding rock 

matrix. While with the continuum approach fractures are not explicidy discretized, with the 

discrete approach it is possible to model every fracture with its own geometry, giving a much 

more detailed representation of geological systems. Andersson and Dverstorp (1987) affirmed 

that field investigations of flow in fractured rock clearly demonstrated that modeling the rock 

as a homogeneous continuum might be an oversimplification. Likewise, Neuman (2005) stated 

that all evidence suggests that rarely can one model flow and transport in a fractured rock 

consistently by treating it as a uniform or mildly nonuniform isotropic continuum. Although 

the discrete approach may appear more intuitive and logical than the continuum one because 

transport mechanisms in each fracture are explicitly taken into account, it requires much more 

difficult calculations and field measurements (Bodin et al., 2003). As summarized by Neuman 

(2005), three main ways of modeling fractured rocks can be considered: one way is to depict 

the rock as a network of discrete fractures, with permeable or impermeable matrix, another as 

a nonumiform continuum, which can be single, dual or multiple, and finally a third way is to 

combine these into a hybrid model of a nonuniform continuum containing a relatively small 

number of discrete dominant features. In either case the description can be deterministic or 

stochastic. No matter which approach is used, modeling groundwater flow in fractured rocks is 

relatively complex because fractures can be as difficult to observe and characterize as they are 

to represent in a numerical model (Selroos et al., 2002). 

In the discretely-fractured porous media conceptual models, a distinction should be made 

between networks of fractures that are randomly located in space and those where the location 

of the discrete fractures is deterministic. The Discrete Fracture Network approach, DFN, 

coupled with the generation of stochastic fractures has been largely studied (Andersson and 

Dverstorp, 1987; Cacas et al., 1990; Nordqvist et al., 1992; Bogdanov et al., 2007). Random 

populations of fractures and statistical estimates of fracture size, orientation, and density are 

usually generated. Fractures are represented by planar circular discs randomly and 



independendy distributed in space (Andersson and Dverstorp, 1987; Nordqvist et al., 1992), by 

regular polygons, rectangles, and ellipses (Bogdanov et al., 2007) or by a network of 

interconnected pipes (Cacas et al., 1990). This last representation originates from the evidence 

of channeling in fractured media, as field observations suggest that fracture surfaces are 

uneven and mineralized, with flow and contaminants distributed non-uniformly across the 

fracture plane in preferential paths, or channels (Selroos et al., 2002). In contrast, other studies 

are focused on the representation of deterministic fractures, which are identified after 

geological investigations. In this case, there is no need for random generation of fractures 

because their location is identified by in situ geological characterization. The interest is focused 

only on major conductors of groundwater flow, such that smaller fractures are not discretized, 

but rather their presence is incorporated in the properties of the porous rock matrix. 

Moreover, deterministic fractures can be explicitly represented by the user using geomodeling 

tools, which allow the management of geological spatial data. Thus, fractures may be 

represented by irregular surfaces whose location and shape depends on available field data. 

Specific studies have already been conducted to use geomodeling tools in combination with 

numerical models and they constitute the main background of this thesis. Mancini (2004) 

combined a geometrical model created in GOCAD1 with the Finite Element Modeling package 

Rockflow2. A geometrical model of a hypothetical nuclear repository system in crystalline rock 

was created. The 3D mesh was generated using the Solid GOCAD object, which allows 

connecting nodes into tetrahedra. The tetrahedral mesh was obtained from closed surfaces and 

a few attempts were required to find an optimal densification rate. The utilization of the Solid 

tool was possible because of the simple geometry of the simulation domain and the lack of 

fractures, since a homogeneous crystalline rock was considered. 

More complex geometries have been considered by Taniguchi and Fillion (1996). They 

considered a domain with multiple planar fractures and they also took into account their 

intersection. The simulation domain was characterized by convex subdomains bounded by 

fracture planes. These subdomains were discretized with tetrahedra using Delaunay 

triangulation and handling fracture polygons between adjacent subdomains. Then, tetrahedra 

1 http://www.gocad.org/www/ 
2 http://www.rockflow.de 

http://www.gocad.org/www/
http://www.rockflow.de


were transformed to distorted hexahedra for computational reasons. The drawback of this 

method is that severe constraints exist on the geometry of fractures, as they are planar and they 

must define closed and convex subdomains. 

Andenmatten-Berthoud and Kohl (2003) built a complex structural model with GOCAD, 

where different irregular surfaces describing stratigraphie horizons, faults, and topography. 

Boreholes were also included in the Geomodel. The discretization was performed with the 

TGridlab GOCAD plug-in, which generates tetrahedra. As in Taniguchi and Fillion (1996), 

closed subdomains are required to make the TGridlab application possible. Thus, stratigraphie 

horizons and faults constitute internal boundaries, which must define closed volumes. The 

authors stated that the utilization of the plug-in is not as straightforward as it may seem and 

some tests were necessary to verify its capabilities, resulting in a time-consuming phase of the 

project. 

Prévost et al. (2004) developed a sophisticated gridding framework called Soft Frame Model. 

Their data structure enables the construction of grids that conform to geometrically complex 

3D surfaces and honor complex surface intersections and topology constraints. Moreover, the 

framework creates higher mesh resolution in regions of special interest. Complex geometries 

including horizons and faults were discretized by a Delaunay tetrahedral mesh. However, the 

tetrahedralization required the definition of bounded volume regions inside the simulation 

domain, as in Taniguchi and Fillion (1996) and Andenmatten-Berthoud and Kohl (2003). 

Kalbacher et al. (2005) proposed an interface between GOCAD and the numerical software 

Rockflow for fractured network models. They considered a 2.5D fractured rock network, 

consisting of planar surfaces in the 3D space, and represented it as a triangular mesh in 

GOCAD. Although they did not consider the rock matrix, they increased the mesh density of 

fractures around drill holes to enable a more accurate numerical representation of the system. 

They used the GMSH meshing software3 to generate a suitable mesh for the numerical model. 

They noted that generating and transforming the mesh within GOCAD can lead to numerical 

errors, which are difficult to locate, correct, and remove once the mesh is generated. 

1 http://www.geuz.org/gmsh/ 

http://www.geuz.org/gmsh/
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Numerical methods are widely used to simulate groundwater flow and mass transport in 

fractured geological media. A review of numerical methods and codes employed was presented 

by Diodato (1994). In his review, he stated that for the spatial derivatives, integral methods 

have enjoyed more widespread use than the differential approach of the Finite Difference (FD) 

method, partly because they are amenable to irregular domain geometries. Integral methods 

used in fracture flow modeling include the Finite-Element (FE) method and the Boundary-

Element method (BE). Additionally, Control Volume Finite Element (CVFE) methods have 

been presented and applied. Besides, Diodato (1994) presented numerical codes available at 

that time with respect to their capabilities and limitations. In conclusion, he stated that to 

select an appropriate flow code, one should carefully consider the geology, physics, and, if 

appropriate, chemistry of the problem to be solved. Careful consideration of the conceptual 

model of fluid flow in a fractured rock setting is critical to successful fracture flow modeling. 

In the previous cited work, simplifications were made, such as neglecting either the fractures 

(Mancini, 2004) or the rock matrix (Kalbacher et al., 2005), or assuming planar fractures 

(Taniguchi and Fillion, 1996; Kalbacher et al., 2005). Furthermore, the fact of considering the 

Geomodel as an ensemble of volume bounded regions (Taniguchi and Fillion, 1996; 

Andenmatten-Berthoud and Kohl, 2003; Prévost et al., 2004) imposed a constraint on the 

geometry that can be represented. To overcome these limitations, a more flexible modeling 

approach is proposed. 

1.3 Contribution of this study 

This research is part of the GEOIDE project called GeoTopo3D ("Development of a 3D 

predictive modeling platform for exploration, assessment and management of mineral, 

petroleum and groundwater resources", Kirkwood, Pouliot, Therrien, MacQuarrie, Li, and 

Mostafavi). Since 1998, GEOIDE has been a federal-funded Network of Centers of 

Excellence administrated by the business center GEOIDE inc. based at Laval University. This 

"network of networks" brings together skills, technology and people from different 

communities of practice, in order to develop and consolidate the Canadian competences in 

geomatics. GEOIDE wants to change the way geomatics research and development is carried 



out, to ensure increased circulation of knowledge across disciplines, regions, and between 

researchers, industry and government users to establish a permanent legacy of cooperation 

(http://www.geoide.ulaval.ca). 

GeoTopo3D is organized into three principal scientific areas: Geomodels, 3D GIS and 3D 

Numerical Modeling. The general purpose of the project is to enable a more efficient use of 

and integration of geoscientific data and, consequently, to increase the knowledge of natural 

systems and their resources. Specific goals are to facilitate user access to Geomodels, to help 

modelers to build Geomodels, and allow for a better and larger exploitation of Geomodels, 

especially taking advantage of their link with 3D GIS and numerical models. 

The work of this thesis is focused on the integration between Geomodels and numerical 

models. The expression "numerical model" refers both to the mathematical scheme used to 

solve the partial differential equations that describe the physical phenomenon simulated and to 

the software built to solve these equations, depending on the context. More specifically, this 

research addresses the need to increase the numerical modeling capabilities in hydrogeology, 

applied to investigations in fractured geological media. The primary goal is to create an 

efficient link between Geomodels and numerical models, such that the latter benefits from the 

knowledge gained in constructing Geomodels (Kirkwood et al., 2003). The key problem is how 

to provide the connection between GOCAD and the numerical model HydroGeoSphere 

(Therrien et al., 2007), which have been selected for this work. These two software tools have 

been combined with the intermediate use of LaGriT4, which is a mesh generation software. 

Thus, a workflow for numerical modeling of groundwater flow and contaminant transport in 

fractured geological media adapted to the geological modeling platform GOCAD is created. 

The application of this workflow leads to a new modeling approach. With this approach it is 

possible to build realistic and detailed models for fractured media and ensure an appropriate 

3D spatial discretization, especially for complex geometries. In fact, hydrogeological modeling 

on complex geometries is now possible thanks to the combination of three different tools: 

GOCAD is used to build the Geomodel, LaGriT to discretize it and HydroGeoSphere to solve 

equations of groundwater flow and mass transport over this spatially discretized Geomodel. 

Thus, one of the main contributions of this work is the enhanced version HydroGeoSphere, 

http://lagrit.lanl.gov/ 

http://www.geoide.ulaval.ca
http://lagrit.lanl.gov/
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coupled with LaGriT. The whole procedure, which combines the three software tools, is 

summarized in Figure 1.1. 

. ^ ^ ^ J ^ GOCAD 
l i q p f l U j ^ (Mira Geoscience) 

OUTPUT FILES: 
*.TS fracture surfaces 

I 
LaGriT 
(Los Alamos Grid Toolbox) 

INPUT FILES: 
*.TS fracture surfaces 

OUTPUT FILES: 
*.TXT tetrahedral and triangular meshes 

node coordinates and connectivity 

* 

1» HydroGeoSphere 
(Therrien et al., 2007) 

INPUT FILES: 
*.TXT tetrahedral and triangular meshes 

Figure 1.1 - Flowchart of the modeling approach developed 

A second objective is to improve the representation and discretization of fractures. In this 

study, deterministic fractures, which have been identified through field investigations, are 

represented as surfaces with GOCAD. Spatial data coming from in situ geological 

characterization are used to give the fractures an irregular shape that conforms to the 

observations of fractures (see Section 2.1.2.2). Moreover, an appropriate representation of 

intersections between boreholes and fractures is provided and the axis of inclined boreholes is 

now represented as it is in reality, avoiding the limitation whereby the spatial discretization 

affects its shape (see Section 3.3.3). The use of an unstructured tetrahedral mesh allows for 
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easy local refinement, for example near fractures and around wells (see Section 2.2.1.2). These 

aspects represent a big challenge of the Geomodel discretization, as it is required to both 

preserve the model geometry and guarantee an accurate numerical solution. The simultaneous 

discretization of irregular fractures, inclined wells, and porous rock matrix with a refined 

tetrahedral mesh, represents the novelty of this work. The combination of modeling tools 

proposed here leads to the representation and investigation of more complex domain 

geometries, which constitutes the new research direction of this thesis. 

The third main objective is the application of the approach developed to a test site, to show its 

capabilities by analyzing a specific and real hydrogeological context. Thus, this thesis also 

provides a real case study (see Chapter 5). The site chosen is on Olkiluoto Island, located on 

the coast of Finland. The site is characterized by granitic bedrock containing major fracture 

zones and it has been selected for the construction of a deep geological repository for high-

level nuclear waste. 

An additional development area focuses on the Control Volume Finite Element numerical 

method used by HydroGeoSphere to solve the governing equations. An analysis of the fluid 

conductance matrix has led to the application of the Orthogonal Subdomain Collocation 

method, OSC, (Putti and Cordes, 1998) as an alternative to the standard Galerkin method to 

evaluate the fluid conductance matrix (see Section 3.2.2). The OSC method leads to a different 

evaluation of the matrix coefficients, whose expression is now based on the geometry of the 

Delaunay and Voronoi meshes used to discretize the simulation domain. The OSC method is 

implemented in the HydroGeoSphere numerical code and its advantage of ensuring the 

generation of a fluid conductance matrix with desirable characteristics for iterative solvers is 

highlighted through illustrative examples. 
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1.4 Organization of the thesis 

This thesis is organized in six chapters, including this Introduction. Chapter 2 contains a 

background on Geomodeling and mesh generation. Moreover, geomodeling and mesh 

generation tools used in this work are presented. Chapter 3 covers numerical modeling theory. 

It presents the HydroGeoSphere model and its new aspects introduced during this work. 

Chapter 4 presents test cases especially designed to verify and illustrate the modeling approach 

developed. The complexity of test cases gradually increases from very simple to more complex 

examples. Nevertheless, they remain far from the complexity characterizing real sites. Thus, 

Chapter 5 shows the application of the new modeling method to the test site of Olkiluoto, 

Finland. Finally, Chapter 6 contains conclusions and insights from the application of the 

modeling approach and future research directions. 

Some results of this work are also presented in the following papers: 

Blessent D, Therrien R, MacQuarrie K. Coupling geological and numerical models to simulate 

groundwater flow and mass transport in fractured media. Computers and Geosciences 35(9): 

1897-1906. doi:10.1016/j.cageo.2008.12.008. 

Blessent D, Hashemi Beni L, Therrien R. 3D Modeling for hydrogeological simulations in 

fractured geological media. Proceedings of the 19th LASTED International Conference 

Modelling and simulation (MS 2008), May 26-28, 2008. Quebec City, Canada. 



Chapter 2 

Geological model and mesh generation 

The implementation of numerical methods involving geometrical description of geosystems 

with the application of numerical meshes is of vital importance for investigation and modeling 

of various physical processes (Kalbacher et al., 2005). The geometrical description is here 

called a Geomodel. Meshes represent the spatial discretization of Geomodels and they are 

required for numerically solving the partial differential equations describing specific processes, 

such as groundwater flow and contaminant transport. To better capture the geometry of the 

simulation domain, fine meshes may be employed, increasing the resolution of the model. The 

main challenge is to understand the tradeoff between a high-resolution model that represents 

geological structures with a high degree of fidelity and a lower resolution model that is perhaps 

better suited for intensive computations (Bower et al., 2005). 

The first section of this chapter covers general topics on geomodeling. Then, the specific 

geomodeling tools used to build a Geomodel for discretely-fractured geological media are 

presented. The second section of the chapter gives an overview of mesh generation issues 

which is followed by the description of the mesh generation procedure adopted in this work. 

13 
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2.1 Geomodeling 

A Geomodel is the 3D representation of subsurface geological structures, such as horizons, 

faults, and folds. The definition of geomodeling is given by Mallet (2002), who states that it 

consists of the set of all mathematical methods allowing modeling in a unified way the 

topology, the geometry and the physical properties of geological objects while taking into 

account any type of data related to these objects. A Geomodel allows visualizing subsurface 

geological structures, which are neither directly accessible nor wholly known. It is built by field 

data obtained by in situ investigations. Although there are generally few data available and they 

are usually scattered and not evenly distributed, specific geomodeling tools allow using them to 

build a Geomodel. Thus, Geomodels offer a possible 3D representation and contribute to 

increase the knowledge of subsurface geological structures. However, it is clear that quality and 

availability of field data will directly influence Geomodel accuracy. 

A distinction should be made between surface and volume models. A geological model, or 

Geomodel, is the structural representation of the domain of interest. It can contain a collection 

of horizons, faults, or fractures, such as done in this work. No matter what type of geological 

structure is considered, it is usually represented by a triangulated surface. An ensemble of 

distinct surfaces constitutes the surface model (Figure 2.1a). Nevertheless, this representation 

is not enough if physical processes must be simulated in the rock matrix that surrounds those 

surfaces. In this case, a volume of interest is defined to delineate the external boundary of the 

model. Then, this volume is filled with 3D elements, like hexahedra, prisms or tetrahedra. 

Conforming topological relations must be ensured between these 3D elements and the 2D 

triangles that discretize the internal surfaces. When the Geomodel is discretized with 3D 

elements, it represents a volume model (Figure 2.1b). The mesh generation described in 

Section 2.2.1.2 is the process through which the Geomodel is discretized with 3D elements. 

This process is not as straightforward as it may seem because the 3D discretization is 

constrained by the presence of fracture surfaces inside the volume. 
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Figure 2.1 - Two horizons cut by a reverse fault: a) surface model and b) volume model 

To build the surfaces that represent the deterministic fractures, information about fracture 

location and extension is required. Fracture characterization may come from observation of 

outcrops, aerial photographs, core samples, and various geophysical techniques. Hydraulic and 

tracer tests can yield information on hydraulic conductivity and flow rates of single fractures. 

In general, fractures are not measured direcdy but, rather, a response to the presence of 

fractures is measured. Therefore, a fundamental problem in terms of fracture characterization 

arises in the distinction between what is measured and what is determined indirectly 

(Berkowitz, 2002). Thus, data coming from field investigations should be carefully analyzed, 

eventually discarding those of low reliability. Moreover, the inherent complexity of fractured 

formations, both structural and hydraulic, severely limits the type and quality of data that can 

be obtained from field measurements. As a result, geological modeling must largely rely on 

extrapolation and subjective considerations (Berkowitz, 2002). Different interpretations about 

the geometry of fractures can be examined before attributing a specific structure to the fracture 

network. 
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2.1.1 The GOCAD geological modeling platform 

The acronym GOCAD means "Geological Object Computer Aided Design". GOCAD is an 

integrated 3D geological object modeling and visualization software. It has been developed by 

the GOCAD consortium5 in 1989 at the National School of Geology in Nancy, France. With 

GOCAD it is possible to edit, manage and interpolate spatial field data obtained from in situ 

geological characterization, such that a realistic Geomodel of the physical system is built in a 

straightforward manner. Different GOCAD modules are available: base module for 

geometrical modeling, geological structural modeling, seismic interpretation, velocity modeling, 

and reservoir modeling. For the purposes of this work, only the base module is considered. 

2.1.1.1 GOCAD base module tools 

Specific geometric tools are available to build the 3D representation of geological systems. 

Among geometric objects available in the base module (Earth Decision Science, 2006), the 

following are considered in this work: 

1. PointsSets (*.vs files) 

A PointSet is a set of points or atoms that are not connected in any way. 

2. Curves (*.pl files) 

A Curve consists of connected (and/or disconnected) segments, which can be closed 
t 

or open. Each segment connects two atoms or points (Figure 2.2a). 

3. Surfaces (*.ts files) 

A Surface is made of connected (and/or disconnected) triangles; each triangle is made 

up of three atoms, one on each corner (Figure 2.2b). When creating a surface GOCAD 

uses a Delaunay triangulation algorithm to triangulate the atoms. 

5 http://www.gocad.org/www/consortium/index.xhtml 

http://www.gocad.org/www/consortium/index.xhtml
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Gridded S urfaces or 2D-Grids (*.grs files) 

A 2D-Grid object, also called a gridded surface, is a surface defined by an origin point, 

a delta-x, a delta-y, and a series of z-values regularly spaced on the grid itself. Thus, it is 

similar to a surface, except that points are distributed in a regular grid pattern made of 

cells (Figure 2.2c). These cells are arranged along grid lines parallel to two axes, which 

do not have to be orthogonal. 

Edge 

Open curve A t o m 

\ ^ . Atom-

L__j^ Segments 

Border 

Closed curve 

a) Curve 

Border 
extremity Atom 

Triangle 

b) Surface c) 2D Grid 

Figure 2.2 - GOCAD geometric objects used in this work 

(adapted from Earth Decision Science, 2006) 

The most important geometric object in the context of this work is the Surface. A surface is 

used to represent a deterministic fracture identified after geological characterization. Any 

desired surface can be built, because different actions can locally or globally modify its shape. 

It is possible to edit surfaces to improve their shape. For example, atoms can be added, 

deleted, or dragged by mouse, while triangles can be switched, split, merged or deleted. 

Therefore, the user gives the fractures the shape he considers the most appropriate according 

to available field data and knowledge on specific geological sites. The advantage of using the 

GOCAD geological modeling platform is that 2D triangulated fracture surfaces are directly 

modeled by the user and they are easily visualized before building the volume model through 

the mesh generation phase. 
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2.1.1.2 Geomodel building 

Geomodel building consists of creating a 3D representation of the fracture network 

characterizing the geological site of investigation. Fractures can be built from PointsSets, which 

represent local observations of specific fracture zones, or imported into GOCAD from 

previously created compatible format surface files, like DXF files. No matter which approach 

is used, at the beginning of the modeling phase, surfaces are generally represented by coarse 

and heterogeneous triangular meshes (Figure 2.3a). Although this mesh provides a 

discretization, it is not appropriate for numerical solutions, and therefore further amending is 

required. 2D-Grids are used to improve the triangular mesh. A 2D-Grid is built from a surface 

characterized by coarse and heterogeneous triangulation. The vertices of the coarse 

triangulation are used to define the shape and the extent of the 2D-Grid, such that it will have 

the same shape as the original surface (Figure 2.3a), but will be discretized by a regular and 

finer square grid (Figure 2.3b). The resolution of the 2D-Grid is chosen by the modeler 

according to the desired edge length in the final triangulated surface. In a further step, the new 

triangulated surface is created by splitting each square of the 2D-Grid into two triangles and by 

switching triangles to improve the quality of the final triangular mesh (Figure 2.3c). In addition, 

triangles may be recursively split until the desired edge length is obtained. 

Fracture surfaces considered here are not planar, but they are instead fitted to specific 

PointsSets, which correspond to observations of specific fracture zones. These observations 

come from core samples, optical borehole images, seismic and borehole radar measurements. 

Moreover, the continuity of fracture zones can be assessed on the basis of geological 

properties, hydraulic responses, seismic measurements, and galvanic charged potential 

measurements (Vaittinen et al., 2003). An example is shown in Figure 2.4, where the same 

fracture is represented by a planar surface and by an irregular surface fitted to field data. 

Figures 2.4a and 2.4d show two distinct views of the same planar fracture, while in Figures 

2.4b and 2.4e the fracture surface has been fitted to the PointSet representing field data. The 

PointSet is clearly visible in Figure 2.4e. The difference between planar and irregular fracture 

surfaces is better illustrated in Figure 2.4c, where both configurations are shown. 
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Vertices of the raw fracture surface 

Square mesh 

Triangular mesh 

Intersection 

L Border extremity 

Intersection 

h line / 

M M M M M 
Figure 2.3 - Modeling of fracture surfaces: a) raw triangulation, b) 2D-Grid regular square mesh 

and c) final triangular mesh, with two lines of intersecting fractures 
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Figure 2.4 - Modeling of fracture surfaces: a) and d) planar surface, b) and e) surface fitted to 

point set and c) both planar and fitted surfaces 

If boreholes are included in the Geomodel, coordinates of their axes are imported into 

GOCAD as Curves, such that each borehole is represented by a set of connected segments. If 

boreholes intersect fracture surfaces, these can be refined around the intersection. GOCAD 

tools allow defining regions. A region is a portion, or subset, of an object (Earth Decision, 

2006). If a fracture surface is considered, a region can be defined by drawing a curve over it. 

Quasi-circular regions are defined around each intersecting borehole on fracture surfaces. 

Then, local refinement is executed exclusively in these regions by splitting triangles that are 

within them (Figure 2.5). The size of these regions and the number of splitting phases are 

chosen according to the desired mesh resolution for each specific modeling scenario. 
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a) 

■ * » - . . 

b) 

Figure 2.5 - Refinement around boreholes: a) whole fracture surface and b) close-up 

Once fractures are all properly refined, their mutual intersections have to be accurately 

reproduced to obtain a network of connected fractures. The connectivity between fractures is 

one of the most important aspects that should be considered in Geomodel building. In fact, 

the connectivity in fracture networks is of primary importance for flow and contaminant 

transport properties (Bogdanov et al., 2007). The computation of intersection lines, where 

triangular elements are shared between the intersecting surfaces, is not as simple as it may 

seem. Two intersecting fractures (Figure 2.6a) have independent and disjoint triangular meshes 

before their intersection is performed: there are no common nodes at the intersection line 

(Figure 2.6b). Using the Mutual cut GOCAD tool, the intersection between the surfaces is 

computed. The resulting intersection line holds concurrently the mesh of both intersecting 

surfaces, but one side effect is that long and skinny triangles are created (Euler et al., 1999), as 

shown in Figure 2.6c. These badly-shaped elements should be removed or improved to obtain 

a suitable representation of fracture intersections. The GOCAD Beautify algorithm is used to 

perform this task. The aim of the Beautify algorithm is to minimize the number of nodes, to 

optimize the size of the segments and to obtain the best fitting line (Euler et al., 1999). This 

algorithm is based on a topological analysis of the adjoining borders, which share the same 

topological and geometrical information, in order to compute the number of representative 

nodes to obtain equilateral triangles. After applying the Beautify tool, a conforming triangular 

mesh is obtained at the intersection line. Moreover, this line becomes a Border and it has Border 
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extremities, which are represented, respectively, by the white line and the two spherical points 

shown in Figure 2.6d. Borders represent the boundary of surfaces in GOCAD. Border extremities 

are set when Borders share the same boundary. Thus, after intersecting fracture surfaces, new 

boundaries appear. 

Figure 2.6 - Triangular mesh enhancement at the intersection line between two fractures 

surfaces: a) and b) initial surfaces, c) after execution of a mutual cut, and d) final triangular 

conforming mesh at intersection line 

The surface model representing a geological fractured medium is now complete. All relations 

between boreholes and fractures are easily visualized in the 3D space and any modification of 

their geometry can be done here, before the volume model, or the 3D discretized Geomodel, 

is generated. In fact, the volume model is created in a further step by using 3D tetrahedra to 

fill up the volume around fracture surfaces and boreholes curves (see Section 2.2.1). The 

process of building surface and volume models one at a time is one of the advantages of the 
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proposed workflow. In fact, the fracture-fracture and fracture-borehole intersections, which 

are crucial features of the Geomodel, are more easily edited in the geological modeling 

platform than in the final tetrahedral volume model. The representation of these intersections 

is fundamental, especially in the case of a low permeability porous rock matrix, where the 

majority of groundwater flow takes place along borehole axes and fracture surfaces, which are 

characterized by higher hydraulic conductivity. Thus, the connectivity between these elements 

must be accurately represented because it strongly influences groundwater flow and determines 

preferential pathways for contaminants. In addition, it should be noticed that, in general, the 

triangular discretization of fractures generated in GOCAD, will be preserved as is in the final 

tetrahedral mesh. In case of fractures with small intersection angles, few triangles change their 

connectivity once the Geomodel is discretized with tetrahedra. However, this change does not 

affect the average representation of the fracture network. In conclusion, the geological 

modeling platform is useful to visualize and understand the geometry and the topological 

relations between the most important features of the hydrogeological model, like fractures and 

boreholes. Without using a geological modeling platform like GOCAD, this visualization is 

possible only after the 3D mesh is built, precluding an accurate geometrical modeling of the 

simulation domain. 

2.2 Tetrahedral meshes 

Many forms of geoscientific analysis seek to collect data about spatial objects and domains 

such as features of the solid earth (aquifers), oceans (currents) or atmosphere (weather fronts), 

which fill or enclose a 3D space. A complete geometric representation of these domains 

requires the definition of each known location in a x,y,z coordinate system (Lattuada and 

Raper, 1996). After collecting data about the geometry of a simulation domain, its 

discretization is required to apply numerical methods used to solve specific governing 

equations. In fact, numerical methods for the solution of partial differential equations are 

irreplaceable means of simulating a wide variety of physical phenomena in scientific computing 

and they represent the most challenging application of mesh generation (Shewchuk, 1999). The 

terms grid and mesh are used interchangeably, with identical meaning, throughout this thesis, 

according to Thompson et al. (1999). 
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A mesh consists of nodes at specific locations in space that are connected to form elements. 

These elements can be triangles or quadrilaterals in 2D models and tetrahedra, hexahedra, 

prisms, or pyramids in 3D models (Gable, 2000). Two main types of meshes exist, structured 

and unstructured. The fundamental difference between structured and unstructured meshes is 

the ordering of the nodes to form the elements, or cells, within the grid (Thompson et al., 

1999). In other words, this difference usually extends to the shape of the elements: structured 

meshes typically use quadrilaterals or hexahedra, while unstructured meshes use triangles or 

tetrahedra (Bern and Plassmann, 1999). Structured meshes have a simpler geometry and they 

are characterized by a foreseeable rule that describes nodal connectivity and that can be used to 

find the neighbors to any node in the mesh. In contrast, unstructured mesh connectivity needs 

to be explicitly stored, because there is not a repeatable pattern describing nodal connectivity, 

as the index of neighbor nodes changes all over the domain. However, structured meshes lack 

the flexibility in fitting a domain with a complicated shape, while unstructured meshes can 

provide multiscale resolution and conformity to complex geometries (Shewchuck, 1999). Thus, 

unstructured meshes are usually preferred to discretize complex domains. In general, simply 

fitting the domain is not enough, because a finite element mesh must also use elements of 

appropriate size and shape, and these quantities may vary over the mesh (Bern and Eppstein, 

1995). Well-studied geometric constructions such as Delaunay triangulation are central to 

unstructured mesh generation (Bern and Plassman, 1999). 

The Delaunay approach is a popular technique to build unstructured meshes. It had been 

presented in 1934 by Boris Delaunay, who developed its theory for triangles in 2D. The basis 

of the Delaunay triangulation is a geometrical concept: circumcircles of triangles enclose no 

nodes in its interior, but the three vertices of each triangle. The Delaunay triangulation is 

related to the Voronoi diagram, which is its dual representation. Given a set of nodes, the 

Voronoi diagram subdivides the space into tessellations, in which each tile is the space closer 

to a particular node than any other node. Voronoi diagrams are named after Georgy 

Fedoseevich Voronoi, who defined and studied the general n-dimensional case in 1908. 

Nevertheless, a systematic approach to the problem of connecting a set of points dates back to 

1850 and is due to Dirichlet, who proposed a way to subdivide a given domain into a set of 

convex polygons (Lattuada and Raper, 1996). The duality between the Delaunay triangulation 

and the Voronoi diagram is represented by the fact that the circle circumscribed about a 
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Delaunay triangle has its center at the vertex of a Voronoi polygon. The extension of the 

triangulation to 3D leads to the definition of circumspheres and tetrahedra, such that the 

circumsphere through each tetrahedron contains no points other than the tetrahedron vertices. 

Then, the boundary that forms a face of a Voronoi polyhedron in 3D (Figure 2.7) is 

equidistant between the two points it separates and it is perpendicular to the segment joining 

these two points (Thompson et al., 1999). A complete and clear summary of all aspects of 

Delaunay triangulation and algorithms is presented by Shewchuk (2005). 

Voronoi face 

4^~ • / 

^ Circumcenter 

/ / 71 

a) b) 

Figure 2.7 - a) Tetrahedron and circumscribed sphere and b) tetrahedron and Voronoi faces 

The Delaunay triangulation and the Voronoi diagram are suitable for numerical methods based 

on the Control Volume Finite Element method (see Chapter 3), which requires the definition 

of a finite element mesh and a control volume mesh. Thus, the Delaunay triangulation allows 

for building the tetrahedral finite element mesh, while the Voronoi diagram is used for the 

definition of the control volumes associated to each node in the mesh. A tetrahedral Delaunay 

mesh is chosen for the purpose of this work for two main raisons. First, it is more flexible than 

structured meshes, which generate difficulties when attempting to model a general 3D domain 

with fractures (Taniguchi and Fillion, 1996). Since the modeling approach developed here is 

intended for investigations in complex fractured geological media, an unstructured tetrahedral 

mesh is preferred. In addition, a tetrahedral mesh can be easily used in combination with the 

Control Volume Finite Element method, which is the numerical method implemented in 
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HydroGeoSphere. Moreover, to increase the accuracy of numerical results, meshes can be 

refined. Mesh refinement involves the addition of points into regions where adaptation is 

required, providing additional resolution at the expense of increasing the number of points in 

the computation (Thompson et al., 1999). Thus, although high resolution meshes offer the 

best geometrical representation of real geological systems and the most accurate solutions, they 

contain a larger number of elements and they require more computer memory and 

computational time. Therefore, a compromise is necessary to find the optimal resolution 

according to the goals of modeling tasks. An unstructured tetrahedral mesh, as used here, is 

the best choice to create an adaptive mesh refinement, which does not propagate to the mesh 

boundaries. 

2.2.1 The LaGriT mesh generation software 

The tetrahedral mesh is generated with the LaGriT software, developed in the 1990s at Los 

Alamos National Laboratory (LANL, New Mexico). LaGriT is a collaborative product of the 

Applied Physics, Theoretical, Earth and Environmental Science, and Computing, Information, 

and Communications Divisions at Los Alamos. LaGriT is a library of user callable tools that 

provide mesh generation for a variety of applications, such as geology. There is no GUI 

interface. Thus, meshes are in general visualized with the General Mesh Viewer (GMV) 

software, also developed at Los Alamos National Laboratory. In addition, LaGriT writes files 

to be read by the Tecplot graphics package, which is also used for the visualization of 

simulation output files generated by the HydroGeoSphere numerical code. Although software 

like LaGriT helps automate complex meshing operations, generating successful meshes still 

relies on a series of judgment calls by an expert, who must weigh many tradeoffs (Gable, 

2000). Among possible mesh generators investigated, LaGriT has been chosen for this work 

because it offers the greatest number of advantages. The main advantage is its module 

designed to import GOCAD surface files. Moreover, LaGriT maintains the geometric integrity 

of the geologic framework and produces optimal Delaunay tetrahedral grids (Cherry et al., 

1996). 
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2.2.1.1 LaGriT tools 

When working with LaGriT, data structures called Mesh Objects must be defined. A Mesh 

Object, or simply MO, contains all the information necessary to define a mesh, such as the 

number of nodes, elements, edges, faces and other default attributes. Attributes can also be 

added by the user. Mesh Objects can be made of tetrahedra, hexahedra, prisms, pyramids, 

triangles, squares or lines. Hybrid meshes can also be built with LaGriT. In general, a MO is 

defined by an enclosing volume and, eventually, interior surfaces. Nodes are distributed within 

the volume and then connected into elements. It should be noted that several Mesh Objects 

can be handled in the same LaGriT work session. Moreover, nodes can be copied from one 

MO to another, even if they are already connected into elements, because nodes can be 

selected separately from elements. 

Among all LaGriT commands used to build a tetrahedral mesh suitable for the applications 

envisaged in this work, some of them should be mentioned for their essential role in the mesh 

generation procedure. More specifically, they are: 

1. Read: this command and its options for reading the supported file formats gocad (*.ts) 

and avs (*.avs) are used to import into LaGriT triangulated fracture surfaces and 

borehole curves, respectively. 

2. Refine: this command, with its octree refine option, is used to refine hexahedral meshes. 

An octree is a tree data structure in which each internal node has up to eight children. 

Thus, the octree refinement algorithm applied to 8-nodes hexahedra will create eight 

smaller hexahedral elements (Figure 2.8). 

3. Compute: this command computes various attributes and functions based on one or 

more Mesh Objects. It is applied here to compute the distancejield (dfield attribute) 

between a source Mesh Object, MO_source, and a sink Mesh Object, MO_sink. The 

terms MO_source and MO_sink are simply introduced to make a distinction between 

the two Mesh Objects considered for the distance computation. The command 

evaluates the minimum distance from any node in MO_source to every node in 
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MO_sink and creates a dfield attribute in the MO_sink. If the tetrahedral mesh is the 

MO_sink, the dfield attribute is used to identify and select the tetrahedral elements that 

are within a user defined distance from fractures and boreholes, which represent, 

respectively, the triangular and linear MO_source. 

4. Connect: this command connects nodes into a Delaunay tetrahedral mesh. It is based on 

the criterion that the circumsphere defined by each tetrahedron contains no mesh 

nodes in its interior. A volume test is also performed by the algorithm to look for near 

zero-volume tetrahedra. 

5. Extract: this command produces a 2D MO from a 3D MO by picking up all nodes and 

2D faces lying on a user defined interface. Fracture surfaces are considered here as the 

interfaces. Thus, the command is used to get the triangular mesh representing each 

fracture incorporated in the 3D tetrahedral mesh. 

6. Interpolate: this command interpolates attribute values from nodes or elements of a 

MO_source to node or element attributes of a MO_sink. The interpolation option 

considered here is called voronoi. For each node in MO_sink, it finds the closest node in 

MO_source and it assigns the attribute value from MO_source to MO_sink. In this 

work, the MO_source is represented by the tetrahedral mesh, while the MO_sink are 

boreholes and fractures, respectively. Thus, this command finds the global (tetrahedral) 

nodal numbering of fractures and boreholes integrated in the 3D tetrahedral mesh. 

7. Dump: this command produces output files from a specific MO. It is used here to 

create ASCII files with nodal coordinates and mesh connectivity. Moreover, it 

generates compatible files for graphic packages supported by LaGriT, like GMV and 

Tecplot. 
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Figure 2.8 - Octree refinement: block cl is highlighted in grey 

2.2.1.2 Mesh generation with LaGriT 

The procedure adopted here to generate the mesh for a fractured geological medium uses the 

current LaGriT capabilities. The mesh generation procedure is implemented by executing 

several LaGriT input files, which contain a sequence of required commands. An example is 

presented in Appendix A. The procedure is summarized by the seven following steps: 

1) Import into LaGriT the files containing fractures and boreholes information 

The first step in the mesh generation process is the application of the LaGriT module capable 

of reading the GOCAD TSurf files (*.ts). Hence, fracture surfaces built in GOCAD are 

imported into LaGriT as sheets, which are topologically 2D, but geometrically 3D objects 

constituted by a collection of connected triangles. The edge length of triangles defines the 

smallest tetrahedral edge near the fractures, to obtain a well-graded mesh where the size of 

tetrahedral elements gradually increases away from fractures. Boreholes, represented by open 

curves, are also included in the mesh generation process. Spatial coordinates of borehole axes 

are imported into LaGriT through AVS (*.avs) files, such that a curve of regularly spaced 

nodes will represent each borehole. In analogy to fractures, the nodal spacing along a borehole 

axis defines the smallest tetrahedral edge around it. 
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2) Create a hexahedral mesh covering the domain of interest 

The strategy for building the tetrahedral mesh is based on this step, whose goal is to generate a 

hexahedral nodal distribution to be concatenated with the nodes of the GOCAD triangulated 

surfaces and the borehole curves. Nodes of the hexahedral mesh actually represent the porous 

rock matrix. The basic idea is to create an appropriate distribution of nodes, which will be later 

connected into a tetrahedral mesh. A regular nodal distribution is actually preferred to a 

random nodal distribution. In fact, in a randomly distributed set of nodes the distance between 

nodes varies significantly and consequently the generated tetrahedra will not have a 

homogeneous size, which is actually a suitable property of the final computational mesh 

(Lepage and Mallet, 2001). That is why the hexahedral mesh is built: it is used to sample the 

simulation domain with a regular nodal distribution. This mesh represents the background 

mesh that characterizes the nodal spacing far from the regions of interest. 

3) Refine the hexahedral elements that are close to fractures and boreholes 

The octree refinement algorithm is applied to refine the background hexahedral mesh built in 

the previous step. The idea is to develop a suitable nodal distribution, where a high density of 

nodes is created near fractures and boreholes, while low density is kept far from them. To 

select the zones to be refined, the compute command is applied. The hexahedral elements within 

the distance entered by the user are selected for refinement (Figure 2.9). This distance should 

be carefully chosen in order to avoid generating an excessively refined mesh, which will 

increase the computation effort and memory requirements. In fact, the number of elements 

increases after each refinement step, as each hexahedron is subdivided into 8 smaller elements. 

Hexahedra are split up recursively until the mesh reaches the desired level of resolution. With a 

few consecutive refinement steps, it is possible to obtain a gradual and local variation in 

element size, just where needed (Figure 2.10). The number of refinement steps clearly depends 

on the desired resolution for the final computational mesh, which varies according to the 

hydrogeological modeling goals. 
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Figure 2.9 - Dfield element attribute and refinement around a borehole 

A U 

/ I Level of refinement 4 

y 

' 

y y y 

/ 

y y y 

^ ïS ï iilffl 

y 

5 Ë' i'is 
^ ^ ~ JU3 

y y y ï :# - iS Ï 

a) 

y 

b) 

Figure 2.10 - Visualization of a refined hexahedral mesh: a) faces and edges and b) only edges 

4) Remove hexahedral elements close to fractures and boreholes 

The hexahedral mesh built and refined in the previous steps covers the whole simulation 

domain. Thus, it is clear that some hexahedral elements overlap fracture triangular elements 

and borehole linear segments. As the objective is to concatenate all nodes together, it is 

necessary to remove from the hexahedral mesh the nodes, as well as the elements, that are too 

close to fractures and boreholes. Elements and nodes within a specific distance from fractures 
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and boreholes are selected for removal. Then, these elements and nodes are deleted from the 

hexahedral mesh, such that a hole is created (Figure 2.11). It is obvious that the distance for 

removal depends on the mesh resolution. In general, this distance should be at least equal to 

the minimum tetrahedral edge length desired for that specific location in the mesh. 

^m d r ^ r ^ 

refinement 
\ \ around 

wells 
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Figure 2.11 - Refined hexahedral mesh with hole around a fracture: a) overview of the whole 

mesh and b) close-up 

5) Connect all nodes into tetrahedra 

A tetrahedral Mesh Object must be created. When it is created, it is still empty, because it does 

not contain any nodes. Then, nodes from other MOs are copied into this new tetrahedral MO 

(Figure 2.12). Nodes come from three different meshes: hexahedral, triangular, and linear. 

These meshes are all Mesh Objects in the same LaGriT session and they represent, 

respectively, the porous rock matrix, the fractures, and the boreholes. The tetrahedral mesh 

just created is the fourth mesh type in the same LaGriT session. All nodes copied to the 

tetrahedral mesh are now connected using the Delaunay algorithm available in LaGriT (Figure 

2.13). Previous steps have generated an optimal distribution of nodes, such that the execution 

of the Delaunay algorithm will not run into connection problems causing the circumsphere 

criterion to fail (see Section 2.2.1.1). This mesh generation procedure ensures that each triangle 

on the fracture surfaces corresponds to only one face of the surrounding tetrahedra. It is clear 
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that the quality of the triangulated surfaces becomes an important factor influencing the final 

3D tetrahedral mesh generation. If the quabty of these surfaces is very low, respecting their 

triangulation will automatically create tetrahedra with a low aspect ratio (Lepage and Mallet, 

2001). 
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Figure 2.12 - Nodes in a tetrahedral Mesh Object 
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Figure 2.13 - Portion of a tetrahedral mesh 
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6) Extract 2D triangulated surfaces from 3D tetrahedral mesh 

The extract command requires the definition of two geometric regions around each fracture, 

such that the fracture surface corresponds to the interface between these regions (see Section 

2.2.1.1). This geometric definition is done by using existing LaGriT operators, which are based 

on the notion of surface inward-pointing normal and surface outward-pointing normal. As a 

result, the 3D space containing the inward-pointing normal and the 3D space containing the 

outward-pointing normal are defined as two distinct regions separated by the fracture (Figure 

2.14). This geometric definition works both for bounded and unbounded regions. In fact, even 

if the fracture does not extend to the external domain boundary, which can have any kind of 

shape, fracture borders are automatically projected to this boundary, as shown by the dashed 

lines in Figure 2.14. Then, the extract LaGriT command is executed and the tetrahedral faces 

lying on the fracture surface are identified. Although a 2D triangular Mesh Object representing 

the discrete fractures is obtained, its nodal numbering is independent from the 3D tetrahedral 

MO. The "extracted" surface has its own local nodal numbering, although it is necessary to 

find the global numbering, which is represented by the nodal numbering of the tetrahedral 

mesh. In fact, the global numbering is used to identify faces of tetrahedra that should act as 

fractures during simulations. By applying the interpolate I voronoi LaGriT command, the global 

numbering of fractures and boreholes is printed out. 

^ ^ Region 1 J 
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Figure 2.14 - Regions defined through a surface fracture 
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7) Create output files for every mesh 

Several *.txt files are generated, one for each mesh. One file contains the nodal spatial 

coordinates and the connectivity of the tetrahedral mesh. Moreover, one file is created for the 

triangular mesh of each discrete fracture included in the model. Finally, each borehole is 

represented by a file containing the index of nodes describing its axis. 

The seven-step procedure just described creates a suitable mesh that captures the complexity 

of a fractured geological medium with discrete fractures and boreholes. It should be 

mentioned that the topography of the simulation domain, as well as any other surface, like 

horizons separating different stratigraphie units, can also be included in the Geomodel and in 

the tetrahedral mesh generation using exactly the same method described for fracture surfaces. 

Once all seven steps are completed, the HydroGeoSphere numerical code can be executed. 

Output text files generated by LaGriT become input files for the pre-processor of the 

numerical code, which has been modified to handle such LaGriT input files. 



Chapter 3 

Numerical model 

To model complex physical processes, mathematical tools and computer simulations are 

required. To solve the partial differential equations describing specific physical phenomena, 

numerical techniques are generally used. Mathematical equations are translated into a specific 

numerical code by computer programming. The code is then executed to simulate physical 

phenomena, such as groundwater flow and contaminant transport, on a spatially discretized 

domain. 

The purpose of this chapter is to present the enhanced numerical code version developed 

during this research. The code HydroGeoSphere (Therrien et al., 2007) is used here and it is 

presented in Section 3.1. Then, a detailed description and analysis of two different ways to 

evaluate the fluid conductance matrix are presented in Section 3.2. Finally, the most important 

elements integrated in the numerical code are listed and described in Section 3.3. Two test 

cases are also presented at the end of the chapter to verify the right evaluation of the fluid 

conductance matrix for tetrahedral meshes. 

36 
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3.1 HydroGeoSphere 

The choice of a specific numerical code depends on the physical processes that have to be 

simulated and on the conceptual model selected for the study. The numerical model chosen 

here is called HydroGeoSphere (Therrien et al., 2007), which is a numerical simulator 

specifically developed for supporting water resource and engineering projects pertaining to 

hydrologie systems with surface and subsurface flow and contaminant transport components. 

HydroGeoSphere has been developed from the FRAC3DVS code. The Control Volume-Finite 

Element method, CVFE, constitutes the basis of the numerical solution. In this method, a 

finite volume subgrid is constructed as a complement to the finite element grid (Geiger et al., 

2004). The Control Volume technique produces discretized equations by applying physical 

conservation laws to control volumes surrounding mesh nodes. The discretized equation for a 

given node consists of a term describing the change in fluid mass storage for the control 

volume associated with that node. This term is balanced by the divergence of the fluid mass 

flux in the same volume. In addition, the Finite Element technique allows for the 

representation of complex geometrical domains with ease and efficiency. Thus, the CVFE 

method combines advantages from both techniques. The CVFE method applied to numerical 

modeling in hydrogeology is discussed in Forsyth (1991) and Letniowski and Forsyth (1991). 

Its implementation in HydroGeoSphere is presented in Therrien and Sudicky (1996) and 

Therrien et al. (2007). HydroGeoSphere solves fully or variably saturated subsurface flow and 

surface flow equations, as well as solute transport and heat equations. Solution options also 

include density-dependent flow and ID hydromechanical coupling. The matrix equations 

arising from the discretization of governing equations are solved by a preconditioned iterative 

solver. Newton-Raphson or Picard linearization methods are applied if equations are non 

linear. Depending on the problem to be solved, 3D finite elements are used to discretize 

governing equations for porous-media and dual continua, 2D finite elements for discrete 

fractures and surface flow, ID linear elements for wells, channels and drains. The current 

implementation of HydroGeoSphere assumes that the subsurface flow equation in the porous 

medium is always solved during a simulation. 

In the specific context of this thesis, fully-saturated conditions are always considered. 

Simulations are focused on the solution of subsurface flow and solute transport equations 
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through porous media, discrete fractures and wells. The fluid is assumed to be essentially 

incompressible and the porous medium and fractures non-deformable. 

3.1.1 Governing equations 

The governing equation for 3D transient subsurface flow in fully-saturated porous media 

characterized by hydraulic conductivity K and specific storage Ss is: 

V ( K y V h ) ± r = S s ^ (3.1) 

where T is a volumetric flux representing a source (positive) or a sink (negative) to the porous 

medium system. The first term on the left hand side of Eq.(3.1) represents the divergence of 

the fluid flux. According to the Gauss's theorem, a triple integral over a closed bounded region 

(volume) can be transformed into a surface integral over the boundary surface of the same 

region. Therefore, it is possible to interpret physically the divergence term applied to the 

control volume as the fluid flux mass balance orthogonal to the control volume surface. 

Eq.(3.1) describes the equivalence between the change in fluid storage and the mass balance 

over a control volume. The analogous 2D equation for fully-saturated flow in a discrete 

fracture of aperture 2b is: ' 

V(2b)(K f Vh) + q n y + q n [ r ± T = ( 2 b ) S , f f t (3.2) 

Eqs.(3.1) and (3.2) are linked via the fluid leakage fluxes q , t and q . . across the two surfaces 

7+and / " , respectively, of a fracture. Because in HydroGeoSphere, the finite elements 

representing fractures are generated such that they correspond to sides of three-dimensional 

finite elements, the nodes comprising fracture elements are common to nodes comprising 

porous matrix elements (Therrien and Sudicky, 1996). The commonality of these nodes 

ensures the continuity of hydraulic head at fracture-matrix interfaces. Also, by superimposing 

the contributions at each node from both fracture and porous medium, there is no need to 

explicitly calculate fluid leakage terms appearing in Eq.(3.2). 
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The CVFE method and the standard Galerkin technique are used in HydroGeoSphere to 

discretize the governing equations (Therrien and Sudicky, 1996; Therrien et al., 2007). 

According to the CVFE approach, a volume of influence is assigned to each node in the mesh 

which is referred to as a control volume. The Galerkin method requires defining basis 

functions, which depend on the element type and on the order of approximation chosen 

(linear, quadratic or cubic functions). In this context basis functions are linear and satisfy the 

following properties: 

N{ = 1 at node i 

N t = 0 at all other nodes (3.3) 

YJV. =1 everywhere in the domain 
j 

The function N is used to approximate the unknown, for example the hydraulic head h : 

h(x,t)^h = ^Nj(x)hj(t) (3.4) 
j 

where h. (t) are nodal values of hydraulic head at time / . By replacing the exact value h by its 

approximation h in Eq.(3.1), multiplying by the weighting function N j t and forcing to zero 

the integral over the volume of interest V , it is possible to write: 

J».£-*M Nt dV = 0 (3.5) 

where the source/sink term T is neglected for the sake of clarity. Eq.(3.5) is now considered 

applied to node i and its nodal control volume v. If a finite difference approximation is used, 

it is possible to write the time derivative as: 

Oh 
dt 

(+1 u h ' + l -h IS^N^S^—^-lN.dv (3.6) 
At 

where the integral of the weighting function Ni corresponds to the control volume associated 

to node i : 

\N idv = vi (3.7) 
V 

By using the divergence theorem, the flux term is written as: 

J-V{KVh\N,dv = j V N ^ V h d v - jq'N,dB (3.8) 
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The last term on the right-hand side of Eq.(3.8) is the integral of the fluid flux normal to the 

boundary B of control volume v and it is assumed to be zero (Therrien et al., 2007). From 

Eq.(3.3), the following relations can be defined: 

N,=l-XNj 
j * ' 

^ (3-9) 

After a few mathematical steps (Therrien et ai., 2007), it is possible to express the flux term as 

a function of the hydraulic head difference between node i and its neighbor nodes: 

JVN,-K-V J^Nj (hJ-hi)dv = Y J lV N i -K -V N j{ h j - h
i ) d v (3-10) 

\J*> J&1, V 

By defining: 

ytj = \VNiKVNjdv (3.11) 
V 

the discretized porous medium subsurface flow equation finally becomes: 

where ni is the set of nodes connected to node i. It is obvious that the nodes not included in 

t]i will not contribute to the change in storage or fluid flow at node i. The term ytj contains 

the integral of the standard finite element basis functions and it is sometimes referred to as the 

transmissibility (for example, Forsyth, 1991; Letniowski and Forsyth, 1991; Gable et al., 

1996b). It is possible to observe that the sign of ytj in Eq.(3.12) determines the direction of 

fluid flow: if ytj is negative, flow from the node with lower hydraulic head toward the node 

with higher hydraulic head can be numerically simulated, even if this is physically unrealistic. 

Further details on the definition of transmissibilities are given in Section 3.2. Equations for 

discrete fractures are analogous, but the volume v(. is replaced by fracture area ai and basis 

functions to evaluate y f are now defined on 2D triangular finite elements. Therefore, the 

subsurface flow discretized equation for a fracture with aperture 2b is: 

where n f is the set of nodes connected to fracture node i through 2D fracture elements. 

file:///VNiKVNjdv
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To describe solute transport in discretely-fractured porous media, two equations are required. 

These equations are similar to those presented for subsurface flow problem. The propagation 

of a solute characterized by relative concentration c through a 3D porous medium is 

described by the following equation: 

0 * + « L V c - V 
dt R 

(9D, 

R 
^Vc + 0Ac = O i , j = \ , 2 , 3 (3.14) 

where q t h the Darcy flux computed during the flow simulation, 6 is the porosity of the 

porous medium, Dtj is the hydrodynamic dispersion coefficient, R is the retardation factor if 

solute is adsorbed onto solid porous medium particles, and A is the decay coefficient for 

radioactive or biodegradable solutes. In Eq.(3.14) it is possible to identify, from left to right, 

the transient term, which represents the accumulation of solute in a control volume, the 

advection term, which describes the movement of solute due to the existence of a velocity 

field, and the hydrodynamic dispersion term, which describes both molecular diffusion and 

mechanical dispersion transport processes. Similarly to transport in 3D porous media, the 2D 

transport equation in discrete fractures is: 

de, q, (0D \ 
c?-^- + ^ V c v - V 

et R f
 f 

i, Vc, 
. « / ' , 

+ 0Ac = O / , . /= 1,2 (3.15) 

Molecular diffusion is a physical process that causes solutes to move from regions of higher 

concentration to regions of lower concentration, by random molecular motion. This physical 

phenomenon is mathematically described by Fick's first law, which expresses the diffusive flux 

by: 

J d =-0D d Vc (3.16) 

where D d is the molecular diffusion coefficient, which depends on the free-diffusion solute 

coefficient D0 and on the tortuosity r of the porous medium. Tortuosity is a parameter 

describing the ratio between straight line and real flow path-lines. As flow path-lines in porous 

media are sinuous, the tortuosity is smaller than 1. The diffusion coefficient is therefore 

expressed by: 

Dd=D0r (3.17) 

Mechanical dispersion is related to velocity deviations from the average groundwater velocity. 

These deviations are caused by varying pore sizes, roughness of pore channels, and pore 
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connectivity. As a result, flow path-lines are sinuous and velocity varies both in magnitude and 

direction across any pore cross-section. These effects are represented by the dispersivity, which 

is indicated by the parameter a. Mechanical dispersion is also modeled as a Fickian process. 

Field and laboratory experience shows that the rate of mixing is greater in the direction of flow 

than transverse to this direction, and the dispersion coefficient is proportional to the flow rate 

(Charbeneau, 2000). Various empirical equations exist to evaluate dispersivity values (Neuman, 

1990; Gelhar et al., 1992; Xu and Eckstein, 1995). Molecular diffusion and mechanical 

dispersion are combined into a single hydrodynamic dispersion coefficient, which is defined as 

(Bear, 2007): 

D i J = a T q ô i j + ( a L - a T ) ^ - + TDoôiJ (3.18) 

where 8^ is the Kronecker delta and subscripts L and T indicate longitudinal and transversal 

dispersivity, respectively. For Cartesian coordinates and velocity vector q with components 

qx, qy , and qz, it is possible to obtain: 

2 

£ ) x x = a r H + ( a i - « r ) - r t 

D y y =a T \q \ + { a L - a T ) J ^ (3.19) 
\q\ 

< \q 2 

Pi 

The discretization scheme for the transport equations is identical to that used for the 

subsurface flow problem, such that the solute equation in a 3D porous medium becomes: 

(cr - c\ ) A = £ c ; - / 2 )^ / 2 )+x z, [c>r - o r hR X c^ (3-2°) 
The term q,^XIT) = /yy 1 ' / ^ — A/+A,J represents the fluid flux at the interface between nodes i 

and j and is obtained from the flow solution. The term c(ij+xn) depends on the type of 

advective weighting used. If upstream weighting is used, as in the majority of simulations 

presented in Chapters 4 and 5, the concentration will be: 

C m m = C m = C j if /..(/*,.-/*,.)>0 (3.21a) 
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% + , / 2 ) = < V = c i i f r ¥ ( h j - h , ) < 0 (3.21b) 

The term Za m Eq.(3.20) is the transmissibility associated with the segment joining nodes i 

and j . Its expression is analogous to Eq.(3.11) used for subsurface flow equation, but here the 

hydraulic conductivity is replaced by the hydrodynamic dispersion coefficient Z).. : 

Z , = frNfipNjth (3.22) 
v 

Similarly to Eq.(3.20), the discretized solute transport equation for a fracture of aperture 2b is: 

where all parameters have already been defined. 

3.1.2 Numerical solution 

As specific details of the numerical solution in HydroGeoSphere are presented in Therrien et 

al. (2007), only the features relevant to this work are mentioned here. The discretized equations 

form a matrix system, which is solved through iterative schemes and, eventually, linearization 

techniques. When subsurface flow is fully-saturated and density-independent, the equations are 

linear and a direct solution of the matrix system is possible. The steady-state groundwater field 

is always computed at the beginning of a simulation, while transient flow and transport 

simulations are performed only if required. In this case, adaptive time-steps are usually applied 

to provide suitable results. In fact, time-step size is determined according to the change of the 

solution unknown. The maximum rate of change for time-step, X m m , is entered by the user. 

The following expression is used to evaluate the maximum time-step between time levels L 

andL+1: 

AtL + l= ^ = 2 -At L (3.24) 
max xr-x 

Implementation of Eq.(3.24) allows using larger time-steps when variables do not show severe 

changes in time, while smaller time-steps are selected when changes are bigger, to properly 

capture variable variations, such as hydraulic head or concentration in the context of this work. 

Moreover, for each time-step, mass entering or leaving the domain through boundaries or 
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internal sources or sinks and mass change are computed and printed in output files. These 

values provide useful information to check simulation results. 

Important issues about numerical schemes suitable to solve the advection-dispersion transport 

equation should be mentioned. The mathematical nature of this equation changes according to 

the predominance of advection or dispersion. If advection is neglected, the partial differential 

equation becomes parabolic, while purely advective transport is described by a hyperbolic type 

equation. The hyperbolic equation requires special attention in numerical solutions (Rausch et 

al., 2005). Three well known options for time discretization are available in HydroGeoSphere: 

explicit, central (Crank-Nicolson formulation) or fully implicit transport time weighting. The 

latter one is not prone to exhibit oscillations but more prone to numerical smearing than 

central-time weighting. Oscillations can be either overshoot, which is a concentration greater 

than the maximum possible, or undershoot, which is a negative concentration (Charbeneau, 

2000). Instead, numerical smearing, or numerical dispersion, manifests by spreading sharp 

concentration fronts (Figure 3.1). 

u 

i 
I 

overshoot 

m:l 

numerical dispersion 

undershoot 

^ 7 
Distance [m] 

Figure 3.1 - Computational problems with numerical simulation of the transport equation 

(adapted from Charbeneau, 2000) 

Numerical dispersion depends on grid and therefore finite element dimensions should be 

chosen small enough to ensure physical dispersion dominates numerical dispersion size 
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(Neuman, 1981; Rausch et al., 2005). As a general rule, numerical dispersion and oscillations 

can be avoided if implicit transport time weighing is used in combination with a Peclet number 

smaller than 2 (Rausch et al., 2005). The Peclet number is the ratio between advective and 

dispersive transport. Thus, high Peclet numbers indicate that advection dominates over 

dispersion. For flow characterized by velocity v̂  along the X-axis, the Peclet number is 

expressed by: 

„ Ax-v Ax 
Pe = — + = — (3.25) 

where Ax is the mesh size along the x direction. As Eq.(3.25) depends on element 

dimensions, mesh generation becomes a crucial step in the modeling process. Refinement may 

contribute to ensuring small element sizes where transport processes take place and the 

velocity is higher. In simulations presented in Chapters 4 and 5 implicit transport time 

weighting is employed and the mesh size is selected to obtain small Peclet numbers. 

The numerical solution in discretely-fractured media is based on the evaluation of elemental 

matrices for 3D and 2D finite elements, which discretize the porous medium and fractures, 

respectively. These matrices are assembled into a global symmetric matrix. For unstructured 

meshes, which is the case considered here, the global matrix is a sparse matrix with a large 

bandwidth. The lack of rules for assigning nodes numbers makes it impossible to obtain a 

uniformly banded matrix. As matrix storage and execution time are proportional to the 

bandwidth, a special technique is employed to speed up the numerical solution. This technique 

stores only non-zero matrix coefficients. However, it is necessary to maintain their original 

position in the matrix, as matrix structure reflects mesh connectivity. In fact, mesh 

connectivity can be thought in terms of a matrix, where row and column indices correspond to 

node indices in the mesh. As a result, each diagonal coefficient corresponds to a node in the 

mesh and coefficients in the same row are non-zero if the node in that column is connected to 

the node in the diagonal position. Thus, each matrix entry ( i , j ) represents the stiffness 

coefficient or, as it is called in this context, transmissibility yu of the segment joining nodes i 

and y (see Section 3.2). For example, the matrix corresponding to a mesh composed of 6 

tetrahedra is shown in Figure 3.2. 
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Figure 3.2 - Eight nodes mesh and corresponding global matrix 

Non-zero coefficients are indicated by y a , where i and j vary from 1 to 8, which is the 

number of nodes in the mesh. For example, matrix entry y2A means that node 4, which 

corresponds to the column index, is connected to node 2, which corresponds to row index and 

to the diagonal position. In fact, tetrahedra 1 and 5 have segment 24 as edge. The matrix is 

symmetric, such that only the upper half matrix is presented, for the sake of clarity. The mesh 

connectivity list is shown in Table 3.1. 

Table 3.1 - Mesh connectivity 

Tetrahedron Node l Node 2 Node 3 Node 4 

1 3 5 4 2 

2 7 6 8 4 

3 5 6 7 4 

4 3 5 7 4 

5 5 6 4 2 

6 1 5 3 2 

In HydroGeoSphere, the global matrix is stored using three distinct arrays a, ia, and ja. This 

storage scheme has the objective to represent only the non-zero elements and to be able to 
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perform common matrix operations (Saad, 1996). Array a contains the non-zero coefficients, 

while arrays j a and ia contain, respectively, row and column indices of non-zero coefficient 

positions. Arrays a 2nd ja are sized according to the parameter nja, while array ia to the 

parameter nn, which is the total number of nodes in the mesh. The parameter nja is the product 

between nn and nbtetra, which is the maximum number of segments connected to a single node 

in the tetrahedral mesh, which will be described in Section 3.3.1. For example, the three arrays 

associated with the matrix shown in Figure 3.2 are presented in Figure 3.3. Only first elements 

of arrays are shown. 

a(nja) 

ja(nja) 

ia(nn) 

a(nja) 

ja(nja) 

ia(nn) 

Y11 Y.2 Y.3 Yl5 Y 2. Y 22 Y 23 Y 24 Y 25 Y 26 Y 33 ... 
Coefficients 
array a(nja) 

ja(nja) 

ia(nn) 

a(nja) 

ja(nja) 

ia(nn) 

1 2 3 5 1 2 3 4 5 6 1 ... 
Columns 
array 

a(nja) 

ja(nja) 

ia(nn) 

, k 

a(nja) 

ja(nja) 

ia(nn) 

a(nja) 

ja(nja) 

ia(nn) 1 5 11 ... Rows 
array 

a(nja) 

ja(nja) 

ia(nn) 

Figure 3.3 - Global matrix storage technique (adapted from Aagaard, 2000) 

The coefficient y24, in row 2 and column 4, is considered to illustrate how matrix coefficients 

are memorized in these arrays. By looking up in the Rows array where the second row starts, 

the index 5 is found. Then, starting from the fifth element in the Columns array, a search is 

performed until the index 4, which corresponds to the fourth column, is found. This index 

indicates the position of the desired coefficient y2A in the Coefficients array. In 

HydroGeoSphere, for computational reasons, further re-ordering of ja array is performed to 

move the diagonal element to the first column. These arrays contain information about 

neighbor nodes and their connectivity, as row and column indices correspond to nodes in the 

mesh. In unstructured tetrahedral meshes, neighbor node indices vary without a foreseeable 

rule. Thus, it is clear that these arrays are affected by the use of tetrahedral meshes. In fact, the 
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analysis of this technique used to store matrix coefficients has been the starting point to solve 

the discretized governing equations on a tetrahedral mesh. Code modifications have been 

made on the subroutine which properly sets up these arrays. 

3.2 Evaluation of transmissibilities 

Numerical solutions lead to a general system of equations Ax = b that approximates the partial 

differential equation describing specific physical phenomena. By restricting the attention to a 

Control Volume setting, a minimal requirement for a Delaunay mesh to be suitable for 

numerical computation is that matrix A be an M-matrix (Murphy and Gable, 1998). As a result, 

solution techniques can exploit special properties of this class of matrix to obtain fast, 

accurate, and stable performance. M-matrices are real, square, nonsingular matrices, whose off-

diagonal elements are either zero or negative and whose diagonal elements are strictly positive. 

This section illustrates the difference between two distinct approaches to evaluate the 

coefficients of matrix A. 

The discretization of governing equations is often carried out by means of the well-known 

Galerkin method. Although it is widely used, the Galerkin method applied to 3D tetrahedral 

meshes does not lead to an M-matrix, which is suitable when iterative techniques are used to 

solve the system of linear equations (Saad, 1996). In contrast, the Orthogonal Subdomain 

Collocation method (OSC) leads to a matrix of type M. M-matrices lead to advantages in 

accuracy, stability, and running time over iterative solution techniques and convergence 

behavior (Forsyth, 1991; Letniowski and Forsyth, 1991; Murphy and Gable, 1998). 

In the context of this thesis, coefficients of matrix A are called transmissibilities, as mentioned 

in Section 3.1.1. As different notations for transmissibilities are found in the literature, an 

overview of the main references is provided before presenting the notation used here. The 

basic concept related to the importance of transmissibilities is that their sign ensures that the 

discrete flux between two nodes corresponds to the physical direction. This concept is 

summarized by the positive transmissibility (PT) condition defined by Forsyth (1991): the FT 

condition must be satisfied to simulate down gradient flow. This condition is a prerequisite for 
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the existence of an M-matrix and ensures that nonphysical local extrema are not present in the 

solution (Putti and Cordes, 1998; Kosik et al., 2000). Some authors defined transmissibility in 

Eq.(3.11) with a negative sign and stated that the negative transmissibilities cause a nonphysical 

discrete flux (Forsyth, 1991; Letniowski and Forsyth, 1991; Letniowski, 1992; Cherry et al., 

1996; Gable et al., 1996a; Gable et al., 1996b). In contrast, other authors (Putti and Cordes, 

1998; Kosik et al., 2000; Cordes and Putti, 2001) defined the integral of basis functions with a 

positive sign, as done in Eq.(3.11), and affirmed that ytj must be negative to make A an M-

matrix. To better understand and to clarify the definition of transmissibilities, the following 

formulation for the subsurface flow equation is considered: 

( AMass 
+^=s,(r-^£+XM*r'-*+ ,)= 0 (3.26) V A/ ).t - ' * ' ' ' A t ~ 

where Qtj is the volumetric flux between neighbor nodes. If flow goes from node i to nodey^ 

the mass variation in the control volume associated with node i is negative. Then, to satisfy 

Eq.(3.26), which should be equal to zero, Qa must be positive. As Qtj
 = Y i j y l

j - h i \ and 

ni > hj > Yij should be negative, which represents the off-diagonal coefficient of the M-matrix 

associated to the problem considered. 

Depending on the sign of yu in Eq.(3.11), positive or negative transmissibilities are those to 

avoid, respectively. According to Letniowski and Forsyth (1991) even in cases where the 

discrete solution does not demonstrate non-physical behavior, negative transmissibilities may 

cause poor convergence behavior of the Newton iteration if non linear equations must be 

solved. Therefore, they declared that to satisfy the PT condition, it should be yu > 0 . 

Moreover, Letniowski (1992) stated that 3D Delaunay triangulation does not, in general, 

produce positive transmissibilities when a standard Galerkin finite element approximation is 

applied. However, it is possible to seek a triangulation that minimizes the number and size of 

the negative transmissibilities (Letniowski and Forsyth, 1991). 

In contrast, Putti and Cordes (1998) affirmed that the PT condition is a prerequisite for the 

existence of an M-matrix, where y.. < 0 . Likewise, Kosik et al. (2000) analyzed a transport 

problem and stated that to satisfy the PT condition and to ensure that physical flow is directed 
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from higher to lower concentration, y~ should be negative. In general, the violation of the PT 

condition can be detected by the emergence of negative concentrations and spurious 

oscillations in numerical results. In this thesis, transmissibilities are defined in reference to 

Eqs.(3.11) and (3.26), such that they must be negative to obtain an M-matrix associated with 

the mesh discretizing the domain of interest (Murphy and Gable, 1998; Putti and Cordes, 1998; 

Kosik et al., 2000; Cordes and Putti, 2001). 

3.2.1 Standard Galerkin method 

The Galerkin method was already implemented in the original version of HydroGeoSphere to 

evaluate the coefficients of the stiffness matrix for tetrahedra. If the CVFE technique is 

applied, matrix coefficients of the traditional finite element method can be interpreted as a 

linear function of the area through which the fluid passes traveling from one node i to its 

neighbor^' (Bower et al., 2005). If the area is indicated with F.. and the distance between nodes 

with r . , it is possible to write the volumetric flux Qtj as: 

Qv^K{hrh) (3.27) 
u 

where Fy lru = y a . From Eq.(3.11), transmissibility y„ can be written as: 

rôN. dN, edN. dN, rdN. dN i 
y = \^2J-K— J-dv+ p ^ - A - — J - d v + p - * - * — J - d v (3.28) 

* ox ox • dy ôy J dz dz 

Instead' of numerically solving integrals in Eq.(3.28), the influence coefficient technique 

proposed by Huyakorn et al. (1984) is used. This technique was first developed for linear 

rectangular elements and then applied to 3D blocks and prism elements (Huyakorn et al., 1986; 

Huyakorn et al., 1987; Beinhorn and Kolditz, 2003) and it provides a rapid and simple 

evaluation of matrix coefficients, without requiring numerical integration phases and therefore 

reducing the computation effort (Huyakorn et al., 1984; Beinhorn and Kolditz, 2003). It 

should be mentioned that Huyakorn et al. (1984; 1986) considered only simple blocks and 

prisms. Otherwise, if elements are too distorted, errors are introduced by substituting the 

numerical integration with the influence coefficient technique. 
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Basis functions in Eq.(3.28) can also be defined on simplex tetrahedra, which have linear sides 

and linear polynomials as the interpolation function. For a tetrahedron whose vertices are i,j, k 

and /, the following shape functions are used (Allaire, 1985): 

a , a j a k a i 

b, * j K b, 
c, CJ c k c, 

4 dj dk d, 

N = — {l,x,y,z} 
6VX s 

where a, b, c, and d are the coefficients of the shape functions and they are calculated as: 
i 

(3.29) 

a, a j <*k a , 

b, b, h b, 
= 6V 

c , CJ ck 
c , 

dt dj dk d 

U y z i 

! * , y., ZJ 
1 x k yk ZK 

1 X, y, z i . 

(3.30) 

The tetrahedron volume V is calculated from the determinant of the matrix containing the 

tetrahedral node coordinates: 

6 

1 X,. V 2, 

1 X. V, z . 

1 x t y k
 zk 

1 x, y, zl 

The Jacobian matrix J or element derivative matrix is calculated as: 

dN, dNj dNk dN, 

J 

(3.31) 

dx dx dx dx 
dNt Ô N j dNk dN, 
dy dy dy dy 
dN, O N j dNk dN, 

b, b, K b,' 
c, CJ c k c i 

d, d, dk d < . 

(3.32) 

dz dz dz dz 

After evaluating the Jacobian matrix, the elemental stiffness matrix A is calculated by summing 

the contributions in the three spatial directions: 

lÀ J L - . - ^ - t ^ ] + K Â A ^ ] + K « l A * ] (3-33) 
where, for example, \ A a is equal to: 
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36F 

b,b, bjbj b,bk bfi, 

bjbj bjbk bjb, 
b A bkb, 

b,b, 

(3.34) 

where only the half-upper part is shown because the matrix is symmetric. Matrices A and 

Azz are evaluated in an analogous way, but the derivatives along the y and z directions are 

used, respectively. Diagonal coefficients are evaluated as the sum of other entries in the same 

row. Matrix A is called the stiffness matrix, even if this term is usually used in the context of 

solid mechanics. For fluid mechanics, it might be more appropriate to call it the fluidity matrix 

or fluid conductance matrix as in Allaire (1985) and Beinhorn and Kolditz (2003). The global 

matrix contains all elemental contributions and it is obtained after the assembly phase. For 

example, transmissibility associated with segment ra is: 

rTa,=I K. 
36^ 

W>,+-
K. 

yy 
i J 36V c ic i + 36F" ' J (3.35) 

where the summation is carried out over all tetrahedral elements having segment ru as edge. 

Similarly, for the transport equation: 

.Global -z Qs-hb, +—Z-c ic l+-22-d ld l 
36P" ' J 36F~ ' J 36F ' ' 

(3.36) 

where the hydraulic conductivity has been replaced by the hydrodynamic dispersion 

coefficient. 

3.2.2 Orthogonal Subdomain Collocation method 

This alternative approach is presented by Putti and Cordes (1998) and Cordes and Putti (2001). 

The Orthogonal Subdomain Collocation (OSC) approach is based on a geometrical analysis of 

the control volume mesh and on the need to obtain an M-matrix associated with the mesh. As 

already stated, matrix structure is related to mesh connectivity. Therefore, if mesh geometry 

and topology follow specific requirements, an M-matrix is obtained. Moreover, if the CVFE 

numerical method is applied, the matrix diagonal elements are the sum of absolute values of 
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other entries in the same row, causing the matrix to be diagonally dominant. Let A be an M-

matrix with coefficients yu , where i andy are the row and column indices, respectively. Then, 

the M-matrix properties can be summarized as follows (Kosik et al., 2000): 

(3.37) 
A l > 0 

M-matrices are desirable for iterative sparse matrix solvers. The existence of an M-matrix 

guarantees that the discrete flux between two nodes is in the opposite direction of the 

dependent variable gradient (Cordes and Putti, 2001). Otherwise, unrealistic results could be 

obtained, such as flux in the direction of increasing hydraulic heads. Thus, the importance of 

M-matrices lies in the fact that simulated numerical fluxes are consistent with the physics. 

Otherwise, a positive off-diagonal coefficient y,. means that a head decrease from node i 

toward node j induces a flux from j toward i , which is clearly unphysical (Putti and Cordes, 

1998). 

The Delaunay algorithm is commonly applied to discretize space with triangles or tetrahedra. 

In 2D, the Delaunay algorithm ensures the generation of an M-matrix associated with the 

mesh (Putti and Cordes, 1998; Cordes and Putti, 2001). This is possible because of the 

equivalence of the positive transmissibility condition and a Delaunay triangulation (Putti and 

Cordes, 1998). In fact, in 2D, it can be demonstrated that a transmissibility calculation based 

on the standard Galerkin method is equivalent to the calculation based on the OSC method, 

which ensures the existence of an M-matrix. According to the OSC method, transmissibilities 

are defined in 2D by the ratio between Voronoi segments and Delaunay triangular edges. For 

example, in reference to Figure 3.4, the transmissibility associated with triangular edge r. is 

calculated by: 

2 
1 T r . R2 L 

CM V 4 
7ij = 

r r u •J 

(3.38) 

where the Voronoi edge CM is orthogonal to triangular edge rr . 
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Figure 3.4 - Relation between Voronoi and Delaunay meshes in 2D 

The radius of the circumscribed circle can be expressed by: 

4A 
(3.39) 

After a few mathematical steps, the following expression for transmissibility is derived: 

[yj -yk)(yk ->>,)+(** -*,)(*,-**) 
r u = - 4A 

(3.40) 

Eq.(3.40) corresponds to the expressions presented by Huyakorn et al. (1984) and Beihnorn 

and Kolditz (2003), who applied the Galerkin method and the influence coefficient technique. 

Eq.(3.40) is also used in HydroGeoSphere to compute matrix coefficients for triangular finite 

elements representing fractures. Thus, in 2D, transmissibilities calculated with Eq.(3.40) 

coincide with those obtained by applying the Galerkin method. 

In 3D, the Galerkin method does not lead to an M-matrix if tetrahedral meshes are used 

(Letniowski, 1992; Putti and Cordes, 1998; Kosik et al., 2000; Cordes and Putti, 2001). 

Therefore, it is interesting to analyze the Orthogonal Subdomain Collocation method 

proposed by Putti and Cordes (1998). In 3D Delaunay meshes, if the standard Galerkin 

method is applied, control volumes are not represented by Voronoi cells, but rather by a 

median mesh. Voronoi and median meshes are both dual meshes, where tetrahedral nodes 

become new cell centers for control volumes. These control volumes are centered on 
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circumcenters or on barycenters of tetrahedra, depending on which dual mesh is used: 

circumcenters are used with Voronoi mesh, while barycenters with median mesh. The 

circumcenter is the intersection of the orthogonal bisectors, while the barycenter, or gravity 

center, is the point where the four medians meet. In 3D, an orthogonal bisector is a plane that 

crosses an edge at the midpoint and that it is perpendicular to it, while a median is a plane that 

joins an edge of a tetrahedron to the midpoint of opposite edge. Barycenters and 

circumcenters coincide only in regular tetrahedra, but it is impossible to discretize complex 

domains using exclusively regular tetrahedra, which are characterized by four equilateral 

triangular faces. The OSC method is based on the Voronoi mesh as a dual mesh, such that the 

circumcenters of tetrahedra are considered as vertices of control volumes. The orthogonality 

of the control volume faces to the tetrahedral edges and the interpretation of the nodal 

Voronoi subdomains as nodal control volumes give rise to the name Orthogonal Subdomain 

Collocation method (Putti and Cordes, 1998). It should be also noted that the physical 

interpretation of y,, as a flux requires that the control volume face, /*"„, be orthogonal to edge 

rtJ. This interpretation is related to the Gauss theorem applied to the divergence of flux, as 

mentioned in Section 3.3.1. Therefore, Voronoi control volumes, which are orthogonal to 

tetrahedra, should be considered. Otherwise, the orthogonality between tetrahedral edges and 

control volume faces will not be respected. As a result, the application of the OSC method, 

which is based on the Voronoi dual mesh, becomes significant for numerical solution and 

more appropriate than the Galerkin method. 

According to the OSC method, the elemental stiffness coefficients are obtained as the negative 

ratio between the area of the Voronoi cell face and the length of the corresponding tetrahedral 

edge (Putti and Cordes, 1998): 

M 
where hydraulic conductivity is omitted, for clarity. The Voronoi face Fu is the orthogonal 

bisector of the tetrahedron. An orthogonal bisector crosses an edge at the midpoint and is 

perpendicular to it. Any three of these bisectors that have a vertex in common meet at the 

circumcenter of the tetrahedron (Figure 3.5a). 
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Figure 3.5 - Relation between Voronoi (shaded faces) and Delaunay (tetrahedron) 

meshes in 3D 

The area of each Voronoi face is calculated by the cross product between the vectors defining 

the face. More specifically, if the segment of extremes i and j is considered, its 

corresponding Voronoi face is shown in Figure 3.5b. This face is defined by the circumcenter 

of the tetrahedron, or Voronoi point V, the edge midpoint M, the circumcenter C, of 

tetrahedral face ijl, and the circumcenter C2 of tetrahedral face ijk. The cross product between 

two vectors results in another vector that is perpendicular to the plane containing the two 

input vectors. Moreover, the magnitude of the resulting vector is equal to the area of the 

parallelogram that the vectors span. The area of the Voronoi face can be thought of as the sum 

of triangles MC2V and MC,V (Figure 3.5b). Each triangle area is actually half of the 

parallelogram area. Therefore, the Voronoi face area is given by: 

F,=-À MC, XKr.v T r r v x r , •c,v QV ' MC, (3.42) 

The result of Eq.(3.42) is a vector. Thus, to obtain the scalar value of the Voronoi face area a 

further step is necessary. As the vector resulting from the cross product is parallel to segment 

ru, a. dot product with the unit vector in the direction of rr is performed to find the value of 

the Voronoi face area Fu (Putti and Cordes, 1998): 

1 T 
Fy ~ ~ZyMc1

 x rc2v + r cy x rMC, ) j T (3.43) 
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By other geometrical considerations, which are not repeated here, and by inserting Eq.(3.43) 

into Eq.(3.41), final expressions for transmissibilities are found (Putti and Cordes, 1998; 

Cordes and Putti, 2001). They can be applied to isotropic porous media characterized by 

hydraulic conductivity K: 

r u = -
K 
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where V is the tetrahedron volume, ru is the tetrahedral edge of extremes / and / ' , and A, is 

the vector area orthogonal to face j k l and having an absolute value \A\ equal to the area of 

triangle jkl. The expressions presented above are used to evaluate the [4x4] matrix associated 

with each tetrahedron in the mesh. As the matrix is symmetric, calculations are required only 

for six elements. Moreover, diagonal elements are determined by using the property that 

matrix coefficients have a zero row sum: 

Y»=-Yij-Y i k-Yi, (3-45) 

The elemental matrix will look like: 
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M ose 

Y,, Yy Ytk Y u 

y„ Y a Yjk YJI 

Yu Ykj Ykk Yki 

Y„ Yij Yik Yu 

(3.46) 

Eq.(3.46) is analogous to Eq.(3.34), which is used to calculate [ A ] e
Galerkin ■ However, Eq.(3.46) 

cannot be used as presented for solving the subsurface flow equation in anisotropic media and 

nor for the transport equation. When the Galerkin method is applied, the fluid conductance 

matrix can be split into three distinct components [ Axx ], [ A^ ], and [ A22 ], which are then 

multiplied by corresponding hydraulic conductivity values Kxx, K^, and K22. In contrast, 

Eq.(3.46) gives the whole elemental matrix and cannot be used to account for different 

hydraulic conductivity values or hydrodynamic dispersion coefficients. Further development is 

thus required, as will be described in Section 3.3.5. 

3.3 Numerical code development 

The development of an enhanced HydroGeoSphere version was motivated by the objective to 

reach a seamless combination between geological and numerical models. The numerical code 

can now solve the governing equations of flow and mass transport in saturated conditions on a 

fully 3D tetrahedral mesh created by the LaGriT mesh generator. Therefore, this new code 

version contributes to increased applications and modeling capabilities. In fact, without these 

enhancements, irregular grids were restricted to 3D block or prism meshes built by stacking 

2D slices composed of triangular or quadrilateral elements, which are generated by compatible 

mesh generators (GRID BUILDER, GMS, FRACTRAN). The resulting 3D mesh is a layered 

system where 2D slices are replicated vertically, making it difficult to discretize complex 3D 

domain geometries. In contrast, the mesh generation technique proposed here allows building 

a fully 3D mesh covering the simulation domain, whose geometry is built with specific 

geomodeling tools. The current enhanced version works for groundwater flow and mass 

transport in saturated conditions, with discrete fractures and wells. 
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The HydroGeoSphere numerical code has pre-processor and post-processor tools, called 

GROK and HSPLOT, respectively. While the first is used to generate input data files for 

HydroGeoSphere, the latter is used to convert raw HydroGeoSphere output files into 

TECPLOT or GMS compatible input files. The use of a new mesh type has required 

modifications not only in HydroGeoSphere, but also in both the pre-processor and post

processor. The main and basic innovation is a new GROK subroutine that reads in nodal 

coordinates and connectivity of tetrahedral and triangular meshes. In fact, in the 

HydroGeoSphere version described in Therrien et al. (2007), available elements to solve the 

3D porous medium equations are either hexahedral blocks or triangular prisms (Figure 3.6a), 

while tetrahedral elements are introduced here (Figure 3.6b). The original code version allows 

for subdivision of blocks into tetrahedra, but faces that can be designated as fracture elements 

are restricted to the original block elements. New code versions that may allow tetrahedral 

element faces to be designated as fractures were mentioned as an example of future code 

development in Therrien et al. (2007). Thus, this work takes that research direction, as one of 

the main outcomes is the designation of tetrahedral faces as fracture elements. Moreover, 

adaptation of output files to a tetrahedral mesh has involved a careful analysis of format files 

required by Tecplot and GMS. 

Figure 3.6 - Available 3D finite elements to discretize a porous medium: a) block and prism 

and b) tetrahedron 
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With the discretely-fractured medium representation, each fracture is explicitly represented by 

specifying its. own geometry, areal extent, dimensions and position in 3D space. The numerical 

approach is based on continuity of hydraulic head and concentration at the fracture/matrix 

interface, which corresponds to instantaneous equilibrium between the two domains. This 

method is also called the common node approach and it is essentially based on superposition 

of 2D fracture elements onto the elements of the porous matrix (Therrien and Sudicky, 1996; 

Therrien et al., 2007). Thus, nodes at fracture locations are common nodes that receive 

contributions from both the rock matrix elements and the fracture faces. Representing 

irregular and non planar fractures is more complex than representing regular fractures. 

HydroGeoSphere has been enhanced by Graf (2005) and Graf and Therrien (2008) to 

represent nonuniform inclined discrete fractures by identifying triangular and quadrilateral 

internal faces in 3D elements (Figures 3.7a and 3.7b). The work of Graf (2005) constitutes the 

basis for the development presented which is used to compare numerical results and verify the 

approach proposed here. This approach is based on a new relationship, incorporated into 

HydroGeoSphere, between 2D triangular and 3D tetrahedral elements (Figure 3.7c) 

representing, respectively, the fractures and the porous rock matrix. This new relationship 

avoids looking for internal faces of 3D finite elements, because fracture elements are restricted 

to the four external faces of a tetrahedron. Moreover, as tetrahedra can have any orientation in 

the space, this relation offers more flexibility on the representation of fractures. 

3D rock 
matrix _ 
element 

a) i 
C3fr* 

2D fracture 
element 

3D rock 
matrix _ 
element 

2D fracture 
element 

2D fracture 
element 

Figure 3.7 - Examples of relations between 2D and 3D finite elements: a) and b) fracture faces 

defined in blocks and c) fracture face defined in tetrahedra 
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Major code modifications are described in the following paragraphs to highlight new features 

and their implementation. A logical variable called tetramesh has been added to the numerical 

code to distinguish between the use of a 3D fully tetrahedral mesh created by the modeling 

approach proposed here and other mesh generation techniques already available. Therefore, 

the variable tetramesh is switched to true to use the new mesh type and related instructions. An 

overview of instructions generally used in combination with a tetrahedral mesh are presented 

and explained in Appendix B. 

3.3.1 Calculation of segments and faces 

The calculation of the number of faces and segments is the first and essential computation 

executed by the GROK pre-processor after reading the nodal coordinates and connectivity list 

of a mesh. A careful analysis of tetrahedral meshes was necessary to find out what parameters 

should be modified and how to modify them. In particular, to compute faces and segments, 

HydroGeoSphere uses the maximum number of connections to a single node. This number 

can be easily determined in structured and regular meshes. For example, it is constant and 

equal to 27 for block-based meshes. In contrast, it varies greatly in tetrahedral meshes, 

depending on the complexity of the mesh. Figure 3.8 illustrates this difference, by showing all 

segments that can be traced from a node. In block-based meshes, internal and face diagonals 

are also considered as segments (Figure 3.8a), while in tetrahedral meshes no diagonal can be 

traced and segments are restricted to the external edges of tetrahedra. For a simple 8-node 

configuration, where nodes are placed at the vertices of a hexahedron and are connected to 6 

tetrahedra, the maximum number of segments connected to a node is equal to 7 (Figure 3.8b). 

In contrast, if nodes are irregularly distributed in space, this number increases without 

following a specific rule and it must be calculated every time a mesh is generated (Figure 3.8c). 

This number is essential for memory allocation to store the stiffness matrix, as shown in 

Section 3.1.2. 
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Figure 3.8 - Segments connected to a single node: a) in a block-based mesh, b) in a tetrahedral 

mesh with regular nodal distribution and c) in a tetrahedral mesh with irregular nodal 

distribution 

The mesh generator LaGriT provides the maximum number of connections to a single node in 

the entire mesh. Therefore, this number has been incorporated as a new parameter into the 

HydroGeoSphere numerical code and is used by the subroutines that calculate the number of 

faces and segments in the mesh. During the calculation, it is necessary to look for segments 

and faces which are shared between adjacent elements, to avoid storing them twice. Faces and 

segments are identified by their nodes, listed in ascending order. When a new face is read, it is 

compared to others formerly written to check if it has already been stored in memory. 

Otherwise, a new face will be added to the faces list. Simple meshes were used to verify the 

correct implementation of this new parameter. 

3.3.2 Identification of 2D fracture elements 

To identify which faces of tetrahedra lie on fractures, the connectivity of the fracture triangular 

meshes and their global nodal numbering are required, as mentioned in Chapter 2. In 

particular, each triangulated fracture extracted from the tetrahedral mesh has nodes numbered 

from 1 to N, which is the maximum number of nodes for that specific fracture. Thus, each 



2.074 0.281 1.744 2793 
2.016 0.375 1.700 3103 
2.172 0.375 1.812 3105 
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fracture is a mesh object independent from the tetrahedral mesh, as it is characterized by its 

own, or local, nodal numbering. To select triangular elements that should act like fractures, it is 

necessary to identify to what tetrahedral face each triangle corresponds to. This identification is 

made by knowing the global nodal numbering of the fracture triangular mesh. Otherwise it 

would be impossible to select the right tetrahedral faces. Looking up all faces in the tetrahedral 

mesh, when the face defined by each series of three nodes of fracture triangles is found, the 

face is chosen and defined as a fracture. For example, in reference to Table 3.2, if a tetrahedral 

face defined by nodes 2793, 3103, 3105 exists in the mesh, this face will act as a fracture. 

Table 3.2 - Example of nodal coordinates for a discrete fracture 

Local numbering Node Node Node Global numbering 

2D triangular mesh X coordinate Y coordinate Z coordinate 3D tetrahedral mesh 

1 

2 

3 

The time required for the identification of fracture faces increases if the number of elements in 

the mesh increases, because the total number of faces will increase as well and consequently, 

more time is required to find the tetrahedral face that matches each triangle belonging to the 

fracture surfaces. For example, in a mesh of 235000 tetrahedra, a fracture characterized by 

4500 triangular elements is identified in less than 20 seconds. In bigger meshes, constituted by 

1500000 elements for example, the time required for the identification of each discrete fracture 

increases up to a few minutes, depending on the number of triangles in the fracture. 

If the top of the simulation domain does not have a constant elevation, the same procedure 

developed for fractures is used to select top faces. This is the case when real topography data 

are included in the Geomodel. In fact, with geomodeling tools a triangulated surface 

representing the topography of the simulation domain can be easily generated and then 

integrated in the mesh as done for fractures (Section 2.2.1.2). A *.txt file contains nodal 

coordinates and connectivity of this triangular mesh which is read by the pre-processor 
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GROK, which will identify the faces on the top of the domain. Selecting these faces is useful, 

for example, to assign a Neumann boundary condition. 

3.3.3 Discretization of wells 

Suitable discretization of wells is a challenging task. In fact, a typical borehole diameter is at the 

centimeter scale, while the flow around wells affects the overall hydraulic head distribution in 

the domain over hundreds of meters. Thus, a proper grid generation technique should allow 

additional points to be concentrated near well locations. However, accurate representation of 

the path of a real well can be difficult, because the well is not always vertical (Cherry et al., 

1996). In this work, wells are discretized using ID linear elements, which are represented by 

edges of tetrahedra. With block or prism finite elements, a staircase representation of inclined 

wells is obtained. In contrast, the use of tetrahedra in combination with the mesh procedure 

presented in Chapter 2 allows for a more realistic discretization of wells, which will be 

represented by a perfect straight line. The difference between a block-based mesh and a 

tetrahedral mesh in the discretization of inclined wells will be clearly shown by an example in 

the next chapter. 

The mesh procedure adopted here creates an optimal distribution of nodes around well axes 

and connects them to tetrahedra, such that the real path of the well is reproduced, even if it is 

inclined. However, the standard HydroGeoSphere method to make a well is based on the 

definition of the shortest line between top and bottom nodes, which are entered by the user. 

Then, the mesh segments nearest to this line are selected and defined as well elements. 

Unfortunately, as mesh segments are generally not aligned along the well axis, the axis will be 

characterized by a staircase path (Figure 3.9a). In contrast, thanks to the coupling of GOCAD-

LaGriT, it is possible to choose the nodes that will describe the well axis before they are 

connected to tetrahedra. Nodes are chosen knowing the real drilled borehole path. The mesh 

generation procedure described in Chapter 2 ensures that the chosen nodes are connected by 

the edges of tetrahedra. Then, chosen nodes are listed in a *.txt file. The GROK pre-processor 

simply reads in this file and defines as well elements the segments having those nodes as 
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extremities. With this technique, the "staircase" profile of a well axis is replaced by a straight 

line, which corresponds to the inclined axis of the drilled borehole (Figure 3.9b). 

Before 
r Top node 

After 
■r Top node 

Irregular 
well axis 

Bottom node 
x 

Curve reproducing 
real well axis 

Bottom node 
x 

Figure 3.9 - Discretization of inclined wells: a) standard method and b) new method 

Moreover, this discretization technique allows the user to better define the mesh resolution, as 

nodal spacing along well axes should be chosen at the beginning of the mesh generation phase. 

This nodal spacing determines the local refinement around the well (Section 2.2.1.2). Finally, as 

well nodes are known before executing the pre-processor GROK, the node that will act as the 

discharge point of the well during pumping or extraction is more easily chosen at the required 

location along the well axis. 

3.3.4 Output files 

Output files are required to visualize and analyze simulation results. File format depends on 

the type of finite element used in the mesh, as variable values are printed out and visualized for 

each node or element. Thus, it is essential to generate output files adapted to the new 

combination of finite element used here, tetrahedra and triangles. Subroutines that create 

Tecplot and GMS output files have been adapted to the new geometry. A specific header for 

tetrahedral elements has been added in Tecplot output file. Likewise, modifications have been 
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made to generate GMS formatted output: GMS *.2dm file contains fracture triangular mesh 

information, while GMS *.3dm file is formatted for 4-nodes tetrahedral elements. New format 

file options are active only if the switch tetramesh is true, which is the case when a tetrahedral 

mesh built by LaGriT is used. 

3.3.5 Implementation of the Orthogonal Subdomain Collocation (OSC) method 

Major code development has focused on the OSC method as an alternative to the standard 

Galerkin method to evaluate transmissibilities. Implementation of the OSC method required 

adding a code subroutine that evaluates Eq.(3.44). For example, if the first expression of 

Eq.(3.44) is considered here: 

Y 9 = -
K 2 ( r ik-r jk)(r i r r j l ) + Ak-A, {rik-rjk)2 , ( v > ) 

2 \ 

(3.47) 

Figure 3.10 - Tetrahedral face areas used to evaluate transmissibility yu 

Tetrahedral face areas are calculated by the cross product between vectors r, which correspond 

to tetrahedral edges (Figure 3.10): 
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Ak=-n'
x r

u A = - r i j * r i k (3.48) 

A=^{r i ,*r i j ) = -

Xj-x, y j - y , i 

where, for example: 

i j k 
x i ~ x i y t - y t

 z i ~ z i (3-49) 

■ r z i 

Moreover, the following quantity is calculated by the dot product between tetrahedral edges: 

{rik ■ fjk) = [(xk -x , ) - (x k - x j ) + { y k - y i ) - ( y k - y J ) + ( z k - z , . ) \ z k - 2 j ) ] (3.50) 

Eq.(3.47) evaluates the scalar value of transmissibility yu . In anisotropic media, the hydraulic 

conductivity tensor has different components in the three spatial directions. Thus, Eq.(3.47) 

can be applied as presented only if K x = K =K z = K . To overcome this limitation in 

analyzing anisotropic porous media, Putti and Cordes (1998) proposed to use an isotropic 

equivalent system. A relationship exists between solutions of flow problems in isotropic and 

anisotropic systems (Bear and Dagan, 1965; Bear, 2007). This relationship is based on the 

solution of equations on a distorted frame of reference (xeq yeq, zeq) and on the definition of an 

equivalent hydraulic conductivity Kcq: 

(3.51a) 

(3.51b) 

Using these distorted scales, the original problem is first transformed into an equivalent 

isotropic system, solved in that system and then transformed by the same relationships back to 

the original, anisotropic system (Bear, 2007). However, it is not practical to integrate this 

procedure in HydroGeoSphere, especially because of the distortion of the frame of reference. 

Moreover, the transport equation would require an analogous procedure, but in this case the 

extension of Eqs.(3.51a-3.51b) to the hydrodynamic dispersion tensor is not as straightforward 

as it may seem. In fact, even for an isotropic medium, dispersion is related to the longitudinal 

and transversal dispersivities and to the velocity field, as shown by Eq.(3.19). Thus Eq.(3.47) 

cannot be applied because it is not possible to define an equivalent dispersion coefficient as it 

is done for the hydraulic conductivity (Eq. 3.51a). 

*„=</*«*/*. 

X « = X \ K - *-dv. z-H* 
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Thus, a different strategy from that proposed by Putti and Cordes (1998) is developed to apply 

Eq.(3.47) to anisotropic flow fields and transport problems in HydroGeoSphere. The fluid 

conductance matrix can be thought as split into three distinct contributions, as done with the 

Galerkin method in Eqs.(3.34) and (3.35). It should be observed that the scalar value of 

transmissibility yu is given by the ratio F-. / r. , where the numerator represents the area of 

Voronoi face orthogonal to edge r.. As F,, is a vector (Figure 3.11a), its components can be 

used to express the fluid conductance matrix as a sum of three contributions corresponding to 

the three Cartesian directions. These components are shown in Figure 3.1 lb. 

Figure 3.11 - a) Voronoi face vector F„ and b) its components 

To obtain an expression for the OSC method analogous to Eq.(3.33), which is used for the 

Galerkin method, F.. is multiplied by the unit vector components corresponding to the 

tetrahedral edge ru. This computation is justified by the fact that Voronoi face FH is associated 

with edge r„. The unit vector, denoted by rtj , is written as: 

ru = h - x t y j - y» Z J - z i 

V ry 
5 •> 

) 

(3.52) 

By knowing that: 
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rij 
= 1 (3.53) 

The following components are determined: 

(x j -x , ) 
F = F 

* _ y y 

F = F 
y_ v 'J 

F = F . 

( y j - y ) 

h-*) 

(3.54) 

As \r,\ is a scalar value, it is possible to define transmissibility using just the components of FB. 

Therefore, by using Eqs.(3.54) and (3.41) it is possible to write: 

t x _ i j 
F,_u _ F i i ( x j ~ x ) ., (*j-*,) 

\r\ \r\ \r. 
'■■ ' ' ■ ' ' 

Ytj' 

Y -Fyjj-FAyj-y*) = r (yj-y) 
Yyjj P I 'ij \r\ \r\ \r\ 

y y y M 
(3.55) 

Y, a = 
^ _ y _ ^ ( z ; - ^ ) _ „ ( z r 2 ) 

\r\ \r\ 
y " 

= Ya 

■il 

Then, similarly to Eq.(3.33), coefficients of m a t r i c e s ^ , A , andyiz2 for the OSC method 

can now be introduced. They are calculated as follows: 

( x j ~ x i ) 

(3.56) 

Azz_ij - Yij 

The sum of the expressions presented above is equal to the scalar value calculated with 

Eq.(3.47). In fact, it is possible to write: 
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Aa_ti + Ayyjj + 4*_0 - Yij 
x r x i 

+ 
y j - y , 

+ 
Z j - Z , 

y 

v Pi 
(3.57) 

Since from Eq.(3.53) the quantity in square brackets on the right-hand side of Eq.(3.57) is 

equal to 1, it is easily verified that: 

Auj+Ay-V+^^Y» (3-58) 

Thus, it is possible to use Eq.(3.56) to evaluate the fluid conductance matrix, such that 

subsurface flow in anisotropic media and solute transport equations are properly evaluated 

with the OSC method. For example, matrix ^4„ is calculated as: 
r L ** Jose 

I A™ ïoSC ~ 

Yu Yij 
(xj-x,)] 

Yu 

( * / - * / ) 

Ykk Yu 

\ril\ 

(x, - X j ) 

h'\ 
' ( * k ~ X , ) 

Yu 

(3.59) 

Matrices A and Aa I will have a similar expression, but calculated using 

coordinates y and z . Finally, it is possible to write: 

Aosc = K „ [ A* 1 +Km \ An 1 + K B \ A B \ (3.60) 
OSC xx L xx J 0 J C yy \_ yy J o s c zz |_ zz J O J C V J 

Eq.(3.60) is also used to solve the transport equation by replacing the hydraulic conductivity 

with the hydrodynamic dispersion coefficient as follows: 

ASC=DXX[AXX L + ^ K L + A , K L (3.6i) 
The OSC evaluation of fluid conductance matrix coefficients has been implemented in 

HydroGeoSphere following the procedure just presented. Implementation verification is 

presented in the next paragraph by comparison with previous studies and known matrix 

coefficient values for simple meshes. 
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3.3.5.1 Implementation verification 

Two test cases have been designed to verify the implementation of the OSC method and to 

show the difference between Galerkin and OSC methods in the evaluation of the fluid 

conductance matrix. In the first test, a unit cubic nodal distribution has been used and six 

Delaunay tetrahedra (Figure 3.2) have been created with LaGriT and then imported into 

HydroGeoSphere. With the Galerkin method, the global fluid conductance matrix has three 

positive off-diagonal entries (Figure 3.12a), violating the M-matrix definition. Positive off-

diagonal entries correspond to edges (2,3), (4,5), and (6,7). These positive values demonstrate, 

as stated earlier, that in three-dimensions a Delaunay tetrahedralization may not lead to an M-

matrix (Forsyth, 1991; Letniowski and Forsyth, 1991; Letniowski, 1992; Putti and Cordes, 

1998; Cordes and Putti, 2001). 

3/6 -1/6 -1/6 0 -1/6 0 0 0 3/4 -1/4 -1/4 0 -1/4 0 0 0 

5/6 1/6 -3/6 -1/6 -1/6 0 0 3/4 0 -1/4 0 -1/4 0 0 

5/6 -3/6 -1/6 0 -1/6 0 3/4 -1/4 0 0 -1/4 0 

7/6 2/6 -1/6 -1/6 -1/6 3/4 0 0 0 -1/4 

7/6 -3/6 -3/6 0 3/4 -1/4 -1/4 0 

5/6 1/6 

5/6 

-1/6 

-1/6 

3/4 0 -1/4 

3/4 -1/4 

3/6 3/4 

a) Galerkin b)OSC 

Figure 3.12 - Global matrix for 8-node tetrahedral mesh 

In contrast, with the OSC method, off-diagonal coefficients are either zero or negative (Figure 

3.12b). Moreover, they are equal to those given by the LaGriT mesh generator, which is based 

on the Delaunay algorithm and which guarantees that the fluid conductance matrix is a semi-

positive definite matrix, such that flux calculations do not have negative transmissibilities 

(Gable et al., 1996b). In fact, in addition to the generation of tetrahedral meshes, LaGriT also 

provides matrix coefficients, which are calculated considering the Voronoi dual mesh 
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associated with the tetrahedral Delaunay mesh. In Figure 3.12a, a zero coefficient at position 

( i , j ) means that there is no segment in the mesh joining nodes / and j . Furthermore, in 

Figure 3.12b, zero coefficients appear either when the Galerkin method gives a positive off-

diagonal entry or when contributions to ya from distinct elements are of opposite sign. The 

only exact zero connection value corresponds to the diagonal segment joining nodes 4 and 5. 

A second test case is based on the example presented by Letniowski (1992), who considered a 

mesh created by Delaunay triangulation containing five tetrahedra. He applied the Galerkin 

method and showed that Delaunay triangulation does not ensure that an M-matrix is obtained. 

Letniowski's example is also mentioned by Putti and Cordes (1998), who illustrated the 

difference between the Galerkin and OSC methods. These two studies are used here to verify 

the results obtained with the new enhanced HydroGeoSphere version. The mesh considered 

by Letniowski is composed of five tetrahedra (Figure 3.13). Nodal coordinates and the 

connectivity list are shown in Tables 3.3a and 3.3b. 

Figure 3.13 - Tetrahedral discretization used by Letniowski (1992) 
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Table 3.3a - Nodal coordinates (Letniowski, 1992) 

Nodes x y z 

A -2 -2 0.5 

B 0 -2 0.1 

C -2 0 0.1 

D 0 0.1 0 

E -2 -2 -0.25 

F -2 -2 1.5 

Table 3.3b - Connectivity list for Letniowski's example 

Tetrahedron Nodel Node2 Node3 Node4 

1:ABDF 1 2 4 6 

2: ACDF 1 3 4 6 

3: ABCE 1 2 3 5 

4: BCDE 2 3 4 5 

5:ABCD 1 2 3 4 

Transmissibilities associated with edges AD and BC are presented in Tables 3.4a and 3.4b, 

respectively. The Galerkin method gives a value equal to 2.208 for edge connection AD and 

3.695 for edge connection BC. In contrast, with the OSC method, negative values equal to -

3.287 x 10"3 and -2.168 x 10'2 are calculated, respectively, for edges AD and BC. These negative 

values coincide with those calculated by Putti and Cordes (1998), providing a verification of 

the correct implementation of the OSC method in HydroGeoSphere. It can be observed that 

the global yu coefficients calculated with the OSC method are always negative or zero, such 

that an M-matrix is obtained. Although some elemental contributions can be positive, like 

YACDF m Table 3.4a, the global coefficient is never positive if the OSC method is applied. 

Therefore, the OSC method ensures that an M-matrix is obtained. 



Table 3.4a - Transmissibility values for segment AD 

Tetrahedron yAD Galerkin method yAD OSC method 

ABDF -0.0159 -7.293 x 10-3 

ACDF -0.005 1.1796xl0-2 

ABCD 2.229 -7.790 x 10-3 

Y G = y A B D F ACDF AM 
i AD t AD T I AD T t AD 

ABCD 

GLOBAL y% 2.208 -3.287 x IO-3 

Table 3.4b - Transmissibility values for segment BC 

Tetrahedron yBC Galerkin method yBC OSC method 

-1.669x10-* 

-7.595 x 10-3 

-1.392xl0-2 

V G _ ABCE BCDE ABCD 
Y B C Y B C ~*~YBC ~*~YBC 

ABCE 0 

BCDE 1.469 

ABCD 2.226 

GLOBAL y° c 3.695 -2.168x10-2 
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The two test cases just presented demonstrate the correct implementation of tetrahedral 

meshes and the OSC method in HydroGeoSphere. In the first example, fluid conductance 

matrix coefficients computed with HydroGeoSphere are compared to those computed by 

LaGriT, while in the second example they are compared with those presented by previous 

studies (Letniowski, 1992; Putti and Cordes, 1998). Both examples demonstrate that 

coefficients are correctly calculated by the enhanced numerical code. Moreover, these 

examples highlight that a Delaunay mesh produces an M-matrix only if the OSC approach is 

applied. In contrast, with the standard Galerkin method, positive off-diagonal matrix 

coefficients arise. 



Chapter 4 

Verification and illustrative examples 

The purpose of this chapter is to show the correct numerical solution of subsurface flow and 

mass transport equations on a fully 3D tetrahedral mesh with the enhanced HydroGeoSphere 

version. Simple domain geometries and simulation scenarios are chosen to verify the modeling 

approach that combines the three software tools (GOCAD, LagriT, and HydroGeoSphere). In 

fact, it is preferable to use simple cases to check mesh information, compatibility of 

input/output files between different software tools, and simulation results. This chapter 

focuses on a clear presentation and verification of the modeling approach presented in 

Chapters 2 and 3. Analytical solutions and numerical results obtained with block-based finite 

element meshes are employed to verify simulation results obtained with tetrahedral meshes. 

These results are presented in Section 4.1. Then, illustrative examples are presented in Section 

4.2 to illustrate the modeling capabilities of the enhanced numerical code version, especially in 

relation to mesh refinement and representation of fracture-well intersections. These 

verifications are necessary before applying the modeling approach to real case studies, which 

are generally much more complex. An application to a real site will be presented in Chapter 5. 
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4.1 Verification examples 

The enhanced HydroGeoSphere numerical code is verified by comparing numerical results 

obtained with tetrahedral and block-based meshes. The term "block" refers to the same 

element cited in Chapter 2 as a hexahedron, which is an eight-node element with six 

quadrilateral faces. Moreover, analytical solutions, when they can be applied, are also used as 

comparative tools. Simple domain geometries characterized by only one discrete fracture are 

chosen here, to facilitate the verification of simulation results. A pumping well is considered in 

test case 1. Because fractures and wells are included in the various simulation scenarios, it 

should be mentioned how the hydraulic conductivity of these elements is evaluated by the 

numerical code. The saturated hydraulic conductivity of a fracture having a uniform aperture 

2b is calculated by HydroGeoSphere as follows: 

where p and // are the water density and viscosity, respectively. The hydraulic conductivity of 

wells with screen radius r is obtained from a similar formula: 

K-r 2^- (4.2) 
8// 

Before presenting the solute transport simulations, the first test case focuses only on a 

subsurface flow simulation. As the groundwater flow field is always calculated by 

HydroGeoSphere at the beginning of every simulation, it is important to verify its computation 

as a first verification step. In this way, possible errors in the fluid conductance matrix 

evaluation can be detected and fixed before they affect the solute transport solution. Once the 

groundwater flow solution is shown to be correct, other test cases are designed to simulate the 

temporal variation of solute concentration. Unless mentioned otherwise, mass transport refers 

to a general solute component, which, for example, may represent a contaminant or a tracer. 

Only the transport simulation results are presented, except when the hydraulic head 

distribution is of special interest. In general, for the test cases presented, unidirectional flow is 

imposed and a simple hydraulic head distribution is obtained. Implicit transport time weighting 

and upstream weighting of velocities are adopted, as both options have a positive effect on the 

computation of solute concentration, reducing numerical oscillations. The Peclet number is 

kept as small as possible, depending on mesh element size. The comparison between the OSC 
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and Galerkin methods is presented by analyzing the simulation results. The aspect ratio of the 

simulation domains considered in this section always exceeds ratio limits considered by 

Tecplot, which automatically adjusts this ratio to visualize the domain with reasonable and 

convenient shape and size. 

The following test cases are presented in this section: 

1. Test case 1 : 

Pumping well in an anisotropic aquifer with a single horizontal fracture 

2. Test case 2: 

Horizontal fracture 

3. Test case 3: 

Inclined fracture in a low permeability porous rock 

4. Test case 4: 

Inclined fracture in an impermeable rock 

4.1.1 Test case 1 - pumping well in an anisotropic aquifer with a single horizontal 

fracture 

The purpose of this example is to show the correct implementation of the OSC method if an 

anisotropic hydraulic conductivity tensor is considered. As explained in Chapter 3, the OSC 

method presented by Putti and Cordes (1998) has been adapted here to anisotropic porous 

media assuming a similar computation to that used with the Galerkin method. Although 

Cordes and Putti (2001) presented a strategy for solving the anisotropic tensor, they did not 

present a numerical example for an anisotropic aquifer. Moreover they considered only 

groundwater flow problems. In contrast, one of the objectives of this study is to extend the 

application of the OSC method to transport problems. Fluid conductance matrix coefficients, 

or transmissibilities, are evaluated just once during the numerical solution, but are used to 

solve both subsurface flow and transport equations. The calculation of transmissibilities is first 

verified for the solution of subsurface flow in an anisotropic aquifer. 
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The simulation domain has dimensions of 500 m x 500 m x 20 m and represents a 

homogeneous anisotropic aquifer with a vertical pumping well placed at its center and crossing 

the entire aquifer thickness. Moreover, a fracture cuts the whole domain horizontally and 

intersects the well axis at z = 10 m (Figure 4.1). The hydraulic conductivity Kx is two orders 

of magnitude lower than K (Table 4.1). Specified heads equal to 35 m are imposed at all 

boundaries and drawdown at the pumping well is observed. N o mesh refinement is performed. 

z w 
y 

^_ill__fracture 

well 

->»-<<r_  

Figure 4.1 - Simulation design for test case 1 

Table 4.1 - Simulation parameters for test case 1 

Parameter definition Value 

Matrix hydraulic conductivity Kx = Kz [m/y] 5 

Matrix hydraulic conductivity K [m/y] 100 

Fracture aperture 2b [m] 4 x 104 

Specific storage Ss [nr1] 1 x 105 

Pumping rate Q [m3/y] 5000 

Well casing and screen radius r [m] 0.01 

The simulation is executed with both Galerkin and OSC methods to compare steady-state 

hydraulic head values. As the Galerkin method was already implemented in previous 
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HydroGeoSphere versions, it is used to confirm the implementation of the OSC method. 

Steady-state hydraulic head isocontours are shown in Figure 4.2. Simulation results confirm the 

aquifer anisotropy; since hydraulic conductivity K is smaller, head isocontours have an 

elliptical shape instead of being perfecdy circular as is the case for an isotropic aquifer (Figure 

4.2). Hydraulic head isocontours in Figure 4.2a and Figure 4.2b are identical, demonstrating the 

correct evaluation of the fluid conductance matrix with the OSC method. Thus, the 

development described in Section 3.3.5 and, particularly, Eq.(3.59), are verified by this simple 

example, which demonstrates that the anisotropic hydraulic tensor is properly integrated in the 

numerical solution. 
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Figure 4.2 - Hydraulic head steady-state isocontours 

The minimum steady-state hydraulic head at the pumping well is presented in Table 4.2, which 

shows that the two methods give comparable results. It is reasonable to obtain a small 

difference in hydraulic heads because fluid conductance coefficients, or transmissibilities, are 
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evaluated on the basis of a different control volume dual mesh. As already shown in Putti and 

Cordes (1998) and explained in Chapter 3, the Galerkin method uses the median dual mesh, 

while the OSC method considers the Voronoi dual mesh. 

Table 4.2 - Minimum hydraulic head at the pumping well 

Numerical method HMIN [m] 

Galerkin 20.6 

OSC 20.2 

To analyze the effect of the fracture on the groundwater field, hydraulic conductivity values of 

the rock are reduced by an order of magnitude. If the aquifer is characterized by a lower 

permeability and the pumping rate is kept the same, a bigger volume of water is extracted from 

the fracture. Table 4.3 presents hydraulic heads and flow rates at well nodes, whose 

coordinates are listed in the last three columns on the right. Even if the discharge point is 

placed at the top of the domain, z = 20 m, the bigger inflow is at the intersection between the 

vertical well and the horizontal fracture. The negative value indicates flow from the fracture to 

the well, as is expected since water is extracted from the aquifer by pumping. Hydraulic heads 

are lower than the values shown in Table 4.2 because the hydraulic conductivity of the porous 

matrix has been reduced, as mentioned above. Thus, this simulation also demonstrates that the 

representation of the intersection between the pumping well and fracture is properly 

reproduced in the tetrahedral mesh. 

Table 4.3 - Hydraulic heads and flow rates at pumping well nodes 

Head [m] Flux [m Vy] x[m] y M z[m] 
-31.3 -478.6 250 250 0 
-32.1 -994.2 250 250 5 
-34.6 -1586.2 250 250 10 
-39.7 -1194.6 250 250 15 
-46.9 -746.3 250 250 20 
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Now that the evaluation of the groundwater flow field has been verified, transport simulations 

can also be considered, as done in the next test cases. 

4.1.2 Test case 2 - horizontal fracture 

The new modeling approach is verified here with an example previously solved both 

analytically and numerically with the block-based mesh. In this test case, the propagation of 

uranium isotope U234 along a horizontal fracture embedded in a porous rock matrix is 

simulated. The horizontal fracture was created in GOCAD and then imported into LaGriT to 

build the 3D tetrahedral mesh. Although the use of GOCAD is not necessary to represent a 

single horizontal fracture, it is employed here to verify the coupling between software tools. 

Once the simulation domain is discretized, LagriT files containing tetrahedral and triangular 

mesh information become input files for HydroGeoSphere. Now the numerical code selects 

fracture faces with the new approach described in Section 3.3.2. Nevertheless, in this simple 

case, fracture faces could also be selected using the existing HydroGeoSphere commands, as 

the fracture is horizontal and the faces to chose lie on a horizontal plane. Considering a very 

simple geometry represents the first step to verify the proposed modeling approach. 

The simulation scenario comes from the numerical example already treated in Therrien et al. 

(2007). The fracture is defined by the xy plane located at z = 0.05 m and cuts through the 

whole domain. A first-type solute source is imposed at the right extremity of the fracture, at x 

= 0 m. A hydraulic head gradient equal to 1.305 x 10"2 is imposed along the x-axis reproducing 

unidirectional flow (Figure 4.3). The domain contains 3025 nodes (respectively 121, 5 and 5 in 

the x, y, and z directions), it has a unit thickness in the y-direction, a length of 30 m in the x-

direction and a length of 0.1 m in the z-direction. Thus, nodal spacing orthogonal to the 

fracture is equal to 0.025 m. Domain dimensions have high aspect ratio and no refinement is 

done to avoid obtaining badly-shaped tetrahedra. The nodal distribution described above is 

also used to build block elements to execute the same simulation in a different finite element 

mesh and to compare these numerical results with those obtained with the tetrahedral mesh. 



82 

<£ 
Flow direction 

r 
Horizontal fracture 

w Co = l 

x « - / 

Figure 4.3 - Simulation design for test case 2 

The same problem is also solved with the analytical solution CRAFLUSH (Sudicky, 1988), 

which solves the transport equation in a system of parallel fractures with matrix diffusion and 

longitudinal dispersion along the fracture. CRAFLUSH numerically inverts the Laplace 

transformed solution that is presented in the studies of Tang et al. (1981) and Sudicky and 

Frind (1982). The solution takes into account advection and longitudinal mechanical dispersion 

in the fracture, molecular diffusion along the fracture and from the fracture into the matrix, 

adsorption and radioactive decay of solutes. All these processes are also simulated by the 

numerical code HydroGeoSphere. 

Simulation parameters are listed in Table 4.4. Mechanical dispersion through the porous rock 

matrix is neglected by setting the dispersivity to zero. Several observation points are placed 

along the fracture to visualize thé concentration profile, which is presented in Figure 4.5. A 

maximum concentration variation of 0.01 is imposed for each time-step. Final simulation time 

is set to 10000 years. 
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Table 4.4 - Simulation parameters for test case 2 

Parameter definition Value 

Matrix hydraulic conductivity K [m/y] 8.6 x 106 

Matrix porosity 0 [-] 0.01 

Tortuosity T [-] 0.1 

Fracture aperture 2b [m] 1 x 104 

Fracture spacing B [m] 0.1 

Fracture longitudinal dispersivity OCL [m] 1 

Free solution diffusion coefficient Do [m2/y] 3.1 x lO2 

Volumetric distribution coefficient K<j [kg/m3] 7.1 x 102 

Solute half-life T1/2 |y] 245000 

Uranium [-] 
■ 
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Figure 4.4 - Concentration isocontours for test case 2 after 10000 years 

Concentration isocontours indicate the preferential propagation along the fracture (Figure 4.4). 

The decay and sorption of U234, represented by its large retardation factor, slows down its 

migration; after 10000 years, the contamination plume has only traveled 2.5 m. Because the 

concentration rapidly decreases to zero away from the fracture, Figures 4.4 and 4.5 present 

simulation results only for the first 1 0 m from the contamination source 
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Figure 4.5 - Breakthrough curves for test case 2 

Results obtained using HydroGeoSphere with the newly-implemented tetrahedral mesh agree 

very well with results obtained with the analytical solution CRAFLUSH and with the block-

based mesh (Figure 4.5). Because the fracture is horizontal, the use of blocks or tetrahedra 

does not affect the geometry of the discretized fracture and numerical results match the 

analytical solution, which assumes that the fracture is planar. 

4.1.3 Test case 3 - inclined fracture in a low permeability porous rock 

The simulation domain has a length of 10 m and 12 m in the vertical and horizontal directions, 

respectively, with a unit thickness in the third direction. An inclined fracture (about 40°) 

crosses the whole domain. A hydraulic head difference equal to 0.5 m is imposed along the x-

axis. A constant concentration of solute equal to 1.0 is imposed on the top of the domain, at z 

= 10 m (Figure 4.6, test case 3). All other boundaries are assigned zero dispersive flux for 

transport. Simulation parameters are listed in Table 4.5. 
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Figure 4.6 - Simulation design for test cases 3 and 4 

Table 4.5 - Simulation parameters for test case 3 

Parameter definition Value 

Matrix hydraulic conductivity K [m/y] 

Matrix porosity 0 [-] 

Tortuosity t [-] 

Fracture aperture 2b [m] 

Fracture and matrix longitudinal dispersivity <XL [m] 

Free solution diffusion coefficient Do [m2/y] 

0.86 

0.35 

0.1 

0.0002 

0.1 

0.16 

Three different fracture configurations are considered here: two are based on a block-based 

mesh (Figures 4.7a and 4.7b), while the third configuration is obtained with the tetrahedral 

mesh (Figure 4.7c). Only the tetrahedral mesh exactly reproduces the inclined plane of the 

fracture. In contrast, fracture configurations obtained with a block-based mesh generate a 

staircase path for the fracture, which lengthens the solute travel distance. Therefore, solute 

breakthrough curves will be influenced by the discretization of the inclined fracture, as will be 

shown later. 
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Configuration 1: 
Block stairway 

Configuration 2: 
Block internal faces 

Configuration 3: 
Tetrahedra 

a) b) c) 

Figure 4.7 - Different discretizations for inclined fractures 

The block-based mesh contains 1612 nodes, with 31 nodes along the x-axis, 26 along the z-

axis, and 2 along the y-axis. From this nodal distribution, 750 block elements are generated. 

The tetrahedral mesh was generated from the same nodal distribution resulting in a nodal 

spacing equal to 0.4 m far from the fracture. Then, two successive refinement steps produced a 

finer mesh near the fracture, where nodal spacing is now 0.1 m (Figure 4.8). Nodal spacing on 

the fracture surface is equal to 0.125 m. The refined tetrahedral mesh contains 11105 nodes 

and 51223 elements. To obtain the same resolution near the fracture, with a block-based mesh, 

the whole domain has to be finely discretized with blocks 0.1 m long, resulting in a mesh 

containing 24442 elements and 12000 nodes. 

An observation point is located at coordinates (6,0,5), where the solute breakthrough curve is 

computed. The maximum concentration change for a time-step is set to 0.1 and the final 

simulation time is 5 years. By observing concentration isocontours (Figure 4.9), it is clear that 

the fracture strongly controls the solute migration. Isocontours are shown only for the 

tetrahedral mesh, but there is no visible difference in their shape if the block-based mesh, the 

OSC or the Galerkin methods are used. 
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Figure 4.8 - Tetrahedral mesh with refinement around fracture 
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Figure 4.9 - Concentration isocontours for test case 3 after 5 years 

Differences can be observed if single concentration values are observed. In particular, it is 

interesting to observe the difference between Galerkin and OSC methods by considering 

relative concentration minimum values C/C0, which should be zero and never negative. The 

smallest concentration value obtained with the Galerkin method is equal to -9 x 106, while the 

OSC method gives exactly 0, which is equal to the initial concentration set for the simulation. 

Although the value obtained with the Galerkin method is almost zero and it is acceptable, it is 
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obvious that the OSC method seems to be a better solution procedure. Other examples, in the 

next paragraphs, will show the same tendency, suggesting that the OSC method is more 

accurate than the Galerkin method to solve the mass transport equation. 

Other differences in numerical results arise if breakthrough curves computed at the 

observation point are considered. In reference to the fracture configurations shown in Figure 

4.7, the corresponding curves are presented (Figure 4.10). A distinction between simulations 

made on tetrahedral mesh solved with the Galerkin or OSC method is made. Curve shapes 

reflect the difference in the fracture path length. With the tetrahedral mesh, the fracture is 

represented by an inclined plane joining the domain extremities, without lengthening the solute 

pathway. As a result, the solute breakthrough curve for the tetrahedral mesh is the first one 

from the left (Figure 4.10). In contrast, the fracture path is the longest with the Block Stairway 

configuration and the corresponding curve moves to the right. Finally, the Block Internal 

Faces configuration produces a curve that is halfway between the previous ones, as the fracture 

path length is shorter than the Block Stairway but longer than the Tetrahedra configuration. 

Furthermore, a small difference in the shape of the breakthrough curve can be observed 

between the Galerkin and OSC methods for concentration values between 0.8 and 0.9. 

. Tetrahedra: Galerkin Tetrahedra: OSC 
Block Internal Faces Block Stairway 

Figure 4.10 - Breakthrough curves for test case 3 



89 

Only with the tetrahedral mesh it is possible to refine the mesh locally around the fracture. 

Refinement orthogonal to a fracture plays a major role in the case of low matrix diffusion 

(Weatherill et al., 2008). Thus, a tetrahedral mesh offers more flexibility and it is more suitable 

than a structured mesh to discretize discretely-fractured media, especially if irregular fractures 

have to be represented. Furthermore, fractures are discretized with the path length attributed 

during the geomodeling phase, no matter if they are planar or not. In conclusion, the greatest 

advantage is that the mesh generation procedure adopted here allows for easy refinement 

around fractures, representing a great asset for the accuracy of the numerical solution. For 

example, Weatherill et al. (2008) stated that spatial grids have to be fine at the fracture-matrix 

interface and in cases of low matrix diffusion they need to be on the scale of the fracture 

aperture to accurately simulate solute transport. 

4.1.4 Test case 4 - inclined fracture in an impermeable porous rock 

The next simulation, test case 4, verifies the fracture behavior. The geometry is the same used 

in the previous example, but now the source of concentration is imposed at the extremity of 

the fracture (Figure 4.6, test case 4). In contrast to the previous example, the porous rock 

matrix is now considered impermeable. As a result, flow and solute propagation are restricted 

to the fracture. Fracture parameters are the same as those listed in Table 4.5. As the 

surrounding rock matrix is considered impermeable, solute propagation along the fracture can 

be evaluated with the simplified Ogata-Banks analytical solution, which is applicable when the 

observation point is far from the source, such as considered in this case. In fact, the 

observation point is located at half-way along the fracture, at the node with coordinates (6,0,5), 

which is 8 m far from the top of the fracture, where the concentration c0 is imposed. The 

simplified Ogata-Banks solution expresses concentration as: 

c(x,t) = -^-erfc ' , - v P (4.3) 

J 2kdDt 

where D is the hydrodynamic dispersion coefficient, v is the velocity along the fracture, x is 

the distance between the observation point and the source, and t is the time. Simulation 

results are shown in Figure 4.11. The difference from Figure 4.9 is clear, where propagation 
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also took place orthogonally to the fracture, due to diffusion and dispersion through the 

porous rock matrix. In contrast, in this case, the propagation occurs only along the plane of 

fracture and, therefore, is much faster. 
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Figure 4.11 - Concentration isocontours for test case 4 after 5 years 

The three fracture configurations presented above (Figure 4.7) are considered again here. 

Breakthrough curves computed at the observation point of coordinates (6,0,5) are shown in 

Figure 4.12, to highlight the influence of the fracture path length on solute migration. 
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Figure 4.12 - Breakthrough curves for test case 4 
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The tetrahedral mesh gives a good approximation of the Ogata-Banks analytical solution, 

better than the Block Internal Faces configuration. If the analytical solution and the tetrahedral 

mesh configuration are considered, it can be observed that the advective front reaches the 

observation point at the same time, while there is a slight difference in the spreading of solute 

around the advective front. The Block Stairway configuration is obviously the worst, as the 

solute travel distance is lengthened compared to that for a planar fracture. Thus, the mesh 

generation process adopted here leads to a representation of inclined fractures that is the 

closest one to the analytical solution. 

4.2 Illustrative examples 

Illustrative examples show the capabilities of the new modeling approach for cases closer to 

real field situations. Simulation scenarios have been designed to check specific modeling 

aspects of special interest for the application to a real site that will be shown in Chapter 5. The 

complexity of the scenarios increases gradually. At first, in test case 5, an inclined pumping 

well is considered to illustrate the advantage of using a tetrahedral mesh. Then, a discrete 

fracture is incorporated in test cases 6 and 7, to confirm the representation of intersections 

between the fracture and well. Finally, in the last illustrative example, a network of three 

irregular fractures is considered to verify the correct representation of their intersections. 

The Galerkin and OSC methods will be compared by observing simulation results. Moreover, 

it should be noted that, contrary to the test cases presented in Section 4.1, discrete fractures no 

longer extend to the external boundary of the simulation domain. Thus, the test cases 

presented in this section demonstrate that there is no limitation to represent fractures that do 

not extend to the external domain boundary, as explained in Chapter 1 in relation to previous 

studies in discretely-fractured media, which often had this limitation. 

In summary, the following test cases are presented in this section: 

1. Test case 5: 

Discretization of an inclined well 

2. Test case 6: 
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Contamination propagation: fracture and open borehole 

3. Test case 7: 

Contamination propagation: fracture and pumping wells 

4. Test case 8: 

Contamination propagation: network of irregular fractures 

4.2.1 T e s t case 5 - discret izat ion of an incl ined p u m p i n g well 

This illustrative example is designed to show the advantage of using tetrahedra to discretize 

inclined wells. An inclined well is first discretized for a mesh made of blocks and then for 

another mesh made of tetrahedra. Mesh refinement and hydraulic head isocontours are 

compared to show the influence of different mesh types on numerical results. The domain is 

1000 m long in each spatial direction. The pumping well crosses the whole aquifer thickness: 

the well top and bottom nodes are placed, respectively, at coordinates (500,500,1000) and (500, 

350,0). The transient flow option is chosen: the well is pumping during the first 73 days and 

then recovery is simulated and, after 145 days, the initial head distribution is naturally 

reestablished. A hydraulic head equal to 15 m is specified at the boundaries. The same head 

value is used as the initial head. Other simulation parameters are listed in Table 4.6. 

Table 4.6 - Simulation parameters for test case 5 

Parameter definition Value 

Pumping rate [m3/y] 5000 

Well casing radius [m] 0.076 

Specific storage [m1] 1 x 105 

Hydraulic conductivity [m/y] 3.16 

As mentioned above, different mesh types are employed here. Two meshes are based on 

uniform size blocks, while the third one on variable size blocks. The fourth and fifth meshes 

are based on the same refined tetrahedral mesh, but the two different numerical methods, 

Galerkin and OSC, are used (Table 4.7). In the refined meshes presented, the shortest edge is 6 
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m long. Although to obtain this resolution around the well about 59000 tetrahedra are enough, 

more than the double number of blocks is required. Simulations are executed on the same 

computer to compare CPU time. If values listed in Table 4.7 are observed, it can be observed 

that CPU time for the refined tetrahedral meshes is significantly shorter than the meshes with 

fine block elements. In fact, with the tetrahedral mesh it is possible to refine the mesh just 

locally around the well, ensuring optimal resolution and avoiding large CPU times. Finally, the 

CPU time difference between OSC and Galerkin methods is not relevant for this test case. 

Table 4.7 - Inclined well discretizations 

Mesh type B J 1 U XT J CI U W e l 1 C P U 

Edge lengths Nodes Elements HMIN , 
° nodes time Uniform coarse blocks 

Uniform fine blocks 

Refined blocks 

Refined tetrahedra OSC 
Refined tetrahedra 
Galerkin 

50 m 9261 8000 13.92 21 8s 
20 m 132651 125000 13.68 51 136 s 
6-100 m 134064 123246 13.4 168 169 s 
6-100 m 10431 58915 13.65 201 33 s 

6-100 m 10431 58915 13.66 201 30 s 

It is interesting to observe the well axis after its discretization (Figure 4.13). If the block-based 

mesh is used, the resulting well axis has a stairway shape. In contrast, it is possible to 

reproduce the real well geometry with the tetrahedral unstructured mesh. In that case, the 

discretization technique does not affect the axis geometry, as presented in Figure 4.13d, where 

only the boundary elements are shown to highlight the shape of the discretized well axis, which 

is perfectly linear. 
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Figure 4.13 - Different discretizations of the same inclined well 

Numerical results are shown for a slice inside the domain, at x = 400 m (Figure 4.14). Head 

isocontours are influenced by the discretization of the well axis: coarse elements around the 

well cause the shape of the isocontours to be irregular and almost unrealistic, as three marked 

discontinuities are visible (Figure 4.14a). If block elements around the weU are smaller, the 

discretized well is closer to the real inclined axis (Figure 4.14b). Thus, with a properly refined 

block-based mesh, hydraulic head isocontours will not be affected by the discretization, but the 

CPU time will be much longer (Table 4.7). Thus, the unstructured tetrahedral mesh is the best 

solution to discretize inclined wells, because it offers the best resolution with the lowest 

computing time. 
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Figure 4.14 - Hydraulic heads around the inclined well at the end of pumping after 73 days 

In conclusion, the new approach developed and explained in Section 3.3.3 represents an 

interesting and suitable technique to reproduce inclined wells in simulation scenarios. This 

technique is based on the identification of mesh segments joining the well nodes listed in the 

HydroGeoSphere input file. These nodes describe the real well axis thanks to the modeling 

approach that couples HydroGeoSphere with GOCAD. Therefore, this technique provides 

accurate resolution with reasonable computing effort. 

4.2.2 Test case 6 - contaminant propagation: fracture and open borehole 

This illustrative example is designed to show the effects of open boreholes and fractures on 

solute propagation. The borehole is represented by a discretized well with zero flowrate. The 

borehole intersects a discrete fracture embedded in a low permeability porous rock matrix. A 
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unit concentration is imposed on a block of nodes around the fracture, at a depth of about 600 

meters. A hydraulic gradient equal to 0.036 is imposed along the y direction (Figure 4.15). The 

hydraulic conductivity difference between the porous rock matrix and fracture is seven orders 

of magnitude (see Table 4.8). 

Figure 4.15 - Simulation design for test case 6 

The tetrahedral mesh contains about 237000 tetrahedra. Local mesh refinement is performed 

around the well and near the fracture and the nodal spacing along the well axis is about 6 m, 

while far from the well and the fracture the nodal spacing is 100 m. The fracture has 4544 

triangular elements and 2365 nodes, while the well axis is discretized with 151 nodes. The 

intersection between the well and the fracture is located at node 143, while the withdrawal 

node is chosen at the bottom of the well, node 151, as printed in the *.eco file by the 

preprocessor GROK (Figure 4.16). 

The time-step length is modified as the solution proceeds using adaptive time-steps based on a 

maximum absolute change in nodal concentration equal to 0.15. Simulation parameters are 

listed in Table 4.8. 
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Data for pumping/injection well: 1 

Well is fluid filled 
Well name: Pumping well 
Well radius: 0.10000E-01 
Casing radius: 0.10000E-01 
Well conductivity: 0.34393E+10 
Well storage coefficient: 0.43149E-05 
Pumping/injection schedule 

Time on Time off Flowrate 
0.00000 0.100000E+31 0.00000 

Number of well nodes: 151 
Well nodes x-y-z location 

143 1525819 6792240 -822 —> fracture 

151 1525814 6792255 -868 —> Injection/withdrawal node 

Figure 4.16 - Open borehole description (from G R O K *.eco file) 

Table 4.8 - Simulation parameters for test case 6 

Parameter definition Value 

Matrix hydraulic conductivity K [m/y] 0.864 

Porosity 0 [-] 0.38 

Tortuosity T [-] 0.35 

Matrix longitudinal dispersivity 0CL [m] 50 

Matrix transverse dispersivities CCT [m] 10 

Fracture aperture 2b [m] 4 x l 0 6 

Fracture longitudinal dispersivity a L [m] 20 

Fracture transverse dispersivity CCT [m] 5 

Free solution diffusion coefficient D 0 [m2/y] 0.16 

Well casing and screen radius r [m] 0.01 

The open borehole constitutes a preferential path for solute transport, as does the fracture. It 

is possible to observe this behavior in Figure 4.17, where the solute plume follows the fracture 

trace, moves up the borehole, and reaches the surface. 
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Figure 4.17 - Hydraulic heads (slice orthogonal to the z-plane) and concentration isocontours 

(along the fracture and the borehole) shown after 1000 years 

A close-up of Figure 4.17 is provided in Figure 4.18, to highlight the solute plume along the 

fracture and borehole. A comparison of the Galerkin and OSC methods shows that the 

isocontours are almost identical. 

Figure 4.18 - Concentration isocontours at slice x = 1525800 m after 1000 years 

If minimum relative concentration values are considered, a small difference can be observed 

between the Galerkin and OSC methods, as presented in Table 4.9. The minimum relative 
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concentration value should be zero, which is the initial concentration value imposed at the 

beginning of the simulation. Furthermore, negative concentrations are unreal and non-physical, 

simply representing numerical errors. It can be observed that the OSC method gives a value 

nearer to zero than the Galerkin method, even if any error in the visualization of concentration 

isocontours arises. 

Table 4.9 - Minimum relative concentration values for test case 6 

Mesh type C\ -.VAN 

Galerkin 1 -0.004 

OSC 1 -1.7 xlO-7 

If this test case is simulated using smaller rock matrix dispersivities (25 m and 2.5 m for 

longitudinal and transverse dispersivity, respectively) and higher hydraulic conductivity (10 

m/y), but keeping the same mesh, numerical errors appear if the Galerkin method is applied. 

In fact, when concentration results are visualized, the isocontour of concentration equal to 

zero, normally not present, is now shown. In contrast, with the OSC method no errors are 

visualized, even if concentrations are slightly negative (Table 4.10). 

Table 4.10 - Minimum relative concentration values for test case 6 modified 

Mesh type CMAX CMIN 

Galerkin 1 -0.0503 

OSC 1 -0.0094 

4.2.3 Test case 7 - contaminant propagation: fracture and pumping wells 

A simulation scenario similar to the previous one is considered here. The main difference is 

that the open borehole is replaced by three vertical pumping wells located upstream of the 

fracture. Moreover, the concentration source is moved upstream of the fracture (Figure 4.19). 

This simulation scenario has been designed to reproduce solute propagation with and without 

pumping. The specific goal is to verify that the numerical solution based on the tetrahedral 
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mesh correctly simulates solute transport when pumping wells and discrete fractures are 

concomitant. Again, time-step length is modified as the solution proceeds using adaptive time-

steps based on a maximum absolute change in nodal concentration equal to 0.15. Simulation 

parameters are listed in Table 4.11. 

Figure 4.19 - Simulation design for test case 7 

Table 4.11 - Simulation parameters for test case 7 

Parameter definition Value 

Hydraulic conductivity rock K [m/y] 10 

Fracture aperture 2b [m] 5 x 106 

Porous rock and fracture longitudinal dispersivity a L [m] 25 

Porous rock and fracture transverse dispersivities OtT [m] 2.5 

Free solution diffusion coefficient D 0 [m2/y] 0.16 

Porosity 0 [-] 0.38 

Tortuosity T [-] 0.35 

Well casing and screen radius r [m] 0.01 

Concentration isocontours at x= 1525800 m are presented in Figure 4.20. Both wells and 

fracture traces are visible. As wells intersect the fracture, it is clear that with a proper pumping 

rate solute propagation is slowed down and migration along the fracture is stopped (Figure 
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4.20c and 4.20d). As the rock matrix is characterized by a low permeability, the propagation 

takes place mainly by molecular diffusion through the porous rock matrix. In contrast, solute 

moves preferentially by advection along the discrete fracture of aperture 500 u.m when there 

are no wells in the simulation scenario. If the Galerkin and OSC results are compared, it can be 

observed that propagation along the z direction is reduced with the OSC method, even if 

dispersivity values are the same. This effect may be due to the different definition of control 

volumes, as already mentioned. 

c /c . (-] 

a) Galerkin, no wells b) OSC, no wells 

c) Galerkin, wells d) OSC, wells 

Figure 4.20 - Concentration isocontours after 500 years: fracture and well traces are shown 

If minimum relative concentration values are observed, it is possible to note that with the OSC 

method, concentrations are nearer to zero than with the Galerkin method, regardless of 

whether pumping wells are included in the simulation or not (Table 4.12). 
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Table 4.12 - Minimum relative concentration values for test case 7 

Mesh type CviAX CMIN 

Galerkin, no wells 1 -0.0014 

OSC, no wells 1 -6.0 x 10 8 

Galerkin, pumping wells 1 -0.0017 

OSC, pumping wells 1 -2.8 x IO-» 

4.2.4 Test case 8 - contaminant propagation: network of irregular fractures 

The purpose of this test case is to verify the solute propagation along intersecting fractures. 

Fracture intersections have been modeled in GOCAD, as explained in Chapter 2. Simulation 

results presented here verify the proper topology of fracture intersections. In particular, the 

commonality of nodes at intersecting lines is properly considered by the numerical solution if 

plume propagation follows the intersection line patterns. Otherwise, if fractures have no 

mutual nodes, solute will propagate independently along each fracture. 

The simulation domain covers an area of 3 km x 4 km and has a thickness of 1.4 km. Three 

fractures are placed at its center (Figure 4.21). The porous rock is characterized by a very low 

permeability, while the fractures have a high hydraulic conductivity due to their apertures. A 

difference in hydraulic heads is imposed along the y direction. A specified unit concentration is 

imposed within the xz plane located at y = 6791100 m, while the inflow boundary at the xz 

plane located at y = 6791000 m is set to zero concentration. Porous rock and fracture 

dispersivity values are chosen in relation to the mesh element size to keep the Peclet number 

small and, consequently, to avoid numerical errors. Time-step length is modified as the 

solution proceeds using adaptive time-steps based on a maximum absolute change in nodal 

concentration equal to 0.1. Simulation parameters are listed in Table 4.13. 



103 

Figure 4.21 - Simulation design for test case 8 

Table 4.13 - Simulation parameters for test case 8 

Parameter definition Value 

Hydraulic conductivity rock K [m/y] 

Rock matrix longitudinal dispersivity OC, [m] 

Rock matrix transverse dispersivities CCT [m] 

Free solution diffusion coefficient D0 [m2/y] 

Porosity 0 [-] 

Tortuosity r [-] 

Fracture apertures 2b [m] 

Fracture longitudinal dispersivities CCL [m] 

Fracture transverse dispersivities <XT [m] 

0.031 

100 

10 

0.16 

0.38 

0.35 

lOOxlO-6 

200x10-6 
300xl0-6 

50 
30 
40 

5 
3 
4 

The fracture triangular mesh is shown in Figure 4.22. The number of triangles for each fracture 

is 4344, 6205, and 6254, respectively, for a total of 16803 triangular tetrahedral faces selected 

and defined as fracture elements. The mesh contains 435526 tetrahedra, which are refined 
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around the fractures applying the procedure explained in Chapter 2 (Figure 4.23). Two 

successive refinement steps allow to obtain tetrahedral edges 25 m long near fractures. In 

contrast, away from the fractures, the nodal spacing is equal to 100 m. 

SfjffîË& fracture 1 

z 

^r'-. j r 

^ ^ ^ ^ ^ ^ f r a c t u r c 2 

fracture 3 

y *-*— x ^ A ^ - V Z ^ g / t ^ ^ 

1000 m 

Figure 4.22 - Discrete fractures: triangular mesh 

Figure 4.23 - Tetrahedral mesh: refinement around fractures 

The groundwater flow field is shown in Figure 4.24, with a focus on a vertical slice located at x 

= 1526400 m. The fractures clearly influence the shape of the hydraulic head isocontours. The 
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porous rock matrix can be considered as impermeable (hydraulic conductivity of the order of 

10'9m/s), while the fractures are the major flow conductors in the domain. 

hmax 

3 fractures 
1 m in 

y 6793000 
1527000 f. 

Figure 4.24 - Hydraulic heads: influence of fracture on groundwater flow 

Figure 4.25 shows the same vertical slice at x = 1526400 m with fracture traces, which should 

be kept in mind before analyzing solute transport results. 

679300Q 

67B400(f^*x-153e5:o 

fracture 1 
fracture 2 

fracture 3 

Figure 4.25 - Fracture traces at slice x = 1526400 m 
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Transport simulation results are shown in Figure 4.26, for different output times. Solute 

propagation follows exactly the fracture traces, demonstrating that their intersections are 

properly considered by the numerical code. As soon as the contamination plume reaches a 

fracture intersection, it migrates along both the intersecting fractures, demonstrating that the 

mesh provides the connection between the surfaces, with common nodes at intersection lines. 

It is therefore possible to observe how the solute propagation is clearly influenced by the 

presence of the fractures, which strongly control solute migration. The diffusion through the 

rock matrix perpendicular to the fractures is also visible. The minimum relative concentration 

value is equal to 0, if the OSC method is applied. Comparing once again the two methods, the 

Galerkin method gives a minimum value for relative concentration equal to -1.95 x 10"22, which 

is with good approximation near to zero (Table 4.14). 

Table 4.14 - Minimum relative concentration values for test case 8 

Mesh type CMAX CMIN 

Galerkin 1 -1.95 x 1022 

OSC 1 0 

An observation point is located at coordinates (1526400,6792000,0) near intersecting fractures, 

as shown in Figure 4.26. As soon as the solute plume reaches the first fracture, the migration 

becomes much faster, covering more than 1 km (Figure 4.26b and 4.26c). Moreover, 

concentration isocontours match fracture traces presented in Figure 4.25, demonstrating that 

the network of these three fractures is properly discretized. 

Breakthrough curves computed at the observation point with the two different methods, OSC 

and Galerkin, are similar (Figure 4.27). A minor difference is visible, but this is expected 

because matrix coefficients are evaluated in a different way, as already mentioned. 
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Figure 4.26 - Plume propagation for the slice at x =1526400 m 
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Figure 4.27 - Breakthrough curves for test case 8 
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4.3 Modeling approach verification: concluding remarks 

All test cases analyzed in this chapter allow to draw some conclusions on the modeling 

approach developed during this thesis. It has been shown that mesh element type and size 

have a large influence on the discretization of specific elements, like inclined wells or fractures. 

Moreover, as numerical accuracy and CPU time also depend on mesh characteristics, 

tetrahedral meshes have shown more flexibility and suitability to discretize complex geometries 

without requiring excessive CPU time. To ensure that realistic results are obtained with 

transport simulations, suitable dispersivity values should also be chosen. In fact, dispersivity 

values and mesh element size directly influence the Peclet number, as mentioned in Chapter 3. 

In conclusion, although no errors appear in the visualization of concentration isocontours if 

values are slightly negative, these values are always nearer to zero when the OSC method is 

applied to evaluate transmissibilities. This demonstrates that the OSC method is more 

appropriate for the numerical solution, because nonphysical results are more easily reduced. 

This behavior can be explained by the different dual meshes adopted for the Galerkin and 

OSC methods, using the median and Voronoi mesh, respectively. In fact, the physical 

interpretation of transmissibility ytj as a flux from node i to node j requires that dual mesh 

cells be orthogonal to the tetrahedral edge joining nodes i and j (Cordes and Putti, 2001). As 

a result, only the OSC method satisfies this relation between finite element and dual meshes. 

An additional and very interesting observation that arises from the analysis of simulation 

results relates to the number of solver iterations required for steady-state and transport 

simulations. For all test cases, flow and transport solver convergence criteria are set to 1 x 10"10. 

The number of iterations required by the solver to converge is smaller with the OSC method 

than with the Galerkin method. This difference is observed for both flow and mass transport 

simulations and is larger when negative concentrations are encountered in simulation results. 

Marked differences are observed for test cases 6 and 7, as shown in Tables 4.15 and 4.16. In 

particular, for test case 7, the Galerkin method requires about twice the number of iterations 

compared to the OSC method. In contrast, other test cases do not show a large difference, 

although the number of solver iterations required by the Galerkin method is always greater 



109 

than that required by the OSC method. This behavior can be explained by the different global 

matrix obtained with the two methods. As stated earlier, if the OSC method is applied to a 

Delaunay mesh, an M-matrix is obtained. This type of matrix is desirable for iterative solvers as 

it ensures accuracy and stability of the numerical solution (letniowski and Forsyth, 1991; 

Murphy and Gable, 1998) and reduces the number of iterations required for convergence. 

Table 4.15 - Number of flow solver iterations 

, , , _ , Test case 7 Test case 7 Mesh type Test case 6 ,. „ _ r No wells Pumping wells 

Galerkin 116 154 158 

OSC 86 80 85 

Table 4.16 - Number of transport solver iterations for the last time-step 

, , . „ , Test case 7 Test case 7 Mesh type Test case 6 . , „ „ ., J r No wells Pumping wells 

Galerkin 61 37 43 

OSC 40 15 18 



Chapter 5 

Case study 

The purpose of this chapter is to describe the application of the developed modeling approach 

to a real site. This case study extends the application of the modeling approach presented in 

the previous chapters to a complex domain geometry. Moreover, available field data are used 

to calibrate the hydrogeological model and the numerical results are compared to previous 

studies conducted at the same site. 

The subject of this study is Olkiluoto Island, which is located off the west coast of Finland. In 

1999, Posiva Oy, the Finnish organization responsible for the disposal of spent nuclear fuel, 

proposed Olkiluoto Island as the site for building a final disposal facility. The suitability of the 

Olkiluoto crystalline bedrock to host a spent fuel repository has been investigated over a 

period of fifteen years by means of ground and airborne methods and from shallow and deep 

boreholes (Posiva Oy, 2005). An underground research facility, ONKALO, is being built for 

characterization of the Olkiluoto bedrock, which is characterized by low permeability, and 

crossed by a few major fracture zones that control groundwater flow. A goal of the current 

investigations is to delineate existing or potential paths of groundwater flow and their influence 

on radionuclide migration. It is therefore necessary to locate the hydraulically active fractures, 

to define their geometry and to provide a proper spatial discretization to integrate these 

fractures in a numerical model that will be used to simulate the groundwater flow system. The 

110 



I l l 

deep boreholes, which are characterized by inclined axes with lengths between 300 and 1000 

m, should also be integrated in the model. The main objectives of the hydrogeological 

modeling are to quantify the impact of the hydraulically active fractures and open boreholes on 

groundwater flow, to simulate the response of the geological system to long term pumping, 

and to investigate the disturbances caused by construction and operation of ONKALO. 

The Olkiluoto site well suited for the modeling approach developed in this thesis, which is 

particularly amenable to the representation of inclined boreholes and irregular discrete 

fractures with a refined tetrahedral mesh. After a short description of the Olkiluoto site and an 

overview of some issues related to the deep geological disposal of nuclear waste, the three 

modeling phases, Geomodeling, mesh generation and numerical simulations, are described in 

this chapter. 

5.1 Site description 

Olkiluoto Island (12 km2) is located on the Bothnian Sea and is part of the Eurajoki 

municipality, 13 km north of the town of Rauma, in the south-west part of Finland (Figure 

5.1). In this area, the coast is characterized by shallow bays surrounded by small archipelagos. 

The average annual temperature is 5.8 °C, the annual precipitation is 555 mm, and the snow 

thickness in winter is usually less than 20 cm. Seawater around Olkiluoto is a brackish Na-Cl 

type water with a TDS of about 6 g/1 and a maximum depth of 30 m (Posiva Oy, 2003). The 

average island topographic height is about 5 m above sea level (a.s.l.), with the highest point 

being at 18 m a.s.l. The soil, mainly stony moraine, is no more than 1.5 m thick and usually less 

than 0.8 m. An overburden layer made of till, sand, and silt is found between the organic soil 

and the bedrock. The overburden has an average thickness of 3 m, with a maximum value of 

10 m. The crystalline bedrock, which is part of the Precambrian Fennoscandian Shield, lies 

underneath. 
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10 km 

Figure 5.1 - Location of Olkiluoto (adapted from Posiva Oy, 2005) 

The present knowledge of the bedrock at Olkiluoto is based both on geological and 

geophysical characterization and interpretation. Geophysical studies were required because 

rock outcrops cover only 4% of the island (Posiva Oy, 2003). Rocks have undergone several 

episodes of metamorphism and tectonic deformations and are mainly represented by 

metasedimentary migmatic mica gneisses. Other lithologies are found, including grey gneiss, 

granite pegmatite, diabase dykes and amphibolite. Forests cover most of Olkiluoto Island and 

small-scale agriculture is practiced in its southeastern part. A small harbor for transportation of 

bulk materials is located on the northern side. The most dominant infrastructure is a nuclear 

power plant, which is characterized by two commercial reactors with auxiliary facilities. 

Another Finnish power plant is located in Loviisa (Figure 5.1). An artificial reservoir is located 

in the middle of the island to provide fresh water for the power plant. The construction of the 

ONKALO underground research laboratory started in 2004. ONKALO is an acronym based 

on the Finnish language expression for Olkiluoto Rock Characterization for Final Disposal. In 

fact, ONKALO is planned to be used to dispose of waste generated by the Finnish nuclear 

power plants. 
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5.1.1 Geological d isposal of nuclear was te 

Without entering into specific details, a general overview of the current knowledge on disposal 

of nuclear waste is presented below to better define the context of this case study. Geological 

disposal is a scientifically and technically credible long-term solution available to meet the need 

for safety without reliance on active management. A well-designed repository represents, after 

closure, a passive system containing a succession of potentially robust safety barriers. Our 

present civilization designs, builds, and lives with technological facilities of much greater 

complexity and higher hazard potential (National Research Council, 2001). Deep geological 

disposal relies on a multi-barrier system that isolates the waste from the biosphere. The multi-

barrier system typically comprises the natural barrier provided by the host rock and the 

Engineered Barrier System, EBS, whose purpose is to prevent and /o r delay the eventual 

release of radionuclides from the waste to the host rock, at least during the first several 

hundred years after repository closure (OECD, 2003). An EBS is composed of a variety of 

components, such as the waste form, canister, buffer, backfill, seals, and plugs (Figure 5.2a). 

For example, the disposal concept proposed by the SKB (Swedish Nuclear Fuel and Waste 

Management Company) is based on copper canisters with a cast iron insert, where the spent 

fuel assemblies are placed (Figure 5.2b). 

Spent fuel 

Disposal container with 
buffer and canister y ^ ^ \ \ ^ \ 

\ ^Pi 4 ^ \ l y ^ Bentonite plug 

r< y ^ Bentonite nng 

v ^ Canister 
\ 

Bentonite plug 
\ 

Steel cylinder 
") 

(Adapted from Bennett and Hicks, 2005) 

b) Iron insert Copper canister 

(Adapted from Tanskanen et Palmu, 2004) 

Figure 5.2 - a) The components of the supercontainer in the KBS-3H repository system 

and b) spent fuel canister manufacturing 
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The preferred, and internationally recommended, option for the long term management of 

long lived and high level radioactive wastes consists of their disposal in deep geological 

repositories (IAEA, 2001). Four host geological formations are being widely considered for 

disposal: crystalline rocks, salt formations, argillaceous formations and tuff (IAEA, 1999). As 

ONKALO is excavated in crystalline rocks, only the characteristics of that type of geological 

formation are discussed. Crystalline rocks have high mechanical strength, such that stable 

shafts, tunnel and gallery openings can be excavated at depths appropriate for geological 

disposal (about 500 m). In general, they are poorly transmissive and flow predominantly takes 

place through interconnected networks of fractures. They frequently have low matrix 

permeability and matrix porosity, as well as very low solubility. Finally, crystalline rocks 

normally have good thermal conductivity, such that any heat generated by the waste can be 

dissipated so that thermal effects on both the engineered barriers and the surrounding rock will 

be minimized (IAEA, 1999). 

Characterization work performed in Underground Research Laboratories (URLs) plays an 

important role in the development of deep geological repository systems (IAEA, 2001). URLs 

are used to perform generic-type experiments of interest to deep disposal. The first URLs were 

already developed in the 1960s and 1970s in order to assess the suitability of rock as the 

repository host formation, such as the Lyons (Kansas) and Asse (German) salt mines. URLs 

can be developed from existing underground facilities, such as mines, tunnels for railways, 

dams and highways or constructed in undeveloped sites. A complete list of past and operating 

Underground Research Laboratories is given in IAEA (2001). URLs are located in twelve 

different countries: Belgium, Canada, Czech Republic, Finland, France, Germany, Hungary, 

Japan, Sweden, Switzerland, UK, and USA. Just to cite a few examples, the Mol site (Belgium) 

is characterized by a clay formation, the Âspô Hard Rock Laboratory (Sweden) by granite, the 

Yucca Mountain site (Nevada) by tuff, and the Gorleben site (German) by a domed salt 

formation. In Canada, an Underground Research Laboratory was built in the 1980s at the Lac 

du Bonnet site (Manitoba), in a granitic formation, but is now closed. 
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5.1.2 Âspô Modeling Task Force 

The ONKALO Underground Research Laboratory is planned to become a final deep 

geological repository for high-level nuclear waste. To accomplish this goal, several research 

projects and investigations are presently active. The Swedish company SKB is hosting the 

secretariat of the Àspô Task Force, which is a forum of international organizations with the 

objective to interact in the area of conceptual and numerical modeling of groundwater flow 

and solute transport in fractured rock. Originally, the Task Force focused on the Àspô Hard 

Rock Laboratory (Sweden). Since 2005 the Task Force has initiated its Task 7, which focuses 

on the Olkiluoto site and modeling teams from Finland, Sweden, Canada, France, and Japan 

are participating. The Canadian modeling team is represented by the Nuclear Waste 

Management Organization (NWMO). The Nuclear Waste Management Organization 

(NWMO) was established in 2002, in accordance with the Nuclear Fuel Waste Act (NFWA) to 

assume responsibility for the long-term management of Canada's used nuclear fuel, a by

product of electricity generation in a nuclear power plant (NWMO, 2007). 

The Âspô Modeling Task Force, AMTF, has been set up for integrating the results and the 

modeling work in the different disciplines. The AMTF will conduct site understanding 

modeling to provide the necessary input to the safety analysis predictions (Posiva Oy, 2005). 

Different discipline-specific models have been developed by the AMTF, such as a geological 

model, a rock mechanics model, a hydrogeological model, and a hydrogeochemical model. 

Numerical modeling of fluid flow and solute transport becomes the fundamental tool for site 

characterization and performance assessment, which is based on the definition of a system that 

fulfils the safety requirements set for disposal. In particular, Task 7A focuses on modeling a 

pumping test conducted at ONKALO in 2004, to understand the major features of the 

groundwater system at Olkiluoto. Specific goals are to determine proper means of 

incorporating the open boreholes in the hydrogeological model to simulate flowrates between 

fractures and boreholes, which are the main flow conductors. Available information related to 

Task 7A is used here to setup the simulation scenarios. In particular, the Task7A Report 

presented by the NWMO modeling team (Therrien, 2008) is one of the main references for 

this chapter, since the simulation results were obtained with the HydroGeoSphere numerical 

code. 
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5.1.3 The underground research facility ONKALO 

Established in 1995, Posiva Oy is an expert organization responsible for the final disposal of 

spent nuclear fuel, for research into final disposal and for other expert nuclear waste 

management tasks. Posiva Oy has been conducting field investigations for the disposal of 

spent nuclear fuel in the crystalline bedrock at the Olkiluoto site since 1988 (Cosgrove et al., 

2003). Legislation requires nuclear waste generated in Finland to be processed, stored and 

finally disposed of in Finland. The underground research facility, ONKALO, is being built on 

the site for detailed characterization of the planned repository host rock as well as for testing 

and demonstration purposes (Vaittinen et al., 2003). The underground rock facility 

construction started in July 2004 and consists of a system of exploratory tunnels accessed by a 

spiraling tunnel and a ventilation shaft (Figure 5.3). The final disposal facility will be excavated 

at a depth of about 500 meters in the Olkiluoto bedrock. The total underground volume of 

ONKALO is approximately 330000 m3 and the combined length of tunnels and the shaft is 

8500 m. 

Personnel shaft. 

Main characterization 
level (-420 m) 

Lower characterization 
level (-520 m) 

Access tunnel 

Figure 5.3 - Layout of ONKALO (adapted from Taskanen and Palmu, 2004) 

The construction of ONKALO requires a detailed knowledge of the bedrock of Olkiluoto, 

which includes the hydrogeological, hydrogeochemical, rock mechanical, tectonic and seismic 

conditions of the site (Posiva Oy, 2003). From all available data collected since the beginning 
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of site investigations, only those relevant to the work presented in this chapter will be 

described. 

To model the discrete fractures as surfaces, the definition of structural intersection given by 

Vaittinen et al. (2003) is adopted. In this chapter, the discrete fractures are referred to as 

fracture zones, fracture surfaces, structures or simply fractures. Vaittinen et al. (2003) defined 

polygonal fracture surfaces by observing borehole cores and identifying the borehole 

intersections belonging to each structure. A borehole intersection is a fixed point that 

represents a core interval having properties that are important from a rock engineering and/or 

hydrogeological point of view and that differ from the average borehole properties. The core 

sample from the borehole KR09 constitutes an example of these intersections (Figure 5.4). 

KR09 
Depth 
lm:3m 

Image 
0* 90* 180' 270' 0' 

148.9-1 

149 J 

149.1 J g * 

P ~ 

149.2-

149.3-

":'v ' i t - - -
149.2-

149.3-

Figure 5.4 - Example of a conductive section, from KR09 borehole wall image 

(adapted from Hella et al., 2004) 
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The structural intersections identified in the boreholes have been oriented according to the 

mean orientation of fractures measured in the borehole intersection. The intersection lengths 

for such structures are set to 2 m, even if the real intersection length is only some tens of 

centimeters (Vaittinen et al., 2003). The basic assumption used is that the mean orientation of 

the individual fractures reflects the orientation of the whole structure. The continuity of 

structures is estimated on the basis of the observed responses in long-term pumping tests, the 

geological and hydraulic properties of borehole intersections, and the compatible orientations 

of VSP-reflectors. An intersection is identified when fracture frequency is more than 10 

fractures/m or when the hydraulic conductivity is equal to or higher than K2m = 5-107 m/s, 

where the subscript "2m" indicates the structural intersection length. These intersections are 

then correlated between boreholes, assuming that they represent parts of quasi-planar 

structures in 3D. When a structure intersects several boreholes, it is extended halfway between 

a borehole intersecting the structure and a borehole with no intersection. 

5.2 Geomodel of ONKALO 

The first bedrock model of Olkiluoto was compiled on the basis of the results of the 

preliminary site characterization in 1992, using the data from five deep boreholes (Posiva Oy, 

2003). During the detailed site characterization stage, the bedrock model was regularly 

updated. One of the first flow models included 30 distinct structural units covering 26 km2 

(Lofinan, 1999). For modeling purposes the geometry had to be simplified and modified to 

give a transparent and understandable framework while retaining all the important features at 

the site scale (Posiva Oy, 2003). The volume modeled in this case study covers 17.5 km2 (3.5 

km x 5 km) and its limiting coordinates are 6791000 - 6794500 Northing and 1523000 -

1528000 Easting (Figure 5.5). The domain is 1200 m deep. 
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1523000 

6793500 J 

6793000 

67925001 

6792000 

6791500 

1524000 1525000 1526000 1527000 

Figure 5.5 - Plan view of Olkiluoto Island, where the location of ONKALO is circled 

(adapted from Ahokas and Koskinen, 2005) 

The geological model considered here contains 13 fractures and 14 boreholes. The fractures 

integrated in this model are HZ1, HZ2, HZ3, HZ4, HZ8, HZ19A, HZ19C, HZ20A, 

HZ20AE, HZ20B_ALT, HZ21, HZ21B, and BFZ99, where HZ is the acronym for 

Hydrogeological Zone and BFZ for Brittle Fault Zone (Andersson et al., 2007). Fracture HZ8 

does not intersect any borehole but it has been included in the model as suggested in 

Vidstrand et al. (2006). Moreover, this fracture was considered by Therrien (2008), whose work 

forms the basis to compare and validate numerical results obtained here. A global view of the 

Geomodel is shown in Figure 5.6, where the extent of the simulation domain is also indicated. 

The fractures and boreholes integrated in the Geomodel are located in the center of the 

domain. For the sake of clarity, only the names of fractures HZ8, HZ21, HZ19A, HZ4, and 

borehole KR24 are indicated. With reference to the Geomodel orientation shown in Figure 

5.6, three additional views are presented to highlight fracture and borehole geometries, spatial 

locations, and intersections (Figure 5.7). Some boreholes are characterized by a significantly 

inclined axis (Figure 5.7a). Local refinement is visible on fracture HZ19A, which is intersected 

by twelve boreholes (Figure 5.7b). Fracture HZ8 has no intersections with other fractures or 

with boreholes, while subvertical fracture HZ4 intersects subhorizontal fractures HZ21, 

HZ20B_alt, HZ20A, HZ19C, and HZ19A (Figure 5.7c). 
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Figure 5.6 - Geomodel built with GOCAD: global view with simulation domain boundary 

hz4 

bfz99 

a) View from East 
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b) View from Top 
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Figure 5.7 - Geomodel built with GOCAD: view of fractures 
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Each fracture is built independently, from raw fracture geometries available as *.dxf files. 

These files contain triangulated surfaces, made up of coarse and heterogeneous triangles. For 

numerical modeling purposes, fractures should be represented by a higher resolution triangular 

mesh. Thus, as explained in Section 2.1.2.2, their geometry and their triangular mesh are 

modeled using the Pset, 2DGrid and Surface GOCAD tools, as well as the Fit Surface to Pset 

option. The objective is to obtain a homogeneous triangulation for all the fractures. The length 

of triangular edges should be selected at the beginning of the modeling phase based on the 

level of resolution envisioned for the 3D tetrahedral mesh. For this specific application, 

triangular edges are about 25 m long. The edge length should be chosen equal to the desired 

nodal distribution around the fractures. If the edge length is greater than the nodal hexahedral 

spacing around fractures, the connection into tetrahedra will not respect the fracture surface, 

which will be characterized by tetrahedra that extend beyond the fracture surface. This 

unsuitable mesh characteristic is clearly illustrated in the close-up detail of Figure 5.8a, which 

shows the portion of the mesh around fracture HZ8 obtained with the Extract LaGriT 

command. In contrast, when triangular edges of the fracture surface have almost the same 

length as the nodal spacing around the fracture, a regular fracture surface is obtained (Figure 

5.8b). Triangular surfaces are refined around borehole intersections. The boreholes included in 

the Geomodel are all deep boreholes drilled at the Olkiluoto site and are listed in Table 5.1, 

where the number of nodes used to discretize their axis is also shown. The boreholes are all 

characterized by inclined axes, except KR24, and are discretized by tetrahedral edges 6 m long. 

fracture 

a) Unsuitable fracture representation b) Suitable fracture representation 

Figure 5.8 - Fracture HZ8 extracted from the tetrahedral mesh with LaGriT 
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Table 5.1 - List of boreholes included in the Geomodel of ONKALO 

Borehole KR4 KR6 KR7 KR8 KR9 KR10 KR12 

Nodes 

Depth [m] 

151 

-870 

100 

-466 

136 

-750 

101 

-530 

100 

-530 

103 

-602 

135 

-761 

Azimuth [degrees] 0 36 43 155 360 0 90 

Inclination [degrees] 77 50 70 64 70 85 70 

Borehole KR14 KR22 KR23 KR24 KR25 KR27 KR28 

Nodes 85 84 52 93 102 93 110 

Depth [m] -462 -410 -250 -540 -567 -430 -515 

Azimuth [degrees] 0 270 290 140 43 285 325 

Inclination [degrees] 70 60 60 90 70 55 55 

Regions are defined on the fracture surfaces by drawing a polygonal Curve around each 

intersecting borehole. The Split algorithm is executed twice on these regions to obtain 

triangular edges 6 m long around the borehole intersections. Intersecting fractures are then 

selected and the Mutual Cut Among Surfaces tool is executed to create the intersection lines. It 

should be noted that all intersecting fractures must be selected together and only one global 

Cut is executed. Otherwise, if each couple of intersecting fractures is selected separately, 

successive Cut operations will affect previous intersecting lines, where a nonconforming 

triangular mesh will be obtained. Finally, the Simplify All Surface Borders command is used to 

improve the triangulation at intersection lines and to create a conforming triangular mesh, as 

explained in Chapter 2. The final Geomodel is constructed by intersecting boreholes and 

fractures (Figure 5.9a). The complexity of the simulation domain is particularly visible where 

multiple intersections between boreholes and fractures occur (Figure 5.9b). The fracture 

network covers a volume of 4.2 km x 2.4 km x 1 km, in the x, y, and z directions respectively. 
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a) 3D View of fractures and boreholes 

b) Close-up of borehole-fracture intersections 

Figure 5.9 - Geomodel built with GOCAD: fractures and boreholes 

5.3 Geomodel discretization 

The purpose of this section is to describe the Geomodel discretization, which is performed 

with the mesh generator LaGriT. Since a detailed description of the mesh generation 

procedure has already been presented in Section 2.2.1.2, only the features specific to this case 

study are mentioned here. 

The GOCAD *.ts files, which contain triangular mesh information, and *.avs files, which 

contain borehole nodal coordinates, are imported into LaGriT. As a result, 14 triangular Mesh 

Objects, which describe the 13 fractures and the topography of the domain, and 14 linear 

Mesh Objects, which represent the boreholes, become the current Mesh Objects of a LaGriT 

session. 
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A hexahedral Mesh Object is generated to create the background nodal distribution for the 

simulation domain, with a nodal spacing of 100 m. Hexahedral elements are selected for 

refinement near fractures and boreholes using the dfield tool mentioned in Chapter 2. Elements 

located within 50 m of each fracture are selected for the first refinement step, while elements 

within a distance of only 20 m are selected for the second refinement step. These two 

refinement steps produce hexahedral edges that are 25 m long around fractures. The same 

two-step procedure is used to refine near boreholes and obtain a nodal spacing of 6 m around 

the boreholes. The same element can be refined more than required and may therefore 

become too small if it is selected by the dfield tool in successive refinement steps. Therefore, to 

avoid obtaining hexahedra that are too small, only the elements whose volume is greater than a 

user-defined minimum value are selected for refinement. 

Once the mesh is properly refined, the hexahedra that are close to fractures and boreholes are 

removed. Moreover, the triangles of fracture surfaces that are close to the borehole 

intersections are also removed, as shown by the holes around boreholes in Figure 5.10. If they 

are not removed, these triangular elements can complicate the connection into tetrahedra, 

especially because fracture and borehole nodes may be very close. 

sxyf^i/ 

S s S H S a l S ^ borehole 

IfC ) / T S ( r V ^ r - « 1/1-3T—s £\s"\sF-3^\>s 
^ hole around the borehole 

Figure 5.10 - Example of intersection between boreholes and fracture HZ19A 
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Once the hexahedral mesh is refined around fractures, boreholes, and topography, all its nodes 

are copied to a tetrahedral Mesh Object, where they are connected using a Delaunay algorithm. 

Fracture surfaces are then extracted from the tetrahedral mesh just created. Finally, indexes of 

the tetrahedral nodes that correspond to fractures and borehole nodes are identified. These 

tetrahedral node indexes will be used by the numerical code HydroGeoSphere to define the 

fracture and well elements. 

The topography of ground surface can be integrated in the mesh, as a ground surface model of 

the Olkiluoto site is available. However, instead of including the real topography into the 

mesh, a constant elevation top boundary can also be considered, as groundwater table 

elevations can be interpolated on the constant elevation top boundary to provide a suitable 

boundary condition. 

In the geological system considered, fractures and boreholes conduct the most of the flow and 

they have mutual intersections. It is important, although rather challenging, to represent these 

intersections with a finite element mesh. In fact, wells are important elements in numerical 

simulations of groundwater flow, since rapid changes in hydraulic head occur near wells 

because of pumping. Therefore, in these regions the finite element mesh should be refined and 

should reproduce the real well axis geometry such that the solution has the required accuracy. 

Multiple well-fracture intersections generate a larger connectivity and increase the global 

hydraulic conductivity. When pumping a well, multiple intersections increase the efficiency in 

extracting water from the surrounding rock and the withdrawal is split into all the intersections 

influencing flowrates and hydraulic head computation at the well. The block-based mesh used 

by Therrien (2008) is considered here to compare the discretization of these intersections. For 

this mesh, multiple intersections of borehole KR06 with fractures HZ21 and HZ21B occurred 

because of the staircase shape of the discretized borehole that is obtained when a block-based 

mesh is used (Figure 5.11b). In contrast, for the tetrahedral mesh, the inclined borehole 

intersects the two fractures just once (Figure 5.11a). 
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Node x y Z Fracture Node x y Z Fracture 

11165 1526065 6793248 -303 257961 1526064 6793246 -300 —>hz21b 

11166 1526067 6793251 -308 —> hz21b 248719 1526064 6793246 -320 —>hz21b 

11167 1526069 6793254 -312 239478 1526084 6793246 -340 ~>hz21b 

11168 1526071 6793257 -317 239477 1526064 6793246 -340 

-360 

230236 

220994 

1526084 

1526084 

6793246 

6793246 

-360 

-380 —>hz21 11177 1526088 6793285 -360 

230236 

220994 

1526084 

1526084 

6793246 

6793246 

-360 

-380 —>hz21 

11178 1526090 6793288 -365 220995 1526107 6793246 -380 —>hz21 

11179 1526092 6793291 -370 - -> hz21 211752 1526084 6793246 -400 —>hz21 

11180 1526093 6793294 -375 202619 1526107 6793346 -420 

a) Tetrahedral mesh b) Block-based mesh 

Figure 5.11 - Example of intersection between borehole KR06 and fractures HZ21B and 

HZ21 

Information on the created tetrahedral mesh is listed in the Summary of Final Data Set 

generated by the pre-processor G R O K and written to the *.eco (Table 5.2). 

Table 5.2 - Tetrahedral mesh information 

Parameter Value 

Number of nodes 237775 

Number of segments 1643088 

Number of faces 2795944 

Number of elements 1390630 

Number of 3D elements with well nodes 30041 

Number of fracture elements with well/fracture nodes 309 

The local refinement of the tetrahedral mesh is clearly visible in the center of the domain, 

where the fractures and boreholes are located (Figure 5.12a). The refinement in the right 

portion of the domain corresponds to fracture HZ8 , which does not intersect the other 

fractures, as mentioned in Section 5.2. 
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local refinement 
near fractures 

a) 3D mesh 

v 

: ^m 
b) Refinement around a borehole 
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c) Mesh at z = -50 m d) Mesh at z = -300 m 

Figure 5.12 - Tetrahedral mesh built with LaGriT 

A close-up of the central portion of the mesh highlights the refinement around one of the 14 

boreholes included in the Geomodel (Figure 5.12b). Finally, two portions of the discretized 

domain are shown in Figures 5.12c and 5.12d, where only tetrahedra located deeper than 50 m 

and 300 m are shown, respectively. 

5.4 Numerical simulations 

The main geological formation at the Olkiluoto site is a low permeability composite gneiss 

crossed by major fracture zones. The use of the discrete fracture conceptual model is justified 

by the fact that these fracture zones conduct the majority of groundwater" flow in the lower 
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parts of the bedrock (Vidstrand and Ahokas, 2005a). These fracture zones are intersected by 

the open boreholes, which create a complex network of conductive features. Hydrogeological 

modeling aims at understanding the role of these major hydraulic conductors on the 

groundwater flow field. An essential part of the groundwater flow analysis is calibration, whose 

goal is to ensure that the flow model reproduces the hydrogeological observations of the real 

system as well as possible. The steady state and transient flow fields at Olkiluoto are simulated. 

Moreover, illustrative scenarios are designed to present transport simulation results for the test 

site. 

5.4.1 Flow simulations: KR24 pumping test 

Construction of the underground facilities of ONKALO will affect both the groundwater table 

and hydraulic head in the vicinity of the access tunnel and shafts. To predict the effects of 

construction on the groundwater flow system and to characterize hydraulic connections at the 

scale of 100 m - 1 km, a long-term pumping test was carried out in deep borehole KR24 in 

2004 (Vaittinen and Ahokas, 2005). Information and data collected during this pumping test 

are used to set up the simulation scenarios presented in the following sections. The pumping 

test started on March 25, 2004 and finished on June 2, 2004. Groundwater was pumped at a 

constant rate of 18 1/min with a submersible pump. When the pumping test started, there was 

still snow cover and frost on the ground. Snow started to melt in early March and had entirely 

melted by April 15. After that period, head values decreased due to natural outflow of 

groundwater from the island into the sea and increasing evapo-transpiration (Vaittinen and 

Ahokas, 2005). Hydraulic heads were measured in shallow boreholes, multilevel piezometers, 

open deep boreholes, and packed-off boreholes. Shallow observation points are more sensitive 

to precipitation, topography, presence of wetland, location either on overburden or outcrops, 

and construction work at the site. Moreover, they do not intersect the fracture zones identified 

at the site. Since the focus of the simulation presented here is on the deep bedrock, where the 

repository for nuclear waste should be built, shallow boreholes and piezometers are not 

considered in the mesh design and the mesh resolution has been adapted to discretize only the 

deep boreholes. 
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The annual precipitation at Olkiluoto Island is approximately 550 m m of which 60-70 % 

returns to the atmosphere by évapotranspiration. The potential recharge at the site is 

approximately 100-150 m m / y and the most likely deep groundwater recharge to bedrock 

during natural conditions is approximately 5-20 m m / y (Vidstrand and Ahokas, 2005b). Since 

mean long-term groundwater table elevations are available for the site, they are interpolated on 

the top boundary of the simulation domain and the resulting values are used to define a first-

type boundary condition, as done in Therrien (2008). This boundary condition mimics a 

recharge that depends on the hydraulic conductivity of the geological medium and is adopted 

here for both steady-state and transient simulations of KR24 pumping test. 

Borehole KR24 had a casing section down to 20.13 m. A one meter packer with a bypass tube 

was installed at the borehole depth of 80.60-81.60 m (Figure 5.13). As a result, the lower part 

of KR24, partially isolated by the packer, experienced a smaller drawdown than the upper 

section during the pumping (Vidstrand et al., 2006). 

Flowmeter Elevadon 9.7 m a.s.l. 

Casing to 20 m 

Lower section head 
Submergible pump 

Upper section head 

lm packer with 
• 1 mm bypass tube 
at 80.6 - 81.6 m 

Q—i 

KR 

fracture j 

measunng 
section 

Lower section 
extends to -541 m a.s.l. 

KR24 
pumping well 

topograhy 

packer 
with bypass tube 

Figure 5.13 - Pumping well KR24 

(adapted from Vidstrand et al., 2006 and Vaittinen and Ahokas, 2005) 
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The following three modeling options for borehole KR24 are suggested in decreasing order of 

"realism" by Vidstrand et al. (2006): 

1. Withdrawal from the upper section at a total constant rate outflow from the two 

sections of KR24 of 18 1/min. This option requires that the flow through the by-pass 

packer is simulated within the numerical model. The packer partially isolates the lower 

section of borehole KR24, such that a different drawdown is observed in the two 

sections of the borehole. The bedrock experiences a larger drawdown than the upper 

portion of the rock, which is more permeable. 

2. A constant rate outflow of 12.5 1/min (6570 m3/y) from the upper section and 

constant rate outflow of 5.5 1/min (2891 m3/y) from the lower section of KR24. This 

option allows for the simulation of two different drawdowns by selecting two distinct 

withdrawal points along borehole KR24. 

3. A constant rate outflow of 5.5 1/min from the lower section of the borehole only. This 

option assumes that the responses to extraction in the lower section are unaffected by 

the extraction from the upper section. 

Since the flow through the by-pass packer cannot be represented with the simulation options 

available in HydroGeoSphere, the second option is adopted here. Two separate sections are 

defined for borehole KR24 and pumping rates equal to 6570 m3/y and 2891 m3/y are assigned 

to the upper and lower section, respectively. Borehole KR24 is intersected by fractures 

HZ19A, HZ19C, HZ20A, and HZ20B_alt. All boreholes are assigned a radius equal to 0.01 

(Therrien, 2008). 

5.4.1.1 Steady state flow simulation with open boreholes 

A first type boundary condition is imposed at the top boundary of the domain, as mentioned 

above. Prescribed hydraulic heads are determined from interpolation of groundwater table 

measurements, which vary from 0 (sea level) to 9 m (maximum head levels in the center of 

Olkiluoto Island). Open boreholes are disconnected from the surface, by locating their top 

node 10 m below the topographic surface, otherwise the hydraulic head would not change in 

the boreholes, since constant heads are imposed on the top boundary. This choice is justified 

by the fact that all boreholes have a casing section that prevents groundwater at the surface 
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from flowing to the boreholes (Vidstrand and Ahokas, 2005b). Heads on the lateral boundaries 

are all equal to sea elevation, while the bottom boundary is assumed impermeable. The porous 

rock is divided into two sections characterized by different hydraulic conductivities. This 

division is supported by measured transmissivity values, by calibration during subsurface flow 

modeling, and by comparison with previous modeling tasks conducted by the O M T F teams. A 

hydraulic conductivity equal to 7.8 x 108 m / s is attributed to the top 70 m of the bedrock, 

while the deeper bedrock is assigned a lower conductivity equal to 1 x 10'12 m / s . Fracture 

apertures calculated from the geometric mean transmissivity values given by Vidstrand et al. 

(2006) are listed in the third column of Table 5.3. These apertures are referred to as "series 1" 

and correspond to the apertures used by Therrien (2008). 

Table 5.3 - Fracture apertures calculated from transmissivity (series 1) and calibrated (series 2) 

_ Transmissivity Aperture [m] Aperture [m] 
(loglO) [m2/s] series 1 series 2 

2.60xl0-5 2.60xl0-5 

1.12 x l O 4 1.12 x l O 4 

9.60 x IO-5 9.60 x IO5 

6.06x10-5 6.06x10-5 

1.31x10-4 1.31x10-" 

2.41 xlO-* 1.0x10-5 

1.64 x l O 4 1.64 xlO-4 

2.23 x 10-4 3.9 x 10-4 

1.12x10* 1.12 x l O 4 

1.64x10* 5.0 xlO-4 

2.81 x IO5 2.81 x IO5 

1.04 xlO-4 1.04 xlO-4 

2.81 x IO5 2.81 x IO5 

Although the apertures of "series 1 " provide an acceptable reproduction of observed hydraulic 

heads for natural conditions, they are not appropriate to reproduce the drawdown at KR24. 

Therefore, fracture apertures have been modified to better calibrate the model. A steady state 

HZ1 -7.9 

HZ2 -6.0 

HZ3 -6.2 

HZ4 -6.8 

HZ8 -5.0 

HZ19A -5.8 

HZ19C -5.5 

HZ20A -5.1 

HZ20AE -6.0 

HZ20B_ALT -5.5 

HZ21 -7.8 

HZ21B -6.1 

BFZ99 -7.8 
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simulation is executed to reproduce the maximum drawdown at pumping well KR24. The 

apertures of the four intersecting fractures are adjusted to match the minimum head reached 

during pumping. In particular, the aperture of fracture HZ19A has been reduced by one order 

of magnitude to simulate a greater drawdown in the upper section of the well. In contrast, the 

apertures of HZ20A and HZ20B_ALT have been slightly increased to reduce the drawdown in 

the lower section of the borehole. This second series of fracture apertures is referred to as 

"series 2" and is listed in the fourth column of Table 5.3. 

Observation points are located in open deep boreholes KR04, KR07, KR08, KR10, KR14, 

KR22, KR27, and KR28. Heads measured at those boreholes are listed in Table 5.4 together 

with corresponding simulated heads. Observed heads are calculated as the average between 

March 16th and March 24th measurements. This choice is motivated by two main reasons. First 

of all, no values are available at KR4 on March 24*. Moreover, the average is intended to 

balance water table fluctuations during the ten days separating the measurements, since the 

heads imposed on the top boundary are the long term groundwater table mean values. 

Table 5.4 - Simulated and observed average head values at open deep boreholes 

R , . Observed Simulated Absolute 
head [m] head [m] difference [m] 

KR4 6.03 6.00 0.03 

KR7 5.31 6.04 0.73 

KR8 6.28 6.06 0.215 

KR10 5.98 6.16 0.185 

KR14 6.82 6.7 0.115 

KR22 6.17 6.02 0.15 

KR27 6.72 5.85 0.87 

KR28 5.69 6.00 0.11 

Simulated hydraulic heads on the domain boundary are shown in Figure 5.14. Since a first-type 

boundary condition is imposed, the top and lateral boundaries show, respectively, the 
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interpolated groundwater table elevation and sea elevation. The flow is directed from the 

topographic high areas of the island toward the sea, where the hydraulic head is equal to zero. 

Heads [m] 
- •: 
85 
1 5 
e -: 
55 
4.5 
35 
2.5 
15 
C5 

z[m] 

f t) / 67 

Figure 5.14 - Simulated hydraulic heads on Olkiluoto Island 

Simulated hydraulic heads at the observation points are compared to those obtained by 

Therrien (2008) with a block-based mesh. A difference between the two series of results is 

noticed (Figure 5.15). The model proposed here provides a better match between observed 

and simulated heads, especially at boreholes KR8, KR10, and KR14. In contrast, simulated 

heads at boreholes KR7 and KR27 maintain almost the same difference from the observed 

values with the two models. The maximum absolute difference between observed and 

simulated heads obtained here is less than 0.9 m (Table 5.4). This difference can be due to the 

influence of the hydraulic head distribution imposed on the top boundary. 
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Figure 5.15 - Hydraulic heads at deep observation boreholes 

To analyze the effects of different simulation parameters on hydraulic heads, three additional 

simulations (a,b,c) were conducted. In simulation "a", the hydraulic conductivity of the top 

rock is increased to 1.3 x 10"7 m/s. In simulation "b", the apertures of the fractures that do not 

intersect borehole KR24 are reduced to 10"6 m. In simulation "c", the aperture of fracture 

HZ19C, which intersects the lower section of KR24, is reduced to 1 x 10"5 m, which is the 

same for HZ19A. These three distinct scenarios produce approximately the same hydraulic 

heads at observation boreholes and don't improve calibration of head values at boreholes KR7 

and KR27 (Figure 5.16) 
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Figure 5.16 - Hydraulic heads at deep observation boreholes: sensitivity analysis 
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5.4.1.2 Steady state flow simulation without boreholes 

The impact of the open boreholes on the groundwater flow field is analyzed by simulating flow 

and comparing the hydraulic head distribution with and without the boreholes. The differences 

in the flow field are clearly shown for three vertical sections inside the simulation domain in 

Figure 5.17. Since the open boreholes intersect the fractures, a complex network of major flow 

conductors is created. As a result, when the open boreholes are included, the global hydraulic 

conductivity of the domain increases and hydraulic heads are higher at greater depths. The 

difference in hydraulic heads is particularly noticeable toward the north, in the direction of 

increasing y coordinates, around borehole KR6, which intersects fractures HZ1, HZ21B, and 

HZ21. In particular, the top and bottom nodes of this borehole are located at coordinates 

y=6793050 m and y=6793350 m, generating greater hydraulic heads in this portion of the 

domain. Thus, the boreholes drilled at the site have a considerable influence on the 

groundwater flow field in the discretely-fractured medium. 

Heads [m] 

a) Flow field with open boreholes b) Flow field without boreholes 

Figure 5.17 - Steady state simulation results: view inside the domain 

5.4.1.3 Transient flow simulation: pumping at borehole KR24 

The purpose of this section is to simulate the pumping test conducted at borehole KR24. The 

packer is represented in the model by splitting the borehole into two separated sections: the 
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upper section extends from ground surface to -86 m, while the lower starts at -92 m from the 

surface and extends down to -540 m. The upper section only intersects fracture HZ19A and it 

is discretized by 15 nodes. This intersection with HZ19A also coincides with the withdrawal 

node, where a pumping rate equal to 6570 m3/y is prescribed. In contrast, the lower section is 

discretized by 76 nodes and intersects fractures HZ19C, HZ20A, and HZ20B_alt at depths of 

about -105 m, -296, and -390 m, respectively. A pumping rate equal to 2891 m3/y is imposed at 

the top of this lower section. Few manual head measurements are available above and below 

the packer, while automatic measurements, taken every 15 minutes, are conducted from March 

26 to July 22. The maximum drawdown observed in the upper section of KR24 is 19.25 m, 

while it is 1.94 m in the lower section. A difference between water levels before and after 

pumping is observed and is assumed to be caused by the natural decrease of groundwater 

surface in the island (Ahokas and Vidstrand, 2005). Simulation results presented in this section 

have two main objectives. A validation of the enhanced HydroGeoSphere version is first 

provided by comparison with the numerical results obtained on the same site with a block-

based mesh (Therrien, 2008). Then, the model is calibrated by adjusting hydraulic parameters 

of the discretely-fractured medium to match observed and simulated drawdown at both 

observation points and pumping well. 

For the first simulation scenario, the hydraulic parameters assigned to the fractures and to the 

porous rock matrix are identical to those used by Therrien (2008). Fractures are assumed non-

deformable and fluid-filled, such that there is no contribution to the storage term from fracture 

compressibility (Therrien et al., 2007). Fracture apertures are those listed in Table 5.4 as "series 

1". Specific storage is set to 4.4 x 10"6 m"1 for the fractures and to 1.0 x 10"6 m"1 for the rock 

matrix. The geological medium is assumed isotropic. The hydraulic conductivity of the first 70 

m of the porous rock is equal to 2 x 10"7 m/s, while the deeper rock has a lower conductivity 

equal to 1 x 10"10 m/s. Initial heads are obtained by a steady-state simulation using the same 

geometry and parameters. A first-type boundary condition is imposed at the top of the domain 

and the open boreholes and pumping well are disconnected from the topographic surface, as 

done for the steady state flow simulations. Simulated drawdown at observation wells KR4, 

KR7, KR8, KR10, KR22, KR27, and KR28 are presented for both the NWMO model 

(Therrien, 2008) and the model proposed here, based on the tetrahedral mesh (Figures 5.18 

and 5.19). Comparison to observed drawdown will be provided later (Figures 5.23 and 5.24). 
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Figure 5.18 - Simulated drawdown at observation boreholes: comparison with results 

presented by NWMO in Therrien (2008) - part 1 
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Figure 5.19 - Simulated drawdown at observation boreholes: comparison with results 

presented by NWMO in Therrien (2008) - part 2 

It can be observed that all curves have the same shape, showing that the steady state condition 

is reached almost at the same time at the open boreholes for the two models. A difference is 

noticed in the maximum drawdown simulated, especially for KR4 and KR28, which are the 

boreholes nearest to pumping well KR24, at a distance of 60 and 100 m, respectively. This 

difference may be explained by the proximity of boreholes KR4 and KR28 to the pumping 
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well and, as a consequence, by the mesh resolution in this area, where large changes in 

hydraulic head occur. The local refinement and the representation of the fracture-well 

intersection affect the numerical results in this region. As mentioned in Section 5.3, the 

staircase approach is used to discretize fractures and boreholes with a block-based mesh 

(Therrien, 2008), such that multiple fracture-borehole intersections may occur. In fact, 

borehole KR28 is characterized by multiple intersections with fractures HZ19A and HZ19C, 

which intersect pumping well KR24. Concerning borehole KR4, no multiple intersections are 

observed with the block-based mesh. The difference in the simulated drawdown (Figure 5.18) 

may be due to the fact that borehole KR4 is the nearest to the pumping well and, therefore, 

the drawdown is computed differently because of the local tetrahedral refinement. The 

maximum observed drawdown in borehole KR4 is 0.62 m (Figure 5.23), while the drawdown 

simulated with the tetrahedral and block-based mesh is 0.92 m and 1.19 m, respectively (Figure 

5.18). Thus, the result obtained with the tetrahedral mesh is nearer to the observed value than 

that obtained with the block-based mesh, although the difference is still quite significant. 

Uncertainty in the geometry and location of fractures may also be a cause of the differences 

between observed and simulated hydraulic heads. An additional reason for the difference 

between tetrahedral and block-based mesh simulation results may be found in the mesh 

resolution of borehole axes, which are discretized by ID linear finite elements that are 6 m and 

20 m long in the tetrahedral and block-based mesh, respectively. Since fractures and boreholes 

are the major flow conductors of the Olkiluoto groundwater system, their spatial discretization 

and the local refinement play a major role in the numerical results. 

The drawdown at pumping well KR24, simulated with the tetrahedral mesh and the hydraulic 

parameters adopted by Therrien (2008), is far from the observed values. In the lower section 

the simulated drawdown is 4 m greater than the observed value, while it is 12 m lower in the 

upper section. To test the impact of fracture aperture on drawdown at borehole KR24, a 

second simulation is performed with the fracture apertures of "series 2". The hydraulic head 

values around well KR24 without and with pumping are presented in Figure 5.20 for this 

second simulation. The triangular discretization of fractures is also shown (Figure 5.20a). 
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Heads [m] 

Figure 5.20 - Hydraulic heads on fracture HZ19A: a) without pumping and b) with pumping 

Compared to the model with the "series 1" apertures, a much improved match between 

measurements and simulated heads at the pumping well is obtained using the apertures 

referred to as "series 2". The porous rock hydraulic conductivities are the same as those used 

for the steady state simulations. The quick recovery at the end of pumping is accurately 

reproduced as well as the minimum hydraulic head reached during pumping (Figure 5.21). 
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Figure 5.21 - Calibrated drawdown at pumping well KR24 
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A slight difference can be noticed at the end of the simulation, after 110 days, when the 

observed heads are lower than the simulated heads. This difference is explained by a natural 

decreasing trend in hydraulic head caused by seasonal water-table variations, which has been 

observed on Olkiluoto Island (Ahokas, 2007). 

Additional simulations investigated the impact of the hydraulic parameters of the porous rock 

matrix on the drawdown curve. For these simulations, the fracture aperture and specific 

storage remain unchanged and the properties of the porous rock matrix and the boundary 

condition on the top of the domain are changed. These modifications are shown in Table 5.5, 

where K ^ is the hydraulic conductivity of the first 70 m of the porous rock, and Kbedrock is that 

of the lower bedrock. 

Table 5.5 - Simulation parameters 

Simulation Ss [m-»] Kt0p [m/s] Kbedrock [ m / s ] Top boundary 

Base case 1 x 10-6 7.8 x 10-8 1 X 10-12 Specified head 

Sim_K 1 x 10-6 5 x IO» 1 x 1010 Specified head 

Sim_Ss 5 x 10-6 7.8 x l O 8 1 X I O - " Specified head 

Sim_h 5 x 10-6 7.8x10» 1 X 10-12 No flow 

The simulated drawdown curves demonstrate that, for the variations considered, the hydraulic 

conductivity has a stronger influence on drawdown than the specific storage (Figure 5.22). In 

particular, the lower value of K,op for Sim_K increases the drawdown in the upper section of 

the well by about 10 m. In contrast, even if the hydraulic conductivity of the lower bedrock is 

increased by two orders of magnitude, from 1 x 10"12 m/s to 1 x 10"10 m/s , the drawdown in 

the lower section does not change significantly. A larger specific storage coefficient (Sim_Ss) 

slightly reduces the drawdown in the lower section and modifies to some extent the shape of 

the curve in the upper section at the beginning of pumping. If the top of the domain is a no-

flow boundary (Sim_h), the shape of the curve changes, especially for the upper section of 

KR24 where steady-state is reached more gradually than what was observed. Moreover, the 

initial head is not recovered. Finally, a better fit of the drawdown in the lower section is 

obtained with a larger storage coefficient. In that case, however, the drawdown at the 
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observation wells would be more difficult to calibrate. Thus, the "base case" parameters listed 

in Table 5.5 and the apertures "series 2" are the combination of parameters that give the best 

calibration of the flow model. 

Calibrated curve 
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Figure 5.22 - Drawdown curve at pumping well KR24: sensitivity analysis 

For the same calibrated flow model, the simulated drawdown at observation points is 

compared to that observed. However, the observed drawdown contains not only the decrease 

in hydraulic heads due to pumping at borehole KR24, but also the natural decreasing trend 

observed on Olkiluoto Island. Ahokas (2007) described some historical relationships between 

observed heads near surface and deeper in the bedrock. Decreasing trends have been analyzed 

for summers 1991, 1994, 1996 and for the longer period January 2002 - May 2003. An average 

trend of 1 cm/day is observed between mid-July and mid-September 1991. This natural 

decreasing trend is considered here to correct the observed drawdown at boreholes KR04, 

KR07, KR08, KR10, KR22, KR27, and KR28, which are chosen as observation points. The 

resulting observed "detrended" drawdown is compared to the drawdown simulated at 

observation boreholes (Figures 5.23 and 5.24). The corresponding drawdown at borehole 

KR24 has been presented in Figure 5.21. 
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Figure 5.23 - Simulated and observed "detrended" drawdown at observation boreholes - part 1 
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Figure 5.24 - Simulated and observed "detrended" drawdown at observation boreholes - part 2 

Boreholes KR4, KR7 and KR27 show the largest difference between observed and simulated 

drawdown. For borehole KR4 this difference is probably due to the fact that KR4 is the 

nearest borehole to pumping well KR24 (about 60 m) and, therefore, the effect of pumping 

may be greater than the natural decreasing trend. Concerning boreholes KR7 and KR27, the 

differences have already been observed with the poor calibration in the steady-state simulation 

described in Section 5.4.1.1. Since the hydraulic head distribution evaluated in that steady-state 

simulation is used here as the initial condition for the transient flow simulation, the imprecise 
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evaluation of the hydraulic heads at boreholes KR7 and KR27 also influences the computation 

of their drawdown. 

In Figures 5.18 and 5.19, which presented the simulated hydraulic heads with the simulation 

parameters of Therrien (2008), the simulated drawdown is generally smaller than the observed 

"detrended" drawdown. In particular, the simulated drawdown at boreholes KR7, KR8, and 

KR10 is less than 0.25 m. Borehole KR4 still shows the largest difference between simulated 

and observed drawdown. In contrast, the simulated drawdown at borehole KR27 (Figure 5.19) 

is closer to the observed "detrended" drawdown. 

The rate of decrease in head depends on local properties, such as topography, location either 

on an outcrop or on overburden, and porosity (Vaittinen and Ahokas, 2005). Thus, it may be 

too simplistic to correct all observed heads by the same amount. Tidal effects are an additional 

component in the natural variation. In several cases, observed drawdowns are on the order of a 

few centimeters and are highly uncertain due to the unknown effect of infiltration on measured 

heads (Vaittinen and Ahokas, 2005). Given the complexity of the site, the available data, and 

the uncertainty in the knowledge of the trend in heads, simulation results reproduce quite well 

the in situ subsurface flow conditions. 

5.4.2 Transport simulations 

The purpose of this section is to present examples of solute transport applied to the Olkiluoto 

site. To keep the amount of work within reasonable limits, two representative simulation 

scenarios are considered. These simulations extend the application of the enhanced 

HydroGeoSphere version to solute transport in complex geological media and demonstrate the 

potential of the modeling approach developed. Numerical modeling focuses on the impact of 

open boreholes and fractures on solute transport at the Olkiluoto site, with specific interest on 

salinity distribution and on radionuclide migration. 

The simulation parameters are those of the base case for the flow model presented in the 

previous sections (Tables 5.3 and 5.5). The transport simulations require the definition of 
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additional parameters, such as porosity, tortuosity, and dispersivity of the fractured geological 

medium, as well as solute properties. Dispersivity is a critical parameter for the transport 

simulations because its value has a direct influence on numerical results. It depends on the 

spatial scale and on the heterogeneity of the geological formations (Gelhar et al., 1992). Site-

specific values for the Olkiluoto site were not available and have therefore been assigned on 

the basis of information found in the literature. The references considered here are 

summarized in Table 5.6. Unfortunately, no site specific information exists on the longitudinal 

or transverse dispersion lengths (Andersson et al., 2007). Thus, dispersivity constitutes a source 

of uncertainty from the point of view of solute transport, as there are no experimental data 

available for these parameters (Posiva Oy, 2005). Andersson et al. (2007) presented two 

sensitivity cases, where they adopted a weaker and a stronger value, respectively 25 m and 100 

m for the longitudinal dispersivity and 6 m and 25 m for the transverse dispersivity. The 

sensitivity of transport simulation results to the dispersion length was also studied by Lôfman 

and Mészâros (2005), who increased the longitudinal dispersion length to 75 m and 100 m. In 

general, the longitudinal dispersion was selected as small as possible in order to decrease the 

spreading of solutes and the transverse dispersion length was taken to be one-quarter of the 

longitudinal dispersion length (Lôfman and Mészâros, 2005; Posiva Oy, 2005). Where the 

Darcy velocities are strong, dispersivity values shorter than 50 m caused numerical problems 

associated with a too large Peclet number when solving the transport equation. 

Table 5.6 - Dispersivity values for the Olkiluoto site found in the literature 

Source Longitudinal 
dispersivity [m] 

Horizontal and 
vertical transverse 
dispersivity [m] 

Kattilakoski et al., 2000 200 50 

Posiva Oy, 2005a 50 12.5 

Lofman and Mészâros, 2005 50 12.5 

Andersson et al., 2007 50 13 

Longitudinal and transverse dispersivities equal to 50 m and 12.5 m, respectively, are 

considered for the illustrative simulations presented here. They correspond to the published 

values and also result in Peclet numbers that are not too large for the tetrahedral mesh, with 
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the computed Darcy velocities. The tortuosity of the porous rock matrix is set to 0.1 and the 

porosity to 0.05, as in Therrien (2008). 

Simulation results presented in Section 5.4.2.2 are for a transient flow field, while those 

presented in the Section 5.4.2.1 are based on a steady state flow field. Implicit transport time 

weighting and upstream weighting of velocities are always used as simulation options. 

Concentration control is adopted to generate adaptive time-steps. Unless mentioned otherwise, 

the Orthogonal Subdomain Collocation method is employed. 

5.4.2.1 Simulation of the evolution of salinity distribution 

The evolution of the salinity distribution is one of the hydrogeological modeling aspects of 

particular interest at the Olkiluoto site. This topic is largely covered in Posiva Oy reports 

(Riekkola et al., 2003; Lôfman, 2005; Lôfman and Mészâros, 2005). Although a variable-density 

flow and transport simulation would be the most appropriate option to simulate the evolution 

of the salinity distribution, a simplified scenario is considered here, where density effects on 

fluid flow are neglected. Therefore, an initial concentration distribution of TDS (Total 

Dissolved Solid) is assigned to the simulation domain and the density of water is assumed to 

be constant. The dependence of the density of water on the salinity is neglected and the salt is 

considered as a conservative solute. 

A first scenario considers the effect of pumping on the salinity distribution. The following 

depth-dependent salinity profile s(z) is adopted as the initial conditions for the solute 

(Lôfman, 1999): 

s(z) = 

-0.04982z 0 m < z < - \ 0 0 m 

3.582e"°°°33z -100 m < z < -900 m (5.1) 
72 - 9 0 0 m < z < - 1 2 0 0 m 

A linear model for salinity is used from the surface to the depth of 100 m. From 100 m to 900 

m, an exponential increase in salinity is applied, whereas a constant value 72 g/1 is used for 

depths greater than 900 m. The curve obtained with Eq.(5.1) follows the trend of salinity 

values measured in boreholes at the site (Figure 5.25). The water is generally defined as saline 
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at concentrations of about 30 g/1, which are found at a depth of about 600 m, according to the 

profile given by Eq.(5.1). In the numerical model, the initial salinity values are attributed to 

horizontal layers 100 m thick, such that salinity values change every 100 m, which is the length 

of the edges of the largest tetrahedral elements in the mesh. The horizontal initial salinity 

distribution was also adopted by Lôfman and Mészâros (2005). Salinity values are expressed as 

relative concentrations, based on a fraction of the maximum salinity value. Thus, the maximum 

salinity of 72 g/1 corresponds to a relative concentration equal to 1 and, for example, the 

relative concentration at the depth of 500 m is equal to 0.26. 
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Figure 5.25 - Salinity profile of groundwater (TDS) 

(adapted from Lôfman and Mészâros, 2005) 

For this hypothetical simulation scenario, boreholes KR4, KR7, KR12, and KR24 are 

considered as pumping wells. A flowrate equal to 10000 m3/y, which is the same value of the 

pumping test conducted in 2004 at borehole KR24, is imposed at the bottom node of the well 

axes. The computed salinities, shown in Figure 5.26, indicate that salinity decreases at the 

bottom node of the wells, which is the discharge point. In contrast, the concentration in the 

middle of the well axis slightly increases. Thus, the location of the well withdrawal point 

controls the mixing of groundwater characterized by different salinity values. The curves 

shown in Figure 5.26 have the tendency to converge to the same value, which is explained by 

the fact that the deep well pumps groundwater that has a different TDS concentration. 
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Borehole KR24 is the shortest pumping well considered, thus its concentration at the bottom 

node is the smallest one, equal to 0.33, or 24 g/1 of TDS. In contrast, inclined well KR4 

reaches a depth of 870 m, thus it is characterized by an initial relative concentration at its 

bottom node equal to 1. Because of pumping, this value decreases to about 0.3, which 

corresponds to 22 g/1 of TDS. Regardless of the initial difference of salinity along the well axis, 

at the end of pumping the TDS concentration is almost the same along the well axis. These 

simulation results demonstrate that open boreholes tend to homogenize the salinity 

concentration. 
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Figure 5.26 - Simulated evolution of TDS relative concentration at pumping wells 

Another topic related to the salinity distribution is the analysis of the inflow into ONKALO. 

The open tunnel will constitute a major hydraulic disturbance for the site's natural 

groundwater system (Lôfman and Mészâros, 2005). Inflow can be limited by a careful selection 

of the locations of the underground facilities and their surface connections and by forming a 

watertight zone in the rock around tunnels and shafts. This is normally completed by 

engineering measures, such as grouting the rock before or after excavation (Riekkola et al., 

2003). The open ONKALO can be thus thought as a major sink that draws groundwater from 

all directions in the bedrock. Most of the inflow would come from the conductive 

subhorizontal fracture zones intersected by the access tunnel and the shaft during excavation. 

Riekkola et al. (2003) estimated with analytical methods the total groundwater ingress into 

ONKALO. They obtained an inflow of about 3000 1/min in the absence of any engineering 
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measures, while they estimated that inflow declined to about 450 1/min after grouting. 

ONKALO was modeled by a set of nodes in the finite element mesh by Lôfman and Mészâros 

(2005), treating each tunnel node as a sink and using for each node a prescribed outflow rate. 

This effect is reproduced here by assigning the equivalent total outflow rate to borehole KR4, 

as the ONKALO tunnel geometry was not included in the Geomodel. The real inflow into 

ONKALO is thus reproduced in the numerical model as outflow from borehole KR4, which 

represents the whole open ONKALO. An average inflow equal to 1100 1/min is used here, 

which is equal to the inflow into the access tunnel calculated by Lôfman (2005). Other 

boreholes are not included in the simulation. This simulation aims at reproducing the general 

direction of the subsurface flow and the change in salinity distribution presented in Lôfman 

and Mészâros (2005), who, however, simulated a variable-density flow. 

The initial salinity distribution obtained by applying Eq.(5.1) is shown in Figure 5.27a. The 

open ONKALO is considered hydraulically active at the beginning of the simulation, which 

covers 200 years. It is clear that the simplified approach used here cannot lead to the same 

results obtained by Lôfman and Mészâros (2005). However, the purpose here is to offer an 

illustrative example to draw some conclusion on the validity of the proposed modeling 

approach. 

KR4 
hz4 

L, 

-1000, 

a) Initial salinity distribution b) Salinity distribution after 200 years 

Figure 5.27 - Effect of inflow into ONKALO on the salinity distribution 

for a vertical section at x = 1525815 m 
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The effect of inflow is clearly visible in Figure 5.27b, where the groundwater migrating from 

the surface through the fracture network determines the migration of brackish water deep into 

the bedrock. Saline water moves along fracture HZ4, although this behavior is more evident in 

Figure 5.28b. An increase in TDS concentration at depths of 700-800 m is also observed, as 

indicated by the black arrow (Figure 5.27b). 

The effect of the porous rock hydraulic conductivity on the evolution of the salinity profile is 

also investigated. If the hydraulic conductivity is increased by two orders of magnitudes, from 

1 x 10"12m/s to 1 x 10"10m/s, which is the value used by Therrien (2008), groundwater mixing 

increases (Figure 5.28b). In particular, the rise of brine water along fracture HZ4 is more 

evident. The salinity evolution presented by Lôfman and Mészâros (2005) is comparable to 

that obtained here, although changes in the salinity distribution are greater in Lôfman and 

Mészâros (2005), probably because of the use of a variable-density flow solution and the 

discretization of the real geometry of ONKALO. 
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Figure 5.28 - Influence of the porous rock hydraulic conductivity on the salinity distribution 

for a vertical section at x = 1525875 m 

Darcy velocities simulated here are also compared to those presented by Lôfman and Mészâros 

(2005). Inflow into ONKALO creates a flow field convergent toward the center of the 

simulation domain, where the outflow rate is applied (Figure 5.29). The natural groundwater 

flow without the underground rock laboratory is characterized by a discharge toward the sea 
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(Figures 5.14 and 5.17). In contrast, the inflow reverses the main direction of groundwater 

flow, which now is directed from the lateral boundaries towards the open ONKALO, as 

expected. Although Lôfman and Mészâros (2005) included in their model the geometrical 

representation of the access tunnel and shaft, and used a slightly different fracture network 

configuration, the two images presented in Figure 5.29 are comparable. 

a) 

ONKALO 
(access tunnel 
and shaft) 

h 2 ) 9 A hz!9B h 2 l 

hz20B. 

b) 

Figure 5.29 - Inflow into ONKALO: a) Darcy velocities within porous matrix presented by 

Lôfman and Mészâros (2005) and b) Darcy velocities simulated 
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5.4.2.2 Simulation of radionuclide migration 

The performance assessment of a repository requires a detailed understanding of the processes 

that can affect contaminant transport. The purpose of this section is to present an illustrative 

example representing a base case for radionuclide transport modeling. Two main reactive 

processes can be considered to simulate the movement of radionuclides in groundwater. 

Radionuclides undergo radioactive decay according to their half-life, and they can also be 

adsorbed on mineral surfaces. Both processes are important mechanisms for retarding the 

potential radionuclide migration from a geological nuclear fuel repository to the biosphere. 

Sorption is highly dependent on the particular combination of mineral and radionuclide. 

Sorption is described through the retardation factor, which, in saturated conditions, is defined 

as: 

R = 1+£^L (5.2) 
n 

where Kd is the volumetric distribution coefficient, p and n the bulk density and the porosity 

of the porous rock, respectively. The coefficient Kd describes the distribution between two 

phases, in this case the solid porous rock and the water, and it is calculated as the ratio of the 

concentration of the solute in one phase to the concentration of the solute in the other phase 

under equilibrium conditions. Dissolved radionuclides are then transported by diffusion and 

advection, with mechanical dispersion. In general, radionuclide transport in low permeability 

formations is dominated by diffusion. 

Two radionuclides are considered here, the anion 129I and the cation 133Ba. They have been 

chosen on the basis of radionuclide studies found in the literature (Kosakowski, 2004; 

Andersson et al., 2002; Dershowitz et al., 2003). The bulk density of the most abundant 

lithology, the mica gneiss, is equal to 2800 kg/m3 (Hudson and Johansson, 2006), which has 

been assigned to the whole porous rock. 129I is long-lived and relatively mobile in the 

environment. In a deep geological repository for unreprocessed used fuel, it is likely to be the 

radionuclide of most potential impact at long times. It is considered as a conservative tracer 

and its Kd is set to 0. In contrast, 133Ba undergoes adsorption. Its distribution coefficient is 

given by Dershowitz et al. (2003), who estimated the distribution coefficients for several 
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sorbing tracers in the context of the Àspô Hard Rock Laboratory modeling Task Force. 

Dershowitz et al. (2003) presented the information required to construct a fractured granite 

hydrostructural model for Performance Assessment modeling. As the Olkiluoto site is a similar 

geological environment, the study of Dershowitz et al. (2003) has been considered as one of 

the main references for this section. Radionuclides are assumed to be sorbed on the fracture 

walls because of the presence of mineral coating. The HydroGeoSphere input parameter for 

sorption on the fracture walls is the fracture retardation factor, which is calculated as: 

2K 
R f = l + — a - (5.3) 

f 2b V ' 

where the surface sorption coefficient Ka can be evaluated from the K d for the fracture 

coating (Dershowitz et al., 2003) and 2b is the fracture aperture. The average aperture of the 

13 fractures is considered, to simplify the simulation scenario by attributing the same 

retardation factor to all the fractures. 

Radionuclide parameters are listed in Table 5.7. Note that hydraulic parameters are those used 

to calibrate the flow model and longitudinal and transverse dispersivities are 50 m and 12.5 m, 

as mentioned in Section 5.4.2. For the porous rock matrix, it is assumed that horizontal and 

vertical transverse dispersivities have the same value equal to 12.5 m. 

Table 5.7 - HydroGeoSphere input parameters to simulate radionuclide migration 

Parameter Value 

129I Volumetric distribution coefficient K d [m3/kg] 0 
i33Ba Volumetric distribution coefficient K d [m3/kg] 1 x 103 

!29I Fracture retardation factor R , [m] 1 
,33Ba Fracture retardation factor R , [m] 106 

129J Decay constant A. [y'1] 4.4 x 108 

i33Ba Decay constant A [yi] 6.6 x l O 2 

129I Free diffusion coefficient D0 [m2/y] 1.9 x 102 

t33Ba Free diffusion coefficient D0 [m2/y] 2.7 x 102 
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Figure 5.30 illustrates the simulation design for the radionuclide transport simulation. A unit 

radionuclide concentration is imposed at nodes located between depths of -500 m and -550 m, 

which is the approximate depth where the spent fuel should be placed according to the 

preliminary design of the repository. The first-type concentration source is located in the 

porous rock at the center of the fracture network, between coordinates 1526000 - 1526050 m 

and 6792000 - 6792050 m in the x and y directions, respectively. The purpose is to investigate 

if the contaminant reaches the nearest fracture HZ21 and then migrates through the fracture 

network. Boreholes have not been included in this scenario because the simulation is assumed 

to start once the repository is closed and that all open borehole have been backfilled. The 

potential source of contamination corresponds to either an initially defective canister or a 

subsequently breached canister. 

Lateral boundaries: Top boundary: 
Hydraulichead = sea level / Hydrualic head = Groundwater table 

o 

ON 
(1528000, 6792000, -1200) 

(1525000,6794500,-1200) (1526000,6792000, -1200) 

Bottom boundary: no flow 

a) 
Co = l 

hzl9A hz8 

-500-1 

-1000 

(1528000, 6791000, -1200) 

b) 

obs_3 
/(1524000,6792025,-465) 

V«- i i l w V, obs_2 
6 (1526000,6792025,-565) 

obs_l 
(1526000,6792025,-590) 

c) 

Figure 5.30 - Model design for radionuclide transport simulations: a) boundary conditions, 

b) location of the concentration source and c) position of the observation points above and 

below the concentration source C0 
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Two observation points obs_l and obs_2 are located below the source of contamination at 

coordinates (1526000, 6792025, -590) and (1526000, 6792025, -565), respectively. A third 

observation point, obs_3, is located above the source of contamination, at coordinates 

(1526000, 6792025, -465). This simulation scenario considers a steady state flow field. 

The difference in the migration of the two species can be seen in their corresponding 

breakthrough curves (Figure 5.31). Barium, which decays faster than 129I and also undergoes 

sorption, is not found at any observation point. In contrast, 129I is found at the three 

observation points, but at different concentrations. Since obs_l is further from the 

contamination source than obs_2, the relative concentration is smaller. The lowest relative 

concentration is found at obs_3, which is located above the contamination source. 

g 0.4 

.5 S 0.2 

s'"Z. r 
f 

Iodine 
obs_l 
Iodine 
obs_2 
Iodine 
obs_3 
Barium 
All observation points 

0.0K+00 5.0l:+06 I.OE+07 I.5E+07 2.0H+07 23K+07 3.0I.+07 
Time [years] 

Figure 5.31 - Breakthrough curves for I and Ba at the observation points 

The Iodine migrates through the rock matrix and does not reach the nearest fractures in this 

specific simulation scenario. To better investigate Iodine propagation, dispersive and advective 

fluxes through the porous rock matrix are computed for a slice of nodes around the 

concentration source (Table 5.8). 
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Table 5.8 - Mass fluxes computed at nodes near the concentration source 

Flux „ . . » i i To the right of Below the source Above the source , ° the source 

Advective flux [MT1] 

Dispersive flux [MT1] 

5.6 x l O 4 3.1 xlO-4 5.0x10* 

1.1x10-2 6.9 x l O 3 6.0 x l O 3 

The concentration isocontours are not perfectly symmetric around the Iodine source, with a 

slightly larger migration in the direction of the groundwater flow (Figure 5.32). The dispersive 

flux is larger than the advective flux at all three locations, as hydrodynamic dispersion is the 

dominant transport process in the low permeability porous rock matrix. The advective flux is 

at least one order of magnitude smaller at all locations and the largest value is found below the 

contamination source, where the largest dispersive flux is also computed. 

z[m] 

Heads |m) 
9 | -500 

a) Hydraulic head distribution 

.>-"— 

Iodine 
C/C. [-] 

]"' 
09 
07 
06 
05 
04 
03 
02 
01 

b) Iodine isocontours after 30 million years 

Figure 5.32 - Vertical section at x = 1526000 m: a) groundwater field and 

b) 129I concentration isocontours 

The sensitivity of the porous rock permeability on the contaminant plume migration has also 

been tested by increasing the hydraulic conductivity from 1 x 10"12m/s to 1 x 10"8m/s. For this 

new scenario, the 129I plume is larger and reaches fractures HZ21, HZ4, and BFZ99, where the 

relative concentration is less than 0.2 (Figure 5.33a). 129I reaches HZ4 because it intersects 
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fracture HZ21, which is attained by the contamination plume. Fractures HZ20A and 

HZ20B_alt are located above the concentration source and the plume does not reach them. 

hz20b alt 

. ^ - * — ■ • 

I » * . * |-J 

3.6 

h t 

a) Iodine concentration on fractures b) Iodine isocontours after 30 million years 

I 
Figure 5.33 - 129I concentration isocontours for Krock = 1 x 108 m/s: 

a) concentration in the fractures and b) concentration for a vertical section at x = 1526000 m 

A final comparison between the Galerkin and OSC methods is based on the simulation of the 

Iodine propagation. Implicit transport weighting and upstream weighting of velocities are used 

for both simulations. With the Galerkin method negative concentrations occur, which 

significantly affect the visualization of the concentration contours (Figure 5.34). In particular, a 

minimum concentration equal to -0.042 is obtained. In contrast, with the Orthogonal 

Subdomain Collocation method, the largest negative concentration value is -3.9 x 10"10, which 

is nearer to zero, and no visualization errors appear. Moreover, the difference in the number of 

solver iterations follows the trend mentioned in Chapter 4. The number of flow solver 

iterations is 346 and 283 for the Galerkin and OSC methods, respectively. Likewise, the mass 

transport solver iterations are 200 and 150 for the Galerkin and OSC methods, respectively. 
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Figure 5.34 - Galerkin method: errors in numerical results 

5.5 Concluding remarks on case study simulations 

This case study demonstrates that the modeling approach developed here is a suitable tool for 

hydrogeological modeling of complex fractured media. The geological modeling platform 

GOCAD is particularly suitable to create the 3D fracture network. Then, the tetrahedral mesh 

is the most appropriate way to discretize this complex domain, if compared to simpler 

structured meshes, and it constitutes a good compromise between high mesh resolution and 

computational time. 

Flow simulations aim at reproducing the pumping test conducted at the Olkiluoto site in 2004. 

A satisfactory agreement between the simulated and observed hydraulic head is obtained. 

Moreover, illustrative transport simulation scenarios are designed to show the numerical 

capabilities of the enhanced numerical model. The evolution of the salinity distribution and the 

propagation of two representative radionuclides are considered. Simulations provide expected 

results and, in particular, similar differences between the Galerkin and the Orthogonal 

Subdomain Collocation methods highlighted in Chapter 4 are observed here. With the OSC 

method, negative concentration values are more easily avoided and a smaller number of solver 

iterations is required. 



158 

Other modeling aspects that may be considered for this case study are density dependent flow 

and heat transfer. Saline water is a major concern for performance of the tunnel backfill after 

the closure of the repository, and it may significantly decrease the swelling pressure and 

increase the hydraulic conductivity of such a backfill (Lôfman and Mészâros, 2005). Thus, 

accurate simulations of variable-density flow may provide useful information. Moreover, high 

thermal gradients will be caused by the repository, since the decay heat of spent nuclear fuel 

raises the temperature of the repository and the surrounding bedrock several tens of degrees 

for many centuries (Lôfman, 2005). As a result, it may be interesting to investigate how these 

variations of temperature will affect the groundwater flow conditions. Other phenomena may 

affect the subsurface flow over a long time scale, such as land up-lift and glaciations. For 

example, the land at Olkiluoto is still expected to rise relative to sea level by approximately 10 

m during the next 2000 years (Lôfman, 2005) and elevated hydrostatic pressure during 

glaciation may be considered (Raiko, 2005; Vieno and Ikonen, 2005) 



Chapter 6 

Conclusion 

The main objective of this work was to develop a workflow to couple 3D geological modeling 

techniques with numerical modeling tools, represented, in this specific case, by the geological 

modeling platform GOCAD and the numerical code HydroGeoSphere, respectively. This 

objective was defined in the context of the GEOIDE project GeoTopo3D, which represented 

the basis of this work. As defined in Kirkwood et al. (2003), one of the goals of the 

GeoTopo3D project was to create an efficient link between Geomodels and numerical models, 

such that the knowledge gained in constructing Geomodels can benefit numerical modeling. 

Advanced geomodeling techniques aim to create a detailed 3D representation of geological 

systems, which can be used for numerical modeling of various physical processes. This work 

addressed the 3D geological modeling of discretely-fractured geological media as well as 

numerical simulations of groundwater flow and solute transport. 

The work was organized in several successive phases. At first, different options and modeling 

tools available in GOCAD were tested to find the most suitable procedure to represent a 

network of discrete fractures. Fractures were represented by triangulated irregular surfaces 

whose shape was attributed on the basis of field observations. Mutual cuts between 

intersecting fracture surfaces were executed and a conforming triangular mesh at intersection 
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lines, which is the essential requirement to satisfy to represent the connectivity between the 

fractures, was guaranteed. 

Spatial discretization of the simulation domain was then required to represent the porous rock 

matrix surrounding the fractures and to numerically solve the partial differential equations of 

groundwater flow and mass transport. Unstructured meshes provide multiscale resolution and 

conformity to complex geometries (Shewchuck, 1999). As a result, an unstructured tetrahedral 

mesh was chosen to discretize the discretely-fractured media considered here. However, the 

open problem was how to build tetrahedral elements that satisfy a specific topological relation 

with triangles that discretize the fractures. In fact, the envisioned relation between tetrahedra 

and triangles requires that every triangle lying on a fracture surface matches a face of the 

surrounding tetrahedra. After a survey of available tools, the mesh generator LaGriT was 

selected as the best tool for 3D discretization of the Geomodel. A particular mesh generation 

procedure was adopted to discretize the 3D space around the network of fractures. This 

procedure preserves the fracture network geometry defined with GOCAD, includes a local 

refinement around the fractures and the boreholes, and provides the required information to 

identify the tetrahedral faces matching the triangles that lie on the fracture surfaces. 

In the next step, the focus shifted to the numerical code HydroGeoSphere. The essential part 

of this work was actually the modification of HydroGeoSphere, such that the fully 3D 

tetrahedral mesh could be read by the code. A new procedure was also developed to select the 

tetrahedral faces representing the fractures. Although the main objective was to import the 

fully 3D tetrahedral mesh into HydroGeoSphere, an additional aspect was included in the code 

development. The Orthogonal Subdomain Collocation method was integrated in the numerical 

code as an alternative to the standard Galerkin method to evaluate the coefficients of the fluid 

conductance matrix. 

To prove the correct numerical solution of subsurface flow and mass transport equations on 

fully 3D tetrahedral mesh with the enhanced HydroGeoSphere version, some verification 

examples were designed. Simple simulation scenarios were preferred, in order to check more 

easily mesh information, compatibility of input/output files between different software tools, 

and simulation results. Analytical solution and numerical results obtained with block-based 



161 

mesh were used as comparative tools. Moreover, some illustrative examples characterized by a 

gradual increase in the complexity of the simulation scenarios were presented. Furthermore, 

the difference between Galerkin and Orthogonal Subdomain Collocation methods was 

analyzed. The matrix arising form the discretization of the governing equations with the 

Control Volume Finite Element numerical method reflects the connectivity of the mesh used 

to discretize the simulation domain. The CVFE method is actually based on the definition of 

two meshes, a finite element mesh, which is the tetrahedral mesh in this case, and a dual mesh. 

The basic difference between the OSC and Galerkin methods is in the definition of this dual 

mesh. The OSC method considers the Voronoi mesh as the dual mesh, while the Galerkin 

method uses the median dual mesh. If the OSC method is adopted together with a tetrahedral 

Delaunay mesh, the fluid conductance matrix will be an M-matrix. As a result, oscillations in 

numerical results are more easily avoided. Moreover, a direct link exists between the matrix 

type and the evaluation of flow between two adjacent nodes. If the matrix is not an M-matrix, 

up-gradient flow can be simulated, which is unphysical. 

Finally, the last part of the work was the application of the modeling approach to Olkiluoto 

Island (Finland). The purpose was the validation of the modeling approach by analyzing 

groundwater flow at a real site. Olkiluoto Island has been selected for long-term disposal of 

spent nuclear fuel. The granitic bedrock of the island is characterized by low permeability, but 

it is crossed by major fracture zones that control groundwater flow. Thus, hydrogeological 

modeling becomes essential for site characterization and performance assessment. The three 

phases of the modeling approach, Geomodeling, mesh generation, and numerical modeling are 

described in detail with reference to this case study. The model input was represented by the 

location and the connectivity of the fractures, as well as the coordinates of the boreholes 

drilled at the site. The Geomodeling phase has shown that the geological modeling platform is 

suitable and practical to give a realistic representation of the geological system, as spatial data 

are easily managed and various tools are available to model the geological features, like fracture 

surfaces and boreholes in this case. Then, the mesh generation procedure applied to this case 

study has revealed its advantages, such as the local refinement, the representation of 

intersecting fractures with arbitrary geometry, and the discretization of inclined boreholes. 

Finally, the numerical code has provided proper simulation results, which have been compared 

to previous hydrogeological modeling conducted on the same site. Through model calibration, 
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the hydrogeological properties of the flow model were modified until an acceptable agreement 

with field observations was achieved. Moreover, solute transport simulations have been 

executed as illustrative scenarios for the site. 

Unlike the previous HydroGeoSphere versions, it is now possible to directly import a fully 3D 

mesh. This new mesh allows for more flexibility in the choice of the simulation domain 

geometry. The use of a fully 3D mesh represents the main novelty of the enhanced version of 

the numerical code. In fact, it is a common practice to simplify the geometry of the simulation 

domain for modeling purpose. In contrast, with this new modeling approach, complex 

geometries can be adopted, thus avoiding excessive simplifications. The simultaneous 

discretization of irregular fractures, inclined wells, and porous rock matrix with a refined 

tetrahedral mesh, represents another novelty of this work. In fact, in previous work found in 

the literature, simplifications were often necessary. For example, either the fractures (Mancini, 

2004) or the porous rock matrix (Kalbacher et al., 2005) were neglected. If the fractures were 

considered, they were generally assumed to be planar (Taniguchi and Fillion, 1996; Kalbacher 

et al., 2005). Moreover, the Geomodel was often created as an ensemble of volume bounded 

regions (Taniguchi and Fillion, 1996; Andenmatten-Berthoud and Kohl, 2003; Prévost et al., 

2004) restraining the domain geometry that can be represented. All these simplifications are no 

longer required with this modeling approach. An additional innovation that should be 

highlighted is the advantage of using the geological modeling platform GOCAD as the first 

step of the modeling phase in which 2D triangulated fracture surfaces are modeled and 

visualized before building the 3D mesh. 3D modeling allows to create fracture surfaces that fit 

field observations. 3D visualization allows to validate the geometrical consistency of the 

fracture network. Boreholes can also be easily integrated in the Geomodel enabling a better 

modeling of intersections with the fractures. Therefore, the Geomodel gives a detailed 

reproduction of the subsurface geological structures. Thanks to the link developed here 

between GOCAD and HydroGeoSphere, it is now possible to execute numerical simulations 

on a domain that is a more detailed reproduction of the real geological system. 

The main outcome of this work is an enhanced version of the HydroGeoSphere numerical 

code. This new version is based on the coupling between GOCAD and LaGriT. Compared to 

previous releases, the advantage of this version is that it is better suited for hydrogeological 
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investigations of complex fractured systems, where irregular fractures and inclined wells must 

be discretized. This work extends the development done by Graf (2005), as a more flexible 

mesh is used to fit complex geometries. The tetrahedral mesh can be locally refined and it 

provides a more suitable representation of the intersections between wells and fractures. In 

contrast, with the previous versions of the numerical code, block and prism meshes had 

refinement limitations and were generally built by stacking 2D slices composed of triangular or 

quadrilateral elements generated by other compatible mesh generators. The resulting 3D mesh 

was a layered system not suitable to represent discretely-fractured geological media. An 

additional and very important contribution of this work is that the proposed tetrahedral 

discretization is suitable not only for reproducing complex geometries, but it also satisfies strict 

numerical criteria when the Orthogonal Subdomain Collocation method is used. This method 

ensures that the fluid conductance matrix is an M-matrix and, as a consequence, that the 

positive transmissibility condition is respected. These two aspects guarantee that the numerical 

model produces physically realistic results. 

Future development may be envisioned to continue with the research direction proposed with 

this work. It may be interesting to extend the application of this modeling approach to the 

other existing simulation options in HydroGeoSphere, such as unsaturated flow conditions, 

variably-density flow and heat transfer. In particular, the application of the Orthogonal 

Subdomain Collocation method to nonlinear systems may improve the convergence of the 

Newton iterations because of the presence of an M-matrix, which has excellent properties for 

iterative solvers (Letniowski and Forsyth, 1991). In contrast, discretizations generating a large 

number of negative transmissibilities, which are represented by positive off-diagonal entries in 

the fluid conductance matrix, require a greatly increased number of Newton iterations 

(Forsyth, 1991). 

In conclusion, this work not only led to the development of a software coupling framework 

between GOCAD, LaGriT and HydroGeoSphere, but it also presented the implementation of 

an alternative technique to evaluate the coefficients of the fluid conductance matrix as well as 

the application of the modeling approach to a real test site. The software coupling framework 

leads to an enhancement of the modeling capabilities for discretely-fractured media, the OSC 
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method improves the numerical solution, and, finally, the Olkiluoto case study provides a real-

world validation of the overall modeling approach. 
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Appendix A 

Basic LaGriT commands 

cmo 
* Current mesh object 

infile file_name.lgi 

* Instruct LaGriT to begin processing commands from a *lgi text file 

read/gocad/frac_name.ts/cmo_name 

* Read a GOCAD *.ts surface file 

read/avs/well_name.avs/ cmo_name 

* Read a *.avs text file that contains well nodes 

cmo/create/hexfrac///hex 

createpts/brick/xyz/NX,NY,NZ/XMIN,YMIN,ZMIN/XMAX,YMAX,ZMAX/l ,1,1 

* Create a hexahedral mesh 
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compute/distance_field/hex_mesh /cmo_name/dfield 

* Compute the distance between the hexahedral mesh (hex_mesh) and another Mesh Object 

* (cmo_name), such as a fracture or a well 

pset/prefine/attribute/dfield/l,0,0/dist_ref/lt 

* Select the nodes within a specific distance dist_ref 

eltset/erefine/inclusive/pset,get,prefine 

* Select the elements that correspond to the nodes selected above 

refine/eltset/eltset,get,erefine 

* Refine the elements in eltset 

cmo/DELATT/hexfrac/dfield 

* Delete the dfield attribute 

intersect_elements/hex_mesh/cmo_name/if_cmo_name 

eltset/e_if_cmo_name/if_cmo_name/gt/0 

rmpoint/element/eltset get e_if_cmo_name 

rmpoint/compress 

* Select and remove the hexahedral elements that intersect the Mesh Object cmo_name 

compute/distance_field/hex_mesh/cmo_name/dfield 

pset/pfield/attribute/dfield/1 0 0/dist_rem/lt 

eltset/efield/inclusive/pset get pfield 

rmpoint/element/eltset get efield 

rmpoint/compress 

* Remove the hexahedral elements included within the distance dist_rem from the Mesh 

* Object cmo_name 

cmo/create/tetra_mesh///tet 

* Create a tetrahedral Mesh Object 

copypts/tetra_mesh/hexfrac 

copypts/tetra_mesh/wellmesh 

copypts/tetra_mesh/fracmesh 

* Copy all nodes from hexfrac, wellmesh, and fracmesh to the tetrahedral Mesh 
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* Object tetra_mesh 

connect/noadd 

* Connect all nodes into tetrahedra 

cmo/select/tetra_mesh 

surface/ surfl/reflect/sheet/frac_name 

region/rabove/ge surfl 

region/rbelow/lt surfl 

mregion/mrabove/ge surfl 

mregion/mrbelow/lt surfl 

* Define two distinct regions around the fracture frac_name according to the direction of 

* the surface normal vector 

settets/geometry 

extract/intrfac2/mrabove/mrbelow/l,0,0/frac_extracted/tetra_mesh 

* Extract the tetrahedral faces aligned along the fracture surface. The resulting extracted 

* Mesh Object is frac_extracted 

cmo/set_id/tetra_mesh/node/nodenumber 

cmo/set_id/frac_extracted/node/node_frac 

interpolate/voronoi/frac_extracted node_frac/1,0,0/tetra_mesh nodenumber 

cmo/printatt/frac_extracted/node_frac/ 

* Print on the screen the global nodal numbering for fractures 

cmo/addatt/tetra_mesh/edge_connections/nconnect 

* Create the attribute edge_connections that contains the maximum number of segment 

* connections to a single node in the mesh 

dump/coord/file_name/cmo_name 

* Create a *.txt file that contains nodal coordinates and connectivity of cmo_name 



Appendix B 

New HydroGeoSphere commands 

read 3d tetra 

tetra_file_name 

nb_tetra 

solution method 

end 

! Read a file containing the tetrahedral mesh information 

! *.txt file name 

! Maximum number of connection in the mesh 

! OSC or Galerkin 

make fractures from faces file ! Define an irregular fracture in a tetrahedral mesh 

fracture_file ! *.txt file name containing the triangular mesh information 

label ! Fracture name 

make well from nodes 

well_name 

number_of_nodes 

well_file_name 

npanel 

! Define an inclined well in a tetrahedral mesh 

! Well name 

! Total number of nodes discretizing the well axis 

! *.txt file name containing the nodal numbering of the well axis 

! Number of time panels for which a well flowrate is specified 
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t_on flowrate 

discharge_node_number 

screen radius 

casing radius 

! Time on and flowrate 

! Nodal index of the discharge point of the well 

! Screen radius 

! Casing radius 

choose nodes top terra ! If top boundary has constant elevation 

choose faces top tetra ! If top boundary has constant elevation 

choose nodes bottom tetra ! If bottom boundary has constant elevation 

make node observation point ! Define an observation point by using its node index 

name ! Observation point name 

node_index ! Node index 


