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Résumé

Dans les quatre premiers chapitres de cette thèse, nous abordons quelques équations dio-

phantiennes et leurs solutions. On démontre que l'équation y2 = px(Ax2 + 2) n'admet qu'un

maximum de six solutions entières où p est nombre premier et A > 1 est entier impair ; on

démontre que l'équation Resx
(
P (x), x2 + sx+ t

)
= a n'admet qu'un nombre �ni de solutions

(s, t) pour P un polynôme �xe et a un entier autre que zéro ; on résout l'équation Fn−Fm = ya

lorsque y ∈ {6, 11, 12} et on trouve une borne pour les solutions de Fn + Fm = ya dans le cas

général ; et on démontre que si un nombre su�sant d'entiers x consécutifs existent tels que

P (x) est sous la forme mq lorsque q ≥ 2 est diviseur de degP , alors P = Rq pour un certain

polynôme R, ce qui nous permet de déduire l'existence d'une in�nité de solutions à yq = P (x)

à partir d'un nombre �ni de telles solutions dans certains cas.

Dans les six derniers chapitres, nous abordons plusieurs sujets reliés à la décomposition

d'objects algébriques. Parmi les résultats, on présente quelques conditions sous lesquelles un

polynôme ne peut pas être exprimé comme une composition de deux polynômes de degré infé-

rieur ; on présente une nouvelle démonstration du théorème Carltiz-Lutz sur les polynômes de

permutations ; on étudie la possibilité d'exprimer un polynôme comme une somme composée

ou un produit composé de deux autres polynômes de degré inférieur ; on trouve une borne pour

un des plus petits nombres premiers qui se décompose dans un corps imaginaire quadratique

donné ; et on étudie la possibilité de recouvrir un anneau avec ses sous-anneaux.
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Abstract

The �rst four chapters of this thesis address some Diophantine equations and their solutions.

We prove that the equation y2 = px(Ax2 + 2) has at most six integer solutions (x, y) for p

a prime and A > 1 an odd integer; we prove that the equation Resx
(
P (x), x2 + sx + t

)
= a

has only �nitely many integer solutions (s, t) for a �xed polynomial P and nonzero integer a;

we completely solve the equation Fn − Fm = ya for y ∈ {6, 11, 12} and bound the solutions

for Fn +Fm = ya in general; and we prove that the existence of su�ciently many consecutive

integers x such that P (x) is of the form mq for q ≥ 2 dividing degP implies that Rq for

some polynomial R, providing criteria for deducing the existence of in�nitely many solutions

to yq = P (x) from the existence of �nitely many solutions in some cases.

In the last six chapters, we address various algebraic decomposition related topics. Among

other results, we provide criteria which guarantee a polynomial cannot be written as a com-

position of two polynomials of smaller degree; we provide a new proof of the Carlitz-Lutz

theorem on permutation polynomials; we study the possibility of expressing a polynomial as

the composed sum or composed multiplication of two polynomials of smaller degree; we bound

from below some of the smallest primes which split in an imaginary quadratic �eld; and we

study the possibility of covering a ring with its subrings.
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Introduction

The entirety of this work lies largely within the broad scopes of number theory and algebra.

The topics covered here are varied, although the underlying ideas can be roughly divided

into two parts, each with an overall general theme. The �rst part consists of the search for

solutions to some Diophantine equations. The second deals with many di�erent forms of

decomposition. In the interest of keeping this work as concise as possible, we attempt to

provide the reader with the minimum of required knowledge to fully motivate and understand

the provided results.

Diophantine equations

The near ubiquity of Diophantine equations in number theory makes them a consistent source

of active research. Here, we concern ourselves with only a few selected from the many.

A Diophantine equation is a polynomial equation in several variables such that only inte-

ger solutions to the given equation are desired. Some Diophantine equations have additional

variables occurring as exponents, and such equations are called exponential Diophantine equa-

tions. One of the most well-known Diophantine equations is xn + yn = zn for n ≥ 3 whose

fame is of course attributed to Fermat's Last Theorem. Using the theories of modular forms

and elliptic curves, it was eventually shown to have no integer solutions (x, y, z) with xyz 6= 0.

Another well-known example, and one that is perhaps more closely related to and relevant

to this work, is Pell's equation x2 − ny2 = ±1. Pell's equation has a fundamental solution

which can be obtained by way of continued fraction expansions. From this sole solution, all

other solutions can be obtained algebraically through a recurrence relation derived from taking

successive powers of the fundamental solution. Over time, interest in related equations of the

form ax2 − by4 = c has increased, and there have been many papers on the subject. Without

delving too deeply into the existing research, we will limit ourselves to simply referencing any

such needed results as they are required.

In the �rst four chapters of this thesis, we recall any relevant knowledge needed, and we

present articles containing new research on various Diophantine equations and their solutions.

The methods used when discussing these equations vary, and include techniques such as linear

1



forms in logarithms of algebraic numbers and Runge's method, while also requiring the use of

some strong auxiliary results such as one due to Bugeaud, Mignotte, and Siksek.

On Decompositions

A general notion of decomposition exists throughout nearly all branches of mathematics.

Relevant and related examples to describe our meaning of the word include the factorization

of polynomials over rings and �elds, irreducible and prime ring elements (and consequently

also groups of units), (internal) direct products of algebraic structures and their substructures,

and others.

The last six chapters of this thesis address some of these decomposition related notions. The

topics include prime polynomials and rational functions, composite polynomials and rational

functions, additive and multiplicative decompositions of polynomials, the splitting of primes

in number �elds, and the covering of rings by their subrings.

Some motivating concepts

We recall the resultant here for two reasons. First, it will be used throughout many sections

of this work, so doing so here is rather convenient. Second, it is an excellent tool to introduce

and connect the various ideas discussed within this thesis, motivating some of the research.

Given two polynomials f = amx
m+am−1x

m−1+· · ·+a0 and g = bnx
n+bn−1x

n−1+· · ·+b0 over
a commutative ring, the resultant of f and g is de�ned as the determinant of their Sylvester

matrix. Speci�cally,

Resx(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am 0 · · · 0 bn 0 · · · 0

am−1 am · · · 0 bn−1 bn · · · 0

am−2 am−1
. . . 0 bn−2 bn−1

. . . 0
...

...
. . . am

...
...

. . . bn

a0 a1 · · ·
... b0 b1 · · ·

...

0 a0
. . .

... 0 b0
. . .

...
...

...
. . . a1

...
...

. . . b1

0 0 · · · a0 0 0 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is clear from the de�nition that the expression Resx(f, g) is a polynomial in the coe�cients

of f and of g. Because of this,

Resx(f, g) = c

for an integer c can be viewed as a Diophantine equation. This will be precisely the topic of

study in chapter 1.

2



The discriminant of the polynomial f described above can be stated through the resultant as
1

am
Resx(f, f ′), where f ′ denotes the formal derivative of f . This implies that the resultant

can provide some information related to the critical values of a polynomial. In chapter 6, we

consider the problem of writing a polynomial h as the composition of polynomials f ◦ g, and
we provide some criteria (using precisely this connection to critical values) for concluding that

such a decomposition cannot be possible excluding some trivial decompositions.

Finally, if for example we de�ne for every g ∈ R[x] a polynomial G(x, t) in R[x, t] such that

G(x, r) = g(x) for some r ∈ R, then the expression Resx(f,G) is in fact a polynomial in t.

One might then be interested in various properties of a binary operation � de�ned on R[x, t]

by

f � g = Resx(f,G) .

The possibility of expressing a polynomial h as f �g in such ways will be addressed in chapters

7 and 8.

Collaborations

I make here an important remark. The new results contained within this work have been

obtained from research performed in collaboration with colleagues.

3



Chapter 1

On the equation

Resx
(
P (x), x2 + sx + t

)
= a

1.1 Résumé

On montre qu'il n'y a qu'un nombre �ni de solutions à Resx
(
P (x), x2 + sx+ t

)
= a, a 6= 0, en

utilisant une amélioration de la méthode de Runge présentée par Schinzel.

1.2 Abstract

The number of solutions to the title equation when a 6= 0 is shown to be �nite. The proof

relies on the improvement to Runge's method due to Schinzel.

1.3 Introduction

We brie�y recall Runge's method. Suppose that

P (X,Y ) =

m∑
i=0

n∑
j=0

ai,jX
iY j

is irreducible in Q[X,Y ] with ai,j ∈ Z and m,n > 0. If there are in�nitely many integer

solutions (x, y) to P (X,Y ) = 0, then each of the following statements holds:

i) ai,n = am,j = 0 for i 6= 0 and j 6= 0;

ii) ni+mj ≤ mn for each term ai,jX
iY j of P ;

iii) the sum of monomials ai,jXiY j of P for which ni + mj = mn is the product of a

constant and of a power of an irreducible polynomial in Z[X,Y ];

4



iv) the algebraic function y = y(x) de�ned by P (x, y) = 0 has but a single system of

conjugate Puiseux expansions at in�nity.

For details on conjugate Puiseux expansions, we direct the interested reader to [1]. If the last

of the above properties fails to hold, we say that P satis�es Runge's condition, and Runge's

method consists of showing whether a polynomial P satis�es Runge's condition. Of interest

to us will in fact be a re�nement of this method due to Schinzel, which for our purposes

will also be far simpler to apply, but we leave it for later as a theorem. It will be necessary

when applying Schinzel's results to recall that a homogeneous form of degree n is an equation

de�ned by a polynomial

P (X1, . . . , Xm) =
∑

i1+···+im=n

ai1,...,imX1
i1 · · ·Xm

im .

Now let

P (x) = am(x− α1) · · · (x− αm),

where am ∈ Z and the αi's are the roots of P lying in C. Set

Q(x) = xnx
n + xn−1x

n−1 + · · ·+ x0 ∈ Z[x],

then we have

Res(P,Q) = anm

m∏
i=1

(xnα
n
i + xn−1α

n−1
i + · · ·+ x0). (1.1)

We consider the resultant equation given by

Res(P,Q) = a, (1.2)

where a is a given nonzero integer. Notice that a resultant equation can be considered as a

polynomial Diophantine equation in coe�cients of Q. Many authors studied resultant equa-

tions. For examples, one can cite Wirsing [15], Fujiwara [4], Schmidt [14], Schlickewei [13],

Peth® [9; 10], Gy®ry [7], Evertse and K. Gy®ry [2], Gaál [5] who proved that the number of

polynomials Q satisfying equation (1.2) is �nite under the condition m > n. In fact, Wirsing

[15] proved that if n is a positive integer such that

2n

(
1 +

1

3
+ · · ·+ 1

2n− 1

)
< m,

then there are only �nitely many polynomials Q ∈ Z[x] of degree n satisfying equation (1.2).

Later, Fujiwara [4] showed that if the polynomial P is irreducible over Q and 2n < m then

equation (1.2) has only �nitely many solutions in polynomials Q ∈ Z[x] of degree n. Moreover,

Schmidt [14] proved that the irreducibility of P can be replaced by the condition that P has

no nonconstant factor of degree less or equal to n in Z[x]. Let R be a subring of Q that is a

�nitely generated extension ring of Z, a be a nonzero element of R, and R∗ be the unit group

5



of R. If m, n are positive integers such that 2n < m and P ∈ R[x] is a polynomial of degree

m without multiple zeros that has no nonconstant factor in R[x] of degree less or equal to n,

then up to a proportional factor from R∗, Schlickewei [13] proved that there is only a �nite

number of polynomials Q ∈ R[x] of degree n satisfying

Res(P,Q) ∈ a ·R∗.

Gy®ry [7] proved that if Q(x) is a monic polynomial, then the condition m ≥ 2n can replace

the condition m > 2n. See Theorem 2 in [7]. In 2002, Gaál [5] developed an algorithm based

on Baker's method to solve equation (1.2), when P ∈ Z[x] is an irreducible polynomial of

degree m ≥ 3 and Q = x2 + x1x+ x2 ∈ Z[x]. In fact, he transformed equation (1.2) into the

inhomogeneous Thue equation

a20NF/Q(x2 + x1α+ α2) = a in x1, x2 ∈ Z,

where α is a root of P and F = Q(α). More recently, Gaál and Pohst [6] extended the work

of Gaál to any monic polynomial Q of degree n ≥ 2.

In 1887 Runge [11] proved that if f(x, y) is a polynomial with integer coe�cients irreducible

in the rational �eld and the equation f(x, y) = 0 has in�nitely many integer solutions, then

the highest homogeneous part f+(x, y) is up to a constant factor a power of an irreducible

form. This result has been improved in 1969 by Schinzel [12] who proved that except for a

constant factor f+(x, y) is a power of a linear form or of an irreducible inde�nite quadratic

form.

The aim of this paper is to use the improvement of Runge's theorem due to Schinzel [12] to

show that the equation in the title has a �nite number of solutions.

1.4 Preliminaries

Let

P (x) = am(x− α1) · · · (x− αm) ∈ Z[x],

where am ∈ Z \ {0} and αi are the roots of P . We consider the resultant equation

R(s, t) = Resx(P (x), x2 + sx+ t) = a, (1.3)

where a is a given nonzero integer.

Lemma 1.4.1. Let A(s, t), B(s, t) ∈ Z[s, t] such that

P (x) = (x2 + sx+ t)q(s, t, x) +A(s, t)x+B(s, t),

then

R(s, t) = B2(s, t) + tA2(s, t)− sA(s, t)B(s, t).
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Proof. Let γ, β = −s− γ be the zeros of x2 + sx+ t in the algebraic closure of Q(s, t). Then

we have
R(s, t) = Resx

(
x2 + sx+ t, P (x)

)
= P (γ)P (β)

= (Aγ +B)(Aβ +B) = tA2 +B2 − sAB.

From this lemma we can deduce that R(s, t) ∈ Z[s, t]. So there exist unique polynomials

ri(s) ∈ Z[s] such that R(s, t) =
∑n

i=0 ri(s)t
i. Moreover, by (1.1) we have

R(s, t) = a2m

m∏
k=1

(
α2
k + sαk + t

)
.

Then n = m and the two polynomials R(s, t) and P (x) satisfy the following identity:

R(s,−x2 − sx) = P (x)P (−s− x). (1.4)

Therefore

P (x)P (−s− x) =
m∑
i=0

(−1)iri(s)
(
x2 + sx+ t− t

)i
=

m∑
k=0

(
m∑
i=k

(
i

k

)
(−1)kti−kri(s)

)(
x2 + sx+ t

)k
.

From this we can deduce that there exist polynomials uk(s, t) ∈ Z[s, t] such that

P (x)P (−s− x) = u0(s, t) + u1(s, t)(x
2 + sx+ t) + · · ·+ um(s, t)(x2 + sx+ t)m,

with u0(s, t) = R(s, t) and um(s, t) = (−1)ma2m. More generally, we have the following

proposition.

Proposition 1.4.2. Let s, t, x be 3 variables algebraically independent over Q. If Q(x) is a

polynomial with coe�cients in Z[s, t] satisfying Q(−s− x) = Q(x), then:

1. There exist unique vk(s, t) ∈ Z[s, t] such that

Q(x) = v0(s, t) + v1(s, t)(x
2 + sx+ t) + · · ·+ vh(s, t)(x2 + sx+ t)h.

2. Resx
(
Q(x), x2 + sx+ t

)
= (v0(s, t))

2.

Proof. The uniqueness is obvious as it is (x2 + sx + t)-adic representation of Q(x). This is

a particular representation because the coe�cients v0, v1, . . . , vh depend only on s and t but

not on x. Let q(s, t, x), w(s, t) and v0(s, t) be the unique polynomials with coe�cients in Z
such that

Q(x) = q(s, t, x)(x2 + sx+ t) + w(s, t)x+ v0(s, t).
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Then the equality Q(−s − x) = Q(x) and the uniqueness of the polynomials q, w, v0 imply

that w = 0. Therefore Q(x) = v0(s,−x2 − sx). Put v0(s, t) =
∑h

i=0 ri(s)t
i, then

Q(x) =
h∑
k=0

(
h∑
i=k

(
i

k

)
(−1)kti−kri(s)

)
(x2 + sx+ t)k.

From this we can deduce that there exist polynomials vk(s, t) ∈ Z[s, t] such that Q(x) =

v0(s, t) + v1(s, t)(x
2 + sx + t) + · · · + vh(s, t)(x2 + sx + t)h, where for each k, vk(s, t) =∑h

i=k

(
i
k

)
(−1)kti−kri(s). Let γ, β be the zeros of x2 + sx+ t in the algebraic closure of Q(s, t),

then Q(γ) = Q(β) = v0(s, t). Thus Resx(Q(x), x2 + sx+ t) = (v0(s, t))
2.

From this proposition, we can deduce the following result.

Proposition 1.4.3. Equation (1.3) has a solution (s∗, t∗) ∈ Z2 if and only if

P (x)P (−s∗ − x)− a ≡ 0 (mod x2 + s∗x+ t∗).

So we will study the values of s∗ ∈ Z such that P (x)P (−s∗−x)− a is reducible and possesses

a quadratic factor.

We �nish this section with a result concerning the polynomial R(s, t)−a. By Proposition 1.4.2,
one can write P (X) + P (−s−X) into the form

P (x) + P (−s− x) = v0(s, t) + v1(s, t)(x
2 + sx+ t) + · · ·+ vh(s, t)(x2 + sx+ t)h.

Proposition 1.4.4. Let r(s, t) = Resx (P (x) + P (−s− x)− v0(s, t), P (x)P (−s− x)− a),

then

r(s, t) ≡ 0 (mod (R(s, t)− a)2).

Proof. Consider V (x, s, t) = v1(s, t) + · · ·+ vh(s, t)(x2 + sx+ t)h−1 and R1(s, t) = Resx((x2 +

sx + t), P (x)P (−s − x) − a). We have P (x) + P (−s − x) − v0(s, t) = (x2 + sx + t)V (x, s, t)

and

r(s, t) = Resx (V (x, s, t), P (x)P (−s− x)− a)R1(s, t). (1.5)

Let γ, β = −s− γ be the zeros of x2 + sx+ t in the algebraic closure of Q(s, t). Then we have

R(s, t) = Resx
(
x2 + sx+ t, P (x)

)
= P (γ)P (−s− γ)

and

R1(s, t) = (P (γ)P (−s− γ)− a)2 = (R(s, t)− a)2.

Therefore

r(s, t) = Resx(V (x, s, t), P (x)P (−s− x)− a) (R(s, t)− a)2 .

We conclude that r(s, t) ≡ 0 (mod (R(s, t)− a)2).

8



1.5 The irreducibility of the polynomial R(s, t)− a, for a �xed

in Z \ {0}

In this section, we study the irreducibility of the polynomial R(s, t) − a, where a is a �xed

nonzero integer.

Theorem 1.5.1. Let a ∈ Z \ {0}, P (x) ∈ Z[x] be a separable polynomial of degree m, and

Q(s, x) ∈ Z[s, x] a polynomial of the form

Q(s, x) = Qns
n +Qn−1(x)sn−1 + · · ·+Q0(x),

with n ≥ 1 and Qn ∈ Z \ {0}. Then the polynomial P (x)Q(s, x)− a is absolutely irreducible.

Proof. LetA(s, x) = Ak(x)sk+Ak−1(x)sk−1+· · ·+A0(x) andB(s, x) = B`(x)s`+B`−1(x)s`−1+

· · ·+B0(x) be two polynomials in Q[x, s] such that k ≥ `, k + ` = n and

P (x)Q(s, x)− a = A(s, x)B(s, x). (1.6)

Suppose now that ` ≥ 1 and k+ ` = n. By identifying the coe�cients of sj , for j = 0, 1, . . . , n,

we obtain

P (x)Qn = Ak(x)B`(x),

P (x)Qn−1(x) = Ak(x)B`−1(x) +Ak−1(x)B`(x),

· · ·

P (x)Qj(x) =
∑
u+v=j
u≤k, v≤`

Au(x)Bv(x), with j = n− 2, . . . , 1,

· · ·

P (x)Q0(x)− a = A0(x)B0(x).

(1.7)

As P (x) is separable, then (Ak(x), B`(x)) = 1. The second equation in (1.7) shows that

Ak(x)|Ak−1(x) andB`(x)|B`−1(x). The following equations giveAk(x)|Aj(x) andB`(x)|Bh(x),

for j = 0, . . . , k − 1 and h = 0, . . . , ` − 1. This contradicts the last equation in (1.7). There-

fore, it can be concluded that ` = 0, so B(s, x) = B(x) and k = n ≥ 1. By identifying the

coe�cients of sn and s0 in (1.6), we obtain

a = B(x)

(
1

Qn
Q0(x)An(x)−A0(x)

)
.

We deduce that B(x) is a constant polynomial.

We deduce the following results.

Corollary 1.5.2. Let a ∈ Z \ {0} and P (x) ∈ Z[x] be a separable polynomial, then the

polynomial P (x)P (−s− x)− a is absolutely irreducible.

9



Proof. This is a particular case of Theorem 1.5.1 with Q(s, x) = P (−s− x).

Corollary 1.5.3. Let a ∈ Z \ {0} and P (x) ∈ Z[x] be a separable polynomial. Let R(s, t) =

Resx(P (x), x2 + sx+ t). Then the polynomial R(s, t)− a is absolutely irreducible.

Proof. By the relation (1.4), R(s,−x2 − sx) − a = P (x)P (−s − x) − a, which is absolutely

irreducible by Corollary 1.5.2. Thus, we have that R(s, t)− a is also absolutely irreducible.

1.6 Application of Runge method

In this section, we will use Runge method to prove that equation (1.2) has a �nite number of

solutions.

Lemma 1.6.1. Let F (x, y) ∈ Z[x, y] be a polynomial of degree n which is irreducible over

Q[x, y] and let F+(x, y) be its homogeneous part of degree n. If F (x, y) = 0 has an in�nite

number of integer solutions then, except for a constant factor, F+(x, y) is a power of a linear

form or of an irreducible inde�nite quadratic form.

Proof. See [12] and Theorem 21, page 276 of [8]

Lemma 1.6.2. Let P (x) ∈ Z[x], R(s, t) = Resx(P (x), x2 + sx+ t) and R+(s, t) its dominant

homogeneous form. Then

R+(s, t) = am(−s)mP (−t/s),

where m = degP and am is the leading coe�cient of P (x).

Proof. Let α1, . . . , αm be the roots of P (x). Then we have

R(s, t) = Resx
(
P (x), x2 + sx+ t

)
= a2m

m∏
i=1

(α2
i + sαi + t).

So
R+(s, t) = a2m

∏m
i=1(sαi + t) = a2m

∏m
i=1(−s)

(
−αi − t

s

)
= (−s)mam · am

∏m
i=1

(
−αi − t

s

)
= am(−s)mP (−t/s).

Theorem 1.6.3. Let b ∈ Z \ {0} and f(x) ∈ Z[x]. If deg f − deg (gcd (f, f ′)) ≥ 3 then the

equation

Resx
(
f(x), x2 + sx+ t

)
= b (1.8)

has a �nite number of integer solutions.
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Proof. Let D = gcd(f, f ′), P (x) = f(x)
D(x) . Then P (x) is separable, degP ≥ 3 and

Resx(f(x), x2 + sx+ t) = R(s, t)Resx
(
D(x), x2 + sx+ t

)
.

Equation (1.8) implies that there exists a divisor a of b such that

R(s, t) = a. (1.9)

Put F (s, t) = R(s, t)− a, then by Corollary 1.5.3, F (s, t) is irreducible and by Lemma 1.6.2,

we have

F+(s, t) = R+(s, t) = am(−s)mP (−t/s).

where m = degP and am is the leading coe�cient of P (x). Suppose that, except for a

constant factor, F+(x, y) is a power of a linear form or of an irreducible inde�nite quadratic

form. Then except for a constant factor, P (x) is a power of a linear or quadratic polynomial

which contradicts the fact that P is a separable polynomial of degree m ≥ 3. The conditions

of Lemma 1.6.1 are ful�lled, so equation (1.9) has a �nite number of integer solutions. Since

there are only a �nite number of divisors of b, equation (1.8) has only a �nite number of integer

solutions.

Concluding remark

We note that the core of the proof has some room for improvement. Speci�cally, it seems to

only be required that the polynomial Q(x) have two unknown coe�cients. It seems within the

realm of reason that by replacing the quadratic polynomial x2 + sx + t with any polynomial

with all but exactly two coe�cients determined, the proof would only need minor adjustments

to accommodate the change. We conjecture here that this is the case: such an equation

Resx
(
P (x), Q(x)

)
= a has only a �nite number of integer solutions (s, t).
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Chapter 2

The number of solutions to

y2 = px(Ax2 + 2)

2.1 Résumé

Togbé a considéré l'équation Diophantienne

y2 = px(Ax2 + 2)

où p est nombre premier et A > 1 est entier impair. Il a montré que l'équation n'a pas plus

que sept solutions entières (x, y). Il a aussi proposé que le nombre de solutions ne dépasse pas

trois et que les valeurs de A et p modulo 8 indiquent si ce nombre est soit un, deux ou trois.

On montre qu'une seule solution existe si p = 2 et on véri�e que la conjecture de Togbé est

vraie dans sept des seize cas possibles. On améliore toutefois la borne de Togbé dans les autres

cas. Nous considérons le cas où A est pair et on trouve une borne pour le nombre de solutions

dans certains cas particuliers.

2.2 Abstract

Togbé considered the Diophantine equation

y2 = px(Ax2 + 2)

where p is a prime number and A > 1 is an odd integer. He proved that this Diophantine

equation has at most seven positive integer solutions (x, y) and conjectured that the number

of solutions would not exceed three, and whether this number is one, two, or three depends

on the values of A and p modulo 8.

We prove that only one solution exists for p = 2, and we prove the conjecture for seven of

the sixteen possible cases, while still improving the original bound in Togbé's result in the
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remainder of the cases. We furthermore take into consideration the possibility of A even,

where we bound the number of solutions in some particular cases.

2.3 Introduction

Cassels [3] was challenged to determine when the sum of three consecutive cubes equals a

square. He [3] reduced the problem to �nding integral points on the elliptic curve y2 =

3x(x2+2). Using the arithmetic of certain quartic number �elds, he obtained that the integral

points on the above elliptic curve were (x, y) = (0, 0), (1, 3), (2, 6), and (24, 204).

Using the classical work of Ljunggren [7] and its generalizations (see [1], [5], [12], and [13]),

Luca and Walsh [8] considered the problem of �nding the number of positive integer solutions

to the Diophantine equation y2 = nx(x2 + 2), where n > 1 is a positive integer. They proved

that the number of positive integer solutions to y2 = nx(x2 + 2) is at most 3 · 2ω(n)− 1, where

ω(n) is the number of distinct prime factors of n. In [4], Chen considered the case where n

is a prime number greater than 3. He proved, in particular, that the Diophantine equation

y2 = nx(x2 + 2) has at most two positive integer solutions.

Recently, Togbé [10] considered the more general Diophantine equation

y2 = px(Ax2 + 2), (2.1)

where p is a prime number and A is an odd integer greater than 1. He proved the following

theorem.

Theorem 2.3.1. For any prime p and any odd positive integer A > 1, the Diophantine

equation (2.1) has at most seven positive integer solutions (x, y).

Using results obtained through MAGMA, he then made the following conjecture on sharp

bounds for the number of solutions to equation (2.1).

Conjecture 2.3.2. Let p be a prime and A > 1 any odd positive integer.

1. If (A, p) ≡ (1, 1), (1, 5), (1, 7), (3, 1), (3, 3), (3, 7), (5, 1), (5, 5), (5, 7), (7, 3), or (7, 5)

(mod 8), then Diophantine equation (2.1) has at most one positive integer solution (x, y).

2. If (A, p) ≡ (1, 3) or (7, 1), then Diophantine equation (2.1) has at most two positive

integer solutions (x, y).

3. If (A, p) ≡ (3, 5) or (7, 7), then Diophantine equation (2.1) has at most three positive

integer solutions (x, y).
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The aim of this paper is to improve the bound on the number of solutions to the Diophantine

equation (2.1) provided in Theorem 2.3.1, and to prove Conjecture 2.3.2 in some cases. The

main result of this paper is the following theorem.

Theorem 2.3.3. Let p be a prime and let A > 1 be an odd integer.

(i) If p = 2, then Diophantine equation (2.1) has at most one positive integer solution (x, y).

(ii) Suppose that p | A or
(
−2A
p

)
= −1, where p is odd.

a) If (A, p) ≡ (7, 1) or (7, 7) (mod 8), then Diophantine equation (2.1) has at most

three positive integer solutions (x, y).

b) Diophantine equation (2.1) has at most one positive integer solution (x, y) otherwise.

(iii) Suppose that
(
−2A
p

)
= 1, where p is odd.

a) If (A, p) ≡ (1, 5), (1, 7), (3, 3), (5, 5), (7, 3), or (7, 5) (mod 8), then Diophantine

equation (2.1) has at most one positive integer solution (x, y).

b) If (A, p) ≡ (1, 1), (3, 1), (3, 7), (5, 1), (5, 3), or (5, 7) (mod 8), then Diophantine

equation (2.1) has at most two positive integer solutions (x, y).

c) If (A, p) ≡ (1, 3) or (3, 5) (mod 8), then Diophantine equation (2.1) has at most

three positive integer solutions (x, y).

d) If (A, p) ≡ (7, 7) (mod 8), then Diophantine equation (2.1) has at most four positive

integer solutions (x, y).

e) If (A, p) ≡ (7, 1) (mod 8), then Diophantine equation (2.1) has at most six positive

integer solutions (x, y).

We will also prove the following result.

Theorem 2.3.4. Let p be a prime and let A > 1 be an even integer.

(i) If p = 2, then Diophantine equation (2.1) has at most two positive integer solutions

(x, y). Moreover, if A ≡ 0 (mod 4) and A 6= 26 · 1785, then Diophantine equation (2.1)

has at most one positive integer solution (x, y).

(ii) Suppose that p | A or
(
−2A
p

)
= −1, where p is odd.

a) If A ≡ 0 (mod 4), then Diophantine equation (2.1) has at most one positive integer

solution (x, y).

b) If A ≡ 2 (mod 4), then Diophantine equation (2.1) has at most two positive integer

solutions (x, y).
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(iii) Suppose that
(
−2A
p

)
= 1, where p is odd.

a) If (A, p) ≡ (0, 3) (mod 4), then Diophantine equation (2.1) has at most one positive

integer solution (x, y).

b) If (A, p) ≡ (0, 1) (mod 4), then Diophantine equation (2.1) has at most two positive

integer solutions (x, y).

c) If (A, p) ≡ (2, 3) (mod 4), then Diophantine equation (2.1) has at most three posi-

tive integer solutions (x, y).

d) If (A, p) ≡ (2, 1) (mod 4), then Diophantine equation (2.1) has at most four positive

integer solutions (x, y).

2.4 Preliminary results

We present the results required to prove Theorem 2.3.3 and Theorem 2.3.4. Recall that if q is

a prime number, νq(m) denotes the q-adic valuation of m.

Let a and b be odd positive integers for which the equation aX2 − bY 2 = 2 has a solution in

positive integers (X,Y ). Let

α =
a1
√
a+ b1

√
b√

2
.

be the minimal positive solution of this equation, and de�ne ak and bk for all odd integers k

by

αk =
ak
√
a+ bk

√
b√

2
,

which represent all positive integer solutions to aX2 − bY 2 = 2. Luca and Walsh proved the

following result in [8] regarding the solutions to the equation

aX2 − bY 4 = 2. (2.2)

Theorem 2.4.1.

1. If b1 is not a square, then equation (2.2) has no integer solution.

2. If b1 is a square and b3 is not a square, then (X,Y ) = (a1,
√
b1) is the only integer

solution to equation (2.2).

3. If b1 and b3 are both squares, then (X,Y ) = (a1,
√
b1) and (a3,

√
b3) are the only integer

solutions to equation (2.2).

The following result of Ljunggren can be found in [7] and is proved as Theorem 3 in [6].

16



Theorem 2.4.2. Let a > 1 and b be two positive integers. The equation

aX2 − bY 4 = 1

has at most one solution in positive integers (X,Y ).

Let D be a positive non-square integer, and let εD = T1 + U1

√
D denote the minimal unit

greater than 1, of norm 1, in Z[
√
D]. De�ne εDk = Tk + Uk

√
D for k ≥ 1. Togbé, Voutier,

and Walsh proved the following result in [11].

Theorem 2.4.3. Let D be a positive non-square integer. There are at most two positive

integer solutions (X,Y ) to the equation X2 −DY 4 = 1.

1. If two solutions such that Y1 < Y2 exist, then Y1
2 = U1 and Y2

2 = U2, except only if

D = 1785 or D = 16 · 1785, in which case Y1
2 = U1 and Y2

2 = U4.

2. If only one positive integer solution (X,Y ) to the equation X2 −DY 4 = 1 exists, then

Y 2 = U` where U1 = `v2 for some square-free integer `, and either ` = 1, ` = 2, or ` = p

for some prime p ≡ 3 (mod 4).

We will make Theorem 2.3.3 more precise when D is even.

Lemma 2.4.4. Let D be a positive non-square integer. Suppose that D = 2d where d is a

positive integer di�erent from 8 · 1785. Then the equation X2 − DY 4 = 1 has at most one

positive solution (X,Y ).

Proof. Suppose that there exist two solutions to the equation X2−DY 4 = 1. Then there exist

positive integer solutions (X1, Y1) and (X2, Y2) such that Y1 < Y2. It follows from Theorem

2.4.3 that Y12 = U1, Y22 = U2, and U2 = 2T1U1, so Y22 = 2T1Y1
2. Then

2ν2(Y2) = 1 + ν2(T1) + 2ν2(Y1). (2.3)

Since εD = T1 +U1

√
D is a unit of norm 1 in Z[

√
D] and D = 2d, we obtain T12− 2dU1

2 = 1,

so that T1 is odd. Then ν2(T1) = 0, which is a contradiction with (2.3).

2.5 Main results

Proof of Theorem 2.3.3. Let p = 2, and let A be an odd positive integer. Let x, y be positive

integers such that y2 = 2x(Ax2 + 2). It is not di�cult to see that 4 divides x and y. Let

y = 4w and x = 4z. Then we obtain

w2 = z(8Az2 + 1).
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Since gcd(z, 8Az2+1) = 1, there exist positive integers u and v such that z = u2, 8Az2+1 = v2,

and

v2 − 8Au4 = 1.

By Lemma 2.4.4, this equation has at most one positive integer solution (u, v).

Let p be an odd prime, and let A be an odd positive integer. Let x, y be positive integers such

that y2 = px(Ax2 + 2). We remark that gcd(x,Ax2 + 2) = 1 or 2, so we consider two cases

depending on the parity of x, with each case yielding two equations. Suppose �rst that x is

even, so we let x = 2z. Since p is prime, we let y = 2pw. Then we obtain

pw2 = z(2Az2 + 1).

Since gcd(z, 2Az2 + 1) = 1, there exist positive integers u and v such that either z = pu2,

2Az2 + 1 = v2, and

v2 − 2Ap2u4 = 1, (2.4)

or z = u2, 2Az2 + 1 = pv2, and

pv2 − 2Au4 = 1. (2.5)

Suppose next that x is odd. Since p is prime, we let y = pw. Then we obtain

pw2 = x(Ax2 + 2).

Since gcd(x,Ax2+2) = 1, there exist odd integers u and v such that either x = pu2, Ax2+2 =

v2, and

v2 −Ap2u4 = 2, (2.6)

or x = u2, Ax2 + 2 = pv2, and

pv2 −Au4 = 2. (2.7)

We consider each of the above four equations separately to determine the number of positive

integer solutions to equation (2.1).

We begin with equation (2.4). Let D = 2Ap2. By Lemma 2.4.4, equation (2.4) has at most

one positive integer solution.

We next consider equation (2.5), which has at most one positive integer solution by Theorem

2.4.2. It follows from this equation that v is odd and that u is even if and only if p ≡ 1

(mod 8). If p ≡ 3, 5, or 7 (mod 8), then u is odd, and we obtain p− 2A ≡ 1 (mod 8). Then

equation (2.5) has a solution only if (A, p) ≡ (1, 1), (3, 1), (5, 1), (7, 1), (1, 3), (5, 3), (3, 7), or

(7, 7) (mod 8). Furthermore, equation (2.5) has a solution only if
(
−2A
p

)
= 1.

Equation (2.6) has at most two positive integer solutions by Theorem 2.4.1. Since u and v are

both odd, we have 1 − A ≡ 2 (mod 8) so A ≡ 7 (mod 8) and v2 ≡ 2 (mod p) so
(
2
p

)
= 1.

Then p ≡ 1 or 7 (mod 8), and equation (2.6) has at least one solution only if (A, p) ≡ (7, 1)

or (7, 7) (mod 8).
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Equation (2.7) has at most two positive integer solutions by Theorem 2.4.1. Since u and v are

odd, we have p− A ≡ 2 (mod 8) so that equation (2.7) has a solution only if (A, p) ≡ (1, 3),

(3, 5), (5, 7), or (7, 1) (mod 8). In particular, suppose that equation (2.7) has two solutions,

and let (a1, b1) be the minimal positive solution of pX2 −AY 2 = 2, so

pa1
2 −Ab12 = 2.

Let

α =
a1
√
p+ b1

√
A

√
2

,

and compute α3 to obtain

b3 =
3a1

2pb1 + b1
3A

2
.

Since we assume that two solutions exist to equation (2.7), b1 and b3 must both be squares by

Theorem 2.4.1. It follows that there exist two positive integers B1 and B3 such that b1 = B1
2,

b3 = B3
2, and

3a1
2pB1

2 +B1
6A = 2B3

2.

This yields
(
2
p

)
=
(
A
p

)
. Since −Au4 ≡ 2 (mod p), we obtain

(
−A
p

)
=
(
2
p

)
=
(
A
p

)
so(

−1
p

)
= 1. It follows that p ≡ 1 (mod 4), so p ≡ 1 or 5 (mod 8). Therefore equation (2.7)

has at most two positive integer solutions only if (A, p) ≡ (3, 5) or (7, 1) (mod 8), and it has

at most one positive integer solution only if (A, p) ≡ (1, 3) or (5, 7) (mod 8). Furthermore,

equation (2.7) has a solution only if
(
−2A
p

)
= 1.

Since the number of solutions to equations (2.5) and (2.7) depends on the value of
(
−2A
p

)
,

we �rst suppose that p | A or
(
−2A
p

)
= −1, then equations (2.5) and (2.7) have no integer

solution, equation (2.4) has at most one solution, and (2.6) has at most two positive integer

solutions only if (A, p) ≡ (7, 1), or (7, 7) (mod 8). Therefore when p | A or
(
−2A
p

)
= −1,

equation (2.1) has at most three positive integer solutions if (A, p) ≡ (7, 1), or (7, 7) (mod 8),

and it has at most one positive integer solution in all other cases.

We next suppose that
(
−2A
p

)
= 1. Then equation (2.5) has at most one positive integer

solution.

If A ≡ 1 (mod 8), then equation (2.4) has at most one solution, (2.5) has at most one solution

and only if p ≡ 1 or 3 (mod 8), (2.6) has no solution, and (2.7) has at most one solution and

only if p ≡ 3 (mod 8).

If A ≡ 3 (mod 8), then equation (2.4) has at most one solution, (2.5) has at most one solution

and only if p ≡ 1 or 7 (mod 8), (2.6) has no solution, and (2.7) has at most two solutions and
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only if p ≡ 5 (mod 8).

If A ≡ 5 (mod 8), then equation (2.4) has at most one solution, (2.5) has at most one solution

and only if p ≡ 1 or 3 (mod 8), (2.6) has no solution, and (2.7) has at most one solution and

only if p ≡ 7 (mod 8).

If A ≡ 7 (mod 8), then equation (2.4) has at most one solution, (2.5) has at most one solution

and only if p ≡ 1 or 7 (mod 8), (2.6) has at most two solutions and only if p ≡ 1 or 7 (mod 8),

and (2.7) has at most one solution and only if p ≡ 1 (mod 8).

Proof of Theorem 2.3.4. If A is even and p is odd, we let A = 2A′. Then

y2 = 2px(A′x2 + 1).

We let y = 2pw, and we obtain

2pw2 = x(A′x2 + 1).

Since gcd(x,A′x2 + 1) = 1, there exist positive integers u and v such that either

x = 2pu2, A′x2 + 1 = v2, and

v2 − 4A′p2u4 = 1, (2.8)

or x = 2u2, A′x2 + 1 = pv2 and

pv2 − 4A′u4 = 1, (2.9)

or x = u2, A′x2 + 1 = 2pv2 and

2pv2 −A′u4 = 1, (2.10)

or x = pu2, A′x2 + 1 = 2v2 and

2v2 −A′p2u4 = 1. (2.11)

If A′ is a perfect square, then equation (2.8) has no positive integer solution, otherwise it has

at most one positive integer solution by Lemma 2.4.4.

By Theorem 2.4.2, each of equations (2.9), (2.10), and (2.11) has at most one solution. Equa-

tion (2.9) has a solution only if p ≡ 1 (mod 4) and
(
−A′
p

)
= 1, equation (2.10) has a solution

only if A′ is odd and
(
−A′
p

)
= 1, and equation (2.11) has a solution only if A′ is odd. Since the

number of solutions to equations (2.9) and (2.10) depends on the value of
(
−A′
p

)
=
(
−2A
p

)
,

we �rst suppose that p | A or
(
−2A
p

)
= −1. Then equations (2.9) and (2.10) have no integer

solution.

If A ≡ 0 (mod 4), then equation (2.8) has at most one solution, (2.9) has no solution, (2.10)

has no solution, and (2.11) has no solution.
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If A ≡ 2 (mod 4), then equation (2.8) has at most one solution, (2.9) has no solution, (2.10)

has no solution, and (2.11) has at most one solution.

We now suppose that
(
−2A
p

)
= 1. Then equations (2.9) and (2.10) have at most one positive

integer solution.

If A ≡ 0 (mod 4), then equation (2.8) has at most one solution, (2.9) has at most one solution

only if p ≡ 1 (mod 4), (2.10) has no solution, and (2.11) has no solution.

If A ≡ 2 (mod 4), then equation (2.8) has at most one solution, (2.9) has at most one solu-

tion only if p ≡ 1 (mod 4), (2.10) has at most one solution, and (2.11) has at most one solution.

If A is even and p = 2, we let A = 2A′. Then

y2 = 2x(2A′x2 + 2).

We let y = 2w, and we obtain

w2 = x(A′x2 + 1).

Since gcd(x,A′x2+1) = 1, there exist positive integers u and v such that x = u2, A′x2+1 = v2,

and

v2 −A′u4 = 1, (2.12)

which has no solution if A′ is a perfect square and at most two solutions by Theorem 2.4.3.

Moreover, if A′ is even and A′ 6= 25 · 1785, then by Lemma 2.4.4 equation (2.12) has at most

one solution.

Remark 2.5.1. When we had �nished writing the paper, we noticed that a proof of the result

stated in Lemma 2.4.4 already existed within the proof of Theorem 1 by Luca and Walsh in [9].

Our proof of Lemma 2.4.4 seems to be di�erent than the proof of the result in [9].

Remark 2.5.2. Theorem 2.3.3 implies that Conjecture 2.3.2 is true if (A, p) ≡ (1, 5), (1, 7),

(3, 3), (3, 5), (5, 3), (7, 3), or (7, 5) (mod 8).

Remark 2.5.3. We note that this work was subsequently improved upon by Bencherif, Boumahdi,

Garici, and Schedler [2].
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Chapter 3

Polynomials with values which are

powers of integers

3.1 Résumé

Shapiro a présenté le résultat suivant : si P et Q sont deux polynômes à valeurs entières de

degrés p et q respectivement tels que q divise p et P (n) = Q(m) pour une in�nité de blocs

d'entiers n de longeur p/q + 2, alors P (x) = Q
(
R(x)

)
pour un certain polynôme R.

On réduit le nombre de blocs nécessaires lorsque Q = xq et P est aussi un polynôme à

coe�cients entiers. Le nombre présenté est �ni, mais dépend sur les valeurs de P aux entiers

dans un bloc initial. Donc, le résultat n'est pas calculable e�ectivement.

3.2 Abstract

Shapiro showed that if P and Q are integer-valued polynomials of degrees p and q respectively,

such that P (n) = Q(m) for in�nitely many p/q + 2 length blocks of consecutive integers n,

then P (x) = Q
(
R(x)

)
for a polynomial R. We reduce the number of necessary blocks to being

only �nite in number when Q(x) = xq. While a bound for the number of blocks is provided,

the bound depends on the values of P at integers in some initial block. Consequently, the

bound given is not e�ectively computable.

3.3 Introduction

Several authors have studied the integer solutions of the equation

ym = P (x)

where P (x) is a polynomial with rational coe�cients, and m ≥ 2 is an integer. If P is an

irreducible polynomial of degree at least 3 with integer coe�cients, then the above equation
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is called a hyperelliptic equation if m = 2 and a superelliptic equation otherwise.

In 1969, Baker [1] gave an upper bound on the size of integer solutions of the hyperelliptic

equation when P (x) ∈ Z[x] has at least three simple zeros, and for the superelliptic equation

when P (x) ∈ Z[x] has at least two simple zeros.

Using a re�nement of Baker's estimates and a criterion of Cassels concerning the shape of a

potential integer solution to xp−yq = 1, Tijdeman [12] proved in 1976 that Catalan's equation

xp − yq = 1 has only �nitely many solutions in integers p > 1, q > 1, x > 1, y > 1.

Suppose that ym − P (x) is irreducible in Q[x, y] where P is monic and gcd(m,degP ) > 1.

Under these conditions, Masser [7] considered the equation ym = P (x) in the particular case

m = 2 and degP = 4. In particular, setting P (x) = x4 + ax3 + bx2 + cx + d where P (x)

is not a perfect square, it was shown that for H ≥ 1 and X(H) de�ned as the maximum of

|x| taken over all integer solutions of all equations y2 = P (x) with max{|a|, |b|, |c|, |d|} ≤ H,

there are absolute constants k > 0 and K such that kH3 ≤ X(H) ≤ KH3. Walsh [14]

later obtained an e�ective bound on the integer solutions for the general case. Poulakis [8]

described an elementary method for computing the solutions of the equation y2 = P (x), where

P is a monic quartic polynomial which is not a perfect square. Later, Szalay [11] established

a generalization for the equation yq = P (x), where P is a monic polynomial and q divides

degP .

Suppose that α1, α2, . . . , αr are the roots of P (x) with respective multiplicities e1, e2, . . . , er.

Given an integer m ≥ 3, we de�ne, for each i = 1, . . . , r,

mi =
m

(ei,m)
∈ N.

It has been shown by LeVeque [6] that the superelliptic equation ym = P (x) can have in�nitely

many solutions in Q only if (m1,m2, . . . ,mr) is a permutation of either (2, 2, 1, . . . , 1) or

(t, 1, 1, . . . , 1) with t ≥ 1. In 1995, Voutier [13] gave improved bounds for the size of solutions

(x0, y0) to the superelliptic equation with x0 ∈ Z and y0 ∈ Q under the conditions of LeVeque.

Given a polynomial P (x) ∈ Z[x] and an integer q ≥ 2, it is then natural to ask when the

equation

yq − P (x) = 0

will have in�nitely many solutions (x0, y0) with x0 ∈ Z and y0 ∈ Q. It is clear that this will
immediately be the case when P (x) =

(
R(x)

)q
for some polynomial R(x) ∈ Q[x]. Indeed, this

serves as our motivation.

In 1913, Grösch solved a problem proposed by Jentzsch [5], showing that if a polynomial P (x)

with integral coe�cients is a square of an integer for all integral values of x, then P (x) is

the square of a polynomial with integral coe�cients. Kojima [5], Fuchs [2], and Shapiro [10]

later proved more general results. In particular, Shapiro proved that if P (x) and Q(x) are
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polynomials of degrees p and q respectively, which are integer-valued at the integers, such that

P (n) is of the form Q(m) for in�nitely many blocks of consecutive integers of length at least

p/q + 2, then there is a polynomial R(x) such that P (x) = Q
(
R(x)

)
.

Recall that the height of a polynomial

P (x) = apx
p + ap−1x

p−1 + · · ·+ a1x+ a0 ∈ C[x]

is de�ned by

H(P ) = max
i=0,...,p

|ai|

where |ai| denotes the modulus of ai ∈ C for each i = 0, . . . , p. We will prove the following

result:

Theorem 3.3.1. Let P (x) = apx
p+ap−1x

p−1+· · ·+a0 be a polynomial with integral coe�cients

where ap > 0, and let q ≥ 2 be an integer that divides p. Suppose that there exist integers mi,

i = 0, 1, . . . , p/q + 1, such that P (n0 + i) = mi
q for some consecutive integers

n0, n0 + 1, . . . , n0 + p/q + 1

where

n0 > 1 + (p/q + 1)!pqp/q+1H(P )p/q+2

p/q+2∏
j=2

(jp− j + 1)2.

Set

M :=

p/q+1∑
i=0

(
p/q + 1

i

)
|mp/q+1−i|.

If there exist at least M more blocks of such consecutive integers nk + i, i = 0, . . . , p/q + 1,

such that nk > nk−1+p/q+1 for each k = 1, . . . ,M and P (nk+i) = mq
k,i for all k = 1, . . . ,M

and i = 0, . . . , p/q + 1 for some integers mk,i, then there exists a polynomial R(x) such that

P (x) =
(
R(x)

)q
.

3.4 Preliminaries

Let P (x) and Q(x) be non-zero polynomials with integral coe�cients of degrees p and q

respectively. The following properties are easily veri�ed:

(i) H(P ) ≥ 1

(ii) H(P ′) ≤ pH(P )

(iii) H(P +Q) ≤ H(P ) +H(Q)

(iv) H(PQ) ≤ (1 + p+ q)H(P )H(Q)
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The �rst and second properties are trivial, while the third follows immediately from the triangle

inequality. The last property follows by noting that the coe�cient of xk in the product of

apx
p + ap−1x

p−1 + · · · + a0 and bqxq + bq−1x
q−1 + · · · + b0 is given by

∑
i+j=k

aibj , where the

number of summands is at most d(p+ q)/2e+ 1 ≤ 1 + p+ q.

We recall a result which can be found in Rolle [9], or which could also be easily deduced from

Cauchy's bound on the roots of a polynomial (see for example the exposition in [3]).

Lemma 3.4.1. Let f(x) ∈ R[x] be a non-zero monic polynomial. If t ≥ 1 + H(f), then

f(t) > 0.

Proof. Let f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0. The result follows from writing f(t) as

f(t) = tn−1
(
t+

(
an−1 +

an − 2

t
+ · · ·+ a0

tn−1

))
,

since from t > 1, we deduce that

∣∣∣an−1 +
an−2
t

+ · · ·+ a0
tn−1

∣∣∣ ≤ n−1∑
i=0

|ai|(1/t)n−1−i ≤ H(f)
t

t− 1
< t,

and we conclude that t+
(
an−1 + an−2

t + · · ·+ a0
tn−1

)
is positive.

We will also require the following lemma, which is implicit in the proof of the sole lemma in

[10].

Lemma 3.4.2. Let f(x) be a branch of an algebraic function, real and regular for all x > x0

for some x0, and satisfying |f(x)| < Cxα where C > 0 and α > 0. Then lim
x→∞

f (r+1)(x) = 0,

where r is the least integer greater than or equal to α.

We now establish a bound on the zeros of a particular class of algebraic functions.

Lemma 3.4.3. Let P (x) be a polynomial of degree p with integral coe�cients, and let f(x)

be a branch of the algebraic function de�ned by the equation yq = P (x) where q is an integer

greater than 1. For any integer k ≥ 2, Rk(x) = qkf(x)kq−1f (k)(x) is a polynomial with integral

coe�cients such that degRk ≤ k(p− 1) and

H(Rk) ≤ (k − 1)!pqk−1H(P )k
k∏
j=2

(jp− j + 1)2.

Proof. Di�erentiating f q = P with respect to x, we obtain qf q−1f ′ = P ′. We have degP ′ =

p − 1 and H(P ′) ≤ pH(P ). We now consider Rk = qkfkq−1f (k) and prove the result by

induction on k.
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For the base case k = 2, we di�erentiate qf q−1f ′ = P ′ with respect to x to obtain

qf q−1f ′′ + q(q − 1)f q−2f ′f ′ = P ′′.

Multiplying both sides of this equation by qf q, we obtain

q2f2q−1f ′′ + (q − 1)(qf q−1f ′)(qf q−1f ′) = qf qP ′′,

q2f2q−1f ′′ + (q − 1)P ′P ′ = qPP ′′,

so that

R2 = q2f2q−1f ′′ = qPP ′′ − (q − 1)P ′P ′.

We then have

degR2 ≤ max{p+ degP ′′,degP ′ + degP ′}

= max{p+ (p− 1)− 1, p− 1 + p− 1}

= 2(p− 1),

and

H(R2) ≤ qH(PP ′′) + (q − 1)H(P ′P ′)

≤ q(1 + p+ degP ′′)H(P )H(P ′′) + q(1 + degP ′ + degP ′)H(P ′)H(P ′)

≤ q(1 + p+ p− 2)H(P )[degP ′H(P ′)] + q(1 + 2p− 2)[pH(P )]2

≤ q(2p− 1)H(P )(p− 1)[pH(P )] + q(2p− 1)[pH(P )]2

= pq(2p− 1)H(P )2[(p− 1) + p]

= pqH(P )2(2p− 1)2.

Therefore, the result holds for the base case.

We now assume that the result holds for some integer k ≥ 2. Di�erentiating Rk = qkfkq−1f (k)

with respect to x yields

qkfkq−1f (k+1) + qk(kq − 1)fkq−2f ′f (k) = Rk
′.

Multiplying both sides of the equation by qf q, we obtain

qk+1f [k+1]q−1f (k+1) + (kq − 1)[qf q−1f ′][qkfkq−1f (k)] = qf qRk
′,

qk+1f [k+1]q−1f (k+1) + (kq − 1)P ′Rk = qPRk
′,

so that

Rk+1 = qk+1f [k+1]q−1f (k+1) = qPRk
′ − (kq − 1)P ′Rk.
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By hypothesis, we have degRk ≤ k(p− 1). Thus,

degRk+1 ≤ max{p+ degRk
′,degP ′ + degRk}

= max{p+ degRk − 1, p− 1 + degRk}

= p− 1 + degRk

≤ p− 1 + k(p− 1)

= (k + 1)(p− 1).

In addition,

H(Rk+1) ≤ qH(PRk
′) + (kq − 1)H(P ′Rk)

≤ kq(1 + p+ degRk
′)H(P )H(Rk

′)

+ kq(1 + degP ′ + degRk)H(P ′)H(Rk)

≤ kq(p+ degRk)H(P )[degRkH(Rk)]

+ kq(p+ degRk)[pH(P )]H(Rk)

= kq(p+ degRk)
2H(P )H(Rk).

By hypothesis, we have degRk ≤ k(p− 1) and

H(Rk) ≤ (k − 1)!pqk−1H(P )k
k∏
j=2

(jp− j + 1)2.

Thus,

H(Rk+1) ≤ kq
(
p+ k(p− 1)

)2
H(P )(k − 1)!pqk−1H(P )k

k∏
j=2

(jp− j + 1)2

= k!pqkH(P )k+1
k+1∏
j=2

(jp− j + 1)2,

proving the result.

Corollary 3.4.4. Let P (x) be a polynomial of degree p with integral coe�cients, and let f(x)

be a branch of the algebraic function de�ned by the equation yq = P (x) where q is an integer

greater than 1. If β is a real zero of f (k)(x) for any integer k ≥ 2 such that β > 1 + H(P ),

then β ≤ 1 + (k − 1)!pqk−1H(P )k
∏k
j=2(jp− j + 1)2.

Proof. Let β be a zero of f (k)(x) such that β > 1+H(P ). If f(β) = 0, then 0 = f(β)q = P (β)

and β ≤ 1 +H(P ) by Lemma 3.4.1. We conclude that β is not a zero of f(x).

Since β must be a zero of the polynomial Rk = qkfkq−1f (k), we conclude from Lemma 3.4.1

and Lemma 3.4.3 that

β ≤ 1 +H(Rk) ≤ 1 + (k − 1)!pqk−1H(P )k
k∏
j=2

(jp− j + 1)2,
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as claimed.

For convenience, we de�ne for all integers k ≥ 2 the function

B(k) = 1 + (k − 1)!pqk−1H(P )k
k∏
j=2

(jp− j + 1)2.

De�ning the di�erence operator ∆ by ∆f(x) = f(x+1)−f(x) and recursively de�ning higher

order di�erence operators, we have the following lemma (see page 8 of [4]):

Lemma 3.4.5. Let k ≥ 1 be an integer. Then ∆kf(x) =
k∑
i=0

(
k

i

)
(−1)if(x+ k − i).

3.5 Proof of Theorem 3.3.1

Proof. Let x = φ(y) denote the branch of the algebraic function inverse to the polynomial

y = xq, that is, φ(y) = y1/q. Then φ(y) is positive and free of singularities for all y ≥ 0.

Set f(x) = φ
(
P (x)

)
. Then f(x) is asymptotically a1/qp xp/q, and f(n) = ±m for any n such

that P (n) = mq.

We show by contradiction that f(x) is a polynomial. Suppose that f(x) is not a polynomial.

Then f (p/q+2)(x) is not identically zero. By Corollary 3.4.4, any real zero β of f (p/q+2)(x)

satisfying β > 1 + H(P ) must also satisfy β ≤ B(p/q + 2). Thus, f (p/q+1)(x) is either

monotone decreasing or monotone increasing for

x > B(p/q + 2).

Suppose that f (p/q+1)(x) is monotone decreasing for x > B(p/q + 2) as described above. It

must then be strictly positive for x > B(p/q+ 2), since lim
x→∞

f (p/q+1)(x) = 0 by Lemma 3.4.2.

Applying the di�erence operator ∆ to f(x) p/q + 1 times, we �nd that ∆p/q+1f(n0) is an

integer. We now apply the Mean Value Theorem repeatedly to obtain a number c0 ∈ (n0, n0 +

p/q + 1) such that f (p/q+1)(c0) = ∆p/q+1f(n0) is an integer.

For each k = 1, . . . ,M , we repeat the above process with each block of consecutive integers

nk + i, i = 0, . . . , p/q + 1, to obtain numbers ck such that ck ∈ (nk, nk + p/q + 1) and

f (p/q+1)(ck) = ∆p/q+1f(nk) are integers.
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By Lemma 3.4.5, the integer f (p/q+1)(c0) = ∆p/q+1f(n0) is such that

|f (p/q+1)(c0)| =

∣∣∣∣∣∣
p/q+1∑
i=0

(
p/q + 1

i

)
(−1)if(n0 + p/q + 1− i)

∣∣∣∣∣∣
≤

p/q+1∑
i=0

(
p/q + 1

i

)
|mp/q+1−i|

= M.

Since f (p/q+1)(x) is monotone decreasing, f (p/q+1)(ck) < f (p/q+1)(ck−1) for each k = 1, . . . ,M .

Thus f (p/q+1)(cj) ≤ M − j for j = 0, . . . ,M . This implies that f (p/q+1)(cM ) ≤ 0, which

contradicts f (p/q+1)(x) being strictly positive at

cM > c0 > n0 > B(p/q + 2).

Similarly, the case where f (p/q+1)(x) is monotone increasing for x > B(p/q + 2) leads to a

contradiction. Therefore, f(x) is a polynomial and P (x) = f(x)q.
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Chapter 4

On the solutions to equations of the

form Fn ± Fm = ya

4.1 Résumé

On résout l'équation Fn−Fm = ya pour les valeurs y ∈ {6, 11, 12}, ce qui démontre un cas de

la conjecture d'Erduvan et Keskin. Les résultats suggèrent aussi une conjecture généralisée.

De plus, on borne les solutions de l'équation Fn + Fm = ya pour y ≥ 3 �xe en termes de la

valeur y choisie.

4.2 Abstract

We solve the equation Fn − Fm = ya for the �xed values of y ∈ {6, 11, 12}, proving one

case in the conjecture of Erduvan and Keskin as well as motivating an extended conjecture.

Additionally, we consider the general equation Fn + Fm = ya and show that the number of

solutions in non-negative integers (n,m, a) is �nite when y ≥ 3 is a �xed integer. A bound on

the number of solutions is given in terms of the �xed value for y.

4.3 Introduction

The sequence of Fibonacci numbers is de�ned recursively as F0 = 0, F1 = 1, and Fn =

Fn−1 + Fn−2 for all n ≥ 2. The sequence of Lucas numbers is similarly de�ned as L0 = 2,

L1 = 1, and Ln = Ln−1 + Ln−2 for all n ≥ 2. The negative terms of these sequences are

de�ned by F−n = (−1)n+1Fn and L−n = (−1)nLn respectively for n ≥ 1. Finding all perfect

powers in the Fibonacci sequence was a problem completely solved by Bugeaud, Mignotte, and

Siksek, who approached it by combining linear forms in logarithms with modularity. Along

with Luca, these four authors found all integer solutions to

Fn ± 1 = ya
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for a ≥ 2. Their proof uses a factorization that converts the problem into one of �nding

solutions of Fn = ya.

Luca and Patel followed by considering the more general equation

Fn ± Fm = ya

for a ≥ 2. They successfully showed that all integer solutions (n,m, y, a) with n ≡ m (mod 2)

satisfy either y = 0 and |n| = |m|, or max{|n|, |m|} ≤ 36. The general problem for n and m

not congruent modulo 2 remains an open one.

Similar problems and particular cases of the above have been considered. Bravo and Luca

solved the equation Fn + Fm = 2a. Bravo, Gómez, and Luca then studied the equation

F
(k)
n + F

(k)
m = 2a in integers n,m, k, a with k ≥ 2 and n ≥ m, where F (k)

n is the nth k-

generalized Fibonacci number. This previous work followed after Bravo and Luca's solution

to

F (k)
n + F (k)

m = d

(
10` − 1

9

)
,

with ` ≥ 2 and 1 ≤ d ≤ 9. This was motivated in the context of repdigits: a positive integer

that has only a single distinct digit when written in its decimal expansion.

Focusing strictly on non-negative integers n and m, the equation

Fn − Fm = ya (4.1)

has been a subject of study. �iar and Keskin [8] solved this equation for y = 2 in non-negative

integers (n,m, a), providing each of the solutions.

Erduvan and Keskin [5] provided the exact solutions to the equation for y = 5 in positive

integers (n,m, a). In the same work, they conjecture that the equation has no solutions in

non-negative integers n,m with a ≥ 2 when y > 7 is prime (oddly, there seems to be no

explanation on their part as to the omission of y = 7).

The aim of this work is to study the solutions in non-negative integers to equation (4.1) for

y ∈ {6, 11, 12}. Speci�cally, we prove the following results:

Theorem 4.3.1. The only solutions in non-negative integers (n,m, a) of

Fn − Fm = 11a (4.2)

are (n,m, a) ∈ {(2, 0, 0), (3, 1, 0), (3, 2, 0), (4, 3, 0), (7, 3, 1)}.

Theorem 4.3.2. The only solutions in non-negative integers (n,m, a) of

Fn − Fm = 6a (4.3)

are (n,m, a) ∈ {(2, 0, 0), (3, 1, 0), (3, 2, 0), (4, 3, 0), (6, 3, 1)}.
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Theorem 4.3.3. The only solutions in non-negative integers (n,m, a) of

Fn − Fm = 12a (4.4)

are (n,m, a) ∈ {(2, 0, 0), (3, 1, 0), (3, 2, 0), (4, 3, 0), (13, 11, 2), (14, 13, 2)}.

The case y = 11 is an obvious choice, since 11 is a prime number and the �rst open case in the

conjecture of Erduvan and Keskin. We brie�y justify the few reasons for considering the other

two cases. The conjecture of Erduvan and Keskin is a statement for prime y, but composite

values for y seem no less reasonable. Moreover, we may freely skip y = 4 = 22 as it is dealt

with in the y = 2 case, and the next open case is y = 6. Once we allow for such composite

y, it can be shown due to a theorem of Bugeaud, Mignotte, and Siksek [2] that there exist

solutions when y = 12 and a = 2. In light of this, we also consider the case y = 12.

The related equation

Fn + Fm = ya (4.5)

has also seen some progress in this regard. Bravo and Luca [1] found all solutions to the

equation when y = 2. We prove the following result:

Theorem 4.3.4. For a �xed integer y ≥ 3, a solution in non-negative integers (n,m, a) of

Fn + Fm = ya (4.6)

satis�es

a < max{n,m} < t
log t

log t−2 log(log t) ,

where

t :=
6.8C2(log y)2 + (2C log 20 + 4C log 2)(log y) + log

√
5

log 1+
√
5

2

,

and C := 1.4 · 306 · 34.5 · 22 · (1 + log 2).

4.4 Preliminaries

If η is an algebraic number of degree d with minimal polynomial

d∑
i=0

aix
d−i = a0

d∏
i=1

(
x− η(i)

)
∈ Z[x] ,

where the ai are relatively prime, a0 positive, and the η(i) are the conjugates of η, then the

logarithmic height of η is given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(

max
{
|η(i)|, 1

}))
. (4.7)
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If η = a/b is rational with b > 1 and a relatively prime, then h(η) = log(max{|a|, b}).

Three well-known properties of the logarithmic height follow.

h(η ± γ) ≤ h(η) + h(γ) + log 2, (4.8)

h(ηγ±1) ≤ h(η) + h(γ), (4.9)

h(ηk) = |k|h(η), k ∈ Q. (4.10)

The nth Fibonacci number can be described in the form

Fn =
αn − αn√

5
(4.11)

where α = (1 +
√

5)/2 and α its conjugate.

We will require the following well-known identity, which is readily veri�ed by induction:

αn−2 ≤ Fn ≤ αn−1 (4.12)

for n ≥ 1.

The following theorem is deduced from Corollary 2.3 of Matveev [7]:

Theorem 4.4.1. Assume that γ1, γ2, . . . , γt are positive real algebraic numbers in a real alge-

braic number �eld K of degree D, b1, b2, . . . , bt are rational integers, and

Λ := γb11 · · · γ
bt
t − 1

is not zero. Then

|Λ| > exp
(
− 1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2 · · ·At

)
,

where

B ≥ max{|b1|, . . . , |bt|}

and

Ai ≥ max{Dh(γi), | log γi|, 0.16}

for all i = 1, . . . , t.

The following result is Lemma 5 of Dujella and Pethö [4] provides a variant of Baker-Davenport

reduction. For x ∈ R, ‖x‖ := min{|x− n| : n ∈ Z} denotes the distance from x to the nearest

integer.
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Lemma 4.4.2. Let M be a positive integer, let p/q be a convergent of the continued fraction

of the irrational number γ such that q > 6M , and let A,B, µ be some real numbers with A > 0

and B > 1. Let ε := ‖µq‖ −M‖γq‖. If ε > 0, then there exists no solution to the inequality

0 < |uγ − v + µ| < AB−w ,

in positive integers u, v, and w with u ≤M and

w ≥ log(Aq/ε)

logB
.

The following result combines Theorems 1 and 2 of Bugeaud, Migonette, and Siksek [2]:

Theorem 4.4.3. The only perfect powers in the Fibonacci sequence are F0 = 0, F1 = F2 = 1,

F6 = 8, and F12 = 144. The only perfect powers in the Lucas sequence are L1 = 1 and L3 = 4.

The following well-known result can be extracted from Lemma 2.1 of Luca and Patel [6]:

Lemma 4.4.4. Assume that n ≡ m (mod 2). Then

Fn − Fm =

F(n−m)/2L(n+m)/2 if n ≡ m (mod 4);

F(n+m)/2L(n−m)/2 if n ≡ m+ 2 (mod 4).

The following can be extracted from Theorem 1 of Bugeaud, Luca, Mignotte, and Siksek [3]:

Theorem 4.4.5. If Fn = 2syb for some integers n ≥ 1, y ≥ 1, b ≥ 2, and s ≥ 0, then

n ∈ {1, 2, 3, 6, 12}.

4.5 Solutions to Fn − Fm = 11a

Proof of Theorem 4.3.1. Assume that equation (4.2) holds. By inequality (4.12), we obtain

11a = Fn − Fm < Fn < αn−1 < 11n−1 . (4.13)

This shows that a < n− 1.

If n−m = 1, then Fm−1 = 11a. By Theorem 4.4.3, we have solutions (3, 2, 0) and (4, 3, 0). If

n −m = 2, then Fm+1 = 11a, and by Theorem 4.4.3 we have (2, 0, 0) and (3, 1, 0). Assume

that m ≥ 1 and n−m ≥ 3. For 1 ≤ m < n ≤ 200, a direct computation in Maple shows that

the only solution is (7, 3, 1).

Assume then that n > 200, m ≥ 1, and n−m ≥ 3. Equation (4.12) can be rewritten as

αn√
5
− 11a = Fm +

αn√
5
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to yield ∣∣∣∣ αn√5
− 11a

∣∣∣∣ =

∣∣∣∣Fm +
αn√

5

∣∣∣∣ ≤ Fm +
|α|n√

5
< αm +

1

2
.

We obtain∣∣1− 11aα−n
√

5
∣∣ < √5αm−n +

√
5

2
α−n =

√
5αm−n

(
1 +

α−m

2

)
<

4

αn−m
. (4.14)

We apply Theorem 4.4.1, setting γ1 := 11, γ2 := α, γ3 :=
√

5, b1 := a, b2 := −n, and b3 := 1.

Since the γi are all positive real numbers lying in the �eld K = Q(
√

5), we have D = 2. De�ne

Λ1 := 11aα−n
√

5− 1 .

Then Λ1 6= 0, else α2n = 5 · 112a ∈ Q, which is impossible as α2n is irrational. Since

h(γ1) = log 11 = 2.397895 . . ., we take A1 := 4.8. Since

h(γ2) =
logα

2
=

0.4812 . . .

2

and

h(γ3) = log
√

5 = 0.8047 . . .

we can take A2 := 0.5 and A3 := 1.7. From a < n− 1, we deduce that

B := max{|b1|, |b2|, |b3|} = max{a, n, 1} = n .

Inequality (4.14) and Theorem 4.4.1 together imply that

4

αn−m
> |Λ1| > exp

(
− 1.4 · 306 · 34.5 · 22 · (1 + log 2)(1 + log n)(4.8)(0.5)(1.7)

)
.

We obtain

(n−m) logα− log 4 < 3.95655 · 1012(1 + log n) . (4.15)

We again rewrite equation (4.2):

αn√
5
− αm√

5
− 11a =

αn√
5
− αm√

5
.

Since |α|n + |α|m < 2/3 for all n > 200, we obtain∣∣∣∣αn(1− αm−n)√
5

− 11a
∣∣∣∣ =
|α|n + |α|m√

5
<

1

3

which yields ∣∣∣1− 11aα−n
√

5(1− αm−n)−1
∣∣∣ < √5α−n(1− αm−n)−1

3
.

That 1− αm−n > 1/3 follows immediately from

αm−n =
1

αn−m
<

1

α
<

2

3
,
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which in turn implies that (1− αm−n)−1 < 3. Then∣∣∣1− 11aα−n
√

5(1− αm−n)−1
∣∣∣ < √5

αn
. (4.16)

We apply Theorem 4.4.1 once again. Take γ1 := 11, γ2 := α, γ3 :=
√

5(1− αm−n)−1, b1 := a,

b2 := −n, and b3 := 1. The positive real numbers γ1, γ2, and γ3 lie in K = Q(
√

5), so we have

D = 2. Set

Λ2 := 11aα−n
√

5(1− αm−n)−1 − 1 .

Then Λ2 6= 0, else αm = αn, which is impossible as n > m by assumption. Since

h(γ1) = log 11 = 2.39789 . . .

and

h(γ2) =
logα

2
=

0.4812 . . .

2
,

we take A1 := 4.8 and A2 := 0.5. Since

h(γ3) ≤ log 2
√

5 + (n−m)
logα

2

by equations (4.8), (4.9), and (4.10), one can show that | log γ3| < log 5 + (n −m) logα. As

such, we take A3 := log 20 + (n − m) logα. It follows again that B := n, since a < n − 1.

From inequality (4.16), we then obtain

√
5

αn
> |Λ2| > exp

(
− 1.4 · 306 · 34.5 · 22 · (1 + log 2)(1 + log n)(4.8)(0.5)

(
log 20 + (n−m) logα

))
or

n logα− log
√

5 < 2.32738 · 1012(1 + log n)
(

log 20 + (n−m) logα
)
. (4.17)

We can now substitute inequality (4.15) into the above to obtain

n logα− log
√

5 < 2.32738 · 1012(1 + log n)
(

log 20 + 3.95655 · 1012(1 + log n) + log 4
)
(4.18)

or

n < 1.91359 · 1025 + 3.82717 · 1025 log n+ 1.91359 · 1025(log n)2 .

Then

n < 1.53087 · 1026(log n)2 .

A quick computation with Maple yields n < 7.2367 · 1029.

Let

z1 := a log 11− n logα+ log
√

5 .

Then

|1− ez1 | < 4

αn−m
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by inequality (4.14). The inequality

αn√
5

= Fn +
αn√

5
> Fn − 1 ≥ Fn − Fm = 11a

implies that 11a
√

5α−n < 1, so that z1 < 0. Since 4α−(n−m) < 0.95 for n−m ≥ 3, it follows

that e|z1| < 20. Since x < ex − 1 for positive x, we have

0 < |z1| < e|z1| − 1 = e|z1||1− ez−1| < 80α−(n−m) ,

or

0 <

∣∣∣∣∣n− a
(

log 11

logα

)
+

log
√

5

logα

∣∣∣∣∣ < 80

logα
α−(n−m) ≤ 166.3α−(n−m) . (4.19)

We now look to apply Lemma 4.4.2: set γ := log 11/ logα 6∈ Q, µ := log
√

5/ logα, A := 166.3,

B := α, and w := n−m. Let M := 7.2367 · 1029. The denominator of the 61st convergent of

γ, q61, exceeds 6M , and

ε := ‖µq61‖ −M‖γq61‖ = 0.17976 . . . > 0 .

Thus, inequality (4.19) has no solution for

n−m ≥ log(Aq61/ε)

logB
= 161.2955 . . . .

We obtain n−m ≤ 161, which we now substitute into inequality (4.17) yielding

n < 3.89198 · 1014(1 + log n),

which in turn yields n < 1.4883 · 1016.

We apply Lemma 4.4.2 again, now to reduce the bound for n. Let

z2 := a log 11− n logα+ log
(√

5(1− αm−n)−1
)
.

By inequality (4.16),

|1− ez2 | <
√

5

αn
< 3α−n .

If z2 > 0, then 0 < z2 < ez2 − 1 <
√

5α−n < 1/2, so that e|z2| = ez2 < 1/2 < 2. If z2 < 0,

then |1 − ez2 | = 1 − ez2 <
√

5α−n < 1/2, which implies ez2 > 1/2 so that e|z2| = e−z2 < 2.

Altogether,

0 < |z2| < e|z2| − 1 = e|z2||1− ez2 | < 6α−n .

From 0 < |z2| < 6α−n, we obtain

0 <

∣∣∣∣∣a
(

log 11

logα

)
− n+

log
(√

5(1− αm−n)−1
)

logα

∣∣∣∣∣ < 6

logα
α−n ≤ 13α−n . (4.20)
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Set γ := log 11/ logα,

µn−m :=
log
(√

5(1− α−(n−m))−1
)

logα
,

A := 13, B := α, w := n, and M := 1.4883 · 1016. The denominator of the 39th convergent of

γ, q39, exceeds 6M , and

ε := ‖µn−mq39‖ −M‖γq39‖ ∈ [0.01031 . . . , 0.49629 . . .]

for all n − m ∈ [3, 161] ∩ Z with n − m 6= 4. We conclude by Lemma 4.4.2 that inequality

(4.20) has no solution for

n = w ≥ log(Aq39/ε)

logB
≥ log(Aq39/0.01)

logB
= 103.2442

with n−m 6= 4. Since we assume that a solution has n > 200, we have reached a contradiction.

The only possible remaining solutions occur when n−m = 4, in which case

11a = Fn − Fm = Fm+4 − Fm = Fm+3 + Fm+2 − Fm = Fm+3 + Fm+1 = Lm+2

by the well-known identity F`+1 + F`−1 = L`. By Theorem 4.4.3, this is impossible.

Remark 4.5.1. We note that the bounds for n and m provided by Theorem 4.3.1 also give

bounds for the Fibonacci numbers Fn and Fm by inequality (4.12).

4.6 Solutions to Fn − Fm = ya for y ∈ {6, 12}

Proof of Theorem 4.3.1. Assume that equation (4.3) holds. By inequality (4.12), we obtain

6a = Fn − Fm < Fn < αn−1 < 6n−1 . (4.21)

This shows that a < n− 1.

If n−m = 1, then Fm−1 = 6a. By Theorem 4.4.3, we have solutions (3, 2, 0) and (4, 3, 0). If

n−m = 2, then Fm+1 = 6a, and by Theorem 4.4.3 we have (2, 0, 0) and (3, 1, 0). Assume that

m ≥ 1 and n−m ≥ 3. For 1 ≤ m < n ≤ 200, a direct computation in Maple shows that the

only solution is (6, 3, 1).

Assume then that n > 200, m ≥ 1, and n−m ≥ 3. Equation (4.12) can be rewritten as

αn√
5
− 6a = Fm +

αn√
5

to yield ∣∣∣∣ αn√5
− 6a

∣∣∣∣ =

∣∣∣∣Fm +
αn√

5

∣∣∣∣ ≤ Fm +
|α|n√

5
< αm +

1

2
.

We obtain∣∣1− 6aα−n
√

5
∣∣ < √5αm−n +

√
5

2
α−n =

√
5αm−n

(
1 +

α−m

2

)
<

4

αn−m
. (4.22)
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We apply Theorem 4.4.1, setting γ1 := 6, γ2 := α, γ3 :=
√

5, b1 := a, b2 := −n, and b3 := 1.

Since the γi are all positive real numbers lying in the �eld K = Q(
√

5), we have D = 2. De�ne

Λ1 := 6aα−n
√

5− 1 .

Then Λ1 6= 0, else α2n = 5 · 62a ∈ Q, which is impossible as α2n is irrational. Since h(γ1) =

log 6 = 1.791759 . . ., we take A1 := 3.6. Since

h(γ2) =
logα

2
=

0.4812 . . .

2

and

h(γ3) = log
√

5 = 0.8047 . . .

we can take A2 := 0.5 and A3 := 1.7. From a < n− 1, we deduce that

B := max{|b1|, |b2|, |b3|} = max{a, n, 1} = n .

Inequality (4.22) and Theorem 4.4.1 together imply that

4

αn−m
> |Λ1| > exp

(
− 1.4 · 306 · 34.5 · 22 · (1 + log 2)(1 + log n)(3.6)(0.5)(1.7)

)
.

We obtain

(n−m) logα− log 4 < 2.96741 · 1012(1 + log n) . (4.23)

We again rewrite equation (4.3):

αn√
5
− αm√

5
− 6a =

αn√
5
− αm√

5
.

Since |α|n + |α|m < 2/3 for all n > 200, we obtain∣∣∣∣αn(1− αm−n)√
5

− 6a
∣∣∣∣ =
|α|n + |α|m√

5
<

1

3

which yields ∣∣∣1− 6aα−n
√

5(1− αm−n)−1
∣∣∣ < √5α−n(1− αm−n)−1

3
.

That 1− αm−n > 1/3 follows immediately from

αm−n =
1

αn−m
<

1

α
<

2

3
,

which in turn implies that (1− αm−n)−1 < 3. Then∣∣∣1− 6aα−n
√

5(1− αm−n)−1
∣∣∣ < √5

αn
. (4.24)

We apply Theorem 4.4.1 once again. Take γ1 := 6, γ2 := α, γ3 :=
√

5(1 − αm−n)−1, b1 := a,

b2 := −n, and b3 := 1. The positive real numbers γ1, γ2, and γ3 lie in K = Q(
√

5), so we have

D = 2. Set

Λ2 := 6aα−n
√

5(1− αm−n)−1 − 1 .
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Then Λ2 6= 0, else αm = αn, which is impossible as n > m by assumption. Since

h(γ1) = log 6 = 1.79175 . . .

and

h(γ2) =
logα

2
=

0.4812 . . .

2
,

we take A1 := 3.6 and A2 := 0.5. Since

h(γ3) ≤ log 2
√

5 + (n−m)
logα

2

by equations (4.8), (4.9), and (4.10), one can show that | log γ3| < log 5 + (n −m) logα. As

such, we take A3 := log 20 + (n − m) logα. It follows again that B := n, since a < n − 1.

From inequality (4.24), we then obtain

√
5

αn
> |Λ2| > exp

(
− 1.4 · 306 · 34.5 · 22 · (1 + log 2)(1 + log n)(3.6)(0.5)

(
log 20 + (n−m) logα

))
or

n logα− log
√

5 < 1.74554 · 1012(1 + log n)
(

log 20 + (n−m) logα
)
. (4.25)

We can now substitute inequality (4.23) into the above to obtain

n logα− log
√

5 < 1.74554 · 1012(1 + log n)
(

log 20 + 2.96741 · 1012(1 + log n) + log 4
)
(4.26)

or

n < 1.076394 · 1025 + 2.152788 · 1025 log n+ 1.076394 · 1025(log n)2 .

Then

n < 4.305575 · 1025(log n)2 .

A quick computation with Maple yields n < 1.9587 · 1029.

Let

z1 := a log 6− n logα+ log
√

5 .

Then

|1− ez1 | < 4

αn−m

by inequality (4.22). The inequality

αn√
5

= Fn +
αn√

5
> Fn − 1 ≥ Fn − Fm = 6a

implies that 6a
√

5α−n < 1, so that z1 < 0. Since 4α−(n−m) < 0.95 for n −m ≥ 3, it follows

that e|z1| < 20. Since x < ex − 1 for positive x, we have

0 < |z1| < e|z1| − 1 = e|z1||1− ez−1| < 80α−(n−m) ,
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or

0 <

∣∣∣∣∣n− a
(

log 6

logα

)
+

log
√

5

logα

∣∣∣∣∣ < 80

logα
α−(n−m) ≤ 166.3α−(n−m) . (4.27)

We now look to apply Lemma 4.4.2: set γ := log 6/ logα 6∈ Q, µ := log
√

5/ logα, A := 166.3,

B := α, and w := n−m. Let M := 1.9587 · 1029. The denominator of the 57th convergent of

γ, q57, exceeds 6M , and

ε := ‖µq57‖ −M‖γq57‖ = 0.01556 . . . > 0 .

Thus, inequality (4.27) has no solution for

n−m ≥ log(Aq57/ε)

logB
= 163.6257 . . . .

We obtain n−m ≤ 163, which we now substitute into inequality (4.25) yielding

n < 2.9539 · 1014(1 + log n),

which in turn yields n < 1.1212 · 1016.

We apply Lemma 4.4.2 again, now to reduce the bound for n. Let

z2 := a log 6− n logα+ log
(√

5(1− αm−n)−1
)
.

By inequality (4.24),

|1− ez2 | <
√

5

αn
< 3α−n .

If z2 > 0, then 0 < z2 < ez2 − 1 <
√

5α−n < 1/2, so that e|z2| = ez2 < 1/2 < 2. If z2 < 0,

then |1 − ez2 | = 1 − ez2 <
√

5α−n < 1/2, which implies ez2 > 1/2 so that e|z2| = e−z2 < 2.

Altogether,

0 < |z2| < e|z2| − 1 = e|z2||1− ez2 | < 6α−n .

From 0 < |z2| < 6α−n, we obtain

0 <

∣∣∣∣∣a
(

log 6

logα

)
− n+

log
(√

5(1− αm−n)−1
)

logα

∣∣∣∣∣ < 6

logα
α−n ≤ 13α−n . (4.28)

Set γ := log 6/ logα,

µn−m :=
log
(√

5(1− α−(n−m))−1
)

logα
,

A := 13, B := α, w := n, and M := 1.4883 · 1016. The denominator of the 35th convergent of

γ, q35, exceeds 6M , and

ε := ‖µn−mq35‖ −M‖γq35‖ ∈ [0.002787 . . . , 0.491883 . . .]

43



for all n − m ∈ [3, 163] ∩ Z with n − m 6= 4. We conclude by Lemma 4.4.2 that inequality

(4.28) has no solution for

n = w ≥ log(Aq35/ε)

logB
≥ log(Aq35/0.00278)

logB
= 102.5494 . . .

with n−m 6= 4. Since we assume here that n > 200, we conclude that there are no solutions

when n−m 6= 4. The remaining case yields

6a = Fn − Fm = Fm+4 − Fm = Fm+3 + Fm+2 − Fm = Fm+3 + Fm+1 = Lm+2

by the well-known identity F`+1 + F`−1 = L`. By Theorem 4.4.3, this is impossible.

Proof of theorem 4.3.3. The same method used to prove Theorems 4.3.1 and 4.3.2 can be used

to show this result. Since the proof follows with only some slight di�erences in computation,

we simply detail these di�erences here. If n −m = 1, then Fm−1 = 12a. By Theorem 4.4.3,

we have solutions (3, 2, 0), (4, 3, 0), and (14, 13, 2). If n −m = 2, then Fm+1 = 12a, and by

Theorem 4.4.3 we have (2, 0, 0), (3, 1, 0), and (13, 11, 2). Assume that m ≥ 1 and n−m ≥ 3.

For 1 ≤ m < n ≤ 200, a direct computation in Maple shows that the only solutions are (7, 1, 1)

and (7, 2, 1).

Assume then that n > 200, m ≥ 1, and n−m ≥ 3. Proceeding as in the previous section, the

�rst application of Theorem 4.4.1 yields

(n−m) logα− log 4 < 4.12141 · 1012(1 + log n) .

The second application yields

n < 1.494987 · 1025 + 2.989974 · 1025 log n+ 1.494987 · 1025(log n)2 .

Then

n < 5.979947 · 1025(log n)2 .

A quick computation with Maple gives n < 2.74773 · 1029. Continuing , the �rst application

of Lemma 4.4.2 yields

q64 > 6M, ε = 0.3193598 . . . > 0 ,

so there is no solution for

n−m ≥ 161.6677955 . . . .

Then n−m ≤ 161. By substitution, this bound for n−m gives

n < 4.05415 · 1014(1 + log n) ,

and Maple then gives n < 1.551963 · 1016. The second application of Lemma 4.4.2 yields

q40 > 6M and ε ∈ [0.0066 . . . , 0.4930 . . .] for all n−m ∈ [3, 161]∩Z with n−m 6= 4, 24. Then
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there is no solution for n ≥ 103.506. Again, there is no solution for n −m = 4, so only the

case n−m = 24 remains. In this �nal case, we have 12a = Fn−Fm = F12Lm+12 = 144Lm+12

by Lemma 4.4.4. Since 12a−2 = Lm+12 cannot be satis�ed for a ≥ 2 and non-negative m, this

case is impossible.

4.7 On the solutions to Fn + Fm = ya for �xed y

We �rst prove the following lemma:

Lemma 4.7.1. Let t > 0, and set ε := 1 − 2 log(log t)
log t . If t1/ε > ee, then there are no positive

integers n such that t1/ε ≤ n < t(log n)2.

Proof. Consider the real-valued function

g(x) := 1− 2
log(log x)

log x

of the real variable x. It is straightforward to show that g′ > 0 when log(log x) > 1, that is,

x > ee. If t > ee, then t1/ε > t > ee, and it follows that ε = g(t) < g(x) for x > t. From this,

we obtain log
(
(log x)2

)
< (1− ε) log x or (log x)2 < x1−ε for all x > t. The assumption that

t1/ε ≤ n < t(log n)2 leads to

n < t(log n)2 < tn1−ε ,

implying that nε < t, which is a contradiction.

Proof of Theorem 4.3.4. Assume that equation (4.6) holds. We may assume without loss of

generality that m ≤ n. If n = m, we obtain ya = Fn + Fm = 2Fn. Solving this equation is

equivalent to solving Fn = 2a−1wa, and the result follows by Theorem 4.4.5. We may now

assume that m < n. By inequality (4.12), we obtain

ya = Fn + Fm ≤ Fn + Fn−1 = Fn+1 < αn < yn . (4.29)

This shows that a < n.

If n − m = 1, then Fm−1 = ya. By Theorem 4.4.3, we have n ≤ 12. If n − m = 2, then

Fm+1 = ya, and by Theorem 4.4.3 we again have n ≤ 12.

Assume that m ≥ 1 and n−m ≥ 3. Equation (4.6) can be rewritten as

αn√
5
− ya =

αn√
5
− Fm

to yield ∣∣∣∣ αn√5
− ya

∣∣∣∣ =

∣∣∣∣ αn√5
− Fm

∣∣∣∣ ≤ Fm +
|α|n√

5
< αm +

1

2
.
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We obtain∣∣1− yaα−n√5
∣∣ < √5αm−n +

√
5

2
α−n =

√
5αm−n

(
1 +

α−m

2

)
<

4

αn−m
. (4.30)

We apply Theorem 4.4.1, setting γ1 := y, γ2 := α, γ3 :=
√

5, b1 := a, b2 := −n, and b3 := 1.

Since the γi are all positive real numbers lying in the �eld K = Q(
√

5), we have D = 2. De�ne

Λ1 := yaα−n
√

5− 1 .

Then Λ1 6= 0, else α2n = 5 · y2a ∈ Q, which is impossible as α2n is irrational. Since h(γ1) =

log y, we take A1 := 2 log y. Since

h(γ2) =
logα

2
=

0.4812 . . .

2

and

h(γ3) = log
√

5 = 0.8047 . . .

we can take A2 := 0.5 and A3 := 1.7. From a < n, we deduce that

B := max{|b1|, |b2|, |b3|} = max{a, n, 1} = n .

Inequality (4.30) and Theorem 4.4.1 together imply that

4

αn−m
> |Λ1| > exp

(
− 1.4 · 306 · 34.5 · 22 · (1 + log 2)(1 + log n)(2 log y)(0.5)(1.7)

)
.

Set C := 1.4 · 306 · 34.5 · 22 · (1 + log 2). We obtain

(n−m) logα− log 4 < 1.7C(log y)(1 + log n) . (4.31)

We again rewrite equation (4.6):

αn√
5

+
αm√

5
− ya =

αn√
5

+
αm√

5
.

Since |α|n + |α|m ≤ |α|4 + |α| < 1, we obtain∣∣∣∣αn(1 + αm−n)√
5

− ya
∣∣∣∣ ≤ |α|n + |α|m√

5
<

1√
5

which yields ∣∣∣1− yaα−n√5(1 + αm−n)−1
∣∣∣ < α−n(1 + αm−n)−1 .

It follows immediately from αm−n > 0 that 1 + αm−n > 1, which in turn implies that (1 −
αm−n)−1 < 1. Then ∣∣∣1− yaα−n√5(1 + αm−n)−1

∣∣∣ < 1

αn
. (4.32)

We apply Theorem 4.4.1 once again. Take γ1 := y, γ2 := α, γ3 :=
√

5(1 + αm−n)−1, b1 := a,

b2 := −n, and b3 := 1. The positive real numbers γ1, γ2, and γ3 lie in K = Q(
√

5), so we have

D = 2. Set

Λ2 := yaα−n
√

5(1 + αm−n)−1 − 1 .
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Then Λ2 6= 0, else |α|m = |α|n, which is impossible as n > m by assumption. Since

h(γ1) = log y

and

h(γ2) =
logα

2
=

0.4812 . . .

2
,

we take A1 := 2 log y and A2 := 0.5. Since

h(γ3) ≤ log 2
√

5 + (n−m)
logα

2

by equations (4.8), (4.9), and (4.10), one can show that | log γ3| < log 5 + (n −m) logα. As

such, we take A3 := log 20 + (n −m) logα. It follows again that B := n, since a < n. From

inequality (4.32), we then obtain

1

αn
> |Λ2| > exp

(
− C(1 + log n)(2 log y)(0.5)

(
log 20 + (n−m) logα

))
or

n logα < C(log y)(1 + log n)
(

log 20 + (n−m) logα
)
. (4.33)

We can now substitute inequality (4.31) into the above to obtain

n logα < C(log y)(1 + log n)
(

log 20 + 1.7C(log y)(1 + log n) + log 4
)
. (4.34)

With the inequality 1 ≤ log n ≤ (log n)2, we then have

n ≤ 6.8C2(log y)2 + (2C log 20 + 4C log 2)(log y)

logα
(log n)2 .

Setting

t :=
6.8C2(log y)2 + (2C log 20 + 4C log 2)(log y)

logα
,

application of Lemma 4.7.1 implies that

n < t
log t

log t−2 log(log t) ,

since t > ee.

Remark 4.7.2. We note that the bounds for n and m provided by Theorems 4.3.1 4.3.2, 4.3.3,

and 4.3.4 also give corresponding bounds for the Fibonacci numbers Fn and Fm by inequality

(4.12).

Remark 4.7.3. Based on the results from completely solving the listed equations in non-

negative integers (n,m, a), it seems reasonable to extend the conjecture of Erduvan and Keskin

to composite y 6= 12 as well.
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Chapter 5

A New Proof of the Carlitz-Lutz

Theorem

5.1 Résumé

On améliore le résultat de Carlitz et Lutz, présentant des conditions su�santes et nécessaires

qu'un polynôme soit polynôme de permutation.

5.2 Abstract

We re�ne the result of Carlitz and Lutz, providing necessary and su�cient conditions for a

polynomial to be a permutation polynomial.

5.3 Introduction

Let Fq be the �nite �eld of q elements. A polynomial f(x) ∈ Fq[x] is said to be a permutation

polynomial if the induced map from Fq to Fq is bijective. Permutation polynomials form an

active area of research, and one can �nd many open problems and conjectures relating to them

(see [4] for many such examples).

Denote the unique representative of f(x) modulo xq − x with degree less than q by f(x). The

most well-known criterion for classifying permutation polynomials is described by Hermite's

criterion (see page 59 of [3]):

Theorem 5.3.1. Let f(x) ∈ Fq[x]. Then f(x) is a permutation polynomial if and only if

(i) deg f(x)` ≤ q − 2 for 1 ≤ ` ≤ q − 2;

(ii) f(x) has a unique root in Fq.
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Ayad, Belghaba, and Kihel [1] improved this criterion for binomials axn+xm, showing that one

need only check those ` in (i) that are divisible by gcd(n−m, q−1). Carlitz and Lutz [2] gave

a variant of the Hermite-Dickson theorem, providing su�cient conditions for a polynomial to

be a permutation polynomial:

Theorem 5.3.2. Let f(x) ∈ Fq[x]. Suppose that

(i) deg f(x)` ≤ q − 2 for 1 ≤ ` ≤ q − 2;

(ii) deg f(x)q−1 = q − 1.

Then f(x) is a permutation polynomial.

In this paper, we re�ne Theorem 5.3.2, proving the following result:

Theorem 5.3.3. Let f(x) ∈ Fq[x]. Then the following conditions are equivalent:

(i) deg f(x)` ≤ q − 2 for 1 ≤ ` ≤ q − 2, and deg f(x)q−1 = q − 1.

(ii) deg f(x)` ≤ q− 2 for each 1 ≤ ` ≤ q− 2 relatively prime to char(Fq), and deg f(x)q−1 =

q − 1.

(iii) f(x) is a permutation polynomial.

5.3.1 Preliminary Results

Let x1, . . . , xn be n variables. For each k ∈ {1, . . . , n}, let

sk(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n
xi1 · · ·xik

be the elementary symmetric polynomial of degree k in n variables, and let

σk(x1, . . . , xn) =
n∑
i=1

xki

be the power sum symmetric polynomial of degree k in n variables, with the conventional

de�nition σ0(x1, . . . , xn) = n. The polynomials sk and σk satisfy the relation

σk − s1σk−1 + · · ·+ (−1)kksk = 0 for 1 ≤ k ≤ n, (5.1)

the validity of which is demonstrated in [6].

A polynomial f(x) ∈ Fq[x] is a permutation polynomial if and only if f(Fq) = Fq, which is

equivalent to ∏
c∈Fq

(
x− f(c)

)
=
∏
c∈Fq

(
x− c

)
= xq − x. (5.2)
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Let c1, . . . , cq be the distinct elements of Fq. By expanding the left-hand side of equation 5.2

and identifying its coe�cients with those of xq − x, we deduce that f(x) is a permutation

polynomial if and only if

sk
(
f(c1), . . . , f(cq)

)
= 0

for each k ∈ {1, . . . , q − 2} and

sq−1
(
f(c1), . . . , f(cq)

)
= −1.

Consider any map τ : Fq → Fq. There exists a unique polynomial g(x) ∈ Fq[x] of degree less

than q such that g(c) = τ(c) for all c ∈ Fq, and the well-known formula [5]

g(x) =
∑
c∈Fq

(
1− (x− c)q−1

)
τ(c)

provides an expression for g(x). This expression implies that deg g ≤ q − 2 if and only if∑
c∈Fq

τ(c) =
∑
c∈Fq

g(c) = 0.

5.4 Proof of Theorem 5.3.3

Proof of Theorem 5.3.3. The implication (i)⇒ (ii) is clear.

To prove the implication (ii) ⇒ (iii), let p = char(Fq), and suppose that deg f(x)` ≤ q − 2

for each ` ∈ {1, . . . , q − 2} such that gcd(p, `) = 1 and deg f(x)q−1 = q − 1. Set a :=

σq−1
(
f(c1), . . . , f(cq)

)
. Then a 6= 0, and

σ`
(
f(c1), . . . , f(cq)

)
= 0 (5.3)

for each ` ∈ {1, . . . , q − 2} not divisible by p. We show that

s`
(
f(c1), . . . , f(cq)

)
= σ`

(
f(c1), . . . , f(cq)

)
(5.4)

for all ` ∈ {1, . . . , q − 1} not divisible by p.

The statement is clear for ` = 1, so let e ∈ {2, . . . , q− 1} be such that p does not divide e and

assume that equation 5.4 holds for all ` ∈ {1, . . . , e − 1} such that p does not divide `. We

write equation 5.1 in the form

σe
(
f(c1), . . . , f(cq)

)
+
∑

(−1)usu
(
f(c1), . . . , f(cq)

)
σv
(
f(c1), . . . , f(cq)

)
+ (−1)eese

(
f(cq), . . . , f(cq)

)
= 0 (5.5)

where the sum runs over all pairs (u, v) such that u+ v = e and u, v ∈ {1, . . . , e− 1}. Letting
(u, v) be any such pair, if p does not divide u, then su

(
f(c1), . . . , f(cq)

)
= 0 by hypothesis. If
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p does divide u, then p does not divide v, so that σv
(
f(c1), . . . , f(cq)

)
= 0. Equation (5.5) is

then reduced to

σe
(
f(c1), . . . , f(cq)

)
= (−1)e+1ese

(
f(c1), . . . , f(cq)

)
,

and equation 5.3 implies that

se
(
f(c1), . . . , f(cq)

)
= σe

(
f(cq), . . . , f(cq)

)
= 0

for each e ∈ {2, . . . , q − 2} not divisible by p and

sq−1
(
f(c1), . . . , f(cq)

)
= σq−1

(
f(c1), . . . , f(cq)

)
= a.

Let

h(x) =
∏
c∈Fq

(
x− f(c)

)
.

Expanding h(x) yields an expression of the form

h(x) = xq + ax+
∑
p|i

aix
i,

from which it is apparent that h′(x) = a 6= 0. Thus, h(x) is separable, implying that f(x) is

a permutation polynomial.

To prove the implication (iii)⇒ (i), we suppose that f(x) is a permutation polynomial. Then

s`
(
f(c1), . . . , f(cq)

)
= 0

for ` ∈ {1, . . . , q−2} and sq−1
(
f(c1), . . . , f(cq)

)
= −1. Equation 5.1 immediately implies that

σ`
(
f(c1), . . . , f(cq)

)
= 0

for ` ∈ {1, . . . , q − 2} and σq−1
(
f(c1), . . . , f(cq)

)
= −1. It follows that∑

c∈Fq

f(c)` = 0

for ` ∈ {1, . . . , q − 2} and ∑
c∈Fq

f(c)q−1 = −1.

Therefore, deg f(x)` ≤ q − 2 for ` ∈ {1, . . . , q − 2} and deg f(x)q−1 = q − 1.

We state and prove an immediate consequence of Theorem 5.3.3:

Corollary 5.4.1. Let f(x) ∈ Fq[x]. Then the following are equivalent:
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(i) f(x) is a permutation polynomial.

(ii) For any polynomial u(x) ∈ Fq[x], deg u(x) = q − 1 if and only if deg u
(
f(x)

)
= q − 1.

Proof. Suppose that f(x) is a permutation polynomial, and let u(x) ∈ Fq[x] be such that

deg u(x) = q − 1. By Theorem 5.3.3, we then have deg u
(
f(x)

)
= q − 1.

Conversely, let ui(x) = xi for each i ∈ {1, . . . , q − 1}. Then ui
(
f(x)

)
= f(x)i. By Theorem

5.3.3, we have deg ui
(
f(x)

)
= q − 1 if and only if i = q − 1. Therefore, f(x) is a permutation

polynomial.

5.5 Concluding Remarks

The theorems presented can be interpreted as properties of the composition on the left of f(x)

with each of the basis elements {xi | i = 0, . . . , q − 1} of the Fq-vector space Fq[x]/(xq − x).

Changing this basis to another will allow one to prove similar results.

Remark 5.5.1. Let f(x) be a permutation polynomial over Fq, and consider the map ϕ :

{1, . . . , q− 1} → {1, . . . , q− 1} given by ϕ(e) = deg f(x)e. Theorem 5.3.3 shows that ϕ−1(q−
1) = {q − 1}.

In the particular case f(x) = xn, where n is an integer relatively prime to q − 1, f(x) is a

permutation polynomial ([5]), and it is straightforward to show that the corresponding map ϕ

is injective; however, this is not always the case. For example, suppose that q = pr for an odd

prime p, and let f(x) = axq−2 + b with a, b ∈ F∗q. One can verify that ϕ(1) = ϕ(2) = ϕ(3) =

q − 2.

Remark 5.5.2. If d > 1 is a divisor of q − 1, then there is no permutation polynomial over

Fq of degree d ([5]). This introduces the following problem: for each k ∈ {1, . . . , q − 2}, let ak
be an element of {1, . . . , q − 2} such that ak does not divide q − 1 whenever gcd(k, q − 1) = 1.

Does there exist a permutation polynomial f(x) ∈ Fq[x] such that the corresponding map ϕ

satis�es ϕ(k) = ak for each k ∈ {1, . . . , q − 2} and ϕ(q − 1) = q − 1?
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Chapter 6

Prime polynomials over Finite Fields

6.1 Résumé

On étudie la possibilité d'écrire une fonction rationelle comme la composition de deux fonctions

de degrés inférieurs. Les résultats sont directement in�uencés par ceux d'Ayad et utilisent des

outils généralisés pour nos besoins, tel que le résultant.

6.2 Abstract

We discuss the possibility of decomposing a rational function over a �eld K into others of

smaller degree. The work is motivated by the results of Ayad and follows by employing similar

tools and techniques such as the resultant, which is appropriately generalized to two rational

functions for our purposes.

6.3 Introduction

A polynomial which can be written as a composition of polynomials of lesser degree are called

composite, while those polynomials which admit no such decomposition other than trivial ones

are called prime, where a trivial decomposition is one in which one of the two decomposition

factors is necessarily linear. The problem of decomposing a polynomial f into indecomposables

was studied extensively by Ritt [4]. Ritt's polynomial decomposition theorem states that if

g1 ◦ · · · ◦ gm = f = h1 ◦ · · · ◦ hn

are two decompositions of f into prime polynomials, then m = n and the degrees of the

components are identical but possibly in di�erent order. This shows that the set of degrees of

the composition factors of f are uniquely determined by f .

Following this, Beardon [2] proved that the vector of degrees determines the composition

factors uniquely. He further showed that the critical values of a complex polynomial f play a
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role in its decomposition, where the critical values of f are the images under f of its critical

points. Ayad later elaborated on this idea [1]. He provided some classes of prime polynomials,

and also provides an algorithm for decomposing a composite polynomial using the valencies

of its critical values.

We note that knowledge of a polynomial's decomposition can signi�cantly reduce the number

of computational steps needed to �nd its roots or to evaluate it. This technique is widely used

in many computer algebra systems. The study of prime polynomials in this regard identi�es

those polynomials which are problematic with respect to this desired simpli�cation.

We note a di�erence in nonzero characteristic when considering Beardon's result on the vector

of degrees. Ritt provided a list of the only three cases wherein two polynomials in C[x]

commute with respect to composition. Beardon's result then states that over C, if one �xes
the degree of the composition factor h in f = g ◦ h, then h is uniquely determined up to

composition with linear factors. In nonzero characteristic, this general statement immediately

fails, as demonstrated by the simple example polynomial f = xp
2
+x2p, which can be expressed

as the compositions

(xp + x2) ◦ xp and xp ◦ (xp + x2) .

The polynomials here do not �t among the three cases set by Ritt's result. From this, we can

conclude that not all results pertaining to the characteristic zero case will seamlessly convert

to higher characteristic cases. One might then question which results do in fact hold.

Throughout the article, we present many results which parallel those of Ayad on polynomials

over C under the assumption that the degree of the polynomial or rational function being

considered is not zero in the �eld K, that is, if the characteristic of K does not divide the

degree of the rational function. This provides some criteria to check if a rational function is

prime.

In light of the example xp
2

+ x2p and the results contained in the article, we conjecture here

that this behaviour holds in general. In particular, it seems that the new and more interesting

possibilities for decomposition arise when certain quantities such as the degree of a given

polynomial over K or its valencies are divisible by the characteristic of the �eld K. This

would be an obvious path for further research.

The aim of this paper is to study when a polynomial or rational expression over a �eld can

be expressed as a composition of two polynomials or rational expressions respectively, with a

particular focus on when the underlying �eld is �nite. In section 6.4, we brie�y discuss the

decomposition of functions over a �nite �eld. In section 6.5, we de�ne and consider prime and

composite rational expressions over a �eld K.
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6.4 Functions over Fq

Let q be a power of a prime, and denote by Fq the �nite �eld of q elements. Any function

ϕ : Fq → Fq is equivalent to a polynomial function. Thus, the set of all functions over Fq can
be described exactly as

A = Fq[x]/(xq − x).

The units of A with respect to function composition are called the permutation polynomials

of Fq.

Theorem 6.4.1. Let ϕ = α ◦ β, where ϕ, α, β ∈ A. Then ϕ is a permutation polynomial if

and only if both α and β are permutation polynomials.

Proof. If both α and β are permutation polynomials, then so is ϕ. Suppose that ϕ is a

permutation polynomial. Then

|Fq| = |ϕ(Fq)| = |α
(
β(Fq)

)
| ≤ |β(Fq)| ≤ |Fq|

from which we obtain |β(Fq)| = |Fq|. Since β(Fq) ⊆ Fq, it follows that β(Fq) = Fq, so that β

is a permutation polynomial. It immediately follows that α = ϕ ◦ β−1 is also a permutation

polynomial.

De�nition 6.4.2. Let ϕ ∈ A. We say that ϕ is a zero factor if there exists ψ ∈ A \ {0} such
that ψ ◦ ϕ = 0.

Theorem 6.4.3. Every ϕ ∈ A is either a permutation polynomial or a zero factor.

Proof. De�ne the map Cϕ : A → A by ψ 7→ ψ ◦ ϕ. If Cϕ is injective, then it is surjective as

well, since A is �nite. Thus, there exists ψ ∈ A such that (ψ ◦ ϕ)(x) = x ∈ A. If Cϕ is not

injective, there exist distinct α, β ∈ A such that α ◦ ϕ = β ◦ ϕ. Setting ψ = α − β yields

ψ ◦ ϕ = α ◦ ϕ− β ◦ ϕ = 0.

To consider a meaningful notion of irreducibility, one usually treats units as trivial cases, so

here we deal with the zero factors of A. Let ϕ ∈ A be a zero factor. There exists ψ ∈ A \ {0}
such that ψ ◦ ϕ = 0. Then (ψ + x) ◦ ϕ = ϕ is a non-trivial decomposition of ϕ as ψ + x 6= x.

In this sense, every function over Fq is either a permutation polynomial or is a composition of

polynomial functions.

6.5 Decomposition over K

There are results regarding the decomposition of polynomials and rational expressions into

indecomposables, which have been referred to as prime polynomials and prime rational expres-

sions. In this section, we discuss indecomposability of polynomials and rational expressions
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through their valencies, which we will de�ne shortly. Ayad [1] studied this problem using

valencies for polynomials over C, and Kihel and Larone [3] later considered some rational

expressions over C.

Throughout, let R be an integral domain, K its �eld of fractions, and K an algebraic closure of

K. For any rational expression f ∈ R(X)\{0}, we de�ne as usual deg f = max{deg f1,deg f2}
where f = f1/f2 with f1, f2 ∈ R[X] such that gcd(f1, f2) = 1. The following result regarding

the degree of a composition can be found in [3]:

Theorem 6.5.1. Let g, h ∈ K(X). Then deg g ◦ h = deg g · deg h.

It is straightforward to show that the rational expressions of degree 1 form the group of units

under the operation of composition. This immediately justi�es the following de�nitions of

prime and composite rational expressions, as well as provide a simple class of prime rational

expressions:

De�nition 6.5.2. Let f ∈ R(X). If f = g ◦ h for some g, h ∈ L(X) with degrees at least 2,

then f is said composite over the �eld L/K. Otherwise, f is said to be prime over L.

Corollary 6.5.3. Let f ∈ R(X). If deg f is a prime number, then f is prime over K.

The result follows immediately from Theorem 6.5.1 and the fact that a rational expression of

degree 1 is a unit with respect to composition.

A classical result of Ritt [4] states that, over C, given two decompositions f = g1 ◦ · · · ◦ gm
and f = h1 ◦ · · · ◦ hn of a polynomial in C[X] into prime polynomials, we must have m = n.

Moreover, the degrees of these prime polynomials are the same up to permutation. He also

showed that the equation f1 ◦ f2 = g1 ◦ g2 in prime polynomials f1, f2, g1, g2 ∈ C[X], up to

composition with linear factors, has only the solutions

f1 ◦ f2 = f1 ◦ f2,

Xn ◦Xsh(Xn) = Xsh(X)n ◦Xn,

Tn ◦ Tm = Tm ◦ Tn,

where h ∈ C[X], m,n, s ∈ N, and Tn the Chebyshev polynomial. Beardon [2] showed further

that, if one �xes the degree of the composition factor h in the decomposition f = g ◦ h, then
h is uniquely determined up to composition with linear polynomials. This is not necessarily

the case in non-zero characteristic, as shown immediately by the example

f = Xp2 +X2p

over a �eld of characteristic p. Indeed, we then have

(Xp +X2) ◦Xp = Xp ◦ (Xp +X2)
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which are two distinct decompositions into prime polynomials.

We recall the de�nition of valency used by Ayad:

De�nition 6.5.4. Let a ∈ C and f ∈ C[X]. The smallest integer i ≥ 1 such that f (i)(a) 6= 0

is called the valency of f at a and is denoted by vf (a). If vf (a) ≥ 2, a is called a critical point

of f . An element b ∈ C is called a critical value of f if there exists a critical point a of f such

that f(a) = b.

Under this de�nition, he proved the following result among many others:

Theorem 6.5.5. Let f ∈ C[X], and let d be the greatest divisor of deg f . If vf (a) is a prime

number p > d, then f is prime.

This theorem was proved using a relationship between the valencies of f and the degree of

its derivative. For completion, we include a general form of this same relationship over the

integral domain R.

Lemma 6.5.6. Let f ∈ R[X]. Then

deg f − 1 ≥
∑
a∈K

(
vf (a)− 1

)
.

If deg f is non-zero in R, then deg f − 1 is equal to the sum on the right.

Proof. The only values vf (a)−1 that contribute to the above sum are those which are at least

1, that is, vf (a) ≥ 2. In particular, vf (a) − 1 counts the multiplicity of a as a root of f ′, so

the sum cannot exceed the degree of f ′ which is itself less than or equal to deg f − 1.

If deg f is non-zero in R, then either char(R) = 0 or gcd(deg f, char(R)) = 1. In either case,

deg f ′ = deg f − 1, so the sum of the multiplicities of the roots of f ′ is exactly deg f − 1, and

the sum of vf (a)− 1 over all x ∈ K must equal deg f ′ = deg f − 1.

We can re�ne Theorem 6.5.5 by extending the de�nition of valency to rational expressions.

As it stands, the notion of valency is related to the valuation of a Puiseux series and to the

annihilation degree of a rational function at a point.

Lemma 6.5.7. Let f ∈ R[X], and let a ∈ K. Then vf (a) is the smallest integer i such that

the coe�cient ai of the series expansion

f(X)− f(a) =

deg f∑
j=0

aj(X − a)j

of f − f(a) about a is non-zero.
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Proof. Let ν be the smallest integer as described in the statement of the lemma. Then

f(X)− f(a) =

deg f∑
j=ν

aj(X − a)j .

We �rst note that ν > 0: if we suppose that ν = 0, then f(X) − f(a) evaluated at X = a

yields 0 = f(a)− f(a) = a0 = aν , which contradicts the de�nition of ν. Then f (i)(a) = 0 for

all 0 ≤ i ≤ ν − 1, and f (ν)(a) = ν!aν 6= 0. Thus, vf (a) = ν.

Given f ∈ R(X) and a ∈ K, there is a unique cf (a) ∈ K such that f − cf (a) has a zero or

pole at a. In particular, cf (a) = 0 if a is a pole of f , and cf (a) = f(a) otherwise.

De�nition 6.5.8. Let f ∈ R(X) and a ∈ K. We de�ne the valency of f at a, denoted vf (a),

as the smallest integer i such that the coe�cient ai of the series expansion of f − cf (a) about

a is non-zero.

We call a ∈ K with vf (a) 6= 0 a critical point of f . If vf (a) > 1, then a is not a pole of f , and

we call f(a) a critical value of f .

With this de�nition of valency, a relationship similar to that of Lemma 6.5.6 holds. The

relationship lies between the valencies and the quantity described in the following de�nition:

De�nition 6.5.9. Let f ∈ R(X) \ 0 with f = f1/f2. We de�ne

deg∗ f = deg f1 − deg f2 .

We note that this quantity remains unchanged when simplifying the ratio f1/f2. Theorem

6.5.1 states that the map deg :
(
K[X] \ {0}, ◦

)
→
(
Z, ·
)
is a homomorphism of monoids.

The map deg∗ : K(X) \ {0} → Z is not strictly a homomorphism, but it behaves rather

similarly to one. First, if f = g ◦ h, then there exists a decomposition f = G ◦ H such

that deg∗H > 0. Indeed, if deg∗ h ≤ 0, writing h = h1/h2 and dividing h1 by h2 in K[X]

yields a ∈ K and r ∈ K[x] with h1 = ah2 + r, and either r = 0 or deg r < deg h2. Then

h = h1/h2 = a+r/h2, and we de�ne µ(x) = 1/(x−a). This yields f = (g◦µ−1)◦(µ◦h), where

deg∗(µ ◦ h) = deg∗ h2/r = deg h2 − deg r > 0. Next, we have the following result regarding

the behaviour of deg∗:

Lemma 6.5.10. Let f ∈ K(X). If f = g ◦ h with deg∗ h > 0, then deg∗ f = deg∗ g · deg∗ h.

Proof. Writing h = h1/h2 and

g(X) = b

∏m1
i=1(X − αi)∏m2
j=1(X − βj)
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yields

g
(
h(X)

)
=
bh2(X)deg g−m1

∏m1
i=1

(
h1(X)− αih2(X)

)
h2(X)deg g−m2

∏m2
j=1

(
h1(X)− βjh2(X)

) .
Since deg∗ h > 0 by assumption, we have

deg∗ f =
(
(deg g −m1) deg h2 +m1 deg h1

)
−
(
(deg g −m2) deg h2 −m2 deg h1

)
= (m1 −m2)(deg h1 − deg h2)

= deg∗ g · deg∗ h,

as claimed.

For polynomials, the two maps deg∗, deg : K[X] \ {0} → Z are equal. While deg retains some

of its properties over K[X] when extended to K(X), such as the one given in Theorem 6.5.1,

the map deg∗ retains others.

Theorem 6.5.11. Let f ∈ K(X). If deg∗ f is non-zero in K, then deg∗ f
′ = deg∗ f − 1.

Proof. We may write

f(X) =
aXn1 + f1(X)

Xn2 + f2(X)

where a 6= 0 and deg f1 < n1, deg f2 < n2. The expression for the derivative of f can be

obtained by simplifying(
an1X

n1−1 + f ′1(X)
)(
Xn2 + f2(X)

)
−
(
aXn1 + f1(X)

)(
n2X

n2−1 + f ′2(X)
)(

Xn2 + f2(X)
)2

which we may write concisely as

adeg∗ fX
n1+n2−1 + F1(X)

X2n2 + F2(X)

where degF1 < n1 + n2 − 1 and degF2 < 2n2. Then deg∗ f
′ = (n1 + n2 − 1) − (2n2) =

n1 − n2 − 1 = deg∗ f − 1 whenever deg∗ f = n1 − n2 is non-zero in K.

We have now the generalization of Lemma 6.5.6, which shows the relationship between the

valencies of f and deg∗ f .

Proposition 6.5.12. Let f ∈ K(X). If deg∗ f is non-zero in K, then

deg∗ f − 1 =
∑
a∈K

(
vf (a)− 1

)
.
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Proof. The values vf (a)−1 contributing to the sum are those which are non-zero. If vf (a)−1 >

0, then vf (a)−1 counts the multiplicity of a as a zero of f ′. If vf (a)−1 < 0, it instead counts

the negative of the multiplicity of a as a pole of f ′. Together, we have∑
a∈K

(
vf (a)− 1

)
= deg∗ f

′ = deg∗ f − 1

by Theorem 6.5.11.

Theorem 6.5.13. Let f ∈ K[X], and let d be the greatest proper divisor of deg f . If deg∗ f

is divisible by a prime number p > d, then f is prime over K.

Proof. Suppose that f is composite. Then there exist g, h ∈ K[X] such that f = g ◦ h
with deg∗ h > 0. Either deg∗ h or deg∗ g is divisible by p > d, so that | deg∗ h| ≥ p > d or

| deg∗ g| ≥ p > d; however, each also satis�es |deg∗ h| ≤ deg h ≤ d or |deg∗ g| ≤ deg g ≤ d,

which is a contradiction in either case.

Ayad's result, stated above as Theorem 6.5.5, is a particular case of the following corollary:

Corollary 6.5.14. Let f ∈ K(X) be such that deg f and deg∗ f are non-zero in K, and let d

be the greatest divisor of deg f . If vf (a) non-zero in K is divisible by a prime number p > d

for some a ∈ K, then f is prime over K.

Proof. Suppose that vf (a) > 0. Since f −f(a) has a zero of order vf (a) at a, de�ning the unit

µ(X) = (aX+1)/X gives a rational expression
(
f−f(a)

)
◦µ with deg∗

(
f−f(a)

)
◦µ = vf (a)

divisible by p > d. Thus, both
(
f − f(a)

)
◦µ and f are prime over K. If ν := vf (a) < 0, then

1/f has a zero of order −vf (a) at a. The previous argument shows that 1/f ◦ µ is prime, so

f is as well.

As Ayad [1] did over C, we introduce the resultant of two polynomials. After we present

a theorem for the polynomial case, we then generalize the notion to two elements of R(X)

and prove a similar result. The resultant of the two polynomials f = anX
n + · · · + a0 and

g = bmX
m + · · ·+ b0 in R[X] is de�ned as

ResX(f, g) = an
mbm

n
∏
α,β

(α− β)

where α and β run over all of the roots of f and g respectively in K. Some well-known

properties of the resultant are as follows:

1. For an additional polynomial h ∈ R[X], we have ResX(f, gh) = ResX(f, g)ResX(f, h);

2. ResX(f, g) ∈ R;
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3. f and g have a common root in K if and only if their resultant is zero.

The discriminant of f is given by

D[f ] =
(−1)n(n−1)/2

an
ResX(f, f ′) .

The discriminant is an integral polynomial in the coe�cients of f , so it lies in R. Letting T

be a new variable, b ∈ K is a critical value of f if and only if it is a root of D[f − T ]. The

multiplicity of a critical value is de�ned as its multiplicity as a root of D[f − T ], and we call

a critical value with multiplicity 1 a simple critical value.

Theorem 6.5.15. Let f = g ◦ h, and let D(t) = Resx
(
f(x) − t, f ′(x)

)
. There exists a ∈ K

such that

D(t) = aD[g − t]deg hResx
(
f(x)− t, h′(x)

)
.

Proof. Let n and an be the degree and leading coe�cient of f respectively. We have

D(t) =
(−1)n(n−1)/2

an
Resx

(
f(x)− t, f ′(x)

)
=

(−1)n(n−1)/2

an
Resx

(
g
(
h(x)

)
− t, g′

(
h(x)

))
Resx

(
g
(
h(x)

)
− t, h′(x)

)
.

Write g′(x) = (deg g)b
∏
β

(x − β) where β runs over all roots of g′ in an algebraic closure of

K, and b is the leading coe�cient of g. Then

Resx
(
g
(
h(x)

)
− t, g′

(
h(x)

))
= Resx

(
g
(
h(x)

)
− t, (deg g)b

∏
β

(
h(x)− β

))
= [(deg g)b]deg fResx

(
g
(
h(x)

)
− t,

∏
β

(
h(x)− β

))
= [(deg g)b]deg f

∏
β

Resx
(
g
(
h(x)

)
− t,

(
h(x)− β

))
= [(deg g)b]deg g deg h

∏
β

(
g(β)− t

)deg h
=

[(deg g)b]deg g
∏
β

(
g(β)− t

)deg h

=
(
Resx

(
g′(x), g(x)− t

))deg h
= (−1)deg f deg g

′
(
Resx

(
g(x)− t, g′(x)

))deg h
= (−1)deg f deg g

′
D[g − t]deg h .
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Thus,

D(t) =
(−1)n(n−1)/2+n deg g′

an
D[g − t]deg hResx

(
g
(
h(x)

)
− t, h′(x)

)
.

Setting a =
(−1)n(n−1)/2+n deg g′

an
yields the result.

Corollary 6.5.16. Let f ∈ R[x] have degree n, and let D(t) be the discriminant of f − t.
If f(x) is composite with a right composition factor of degree k, then there exist polynomials

A,B ∈ R[t] such that D(t) = A(t)kB(t) and degB ≤ k − 1. Moreover, if deg f is non-zero in

R, then degB = k − 1.

Proof. It follows immediately from Theorem 6.5.15, by setting B(t) = aResx
(
g
(
h(x)

)
−

t, h′(x)
)
and A(t) = D[g− t], that we have A ∈ R[t] and B ∈ K[t]. Since A(t), D(t) ∈ R[t], it

follows that B(t) ∈ R(t), and we conclude that B(t) ∈ R[t] as well.

If deg f is non-zero in R, then k = deg h ≤ deg f implies that deg h′ = deg h − 1 = k − 1.

Consequently, degB = k − 1.

Theorem 6.5.17. Let f ∈ K[x] have degree n, and let d be the greatest proper divisor of n.

If f has at least d simple critical values, then f is prime over K.

Proof. Suppose that f is composite with a right composition factor of degree k. Then 2 ≤
k ≤ d, and we write D(t) = A(t)kB(t) for some polynomials A,B ∈ K[t]. Since f has at least

d simple critical values, and each simple critical value is necessarily a root of B(t), we have

k − 1 ≥ degB ≥ d ≥ k, which is a contradiction. Thus, f is prime.

Kihel and Larone [3] studied the resultant of the two rational functions f, g ∈ C(X), which

they de�ned as the resultant of their numerators. Let f ∈ K[X] be composite such that

deg∗ f > 1 is non-zero in K. Then there exist g, h ∈ K[X] such that f = g ◦ h with

deg∗ h > 0. Since deg∗ f = deg∗ g ·deg∗ h, we have deg∗ g non-zero in K, which in turn implies

that deg∗ g
′ = deg∗ g − 1 > 0. The proofs of Lemma 4.6 and Corollary 4.5 [3] deal with only

C, although they immediately translate to K under the assumptions made here, yielding the

following result analogous to Theorem 6.5.15:

Theorem 6.5.18. Let f ∈ K(X) satisfy deg∗ f > 1 and deg∗ f non-zero in K. If f = g ◦ h
for some g, h ∈ K[X] with deg∗ h > 0, then the polynomial rf (T ) := ResX(f − T, f ′) can be

written in the form

rf (T ) = A(T )deg hB(T )

with A,B ∈ K[T ] such that degB ≤ 2 deg h− 1.
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The polynomial rf (T ) is for rational expressions an analogue to the discriminant in the sense

that b ∈ K is a critical value of f if and only if b is a root of rf (T ). We call a critical value

with multiplicity 1 as a root of rf (T ) a simple critical value of f .

Corollary 6.5.19. Let f ∈ K(X) satisfy deg∗ f > 1 and deg∗ f non-zero in K, and let d be

the greatest proper divisor of deg f . If f has at least 2d simple critical values, then f is prime

over K.

Proof. The proof is similar to that of Theorem 6.5.17 with instead the inequality

2 deg h− 1 ≥ degB ≥ 2d ≥ 2 deg h

yielding the contradiction.
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Chapter 7

Composed products of polynomials

over unique factorization domains

Let Fq be a �nite �eld with algebraic closure Γ, and denote by σ the Frobenius automorphism

of Γ. If G is a non-empty σ-invariant subset of Γ, then there is a binary operation � on G
such that σ is an endomorphism of (G, �). Suppose now that (G, �) is an abelian group. If

f, g ∈ Fq[x] have roots lying in G, then the operation � induces an operation on polynomials

by

f � g =
∏
α,β

(x− α � β) ,

where the product runs over all roots α and β of f and g respectively. Whether an irreducible

monic polynomial h ∈ Fq[x] can be expressed as f � g was studied by Brawley and Carlitz,

who proved among other results that h = f � g is irreducible over Fq if and only if both f and

g are also irreducible over Fq with relatively prime degrees. While much of their work is done

in these general terms, they do focus on two particular cases of decomposition with respect

to this composed product they have de�ned: additive decompositions and multiplicative de-

compositions, respectively occurring when � is �eld addition and multiplication. While we are

not certain as to the reasoning behind their terminology, we do note that it seems rather apt.

Indeed, the usual composition of two polynomials can be expressed through the resultant as

(f ◦ g)(x) = Rest
(
f(t), g(x)− t

)
,

which parallels the extended de�nition we give to additive compositions below.

Following the notation of Brawley and Carlitz, we extend the de�nition of additive composition

to polynomials over commutative rings instead of only �nite �elds with the resultant:

(f ∗ g)(x) = Rest
(
f(t), g(x− t)

)
.

Ayad considered polynomials of the form

Rest
(
f(t), g(x− t)

)
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where f, g ∈ Q[x], showing that in some circumstances they are irreducible polynomials over Q
which are reducible over all �nite �elds Fp. This suggests that consideration of composed sums

of polynomials over Z could very well be fruitful. Indeed, applying the de�nition of composed

sum through the resultant over a commutative ring R, we can see that the result of Brawley

and Carlitz need not hold. For example, over Z, the irreducible polynomial x4 − 10x2 + 1

can be written (x2 − 2) ∗ (x2 − 3). Note that the two polynomials have degrees which are

not relatively prime. This is a prototypical example of a polynomial reducible over all Fp, as
suggested by the result of Ayad.

7.1 Résumé

On étudie les unités sous l'opération ∗ et la décomposition de polynômes sur un domaine à

factorisation unique en polynômes indécomposables.

7.2 Abstract

We describe the units under the operation ∗ and study the decomposition of polynomials over

a unique factorisation domain into indecomposables with respect to this operation.

7.3 Introduction

Let Fq be the �nite �eld of q elements, let f and g be monic polynomials over Fq, and consider

the polynomial f ∗ g de�ned through the additive composition of f and g. Although the roots

of f and g may lie outside of Fq, the polynomial f ∗ g has coe�cients in Fq. The operation ∗
is a binary operation on the set of monic polynomials over Fq, called composed addition. If a

monic polynomial h ∈ Fq[x] with deg h > 1 can be expressed as h = f ∗g where deg f > 1 and

deg g > 1, then h is said to be additively decomposable into the additive composition factors

f and g.

Additive decompositions over �nite �elds were extensively studied by Brawley and Carlitz in

[1] and [2], who proved a unique decomposition theorem for irreducible monic polynomials with

respect to composed addition, and provided a test for additive decomposability of irreducibles,

among other results. For convenience, we state here another result from [1].

Theorem 7.3.1. Let h be a monic irreducible over Fq with deg h > 1. If h is additively

decomposable as h = f ∗ g where deg f = m > 1 and deg g = n > 1, then f and g are both

irreducible and gcd(m,n) = 1.

In this paper, we study the analogous notion of composed addition of two polynomials over

a given commutative ring R, in particular over integral domains and unique factorization

domains.
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7.4 Preliminaries

Let u(x) = um(x−α1) · · · (x−αm) be a polynomial over an integral domain R, where α1, ..., αm

are all of the roots of u in some algebraic closure of the �eld of fractions of R. Let v(x) be a

polynomial over R of degree n. Then the resultant of u and v is given by

Resx
(
u(x), v(x)

)
= unm

m∏
i=1

v(αi).

The resultant can also be computed as the determinant of a Sylvester matrix, the entries

of which consist of the element 0 and coe�cients of u and v. Thus, Resx
(
u(x), v(x)

)
is a

polynomial in the coe�cients of u and v.

To motivate our de�nition of composed addition over a commutative ring R, we begin with

the �nite �eld case. Let h ∈ Fq[x] be a monic polynomial that is additively decomposable as

f ∗ g. Let α1, ..., αm and β1, ..., βn be all of the roots of f and g respectively in some algebraic

closure of Fq. Noting that

(−1)mf(x− t) =
m∏
i=1

(
t− (x− αi)

)
we deduce that f ∗ g is related to the resultant as follows:

(f ∗ g)(x) =
m∏
i=1

n∏
j=1

(
x− (αi + βj)

)
=

m∏
i=1

n∏
j=1

(
(x− αi)− βj)

)
= Rest

(
(−1)mf(x− t), g(t)

)
.

Since the resultant of two polynomials over a commutative ring R can be computed, the

expression Rest
(
(−1)deg ff(x−t), g(t)

)
provides us with a natural way to extend the de�nition

of composed addition to polynomials (not necessarily monic) over a commutative ring R.

If a polynomial h ∈ R[x] can be expressed as h = f ∗ g where f and g are polynomials over

R which are not units with respect to composed addition, then we say that h is additively

decomposable over R into the additive composition factors f and g. The group of units of

polynomials over R under the operation of composed addition is

U = {ax+ b | a, b ∈ R and a−1 ∈ R}.

Indeed, letting u(x) = x, then for any f ∈ R[x] we have

(f ∗ u)(x) = (u ∗ f)(x) = Rest
(
(−1)(x− t), f(t)

)
= Rest

(
t− x, f(t)

)
= f(x).

Thus, the polynomial x is the identity element with respect to composed addition. If u ∈ U
and v ∈ U is its inverse, then 1 = deg(u ∗ v) = deg(u) deg(v) implies that both u and v are

linear polynomials.
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Let u = u1x + u2, v = v1x + v2 ∈ R[x] where u1 and v1 are not 0. Then u ∗ v = (u1v1)x +

(u1v2+u2v1) is again a linear polynomial. Moreover, if u1 and v1 are units of R, then u1v1 is a

unit of R. Thus, U is closed under composed addition. If u, v are as above and v is the inverse

of u, then u ∗ v = (u1v1)x + (u1v2 + u2v1) = x implies that u1v1 = 1 and u1v2 + u2v1 = 0.

Solving these equations yields v1 = u−11 and v2 = −u2/u21, so u ∈ U has an inverse if and only

if its leading coe�cient is a unit of R.

It remains to show that composed addition of linear polynomials is associative. Let u =

u1x+ u2, v = v1x+ v2, w = w1x+ w2 ∈ U . Then

(u ∗ v) ∗ w =
(
(u1v1)x+ (u1v2 + u2v1)

)
∗ (w1x+ w2)

= (u1v1w1)x+ (u1v1w2 + u2v2w1 + u2v1w1)

= (u1x+ u2) ∗
(
(v1w1)x+ (v1w2 + v2w1)

)
= u ∗ (v ∗ w).

We quickly note that if G is the subset
{
ax + b + 〈x2〉 : a−1 ∈ R

}
of R[x]/〈x2〉, then the

mapping ψ : U → G given by ax+ b 7→ ax+ b+ 〈x2〉 is a group isomorphism from U with the

operation of composed addition to G with the usual multiplication operation.

7.5 Additive Decompositions

We present �rst a lemma which follows directly from the de�nition of the resultant.

Lemma 7.5.1. Let R be an integral domain and K its �eld of fractions. Let h, f, g ∈ R[x],

and let h = ch1, f = af1, and g = bg1 where c, a, b ∈ R and h1, f1, g1 ∈ K[x] are monic. Then

h = f ∗ g over R if and only if h1 = f1 ∗ g1 over K and c = adeg gbdeg f .

Proof. Let

f = a

m∏
i=1

(x− αi) and g = b

n∏
j=1

(x− βj).

If h1 = f1 ∗ g1 and c = anbm, then we may write

h = ch1 = anbm
m∏
i=1

n∏
j=1

(
x− (αi + βj)

)
= f ∗ g.

Conversely, if h = f ∗ g, then

h1 =
m∏
i=1

n∏
j=1

(
x− (αi + βj)

)
= f1 ∗ g1

and the leading coe�cient of h is anbm.
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We now present some classes of polynomials which are not additively decomposable.

Theorem 7.5.2. Let R be an integral domain. If h ∈ R[x] has leading coe�cient p where p

is prime, then h is not additively decomposable over R.

Proof. Suppose that h is additively decomposable over R. There exist f, g ∈ R[x] with deg f =

m ≥ 1 and deg g = n ≥ 1 such that p = anbm, where a, b ∈ R are the leading coe�cients of f

and g respectively. We show that one of f and g is a unit with respect to composed addition.

Since p = anbm, we can assume without loss of generality that p = an and bm = 1. Then

a = p, n = 1 and bm = 1, so that g is a polynomial of degree 1 with leading coe�cient a unit

of R. Therefore, g is a unit with respect to composed addition.

If R is a unique factorization domain, then the proof of the previous theorem can be modi�ed

to give a more general result.

Theorem 7.5.3. Let R be a unique factorization domain. If h ∈ R[x] with deg h > 1 has

leading coe�cient that is square-free and not a unit of R, then h is not additively decomposable

over R.

Proof. Let c be the leading coe�cient of h, and suppose that h is additively decomposable

over R. There exist f, g ∈ R[x] with deg f = m ≥ 1 and deg g = n ≥ 1 such that c = anbm,

where a, b ∈ R are the leading coe�cients of f and g respectively. Since c is square-free, we

may write c = p1p2 · · · pr, where p1, p2, ..., pr are distinct prime elements of R. Without loss

of generality, we assume that p1 · · · pt = an where 1 ≤ t ≤ r.

Suppose for contradiction that n ≥ 2. Since a ∈ R, it follows that the primitive polynomial

xn − p1 · · · pt ∈ R[x] is reducible over R. The ideal P = 〈p1〉 is a prime ideal of R since p1 is

prime. Moreover, 1 /∈ P, p1 · · · pt ∈ P, and p1 · · · pt /∈ P2. Thus xn − p1 · · · pt is irreducible
over R by Eisenstein's Criterion, which is a contradiction.

Since deg g = n = 1, we have deg f = m = deg h. If t < r, then the same argument as above

applied to the polynomial xm − pt+1 · · · pr ∈ R[x] yields a contradiction. Thus, we conclude

that a = an = p1 · · · pr and bm = 1. Thus b, the leading coe�cient of g, is a unit of R, so g is

a unit with respect to composed addition.

Let σ : R → S be a unit-preserving ring homomorphism from an integral domain R to

an integral domain S. This homomorphism can naturally be extended to a homomorphism

σ̄ : R[x] → S[x] by cnx
n + · · · + c0 7→ σ(cn)xn + · · · + σ(c0). For simplicity, we denote

σ̄ by σ as well. Since Resx(f, g) is a polynomial in the coe�cients of f and of g, we have

σ
(
Resx(f, g)

)
= Resx

(
σ(f), σ(g)

)
.
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Let h = f ∗ g, and let a, b, c ∈ R be the leading coe�cients of f, g, h respectively. Then

c = anbm where m,n ≥ 1. If deg σ(h) = deg h for a unit-preserving homomorphism σ, then

σ(a)nσ(b)m = σ(c) 6= 0, so that σ(a) 6= 0 and σ(b) 6= 0.

Theorem 7.5.4. Let σ : R→ S be a unit-preserving homomorphism from an integral domain

R to an integral domain S, and let h ∈ R[x]. If deg σ(h) = deg h and h = f ∗ g over R, then

σ(h) = σ(f) ∗ σ(g) over S.

Proof. We naturally extend σ to a homomorphism from R[x, t] to S[x, t]. Note that σ(tn) = tn

and σ
(
(x− t)n

)
=
(
σ(x− t)

)n
= (x− t)n since σ is unit-preserving. Since σ does not map the

leading coe�cients of f and g to 0, σ �xes the degrees of f, g ∈ R[x, t] = R[x][t]. Thus

σ(h) = σ(f ∗ g)

= σ
(
Rest

(
(−1)deg ff(x− t), g(t)

))
= Rest

(
σ
(
(−1)deg ff(x− t)

)
, σ
(
g(t)

))
= Rest

(
(−1)deg σ(f)σ(f)(x− t), σ(g)(t)

)
= σ(f) ∗ σ(g).

The following lemma concerning linear polynomials will be used to prove that a polynomial

can be additively decomposed into a �nite number of indecomposable additive composition

factors.

Lemma 7.5.5. Let R be a unique factorization domain, and let h = ax+ b ∈ R[x] where a is

not a unit in R. Then h = f1 ∗ · · · ∗ fr for some linear polynomials f1, ..., fr ∈ R[x] which are

not additively decomposable over R.

Proof. If h is not additively decomposable, then the result holds trivially taking f1 = h, so we

suppose that h is additively decomposable. We prove the result by induction on the number

of prime divisors of a.

If the number of prime divisors of a is equal to 1, then a is prime, and the result follows from

Theorem 7.5.2. Suppose that the result holds when the number of prime divisors of a is less

than or equal to d ≥ 1. We show that the result holds when a has d+ 1 prime divisors.

There exist f1, f2 ∈ R[x] such that h = f1 ∗f2 where neither f1 nor f2 is a unit with respect to

composed addition since h is additively decomposable. It follows that the leading coe�cients

of both f1 and f2 are non-units of R dividing the leading coe�cient of h. Thus, the number of

prime divisors of the leading coe�cient of f1 is less than or equal to d, and the same is true for

the leading coe�cient of f2. By the induction hypothesis, we can write f1 = g1 ∗ · · · ∗ gt and
f2 = gt+1 ∗ · · · ∗ gr where each gi is not additively decomposable. Therefore, h = g1 ∗ · · · ∗ gr
where each gi is not additively decomposable. Clearly, deg gi = 1 for each gi.
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Theorem 7.5.6. Let R be a unique factorization domain, and let h ∈ R[x] be a non-unit with

respect to composed addition. Then h = f1 ∗· · ·∗fr for some polynomials f1, ...fr ∈ R[x] which

are not additively decomposable over R.

Proof. The case where h is not additively decomposable is trivial, so suppose that h is addi-

tively decomposable. We prove the result by induction on deg h. If deg h = 1, then the result

holds by Lemma 7.5.5. Suppose that the result holds for all polynomials of degree less than

or equal to k. We show that the result holds when deg h = k + 1.

Since h is additively decomposable, h = f1 ∗ f2 for some polynomials f1, f2 ∈ R[x] which are

not units with respect to composed addition. We consider two cases:

1. If there exist f1 and f2 such that deg f1 < deg h and deg f2 < deg h, then by the

induction hypothesis we write f1 = g1 ∗ · · · ∗ gt and f2 = gt+1 ∗ · · · ∗ gr where each gi is
not additively decomposable. Therefore, h = g1 ∗ · · · ∗ gr where each gi is not additively
decomposable.

2. If the only possible choices for f1 and f2 are such that deg f1 = 1 and deg f2 = deg h,

then we consider the leading coe�cient of f2. If the leading coe�cient of f2 is a unit,

then f2 is not additively decomposable. Applying Lemma 7.5.5 to f1 yields the result.

If the leading coe�cient of f2 is not a unit, then it only has a �nite number of prime

divisors. The same argument used to prove Lemma 7.5.5 shows that f2 = g1 ∗ · · · ∗ gt
where all but one of the gi must be linear, since f2 has no additive composition factors

of degree strictly between 1 and deg f2 = deg h. Applying Lemma 7.5.5 to f1 and to

each linear gi yields the result.

We note that for an irreducible monic polynomial h over a �nite �eld, it was shown in [1]

that any two additive decompositions of h are equivalent up to additive compositions with

linear polynomials, all of which are units with respect to composed addition. For example,

the irreducible polynomial h = x6 + x5 + x3 + x2 + 1 ∈ F2 is decomposable into irreducibles

as (x2 + x+ 1) ∗ (x3 + x+ 1) and as (x2 + x+ 1) ∗ (x3 + x2 + 1) as demonstrated in [1]. Here,

we have x3 + x2 + 1 = (x3 + x+ 1) ∗ (x+ 1).

This is not the case in general. Over Z, the polynomial h = 36x4 can be decomposed as

(2x2) ∗ (3x2) and as (x2) ∗ (6x2); however, there is no polynomial ax + b ∈ Z[x] such that

(x2) ∗ (ax + b) = (ax + b)2 will equal either 2x2 or 3x2. As such, two decompositions of a

reducible non-monic polynomial over a ring R need not be equivalent up to units with respect

to composed addition.

Corollary 7.5.7. Let σ : R → S be a unit-preserving homomorphism from a unique factor-

ization domain R to a unique factorization domain S, and let h ∈ R[x]. If deg σ(h) = deg h
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and σ(h) is not additively decomposable over S, then h = f ∗` where f ∈ R[x] is not additively

decomposable over R and ` ∈ R[x] is a linear polynomial. Moreover, if the leading coe�cient

of h is a unit in R, then ` is a unit with respect to composed addition, so h is not additively

decomposable over R.

Proof. By Theorem 7.5.6, we write h = f1 ∗ · · · ∗ fr where each fi ∈ R[x] is not additively

decomposable over R. Since σ(h) = σ(f1) ∗ · · · ∗ σ(fr) is not additively decomposable over S,

all but one of the σ(fi) are units with respect to composed addition. Assume without loss of

generality that σ(f2), ..., σ(fr) are these units. It follows from deg fi = deg σ(fi) = 1 that fi
is a linear polynomial for each i = 2, ..., r. Letting ` = f2 ∗ · · · ∗ fr yields h = f1 ∗ `, where f1
is not additively decomposable.

If the leading coe�cient of h is a unit in R, then the leading coe�cient of ` must be a unit in

R as well, so that ` is a unit with respect to composed addition. Therefore, h is not additively

decomposable.

Let h be a monic irreducible over Fq with deg h > 1. Theorem 7.3.1 asserts that if h = f ∗ g,
then f and g are irreducibles and gcd(deg f,deg g) = 1. The conclusion on the degrees of

the additive composition factors need not be true in general for polynomials over a given ring

R. For example, the irreducible polynomial h = x4 − 10x2 + 1 ∈ Z[x] can be decomposed as

(x2−2)∗ (x2−3) over Z. We can, however, always guarantee the irreducibility of the additive

composition factors of an irreducible polynomial over an integral domain R.

Theorem 7.5.8. Let R be an integral domain, and let h ∈ R[x] be irreducible over R. If

h = f ∗ g over R, then f and g are both irreducible over R.

Proof. We prove that if f or g is reducible over R, then h is reducible over R. Assume without

loss of generality that g is reducible over R. Then there exist g1, g2 ∈ R[x] such that g = g1g2.

Then by the multiplicative property of the resultant, we obtain

h = f ∗ g = Rest
(
(−1)deg ff(x− t), g1(t)g2(t)

)
= Rest

(
(−1)deg ff(x− t), g1(t)

)
Rest

(
(−1)deg ff(x− t), g2(t)

)
= (f ∗ g1)(f ∗ g2)

so that h is reducible over R.

The converse is not true in general as (x2 + 1) ∗ (x2 + 1) = x2(x2 + 4) over Z.
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Chapter 8

Multiplicative decompositions of

polynomials

With minor adjustments, one can also study composed multiplication. One can successfully

exhibit classes of polynomials irreducible over Q but reducible over all �nite �elds Fp. In

addition, it is relatively simple to construct classes of polynomials which are irreducible over

Q, but reducible over many (but not necessarily all) Fp. For example, suppose that n ∈ Z\{0}
is either odd, or n is even but admits no integer m satisfying the equations n2 − 2m2 = ±2.

Then

x4 + 2(n2 ± 1)x2 + 1

is irreducible over Z but reducible over Fp for p = 2 and all primes p ≡ ±1 (mod 8), and it

is reducible at least over Fp2 for every p ≡ ±3 (mod 8). Setting n = 1, we obtain x4 + 1,

which is another prototypical example of polynomial irreducible over Q but reducible over all

Fp. Thus, at the expense of making a weaker claim about reducibility, we have successfully

constructed an entire class of polynomials with a similar property.

8.1 Résumé

On étudie l'opération de produit composé � ainsi que la décomposition de polynômes en

polynômes indécomposables.

8.2 Abstract

We discuss the composed multiplication operation � and the decomposition of polynomials

under this operation.
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8.3 Introduction

Let f, g ∈ Fq[x] be two monic polynomials over the �nite �eld of q elements. Brawley and

Carlitz [1] studied various forms of composed products of the two polynomials, denoted by

f � g. Among them are the composed products induced by the �eld multiplication and �eld

addition on the algebraic closure of Fq. In particular, let α1, . . . , αm and β1, . . . , βn be all the

roots of f and g respectively in an algebraic closure of Fq. The composed addition of f and g

is given by
m∏
i=1

n∏
j=1

(
x− (αi + βj)

)
,

and the composed multiplication of f and g is given by

m∏
i=1

n∏
j=1

(x− αiβj) .

Among other results, they prove the following theorem:

Theorem 8.3.1. Let f, g ∈ Fq[x] be monic polynomials with deg f = m and deg g = n. Then

f � g is irreducible if and only if both f and g are irreducible and gcd(m,n) = 1.

The majority of the remaining results from their paper deal with decomposing polynomials

and the properties of such decompositions.

Let R be a commutative ring. We recall that the resultant of two polynomials f, g ∈ R[x],

denoted Resx(f, g), is the determinant of their Sylvester matrix. In a paper of Ayad, he

shows that if the monic polynomials f, g ∈ Z[x] satisfy certain additional properties, then the

polynomial

Resy
(
f(y), g(x− y)

)
∈ Z[x]

is irreducible over Q but reducible over Fp for all primes p. The above polynomial is related

to the composed addition of f and g:

m∏
i=1

n∏
j=1

(
x− (αi + βj)

)
= Resy

(
f(y), g(x− y)

)
where α1, . . . , αm and β1, . . . , βn are all the roots of f and of g in C respectively.

The aim of this paper is to provide integral polynomials irreducible over Z which are reducible

over Fp for every prime p. In particular, we show that certain composed products of integral

polynomials are reducible modulo p for all primes p.
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8.4 Preliminaries

Let R be a commutative ring with unity and g = bnx
n + bn−1x

n−1 + · · · + b1x + b0 ∈ R[x].

The homogenization of g, denoted hg(y, x), is the polynomial de�ned by

hg(y, x) := bnx
n + bn−1x

n−1y + · · ·+ b1xy
n−1 + b0y

n ,

that is, it is a homogeneous polynomial in R[x, y] of degree n = deg g such that hg(1, x) = g(x).

Direct comparison shows that yng(x/y) = bnx
n+bn−1x

n−1y+ · · ·+b1xyn−1+b0y
n = hg(y, x).

In the case where R is a �eld, if α1, . . . , αm and β1, . . . , βn are all the roots of f and g

respectively in an algebraic closure of R, and if cf and cg are the leading coe�cients of f and

g respectively, then we obtain

cnf c
m
g

m∏
i=1

n∏
j=1

(x− αiβj) = cnf

m∏
i=1

αincg n∏
j=1

(
x/αi − βj

)
= cnf

m∏
i=1

(
αi
ng(x/αi)

)
= Resy

(
f(y), yng(x/y)

)
= Resy

(
f(y), hg(y, x)

)
.

This motivates the following de�nition:

De�nition 8.4.1. Let R be a commutative ring with unity and f, g ∈ R[x]. We de�ne the

composed product of f and g by

(f � g)(x) := Resy
(
f(y), hg(y, x)

)
.

It is clear from the de�nition that if f = f1 � f2, then cf = cdeg f2f1
· cdeg f1f2

where cg denotes the

leading coe�cient of the polynomial g. This property is paralleled with the constant terms

of the polynomials: again letting g = bnx
n + bn−1x

n−1 + · · · + b1x + b0 ∈ R[x] and letting

m = deg f , if b0 6= 0, then

(f � g)(0) = Resy
(
f(y), hg(y, 0)

)
= Resy

(
f(y), b0y

n
)

= (−1)mnResy
(
b0y

n, f(y)
)

= (−1)mnb0
mf(0)n ,

and if b0 = 0, then

(f � g)(0) = Resy
(
f(y), hg(y, 0)

)
= Resy

(
f(y), 0

)
= 0 .

Thus, (f � g)(0) = (−1)mnf(0)ng(0)m.
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The set R[x] is closed under the composed product binary operation. It is of interest then to

determine the units, if any, with respect to this operation. The polynomial ` = x− 1 ∈ R[x]

is the identity under �: for any f ∈ R[x] we have

(` � f)(x) = Resy
(
`(y), hf(y, x)

)
= hf(1, x) = f(x)

and

(f � `)(x) = Resy
(
f(y), x− y

)
= (−1)2 deg fResy

(
y − x, f(y)

)
= f(x) .

If u, v ∈ R[x] are inverses of one another, then 1 = deg ` = deg(u � v) = deg u · deg v so that

deg u = deg v = 1. Let u = u1x+ u0 and v = v1x+ v0. We have

x− 1 = `(x) = (u � v)(x) = u1v1x− u0v0 ,

from which we obtain u1v1 = u0v0 = 1. That is, u1 and u0 are units, and v = u1
−1x+ u0

−1.

It is readily veri�ed that � is associative on linear polynomials, so we summarize as follows:

Theorem 8.4.2. Let R be a commutative ring with unity. The group of units of R[x] under

� consists exactly of the linear polynomials u = u1x+ u0 with u1, u0 ∈ R×, and the inverse of

any such u is given by u1
−1x+ u0

−1.

Although it will not be of use to us in this paper, we note the algebraic structure of the group

of units:

Proposition 8.4.3. Let R be a commutative ring with unity, and let G� be the group of units

of R[x] under �. Then G� ' R× ⊕R×.

Proof. Let (R̄,+, ∗) be induced from the ring (R,+, ·) with multiplication instead de�ned by

x ∗ y := −(x · y). The map φ : R → R̄ de�ned by φ(x) = −x is a ring isomorphism. Since

R ' R̄ as rings, we obtain R× ' R̄× as groups. De�ning the map ψ : G� → R× ⊕ R̄× by

ψ(u1x+ u0) = (u1, u0), we have G� ' R× ⊕ R̄× ' R× ⊕R×.

With the units now known, we make the following de�nition:

De�nition 8.4.4. Let R be a commutative ring with unity and f ∈ R[X]. If there exist

f1, f2 ∈ R[X] \G� such that f = f1 � f2, then we say that f is multiplicatively decomposable.

Otherwise, we say that f is multiplicatively indecomposable.

If f only admits decompositions of the form f = f1 � f2 with either f1 or f2 linear, then we

will say that f is near-indecomposable over A.

The near-indecomposable polynomials will be largely su�cient for the purposes of this paper,

but we make here a few comments about indecomposable polynomials. Every indecompos-

able polynomial is near-indecomposable by de�nition, and the two notions coincide over a
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�eld. When applicable, the following lemma can be used to determine when certain near-

indecomposable polynomials are indecomposable:

Lemma 8.4.5. Let R be a commutative ring with unity, and let f ∈ R[x] be near-indecomposable

over R. If the leading coe�cient and constant term of f both lie in R×, then f is indecom-

posable over R.

Proof. We have that f is near-indecomposable, so we write f = f1 � f2 with f1 linear without
loss of generality. If the leading coe�cient cf of f and f(0) both lie in R×, then

cf = cnf1cf2

and

f(0) = (f1 � f2)(0) = (−1)nf1(0)nf2(0)

show that cf1 , f1(0) ∈ R× as well. Thus f1 = cf1x+ f1(0) ∈ G, so f is indecomposable.

8.5 Composed Product Decompositions

We begin this section by presenting two classes of near-indecomposable polynomials.

Theorem 8.5.1. Let R be a commutative ring with unity. If f ∈ R[x] has degree p a prime,

then f is near-indecomposable over R.

Proof. Suppose that f = f1 � f2 for some f1, f2 ∈ R[x] of degrees m and n respectively. Since

p = deg f = mn, it follows that either f1 or f2 is linear.

Theorem 8.5.2. Let R be a commutative ring with unity. If f ∈ R[x] with deg f > 1 has

leading coe�cient p a prime, and if p is not a zero divisor of R, then f is near-indecomposable

over R. Moreover, the leading coe�cient of any linear decomposition factor lies in R×.

Proof. Suppose that f = f1 � f2 for some f1, f2 ∈ R[X] with respective degrees m and n.

We have p = cnf1c
m
f2
. Suppose without loss of generality that p divides cnf1 . Then p divides

cf1 , and writing cf1 = pa with a ∈ R yields p = pnancmf2 . Since p is not a zero divisor,

0 = p(pn−1ancmf2 − 1) implies that pn−1ancmf2 = 1. Then pn−1 divides 1, which is impossible

unless n = 1. We conclude that deg f2 = 1 and acmf2 = 1.

If a polynomial is not near-indecomposable, then one might ask about a possible decomposition

into some near-indecomposables.

Theorem 8.5.3. Let R be a commutative ring with unity. If f ∈ R[x], then f = f1�f2�· · ·�fr
for some near-indecomposable polynomials fi ∈ R[x].
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Proof. The case where f is itself indecomposable is trivial. Let us then suppose that f is

decomposable and proceed by induction on deg f . The result clearly holds when deg f = 1 as

every linear polynomial is near-indecomposable, and we assume as induction hypothesis that

the result also holds for all polynomials of degree less than or equal to deg f .

Since f is assumed decomposable, we may write f = f1 � f2 for some f1, f2 ∈ R[x] \ G�. If

deg f1 < deg f and deg f2 < deg f , by hypothesis we have f1 = g1 � · · · gt and f2 = gt+1 � gr
for some near-indecomposable polynomials gi ∈ R[x]. Then f = g1 � · · · � gr as required. If it
is only possible to write f = f1 � f2 with either f1 or f2 linear, then f is near-indecomposable

by de�nition.

Let R and S be commutative rings with unity. A ring homomorphism σ : R → S can

be naturally extended to a ring homomorphism from R[x] to S[x] by amx
m + · · · + a0 7→

σ(am)xm + · · ·+ σ(a0). If σ : R[x]→ S[x] preserves the degrees of f, g ∈ R[x], then

σ
(
Resx(f, g)

)
= Resx

(
σ(f), σ(g)

)
since Resx(f, g) is a polynomial in the coe�cients of f and of g. This leads us to the following

result:

Theorem 8.5.4. Let R and S be commutative rings with unity, σ : R→ S a ring homomor-

phism, and f ∈ R[x] be such that its leading coe�cient and constant term are not mapped to

0 by σ. If f = f1 � f2 over R, then σf = σf1 � σf2 over S. Moreover, deg σf1 = deg f1 and

deg σf2 = deg f2.

Proof. We naturally extend σ to a ring homomorphism from R[x, y] to S[x, y]. By assumption,

σ does not map cf nor f(0) to zero. Denote the degrees of f1 and f2 by m and n respectively.

Then cf = cnf1c
m
f2

implies that

0 6= σ(cf ) = σ(cf1)nσ(cf2)m ,

while f(0) = f1(0)nf2(0)m implies that

0 6= σ
(
f1(0)

)n
σ
(
f2(0)

)n
.

Since σ does not map the leading coe�cients nor the constant terms of f1 and f2 to zero, it

preserves the degrees of these two polynomials as well as those of hf1(Y,X) and hf2(Y,X).

Thus,

σ(f1 � f2) = σ
(
Resy

(
f1(y), hf2(y, x)

))
= Resy

(
σf1(y), hσf2(y, x)

)
= σf1 � σf2 .

Theorem 8.5.5. Let R and S be commutative rings with unity, σ : R→ S a ring homomor-

phism, and f ∈ R[x] be such that its leading coe�cient and constant term are not mapped to

0 by σ. If σf is near-indecomposable over S, then f is near-indecomposable over R.
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Proof. By Theorem 8.5.3, we write f = f1�· · ·�fr where each fi ∈ R[x] is near-indecomposable

over R. Then σf = σf1 � · · · �σfr is near-indecomposable over S, so all but one of the σfi are

linear, say ft with k ∈ {1, . . . , r}. It follows from deg fi = deg σfi = 1 that fi is linear for each

i ∈ {1, . . . , r} \ {t}. Setting `1 := f1 � · · · � ft−1 and `2 := ft+1 � · · · � fr yields f = `1 � f1 � `2.
Thus, f is near-indecomposable.

The proof of the next theorem requires a lemma, which follows immediately from the de�nition

of composed multiplication:

Lemma 8.5.6. Let R be an integral domain and K its �eld of fractions. Let f, f1, f2 ∈ R[x]

and let f = cfF , f1 = cf1F1, and f2 = cf2F2 where cf , cf1 , cf2 ∈ R and F, F1, F2 ∈ K[x] are

monic. Then f = f1 � f2 over R if and only if F = F1 � F2 over K and cf = cdeg f2f1
cdeg f1f2

.

Theorem 8.5.7. Let R be a commutative ring with unity, m a maximal ideal of R such that

the residue �eld R/m is �nite, and f ∈ R[x] have degree at least 2. If the image of f modulo m

is irreducible over R/m and its leading coe�cient and constant term do not lie in m, then f is

the multiplicative composition of at most ω(deg f) near-indecomposable polynomials of degrees

at least 2 over R.

Proof. Suppose that f = f1 � · · · � fr where each fi ∈ R[x] is near-indecomposable of degree

at least 2 over R. De�ne σ : R→ R/m by a 7→ a (mod m) and extend it to a polynomial ring

homomorphism.

Suppose that r > ω(deg f). The leading coe�cient and constant term of f are not zero

modulo m, so each deg fi = deg σfi divides deg f = deg σf by Theorem 8.5.4. It follows from

the pigeonhole principle that at least two of the deg σfi share a prime factor of deg σf , say

deg σf1 and deg σf2 without loss of generality. Set σg := σf2 � · · · �σfr so that σf = σf1 �σg.
We assume that these polynomials are monic, otherwise we simply divide by their leading

coe�cients and the relationship remains by Lemma 8.5.6. By assumption, σf is irreducible

over R/m, so we must have gcd(deg σf1,deg σg) = 1 by Theorem 8.3.1, which contradicts the

two degrees sharing a prime factor. Thus, we conclude that r ≤ ω(deg f).

Corollary 8.5.8. Let f1, f2, . . . , fr ∈ Z[x] have degrees all at least 2. If ω(deg f1 · · · deg fr) <

r, then f1 � · · · � fr is reducible modulo p for every prime p that does not divide its leading

coe�cient and constant term.

Example 8.5.9. The following are irreducible over Z but reducible over Fp for all primes p:

(i) x12 − x10 + 3x8 + 4x6 + 3x4 + 2x2 + 1 = (x2 + 1) � (x2 + x+ 1) � (x3 + x2 + 1);

(ii) x8 + 2x4 + x2 + 1 = (x2 + 1) � (x4 + x+ 1);

(iii) x4 + 5x2 + 4 = (x2 + 1) � (x2 + x− 2);
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(iv) x4 + (a2 − 2)x2 + 1 = (x2 + 1) � (x2 + ax+ 1) when a /∈ {0,±2};

(v) x4 + (a2 + 2)x2 + 1 = (x2 + 1) � (x2 + ax− 1) when a 6= 0.

Note that the polynomial f � g will not always be irreducible over Z. The examples given

above can all routinely be veri�ed as irreducible over Z by brute force or by use of a computer

algebra system.

Theorem 8.5.7 can also be used to produce some weaker statements about the reducibility

of polynomials over �nite �elds. For example, it is well-known that the polynomial x4 + 1 is

irreducible over Z but reducible over every Fp. Letting R = Z[
√

2], we can view the polynomial

f = x4 + (a2± 2)x2 + 1 from the above example (iv and v) as being polynomials in R[x]. The

ideal (
√

2) of R is prime with corresponding residue �eld F2, and x2−2 has a root α modulo p

when p ≡ ±1 (mod 8), so (p,
√

2−α) is a prime ideal with corresponding residue �eld Fp. For
primes p ≡ ±3 (mod 8), the corresponding residue �eld is Fp2 . It follows that the polynomial

f is reducible over Fp for p = 2 and every p ≡ ±1 (mod 8), and it is reducible at least over

Fp2 for every p ≡ ±3 (mod 8).

If a = n
√

2 for n ∈ Z \ {0}, we have f = x4 + 2(n2± 1)x2 + 1. It is clear that f has no integer

roots, since f(x) > 0 for integer x. Attempting to write f as a product of two quadratic

factors leads to an equation of the form 2u − b2 = 2(n2 ± 1) for an integer b and u ∈ {±1}.
This implies that 2 divides b, so we write b = 2c and obtain u − 2c2 = n2 ± 1. We deduce

from n2−2c2 ∈ {0,±2} that n is must be even. Letting n = 2m, we obtain the Pell equations

c2−2m2 = ∓1. Therefore, f is irreducible over Z whenever n is odd, or whenever n is even but

there is no c ∈ Z such that either of the Pell equations c2−2(n/2)2 = ±1 has solution (c, n/2).

In particular, for n = 1, we recover x4 +1, so this argument leads to a weaker statement about

reducibility but for a more general class of polynomials.
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Chapter 9

Least primes which split in imaginary

quadratic �elds

9.1 Résumé

Soit D < 0 un entier libre de facteurs carré tel que D est 0 ou 1 modulo 4, K = Q(
√
D) et

hK le nombre de classes pour le corps K. On utilise les formes quadratiques binaires a�n de

borner le (hK + 1)-ième nombre premier qui se décompose dans K.

9.2 Abstract

Let K = Q(
√
D) where D < 0 is congruent to either 0 or 1 modulo 4, and let hK be the class

number of K. We show that the (kK + 1)st least prime that splits in K is bounded below

by
√

3|D|
4 . The proof relies on the fact that the smallest integers representable by a reduced

binary quadratic form ax2 + bxy + cy2 are among a, c, and a− |b|+ c.

9.3 Introduction

In the ring Z, the prime numbers are, up to a unit, the irreducible elements of the ring. The

fundamental theorem of arithmetic guarantees a unique decomposition, up to a unit, of an

integer into a product of primes. While this property does not directly translate to arbitrary

rings, we can instead discuss the decomposition of ideals into the product of prime ideals. For

our purposes, we will brie�y recall the necessary ideas for dealing with extensions of Q.

Let K be a number �eld, and let OK be its ring of integers. If p is a prime number, then pZ
is a prime ideal in Z, and pOK admits a unique decomposition into a product of maximal (so

also prime) ideals of the form

pOK =

m∏
i=1

peii .
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Setting as usual fi = [OK/pi : Z/pZ] yields the equality

[K : Q] =
m∑
i=1

eifi .

If fi = ei = 1 for all i, we say that p splits completely in K. If m = 1 and f1 = 1, then we

say that p rami�es completely in K. If m = 1 and e1 = 1, then we say that p is inert in K.

The nonzero fractional ideals of OK , under a suitable equivalence relation, form an abelian

group. The number of these ideals classes comprising this ideal class group is �nite, and we

call it the class number of K and denote it hK .

In his treatise Disquistiones Arithmeticae, Gauss presented his class number problem. For a

given positive integer n, this problem asks for a list all imaginary quadratic �elds with class

number n, although the original problem was stated in the language of binary quadratic forms.

Gauss conjectured that h(D), the number of classes of primitive positive de�nite quadratic

forms of discriminant D, tends to in�nity as −D does.

This problem has a very long history, and it has been the subject in works of many authors.

Heilbronn [9] ine�ectively resolved the general problem. Gauss's class number one problem,

which refers to the case n = 1, was proved �rst by Heegner [8], although the proof contains

some minor gaps. It was proved later by Baker [1] and Stark [12], who then jointly solved the

problem for n = 2 [2].

Goldfeld [6] showed that the problem can be reduced to the existence of an elliptic curve with

a Hasse-Weil L-function possessing a zero of order at least 3 at s = 1. Gross and Zagier

[7] proved the existence of such an elliptic curve, reducing the problem to a �nite number

of computations. Oesterlé [11] generalized Goldfeld's theorem to the solve the problem for

n = 3. Watkins [13] then modi�ed Goldfeld's approach by considering Dirichlet L-functions

possessing zeroes near the real line with low height, which solved the problem for n ≤ 100.

Beckwith [3] provided an estimate for the number of negative fundamental discriminants whose

corresponding class numbers h(D) are indivisible by a given prime and whose imaginary

quadratic �elds satisfy a given set of local conditions.

Lamzouri, Li, and Soundararajan [10] proved, among other results, upper and lower bounds

for L(1, χ) and ζ(1+ it). They also deduced explicit bounds for the class number of imaginary

quadratic �elds assuming the generalized Riemann hypothesis.

The aim of this paper is to provide a lower bound on the least primes that split in an imaginary

quadratic �eld in terms of its class number.
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9.4 Preliminary Results

We �rst recall some terminology regarding quadratic forms. A binary quadratic form is given

by

f(X,Y ) = aX2 + bXY + cY 2

for integers a, b, and c and discriminant D = b2− 4ac. An integer m is said to be represented

by the quadratic form f(X,Y ) if and only if there exist integers x and y such thatm = f(x, y),

and the representation is said to be proper if gcd(x, y) = 1.

We will be interested only in positive de�nite quadratic forms, that is, those with negative dis-

criminants and which represent only positive integers. Furthermore, we say that the quadratic

form is primitive if and only if gcd(a, b, c) = 1. Two forms f(X,Y ) and g(X,Y ) are said to be

equivalent if there exist integers α,β,γ, and δ such that f(X,Y ) = g(αX + βY, γX + δY ) and

αδ − γβ = ±1. It is clear that this is an equivalence relation, that equivalent forms represent

the same integers, and that equivalent forms have the same discriminant. The equivalence is

said to be proper if αδ − γβ = 1, and we say that two forms are in the same class if and only

if they are properly equivalent. Lastly, we recall that a primitive positive de�nite quadratic

form aX2 + bXY + cY 2 is reduced if −a < b ≤ a < c or 0 ≤ b ≤ a = c.

We will require the following three results, all of which can be found in Cox [4].

Lemma 9.4.1. Let f(X,Y ) = aX2 + bXY + cY 2 be a reduced primitive positive de�nite

quadratic form. Then for any integers x and y,

f(x, y) ≥ (a− |b|+ c) min(x2, y2) .

Lemma 9.4.2. Let f(X,Y ) = aX2 + bXY + cY 2 be a reduced primitive positive de�nite

quadratic form. Then

a ≤
√
|D|
3
.

Theorem 9.4.3. Every primitive positive de�nite quadratic form is properly equivalent to a

unique reduced quadratic form.

Since we will be considering forms which are reduced with a �xed discriminant D < 0, we

immediately have the following result from Lemma 9.4.2 and Theorem 9.4.3:

Theorem 9.4.4. Let D < 0 be given. Then the number h(D) of classes of primitive positive

de�nite forms of discriminant D is �nite, and it is equal to the number of reduced forms of

discriminant D.

9.5 Main Result

We prove the following theorem:
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Theorem 9.5.1. Let D < 0 be an integer satisfying D ≡ 0 or 1 (mod 4), let K = Q(
√
D),

and let hK the class number of K. If the least hK + 1 odd prime numbers which split in K are

denoted by p1, p2, . . . , phk+1 with p1 < p2 < · · · < phK+1, then

phK+1 ≥
1

4

√
3|D| .

Proof. If p is an odd prime which splits in K, then
(
D
p

)
= 1, and p can be represented by a

proper quadratic form of discriminant D. Hence, it can be represented by a positive de�nite

quadratic form of discriminant D < 0 and, consequently, also by a reduced quadratic form of

discriminant D < 0.

There exist hK reduced forms of discriminant D. Of the hK +1 least prime numbers which do

not split in K, at least two of them are then represented by the same reduced quadratic form

of discriminant D. We let pi and pj be these two primes and f(X,Y ) = aX2 + bXY + cY 2

the form which represents them both. We additionally assume without loss of generality that

pi < pj .

The form f(X,Y ) satis�es the conditions of Lemma 9.4.1, so for integers x and y we have

f(x, y) ≥ (a− |b|+ c)

whenever xy 6= 0. Additionally, we have |b| ≤ a since f(X,Y ) is reduced. Thus, f(x, y) ≥ c.

If |b| 6= c, then f(x, y) > a. If |b| = c, then we have c = a = 1. This imposes |b| = c = 1, so

that

D = b2 − 4ac = −3a2 = −3 .

The theorem holds trivially when D = −3, so we suppose now that D 6= −3, in which case we

have f(x, y) ≥ c and f(x, y) > a whenever xy 6= 0. For xy = 0, we consider each possibility

separately. First, if x = y = 0 we have f(0, 0) = 0. Next, if x = 0 and y 6= 0, we have

f(0, y) = cy2 ≥ c .

Finally, if x 6= 0 and y = 0, we have

f(x, 0) = ax2 ≥ a .

Altogether, we have shown that the smallest positive integer that f(x, y) may take is a, while

the second smallest is c.

Since the smallest positive integer representable by f(X,Y ) is a, we have pi ≥ a. Since the

second smallest positive integer representable by f(X,Y ) is c, and since pj > pi is representable

by f(X,Y ), we deduce that pj ≥ c.

The discriminant of f satis�es

D = b2 − 4ac < 0 ,
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so we have

−D = 4ac− b2 > 0 .

By Lemma 9.4.2,

a ≤
√
|D|
3
,

so

|D| = −D ≤ 4c

√
|D|
3
.

Then
1

4

√
3|D| ≤ c ≤ pj ≤ phK+1 .

Example 9.5.2. Consider the imaginary quadratic �eld K = Q(
√
−163) which has class

number hK = 1. Let p1 and p2 be the two least odd prime numbers which split in K. If

p1 < p2, then Theorem 9.5.1 asserts that p2 ≥
1

4

√
3(163) ≈ 5.528. It is readily veri�ed that

each of the primes 2, 3, and 5 are in fact inert: OK = Z
[
−1+

√
−163

2

]
and each of the ideals

(2), (3), and (5) are prime ideals of OK .

Remark 9.5.3. The problem of bounding the smallest rational prime which splits in a number

�eld has been previously explored. For example, Siegel's bound on the size of class numbers

implies that |D|1/2−ε � h(D)� |D|1/2+ε, as discussed in [5], where h(D) denotes the number

of classes of primitive positive de�nite quadratic forms of discriminant D. Combined with

the prime number theorem, one obtains that the hK-th prime is asymptotically greater than

|D|1/2−ε log |D|.

The authors would like to thank an anonymous referee who was kind enough to bring such an

expected bound for this type of problem to their attention.
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Chapter 10

On the covering of rings by their

subrings

10.1 Résumé

On étudie la possibilité de recourvrir un anneau avec ses sous-anneaux.

10.2 Abstract

We explore the possibility of covering a ring by its subrings.

10.3 Introduction

It is a well-known result that a group cannot be the union of two of its proper subgroups.

Scorza seems to have been the �rst to show that a group is a union of three proper subgroups

if and only if it has a quotient isomorphic to the Klein 4-group V = C2
2. For the case of

covering by four, �ve, or six subgroups, a similar result holds by replacing V with some other

�nite group as needed for each case. The case of seven subgroups is notably di�erent: no

group can be written as a union of seven of its proper subgroups.

Werner considered the similar problem of covering a ring by its proper subrings.

We say that a ring R is coverable if R is equal to a union of its proper subrings: a de�nition

provided by Werner [1]. If this can be done using a �nite number of proper subrings, then

σ(R) denotes the covering number of R, which is the minimum number of subrings required

to cover R. If R is not coverable, then we take σ(R) =∞. Werner [1] proved the following:

Proposition 10.3.1 (Werner). Let R be a coverable ring such that σ(R) is �nite. Then there

exists a two-sided ideal I of R such that R/I is �nite and σ(R) = σ(R/I).
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The aim of this paper is to expand on the concept of coverable rings.

10.4 Main Results

We begin by providing an example of rings not coverable by their subrings.

Proposition 10.4.1. The ring Zp of p-adic integers is not coverable by a �nite number of its

proper subrings.

Proof. The ring Zp is principal, and its only ideals are the principal ideals

{0} and Ik =
(
pk
)
, k ≥ 1 .

Suppose that

Zp =
n⋃
i=1

Ri, Ri $ Zp .

There exists I ⊂
n⋂
i=1

Ri 6= {0}, from which we deduce that I = Ik for some k. Then Ik = pkZp

and

Zp/pkZp ∼= Z/pkZ ,

the latter of which is not coverable.

Remark 10.4.2. We know that if R is a ring such that R =

n⋃
i=1

Ri without redundancies, and

each Ri is a proper subring of R, then Ri is of �nite index in R for each i ∈ {1, . . . , n}.

We now provide an example of rings which are coverable with �nite covering number.

Proposition 10.4.3. Suppose that R =

∞⋃
i=1

Ri, where the Ri are all subrings of R of �nite

index. If R is Artinian, then

R =
t⋃
i=1

Ri

for some t.

Proof. Since R1 has �nite index in R, there exists an ideal I1 of R such that I1 ⊆ R1 and I1
has �nite index in R. The same argument implies that there exists an ideal I2 ⊆ R2 where R2

is again an ideal of R with �nite index. Then

R ⊇ I1 ⊇ I1 ∩ I2 ⊇ I1 ∩ I2 ∩ I3 ⊇ · · · .
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Since R is Artinian, the descending sequence of ideals is stationary. Then

∞⋂
j=1

Ij = I1 ∩ I2 ∩ · · · ∩ In

for some n.

Let I =

n⋂
i=1

Ii. We note that

I1 · I2 · · · In ⊆ I1 ∩ I2 ∩ · · · ∩ In =
∞⋂
j=1

Ij .

Then I is an ideal of R contained in Rj for each j ∈ {1, . . . ,∞}. We can now take I =

I1 · I2 · · · In, and we then have

R/I =

 ∞⋃
j=1

Rj

 /I =

∞⋃
j=1

(Rj/I) .

This shows that R/I is coverable (in�nitely) by the Rj/I. Since R/I is �nite, then

R/I =
∞⋃
j=1

(Rj/I)

is a �nite union, so we can extract �nitely many of the Rj/I from the in�nite union such that

R/I =

t⋃
j=1

(Rj/I) .

Then

R =

t⋃
j=1

Rj .

Remark 10.4.4. If R is a monogenic ring of integers, then R = Z[θ]. If R is not monogenic,

then R =
∞⋃
i=1

Z[θi].

We pose the two following questions:

Question 10.4.5. Is it possible to write a monogenic ring of integers R in the form

R =
∞⋃
i=1

Z[θi]

with
[
R : Z[θi]

]
�nite, that is, θi primitive, for all i ∈ {1, . . . ,∞}?
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Question 10.4.6. If question 10.4.5 is answered in the a�rmative, is it possible to write

R =

n⋃
i=1

Z[θi]

with θi primitive for all i ∈ {1, . . . , n}, i.e., given an algebraic integer θ ∈ R, does there exist
θi ∈ R with θi primitive and θ ∈ Z[θi] for some i ∈ {1, . . . , n}?

Example 10.4.7. Let K be a number �eld having no intermediate �eld, i.e., there is no

sub�eld k such that

Q $ k $ K .

For instance, when [K : Q] = p is a prime. If α ∈ R \ Z, where R is the ring of integers, then

α is a primitive element. We have

R =
⋃

α∈R\Z

Z[α]

where R \ Z is countable. Is is possible to �nd a �eld K ⊃ Q such that R 6=
⋃
Z[α] where α

a primitive element of K?

Proposition 10.4.8. Let K be a number �eld and R its ring of integers. If

R =
n⋃
i=1

Z[θi] =
m⋃
i=1

Z[αi] ,

where both unions are non-redundant, then n = m.

Proof. Since both unions are non-redundant, if j0 ∈ {1, . . . ,m}, then there exists i0 ∈
{1, . . . , n} such that θi0 ∈ Z[αj0 ] and θi0 /∈

⋃
j∈{1,...,m}\{j0} Z[αj ]. This implies that for every

j ∈ {1, . . . ,m}, there exists an i ∈ {1, . . . , n} such that Z[θj ] is the only one containing θi.

Then n ≥ m, and the same reasoning also implies that m ≥ n. Thus, n = m.

Theorem 10.4.9. Let K be a number �eld and R its ring of integers. If

R =
⋃̀
i=1

Z[θi] ,

then

` >
(

log2 n− 1
)(
σ(R)− 1

)
where n is the degree of K over Q.

Proof. Let R = Z[w1, . . . , wt] with t minimal. Then w1 ∈ Z[θ1], w2 ∈ Z[θ2], . . ., wt ∈ Z[θt]

where we may change the ordering. If w1 ∈ Z[θi] and w2 ∈ Z[θj ], then i 6= j, since otherwise
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we have R = Z[w1, w2, . . . , wt] = Z[θi, w3, . . . , wt] contradicting the minimality of t. Then

t ≤ ` and

R = Z[w1, w2, . . . , wt]

= Z[θ1, θ2, . . . , θ`]

= Z[θ1, . . . , θt−1] ∪ Z[θt, . . . , θ2t−1] ∪ · · · ∪ Z[. . . , θ`] .

Since t is minimal,

Z[θ1, . . . , θt−1] $ R,

...

Z[θt, . . . , θ2t−1] $ R,

...

are

⌈
`

t− 1

⌉
proper subrings in the above union comprising R. Then

⌈
`

t− 1

⌉
≥ σ(R)

implies that

`

t− 1
+ 1 > σ(R)

` > (t− 1)
(
σ(R)− 1

)
` >

(
log2 n− 1

)(
σ(R)− 1

)
.

The quantity ` = `(K) is an invariant of the �eld K. If ` = 1, K is said to be monogenic. If

` is �nite, then

` >
(

log2 n− 1
)(
σ(R)− 1

)
.

Some Concluding Remarks

One might ask if there exists a ring R such that R is coverable as an additive group but not as

a ring. Let K be a number �eld and R its ring of integers. We know that a group is a union

(possibly an in�nite one) of its proper subgroups if and only if it is not cyclic. Then (R,+),

which is never cyclic, is the union of its proper subgroups; however, it is not always coverable

as a ring.

We conclude with a note on �nite coverings. Let K be a number �eld and R its ring of integers

with no common factor of indices, not coverable as a ring, and admitting a prime p > 2 such

that

pR = p1p2
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where [K : Q] = n > 2. Then R/〈p〉 is not coverable as a quotient ring. Conversely,

R/〈p〉 ∼= Fq1 × Fq2 ,

where q1 = pf1 and q2 = pf2 . Then R/〈p〉 as a group is not cyclic. Thus,

R/〈p〉 = G1 ∪ . . . ∪Gr

where the Gi are proper subgroups. Since R/〈p〉 is �nite, r is �nite.

10.5 Bibliography

[1] N. J. Werner, Covering Numbers of Finite Rings, The American Mathematical Monthly,

122(6), (2015), 552�566.

94



Conclusion

We discussed in this work some Diophantine equations and various other topics. In particular,

we used well-known tools to explicitly solve some given Diophantine equations and bound

the solutions to others. We also discussed topics such as additive, multiplicative, and usual

function decompositions, a criterion for characterizing permutation polynomials, the splitting

of primes in imaginary quadratic �elds, and the covering of rings by subrings.

In chapter 1, we used a re�nement of Runge's method to prove that the number of solutions

to the equation Resx
(
P (x), x2 + sx + t

)
= a for a 6= 0 is �nite. As is typical of Runge's

method, we cannot immediately deduce anything about the size of the possible solutions to

the equation. As such, �nding other techniques to apply in place of Runge's method would

be bene�cial in �nding an computably e�ective bound for the number of solutions. Moreover,

as stated within that chapter, it is reasonable to assume that the method presented allows

for replacing x2 + sx+ t with a more general polynomial. The fully general problem remains

an open one. Speci�cally, one could inquire about solutions (s0, s1, . . . , sn) ∈ Zn+1 to the

equation

Resx
(
P (x), snx

n + · · ·+ s1x+ s0
)

= a

where a ∈ Z.

In chapter 2, we used some known results about Diophantine equations of the form aX2−bY 4 =

c with c ∈ {1, 2} to bound the number of integral points to the elliptic curve y2 = px(Ax2+2).

This number is given with respect to the values of A and p modulo 8 when A is odd, and with

respect to the values of A and p modulo 4 when A is even. This result successfully proves

a conjecture of Togbé in seven cases of the possible sixteen and also improving the general

bound for the number of solutions that he initially provided. This work has been expanded

upon by Bencherif, Boumahdi, Garici, and Schedler, who considered the equation

y2 = px(Ax2 − C)

where C ∈ {2,±1,±4}.

In chapter 3, we discuss the equation ym = P (x) where m divides degP . We show that

given su�ciently many appropriately long blocks of consecutive integers n such that P (n) are
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each of the form mq, there is a polynomial R such that P (x) = R(x)q. In e�ect, this shows

that given a su�ciently long sequence of consecutive integers n such that P (n) = mq, we can

deduce the existence of in�nitely many integral solutions to the equation yq = P (x) when q

divides degP . The bound given is not e�ectively computable, which leads to a possible area of

improvement. Additionally, one could consider the more challenging case where xq is replaced

simply by a polynomial Q(x).

In chapter 4, the method of linear forms in logarithms is used to study the solutions to

equations of the form Fn ± Fm = ya. Applying a variant of Baker-Davenport reduction, we

completely solve the equation Fn − Fm = ya for y ∈ {6, 11, 12}. We also provide a bound for

the solutions to the equation Fn + Fm = ya for �xed y. We make a remark. Our methods

deal with only a single value of y at a time, and as such, we are unable to verify all cases of

the conjecture of Erduvan and Keskin in this way. A di�erent method which does not require

�xing the value of y would be bene�cial in approaching the problem.

In chapter 5, we re�ne a criterion of Carlitz and Lutz for identifying permutation polynomials.

This allows one to characterize a polynomial over Fq as a permutation polynomial through

the degrees of certain of its powers modulo xq − x. The proof relies on a relationship between

permutation polynomials and certain symmetric polynomials evaluated at the images of Fq
induced by the polynomial. Since the study of permutation polynomials remains an active area

of research, further improvements and re�nements could provide tools to construct practical

classes of these polynomials.

In chapter 6, we study the possibility of writing a rational function over a �eld K as the

composition of two (or possibly more) rational functions of lesser degree. We build upon the

work of Ayad, and subsequently of Kihel and L., who studied the problem over C. Ayad

chose to approach the problem through the valencies of a complex polynomial and through

a polynomial generalizing its discriminant. Using an extended de�nition of the resultant, we

approach the problem over K similarly. As discussed in that chapter, the more interesting

examples which occur when the degree of the underlying rational function is divisible by the

characteristic of the �eld are not covered. This would be an interesting topic for further

research.

In chapters 7 and 8, we study the possibility of expressing a polynomial over a unique factor-

ization domain as the composed product of two polynomials of lesser degree, focusing on the

operations of composed addition and composed multiplication respectively. While considera-

tion is made for commutative rings with unity, the primary focus lies in ring extensions of Z.
We use the results to construct some examples of polynomials over Z which are irreducible

over Q but reducible over the �nite �eld Fp for all primes p.

In chapter 9, we use the properties of binary quadratic forms to bound one of the least primes

which splits in an imaginary quadratic �eld. The bound we �nd is not necessarily sharp, so
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the result could potentially still be improved with further consideration.

In chapter 10, we expand upon the work of Werner, who studied the possibility of covering a

ring by its proper subrings. We prove that the ring of p-adic integers is not coverable, that

an Artinian ring which is a union of subrings of �nite index is coverable, and we pose some

questions regarding the possible covering of rings of integers which are not monogenic. These

questions remain open, leaving room for further research.

Fairly consistent throughout this work was the appearance of the resultant. We have demon-

strated some of its usefulness and interest, including generalizing composed products, con-

structing and solving a Diophantine equation, and perhaps most interestingly as a tool in the

study of the decomposition of polynomials and rational function expressions. Note that the

Bilu-Tichy theorem states that if the Diophantine equation f(x) = g(y) has in�nitely many

solutions (x, y) where f, g ∈ Q[x], then f and g both belong to some special families of poly-

nomials up to a�ne transformations. As such, it is of interest in Diophantine applications to

determine if a given polynomial is the composition of other polynomials, and the resultant

seems a good tool to naturally relate these concepts.
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