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Percolation on random networks with arbitrary k-core structure

Laurent Hébert-Dufresne,* Antoine Allard,* Jean-Gabriel Young, and Louis J. Dubé
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The k-core decomposition of a network has thus far mainly served as a powerful tool for the empirical study
of complex networks. We now propose its explicit integration in a theoretical model. We introduce a hard-core
random network (HRN) model that generates maximally random networks with arbitrary degree distribution and
arbitrary k-core structure. We then solve exactly the bond percolation problem on the HRN model and produce fast
and precise analytical estimates for the corresponding real networks. Extensive comparison with real databases
reveals that our approach performs better than existing models, while requiring less input information.
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I. INTRODUCTION

We address the challenge of designing a realistic model
of complex networks while preserving its analytic tractability.
The model should include the essential structural properties of
real networks, and the theoretical framework should guarantee
easy access to quantitative calculations. For the second aspect
of this endeavour, we cast our analysis in terms of a percolation
problem. This has been a topic of choice for some years since
it can just as well represent the dynamics of a network as the
dynamics on the network [1–8]. One might think of its growth,
its robustness (to attacks or failures), and the propagation of
emerging infectious agents (e.g., disease or information).

While the study of percolation models on idealized net-
works has led to a better understanding of both the processes
they model and the networks that support them, the study of
percolation on real networks has somewhat stagnated. Unfor-
tunately, purely numerical approaches are time consuming,
require a complete description of the networks under scrutiny,
and lack the insights of an analytical description. Conversely,
although analytical modeling provides a better understanding
of the organization of real networks, they are limited at present
to simplified random models [see Refs. [6,9], and references
therein].

In this paper we demonstrate how the k-core structure of
networks (hereafter simply core structure) plays a central role
in the outcome of bond percolation, and how it acts as a proxy
that captures the essential structural properties of real net-
works. The ensuing model, that we call the hard-core random
network (HRN) model, creates maximally random networks
with an arbitrary degree distribution and an arbitrary core
structure. We also propose a Metropolis-Hastings algorithm
to generate such random networks. The HRN model serves
our purpose well since it is shown to be amenable to an exact
solution for the size of the extensive “giant” component (in
the limit of large network size). With less input information,
it outperforms the current standard model [10] for precise
prediction of percolation results on real networks.

The organization of this paper goes as follows. In Sec. II
we introduce the bond percolation problem and briefly present
the two models used for comparison. In Sec. III we present the
HRN model, the equations used to solve the bond percolation
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problem, and the Metropolis-Hastings algorithm generating
the corresponding random networks. We also compare the
predictions of the HRN model and the ones of the two
aforementioned models with the results obtained numerically
using real network databases. Final remarks are collected in
the last section.

II. BOND PERCOLATION ON NETWORKS

The bond percolation problem concerns the connectivity of
a network after the removal of a fraction 1 − T of its edges.
More precisely, for a synthetic or empirical network, we are
interested in the fraction S of nodes contained in the largest
connected component—the giant component—after each edge
has been removed independently with a probability 1 − T .
In the limit of large networks, this component undergoes a
phase transition at a critical point Tc during which its size (the
number of nodes it contains) becomes an extensive quantity
that scales linearly with the number of nodes (N ) of the whole
network [11].

To compare and assert the precision of the predictions of our
model, we use the configuration model (CM) and correlated
configuration model (CCM) [12–15] as benchmarks [see
Figs. 1(a) and 1(b)]. These models define maximally random
network ensembles that are random in all respects other than
the degree distribution (CM, CCM) and the degree-degree
correlations (CCM). The degree distribution {P (k)}k∈N is
the distribution of the number of connections (the degree k)
that nodes have. The degree-degree correlations are defined
through the joint degree distribution {P (k,k′)}k,k′∈N giving the
probability that a randomly chosen edge has nodes of degree
k and k′ at its ends.

For both models, the size of the giant component S

and the percolation threshold Tc can be calculated in the
limit N → ∞ using probability generating functions (pgfs)
[12–19]. To model bond percolation on a given network with
these models, we simply extract the degree distribution and the
joint degree distribution; the required information therefore
scales as kmax and k2

max. The original network is then found
within the random ensembles containing all possible networks
that can be designed with the same degree distribution and/or
degree-degree correlations. The readers unfamiliar with these
models and/or the mathematics involved can get a brief
overview of these subjects in Appendices A and B.
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(a) CM (b) CCM (c) HRN

FIG. 1. (Color online) Comparison of the three random network
models considered. (a) The CM randomly connects stubs drawn from
a given degree distribution {P (k)}k∈N. (b) The CCM distinguishes
nodes according to their degree (colors) and randomly match stubs
according to the joint degree distribution {P (k,k′)}k,k′∈N. (c) The
HRN model distinguishes nodes by their coreness (colors) and stubs
by their contribution to a node’s coreness (thicker red or smaller blue
stubs). Stubs are then randomly matched according to the matrices K
and C.

The degree distribution and the joint degree distribution can
be seen as the one-point and two-point correlation functions of
a network. The next logical step would therefore be to consider
three-point correlations (i.e., clustering), and eventually to
incorporate mesoscopic features such as motifs, cliques, and
communities. Although many theoretical models have been
proposed [19–29], a general, objective, and systematic method
to tune these models in order to reproduce the features found
in real networks as well as to predict the outcome of bond
percolation is yet to be found [30].

III. HARD-CORE RANDOM NETWORKS (HRN)

We propose an alternative approach by considering a
macroscopic measure of centrality: the coreness of nodes. This
choice is motivated by the recent observation that a node’s
coreness is a better indicator of the likeliness for that node
to be part of the giant component than its degree [31]. This
measure also has the advantage of being general, objective,
systematic, and easily calculated [32].

A. Network coreness

The coreness c of a node is specified through its position in
the core decomposition of a network [33,34]. This decompo-
sition assigns nodes to nested cores where nodes belonging to
the nth core all share at least n edges with one another. A node
has a coreness equal to c if it is found in the cth core, but not
in the (c + 1)th core. The set of nodes with a coreness equal
to c forms the c shell.

This definition of the coreness may appear complicated
to compute, but a simple algorithm allows us to do the
decomposition very efficiently [32].

1: Input graph as lists of nodes V and neighbors N
2: Output list C with coreness for each node

3: compute and list the degrees D of nodes;

4: sort V with increasing degree of nodes;

5: for each v ∈ V in the order of V do

6: C(v) := D(v);

7: for each u ∈ N (v) do

8: if D(u) > D(v) then

9: D(u) := D(u) − 1;

10: end if

11: end for

12: re-sort V accordingly

13: end for

In short, this algorithm is similar to a pruning process which
removes nodes in order of their effective degree, i.e., their
number of links shared with nodes currently ranked higher in
the process. In the end, the coreness of a node is simply given
by its degree once the peeling process reaches this particular
node. Hence, we know that a node of degree k and coreness
c has c contributing edges and k − c noncontributing edges.
Based on this key observation, we develop a coreness-based
random network model that defines a maximally random
network ensemble with an arbitrary degree distribution and
an arbitrary core structure.

B. The HRN model

The only two inputs of the HRN model are a K matrix
whose elements Kck correspond to the fraction of the nodes
that have a coreness c and a degree k, and a matrix C whose
elements Ccc′ give the fraction of edges that leave nodes of
coreness c to nodes of coreness c′. As this model considers
undirected networks, the matrix C is symmetric and each edge
is counted twice to account for both directions.

The HRN model is a multitype version of the CM [18,19,35]
in which each node is assigned to a type, its coreness, and
in which edges are formed by randomly pairing stubs that
either contribute to the node’s coreness (say, red stubs) or do
not contribute to it (say, blue stubs). Red stubs from nodes
of coreness c may be paired with blue stubs from nodes
of coreness c′ � c, or with red stubs attached to nodes of
coreness c′ = c (intrashell). Blue stubs stemming from nodes
of coreness c may only be matched with red stubs stemming
from nodes with a coreness c′ � c. Blue stubs may never be
paired together.

These rules enforce a minimal core structure, although
random variations can bring nodes to a higher coreness than
originally intended. For example, three nodes of original state
(k = 2,c = 1) could end up in the 2 shell in the unlikely
event that they form a triangle. However, such random
variations may never pull nodes to a lower coreness than
intended, in addition to being extremely unlikely in the limit
of large networks (N → ∞). The matrices K and C (see
Appendix C for consistency conditions) combined with the
aforementioned stub pairing rules define a maximally random
network ensemble with an arbitrary degree distribution and
core structure [see Fig. 1(c)].

The K matrix encodes several useful quantities. For
instance, the fraction of nodes of coreness c,

wc =
∑

k

Kck, (1)
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and the associated joint degree distribution, i.e., the probability
that a randomly chosen node of coreness c has kr red stubs and
kb blue stubs,

Pc(k) ≡ Pc(kr ,kb) = δc,kr

wc

Kkr ,kr+kb
, (2)

where δc,kr
is the Kronecker delta. Furthermore, we can extract

the average degree of nodes of coreness c,

〈k〉c = 1

wc

∑
k

kKc,k, (3)

and the average degree of the whole network

〈k〉 =
∑
c,k

kKck. (4)

It follows from the above definition that a fraction wc〈k〉c/〈k〉
of stubs stems from nodes of coreness c, of which a fraction
wcc/〈k〉 is red and a fraction wc(〈k〉c − c)/〈k〉 is blue.

The C matrix encodes the transition probability R(c′,j |c,i)
that a node of coreness c through a stub of color i [red (r)
or blue (b)] leads to a node of coreness c′ through one of its
stubs of color j . Since intershell edges can only be formed by
matching a red with a blue stub, we readily obtain

R(c′,b|c,r) = Ccc′

wcc/〈k〉 , (5a)

R(c,r|c′,b) = Ccc′

wc(〈k〉c − c)/〈k〉 , (5b)

R(c′,r|c,b) = R(c,b|c′,r) = 0, (5c)

for c < c′. Similarly, as the pairing of blue stubs is forbidden
[R(c′,b|c,b) = 0 for any c and c′], a blue stub stemming from
a node of coreness c leads to a node belonging to the same
shell (through its red stub) with probability

R(c,r|c,b) = wc(〈k〉c − c)/〈k〉 − ∑
c′′<c Ccc′′

wc(〈k〉c − c)/〈k〉 . (5d)

This last result is computed by subtracting the number of blue
stubs leading to outer shells (i.e., lower coreness) to the total
number of blue stubs stemming from nodes of coreness c,
and then by normalizing [

∑
c′,j R(c′,j |c,i) = 1 for c ∈ N and

i ∈ {r,b}]. Finally, symmetry with Eq. (5d) implies that

R(c,b|c,r) = wc(〈k〉c − c)/〈k〉 − ∑
c′′<c Ccc′′

wcc/〈k〉 , (5e)

and normalization leads to

R(c,r|c,r) = 2wcc/〈k〉 − Ccc − 2
∑

c′′>c Ccc′′

wcc/〈k〉 , (5f)

where we have used the fact that
∑

c′′ Ccc′′ = wc〈k〉c/〈k〉.
To compute the size of the giant component in the limit of

large networks (N → ∞), we define a probability generating
function (pgf)

gc(x) =
∑

k

Pc(k)
∏

i

⎡
⎣(1 − T ) + T

∑
c′,j

R(c′,j |c,i)xc′j

⎤
⎦

ki

(6)
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FIG. 2. (Color online) Validation of the HRN model. The pre-
dictions of Eqs. (9) and (10) (lines) are compared with the results
obtained on networks generated with the Metropolis-Hastings al-
gorithm described in Sec. III C (symbols). The matrices K and C
were extracted from an email network, the MathSciNet co-authorship
network, and a power grid chosen for their different behaviors (see
Table I for data set details). Numerical results (symbols) represent
the average value of over 5 × 105 simulations performed on networks
with more than 3 × 105 nodes.

that generates the distribution of the number of nodes of each
type (i.e., coreness c′) that can be reached from a node of
coreness c (the subscript j of the variable xc′j indicates the
color of the stubs from which the node has been reached).
To understand this last equation, consider a stub of color
i stemming from a node of coreness c. This stub leads to
an edge that has been removed with probability 1 − T , or
leads to a node of coreness c′ through one of its stubs
of color j with probability T R(c′,j |c,i). Since both the
stub pairing and the edge removal are done randomly and
independently, the distribution of the number of nodes that are
neighbors of a node of coreness c having ki stubs of color i

is generated by the pgf [(1 − T ) + T
∑

c′,j R(c′,j |c,i)xc′j ]ki ,
a multinomial distribution. Multiplying the pgfs for both stub
colors (neighborhood from stubs of different colors are also
independent) and averaging over the distribution of the number
of stubs of each color that nodes of coreness c have, Pc(k),
leads to Eq. (6).

Similarly, if the node had previously been reached via one
of its red stubs, the distribution of its neighbors reachable
via its other stubs—its excess degree distribution—is simply
generated by the pgf

fcr (x) =
∑

k

Pc(k)
∏

i

⎡
⎣1 − T + T

∑
c′,j

R(c′,j |c,i)xc′j

⎤
⎦

ki−δir

.

(7)

Finally, if the node had been reached via one of its blue stubs
instead, the distribution of its neighbors reachable via its other
stubs is generated by the pgf

fcb(x) =
∑

k

kbPc(k)

〈k〉c − c

×
∏

i

⎡
⎣1 − T + T

∑
c′,j

R(c′,j |c,i)xc′j

⎤
⎦

ki−δib

. (8)
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FIG. 3. (Color online) Results of bond percolation on real networks (black dots) compared with analytical predictions obtained with the
CM (short dashed blue), CCM (long dashed green), and HRN (full red). The networks are: (a) Internet at the level of autonomous systems, (b)
a snapshot of the Gowalla location-based social network, (c) the Pretty-Good-Privacy trust network, (d) a subset of the World Wide Web, (e)
the co-authorship network of MathSciNet before 2008, and (f) a large subset of the Facebook social network. See Table I for further details.

In this case, the probability over which [(1 − T ) + T
∑

c′,j
R(c′,j |c,i)xc′j ]ki must be averaged is weighted by the number
of blue stubs that the node has (the denominator 〈k〉c − c is
simply the normalization constant). For instance, since stubs
are paired randomly, a randomly chosen blue stub is ten times
more likely to belong to a node that has ten blue stubs than a
node that has one.

These pgfs in hand, the size of the giant component can be
expressed as [35]

S = 1 −
∑

c

wcgc(a), (9)

where a ≡ {aci}c∈N,i∈{r,b} is the probability that a node of
coreness c reached by one of its stubs of color i does not
belong to the giant component. More precisely, a node of
coreness c belongs to the giant component if at least one of
its neighbors belongs to it, which happens with probability
1 − gc(a). The size of the giant component is then obtained by
averaging this probability over the fraction of nodes that are of
coreness c. The probabilities a ≡ {aci}c∈N,i∈{r,b} are obtained
through a self-consistency argument: If a node of coreness c

reached via one of its stubs of color i does not belong to the

giant component, then neither should the nodes that can be
reached from it. Hence these probabilities correspond to the
stable fixed point of the system of equations

aci = fci(a), (10)

with c ∈ N and i ∈ {r,b}. As the distributions generated by
fci(x) are normalized, a = 1 is always a solution of Eq. (10)
and corresponds to the subcritical regime S = 0. At T = Tc,
this fixed point undergoes a transcritical bifurcation and loses
its stability to another solution in [0,1)2cmax . This supercritical
regime corresponds to the existence of a giant component
(S > 0); the critical point Tc is obtained from a stability
analysis of Eq. (10) around a = 1.

C. Numerical HRN networks

To generate networks with a given core structure, we start
with N 	 1 nodes whose number of stubs is drawn from the
degree distribution {P (k)}k∈N = {∑c Kck}k∈N, and randomly
match stubs to create edges (as done for the CM [13]).
Next, for each node, we assign a coreness c with probability
Qk(c) = Kck/P (k); c of its stubs are then randomly selected
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FIG. 4. (Color online) Results of bond percolation on real net-
works (black dots) compared with analytical predictions obtained
with the CM (short dashed blue), CCM (long dashed green), and
HRN (full red). The networks are: (a) a subset of the power grid of
Poland, and (b) the Western States Power Grid of the United States.
See Table I for further details.

as red and the k − c others are identified as blue. Finally, we
apply the following Metropolis-Hastings rewiring algorithm
(similar to the one proposed in Ref. [14]). At each step, two
edges are randomly selected: edge 1 joins nodes of coreness

c1 and c′
1 via their respective stubs of color i1 and j1 (c2, i2, c′

2,
and j2 for edge 2). We replace these two edges by edge 3 (c1,
i1, c2, and i2) and edge 4 (c′

1, j1, c′
2, and j2) with probability

min

{
1,

�(c1,i1; c2,i2)�(c′
1,j1; c′

2,j2)

�(c1,i1; c′
1,j1)�(c2,i2; c′

2,j2)

}
,

where �(c,i; c′,j ) is the wanted fraction of edges that join
nodes of coreness c and c′ via their respective stubs of color i

and j . These fractions are readily obtained from the matrix C
[joint probabilities of Eqs. (5)]

�(c,r; c′,b) = �(c′,b; c,r) = Ccc′ ,

�(c,r; c,b) = �(c,b; c,r) = wc(〈k〉c − c)/〈k〉 −
∑
c′′<c

Ccc′′ ,

�(c,r; c,r) = 2wcc/〈k〉 − Ccc − 2
∑
c′′>c

Ccc′′ , (11)

where c < c′, and �(c,i; c′,j ) is zero for all other combina-
tions. This procedure preserves the degree distribution, and
up to finite-size constraints, has the wanted core structure as
its fixed point and is ergodic over the ensemble of networks
defined by the HRN model. Figure 2 compares the predictions
of Eqs. (9) and (10) with the size of the giant component
found in networks generated through this algorithm and shows
a perfect agreement.

D. Results

Figures 3 and 4 display the predictions of Eqs. (9) and (10)
with the size of the giant component found in real networks
(see caption and Table I for a complete description), and with
the predictions of the CM and the CCM. These particular
networks were chosen to highlight some important results.

TABLE I. Description and properties of the real networks used in Figs. 2–5.

Description N 〈k〉 kmax cmax Fig. Ref.

Web of trust of the Pretty Good Privacy (PGP) encryption algorithm 10 680 4.55 205 31 3(c), 5 [36]
Structure of the Internet at the level of autonomous systems 22 963 4.22 2390 25 3(a),5 [47]
Large subset of the Facebook social network 63 891 5.74 223 16 3(f), 5 [38]
Snapshot of the Gowalla location-based social network 196 591 9.67 14 730 51 3(b), 5 [39]
Email exchange network from an undisclosed European institution 300 069 2.80 7 631 31 2, 5 [40]
Subset of the World Wide Web 325 729 6.69 10 721 155 3(d), 5 [41]
Co-authorship network of MathSciNet before 2008 391 529 4.46 496 24 2, 3(e), 5 [42]

Subset of the power grid of Poland 3 374 2.41 11 5 2, 4(a), 5 [43]
Western States Power Grid of the United States 4 941 2.67 19 5 4(b), 5 [44]

Email communication within the University Rovira i Virgili 1 134 9.07 1 080 8 5 [45]
Protein-protein interactions in S. cerevisiae 2 640 5.00 111 8 5 [45]
Word association graph from the South Florida Free Association norms 7 207 8.82 218 7 5 [45]
Network of hyperlinks between Google’s webpages 15 763 18.96 11 401 102 5 [46]
Reply network of the social news website Digg 30 398 5.60 283 9 5 [48]
The cond-mat arXiv co-authorship network circa 2005 30 561 8.24 191 15 5 [45]
Snapshot of the Gnutella peer-to-peer network 36 682 4.82 55 7 5 [37]
Email interchanges between different Enron email addresses 36 692 10.02 1 383 43 5 [49]
Brightkite location-based online social network 58 228 7.35 1 134 52 5 [39]
Network of tagged relationships on the Slashdot news website 77 360 12.13 2 539 54 5 [50]
Friendships between 100 000 Myspace accounts 100 000 16.82 59 108 78 5 [51]
Network of interactions between the users of the English Wikipedia 138 592 10.33 10 715 55 5 [53]
Co-acting network in movies released after December 31st 1999 716 463 21.40 4 625 192 5 [47]
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FIG. 5. (Color online) Relation between the highest coreness
cmax and the highest degree kmax for different real networks. The
dashed line corresponds to cmax ∝ √

kmax.

We find that the HRN model performs at least as well as the
CCM in all investigated cases. First, this observation is inter-
esting as the HRN model requires less input information than
the CCM. Indeed the required information scales roughly as
kmaxcmax + c2

max. As shown in Fig. 5, cmax scales approximately
as k

1/2
max in many real networks, hence the input information in

the HRN model scales roughly as k
3/2
max. Considering the fact

that kmax in real networks is often well above 102 (see Table I),
this difference results in a much faster computation and a major
memory gain.

Second, although the HRN model does not account explic-
itly for the degree-degree correlations, they are effectively
captured by the matrices K (degree-coreness correlations)
and C (coreness-coreness correlations). This is confirmed
in all available real networks as seen in Figs. 3 and 4 and
in Table II (see the correlation coefficient r). The difficulty
observed in replicating the Polish power grid correlation
coefficient is most likely a coarse-graining effect since power
grids a have particularly low number of c shells (cmax = 5).
Table II further investigates the efficiency of the HRN model
to reproduce the structural properties of real networks by
comparing the clustering coefficients and the mean shortest
paths found in both the real networks and their equivalent
HRN networks. As expected for any random networks, the
HRN model has vanishing clustering. Its relatively good
performance for the Internet is a mere consequence of the
small size of some of the c shells. Furthermore, the HRN
model once more performs at least as well as the CCM in
reproducing the mean shortest path. In fact, the extent by which
HRN outperforms the CCM in replicating the mean shortest
path also appears to be a good indicator of the accuracy gain
in predicting percolation.

Moreover, and perhaps surprisingly, we see in Fig. 4(a) that
the “S” shape obtained from the Polish power grid, typically
due to finite size, is well reproduced by the HRN model, which
is formally infinite in size. More precisely, this shape is usually
attributed to the finite size of the network (N = 3374 for the
Polish power grid) as the small components—whose average
size formally diverges at T = Tc—are misinterpreted as an
emerging giant component. Interestingly, the results from the
HRN model suggest that this shape is not a numerical artifact
of the percolation algorithm, but that it is rather a signature
of its geographically embedded nature due to strong coreness-
related correlations. This unexpected property of the HRN
model is confirmed on another, more clustered, Western States

TABLE II. Comparison of the clustering coefficient C [44], the
degree correlation coefficient r [14], and the mean shortest path �

[44] found in three real networks considered in this paper and in
the equivalent HRN networks of the same size generated using the
algorithm presented in Sec. III C. The three networks correspond to a
representative sample of the different behaviors observed with the real
networks presented in Table I. The mean shortest paths are expressed
as a ratio with the mean shortest paths obtained in the equivalent
CCM networks (�CCM = 3.68, 5.40, and 9.44 for the Internet, PGP,
and Polish power grid networks, respectively).

Network C r �/�CCM

Internet 0.230 −0.099 1.04
Internet HRN 0.116 −0.083 1.00

PGP 0.266 0.490 1.39
PGP HRN 0.011 0.508 1.14

Polish grid 0.019 0.677 1.55
Polish grid HRN 0.002 0.528 1.25

power grid in Fig. 4(b). In this case, adding clustering to the
HRN is expected to shift its prediction towards higher values
of T , i.e., closer to the results from the real network. In fact,
the HRN model is more accurate in predicting percolation on
the Polish power grid (clustering coefficient C = 0.02) than
for the Western States power grid (C = 0.08). A clustered
version of the HRN model seems to offer a promising avenue
for the modeling of geographically embedded networks such
as power grids.

In this regard, the results of Figs. 3(e) and 3(f) add even
more emphasis on the importance of including the effect
of clustering in a subsequent version of the HRN model.
Indeed, co-authorship networks 3(e) are notoriously clustered
networks as authors of a same paper are all connected via
a fully connected clique. Similarly, in Facebook 3(f), people
belonging to a same social group (e.g., classmates, colleagues,
teammates) tend all to be connected to one another, yielding
almost fully connected cliques. Again, we expect in this
situation that clustering would reduce the size of the giant
component (due to redundant connections in cliques), hence
bringing the predictions of a clustered HRN model closer to
the behaviors observed with the real networks.

IV. CONCLUSION

We have shown that the core structure can be useful
beyond the characterization and visualization of networks. It
serves modeling efforts well and is efficient in reproducing
the structural properties of real networks. Moreover, a few
simple connection rules can enforce a core structure in random
networks for which the outcome of bond percolation can be
predicted with the well-established pgf approach [52]. We
feel that this work sets the stage for further improvements
(specifically the inclusion of clustering) and paves the way
towards a more complete analytical description of percolation
on real networks.
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APPENDIX A: CONFIGURATION MODEL

The most influential quantity with regard to bond percola-
tion on networks is the degree distribution: The distribution
of the number of connections (degree) that nodes have. The
simplest analytical model that incorporates an arbitrary degree
distribution is the CM [12,13]. It defines a maximally random
network ensemble that is random in all respects other than the
degree distribution {P (k)}k∈N: The probability for a randomly
chosen node to have a degree equal to k. Networks of this
ensemble are generated by creating a set of N nodes, each
with a number of stubs drawn from the degree distribution,
and then by pairing randomly stubs to form edges.

To compute the size SCM of the giant component and
the value T CM

c of the percolation threshold, we define the
probability generating function [13]

g(x) =
∞∑

k=0

P (k)[(1 − T ) + T x]k (A1)

that generates the degree distribution. The first derivative of
g(x) evaluated at x = 1 corresponds to the average degree of
the nodes g′(1) = 〈k〉. We also define

f (x) = g′(x)

g′(1)
= 1

〈k〉
∞∑

k′=1

k′P (k′)[(1 − T ) + T x]k
′−1 (A2)

that generates the number of other neighbors of a node that has
been reached by following a randomly chosen edge (i.e., the
excess degree distribution). The size of the giant component is
directly obtained via

SCM = 1 − g(aCM), (A3)

where aCM is the probability that a randomly chosen edge does
not lead to the giant component. It is the stable fixed point of

aCM = f (aCM) (A4)

in [0,1]. The solution aCM = 1 corresponds to the absence of a
giant component (SCM = 0). The percolation threshold is the
point at which this solution becomes unstable.

To model bond percolation on a given network with the CM,
one simply has to extract the degree distribution; the required
information therefore scales as kmax, the highest degree of the
network. The original network is then found within the network
ensemble generated by the CM, the ensemble composed of all
possible networks one could design with the exact same degree
distribution.

APPENDIX B: CORRELATED CONFIGURATION MODEL

Apart from the degree distribution, real networks are
typically characterized by strong correlations regarding who
is connected with whom. One way to include such correlations
into a random network model is through the joint degree

distribution {P (k,k′)}k,k′∈N giving the probability that a
randomly chosen edge has nodes of degree k and k′ at its
ends. This yields a correlated configuration model (CCM)
that defines a maximally random network ensemble having
arbitrary degree-degree correlations with a corresponding
degree distribution [14,15]. The degree distribution is encoded
in {P (k,k′)}k,k′∈N through the identity

∑
k′

P (k,k′) = kP (k)

〈k〉 . (B1)

Generating networks from this ensemble proceeds as for the
CM: N nodes, whose degrees are drawn from {P (k)}k∈N, are
connected via the stub pairing scheme. A Metropolis-Hastings
rewiring algorithm [14] is then applied whose fixed point is
the network ensemble defined by {P (k,k′)}k,k′∈N. At each step,
two edges are randomly chosen: edge 1 joins nodes m1 and n1

with respective degree i1 and j1 (m2, n2, i2, and j2 for edge 2).
These two edges are replaced by edge 3 (m1, m2, i1, and i2)
and edge 4 (n1, n2, j1, and j2) with probability

min

{
1,

P (i1,i2)P (j1,j2)

P (i1,j1)P (i2,j2)

}
. (B2)

The size SCCM of the giant component is computed as in
the CM [14]

SCCM = 1 −
∞∑

k=0

P (k)[(1 − T ) + T ak]k = 1 − g(a), (B3)

where a = {ak}k∈N is the set of probabilities that an edge
leading toward a node with a degree k is not attached to the
giant component. They correspond to the stable fixed point in
[0,1]kmax of the system of equations

ak =
∑

k′ P (k,k′)[(1 − T ) + T ak′]k
′−1∑

k′ P (k,k′)
, (B4)

with k ∈ N. The value Tc of the percolation threshold is the
value for which the fixed point a = 1 of Eqs. (B4) becomes
unstable.

To model bond percolation on a given network with the
CCM, one simply has to extract the joint degree distribution.
This is achieved by scanning the degree of the two nodes at
the end of each edge of the network; the required information
therefore scales as k2

max. The original network is then found
within the random network ensemble of all networks with the
same degree distribution and degree-degree correlations. Note
that this ensemble is a subset of the ensemble generated by the
CM with the same degree distribution.

APPENDIX C: CONSISTENCY CONDITIONS ON K AND C

The consistency conditions on the matrices K and C can
be summarized as follows: They must encode an ensemble of
closed networks. In other words, all stubs must be paired, and
this must be done in accordance with the stubs matching rules
(e.g., two blue stubs cannot be paired). Consequently, there is
no k-core structure that the HRN model cannot model as long
as it is realistic. This will always be the case when K and C
are extracted from real networks.

First, there must be as many edges leaving nodes of coreness
c toward nodes of coreness c′ as there are in the opposite
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direction. This requires that Ccc′ = Cc′c, a condition that is
always fulfilled since C is defined as a symmetric matrix

C = CT. (C1)

Second, the degree of each node is bounded from below by its
coreness, hence

Kck = 0 for k < c. (C2)

Third, both K and C must prescribe the same number of stubs
stemming from nodes of coreness c,∑

k

kKck = 〈k〉
∑
c′

Ccc′ , (C3)

where the extra factor 〈k〉 accounts for the fact that K “counts”
nodes, whereas C counts stubs (i.e., multiplying both sides by
the number of nodes N yields absolute numbers instead of per
capita averages). Finally, as the coreness of the nodes defines

their number of red stubs, the matrix C is subjected to the
following additional constraints for every c:

〈k〉
∑
c′>c

Ccc′ � wcc � 〈k〉
∑
c′�c

Ccc′ . (C4)

The first inequality states that there must be at least as many
red stubs stemming from nodes of coreness c as there are edges
leaving the c shell toward nodes of higher coreness. Equality
then means that all red stubs lead to nodes of higher coreness.
The second inequality states that all red stubs must lead to
nodes of coreness c or higher. Equality occurs when all blue
stubs are directed toward nodes of coreness c′ < c. A similar
expression to (C4) can be derived for blue stubs

〈k〉
∑
c′<c

Ccc′ � (〈k〉c − c)wc � 〈k〉
∑
c′�c

Ccc′ , (C5)

and can be interpreted analogously.

[1] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks:
From Biological Nets to the Internet and WWW (Oxford
University Press, Oxford, 2003).

[2] L. A. Meyers, Bull. Am. Math. Soc. 44, 63 (2007).
[3] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno, and

Z. Changsong, Phys. Rep. 469, 93 (2008).
[4] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,

Rev. Mod. Phys. 80, 1275 (2008).
[5] R. Cohen and S. Havlin, Complex Networks: Structure, Robust-

ness and Function (Cambridge University Press, Cambridge,
2010).

[6] M. E. J. Newman, Networks: An Introduction (Oxford University
Press, Oxford, 2010).
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[36] M. Boguñá, R. Pastor-Satorras, A. Dı́az-Guilera, and A. Arenas,

Phys. Rev. E 70, 056122 (2004).
[37] M. Ripeanu and I. Foster, in Peer-to-Peer Systems, edited by

P. Druschel, F. Kaashoek, and A. Rowstron (Springer, Berlin,
2002), pp. 85–93.

[38] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi,
in Proceedings of the 2nd ACM Workshop on Online Social
Networks—WOSN ’09 (ACM, New York, NY, 2009), pp. 37–42.

[39] E. Cho, S. A. Myers, and J. Leskovec, in Proceedings of the
17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (ACM, New York, NY, 2011), pp.
1082–1090.

[40] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM Trans. Knowl.
Discov. Data 1, 2 (2007).

[41] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[42] G. Palla, I. J. Farkas, P. Pollner, I. Derényi, and T. Vicsek,
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