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Complex networks as an emerging property of hierarchical preferential attachment
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Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction.
Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an
important class of complex systems can be modeled as an organization of many embedded levels (potentially
infinite in number), all of them following the same universal growth principle known as preferential attachment.
We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of
the film industry. More importantly, we show how real complex networks can be interpreted as a projection
of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their
navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite
simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical
nature.
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I. INTRODUCTION

The science of complexity is concerned with systems
displaying emerging properties: systems where the properties
of the whole do not directly follow from the properties of the
parts [1]. However, we intend to show how one property of the
whole, hierarchy, can alone be the origin of more complex
features. We will describe hierarchical systems through a
general model of colored balls in embedded bins which itself
explains the emergence of other features through the projection
of these hierarchical systems onto complex networks.

Most real networks tend to feature properties not found
in most classic models of sparse random networks: scale
independence, fat-tailed degree distribution [2,3]; modularity,
the grouping of nodes in denser groups [4–6]; hierarchy, the
embedding of multiple levels of organization [7,8]; fractality,
the self-similarity between levels of organization [9,10];
and navigability, the possibility of efficient communication
through a hidden metric space [11–13].

Sophisticated algorithms can be designed to reproduce most
of these features, often based upon a multiplicative process to
force their emergence by reproducing a basic unit on multiple
scale of organization [14,15]. These models are useful as
they can create realistic structures and test hypotheses about
measured data. However, these constructions are not intended
to provide any insights on the underlying mechanisms behind
the growth of the system.

In contrast, generative models are quite successful at
suggesting principles of organization leading to specific prop-
erties. For example, simple models exist to propose possible
origins for scale independence [3] or of the small-world effect
[4], but they fail to model the emergence of properties not
included by design. Consequently, the identification of new
universal properties requires the creation of new generative
models. It is fair to say that a single unifying principle has yet
to be proposed.

In this paper, we aim to close the gap between complex
deterministic algorithms and simple stochastic growth models.
The hierarchical nature of networks suggests that the observed

links between nodes are merely projections of higher structural
units [6,8,16] (e.g., people create groups within cities in
given countries). These subsystems will be our focus. We use
one general assumption to design an equally general model
of hierarchical systems: all embedded levels of organization
follow preferential attachment.

On the one hand, our model can be seen as a generalization
of classical preferential attachment models [6,16–20]. We can
thus apply methods developed in this context by generalizing
them to hierarchical systems. On the other hand, our model
fills the gap to previous studies wishing to introduce nontrivial
structural properties, such as clustering and centrality. Past
models manipulate the networks through local rules to add,
remove, or rewire links: for instance, triadic closure [21,22] or
copying mechanisms [23,24]. We find that complex properties
emerge more naturally when changing the focus of the model
from the actual network and its properties to the hierarchical
system that produces it.

We validate this model on the well-documented data set of
production entities in the film industry (i.e., producers produce
films within companies in given countries). We then study the
structure of the projection of this system onto a complex net-
work of coproductions between film producers. Interestingly,
the resulting networks feature a scale-independent hierarchical
organization, community structure, fractality, and navigability.

The paper is structured as follows. In Sec. II, we provide
a brief review of preferential attachment (PA), followed
by an overview of structural preferential attachment (SPA)
in Sec. III. In Sec. IV, we generalize this organization
principle to a family of processes generating hierarchical
systems of embedded structural levels. A particular process
of this family is then algorithmically described in Sec. IV B
and mathematically studied in Sec. IV C. In Sec. V, we
explain how complex networks can be obtained from this
process by projecting a hierarchical system onto a chosen
structural level. Finally, our conclusions are presented in
Sec. VI and a few technical details are covered in two short
Appendixes.
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II. PREFERENTIAL ATTACHMENT (PA)

The preferential attachment principle is a ubiquitous rich-
get-richer mechanism modeling complex systems of all sorts
[2,3,6,25–28]. It implies that the likelihood for a given entity
to be involved in a new activity is roughly proportional to
its total past activities. For instance, an individual with 10
acquaintances in a social network is roughly 10 times more
likely to gain a new connection than one with a single
acquaintance. This does not imply causation; the individual
does not necessarily gain a new connection because of its
existing ones, but merely that its past is a good indicator
of its future activity. This simple mechanism leads to a
scale-independent distribution of the activity in question,
modeling any system where the distribution of a resource
among a population roughly follows a power-law distribution.
Consequently, the number Ns of individuals with a share s

(∈ N) of the resource scales as s−γ , where γ is called the
scaling exponent.

In practice, we consider a discrete time process where,
during a time step �t = 1, a new element i of share si = 1 is
introduced within the system with rate B (birth event) or the
share sj of an existing element j is increased to sj + 1 with
rate G (growth event). We can write a rate equation governing
the expected number of individuals Ns with a given share s:

Ns(t + 1) = Ns(t) + Bδs,1

+ G∑
sNs(t)

[(s − 1)Ns−1(t) − sNs(t)], (1)

where
∑

sNs(t) is the sum of all shares (total resource) used
to normalize the transition probabilities and which rapidly
converges to (B + G)t . Consequently, we will hereafter
use

∑
s sNs(t) = (B + G)t interchangeably whenever they

appear. Since B is the birth rate, the evolution of the normalized
distribution {Ñs(t)} can be obtained by replacing Ns(t) by
tBÑs(t):

(t + 1)BÑs(t + 1) = tBÑs(t) + Bδs,1

+ GB

B + G
[(s − 1)Ñs−1(t) − sÑs(t)].

(2)

Solving at statistical equilibrium, i.e., Ñs(t + 1) = Ñs(t) =
Ñ∗

s , yields

(
1 + s

G

B + G

)
Ñ∗

s = G

B + G
(s − 1)Ñ∗

s−1 + δs,1 (3)

or more directly for s > 1

Ñ∗
s =

∏s−1
m=1

G
B+G

m∏s
m=1

(
1 + G

B+G
m

) . (4)

Asymptotically for s → ∞, this steady state can be shown to
scale as a power law

lim
t,s→∞ Ñ∗

s (t) ∝ s−γ with γ = 2 + B

G
. (5)

III. STRUCTURAL PREFERENTIAL ATTACHMENT (SPA)

With the ongoing focus on the modularity of complex
systems, e.g., the community structure of networks, it is
essential to be able to consider structural properties of real
systems within preferential attachment processes. In a recent
study, we have introduced colored balls to represent individuals
in social systems where unique individuals (unique colors) are
a resource for communities (boxes) and vice versa [6,16].
This can be mapped to a process where colored balls are
placed in boxes. Balls of the same color are meant to represent
different activities of the same individual, just as different
boxes represent different structures growing by receiving new
balls. We have extended preferential attachment to structured
systems: just as an individual involved in more social groups is
more likely to join a new group, a larger social group is more
likely to gain new members than a small one. We have coined
the name structural preferential attachment (SPA) to describe
this first level of extension of the PA principle.

In SPA, the two important quantities are the membership of
a given color, i.e., the number of structures in which that color
is found, and the size of a given structure, i.e., the number of
balls it contains. They can be followed by the rate equation
approach of Eq. (1). In distinction to the previous section, we
now have a first structural level, and our notation reflects this
extension by an extra index on the associated quantities. In the
case of memberships, the share of a ball is now the number
m of apparitions in different structures, whereas in the case of
sizes, the share of a structure is now the number n of balls it
contains. Hence, in both cases, the total resource is given by
the sum of all balls found in the system, regardless of their
colors. We can thus write

N1,m(t + 1) = N1,m(t) + (N)B1 δm,1 +
(N)G1

( (N)B1 + (N)G1)t

× [(m − 1)N1,m−1(t) − mN1,m(t)] (6)

for the number N1,m of different colors with memberships m

at the first structural level. (N)B1 and (N)G1 now represent the
rates of introducing a new color (birth) or reusing an old one
(growth), respectively. Similarly, the number of structures S1,n

of size n evolves as

S1,n(t + 1) = S1,n(t) + (S)B1 δn,1 +
(S)G1

( (S)B1 + (S)G1)t

× [(n − 1)S1,n−1(t) − nS1,n(t)]. (7)

Since Eqs. (6) and (7) and (1) are similar, the normalized dis-
tributions {Ñ1,s(t)} and {S̃1,s(t)}, with X1,s(t) = t (X)B X̃1,s(t)
(with X = N or S), satisfy equations of the form (2) whose
stationary solutions reproduce Eq. (4)

X̃∗
1,s =

∏s−1
m=1

(X)G1
(X)B1 + (X)G1

m

∏s
m=1

(
1 + (X)G1

(X)B1 + (X)G1

m

) , (8)
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FIG. 1. (Color online) An example of hierarchical structure. Individuals involved in workshops taking place in given states or provinces
forming countries within continents (four embedded structures).

from which we recover the scaling exponents directly:

lim
t,m→∞ Ñ∗

1,m(t) ∝ m−γN,1 with γN,1 = 2 +
(N)B1
(N)G1

, (9a)

lim
t,n→∞ S̃∗

1,n(t) ∝ n−γS,1 with γS,1 = 2 +
(S)B1
(S)G1

. (9b)

In the context of social networks, this new process leads
to a scale-independent community structure, where both the
distribution of members per community and the distribution of
communities per individual asymptotically follow a power-law
organization. However, considering that this organization is
found in distributions of friends [3], of members in social
groups [6], and of city population [29], it is natural to ask
the following: How would a preferential attachment occurring
on multiple structural levels influence the created system? It
is a popular idea that complexity frequently takes the form
of hierarchy and that a hierarchical organization influences the
property of the whole independently of the nature of its content
[1]. With the recent successes of preferential attachment
models, we hereafter propose a generalization for hierarchical
systems.

IV. HIERARCHICAL PREFERENTIAL
ATTACHMENT (HPA)

We now generalize the process of Sec. III by considering
systems consisting of an arbitrary number d of embedded
levels of organization. Hence, we can describe hierarchical
preferential attachment (HPA) as a scheme of throwing colored
balls in d embedded levels of structures, which can be pictured
as Russian dolls but different.

A. Qualitative description

We will start with a tongue-in-cheek example of what a
model of HPA could be. Its precise nature is of no concern, but
serves its illustrative purpose well, for preferential attachment
(classic, structural, hierarchical, or otherwise) is not meant to
mimic the actual mechanisms or microscopic details at play
in any system [27]. In the following, the proposed urn scheme
should be seen as a potential abstract model for the statistical
properties of the system.

Let us assume that we want to study the distribution of
scientists who have attended a small workshop held yearly in
different states around the world. The network can then be
constructed by ignoring time and simply assigning scientists
to the different editions: we assign individual scientists to

embedded structures (workshops held in geographical re-
gions). Each structural level follows the preferential attach-
ment principle based on the substructures they contain. Con-
sider, for instance, the example of Fig. 1: we are assigning one
scientist to one workshop and to do so we must progressively
go down the hierarchy of d = 4 embedded structures. In
this case, large-scale structures represent continents (level
k = 1) containing countries (level k = 2) containing provinces
or states (level k = 3) containing fine-grained structures
representing workshops (level k = 4); this should be enough
to describe the global system (planet Earth, level k = 0). Thus,
the level k refers to different resolution of coarse graining, such
that large-scale structures mean low resolution (small k) and
fine-grained structures mean high resolution (large k).

We now choose a workshop. On Fig. 1, we associate the
scientist to an existing continent k = 1, in this case North
America, then within that continent we select a country k = 2,
Canada, then a province or state k = 3, Québec, and finally a
single workshop k = 4, a workshop in Québec City. At each
level, the process follows the preferential attachment principle;
e.g., the city was chosen proportionally to the number of
workshops therein.

We can now determine the identity of the scientist. This is
achieved by lowering the resolution progressively and probing
all structural levels with the following question: Is the scientist
a new participant? For instance, the scientist could be new to
Canada (i.e., he has never attended a workshop in Canada), but
not to North America, in which case his identity is borrowed
from the United States or Mexico proportionally to his past
activity in these two countries.

These embedded preferential attachment processes can be
used to impose multiple constraints. Perhaps some countries
host the workshop more often than others (preferential at-
tachment at each structural level), and maybe some scientists
seldom travel out of their own continent.

The HPA process can be mathematically described by
using d different versions of Eq. (6) for the memberships
of individuals (e.g., how many level k structures in which
a given individual is found) and d more of Eq. (7) for the
sizes of structures [e.g., how many level (k + 1) structures
in each level k structures]. The dynamics is then completely
determined, assuming we set the birth (N,S)Bk and the growth
(N,S)Gk rates properly at each level k.

B. Algorithmic description

We now describe a particular HPA model based on Simon’s
preferential attachment process [27] and explicitly show how it
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LAURENT HÉBERT-DUFRESNE et al. PHYSICAL REVIEW E 92, 062809 (2015)

(a) (b)

103041420450231034

5

4

3

2

1

0
(c)

FIG. 2. (Color online) Schematization of hierarchical preferential attachment. HPA process frozen in time as a ball labeled 4 (the label
representing a “color”) is added to a d = 3 hierarchical structure. The process goes as follows. In this event, a structure at level 1 is chosen
for growth (probability 1 − p1). Among the five structures of level 1 (total size 8), the structure β of size 2 is chosen for growth (probability
2/8). Then, into the selected structure β, a smaller structure labeled γ of size 1 is chosen for growth [probability (1 − p2) × 1/2] and finally a
level 3 structure labeled δ of size 1 [probability (1 − p3) × 1/1]. Since qd=3 = 1 by construction, the “color” has to be new for δ (probability
q3). Then, the color is also new for γ because it is a size 1 structure and the logical constraint applies. The color is chosen to be new for β

(probability q1), but old for level 0 structure labeled α (probability 1 − q0). At this point, the accessible “colors” are those labeled 1 and 4.
Balls 0, 2, 3, and 5 can not be chosen since the color should be new for structure β. Balls 1 and 4 have the same probability of being chosen as
they both belong to three level 1 structures. The ball 4 is then chosen with probability 3/6 and placed in δ. (a) Hierarchical representation as an
inverted tree. Navigating downwards corresponds to moving towards ever smaller structures until we reach the balls therein. (b) Representation
as labeled balls in embedded levels of structures. (c) Possible network representation of the system. In this case, two nodes share an edge if
they belong to a same level 3 structure. Adding ball number 4 to structure δ creates the link highlighted in bold.

can be followed algorithmically. The next subsection will then
formalize the approach with an analytic description. Some
visual representations of the model are given in Fig. 2 and a
large hierarchical structure simulated with HPA is presented
in Fig 3.

The model is represented either as a literal system of balls
in embedded bins, or as the hierarchy it describes. For the
rest of the paper, we will refer interchangeably to a level k

structure as k-structure. Each event, or time step, is simply the
act of throwing an additional ball in the system which depends
on parameters pk with k ∈ [0,d + 1] and qk with k ∈ [0,d].
It will soon become clear that some of these parameters are
trivially assigned to avoid irregularities in the equations: p0 =
0, pd+1 = 1, and qd = 1.

FIG. 3. (Color online) An example of HPA. HPA process for 250
steps on a structure of d = 3 levels. Each radius represents a level
of organization. The nodes are found at the outermost circle and a
unique color (shades of blue, more than 50) specifies their identity.

The general process goes as follows. At every time step
�t = 1, an event takes place: a ball is thrown in d embedded
structures. We first choose a set of structures. Starting at level
k = 1, we have two options:

(1a) With probability pk , we create a new structure. This
forces the creation of one structure at all deeper levels k′ >

k within that new structure. A larger structure cannot exist
without containing at least one smaller structure.

(1b) With probability 1 − pk , an existing k-structure is
chosen for growth. It is done preferentially to its size, i.e.,
the number of (k + 1)-structures that it contains. Repeat
this step within the chosen structure (i.e., level k + 1), until
level k = d is reached or until a structure is created at
level k < d.

Once a new structure has been created at level k, or once
the level k = d is reached by choosing existing structures, the
color of the ball must be determined. By construction, the ball
is new for the k-structure. We must, however, determine if
it is new for the containing (k − 1)-structure. If not, we
must sequentially examine lower resolution structures. This
is determined by one of the two possible choices:

(2a) With probability qk , the color is new for the k-
structure. We then move to the level k − 1 and repeat the
operation (2a or 2b). If level k = 1 is eventually reached, a
new color is introduced in the system and the two-step process
ends.

(2b) With probability 1 − qk , the color is chosen among
all colors already occurring within this particular k-structure.
This is done proportionally to the number of (k + 1)-structures,
embedded in that selected k-structure, in which the colors
appear. The two-step process concludes.

C. Mathematical description

The algorithmic rules just described can now be mapped
onto an embedded system of preferential attachment equations.
Table I gathers the different quantities involved.
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TABLE I. Notation.

pk Probability to create a new k-structure

qk Probability to choose a new node for the selected k-structure
d Number of structural levels of organization (d = 1 for SPA)

(S)Bk Rate of structural birth at level k
(S)Gk Rate of structural growth of a level k structure (it implies the creation of a new structure at level k + 1)
(N)Bk Rate of nodal birth at level k (equivalent to the rate of adding a new node to the system)
(N)Gk Rate of nodal membership growth at level k (rate at which a node acquires membership to an existing k-structure)

Sk,n Number of k-structures of size n [i.e., containing n different (k + 1)-structures]
Sk Number of structures at level k (= ∑

n Sk,n)
Nk,m Number of nodes with m memberships at level k (i.e., appearing in m different k-structures)

Pk Probability to choose a k-structure of size 1 under PA
Rk(d) Probability that the construction process ends by choosing an existing node at level k, considering d levels of organization

1. Structural birth and growth

The structures of level k have a rate of birth (S)Bk and of
growth (S)Gk , for k � d, given by

(S)Bk =
k∑

i=1

pi

i−1∏
j=1

(1 − pj ) (10a)

and

(S)Gk = pk+1

k∏
i=1

(1 − pi) (10b)

since birth events occur if structures are created at level k or at a
lower resolution (k′ < k). The growth of a k-structure requires
to choose existing structures at levels 1 � i � k [probability∏k

i=1(1 − pi)] and the creation of a structure at level k + 1

(probability pk+1). In order to make every equation coherent,
we adopt the product convention

∏j

k=i ak = 1 and the sum
convention

∑j

k=i ak = 0 for j < i.
With these probabilities, the number Sk,n(t) of k-structures

with size n can be approximately followed using Eq. (7).
However, while this is exact for the first structural level, it
is an approximation for structures at a deeper level, k > 1. For
example, the probability to choose a structure of size n at level
2 will depend on the size m of the level 1 structure in which it
is nested. Mathematically, whereas level 1 evolves according
to

S1,m(t + 1) = S1,m(t) + (S)B1 δm,1 +
(S)G1

[ (S)B1 + (S)G1]t

× [(m − 1)S1,m−1(t) − mS1,m(t)], (11)

level 2 is governed by a somewhat more involved expression

S2,n,m(t + 1) = S2,n,m(t) + mS1,m(t)

[ (S)B1 + (S)G1]t

{
(S)G2

(n − 1)S2,n−1,m(t) − nS2,n,m(t)∑
i iS2,i,m(t)

− (S)G1
S2,n,m(t)

S1,m(t)

}

+ (m − 1)S1,m−1(t)

[ (S)B1 + (S)G1]t

{
(S)G1

S2,n,m−1(t)

S1,m−1(t)
+ (S)G1 δn,1

}
+ (S)B1 δn,1δm,1, (12)

where S2,n,m(t) is the number of level 2 structures of size n,
nested in a level 1 structure of size m. This equation takes into
account the choice of a 1-structure of size m or (m − 1) and
then the growth or the birth of a 2-structure.

To reduce Eq. (12) to a more manageable rate equation of
the form (7), one must sum over all m to obtain an equation
for S2,n(t) = ∑

m S2,n,m(t). Under the approximation

〈n〉S,2,m ≡
∑

n

n
S2,n,m

mS1,m

�
∑

n

n
S2,n∑
j jS1,j

=
∑

n

n
S2,n∑
j S2,j

≡ 〈n〉S,2 (13)

and using the relations
∑

j jSk,j = [ (S)Bk + (S)Gk]t and
(S)Bk + (S)Gk = (S)Bk+1, the simplification follows immedi-
ately. This type of approximation can be applied successively

to all levels (e.g., 〈n〉S,3,i,j = 〈n〉S,3), yielding equations
similar to Eq. (7). The stationary counterparts and scaling
exponents [Eq. (9)] follow under the obvious replacements
(S1,n,

(S)B1 , (S)G1) → (Sk,n,
(S)Bk , (S)Gk).

The resulting dynamical equations therefore describe a set
of uncorrelated levels of structural organization with well-
defined scaling exponents {γS,k}.

2. Nodal birth and membership growth

While the description of structure sizes is a straightforward
problem, things get more involved for the number Nk,m(t)
of colors appearing in m structures of level k. An important
logical constraint occurs for k-structures with size equal to
one: if the color is new for the sole structure of level k + 1
therein (probability qk+1), it must logically be new for the
structure of level k (as seen in the example of Fig. 2). Thus,
the probabilities {qk} must be corrected to account for this
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logical constraint:

q ′
k(t) = qk + Pk(t)qk+1 = qk + S̃k,1(t)∑

n nS̃k,n(t)
qk+1, (14)

where Pk(t) is the probability that the k-structure of interest
had a size equal to 1. In other words, if the color is new at
level k, it can either be because of the initial probability qk ,
or because it was forced to be new by the aforementioned
logical constraint. Equation (14) is only valid for 0 < k < d

since there is no correction at k = 0 and k = d; q0 = q ′
0 and

qd = q ′
d = 1. The probabilities Pk(t) can be obtained from the

rate equation for sizes of k-structures [Eq. (7)], as well as from
their steady state values in the limit t → ∞. Together this
yields

lim
t→∞ q ′

k(t) = qk + S̃∗
k,1∑

n nS̃∗
k,n

qk+1 (15)

= qk +
(S)Bk + (S)Gk

(S)Bk +2 (S)Gk

qk+1

〈n∗〉S,k

, (16)

where the average size 〈n∗〉S,k = ∑
n nS̃∗

k,n corresponds intu-
itively to the ratio of the total rate to the birth rate:

〈n∗〉S,k = [ (S)Bk + (S)Gk]
(S)Bk

. (17)

This result can also be obtained analytically and its demonstra-
tion is relegated to Appendix A. Inserting this last expression
in Eq. (16) finally leads to

lim
t→∞ q ′

k(t) = qk + qk+1

1 + 2 (S)Gk / (S)Bk

. (18)

It is then a matter of evaluating the birth (N)Bk and growth
rates (N)Gk (see Table I). To obtain the growth rates, let us
consider the probability Rk(d) that the chosen color is an
existing one selected according to level k. These probabilities
are easily calculated for the three deepest levels. By definition,
Rd (d) = 0, and

Rd−1(d) = (1 − q ′
d−1)

d−1∏
i=0

(1 − pi) (19)

and

Rd−2(d) = (1 − q ′
d−2)pd−1

d−2∏
i=0

(1 − pi)

+ (1 − q ′
d−2)q ′

d−1

d−1∏
i=0

(1 − pi). (20)

These probabilities yield a recursive expression for k � d − 2:

Rk(d) = (1 − q ′
k)pk+1

k∏
i=0

(1 − pi)

+ (1 − q ′
k)q ′

k+1
Rk+1(d)

1 − q ′
k+1

, (21)

starting from Rd−1(d) given above. The terms (N)Gk can then
be written as the sum of the probabilities of choosing an

existing node according to level k or higher levels (k′ < k):

(N)Gk =
k−1∑
i=0

Ri(d). (22)

To obtain the birth rate, we calculate the probability of
introducing a new individual at each time step. Since an
individual has at least one membership at each level, the birth
rate at each level is, namely, the rate of introducing a new
color to the system. In consequence, (N)Bi = (N)Bj for all
i,j . Using the normalization (N)Bd (t) + (N)Gd (t) = 1 since
we always add at least one ball to a d-structure, we infer

(N)Bk = 1 − (N)Gd = q0

1 − q0
R0(d). (23)

At this point, it is perhaps helpful to collect some of the
explicit expressions of the birth and growth functions for a few
hierarchical depths, say d = 1, 2, and 3. Table II illustrates the
construction scheme of these functions. A few observations are
worth noticing. First, for internal consistency and as already
used previously, one observes that

(S)Bk + (S)Gk = (S)Bk+1 , 0 � k � d − 1 (24)

as clearly seen from the definitions (10). Second, at level d, the
birth and growth functions satisfy a normalization condition
for both structures and nodes (X = S or N )

(X)Bd + (X)Gd = 1. (25)

Finally, (N)Bk and (N)Gk depend explicitly on the probabili-
ties {q ′

k} which themselves depend on the structural functions
{(S)Bk} and {(S)Gk}. In other words, the logical constraints,
captured by the {q ′

k}, induce correlations between the evolution
of the hierarchical structure and the distribution of elements
within this structure.

To validate the use of these birth and growth rates in Eqs. (6)
and (7), we examine the pyramid of production entities in the
film industry. Based on the Internet Movie Database (IMDb),
we study a system with d = 3 structural levels where 363 571
producers (colored balls) are assigned to films (426 913 films,
k = 3) associated with one principal production company
(121 958 companies, k = 2), in a given country (198 countries,
k = 1). The results of this case study are presented in Fig. 4.

While the mean-field description of the distributions
{Ñk,m(t)} suffers from neglecting possible correlations from
one resolution level i to level i + 1, the numerical simulations
correctly reproduce the system and its finite size effects
(distribution cutoff). The approximation of uncorrelated levels
is also the source of the error observed in the mean-field
description of the distributions {S̃k,n(t)} for k > 1 and becomes
increasingly inadequate for larger k. The progression of error
is essentially caused by the fact that a strict description of the
third level, for instance, should not only be given in terms of
S3,n,m(t) [see Eq. (12)], but of S3,n,m,l(t) describing the number
of level 3 structures of size n nested in level 2 structures of
size m themselves nested in level 1 structures of size l.

A few words are worth mentioning to describe our practical
selection of the parameters {pi}i=1,d and {qj }j=0,d−1. The
heuristic method that we used amounts to a cascade from
low to high resolution and back and mimics the generative
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TABLE II. Birth and growth functions.

d = 1 (SPA) d = 2 d = 3

(S)B0 = 0 (S)B0 = 0 (S)B0 = 0
(S)B1 = p1

(S)B1 = p1
(S)B1 = p1

(S)B2 = p1 + p2(1 − p1) (S)B2 = p1 + p2(1 − p1)
(S)B3 = p1 + p2(1 − p1) + p3(1 − p1)(1 − p2)

(S)G0 = p1
(S)G0 = p1

(S)G0 = p1
(S)G1 = (1 − p1) (S)G1 = p2(1 − p1) (S)G1 = p2(1 − p1)

(S)G2 = (1 − p1)(1 − p2) (S)G2 = p3(1 − p1)(1 − p2)
(S)G3 = (1 − p1)(1 − p2)(1 − p3)

R0(1) = (1 − q0) R0(2) = (1 − q0)[p1 + q ′
1(1 − p1)] R0(3) = (1 − q0){p1 + q ′

1(1 − p1)[p2 + q ′
2(1 − p2)]}

R1(2) = (1 − q ′
1)(1 − p1) R1(3) = (1 − q ′

1)(1 − p1)[p2 + q ′
2(1 − p2)]

R2(3) = (1 − q ′
2)(1 − p1)(1 − p2)

(N)B1 = q0
(N)Bk = q0[p1 + q ′

1(1 − p1)] (N)Bk = q0{p1 + q ′
1(1 − p1)[p2 + q ′

2(1 − p2)]}
(N)G1 = R0(1) (N)Gk = ∑k−1

i=0 Ri(2) for k = {1,2} (N)Gk = ∑k−1
i=0 Ri(3) for k = {1,2,3}

procedure: first moving towards finer structures to obtain
sequentially p1 to pd and then choosing the memberships by
subsequent coarse graining to select qd−1 to q0. With d = 3,
we have six parameters to set. This leaves us with a significant
amount freedom bounded, however, by three empirical size
distributions and three empirical membership distributions to
limit our choices. The size distribution at level k = 1 depends
on p1 and p2, so one can put a value on these parameters by
following the scale exponent of the empirical distribution. The
size distributions of the following levels k′ then depend on
pk�k′ , such that every pk′ can be chosen to reproduce the scale
exponent of the size distribution at that level given the previous
values of pk<k′ . Memberships follow a somewhat similar but
reverse logic because of the constraints mentioned at the
beginning of this subsection. The membership distribution at
k = 3 for instance will depend on all {pi} and on q2, such that
one should then start reproducing membership scale exponents
at level k = 3 first.

The system of Fig. 4 is representative of a case where
the number d of structural levels is known a priori and our
experimentations show little variations in the final choice
of parameters although an exhaustive optimization was not
attempted. However, were the depth of the hierarchy un-
known, any superfluous levels would lead to overfitting and
nonuniqueness of the model parameters. To adequately infer
the number of structural levels is still an open problem and its
solution is currently being pursued.

V. PROJECTION ON NETWORKS

Despite the advent of large data sets, few hierarchical
systems are categorized and referenced as such. Consequently,
research tends to focus on a single level of activity. For
instance, the IMDb is often studied as a network of coactors
[3,4] or, as in Fig. 4, a network of coproductions where

10−6
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100 101 102 103

k=1
2 =k

k=3

IMDb

(a)

10−6
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10−1
100

100 101 102 103

IMDb

k=1
2 =k

k=3

(b)

FIG. 4. (Color online) Hierarchical structure of film production. Events involving producers are distributed among d = 3 structural levels:
films at k = 3 [sequence of upper dots in (a) and of lower dots in (b)], in production companies at k = 2 [sequence of middle dots in (a)
and (b)] in countries at k = 1 [sequence of lower dots in (a) and of upper dots in (b)]. (a) Distribution of the number of films, companies,
and countries a given producer is involved with. (b) Distribution of the number of producers, films, and companies involved within a given
film, company, and country. The empirical data are shown with dots. Lines are obtained with Eqs. (6) and (7) using the corresponding
birth and growth probabilities; crosses indicate direct Monte Carlo simulations. Both calculations are iterated for 106 time steps using
(p1,p2,p3) = (0.0005,0.185,0.385), (q0,q1,q2) = (0.80,0.60,0.50). Simulated results of S1,n are not shown to avoid cluttering the figure (note
that the plateau observed in the empirical data is due to finite size). The correspondence between the observed scale exponents and our
mathematical results implies that the model is not overparametrized: 2d parameters for 2d scale exponents. The chosen parameters were hand
selected to roughly reproduce the qualitative behavior of each distribution.
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FIG. 5. (Color online) Scale independence and clustering of projected hierarchical systems. (a) Degree distribution PD(k) observed in
networks created by projecting the systems of Fig. 4 on webs of coproductions (the actual data and one simulated system with the same
parameters as those of Fig. 4). A network obtained through the classic preferential attachment model [3] (PA) is given for comparison.
(b) Average clustering coefficient for nodes of degree k. PA leads to a vanishing clustering C(k) = 0 for all degree k in large networks.
(c) Distribution of node centrality PNC(c) measured with their coreness c under k-core decomposition of the networks. PA leads to a unique
shell of coreness c = 1 because of the treelike structure of the network.

producers are connected if they have produced a film together
(if they are found within a common level d structure).
Effectively, this implies that the system is reduced to a
projection of all structural levels onto the chosen activity.
While the involvement of actors and producers in films is
well captured, their involvement in different companies and
countries is somehow encoded, and more than often lost, in
the resulting network.

A. Degree, clustering, and centrality

Following the projection procedure schematically illus-
trated on Fig. 2 (right), Fig. 5 presents some basic properties
obtained by projecting the hierarchical system of film pro-
duction onto a network of coproducers. We first investigate
the degree distribution PD(k) (coproducing link per producer)
and the clustering function C(k) (probability that two links
of a degree k producer are part of a triangle) of a network
projection of a HPA system based on the parameters used
in Fig. 4. The nontrivial clustering [4,7] and the power-law
tail of the degree distribution [3], properties ubiquitous in
real networks, are reproduced in our framework as emergent
features of the HPA model. Essentially, by only fitting the
hierarchical structure of the IMDb coproduction network, we
obtain a good approximation of the complex properties of
the network projection without having to directly account for
them in the model. For an example of the calculation of the
scaling exponents across multiple scales, we refer the reader
to Appendix B.

Moreover, Fig. 5 also presents the result of a centrality
analysis known as core decomposition. This analysis relies
on the concept of c cores, i.e., the maximal subset where all
nodes share c links amongst one another. A node is assigned
coreness c if it belongs to the c core but not to the (c + 1) core.
This procedure effectively defines a periphery (low c) and
core (high c) to the network and was recently shown to reflect
structural organization beyond simple local correlations [30].
The HPA centrality distribution is seen to agree quite well
with the data. This increases our confidence that the model
effectively reproduces the structure of the real hierarchical
system beyond the statistical properties previously considered
in Fig. 4.

B. Fractality

Aside from scale-independent degree distribution and non-
trivial clustering function, the fractality of complex networks
is often a sign of hierarchical organization [9,10]. One can
unravel the fractal nature of a network using a box counting
method: groups of nodes within a distance (number of links)
r of each other are assigned to the same box. The fractal
dimension db of a network manifests itself as a scaling relation
between the number Nb of boxes needed to cover all nodes
and the size r of the boxes (Nb ∝ r−db ). The self-similarity
of network structure was previously assumed to stem from
a repulsion or disassortativity between the most connected
nodes [10]. However, Fig. 6 demonstrates that fractality can
also emerge from a scale-independent hierarchical structure,
without further assumptions. Interestingly, Fig. 6 (left) also
illustrates how, even if fractality might imply hierarchy, the
opposite is not necessarily true.

HPA can produce both fractal and nonfractal networks. It
remains to be determined whether or not this box counting
method is truly equivalent to an actual measure of dimension-
ality. However, it can, at the very least, be interpreted as an
observation of how easily a network can be covered. Of course,
since the definition of network fractality is somewhat ambigu-
ous, so is the distinction between sets of HPA parameters
leading to fractality or not. Nevertheless, a useful empirical
rule can be established.

Most models of stochastic network growth produce net-
works with very low mean shortest paths, low clustering, and
no long-range correlations. Consequently, the number of boxes
needed to cover the whole network falls very rapidly. In HPA,
we can control the manner in which boxes cover the network
since the distance between higher structural levels is directly
influenced by the memberships at this level. Hence, HPA
can generate networks that are more robust to box covering
[i.e., such that Nb(r) falls slower with respect to r] if higher
structural levels feature less nodes that act as bridges between
structures and levels. For example, in Fig. 7, only nodes 0, 1,
and 2 can be used by boxes to move from one level to the other
(from workshops to countries, here illustrated as an inverted
tree).

More precisely, let us consider the two different networks
of Fig. 6 (left) built using the parameters given in the caption.
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FIG. 6. (Color online) Fractality and navigability of projected hierarchical systems. (a) Box counting results on a well-known fractal
network [protein interaction network (PIN) of Homo sapiens] and a nonfractal network (the Internet at the level of autonomous systems)
[9]. HPA can approximately model how both of these networks span and cover their respective space, with (p1,p2,p3) = (0.01,0.02,0.30),
(q0,q1,q2) = (0.95,0.80,0.30) (fractal) or (p1,p2,p3) = (0.005,0.195,0.395), (q0,q1,q2) = (0.60,0.40,0.30) (nonfractal). (b) Probability of
connection Pc(L) between nodes at a distance L after an inferred projection of the networks onto a hyperbolic space. (The distance is given as
a fraction of the hyperbolic disk radius. See Boguñá et al. [12] for details on the method.) Both the Internet and its HPA model are the same as
presented on the left and share a similar scaling exponent for their degree distribution [see inset: degree distribution D(k) versus k]. The CCM
corresponds to a rewired network preserving degree distribution and degree-degree correlations [31], but lacks the more complex structural
correlations.

Roughly speaking, in the nonfractal network, 2-structures
contain on average around three 3-structures whereas nodes
belong to over four 3-structures. Therefore, a single node
typically grants access to all of the 3-structures contained
within its 2-structure, such that a box covering at least part
of a 2-structure typically covers most of it. The network is thus
easily covered as higher levels are not any harder to navigate.

In contrast, 2-structures of the fractal network contain on
average ten 3-structures while an average node may still be
found within around three 3-structures. An average 2-structure
may thus have nodes at a distance greater than three steps. The
network is consequently harder to cover and can be expected
to be much more robust to box covering. As a general rule, we
have found that to display measurable network self-similarity,
the average size of a structure (at level k) has to be at least
greater than the memberships of a node at the deeper level (at
level k + 1).

C. Navigability

The box decomposition method tells us something about
how networks cover the space in which they are embedded, and
consequently at what speed a random walker might encounter
new nodes in this network. However, it tells us nothing

(a) (b)

30210 1 4 5 2 6

0 1

23

4

5

6

FIG. 7. (Color online) Example of bridges. (a) Inverted tree
representation of a hierarchical structure and (b) the corresponding
network projection which shows how nodes labeled 0, 1, and 2 act as
bridges between structures.

about the geometrical space that supports the network, or
how a walker could find one specific node. In that respect,
the navigability of complex networks has recently been a
subject of interest for two reasons. First, the development
of a mapping of networks to a geometrical space allows to
predict the probability of links as a function of geometrical
distance between nodes, which in turn enables an efficient
navigation through the network [11,12]. Second, network
growth based on preferential attachment fails to capture this
geometrical property [13]. In a recent paper [13], this metric
was consequently considered as evidence of an opposition
between two organizational forces: popularity (preferential
attachment) and similarity (assortativity). Our last case study,
shown in Fig. 6 (right), indicates that geometrical constraints,
or network navigability, can emerge under a strict preferential
attachment, which implies a growth driven by popularity only,
but one occurring on multiple structural levels. The different
hierarchical levels can a posteriori be interpreted as indicators
of similarity, but are conceptually much more general.

We also compare in Fig. 6 (right) the results obtained on the
actual network and on its HPA model with those obtained on
a rewired network that preserves the degree distribution and
degree-degree correlations (correlated configuration model,
CCM) [31]. The fact that CCM does not preserve the
navigability of the Internet structure indicates that it emerges
mostly from clustering and long-range correlations. As the
HPA network does reproduce the navigability of the Internet,
these long-range correlations could very well be consequences
of the hierarchical structure. It would be instructive to
investigate whether the inferred structure corresponds to the
actual hierarchy of the Internet (probably of geographical
nature: continents, countries, regions).

VI. CONCLUSION

We have presented a proof of concept for a hierarchical
preferential attachment (HPA) model in an attempt to repro-
duce the hierarchical nature of complex systems. We have
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illustrated how complex networks could be better analyzed by
first modeling their hierarchical structure, and then projecting
this structure onto a network. Not only does this procedure
yield the nontrivial clustering of networks and their degree
(centrality) distributions at multiple levels, but it also gives
access to the hidden geometrical metrics of these networks
and the way they occupy space.

The fact that so many key features of the network structure
are modeled using two minimal assumptions, hierarchy and
preferential attachment, indicates that HPA provides more
than theoretical insights; it leads support to the underlying
assumptions. HPA could therefore be used to infer the possible
hierarchical structure of networks when this information is not
directly available.

Finally, while HPA is essentially a simple stochastic growth
process, it nevertheless exemplifies eloquently how complex
structural features of real networks, e.g., scale independence,
clustering, self-similarity, fractality, and navigability, can
emerge through the hierarchical embedding of scale indepen-
dent levels. Perhaps this is the most important message: to
study the structure of complex networks, one should avoid
focusing on unique level of activity (e.g., links), but instead
investigate the hidden hierarchical organizations from which
the networks emerge.
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APPENDIX A: AVERAGE STRUCTURAL SIZE

We wish to demonstrate the relation

〈n∗〉S,k =
∞∑

n=1

nS̃∗
k,n =

(S)Bk + (S)Gk

(S)Bk

(A1)

for the average size of k-structures at equilibrium. We will
support our intuition that the mean value 〈n∗〉S,k should simply
be the ratio between the number of shares ((S)Bk + (S)Gk)t
and the number of structures (S)Bk t . Inserting (8) for S̃k,n,
simplifying and rearranging, one finds

∞∑
n=1

nS̃∗
k,n = b

∞∑
n=1

n∏
m=1

m

b + m
, (A2)

where b = ( (S)Bk + (S)Gk)/ (S)Gk . The numerator and denom-
inator are easily identified. The numerator

∏n
m=1 m = n! is

a factorial while the numerator
∏s

m=1(b + m) = (b + 1)s is
a Pochhammer symbol, i.e., (x)n = x(x + 1) . . . (x + n − 1).
This reduces our expression to

〈n∗〉S,k = b

∞∑
m=1

s!

(b + 1)s
. (A3)

One recognizes the sum as a hypergeometric series (minus the
leading term), namely,

b

∞∑
m=1

s!

(b + 1)s
= b

∞∑
m=1

(1)s(1)s
(b + 1)s

1

s!

= b [ 2F1(1,1; b + 1; 1) − 1]. (A4)

Since the argument of the 2F1 is equal to 1, a useful
transformation [32] asserts that

2F1(α,β; γ ; 1) = 2F1(−α, − β; γ − α − β; 1) (A5)

as long as Re (γ ) > Re(α + β). This property applies to
our case where α = β = 1 and γ = b + 1 leading to a finite
terminating series

2F1(−1,−1; b−1; 1) = 1 + (−1)(−1)

(b − 1)
(A6)

which, once inserted in (A4), leaves us with the final result

〈n∗〉S,k = b

[
1

(b − 1)

]
=

(S)Bk + (S)Gk

(S)Bk

. (A7)

APPENDIX B: MULTIPLE SCALE INDEPENDENCE

By ignoring the interlevel correlations for the structural
growth, we have obtained in Sec. IV C a set of coupled
equations (6) and (7) for all levels k that enable us to follow
approximately the time evolution of the size distributions {S̃k,n}
and of the node membership distributions {Ñk,m}. We were
then able to derive their scale exponents {γS,k,γN,k} in the
limit t → ∞ [Eq. (9)].

When investigating the projected properties of a hierar-
chical system, for instance the degree distribution of the
resulting network, we can combine the membership and size
distributions of the lowest level d (where links are created)
to deduce the resulting scaling exponent. As done in [16], the
idea is to define the following probability generating functions
(pgf):

S(x,t) =
∑

n

S̃d,n(t)xn and N (x,t) =
∑
m

Ñd,m(t)xm.

(B1)

Since a community of size n implies n − 1 links for each
node, the generating function of the distribution of the number
of links L(x,t) in a d-structure for a randomly chosen node
can be generated by

L(x,t) =
d
dx
S(x,t)

d
dx
S(x,t)|x=1

=
∑

n nSd,n(t)xn−1∑
n nSd,n(t)

. (B2)

The degree distribution is then generated by D(x,t), a pgf
combining the distribution of memberships m and of links
obtained from each of these memberships:

D(x,t) = N (L(x,t),t), (B3)

which will simply scale as the slowest decreasing function
between N (x,t) and L(x,t). The scale exponent of the degree
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distribution is thus given by

min[γN,d,γS,d − 1]. (B4)

The same method could of course be used to determine
the scaling of other projections (e.g., network of companies
sharing or having shared at least one producer).
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L. J. Dubé, Structural Preferential Attachement: Network
Organization Beyond the Link, Phys. Rev. Lett. 107, 158702
(2011).

[7] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L.
Barabási, Hierarchical organization of modularity in metabolic
networks, Science 297, 1551 (2002).

[8] A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical
structure and the prediction of missing links in networks, Nature
(London) 453, 98 (2008).

[9] C. Song, S. Havlin, and H. A. Makse, Self-similarity of complex
networks, Nature (London) 433, 392 (2005).

[10] C. Song, S. Havlin, and H. A. Makse, Origins of fractal-
ity in the growth of complex networks, Nat. Phys. 2, 275
(2006).
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[30] L. Hébert-Dufresne, A. Allard, J.-G. Young, and L. J. Dubé,
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