
ALI BENSSAM

Digital Cockpits and Décision Support Systems
Design of Technics and Tools to Extract and Process Data

from Heterogeneous Databases

Mémoire présenté
à la Faculté des études supérieures de l'Université Laval
dans le cadre du programme de maîtrise en informatique
pour l'obtention du grade de Maître es Sciences (M.Se.)

FACULTÉ DES SCIENCES ET DE GENIE
UNIVERSITÉ LAVAL

QUÉBEC

2006

li Benssam. 2006

/ dedicate this work to my parents, my sisters, brothers,
and ail my family

A mes parents, mes soeurs, mes frères, et à toute ma
famille... Je dédie ce travail

m

Acknowledgment

I would like to sincerely thank my supervisors Dr. M.Debbabi and Dr N.Tawbi for their
constant support, precious help and advice. I would only be restating the obvious when
I say that they are great advisors. I hâve learnt a lot from them, and I consider myself
truly fortunate to hâve them as my advisors and thank them for the opportunity to
work under their guidance.

I would like to thank Dr. M.Mejri for his acceptance to evaluate my work and for
his valued évaluation and remarks.

In thèse few lines, I should not forget my parents, sisters, brothers, and ail my family
for their continuous support.

Lastly, I thank ail those who hâve, directly or indirectly, contributed in the achieve-
ment of this work and my success.

IV

Résumé

Ce travail présente une nouvelle approche pour l'intégration des systèmes d'information.
Cette approche permet d'intégrer des systèmes hétérogènes en matières de : modèles de
données, systèmes d'opérations, reseaux utilisés, etc. pour fournir enfin aux décideurs
ou/et utilisateurs une information à jour et consistante qui sera la base de décisions cor-
rectes et fiables dans le processus décisionnel. Principalement, notre méthodologie est
une approche multi-couche: une couche intégration des différentes sources de données,
une couche fournit un service de messagerie qui envoie l'information provenant des
différentes sources aux différents clients intéressés dans cette information, et une autre
consiste en une application client. La première couche vise à connecter les différentes
bases de données en éliminant les différences spécifiques à chacune de ces dernières.
La seconde, service de messagerie, permet d'envoyer l'information aux multiple utilisa-
teurs dans un mode asynhrone, ce qui libère l'application client de rester couplée avec
la source de données et en même temps garantit la délivrance de cette information à
ses abonnés. Pour la couche "application client", elle est responsable de : l'affichage
et la présentation de l'information reçue à partir de l'intergiciel basé sur le service de
messagerie; de la mise à jour en temps réel de l'affichage en reflétant l'état présent des
sources de données; ainsi que d'autres processus de control et d'optimisation.

Notre intergiciel, proposé au sein de cette thèse, est basé sur un ensemble d'APIs
standards (surtout celles provenant du monde J2EE) ce qui lui offre une large interop-
érabilité et facilité d'extension.

V

Abstract

This work présents a new approach for integrating information Systems. This approach
allows Connecting Systems that are heterogenous in terms of: data models, operating
Systems, used networks, etc. It ultimately provides décision makers or/and users with
up-to-date, consistent and well presented information which will be the basis of correct
and reliable décisions in the décision making process. Primarily, our intégration modus
operandi is a multi-layer approach: an intégration connection layer, a messaging service
layer, and a client application layer.

The first one aims at Connecting the various databases by eliminating the différences
that are spécifie to each one. The second, messaging service, allows to push informa-
tion incoming from the multiple sources to customers interested in this information in
an asynchronous mode. It releases the customer application to remain coupled with
the data source, and at the same time guarantees the delivery of this information to
différent subscribers. The third layer, client application, is responsible for: display
and présentation of information received from the messaging layer; real-time updating
of display to reflect the state of the data sources; and other control and optimization
procédures.

Our middleware, proposed within this work, is platform, OS, and DBMS indepen-
dent. It is based on a set of standard APIs (especially those coming from J2EE world)
which offers broad interoperability and provides easy extensibility.

Contents

Contents

List of Tables

List of Figures

1 Introduction

1.1 Motivation
1.2 Objectives
1.3 Contributions
1.4 Document Structure

2 Enterprise Application Intégration and Décision Support Systems
2.1 Introduction
2.2 Application Intégration
2.3 Information Intégration

2.3.1 Materialized Views
2.3.2 Federated Architecture Solution

2.4 Business Processes Intégration
2.4.1 Tasks Executed by an Internai Process
2.4.2 Advantages of Business Process Intégration

2.5 Portai Oriented Intégration
2.5.1 Portais Rôle
2.5.2 Advantages and Limitations of Portai Oriented Intégration . . .

2.6 Service Intégration
2.6.1 Web Services
2.6.2 XML: A Big Step for an Unlimited Interoperability
2.6.3 Web Services Model
2.6.4 Web Services Stack

2.7 Messaging Service
2.7.1 Types of Middleware
2.7.2 Messaging Oriented Middleware

Contents vii

2.7.3 Classification of Messaging Service
2.7.4 Java Message Service
2.7.5 JMS Properties

2.8 Décision Support Systems and Digital Cockpit
2.8.1 Décision Support Systems
2.8.2 Data Explosion Phenomenon
2.8.3 Digital Cockpits

2.9 Conclusion

3 Digital Cockpit Architecture
3.1 Introduction
3.2 General Description
3.3 Layer-based Intégration Approach

3.3.1 Phase 1: Unified Framework
3.3.2 Phase 2: Messaging Service
3.3.3 Phase 3: Client Application

3.4 Digital Cockpit Artchitecture
3.5 Extending Digital Cockpit Architecture: Service Intégration
3.6 JMS/RPC-based Middleware Comparison
3.7 Scope and Limitations

4 Digital Cockpit Implementation
4.1 Introduction
4.2 Software Requirements

4.2.1 House of Quality
4.2.2 Domain Model
4.2.3 Use Case Model

4.3 Software design
4.3.1 Assumptions and Policies
4.3.2 Methodology
4.3.3 Important Class Diagrams

4.4 Implementation
4.4.1 Technology
4.4.2 User Interface

4.5 Conclusion

5 Conclusion

A Digital Cockpit Use Cases List

B Class Diagrams

Contents viii

C Challenges and Technology Choice

D List of Used Acronyms

Bibliography

List of Tables

2.1 Federated Architecture Vs Data Warehousing Approach

4.1 Advantages of Digital Cockpit Solution

C l Technology Stack of Digital Cockpit Implementation .
C.2 Technology Stack of Digital Cockpit Implementation .
C.3 Technology Stack of Digital Cockpit Implementation .

List of Figures

2.1 Enterprise Application Intégration (EAI)
2.2 Data Warehouse Architecture
2.3 Federated Architecture for Data Intégration
2.4 TSMMIS Architecture
2.5 Portai Intégration
2.6 Web Services Rôles
2.7 Web Services Stack
2.8 JMS Messaging Model
2.9 Data Explosion Example
2.10 Generic DSS Architecture

3.1 Layer-based Approach
3.2 Intégration Model
3.3 Detailed Architecture
3.4 Architecture of Service Intégration
3.5 Retrieval of information for Single Client Application
3.6 Multiple Clients Requesting the Middleware
3.7 Notification Mechanism: Comparison

4.1 House of Quality: Digital Cockpit Project
4.2 Domain Model: Digital Cockpit Project
4.3 Use Case Model: Digital Cockpit Project
4.4 Séquence Diagram of Display Module: Digital Cockpit Project
4.5 Digital Cockpit 5-Phases Paradigm
4.6 Display Class Diagram
4.7 Display User Interface
4.8 Digital Cockpit Analysis Example
4.9 Digital Cockpit Simulation Example
4.10 a)The overall view of Weather Scénario b)Interested user drills down in

detailed information c) A spécifie weather component: Wind forecast .

B.l Class Diagram: Integrator Module
B.2 Class Diagram: Display Module

List of Figures xi

B.3 Class Diagram: Monitor Module

Chapter 1

Introduction

1.1 Motivation

In the last décade, tremendous advances occurred in computers performance, commu-
nication infrastructures, storage technologies, and middleware applications. Ail thèse
achievements hâve made from information Systems the cornerstone that shapes the
présent and the future of our economy and society. Tins omniprésence of computers in
ail aspects of our life has been fuelled by the explosion of Internet. This explosion with
the reliability of communications were -and still- behind the new business initiatives
such as e-business and e-commerce.

Today's enterprises and organizations use a large variety of networked computer
Systems and software applications to collect, process and produce large volumes of
data. The ability to turn thèse islands of data into useful knowledge (information that
can be used by décision makers) provides industries with a compétitive advantage in
their mission-critical situations. Décision makers, top management and leaders need
robust, efficient and automatic tools to sensé and respond to real-time changes.

However, such an undertaking is not a small task. Enterprise Systems are dis-
parate in terms of hardware, platforms, operating Systems and software applications.
Moreover, thèse Systems extend beyond the firewall to include partners, suppliers, and
customers. As a resuit, extracting critical nuggets of information from thèse heteroge-
neous, autonomous, and physically distributed Systems présents a challenging problem
for today's research communities and businesses.

Therefore, there is a big desideratum to provide software platforms that overcome

Chapter 1. Introduction 2

the barriers revealed above. Such software platforms should be able to:

• Provide a structured, regular and real-time communication of fresh information
inside and across the organization's boundaries.

• Keep synchronized and cohérent multiple databases.

• Produce status and analysis reports on différent activities/processes.

• Scrutinize to the desired level past, ongoing and future activities/processes.

• Handle the needed security services in terms of authentication, secrecy, autho-
rization and integrity.

• Présent to a given decision-maker or a principal the information in a graphical
and user-friendly way.

As a downstream resuit, a décision maker will hâve a realtime big picture that
intégrâtes ail the needed information to make an educated, solid and sound décision.

1.2 Objectives

The aim of this work is to propose the design of a distributed software platform (mid-
dleware and the underlying applications) that is referred to Digital Cockpit paradigm.
The intent of the digital cockpit is twofold: At first, it achieves a synergistic intégration
of the various information Systems. Secondly, the digital cockpit will display visual,
structured, navigational and realtime big pictures, so that décision makers can drill
down into the détails and uncover relationships between information that might other-
wise remain hidden. Consequently, the décision making process can be enhanced using
the available information [7].

More explicitly, we can classify the objectives of our work in the following points:

• Identify the différent information and service sources of the organization and the
underlying databases, data models, formats and protocols.

• Explore the dependencies and relationships between thèse information sources.

Chapter 1. Introduction

• Integrate, in a synergistic way, ail thèse sources of information in order to ensure a
real-time availability of updated, Consolidated, structured and unified data across
the network.

• Elaborate a digital cockpit platform that will présent the synthesized informa-
tion through dynamic and real-time visual objects. Moreover, the digital cockpit
should offer the possibility to customize the layout and the access privilèges ac-
cording to différent user profiles.

• Propose a suite of procédures and tools that extract data from différent sources
in order to subject them to business intelligence on-line analytical processing
(statistical analysis, graphical techniques, simulation of what-if scénarios, trend
analysis, comparative analysis, etc.).

By building a digital cockpit that meets the aforementioned objectives, we anticipate
that the décision makers will hâve the capability to access, analyze and visualize data
and services in order to take judicious and Consolidated décisions.

This work mainly describes the design and the implementation of a digital cockpit
System; a prototype that shows the main functionalities of a décision making oriented
middleware. Through this work, we will expose the différent steps to build such a
middleware, from the intégration of simple data to visualization of critical nuggets of
information as valuable business assets, that help significantly to enhance the décision
making process.

1.3 Contributions

The following are the contributions of this work:

• Via our middleware, we are able to integrate a variety of data and services from
heterogenous databases that are physically in différent locations.

• Our System provides a function that transforms the integrated data into a visual
big picture that can help in understanding data and support décision makers to
take educated and Sound décisions.

• The real-time capture of data changes in distant databases is indeed another
functionality that can leverage managers with real-time monitoring of business
events, and therefore react instantly accordingly.

Chapter 1. Introduction 4

As a whole, this work represents a new fashion for real-time information Systems
intégration and décision support Systems based on a set of standard technologies, which
provide an interesting opportunity for an easier and economical extensibility and scal-
ability to the System.

1.4 Document Structure

This document is composed of five chapters. In Chapter 2, we présent Enterprise Appli-
cation Intégration (EAI) and Décision Support Systems (DSS). Différent approaches of
EAI, DSS and digital cockpit are introduced in this Chapter. In Chapter 3, we highlight
the approach we are proposing to build a digital cockpit, as a new paradigm for real
time information intégration and décision making. In Chapter 4, we détail the design
and implementation of the digital cockpit including the architecture of our proposed
middleware. Finally, in Chapter 5, we conclude with a summary and provide directions
to future work.

Chapter 2

Enterprise Application Intégration
and Décision Support Systems

2.1 Introduction

With the advent of the web and the increasing number of databases that each business or
organization handles, the intégration of heterogeneous, autonomous, and geographically
distributed data sources has become a major concern of Information Technology (IT)
community.

Statistics show that information intégration is one of top priorities of Chief Infor-
mation Officers (CIO) in almost every company [27]. Data intégration Systems aim to
provide a uniform and transparent access to the aforementioned data sources. They
differ according to the nature of the problem and the underlying field. Intégration ap-
proach and used technologies are two main criteria that feature an intégration solution.
The first one is from a design stand point; it coins to the followed methodology and the
content to be integrated. However, the last one is concerned with the applied products.
as application programming interfaces (APIs), used to translate the above design to a
concrète implementation.

In this chapter, we présent first application intégration. After, we discuss the main
intégration approaches and show where each approach fits better. We put more empha-
sis on information and service intégration since they play a key rôle in our approach.
Then, we highlight the messaging service as a communication style, détail existing
messaging technologies, and describe Java Message Service (JMS) model, a Java-based

Chapter 2. Enterprise Application Intégration and Décision Support Systems 6

standard messaging API. Afterwards, we présent Décision Support Systems (DSS),
their types and architecture. Finally, we introduce the "Digital Cockpit" concept as a
new fashion to combine both of enterprise application intégration and décision support
realms. This combination of the above two fields allows real-time information Systems
intégration with décision support capabilities.

2.2 Application Intégration

Enterprise Application Intégration (EAI) pertains to the interconnection of information
Systems, internai and/or external to the enterprise. This interconnection aims to a
better sharing of data and application services. As a downstream resuit, intégration
drives to an enhancement of information exchange, and therefore a real-time exécution
of business processes [45].

The connected Systems may be an Enterprise Resource Planning (ERP), a Supply
Chain Management (SCM), a Customer Relationship Management (CRM), or any other
Enterprise Information System (EIS). Regardless of their heterogeneity, autonomy, and
if they are on the same or on différent machines; Connecting thèse Systems together will
leverage users and especially décision makers with an easy and transparent access to ail
the information the enterprise retains. Figure shows a typical intégration problem.

°ifl*
ERP

Legacy
Systems

CRM
EAI Middleware Databases

Spécifie
Applications ThirdParty

Software
ERP

SCM

Figure 2.1: Enterprise Application Intégration (EAI)

Enterprises needs are distinct in matter of intégration. This distinctiveness generally

Chapter 2. Enterprise Application Intégration and Décision Support Systems 7

reflects the business needs of each organization. Accordingly, any intégration solution
is business-requirements driven, and therefore, there is no universal and standard so-
lution that can be applied for enterprises. Thus, each EAI solution pursues a spécifie
approach. However, the same intégration solution can combine several approaches,
especially in big enterprises having complex and geographically distributed informa-
tion Systems. Among the most prevailing approaches we fmd: Information Intégration,
Business Process Intégration, Portai Oriented Intégration, and Service Intégration [45].
In the following sections, we présent thèse intégration approaches, the advantages and
limitations related to each one.

2.3 Information Intégration

Information intégration [20, 68] is limited only to data. This approach allows companies
to combine data from disparate data sources which are considered as the main points of
connection. Intégration of data from multiple information sources is one of the longest
standing problems facing the IT research community. In addition, being a problem
in large corporations and organizations, research on this topic has been fuelled by the
explosion of Internet. Therefore, for better information sharing, there is a real need to
integrate the various and unlimited islands of data inside organizations and over the
Web.

In this context, two main solutions [9, G7, 68] hâve been proposed for data intégra-
tion: data warehousing (materialized views) and federated architecture (virtual views).
Both approaches take a set of pre-existing decentralized data sources, and develop a
single unified (mediated) schéma over them. Then, a séries of transformations or source
mappings are specified to describe the relationship between each data source and the
mediated schéma.

2.3.1 Materialized Views

Materialized views or warehousing solution requires the building of a data warehouse
and writing programs that load data from data sources to the warehouse periodically.
This task is achieved by the use of Extract, Transform and Load (ETL) tools. One of
the most widely accepted définitions of a data warehouse is that given by Inmon [93];
a pionner in data warehousing technology.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 8

Inmon, in his book [93], provides the following définition: "a warehouse is a subject-
oriented, integrated, time variant, and non-volatile collection of data in support of
management's décision making process". First, the data warehouse is subject oriented
means that it is organized around the high-level entities of the business. In marketing for
example, subjects are customers, products, and sales. Second, it is integrated because it
intégrâtes data from différent sources, and might be inconsistent, so thèse data must be
stored in a consistent format (naming conventions, data constraints, etc.) to provide a
unified view to the users. Time variant means data are valid at a point of time or during
a time interval. Finally, non-volatile signifies that data do not change in real-time in
the warehouse, but refreshed periodically from productions databases. In other words,
a data warehouse is a separate database, able to support management decision-making
and receiving data from multiple operational data sources. Figure shows a simplified
data warehouse architecture.

Reportmg

Analysis Data Mining

Data Warehouse

U
Warehouse Metadata

Extract Transform Load

ïï
Network

I

xr _L_
Transactional

Data
RDBMS Legacy

Applications;
SQL

Figure 2.2: Data Warehouse Architecture

Operational Data corne from a variety of sources including transactional data from
mainframes, relational data from multiple RDBMS databases, and other production's
databases. The ETL phase, called also data staging [64] aims at:

• First, pull out data from operational databases and place them into another data-
base.

1 Relational Database Management Systems

Chapter 2. Enterprise Application Intégration and Décision Support Systems

• Second, apply a séries of transformations on the extracted data to check their
validity and accuracy, and résolve différences in syntax and semantics to conform
with the new target database.

• Third, once data are extracted and transformed, it is time to write the new data
into the target data warehouse, after carrying out appropriate summarizations
and aggregations.

• At the end of this step, data should be detailed (no summarization yet), historical
(allows historical values), and normalized (3rd normal form or higher), in such a
way that supports decision-making [64].

Afterwards, the data warehouse is used by Online Analytical Processing (OLAP)
applications and tools to run complex queries of large multidimensional collections of
data, with an intent to assist managers and décision makers. Other kinds of tools may
be supported by data warehouse such as data mining and data analysis based tools.

Below, we présent the major advantages and limitations of materialized views solu-
tion for data intégration.

Advantages and Limitations

The data warehouse approach is relevant when data do not change frequently or when
the integrated view does not need to be up-to-date. In addition, the warehouse is
built specifically to enhance décision making, by crating a new database being accessed
by différent kinds of data analysis tools like OLAP and data mining tools. Hence,
the warehouse represents the well appropriate approach for analysis of historical data,
extrapolation, and supporting stratégie décisions. Also, the séparation of the warehouse
from operational data gives a good performance for the analysis tools.

However, building, entertaining, and refreshing the warehouse -with ETL tools- is
costly and time consuming [?]. The differed updating of the warehouse, also does not
play in favor of this strong technology in a world attempting to reach real-time business.

2.3.2 Federated Architecture Solution

Alternatively, in the federated architecture approach, also known as médiation approach
for data intégration [4,'i] (the mediator used as a connector between multiple databases in

Chapter 2. Enterprise Application Intégration and Décision Support Systems 10

the federated approach for data intégration), we define one or more mediated schémas,
which are not used for storing data but only for querying it. When a query is issued to
the System, it is translated into a set of sub-queries, over the data sources, having the
same semantic as thèse target data sources. This approach keeps the local autonomy of
data sources and créâtes a virtual repository enabling real-time on-demand data access.
Moreover, it addresses the case when data change frequently, or when the global schéma
itself may change usually. Figure shows a simplified federated architecture for data
intégration.

Application Interface

Communication protocol

i

(Application Interface

Communication protocol

J
Network

Spécifie
Connectais

JCA

Other
Info, sources

j JDBC

Oraclç.__

SQTDB

JCA

Legacy
Applications

Figure 2.3: Federated Architecture for Data Intégration

A surge of interest has been expressed in data intégration by médiation approach,
and many research projects hâve implemented this concept. Among the pioneer projects
in this area we refer to TSIMMIS [74], Garlic [80], and DataJoiner [90].

First, TSIMMIS [30, 74] assumes a médiation approach to integratc both hetero-
geneous, structured and unstructured information from multiple data sources. It uses
wrappers to convert information into a cornmon object model. The intent of TSIMMIS
is to provide décision makers with a tool that can get and fuse information from mul-
tiple sources on need and keeping data their consistency. TSIMMIS puts a translator
on top of each information source. This wrapper converts the underlying data objects
into a common object model. When receiving a query, the wrapper translates it into
the common model that the source can understand and exécute. Similarly, it converts
the returned resuit into the common model. Figure is a simplified représentation of
TSIMMIS architecture for data intégration.

2The Stanford-IBM Manager of Multiple Information Sources: a joint project between Stanford
University and IBM Almaden Research Center

3 A project developed by members of the database group in Computer Science, IBM Research Center
to enable large-scale multimédia information intégration

Chapter 2. Enterprise Application Intégration and Décision Support Systems II

j Application Interface

Queryt 1 Resuit

HMediator

Wrapper Wrapper

Data Source 1 Data Source 2

Wrapper

Data Source n

Figure 2.4: TSMMIS Architecture

Second, Garlic solution for data intégration also relies on médiation approach and
is developed in Garlic [86] project. Garlic aims to develop a multimédia information
System that intégrâtes data from multiple information sources. Thèse data include
différent types such as text, images, audio, video and other types. Garlic provides an
object-oriented schéma to applications, interprets queries, defines exécution plans and
returns queries results to the applications.

Finally, at the same tirne, another project called DataJoiner was being developed
by IBM research team. Its main objective was to develop robust and efficient queries
over a set of relational data sources

As cited previously, while DataJoiner was meant to integrate relational databases,
Garlic's main goal was how to extend such a solution for a large set of heterogeneous
information sources. At the end, both of thèse projects played a key rôle in defining
functions to federate data sources with IBM DB2/DBMS [43].

For commercial tools in data fédération, we can refer to DiscoveryLink from IBM[42]
and Attunity Federate from Attunity [5], etc. DiscoveryLink allows visualization of
multiple distributed data sources to provide a single virtual schéma for use by the
biologists. As for Attunity Federate, it is a federated solution that provides real-time
access to heterogeneous data, both for querying and updating purposes. It also captures
changes in data sources, so intégration can be accomplished in near real-time (Attunity
Stream).

Chapter 2. Enterprise Application Intégration and Décision Support Systems 12

To recapitulate, information intégration through federated architecture is getting
widely used especially with the increasing number of heterogeneous data sources and the
need for real-time solutions for data intégration. Hereafter, we présent the advantages
and limitations of this solution.

Advantages of Federated Architecture

The federated architecture for data intégration possesses the following features:

• Local autonomy of the integrated sources: Allows to avoid problems related to
management of thèse sources since their is no change in data sources management
and administration.

• Real-time intégration: Créâtes a virtual layer on top of data sources, which enables
real-time and on demand access to up-to-date data. This feature is well suitable
for today's business needs.

• Transparency: Provides the user with the query resuit s in a transparent way. It
masks ail the data sources différences and complexities from the user.

• Extensïbility: Allows easily adding of new data sources in a dynamic way to meet
new business requirements.

Selecting Data Intégration Approach

As stated above, the information intégration is a complex problem for ail IT community,
and there is no standard and universal solution to this problem. Depending on the
scope and the complexity of the intégration problem (from simple connection of two
local databases to complex intégration of multiple heterogenous information sources
geographically in différent locations), there are many issues to consider and assess when
selecting an intégration approach [77].

• Degree of data update or change: What is the frequency of updating data, and
does the data source updated by a single or multiple applications?

• Latency: How does data intégration occur? Is it done periodically using batch
opérations such as in data warehouse, or in real-time as in federated architecture.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 13

• Degree of cleansing and transformation: Are data clean and ready to be directly
useful without or with minimum effort of cleansing and transformation?

• Real-time or Stratégie décisions: Are data sources used to react in real-time to
business events or to prépare stratégie business décisions with an extensive use of
historical data.

• Budget and resource constraints: Does the accorded budget for the intégration
problem abide with the création of new physical databases or just for putting a
wrapper over the existing data sources.

• Time-to-market requirements: The needs for data intégration solutions differ ac-
cording to time-to-market constraints. For example, building a data warehouse
solution needs planning and building, contrary to federated architecture.

• Transactions management: Is transactions management important for the inté-
gration problem? If so and the data source can participate in transactions, the
federated architecture may be considered.

In a nutshell, hère are the most important parameters that influence the sélection of
a data intégration solution: the number of data sources, their heterogeneity, the volume
of data to integrate, the business requirements such as real-time or differed, the needs
for a high level of transactions management, and the financial constraints.

In Table , we provide a summary of the main features and différences between
materialized views and federated architecture solutions for data intégration [77].

Information Intégration Ap-
proach
Real-Time events notification
Fréquent changes in data sources
Stratégie décision support
Easy extensibility
Easy access
Short time-to-market
Economical solution

Federated Architec-
ture

V
V
-

-
V
V

Data Warehouse

-

-

-

-

-

Table 2.1: Federated Architecture Vs Data Warehousing Approach

After this review of the state of the art in data intégration, we présent briefly below,
the most important APIs provided by Java world.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 14

Java Technology for Data Connection

Java products oriented data connection become defacto standard for almost ail DBMS
providers and large community of developers. Thus, Java Database Connectivity (JDBC)
and J2EE Connector Architecture (JCA) are Java standard for Connecting multiple in-
formation sources.

Java Database Connectivity (JDBC)

JDBC is an API provided by Java Sun within the Java Community Process (JCP) to
leverage a standard API enabling connection of ail relational databases and spreadsheets
such as Ms Excel. Majority of application servers provide support for JDBC [81].

J2EE Connector Architecture (JCA)

The resuit of a fruitful collaboration of most active software vendors (Sun, Oracle.
IBM, BEA, etc.) through JCP, the spécification of JCA (Java Spécification Requests
(JSR) 16 and 112) provides a standard Java technology solution to the problem of
connectivity between the many application servers and today's enterprise information
Systems. It enables vendors to create standardized connectors to EIS.

to sum up, federated approach is the most appropriate approach to achieve the
intégration of many data sources. Supporting real-time business events notification
plays in favor of this approach in case of big numbers of data sources, and distributed
Computing environments where information sources are getting on and out. Therefore,
in the rest of this document, we adopt the federated solution for data intégration to
connect the différent databases related to our digital cockpit project.

2.4 Business Processes Intégration

In the previous section, we perceived that application intégration oriented data is only
meant for data sharing purposes. This certainly enhances the information exchange
between enterprises and businesses. However, this approach does not deal with business
processes. This means that the définition of information flow has to be taken care by
another approach: Business Process Intégration (BPI) [45]. Generally, the integrated
Systems are autonomous; thus they hâve their own process choreography engines and
therefore, run internai business processes private to them

Chapter 2. Enterprise Application Intégration and Décision Support Systems 15

The business process intégration defines a gênerai model for business processes that
addresses the séquence, the hierarchy, the events, logical exécution and information
transfer between Systems within the same organization (EAI), and between Systems
from différent organizations (B2B) [34]. The main idea behind business process inté-
gration is to provide a single logical model that spans the multiple applications and data
sources. Therefore, a single business process controls the interaction between humans
and Systems to satisfy business requirements [45].

The business process intégration provides mechanisms that define and run the in-
formation flow over multiple Systems [45]. It puts a logic control layer on the top of
différent integrated technologies. This enables to connect local Systems into a single
process that leverages the business opérations and objectives. This intégration approach
should run this process in the correct order, with the appropriate information, with a
control of séquences, keeping the state, durability, and possibility to handle exceptions
[45].

2.4.1 Tasks Executed by an Internai Process

In gênerai, an internai process exécutes many tasks to achieve the resuit expected by
the gênerai process. First, the local System sends an event to a business process engine.
Second, this engine transforms the event to be conform to certain semantic standards
and mechanisms of information processing (synchronous or asynchronous). Afterwards,
it reacts to the transformed event by invoking other processes from other Systems in
favor of the exécution of a model, through the invocation of B2B processes. Then, the
new local system (target) reacts to its internai processes and sends the answer to the
business process engine. Finally, the gênerai model of the process controls the master
process (on top of ail other processes) in order to enhance the B2B communication.

2.4.2 Advantages of Business Process Intégration

By defining a new layer above the source and target Systems, the business process
intégration introduces many advantages:

• An instance of the new gênerai process spans many instances of internai processes
spécifie to local Systems. This feature provides more visibility about the entire

4Business To Business

Chapter 2. Enterprise Application Intégration and Décision Support Systems 16

activity.

• The independence of business process intégration from source and target Systems
allows modifying processes without affecting the aforementioned Systems.

• The stratégie approach of business process intégration defines the business rules
that détermine the interactions between Systems, in a common abstract business
model.

• The définition of a common abstract business model provides the capability for
real-time analysis of ail aspects of business, and allows determining the state of
the process at any time.

• The ability to redefine the process any moment to enhance the efnciency, hide the
complexities of local applications, and allow users working with the same business
semantic.

2.5 Portai Oriented Intégration

The other approach in the application intégration stack is Portai Oriented Intégration.

2.5.1 Portais Rôle

Portais allow viewing a multitude of Systems -both internai and/or external enterprise
Systems- through a single user interface or application. They extend the user interface
of each System to a common aggregated user interface. Therefore, they connect multiple
Systems although they do not directly integrate the applications within or between the
enterprises. Via portais, the user interacts with the back end Systems through a user
interface -such as a web browser-, rather than having the Systems automatically ex-
change the information (as in data oriented intégration). The intégration using portais
approach can be achieved along many technologies: application servers, page servers
(ASP, PHP, JSP,etc), and screens conversion technologies into HTML, etc. Today,
more B2B information flow through the user interfaces (portais) than automatically
through back end intégration. The figure - shows how portais allow retrieving infor-
mation from multiple applications in a unified user interface.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 17

| Application |

i

Portai Engine

| Application

X
[DB

Application

DB

System System 2 System n

Figure 2.5: Portai Intégration

2.5.2 Advantages and Limitations of Portai Oriented Intégra-

tion

Portais allow users to interact with a company's internai system through a user interface
(generally a web browser). They are typically much easier to build than sophisticated
and real-time intégration, the case of data and process intégration. In addition, portai
intégration approach can be easily added to existing Systems without disturbing the
existing functionalities [44]. Moreover, adding a portai to existing applications can be
achieved in a short time, whereas a full intégration with other approaches is much more
time consuming. Finally, portais enable human interaction, which is very useful in some
situations where business rules are not well understood or not agreed upon.

However, the portai approach présents some limitations comparing to the other
approaches. First, the information does not flow in real-time, thus the user has to
interact with the user interface or a web browser to get the information he needs. As a
resuit, Systems do not react to business events within an enterprise. This deprives the
approach to be event-driven, a key feature for automated business processes. Again,
from a user stand point, the portai is one application at a time unlike other approaches
enabling real-time intégration [75], which represents a real handicap where the trend is
towards real-time intégration which enhances the real-time business.

We hâve perceived in the previous sections how information intégration enhances
the information exchange between Systems inside and/or outside organizations. We
hâve also seen that business process intégration visualizes application intégration as a
high level of abstraction through the définition of a gênerai process model. As for portai
intégration, it allows exposing the enterprize Systems to external users via a single user

Chapter 2. Enterprise Application Intégration and Décision Support Systems 18

interface. Hereafter, we présent the last approach for application intégration: Service
Oriented Architecture.

2.6 Service Intégration

Service Oriented Architecture (SOA) is not a new concept for the intégration of services
in distributed environments. Actually, it was achieved with many technologies such as
Electronic Data Interchange (EDI), frameworks and distributed objects [45].

Initially, technologies like EDI hâve been used for many years to successfully perform
business transactions between partners [22, 25]. EDI relies on pre-agreed formatted
messages and proprietary network protocols for data transport. As a downstream resuit,
companies hâve been reluctant to invest in thèse technologies, because of the large
underlying investments that are required in terms of software, hardware and consultancy
[22].

Afterwards, with the tremendous advances occurred in computers performance, com-
munications infrastructure, and middleware applications, in the early 90s, more and
more software Systems hâve been built and lot of similar situations and patterns ap-
peared. Therefore, there was a need to reuse functionalities of existing Systems rather
than build them from scratch, and consequently communication between them was
required and considered as services achieved by a System to another one. This commu-
nication between software Systems through achieving services marked the first days of
Service Oriented Architecture (SOA).

In this field, many initiatives hâve been introduced to facilitate communication
between application components in a distributed Computing environment. Common
Object Request Broker Architecture (CORBA) [82] from Object Management Group
(OMG), Distributed Component Object Model (DCOM) [11] from Microsoft and Re-
mote Method Invocation (RMI) from IBM and SUN Microsystems are examples of
thèse initiatives. Ail thèse technologies allowed organizations to integrate applications
in a distributed infrastructure using RPC-based mechanisms to bind application clients
to a server [22, 25]. However, interoperability between thèse RPC-based mechanisms
is still complex and limited. For instance, CORBA and DCOM cannot communicate
easily and may need a bridge to allow communication. This limitation is due to the
fact that each infrastructure uses its own communication protocol. CORBA uses Inter-
net Inter-ORB Protocol (IIOP), DCOM uses Object Remote Procédure Call (ORPC)
and RMI relies on Java Remote Method Protocol (JRMP). In addition, within thèse

Chapter 2. Enterprise Application Intégration and Décision Support Systems 19

technologies, the application is statically bound to a single address and tightly coupled
with request/response mode.

However, for the multiple limitations we discussed above, IT and business commu-
nities found out that providing a high level of interoperabihty between heterogenous
Systems will be the unique way to support web explosion and the new business ini-
tiatives. Such a solution should be independent of the underlying platform, language,
data models and used protocols. The answer for this concern was the introduction of a
new implementation of SOA: Web Services.

2.6.1 Web Services

The main idea behind the Web Services is how to provide a mechanism that allows
enterprises and businesses to describ their services, publish them in centralized registries
and/or repositories so that users can find and use them. This mechanism should achieve
ail thèse opérations in a transparent way by masking ail the complexities from the
user. Among the first Web Services products, we refer to e-Speak [56], introduced by
HP in 1999. Shortly afterwards, many competing frameworks and proposais for Web
Services hâve been provided such as Microsoft .Net, IBM websphere and SUNs J2EE
Web Services. They ail share the basic définition and vision of Web Services.

A Web Service is a self-describing, self-contained, and modular unit of applica-
tion logic, whose interface may be described in a standard machine-processable format
(specifically Web Services Description Language (WSDL)). Inter-process communica-
tion with a Web Service is achieved using standard web protocols, notations and naming
conventions, including XML Protocol (or until XML protocol is standardized, SOAP)
[61].

In what follows, we first présent briefly XML as a common standard used by Web
Services components. Second, the Web Services model, and finally the Web Services
stack including différent layers: service description, service publication, service discov-
ery, and service exécution.

2.6.2 XML: A Big Step for an Unlimited Interoperability

In [92], eXtended Markup Language shortly XML is defined as: "a spécification de-
veloped by the W3C. XML is a pared-down version of Standard Generalized Markup

Chapter 2. Enterprise Application Intégration and Décision Support Systems 20

Language (SGML), designed especially for Web documents. It allows designers to cre-
ate their own customized tags, enabling the définition, transmission, validation, and
interprétation of data between applications and between organizations".

Thus, XML [91] provides a standard format for data exchange, which helps to easily
integrate structured, semi-structured and unstructured data through intranet and the
web. In addition, the self-descriptive nature of XML provides easy integrity to struc-
tured, semi-structured and unstructured data outweighing the limitations of HTML.
Légal building blocks of an XML document may be defined in two ways: XML DTD
(Document Type Définition) or XML schéma. DTD is either a world-wide standard doc-
ument définition or a set of définitions agreed by a group of people in order to exchange
information. XML Schéma defines documents above and beyond the basic syntax con-
straints imposed by XML DTD définition itself. Schéma may specify new data type of
the éléments in terms of constraints on the structure and content of documents of that
type. Finally, the document éléments can be written as to be compilant with those
defined classes. Furthermore, it may inherit and import éléments from existing élément
classes and schémas using namespaces.

2.6.3 Web Services Model

Web Services model takes advantage of thèse enormous capabilities offered by XML in
a layer based architecture as described in figure • below. Three main rôles [27, 30, 56]
are defined: service provider, service registry and service requestor.

In a typical scénario, the service provider describes the Web Service and publishes
it in a service registry to be used by a service requestor. Using a find opération, the
service requestor retrieves the service description from the service registry and uses the
service description to bind with the service provider and use the Web Service.

From a business stand point, a service provider is the owner of the service. However,
from an architectural stand point, it coins to the platform that hosts this service. As
for the service requestor, it points to the business user that requires certain fonctions
to be sâtisfied. Architecturally, it represents the application looking for and invoking
or initiating an interaction with a service. Whereas the service registry represents a
searchable registry or repository of services descriptions published by service providers.
Requestors of services find and obtain binding information for static or dynamic binding.
For statically binding, the service registry is optional since the service provider sends
directly the service description to the requestor. However, for dynamic binding, the
service description is obtained from a service registry by the requestor which is bound

Chapter 2. Enterprise Application Intégration and Décision Support Systems 21

VVSI

V

Service
Requestor

s
Fincl /
JL.UDDI /

Service
Regjstry

Bmd

V Pubiish
N. WSDL, UDDI

Service
Provider

Figure 2.6: Web Services Rôles

to the Web Service at run time.

2.6.4 Web Services Stack

To achieve the interaction between the three rôles shown in figure , in an interop-
erable manner, many organisms and consortiums including the principle software and
hardware vendors define a Web Services stack built on well established standards, par-
ticularly: Simple Object Access Protocol (SOAP), Web Services Description Language
(WSDL), and Universal Description, Discovery, and Intégration (UDDI) [59]. As shown
in Figure . , this stack consists mainly of the following layers: service protocol, mes-
saging service, service description, service publication, service discovery. and service
composition.

BPEL4WS

UDDi

UDDI

WSDL

SOAP

HTTP, FTP, IlOP.etc

Service Composition

Service Discovery

Service Publication

Service Description

Messaging Service

Transport Protocols

Figure 2.7: Web Services Stack

Service Protocol: Service Protocol defines a common standard application level

Chapter 2. Enterprise Application Intégration and Décision Support Systems 22

protocol to transfer information as a load over communication protocol. Because
of its incontrovertible popularity and ubiquity, HTTP is the de facto standard
transport protocol for Web Services. HTTP does not exclude the other Internet
protocols, therefore many others can be supported, including FTP and SMTP.
For Intranet (inside the organization), communications can use reliable messaging
and call infrastructures [30] like Java Messaging Service (JMS), CORBA, etc.

• Messaging Service: The next layer, XML-based messaging based on Simple Ob-
ject Access Protocol (SOAP), a standard defined by W3C. SOAP acts as the
envelope for XML-based messages. SOAP provides standard mechanisms for en-
veloping, communicating document-centric messages, and remote procédure calls
using XML [30]. Moreover, SOAP messages support différent opérations to de-
scribe, discover and use the services (publish, find and bind).

• Service Description and Publication: Service Description defines the interface of
an implemented service. It signifies common business transactions (e.g. sending a
purchase order), common data-interchange formats and mechanisms to negotiate
business terms among organizations before commencing transactions. Since the
service is defined in a an XML-standard. Any global consumer can automatically
interpret a service and use it through defined interface to suffice his/her own
interests. Web Service Description Language (WSDL) is the de-facto standard
for service description. A WSDL document simply describes what the service
can do, where it résides and how to invoke it through the binding with SOAP1.1,
HTTP GET/POST, etc. Once the service provider describes the service, it is time
to publish it in a service registry or repository. The most dominant standards for
service publication are UDDI [59] and eXtensible Markup Language (ebXML) [89]

• Service Discovery: As stated before, Service Discovery is implemented in a mech-
anism that lists organization's capabilities for business transactions and provides
a look up facility to company profile. Service Discovery uses its own XML reposi-
tory system (ebXML) or other repository (UDDI). Once agreed, service discovery
System binds the producer and consumers. A standard based open spécification
for Service Description and Discovery is achieved in Universal Description, Dis-
covery and Intégration (UDDI). However, Java based implementation of UDDI
uses JAXR (from Sun Microsystems) interface to unify and speed up transactions
from différent repository Systems.

The aforementioned description of Web Services is stateless as implemented in
WSDL. Therefore, it offers exécution of a whole process in response to customer's
request. However, human requests are often too complicated to be served by a single

Chapter 2. Enterprise Application Intégration and Décision Support Systems 23

service. It requires composition of multiple services to accomplish the required work
flow. As WSDL being stateless and unable to capture intermediate states; a language,
on top of WSDL, that deals with work flow becomes a necessity. This necessity in-
troduces another Web Service layer, called Service Execution. Software vendors
implemented a number of process exécution languages. The most promising one may
be considered is Business Process Execution Language for Web Services (BPEL4WS)
provided by many industry leaders such as BEA Systems, IBM, Microsoft, SAP AG,
Siebel Systems, etc.

2.7 Messaging Service

For information sharing purposes, any EAI solution requires a communication layer [71]
between différent connected Systems called middleware. This layer enables transparent
interaction between applications by masking the complexities related to each one.

2.7.1 Types of Middleware

A middleware cornes under various forms: Transactional Processing Monitors (TP),
Remote Procédure Call (RPC), and Messaging Oriented Middleware (MOM).

First, Transactional Monitors technology [8, 17] emerged in the beginning of the
1980's to balance the proeessing load problems on the mainframes, by splitting com-
plex applications into small pièces of code called transactions. This technology performs
business logic and manages database transactions. It is used in data management, net-
work access, security Systems and delivery order proeessing . Second, RPC-based mid-
dlewares [80] allow access to remote servers by using spécial function calls embedded
within the client side of the client/server application program. When a client program
is compiled, a local stub for the client side and another stub for the server side are
created. When the application requires a remote function and typically support syn-
chronous calls between clients and servers, thèse stubs are invoked. Tightly coupled,
remote procédure call (RPC) puts serious handicap in system-to-system proeessing due
to distinguished frameworks. Moreover, architecturally, CORBA, Microsoft's DCOM.
and Java RMI maintain many-to-many connection framework based on their own syn-
chronous communication protocol. A caller is blocked until the procédure complètes
remotely and returns control to the caller. Consequently a distributed middleware fol-

Chapter 2. Enterprise Application Intégration and Décision Support Systems 24

lows highly interdependent nature, where one failure on a system has immédiate and
deliberating impact on other Systems. Finally, MOM, which we will présent in détail
hereafter, represents a better alternative for TP and RPC-based middleware.

2.7.2 Messaging Oriented Middleware

A Messaging Oriented Middleware [C9] is a software that résides in both sides of a
client/server architecture and typically supports asynchronous communications between
the client and server tiers. Hereafter, we highlight this communication middleware, its
architecture, messaging models, styles, and follow up by detailing the standard Java
messaging service, one of the most widely accepted and used messaging services.

For an enterprise application, a message is a lightweight entity that consists of a
header and a body. The header contains fields used for message routing and identifica-
tion. However, the body contains the application data being sent.

A Message Oriented Middleware exchanges information in a message format, gen-
erally created by an API, places it as a payload (application data) on the network
protocols, and assigns the routing information. In addition, the messaging service de-
couples the user application from data or service sources and therefore allows seamless
intégration of resources inside and outside the organization with significant improve-
ment in quality of service .

2.7.3 Classification of Messaging Service

Message Oriented Middlewares exist in several industrial products. IBM MQSeries
(become IBM WebSphere MQ) [88], Microsoft MSMQ [49], TIBCO Rendezvous [85],
Modulus InterAgent [57], etc. are examples of thèse products. Thèse MOM products
can be classified according to their messaging architecture, model, and style.

Messaging Architecture

Each enterprise system follows an architecture which is centralized, decentralized or
hybrid [69]. Implementing a messaging System for information exchange is not an
exception.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 25

• Centmlized architecture: Centralized messaging Systems rely on a single message
server that routes the message and contains the request response broker that holds
implementation détails of its messaging clients. Clients are added to the server
and post messages to their server. Therefore, any client can be added or deleted
without impacting the whole system. A centralized server may be a distributed
cluster working as a single logical unit.

• Decentralized architecture: Decentralized architecture does not rely on a single
server. Each client is given some server-like facilities (persistence, transactions,
security) and the router implements IP multi-casting functionalities to allow a
message requests to other messaging clients.

• Hybrid architecture: Messaging vendors generally implement both of the above-
mentioned architectures. Centralized multicast is generally implemented on TCP/IP
communication protocol, while the decentralized counterpart is on IP multicasting
protocol.

Existing messaging products follow the aforementioned architectures as per their
requirements. Messaging service of SonicMQ [79] allows centrally managed messag-
ing components. TIBCO Rendezvous utilizes a distributed architecture to eliminate
bottlenecks and single points of failure. MSMQ [87], a part of the Microsoft DNA ar-
chitecture, has two components: MQ site controller (SC), that store read-only copies
of messages in a queue, located in client-side end; and a primary enterprise controller
(PEC) that résides in the central MQ server side, that keeps the broker and stores the
queue détails.

Messaging Model

A MOM follows one of two modes: Point-to-Point (P2P) model and Publish-and-
Subscribe (Publish/Subscribe) model [79].

Point-to-Point model: P2P messaging model uses a connection component that
allows one-to-one delivery of messages. More precisely, a message producer cré-
âtes a message and put it in a 'queue' inside the 'messaging domain'. Afterwards,
a consumer can receive that message from the same queue. Point-to-point mes-
saging confirms loose coupling between single producer and single consumer at a
time.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 26

Publish-and-Subscnbe model: Publish-and-subscribe is a one-to-many broadcast-
ing model of messaging. Message based middleware Systems use this technique
to allow an application sending the same request to multiple other applications.
Each consumer receives a copy of the same message in nearly same time. The
virtual repository channel of the messaging domain is called 'topic'.

Messaging model defines handling of messages sent to or from a particular site.
Auction sites, stock quote service, or security services often require to push data to
huge population of consumers. Différent vendors approach différent styles. For example,
MSMQ from Microsoft supports queue based one to one messaging, while the présent
versions of SonicMQ and TIBCO Rendezvous work with both aforementioned models.

Messaging Style

An important feature of messaging service is its ability to découplé two applications
to share information or processes. The basic infrastructure of RPC [76] is strictly
synchronous . However, messaging [69] allows both synchronous and asynchronous
communication as required in the enterprise Systems.

Synchronous messaging; Synchronous messaging tightly couples messaging com-
ponent (called destination) and receiver of messages. It provides an advantage
for fail-safe communication and transaction processing. However, the receiver is
bound to destination until it finishes the processing of the sender's request. Net-
work and both communicating processes must be available during the communi-
cation. A synchronous consumer [14] uses a pull technique to receive messages
from a destination .

Asynchronous messaging: Asynchronous Messaging style uses 'store and forward'
mechanism. Design of this messaging allows one/many connection component(s)
between the sender and receiver. An asynchronous consumer registers a message
listener to a destination. Thèse components allow the sender and receiver non-
blocking to each other. When a message arrives, the implemented listener model
informs the consumer with a message. Consequently, the client frees the messaging
structure and failure of a client does not affect the whole System.

Most of the business solutions introduce the asynchronous paradigm in their mes-
saging solution. However, certain situations require synchronous solutions, while the

Chapter 2. Enterprise Application Intégration and Décision Support Systems 27

information is required to be compromised only between the sender and receiver for
transaction processing, for instance. TIBCO Rendezvous provides support for re-
quest/reply, publish/subscribe, and synchronous/asynchronous mesaging. Similarly.
IBM Websphere MQ séries, Sonic messaging products implements both notions in their
messaging styles with limited variations.

2.7.4 Java Message Service

According to our objective, the proposed middleware System requires both; peer-to-peer
communication and broadcasting of messages for enterprise-wise intégration of infor-
mation Systems. After an intensive research on différent technologies and assessing the
available messaging products, Java Message Service (JMS) has been chosen as the most
prominent technology in our design and implementation. JMS is the Java messaging
standard, released in 1999 [51, 52] and used by most of the leading industries includ-
ing, Sun Microsystems, Sonic MQ, IBM Websphere, BEA Weblogic, etc. It leverages
a union of ail the existing features of messaging service and includes functionalities
of sophisticated enterprise applications in portable messaging applications. The main
objectives behind JMS are the following:

• Provide a single unified message model that can be implemented as an API (JSR
914).

• Allow cross vendor communication in the messaging service level with applications
that do not use JMS but support similar spécifications.

• Integrate multiple heterogeneous sources of information and services, with XML
support, through communication of Java objects.

• Implement another layer between application and communication layers and thereby
enforcing magnitude of enterprise properties like security, portability, reliability
etc.

• Implement a new notion of asynchronism, much needed for intégration of both
intra and/or inter organizations.

• Extend support to numerous Java based APIs: Java DataBase Connectivity
(JDBC), Java Transaction API (JTA), and Enterprise Java Beans (EJB) com-
ponents.

Hereafter, we présent various JMS components associated to the JMS messaging.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 28

JMS API Architecture

A JMS application is composed of the following parts [33]: a JMS Provider, Clients,
Messages, and Administered objects.

• Provider: Each JMS application runs on a host application, called JMS provider.
A JMS provider implements the JMS interfaces and is responsible for administra-
tive functions and control capabilities. Inside Java virtual machine, a distributed
component résides within a 'provider' application. This container hosts 'bro-
ker' and other JMS components that hold the messaging implementation détails
[41, 79].

• Clients: Clients are JMS applications that use the provider components to pro-
duce and consume messages. A client can be synchronous or asynchronous to the
JMS destinations to send or receive messages. JMS is implemented in a way to
support JMS and non JMS clients through Java application or other client APIs
[G9].

• Messages: A JMS message carries application data and event notifications in
flexible and dynamic way. Unlike RPC, messages neither dictate the récipient nor
block the sender. A Message object consists of a message header and the message
itself, called payload. Most of the message headers are automatically assigned and
détermine JMSDestination, JMSDeliveryMode, JMSMessagelD, JMSTimestamp,
JMSPriority, etc. A Message object contains a built-in facility for supporting
application-defined property values. Actually, this provides a mechanism to add
application-specific header fields to a message. Properties allow an application,
via 'message selectors', having a JMS provider sélect, or filter, messages on its
behalf using application-specific criteria. A message selector mechanism is used
by the consumer to filter out its spécifie messages. JMS message payload has the
base interface defined in javax.jms.Message. Payload might be structured like
StreamMessage or fairly unstructured as in TextMessage [51].

• Administered objects: Administered objects are pre-configured JMS Objects cre-
ated by an administrator to control the message-based communication. The ad-
ministrator binds thèse objects inside the Java Naming and Directory Interface
(JNDI) namespace prior to the messaging. Administered objects are of two types:
ConnectionFactory and Destination. Once, created they provide abstraction
to the namespace by hiding implementation complexities through this virtual and
dynamic interface. Therefore, a client program exécutes with minimal program-
ming required to 'lookup' a spécifie object. Administered objects always impie-

Chapter 2. Enterprise Application Intégration and Décision Support Systems 29

ment standard based profile, and therefore remain portable despite proprietary
aspects of JMS providers [24, C9j.

Apart from the aforementioned components, JMS uses a directory service for the storage
of implementation spécifie settings of distributed JNDI components. Directory service is
a file system that allows clients to look up a named connection factories or destinations
defined by administrators. Generally, it uses Lightweight Directory Access Protocol
(LDAP) [21] server to store the administered objects.

JMS Model

The basic building blocks of a JMS application consist are: Administered objects,
Connections, Sessions, Message producers, Message consumers, and Messages (Figure

In gênerai, a directory service has its own domain managed by a domain man-
ager. The domain manager [79] controls administered objects within multiple vir-
tual containers and allows communication between them. JMS messaging requires
proper configuration of administered objects in JNDI prior to messaging. First, ad-
ministered objects are required to be bound to JNDI using administrative tools. Once
Corme et ionFactory and Destination are created in the JMS server and ail of its
implementation spécifie information are kept within the system, and JMS is ready
to start communication. A developer should create a Connection initially from a
valid and bound JMS ConnectionFactory. As it allows multi-threading, a Connection-
Factory may handle multiple connections simultaneously. JMS messaging is session
based. A Session object implements a particular valid Connection. A Connection
is capable also to handle multiple sessions at a time. However, there are strict re-
strictions imposed on concurrent access into Sessions. The objective of a session is to
implement transactions in synchronous or asynchronous messaging. Therefore, JMS
spécification reserves the access to a session by a single message consumer. How-
ever, sophisticated design may allow multi-session related to a single connection to
process concurrent requests from users. Each application process runs under a particu-
lar session. JMS user applications are of two types: QueueSender/QueueReceiver and
TopicPublisher/TopicSubscriber. QueueSender/QueueReceiver application sends
and receives messages to/from a Queue, while TopicPublisher/TopicSubscriber pub-
lishes and subscribes information to/from a Topic. JMS send/receive (in JMS Queue)
and publish/subscribe (in JMS Topic) [51, 09] are detailed in the next subsection . The
pièce of code illustrâtes a simple JMS sender application as described above.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 30

import javax.jms.*; import javax.naming.* ;

public class JmsQueue {

Context jndiContext=null;

QueueConnectionFactory qCF = null;

QueueConnection qC = null;

QueueSession qSess = null;

Queue queue= null; QueueSender qS = null;

TextMessage message=null;

public qSendO {

//Initial lookup to Administered Objects assuming they are already

created.

try {

jndiContext = new InitialContextO ;

qCF = (QueueConnectionFactory)jndiContext.lookup(QueueConnectionFactory);

queue = (Queue) jndiContext.lookup(TestQ);

} catch(NamingException e) {}

//Création of connection, session and message sender.

t ry {

qC = qCF.createQueueConnectionO ;

qSess = qC.createQueueSession(faise,Session.AUTO ACKNOWLEDGE);

qS = qSess.createSender(queue);

} catch (JMSException e)O

/ / Création of message and sending i t to the queue,

try {

message = queueSession.createTextMessageO;

qS.send(message);

} catch (JMSException e) {} }

JMS messaging implements one-to-one and one-to-many messaging models in the

same API. As mentioned earlier, JMS destination objects are of two types: Queue and

Topic. A queue allows exchange of message objects through a virtual channel, that fol-

lows First In First Out(FÏFO) model. Despite existence of multiple receivers waiting, a

queue ensures the retrieval of message by a single queue's receiver at a time. A consumer

Q) Publish Subscribe Messaging

(2) Point-to-Point Messaging

Client Application

^Connection Factory)

créâtes

Connection

créâtes

Session

Message
Producer

créâtes

1Message >

1 binds T

publishes U
"5.o

Client Application

rt

subscribes

Client Application

sends
•J»C Queue > •

Client Application

C Connection Factory ,>

^ créâtes
| Connection ~ |

^ créâtes
Session I

Message
Message

Subscribar
extract

Client Application

g
iver

Figure 2.8: JMS Messaging Model

receives the messages in the same order as they are placed in the queue inside message
server. JMS point-to-point messaging paradigm uses a storage inside each server node
that keeps the messages for certain duration as configurée!. Queues are also used for
load-balancing as well when many diverse Systems share processing opérations through
a proper distribution of incoming messages. The JMS publish-subscribe messaging is
implemented through a connection component, called JMS Topic. A topic implements
a multi-threaded architecture that is capable of publishing a message object to its sub-
scribers. A JMS publisher application places a single message into the message server
and the later multicasts copies of the same object and distributes to ail subscribers
simultaneously. Figure represents both of the JMS messaging models. However,
subscribers may be synchronous, asynchronous or durable. A durable subscription ac-
cepts message for a subscriber even while the application is not connected. JMS also
allows to configure various properties to improve the performance and reliability of the
System.

The most important aspect of JMS messaging System lies in the loose-coupling be-
tween message producer and message consumer. Messaging service outweighs temporal
dependency on the command based tightly-coupled process communication mechanism
as in Remote Procédure Calls. According to JMS spécification, the producer releases
a message to the connection component irrespective of the availability and processing

Chapter 2. Enterprise Application Intégration and Décision Support Systems 32

interval of receiving application. On the other hand, the consumer receives the mes-
sage from the respective JMS component of the server in its side. Using Java message
driven beans, a producer often créâtes temporary topic with JMSReplyTo header to
put messages asynchronously in the destination. Messages are communicated through
"store and forward" mechanism. In the following, we describe various binding technique
related to the retrieval of messages from a JMS destination component [24, 09].

• Synchronous consumer: A synchronous subscriber, waits for a message always or
for a specified duration (if the program implements onTimeOutOmethod to deac-
tivate the listener). As it receives the message, the listener sends it for process-
ing and then blocks to receive again. JMS listener' provides an onMessageQ
method. In the programming level, the functions QueueReceiver.receive()
and TopicSubscriber. receive() for synchronous retrieval of message [09].

• A synchronous consumer: An asynchronous consumer receives the message when
a message arrives but does not block the connection between the destination and
application process. An asynchronous JMS message listener is programmed with
event based notification inside onMessageO method. Implementation is done
using receiveNoWaitO method. However, as it receives the message, it may or
may not use message selector to filter the incoming messages from more than one
topic. Loosely coupled asynchronous consumer is more useful for free information
exchange, except thcre is a typical need for synchronous transaction.

• Durable consumer/subscriber: Durable subscription frees the consumer from stay-
ing continuously connected to the JMS server. "Store and forward" messaging
mechanism also allows server to store messages inside server on behalf of a sub-
scriber while client program is not available. It allows guaranteed messaging so
that the consumer receives ail the messages at re-connection, irrespective of the
duration of staying disconnected [09]. A JMS durable-subscriber may be defined
through createDurableSubscriberQ method within a session.

2.7.5 JMS Properties

According to its spécification, JMS inherits a large number of features with enough
scope of further development. The properties of JMS API may be classified into two
catégories: architectural properties and message properties.

• Architectural properties: JMS is standard-based, robust and résilient enterprise

Chapter 2. Enterprise Application Intégration and Décision Support Systems 33

messaging System. Architecturally, it is a distributed set of loosely coupled com-
ponents that are centrally managed. JMS favors significant performance improve-
ment over the System using asynchronous retrieval of messages. Messaging tech-
nique is reliable and durable, due to the "store and forward" mechanism of commu-
nication among destinations. JMS ensures once-and-only-once message delivery
[51]. It also strives to maximize portability of messages within différent cross-
platform products within the same messaging domain. Loosely coupled nature of
JMS allows seamless intégration of applications with high scalability. Moreover.
it supports a big number of market available APIs (JDBC, JCA, Java Beans
components etc.) in différent layers of the middleware and adds asynchronous
messaging of serialized object data.

Message properties: Messaging service allows more fiexibility over communication
among distributed components. Messages are inter-operable structured serialized
object. Messaging properties ensure two delivery mode: persistant (message de-
livered once and only once) and nonpersistent (at most once, message may be lost
if JMS server fails). JMS also offers properties of message expiration, time-stamp,
priority settings etc. Message properties implement message selector to retrieve
message from multiple topic and run a filter program as specified by a user. JMS
permits huge scope of programming using the API. Messaging is provided with
acknowledgement mechanism to assure delivery. A message may be read-only. A
fair amount of security policies are also associated in relation to authentication,
authorization and confidentiality on the JMS destination components [69].

Java Message Service is implemented as an open standard. It inspires with a big
portion of implementation spécifie functionalities for its vendors. As an example, the
spécification of JMS does not cover load balancing, privacy, integrity etc. properties,
however well implemented some vendor spécifie solutions like SonicMQ [79]. Also, there
is no implemented System message for error notification. Furthermore, JMS spécifica-
tion does not define administered objects and JNDI components for the administration
of messaging products. JMS messaging is free to implement except following the above-
mentioned high-level properties. The architecture empowers the possibility of seamless
intégration, although practically, there is an obvions limit of extensibility, if the send
rate far exceeds the receive rate, the queue or topic memory will be overflown with
leakage of message.

A number of MOM vendors participated in the spécification request of JMS . Sun
Microsystems was the spec-lead, however it is more an industry effort than a single
company-wise initiatives. The choice of the best JMS server is difficult and driven by
the environment of the middleware solution. Commercial JMS implementation [13, 32]

Chapter 2. Enterprise Application Intégration and Décision Support Systems 34

of SonicMQ, TIBCO-Rendezvous are better in performance than first génération of
JMS implemented by Sun, IBM webshpere.

However, for the middleware we are highlighting architecture and implementation
in Chapters 3 and 4, we adopted Java Message Service version 1.1, freely available with
J2EE application server solution from Sun Microsystems.

To conclude with Enterprise Application Intégration, besides being a big challenge
in large corporations, tins topic has been fuelled by the explosion of the web, the high
degree of heterogeneity in existing Systems, and continuously increasing number of data
and service sources.

The first solutions related to this problem are time and money consuming, having
limited capabilities and dealt only with data. However, émergence of new business ini-
tiatives over the web, hâve made from EAI a big concern for both community research
and business world. Therefore, the concept of standards started to émerge during the
last décade; infrastructures for distributed Systems, data connectors, communication
middlewares are just few examples. Java technology represent an important part [()(>]
(more than 70%) from EAI standard solutionsand supported by almost ail active soft-
ware vendors: SUN, IBM, Oracle, BEA, HP, Sybase, Attunity, and many others.

Recently, Web Service concept has been introduced as a promising standard ap-
proach over the web that increase reusability of services and applications sharing. The
Web Services stack is based on a set of standards: SOAP, WSDL, UDDI, ebXML,
etc. and ail of them based on XML. To support thèse satandards, a set of organiza-
tions and concortiums appeared such as Java Community Process (JCP), World Wide
Web Consortium (W3C), Organization for the Advancement of Structured Information
Standards (OASIS), RosettaNet, and many others.

Messaging service enables enterprise application to be loosely coupled rather than
tightly coupled API, such as Remote Procédure Call. Therefore, applications can send
information to another and continue to operate without waiting for an immédiate re-
sponse. JMS is the standard and most prominent messaging service widely used in
application intégration.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 35

2.8 Décision Support Systems and Digital Cockpit

In this section, we provide an overview of décision support Systems: évolution of DSS,
data explosion phenomenon illustrated by some examples, types of DSS, and DSS ar-
chitecture. Afterwards, we présent a new wave of DSS meant for real-time information
Systems intégration and décision making.

2.8.1 Décision Support Systems

Like any information system, a décision support System deals with collection of data,
their organization and storage. However, in a décision support System, the needed data
can be quickly retrieved and transformed into information for a décision making pur-
pose. A décision support system highlights décision making effectiveness and décision
making efficiency [29] rather than efficiency alone; which is the case of information
Systems. DSS effectiveness means what should be done in a décision making situation
and ensuring that the chosen criteria are relevant, whereas decision-making efficiency
means minimizing time, costs, or effort.

Traditional methods to turn islands od data, generated from infinité connected Sys-
tems and from the web, into useful knowledge lie on manual analysis and interprétation.
For instance, a specialist in Customer Relationship Management (CRM), analyzes peri-
odically data relative to customers, prépares a detailed report and then transmits it to
marketing service to take the appropriate measures and décisions. This report becomes
the basis of future décisions in this domain. This analysis approach is applicable with
almost other domains of science and business (health care, commerce, space, etc.).

The aforementioned approach of data analysis may be suitable for small businesses
where the analyst handles few data. However, this is no longer the case nowadays, data-
bases evolved from many hundred records to many thousands and millions, according
to two dimensions: the number of records in the database and the number of attributes
within an object. Therefore, new génération of tools and techniques to extract nuggets
of knowledge from the enormous amounts of data is getting more imperative than any
time before. Digital cockpits are among thèse new Systems especially for real-time
intégration and user friendly graphical présentation.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 36

2.8.2 Data Explosion Phenomenon

Nowadays, databases contain billions of records and thousands of attributes. Figure
, taken from a survey achieved by the company Winter Corp's in 2003 [48], illustrâtes

data explosion phenomenon.

This survey shows that the biggest database used in décision support approaches
30 tera bytes (30.000 Giga Bytes!). Another example, the Europe's Very Long Baseline
Interferometry (VLBI) lias 16 télescopes; each one générâtes 1 Gigabit / sec of astro-
nomie data, during 25 days of the observation session! Another study estimâtes that
between 1 and 2 exabytes -109 Giga bytes or 1018 bytes- of data are produced per year
[31].

Company / Organization

France Telecom

AT&T

SBC

Amazon.com

Kmart

Claria Corporation

Health Insurance Review Agency

FedEx Services

Vodafone D2 GmbH

Size
(GB)

29,232

26,269

24,805

13,001

12,592

12,100

11.942

9,981

9.108

DBMS

Oracle

Daytona

Teradata

Oracle

Teradata

Oracle

Sybase

Teradata

Teradata

System
Architecture

SMP

SMP

MPP

SMP

MPP

SMP

Cluster

MPP

MPP

DBMS
Seller

Oracle

AT&T

Teradata

Oracle

Teradata

Oracle

Sybase

Teradata

Teradata

System
Seller

HP

Sun

NCR

HP

NCR

Sun

HP

NCR

NCR

Storage
Seller

HP

Sun

LSI

HP

LSI

Hitachi

Hitachi

EMC

LSI

Figure 2.9: Data Explosion Example
Source: Winter Corp's Survey, November, 2003. www.eweek.com

From the above estimâtes, the basic question a décision maker might raise that is
it possible for humans to analyze and interpret thèse islands of data to enhance the
décision making process? The legitimate answer would be that the human capabilities
cannot address this kind of problems. Therefore, information Systems and décision
support Systems hâve been developed. In the following section, we will reveal the
évolution of décision support Systems, and the most important research that relate to
this area.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 37

Evolution of DSS

In the 50's, computers were luxurious and capabilities limited. Therefore, it was costly
to build information Systems. In the late 60's, with the development of more power-
ful computers, such as IBM system 360, information Systems era had more scope in
many of large corporations. Little after, a new category of information Systems be-
came practical: Model-Oriented DSS or Management Décision Systems. The concept
of décision support system was first claimed by Peter Keen and Charles Stabell [18];
two DSS pioneers, in the 60's. In the 70's, business journals started to publish arti-
cles on management décision Systems, stratégie planning Systems and décision support
Systems.

The first décision support Systems were simple interactive information Systems de-
veloped to help décision makers taking educated décisions in complex fields such as
financial management and stratégie décision making (military field for example). Thèse
Systems use semi-structured data. A few years later, DSS hâve been enlarged to support
spatial, multi dimensional and unstructured data. As example of thèse Systems, we can
refer to GADS [23]. Those Systems support many models such as optimization, simu-
lation and statistical packages [18]. In the 70's, financial planning became popular DSS
tools, used by some executives to build models autonomously. IFPS was one of the
famous planning languages at that time [28]. In the 80's, many works and researches
hâve been done in the aim to develop a new category of software tools that can support
group décision making . We find in this category Mindsight from Execucom Systems,
developed at the University of Arizona and the SAMM System developed at University
of Minnesota [55].

At the beginning of 90's [18], data warehousing and On-Line Analytical Processing
(OLAP) started to émerge as a new génération of décision support Systems. The ware-
house and its related tools provided a big potentiality to enterprise information Systems
(EIS), evolving them from single user and model-driven to multi-user and data-driven
respectively.

Lately [7], driven by data explosion problem as stated above, a need for a new
génération of tools that are capable to analyze online data became crucial. Therefore,
new kinds of tools supporting real-time business started to appear. Digital cockpits is
an example of thèse tools that represent a new paradigm for information intégration
and décision making.

5Geodata Analysis and Display System
interactive Financial Planning System

Chapter 2. Enterprise Application Intégration and Décision Support Systems 38

Below we provide the nain types of décision support Systems.

Types of Décision Support Systems

In literature, there is an agreement that DSS can be divided in several groups. This
affiliation (affectation) to a group reflects the functionality for which the DSS has been
developed. In décision making process, a manager can face many kinds of décisions,
depending on the nature of the affronted problem. Thèse problems can be classified
into many catégories from a simple database query to data analysis and optimization.
According to each situation, there is a matching between the problem and a type of
DSS. The type of DSS reflects what a System does and not how it was built. The
classification of DSS into many types was originally used by Alter [72]. A DSS falls
in one of two big catégories: data-oriented or model-oriented DSS. A data-oriented
DSS focuses principally on the database and comprises file drawer Systems, access data
Systems, and data analysis Systems. The problem with this category of Systems is
that they do not show what really the System does, and do not outline the business
situation. However, a model-oriented DSS provides some analysis capabilities, and
it consists of accounting models, representational models, optimization models, and
suggestion models.

On the other hand, a décision support System can be for personal, group, or organi-
zational use. The first focuses on an individual user and the achieved task is generally
independent of other tasks. The second, focuses on a group of users, each one involved
in a separate task but in relation with other tasks. This category is often called group-
ware. Finaîly, the last category focuses on organizational activities involving a séquence
of opérations, différent functions and locations [30].

Décision Support System Architecture

As any information System, a DSS architecture reflects the environment in which the
DSS runs. This architecture defines which approach, hardware and software will be
used by the DSS. The DSS runs on the top of this architecture, which is actually a key
factor of a DSS accomplishment and responsiveness.

Figure . outlines a generic DSS architecture. It consists of the following com-
ponents: data management module, model management module, and user interface
module.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 39

Graphs, Charts, etc. Models

User
Interface

Model
Management

SQL OLAP Statistics Data Mining

Intégration Layer

Data
Management

Figure 2.10: Generic DSS Architecture

• Data Management: Data management component stores and maintains in-
formation required for DSS system. This component is responsible for storage
and retrieval of needed data in related DBMS and by other DSS components re-
spectively. Also, in case of use of many DBMSs, it is responsible for ensuring
communication and intégration of différent involved data sources together. As
discussed before, this layer corresponds to information sources intégration and
messaging service middleware to retrieve data and services, and provide them as
input to other components.

• Model Management: This component is responsible for the model management
System that exécutes the business logic. As the DSS deals with multiple possibil-
ities of solutions for a user request, it uses and runs différent techniques through
this component. Thèse optimization techniques includes analytical processing like
OLAP, statistical analysis like time-series, mission planning etc.

• User-Interface Management: This module is responsible for the présentation
of client's answers. Traditional user interfaces with piles of data and tables are
frequently used in the industries although several disadvantages associated to it.
However, recently new trends in user-interface émerge to reflect real-time business
e vent s.

Since DSSs are spécial category of information Systems, their architecture follows
the conventional Computing paradigm: central, client/server or distributed architecture

Chapter 2. Enterprise Application Intégration and Décision Support Systems 40

[73]. First, centralized Computing [70] characterized the seventies (70's) and the be-
ginning of the eighties (80's). Tins paradigm has been marked by the centralization
of ail program intelligence (business logic) and data into a single computer called cen-
tral System or mainframe which is accessed by 'passive' terminais. The architecture
of centralized Systems is generally a star topology. Regarding to DSSs, the databases
used by the DSS are accessed at a single location; therefore the décision is always based
on up-to-date data. Also, the hardware architecture of large Systems [30] allows the
exécution of complex DSS, such as large calculations, prédiction tasks, simulations and
expert Systems with thousands rules. Moreover, adding new users is relatively easier
since the main configuration lies in the central System. Finally, the security is another
issue that can benent from the centralized architecture since data and programs are in
a single location, so building powerful security mechanisms is much appropriate. How-
ever, within this architecture, the single-point-of-failure characteristic may affect the
availability of the System, and interactivity is less suited. Secondly, the client/server
paradigm returned to mid eighties (80's). The monolithic applications centralized in
a single System hâve been split into two halves: database in the server side and pro-
grams in the client side. The server provides access to shared resources (typically the
database) and the client (typically a personal computer) hosts the business logic and is
responsible for the graphical user interface [70]. This architecture gives better perfor-
mance since the applications are consuming the client machine's CPU and memory. The
client/server option provides more freedom to choose DSS tools according to the client
operating system, and software tools are generally, more available and cost-effective for
microcomputers than servers. On the other hand, dealing with the middleware and the
network make DSSs development within this paradigm more complex than in a single
computer. In addition, this architecture requires more skills in différent domains (spé-
cifie OS Systems, DBMS, networking, etc.), and sometimes puts software compatibility
problems between the client and the server. Lastly, within distributed Computing, the
notion of hierarchy (server/ client or terminal) has almost disappeared. The majority
of the network nodes are in the same level (peer-to-peer architecture). Again, with dis-
tributed Computing, the centralized database in the server side in client server approach
has been splitted into many pièces of code located in différent machines. Distributed
applications are built over distributed Systems infrastructures. Among thèse important
infrastructures we hâve Common Object Request Broker Architecture (CORBA) from
OMG group [GO], Distributed-Component Object Model (DCOM) from Microsoft [50],
etc. Nowadays, the main concurrent technologies to develop distributed applications
are: Microsoft .Net from Microsoft Corporation and Java 2 Enterprise Edition (J2EE)
from Sun Microsystems Inc., many other main software vendors (IBM, BEA, Oracle,
etc.), and Open Source organizations.

Like other software application development over distributed platforms, there is no

Chapter 2. Enterprise Application Intégration and Décision Support Systems 41

exception with DSS applications development. The multiple data sources queried (used
by DSS may be hosted on différent machines, in différent locations, and heterogeneous
in terms of data models, schémas and used protocols) [()]. Also, the DSS applications
and access tools may be différent from a client to another depending on the accorded
privilèges, profiles and type of users (light, fat, mobile, etc.). Within this architecture,
many challenges hâve to be addressed such as performance, security, complexity, etc. On
the other side, this approach allows a widely and universal présence with the ubiquitous
Computing paradigm.

2.8.3 Digital Cockpits

Mostly used to refer to the pilot's compartment, the digital cockpit [94] word appeared
first in 1914. The digital cockpit contains read outs from instrumentation and controls
used by the pilot to fly the aircraft. It affords him a clear and unobstraucted view
above, below and around the aircraft.

By analogy to aircrafts, the information overload phenomenon has been the driving
force behind the création of digital cockpits or dashboards in businesses and organiza-
tions. A digital cockpit [75, 95] points to the new wave of software applications that
allow real-time displaying of key information gathered from several sources on a com-
puter screen, in a format tailored to the needs and wants of an individual knowledge
worker. In other words, as a picture is worth a 1000 words, a digital cockpit is a graph-
ical depiction of real-time business performance from far-flung opérations. The digital
cockpit provides a continuous stream of information, and time is its most important
élément. This viewing of what is happening in the business effectively lets managers
make décisions clearly and instantly, and not in delayed mode. Hère after, we provide
the features of this new génération of real-time oriented software.

• Digital cockpits offer sophisticated user interfaces that provide the user with in-
formation without asking for it, once he has subscribed to. This happens with
events notification mechanisms.

• Generally, the information displayed on the screen is sent by the back end ap-
plication, using some sophisticated middlewares (Java Message Service (JMS) in
our proposed middleware).

• As a resuit, use of thèse sophisticated technologies leverages many key features
such as: guarantee of delivery of information; multi casting of information; and

Chapter 2. Enterprise Application Intégration and Décision Support Systems 42

the loosely coupled communication between the digital cockpit client and back
end application.

• Digital cockpit is intended to provide the décision maker with analysis capabilities,
which leverages the décision making process.

• From a user stand point, the digital cockpit is a multiple applications at the
same time [75]: since that ail displayed graphical components are key features
representing a crucial business activity.

Thus, the digital cockpit paradigm allows Connecting the most enterprize informa-
tion sources, providing a better visibility, and setting metrics to monitor key perfor-
mance indicators (KPI) to respond in real-time to business events. This reaction to
events enables organizations to make well educated décisions based on key performance
data.

As for each new approach or technology, the digital cockpit is still a new field in
information technology. It has been successfully implemented in some large corporations
such as General Electric [19]. However, technology behind it is still in a research phase,
especially for the real-time notification of business events.

Implementing Digital Cockpit Systems

A successful design and implementation of a digital cockpit should focus on the principle
organization's goals, because understanding the goals and processes is more important
than the sélection of the technology. Each key performance indicator (KPI) should
appear on the digital cockpit interface.

Once what to display is well defined, there should be a very good understanding of
data sources in the organization, because the graphies and visualizations are based on
data coming from différent sources. Since thèse data generally corne from multiple and
différent sources, a data intégration stage is mandatory to prépare displaying graphies
and charts. Moreover, digital cockpits are meant to reflect real-time changes in data
sources, therefore redrawing graphies and refreshing displays is another issue to consider,
because mechanisms that feed with data should not send the entire data once again,
but just the changes. This gives more performance and less trame to the network, and
smoothly changes in the graphical displays. In addition, graphical screens hâve to be
well presented, provide a big picture on what is happening in the organization, and
enable drilling into détails.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 43

Digital Cockpits: Technology Stack

Décision support Systems are tools that help users in their décision making process.
They enable to show graphically the enterprize KPI and allows taking informed décisions
based on accurate and up-to-date data. Building a DSS is a multi-phase development,
from the lowest level which is data management module to the highest one which is
user-interface module, and between them model management module.

Data Management

As we hâve already seen, data management module aims to connection sources
of information within and across the organization for information sharing purposes.
Différent approaches and related technologies are depicted in Chapter 2 (JDBC, JCA,
JMS, etc.). In the next Chapter, we détail this phase in our proposed approach.

Model Management

For model management module, the domain of Business Intelligence (BI) plays a
key rôle in this scope. Most of big corporations hâve their own analytical tools that help
them to make sensé over the massive amounts of data contained in their operational
Systems. Thèse tools allow users to generate reports that analyze slices of data, or make
complex queries to measure business performance. However, a major drawback of thèse
solutions is that they require users to run reports and interpret results. That is why
graphical methods for visualizing results of analysis are required. As defined above, the
primary task of thèse analytical tools is to accept data, fed from différent data sources
including data warehouses, legacy Systems and/or external sources and finally to allow
synthesized display of information in a meaningful way to the end user. In this way,
they are key components for the success of the organization since they allow intuitive
insights into négative trends, positive developments, and emerging opportunities.

Also, the notion of BI is comprised of applications and technologies for extracting
data from operational databases and organizing it into virtual databases. This data is
then used as input to reporting, statistical analysis, data mining and On-line Analytical
Processing (OLAP) tools. The rôle of OLAP tools is to show trends and generate
relevant information that is directly used in decision-making process. Using BI tools
like OLAP, very complex analysis and synthesis capabilities can be incorporated that
clearly outweigh traditional query and génération of reports. Many related OLAP
approaches are coined by software vendors to support multidimensional characteristics.
For example Multi-dimensional OLAP (MOLAP) has been introduced to organize data
in a non-relational database and Relational OLAP (ROLAP) is released to simulate

Chapter 2. Enterprise Application Intégration and Décision Support Systems 44

the data cube used in MOLAP servers. As an example of such MOLAP databases, one
can refer to Hyperion Essbase, Oracle Express and MS OLAP Server [12]. Vendors,
who deliver ROLAP solutions, include Microstrategy and Informixs Red Brick [G3], A
Hybrid OLAP (HOLAP) is a combination of the MOLAP and ROLAP approaches in
which ail data are stored in a relational database. Business Objects, Brios, Cognos,
and Seagate ail offer OLAP clients that can access a wide range of OLAP servers as
well as traditional RDBMS servers [58]. The présent évolution for OLAP is marked by
its widespread distribution and accessibility in the web. Presently, OLAP clients are
capable of supporting a multi-tier architecture where a middletier application server is
used to access data from many sorts of databases [G2], Thus, OLAP is a flexible way
to view, analyze and display data in the form of reports. However, there are certain
limitations to OLAP technologies. For instance, the quality of the extracted information
dépends on the users interprétation of the results and is thus subject to error.

User-Interface

For the third component which is User-Interface; the added value by digital cockpits
Systems is mainly seen through data visualization tools. To take data from différent
sources, aggregate them and présent the synthesized information into a meaningful,
structured and big navigational picture that offers the ability to drill down into the
détails. Among the most prominent software solutions in this field, we cite Quadbase
EsspressChart [38], JCLASS from Quest Software [78], and JFREECHART [10].

As of Quadbase EsspressChart, it is a Java-based charting toolkit that allows
users to build charts easily, interactively and programmatically. The required data
for plotting may come from databases, text data files, XML files and Ms Excel
spreadsheets. The API makes it easy to deploy charts with applets, servlets, JSPs
and Java applications.

Concerning JCLASS, it is a suite of Java components under J2EE and J2SE). Thèse
components help to build quickly and easily applications with charts, tables and
reporting/printing features.

JFREECHART is a Java open source library that is meant for the génération
of charts (e.g. pie charts, bar charts, line and area charts, scatter plots, bubble
charts, time séries, candie stick charts).

On the other hand, there are some gênerai purposes visualization tools that are
directly available in the market. Examples of thèse tools are: ADVIZOR [15],
OpenViz [83], NetChart Reporting Suite [54] and Xcelsius [65]. The ADVIZOR
toolkit provides a présentation of business data along with a query capability.

Chapter 2. Enterprise Application Intégration and Décision Support Systems 45

OpenViz is a suite of software components that enables the development and
deployment of interactive 2D and 3D visual présentations. NetCharts suite allows
embedding charts and graphs into web-based applications. Xcelsius suite is a
Windows application that allows users to create real-time, interactive reports based
on Excel spreadsheets.

2.9 Conclusion

The main objective of application intégration is to enhance shareability of data and
application services. EAI include several approaches: data intégration, business process
intégration, portai oriented intégration, and service intégration. In the scope of this
thesis, we adopt federated architecture to connect différent Systems together, and Java
message service as a mean to push the fetched data to différent remote clients. This
choice leverages real-time intégration and notification of events.

Digital cockpits represent a new paradigm for information Systems intégration and
décision making that provides visibility of real-time business events and key performance
indicators (KPI). They help to remove the greatest source of latency in the exchange
of information and therefore provide support to the new event-driven economy.

They are intuitive and interactive, so managers can easily drill in/out into détails
and therefore can quickly get to the root cause of a business situation. Furthermore,
contrary to other approaches of application intégration, digital cockpits allow enterprises
to address the information overload in a real-time way. This empowers companies
to react quickly to business events and rapidly enhance their stratégies to meet the
customer's needs.

In the next Chapter, we présent our approach to build a digital cockpit System.

Chapter 3

Digital Cockpit Architecture

In this chapter, we introduce a loosely-coupled generic approach based on a message-
oriented middleware. This approach allows an asynchronous exchange of information,
which solves a long-lasting organizational need: découplé the client application from the
back end Systems, and reflect the changes occurring in the information sources without
any recursive requests. In this chapter, we also introduce a performance scénario to
compare between the two technologies: MOM based middleware and RPC-based one.
Finally, we close this chapter by presenting some challenges and issues related to this
work.

3.1 Introduction

Monolithic and tightly-coupled request-response middlewares suffer from restrictions of
performing asynchronous opérations on the application level. Therefore, a middleware
solution on top of frequently changing data in différent sources requires periodic requests
from the application and manual re-configuration of programs to receive présent status
of information. The System, as a resuit, suffers from limited performance and carries
a huge unnecessary network load. This scénario can be explained with a simple Java
servlet of JSP web-based application. Technically, a user submits a request through a
web-based form or application running in a web-browser's virtual machine. It directly
places a command-based process call as a payload over communication protocol. A
request triggers a local process in the remote server end, that collects information or
perform spécifie opérations mostly in a synchronous way and responds to the request by
refreshing the application with static instance of information. The connection during

Chapter 3. Digital Cockpit Architecture 47

the whole process is managed by a request-response broker (such as CORBA). Limita-
tions of such process call are well-known and mentioned before.
Within this research, we propose an approach to build a message-based middleware
capable to exécute asynchronous opérations. Opposite to other available products, the
proposed middleware does not work in a request/response mode. Therefore, there is
no bounding between the application and the resource tier. As a resuit, clients will get
up-to-date data without continuous asking for it or by periodic refreshing.
As we hâve already stated above, this approach is an event-based mechanism and im-
plemented through Java Messaging Service, which provides much better performance
comparing to RPC-based mechanisms. Such an approach has the following features:

• Retrieval of Information: The MO M model provides ways to retrieve and
fetch data by setting up certain mechanisms that allow subscription to data and
services.

• Updates Notification: Such a MOM-based approach reflects the changes oc-
curring in the data source tier, in a real-time or near-real-time manner, and sends
them to subscribed users.

• Performance: One of the most important features that characterize an intégra-
tion approach. Therefore, this MOM-based approach should ensure optimal use
of resources either in client side or in the data source tier.

• Scalability: The model should provide easy extensibility, by adding new data or
service sources; without modifying the main architecture and keeping an accept-
able level of quality of service.

• Autonomy of Information: As the data and service sources are the properties
of certain organizations/ departments with their own policy of information distri-
bution, the approach should be open enough to allow enterprises to apply their
rules and régulations.

Consequently, the proposed model of middleware is expected to be generic and
having the features above. However, its implementation can be done in many phases.
In what follows we détail thèse phases, and we refer to the resulting architecture by
" Digital Cockpit".

To sum up, the main contribution hère is the proposition of a new paradigm for
real-time intégration and display of heterogenous information, based on a MOM that
overcome the limitations related to the conventional RPC middlewares. Therefore, we

Chapter 3. Digital Cockpit Architecture 48

include in this chapter the methodology including différent phases to design and im-
plement such a solution. Also, we provide a mathematical model that shows the added
value of this approach compared to other ones that are based on RPC mechanisms.

3.2 General Description

Digital cockpit project accomplishes an efficient and useful décision support System
mainly based on the information and service intégration. Digital cockpit System relies
on the following modules: integrator, subscriber, display manager, monitor, analyzer,
and controller.

The integrator is in charge of gathering the required information by interacting with
the différent data sources as required by the user. It retrieves data from local sources
directly as well as uses Java messaging technology in the case of remote sources. There
is a subscriber module, proposed at the client's end that is used to express .interest
in the needed information and therefore open a new connection depending on user
privilèges. Using JMS point to point subscription mechanism, the subscriber is also
able to provide the end user with the capability of subscribing to the information of
interest directly from the remote data sources. On the other hand, if the digital cockpit
client updates any information in the data sources, the integrator interface associated
to the sources on server side will trigger a publish mechanism that uses a common JMS
topic to publish the necessary changes. When such information is produced in the topic,
the messaging service notifies the relevant subscribers and supplies fresh information to
them. The monitor module is in charge of tracking the organization's assumptions with
this change of information and responds actively to dashboard thresholds without any
direct user-intervention. The client module also contains some local services to analyze
and optimize the différent scénarios comprised with the aggregated data. The analyzer
module is responsible for performing the needed simulation, pattern and trend analysis,
while the controller is the module that optimizes the différent scénarios and processes
as required by the user. Finally, at the end-user, the display manager takes care of the
graphical layout and the production of structured and navigational "big picture" of the
System.

Chapter 3. Digital Cockpit Architecture 49

3.3 Layer-based Intégration Approach

The presented message oriented middleware follows a multi-tier paradigm (Figure !)
that can be achieved with three distinguished phases. The first one provides a unified
framework over the heterogenous data of information and services. The second, relies
on messaging service to get the fetched data and push them to the client side. Finally,
the third phase explains the client side of this middleware. It provides users with
subscription capabilities to information from différent sources, and is also responsible
of display and analysis of this information.

Monitor ' Control ;

Subscribër

Accélération tier . - -

Publisher Publisher Publisher Publisher

Intégration tier

EIS

Adapter
I I

Resource tier

Figure 3.1: Layer-based Approach

3.3.1 Phase 1: Unified Framework

In this phase we build a unified 'wrapper' on top of the resource tier that provides a
common programming abstraction in order to access information. The resource tier is
responsible for the persistent storage of heterogenous data sources such as relational
databases, spreadsheets, legacy applications, etc. and service sources with various XML
formats. However, the connection of ail thèse Systems is very complex since they follow

Chapter 3. Digital Cockpit Architecture 50

their platform-specific semantics.

Data intégration is related with the retrieval of data from différent sources. To
achieve this, we adopt a federated architecture that keeps local autonomy of data
sources. Hence, we establish a software mediator or wrapper on top of différent data
sources. This will create a virtual repository that allows an on-demand access to needed
data. The implementation of the wrapper is resource-specific. Once a wrapper, on top
of a data source, receives an object-message, it converts it into the source semantic.
Similarly, it also transforms the returned response from the data source into a standard
format useable by the service call.

For example, Connecting to an Oracle or Sybase database, we create a JDBC con-
nection to retrieve information. On request from a remote client, the wrapper converts
the object-message request into a standard SQL query and applies it on the applica-
tion running JDBC connection. Similarly, on receiving a Resultset, it is once again
converted into an object-message and sent to the middleware that carries it out to the
requestor.

We implemented this approach with pure J2EE technology. This includes JDBC and
JCA in order to invoke information from the structured and semi-structured/unstructured
data sources respectively.

3.3.2 Phase 2: Messaging Service

Being the core of the proposed middleware, the messaging service allows synchronous
and asynchronous binding of information and services. RPC-based middlewares directly
invoke the communication protocol, such as HTTP, which is a request-response model.
We approach the proposed middleware by adding a new layer over the communication
protocols, called messaging service. More explicitly, the proposed model uses a modified
request-response broker that allows to keep the connection détails and receive multiple
responses generated from a single request via messaging technology. Such a middleware
requires both one-to-one (P2P) communication and one-to-many (publish/subscribe)
communication simultaneously. At this level, we choose Java Message Service API,
provided by Java Community Process (JCP) as a spécification to implement standard
messaging, which provides support for both types of connection Queue and Topic,
and allows both synchronous and asynchronous communications. The core of the JMS
setup is a Lightweight Directory Access Protocol (LDAP) server offered by a JMS service
provider. JMS uses Java Naming and Directory Interface (JNDI) in order to retrieve the
implementation-specific settings kept in the LDAP server. This JNDI/LDAP créâtes

Chapter 3. Digital Cockpit Architecture 51

the Connection Factorv.

Application 1

Application 2

Application n

*"
o

"o
pi

r—

,,

;
^ _

o
• 5 .

i2

"o
pi

r-

1

Database

Middleware

Figure 3.2: Intégration Model

In our proposed solution (Figure), a client System in the beginning requires an

initial step to start a component, which consists of a direct communication between

the client and the server. Messaging service provides a direct P2P communication

mechanism (e.g. JMS-Queue) between the requested client and related server/s. Once

the client system starts displaying retrieved information, it only requires to gather real-

time notification of changes. With the update of data, the underlying framework will

automatically trigger a publisher module to publish information in a JMS- Topic that

follows publish-subscribe mechanism. A client-end software solution simply invokes a

listening process in the background and listens to the changes published in the required

topic. As the changes are found, listeners receive the information as a message and

update the visualization of the information in client's side.

This mechanism significantly iniproves the middleware with the following features:

• Asynchronous and Loosely Coupled Communication: A user application

may perform other tasks without waiting for a response.

• Real-Time Notification: Applications receive real-time notifications from re-

mote sources in real-time and without recursive requests.

• Cross-Vendor Communication: Processes running in différent virtual ma-

chines (VM), may communicate through messages without any remote process

Chapter 3. Digital Cockpit Architecture 52

call as implemented in RPB-based mechanims such as Java RMI. This eventually
solves the cross-VM data access problem of using applets as discussed before.

• Quality of Service: This approach provides more control on messages commu-
nication. The guarantee of delivery, messages priority, security, easy extensibility,
and scalability give more reliability to the solution.

Moreover, the use of JMS in this approach allows temporary storage of information that
may be helpful to serve a big number of clients quickly without repeating the process of
requesting data or service sources. On the other hand, any major change of information
can be explicitly notified to ail the interested users.

3.3.3 Phase 3: Client Application

In order to receive asynchronous message objects coming from the lowest layers through
JMS, as shown in Figure , the digital cockpit client requires a subscribing compo-
nent.
However, there are two major issues to résolve hère: First, the client application re-
quires sending request to the JMS server and registering to the request-response broker
in an assigned namespace within the JMS server. Second, the application in the client -
side should invoke listener/s to keep itself updated with the published changes and
therefore reflects thèse changes in the présentation tier. Accordingly, we approach the
problem using two basic modules in the client System: A subscriber module and a
monitor module. Figure includes the subscriber module in the accélération layer,
at the client side. Once an application user expresses lus interest in some information,
the subscriber sends the request to the JMS server. Afterward, message service layer
intercepts the request and créâtes a message object that may be sent asynchronously.
In the other side, the subscriber component invokes JMS listeners. Listeners receive
the changes using publish/subscribe mechanism if a data source is updated and redraw
the visualization of information in client's présentation layer (refer to Fig.). Java
Messaging Service provides built-in TopicRequestor/QueueRequestor methods. On
retrieval of message, JMS listener uses onMessageO method. When a new message
arrives in the middleware, JMS server publishes it into a 'topic', it informs the sub-
scribers about the new information and the client subscribes to it. This model could be
achieved synchronously, asynchronously and even as durable subscriber with the JMS
destination, depending on the user's need.

In the user-side, each displayed set of information is interactive and provides straight
forward means to drill in/out of information, rotate, zoom in/out, import/export and

Chapter 3. Digital Cockpit Architecture 53

change to other views, where applicable. This architecture is much similar to Model
View Control (MVC) and Observer design pattern. In the proposed middleware ar-
chitecture, the présentation tier acts as "view" while the accélération tier requires a
"controller" élément in the form of 'Monitor' module. Monitor module is implemented
as an observer that locally controls the threads in the background of digital cockpit
user application. It sélects the active JMS listener according to client's choice, sends
request to subscriber component and finally observes, updates and filters the real time
notifications coming from the subscriber.

3.4 Digital Cockpit Artchitecture

Figure depicts the architecture of inter/intra organizational intégration of informa-
tion sources with some relevant technologies that were used to support our architecture.

Department 1 Department 2

Applets

[

Application

Applets

1
Application

JMSIHTTPS

Application Server(s)

Integrator

Data Sources

Topic

Applets

Application

JMS
Sender

JMS
Publisher

Applets

Application

Application Server(s)

Integrator

Topic

U
Data Sources

Figure 3.3: Detailed Architecture

The figure clearly illustrâtes the means of communication between various depart-
ments. We propose a message based point to point asynchronous inter-organizational
communication (JMS Queue) as supported by JMS [51], followed by a tightly coupled

Chapter 3. Digital Cockpit Architecture 54

inter-organizational information retrieval using JCA and JDBC. Initially, when the
client first requests to view some data, the middleware sets up a P2P communication
between the client and varions information sources. So when the initial set of data is
ready, the MOM places it into a queue from which the client will directly consume the
data. Then the middleware discards the queue and créâtes a topic which serves as a
repository that holds updates whenever previously requested data changes.
The benefit of using such a technique (Topic) lies in the fact that since many clients can
issue interest in the similar set of information, groups of thèse clients can subscribe to a
corresponding topic and as a resuit, changes will only be calculated once, and commu-
nicated to many since the System implements the observer pattern and their subject is
the corresponding topic. This will significantly reduce the bandwidth consumption on
the network. Once the observers consume the updates in the topics, the corresponding
graphical visualization of the affected components will directly update itself to reflect
in real time any changes that took place in the resource tier.

3.5 Extending Digital Cockpit Architecture: Ser-

vice Intégration

The intégration of services is another important part that complètes the intégration
phase of the digital cockpit. In this section, we provide a mechanism to enhance the
digital cockpit capabilities to include a service intégration container, on top of integrated
web services. To illustrate the service intégration component, we considered a remote
"weather service". Figure represents the detailed architecture. In what follows. we
présent the intégration components: the intégration container, the notification manager,
and the exécution engine.

Intégration Container: The need of an intégration container rises due to the lim-
itations of current technologies used to compose web services. Since web services
are composed and executed in a one time fashion, the user will not acknowledge
any change that took place after he last submitted a request unless he constantly
keeps on interacting with the system requesting it to display its updated results.
With the introduction of an intégration container, the user interacts only once
with the system indicating an interest in some services. After this point the user is
guaranteed to be informed of ail instant changes as they occur. This will provide
the DSS analytical methods better aid managers since it will be acting on enough
accurate and up-to-date information. In addition to this, the container will not
need to re-execute the entire global process plan.

Chapter 3. Digital Cockpit Architecture r>r>

msg.
request Msg. Binding

Component

Client

msg.

response
and

notifications

Msg. Out
Component

Service
Execution

Engine

initial
query Invocation

Framework

Msg. Receiver

,' changes

Notification Manager

! changes

Intégration container

Weather Service

Request response mechanism

Message based notification mechanism

Figure 3.4: Architecture of Service Intégration

• Notification Manager: Once a user requests (a) service(s). the intégration con-
tainer registers its notification manager to ail participating services identified
during the service planing phase. Hère we are considering that services exhibit
a mechanism which informs the notification manager that a change occurred in
its information set. After receiving this message, the notification manager will
inject this information to the exécution manager which in turn will initiate some
processes to refiect this update to the user. The importance of this notification
manager is that it will free the user from the burden of continuously checking if
data has changed since the last request was issued. Moreover, it will enhance the
DSS process as a whole because the analytical capabihties of the DSS will process
accurate data every time.

• Execution Engine: The exécution engine within the intégration container is where
ail the intelligence of this framework réside. Once the intégration container re-
ceives a request from the user, it will pass it to the exécution engine. At this
point, the engine initiâtes a global planing event which décomposes the user's
request into smaller ones.

3.6 JMS/RPC-based Middleware Comparison

To explain the différence between JMS based middleware and RPC-based one, we pro-
vide the following.

Chapter 3. Digital Cockpit Architecture 56

Suppose a middleware having N threads and invoking r requests on average to the re-
source tier in a single pass. Now, if w be the time for pre-request works of N threads
and t be the time taken by each request to retrieve information. The total time to
retrieve information, given that the requests being asynchronous, there is no waiting
for response from the source tier, is approximately (only the network time is considered
as it is most significant) [46]:

(3.1)

Scénario 1: Information Retrieval

We assume that a single thread is servicing c (c > 1) simultaneous requests each time
from users. Therefore, the time required to serve R requests is [46]:

j ((R divc x N) + 1) x ô, R not divisible by N
timeMoM = it | (i ? d.v cxN)xS^ R dimsMe by N

where, div is the integer division without remainder.

In case of RPC middleware, since each request waits for the preceding one, an RPC-
based application manages N simultaneous threads on average (r.t + w) seconds. So,
the time taken by the System to serve R requests is:

j ((R div N) + 1) x (r.t + w), R not divisible by N
t\meRPC if | ^ ^ ^ x ^ + w^ R (33J

where, div is the integer division without remainder.

From and , it is clear that waiting time for response in case of messaging
(timeMOM) is less than RPC-based middleware (time^pc)- Figure illustrâtes this
scénario.

Chapter 3. Digital Cockpit Architecture 57

RPC Middleware Message based
Middleware

Requests occurrtng sequentially

JL 1

* : Ail requests take place simultaneously

Figure 3.5: Retrieval of information for Single Client Application

Scénario 2: Common Requests Processing

A multi-tier middleware solution allows a number of client-applications to invoke re-
quests to the resource layer. If there exists X requests that are using an RPC-based
middleware, the server will repeat the Scénario 1 for each of thèse X requests irrespec-
tive of the nature of the requests. Now, at the point of implementation, it is obvious
that a group of clients issues identical requests in nearly same duration as they hâve
almost similar interfaces in front of them.
The above-mentioned Message Oriented Middleware (MOM) System stores the infor-
mation temporarily through JMS-connection components: queue and topic, that can
be reused to provide client support if implemented in an optimized way. The notion
leverages significant improvements over performance as a whole as the MOM saves the
duration of information retrieval from the sources. Mathematically, if there exists g
number of groups, each having r requests on average. The total number of requests
issued by the middleware to the resource tier is reduced from X in case of an RPC-based
middleware to:

No. of Requests = g + (X — (g x r))

in case of a MOM. This scénario is shown in (Figure).

(3.4)

Chapter 3. Digital Cockpit Architecture 58

Mt JS J$

RPC Middleware

Data

When ail clients request the ssme set of information,
the RPC Middleware issues the sarne request more
than once

Topic

Data

Message based
Middleware

Data

If ail clients request the same set of information, then
the JMS Middleware will issue this request only once

Figure 3.6: Multiple Clients Requesting the Middleware

Scénario 3: Real-Time Changes Notification

The proposed approach leverages notification mechanism, a signiflcant feature of asyn-
chronous messaging using connection components.
If a remote user subscribes to a set of information, the proposed solution offers notifica-
tion to a remote client application with the changes of dynamic information. The RPC
model has no scope without répétitive polling of the requests to realize the changes. It
not only requires more time to submit a request and process it through each layer of
the mutli-tier but also créâtes huge network load unnecessarily. Figure illustrâtes
this scénario.

3.7 Scope and Limitations

The architecture of the proposed middleware is sound and powerful; however, imple-
mentation utilizing available technologies faces signiflcant challenges.
Designing a System affiliated with JMS requires a JMS provider, i.e. JNDI server which
manages and contains ail topics and queues. As in Figure , the subscriber module
résides on the client side. Since it is impractical to install a JMS provider (server)
on each client machine, we resolved this issue of posting JMS request within a Java
Bean and sending it over HTTP. However it is possible in JMS to listen to the remote

Chapter 3. Digital Cockpit Architecture 59

RPC Middleware

Data ... Data

To identify any changes in the database, clients hav€
to poil frequently

MM M

Topic

Message based
Middleware

Data

With the observer architecture, changes are
autornaticaily recognized by each subscriber

Figure 3.7: Notification Mechanism: Comparison

listeners from the client's end.
Furthermore, the approach can be extended to a web based application running within
a browser. The "Digital Cockpit" System can then behave as a Java applet executed
within the JVM of the browser. However, various issues should be considered if this
approach is to be implemented. Applets introduce a big load on the network. First of
ail, it requires a significant compromise with the heavy features of the System in order
to make it portable. Furthermore, if the applet requires listening to a JMS-listener
inside the client's System, modifications to the Java policy files may be needed. Last
but not least, it should be mentioned that applets should also be configured to accept
PKI supported certificates before loading.

It should be noted that our implementation does not tackle the issue of service in-
tégration precisely, although it is possible. With the presented architecture, we can
encapsulate a SOAP message/request on top of JMS which in turn will trigger the ex-
écution of the service. There is no doubt about this, since JMS allows SOAP requests
over it.
Finally, another problem that we faced is related to serialization. JMS only accepts se-
rializable objects to be encapsulated within its message. Unfortunately, not ail objects
are serializable, for example: ResultSet object from Java. As a resuit, we had to do
some kind of transformation which in turn leads to loosing some attributes found in
the initial unserialized object.

Chapter 4

Digital Cockpit Implementation

4.1 Introduction

In this chapter, we highlight the implementation of a our proposed middlware called
Digital Cockpit. Digital cockpit is a message oriented middleware that intégrâtes in an
asynchronous way data and services from différent sources and présent them as a big
picture that allows drilling into détails. First, we lighten the software requirements.
Second, we provide the domain model related to this project. After, we détail the
software design phase, highlighting the approach, architecture and some of the most
important class diagrams. Also, within this chapter, we leverage some snapshots of
digital cockpit implementation.

4.2 Software Requirements

This section "Software Requirements" demonstrates the concerns and spécification of
the digital cockpit application corresponding to the needs of the organization customer.
Actually, thèse software requirements represent the resuit of comprehensive gathering of
customer inquiries and profound analysis that identify the numerous functionalities and
aspects of the digital cockpit. To achieve this, we followed a Six Sigma approach to an-
alyze them into Quality Function Deployment [39] as shown in Figure . Afterwards,
we identified the domain model, usecase models, and séquence diagram.

The intention behind the digital cockpit we developed to our customer is to manage

Chapter 4. Digital Cockpit Implementation 61

ail aspects of real time monitoring and display of various kinds of data from diverse
remote information sources. By hosting this digital cockpit on the customers Systems,
the user will be able to access heterogeneous databases seamlessly, monitor data in a
real time mode and perform various data analysis and some simulations. As a resuit,
better décisions could be made that would yield great results. The main features of
the digital cockpit are the following: Intégration of data sources, Subscription to data,
Display, Analysis, Monitor, and Control. Each one of thèse features corresponds to a
phase in the project development.

4.2.1 House of Quality

Software requirements gathering aims to get the functionalities and aspects of the digital
cockpit. To this end, we followed an approach that is particularly fitting for the Six-
Sigma house of quality [39]. Using this tools, customer requirements and technical
parameters are put together, in order to détermine interrelations between the customer
and technical requirements, as well as between technical requirements.

The house of quality is presented in Figure . We identified the following customer
requirements and technical requirements.

The customer requirements set itself include technical criteria and business criteria.
The technical criteria list consists of: Performance, security, availability, functionality,
usability, modiflability, portability, inter-operability, integrability, and reusability. The
business criteria we considered in our project are: documentation, cost, project life-
time, and training. Every quality attribute among the previous requirements, either is
technical or business possesses a weigh that reflects its importance for the customer.

On the other hand, the technical requirements represent the concerns of the tech-
nical team. In our case, they are classified into three classes: standard, design, and
complexity.

Figure summarize the technical requirements, customer requirements, and de-
fines the interrelations between them. It also shows the importance of each quality
attribute from customer requirements and how it affects each criterion in the techni-
cal requirements side. The application of such an exercise provided the results shown
in Figure . The requirements are therefore classified according to their importance
based on a well proven and established approach, from quality Systems engineering [39].

Chapter 4. Digital Cockpit Implementation 62

Kev to intetrelation matrix svmbol

• Strong intettelationship i value = 5)

• Médium intetrelationship (value- 3)

A Weak intertelationship i value = 1 ;

Direction of improvement

S

c
B

JZ

\ Technical
\ Requirements

ustomer \
equirements \

R
u

n
ti
m

e
 Q

.
A

.
N

o
n

-R
u

n
ti

m
e

 O
.A

B
u

si
n

es
s

 Q
 A

Performance

Security

Availability

Functionality

Usability

Modifiability

Portability

Intei-operability

Integratability

Reusability

Documentation

Cost

Project life-time

Ttaining

Total

C
u

st
o

m
er

 i
m

p
o

rt
an

ce

5

1/5

4

4

5

4

2

4

3

3

3

2

3

3

STD

S
ta

nc
sa

rd
-b

as
ea

•

•

•

•
A
A

A

•
•
•

125

t
Design

A
rc

h
ite

ct
u
re

•

•

•

A

•

•
•
A

105

O
bj

ec
t

or
 e

n
te

s
a
n
a
ly

si
;

•

•

•

•
•
A

73

G
ra

p
h
ic

a
l

U
se

r
In

te
rf

ac
e

•

•

•
•
A
•

73

U
se

 o
f

A
va

lia
bl

e
 A

P
Is

iJ
C

A
.

JM
S

.
i

•

•

•

•

A

•
•

134

t
Complexity

J2
E

E
 s

u
p
p
o
rt

•

•

•

A
•

•

•
•

146

D
at

aB
as

e
 s

u
p
p
o
rt

iO
ra

cl
e

 P
os

t
gr

e
S

Q
L.

.

•

•

•
•

•

•

86

ID
E

 a
nd

 m
a

n
a

g
e

m
e

n
t

co
ns

ol
e

pa
ck

ag
es

•

•

•
45

T
o

ta
l

140

115

60

36

95

60

12

56

39

33

51

32

33

30

Figure 4.1: House of Quality: Digital Cockpit Project

Chapter 4. Digital Cockpit Implementation 63

4.2.2 Domain Model

Domain model represents functionalities of the System through distinguished packages.
Initially, the domain model is broken down into seven components: intégration, display,
analysis, monitor, control, security, and subscription.

The intégration module used to provide a uniform access to local and remote data
as needed by the rest of the System. It is in charge of maintaining the local repository
up-to-date with the remote databases and informing the display module of new updates
that need to be signaled to the user. Thèse modules together form the digital cockpit
System providing ail the features that complète the specified needs. The display module
is used for ail visualizations within the System and provides the ability to export current
data or import past data. For the analysis module is used to analyze real time data to
find trends, do What-if scénarios, cause and effect and even probabilistic opérations to
compare it to past data. The Monitor module is used to help analyze current usage of
the System broken down into two (02) catégories: by hook and by user. It also allows for
the analysis of previous event logs broken down into three catégories: by hook, by user
and by time span. The Control module is used to optimize then compare and contrast
scénarios to find the best outcome. For the Security module is used for logon/log off of
the users as well as user authentication and authorization. This package also handles ail
the data logging and access restrictions. Lastly, the Subscription module is used for ail
subscription management events. It will handle the subscription to and un-subscription
from data and services.

Thèse modules together form the digital cockpit System providing ail the features
that complète the specified needs. Figure represents inter-relationship among pack-
ages.

4.2.3 Use Case Model

The System consists of différent use cases manageable by the users of the digital cockpit
System. We differentiate between three types of System users. The first type of users is
the normal users who use the System as per their privilèges, analyze and control différent
views generated from the available data and services of his/ her domain. Users in the
second category called "Power Users", a part the privilèges of normal users they hâve,
thèse users are able to track the opérations of various users as per the organization
requirements and their own privilèges. Finally there is an administrator local to the
System who is capable to exploit ail the facilities of the digital cockpit including the

Chapter 4. Digital Cockpit Implementation 64

Display

Subscnption ! Momtoi

Secunty

Analysis Control

Inteq ration

Figure 4.2: Domain Model: Digital Cockpit Project

création of connection to a new set of data and service sources. Figure represents
the overall use case model that illustrâtes the capability of the System from the users
perspective.

After a clear description of the domain and use case model, we focus on the func-
tionalities of each module through initial use cases. The list of ail considered use cases
is provided in the appendix.

Figure is an example of a séquence diagram that shows the interactions among
digital cockpit components. It corresponds to initialization of display components in the
digital cockpit after vérification and confirmation of the user privilèges and subscrip-
tion to the services. The System establishes a session with each service/data provider
and starts interacting with it. Afterwards, the system starts real-time monitoring and
performs business logic opérations on the retrieved data. Finally, the system présents
information corresponding to a service through its component on the digital cockpit.

Chapter 4. Digital Cockpit Implementation 65

Digital
Cockpit
System

User

Power User

Administrât or

Display

Monitor

Analysis

Control

Intégration

Subscription
Manager

Security

Cockpit System

Figure 4.3: Use Case Model: Digital Cockpit Project

4.3 Software design

The software design spécification denionstrates the concerns and spécification of the
digital cockpit software solution corresponding to the customer needs. In what follows.
we présent the design approach assumptions, the followed methodology, some of the
most important class diagrams, and the software implementation illustrated by some
screen snapshots of the achieved product.

4.3.1 Assumptions and Policies

The proposed middleware represents a distributed structure on the top of existing
client-server architectures as available within intra-departmental networks. The idea
is adopted to favor the inter-departmental information sharing for Canadian Air Force
Command and Control System considering their existing intra departmental client server
architecture of the data-access. We limit our scope according to the clients requirements
such as:

The software is proposed assuming the existence of many kinds of différent data

Z.
—,
CD

C/3

a

i
o

a

3
o

Qcn
ta

Ci

: Cockpit : SecurrtvManaqer

tverëy prMeges
>

-, 2:«rily

< -
' 3: aiÉmzeà

For Evay Service 4: estaHish a session

9: s«
<

;sion established

: SessionUanaoer

<

i 10: monta ^enices (Real Time Monitoring)

T

' <

I
r

Disola

5:createasessicn

8: session created

Processed Data :
Session

6: correct to servce
>

7: connection
<

11: perform business logic opération

13: processed data

14: pass processed c

i
ata tolthe service componert

nice : BusinessLoaicODeration

J
12. exécute opertaion

: ServiceComDonent

15: présent data

7

•S
5

Ci

S'
b

Chapter 4. Digital Cockpit Implementation 67

sources, kept through Oracle and Sybase database, MsExcel spread sheets, and
other spécifie applications. Service intégration is implemented by integrating a
commercially available free weather service information kept in DWML format.

• According to the requirements, Digital Cockpit prototype supports mathematical
analysis such as statistical opérations, time-based analysis and simulations.

• The design and implementation is provided considering the known source of infor-
mation. Dynamic intégration of data sources and services are beyond the scope
of implementation.

• The digital cockpit user interface is quite différent from the traditional graphical
user interface. It shows most of the required information from the single screen
as well as allows user to navigate in to the détails by clicking on a particular
component. It communicates and represents the changes of information under
current inspection, without any user intervention.

• We propose to run an application behind simultaneously with the browser-based
user interface. The intent of such proposai is to overcome the limitations of the
applet within the browsers JVM. This Java application can better handle the
retrieval of information as well as saving the files within the System.

• The design of the System aims the implementation using the standard based APIs
that are proven in terms of technology, performance and other software attributes.

The intention behind digital cockpit paradigm is to manage ail aspects of real time
monitoring and the display of various kinds of data from multiple heterogenous infor-
mation sources that enables performing various data analysis and simulations which
provides better décision making.

4.3.2 Methodology

The choice of a proper middleware may significantly speed up the retrieval of data
or services, reduce intégration complexities and increase the performance as well. Ar-
chitecturally, the proposed middleware represents a distributed structure on the top
of existing client-server architectures as available within intra-departmental networks.
The idea is adopted to favor the inter-departmental information sharing since almost ail
the organizations hâve the same structure: many departments communicating between
them.

Chapter 4. Digital Cockpit Implementation 68

This section focuses on the high level methodology of Digital Cockpit project, that
realizes a five phase paradigm as follows:

• Intégration: to connect ail the information and service sources within and across
the organization, for an information sharing purpose.

• Display: to take the data from différent sources, aggregate them and présent
the synthesized information into a meaningful, structured and big navigational
picture that offers the ability to drill down into the détails.

• Monitor: to design and implement the capabilities that allow the active monitor-
ing of the information System state for the purpose of testing the organizations
assumptions, reactive and proactive measures, and response to dashboard thresh-
olds etc.

• Analyze: to bring the System to the business intelligence level i.e. to design and
implement the capabilities for pattern and trend analysis, simulation of what-if
scénarios etc.

• Control: to optimize procédures, events and scénarios that will enhance the used
processes, methods and stratégies.

Security, is not an exact phase of this paradigm, however considered as a vital
quality attribute that must be taken care of at each phase of this paradigm. Figure
illustrades the ideology more clearly.

V
/Intégration)

/ / /

> Display

s

\

s

E

\

E

C U R 1 T Yv
Monitoring >

/ /
C U R 1 T Y

) Analysis ,

/ t

J Control

\

Figure 4.5: Digital Cockpit 5-Phases Paradigm

The advantages of this five phase paradigm is mentioned as follows:

4.3.3 Important Class Diagrams

Digital cockpit System allows users to get the desired information in a graphical and
well presented way. It addresses différent concerns as we hâve already seen in the

Chapter 4. Digital Cockpit Implementation 69

Cost-effective

Secure
Standards-
Based
Scalable

Efficient

Proven

The proposed solution is mostly based on free technological com-
ponents.
The proposed solution is designed with security in mind.
The proposed solution is based on published, well accepted and
widely adopted standards.
The proposed solution is designed to meet the current organiza-
tional requirements and also scalable to support new functionalities
in the System.
The proposed solution is very efficient since it uses performance
proven technological components.
The proposed solution is proven since it has already been widely
deployed in major, leading, large cap corporations.

Table 4.1: Advantages of Digital Cockpit Solution

methodology: intégration, display, monitor, analyze, and control. Achieving ail thèse
functionalities, we classified them into several packages. Figure ! illustrâtes the
display class diagram package. In the appendix associated to this thesis, we also provide
some other class diagrams.

4.4 Implementation

The conceptual model of the above mentioned research is partly validated through
a software implementation called "Digital Cockpit". Digital cockpit offers users an
unprecedented level of information hierarchy through a layer-based approach while it
allows access to real-time information by readily accepting the desired changes in the
remote information and service sources. Moreover, it encourages users to navigate to
desired information by clicking on respective components. The digital cockpit addresses
two major concerns of service intégration. First, it achieves a synergistic intégration of
the various service sources in an asynchronous loosely-coupled architecture. Second, the
digital cockpit platform allows a notification mechanism from the integrated services
that brings the effect of changes in service information directly to the client machine.

Chapter 4. Digital Cockpit Implementation 70

Display

Jogln

i&Aomin bool

passwd sinog
•datai! simq

trnsin- i

-dataf] sïnng

Cockpit

*mami i

1

1

1

i
Préférences

booi
•coorvectDBO boni

xPas. ni
yPos . ni

•woatherView

Display

-wrïlsLogf f boal
t!| EXJOl

addComponent) s bcwl
boni

Trw

•getSelactedNoJe-; 1

NUI

. boo

NU 10

*tnain{|

ACLPage

IJ t |l.cJ= |

*-ACLP«ge('
•twunBdDB; i
:rir1ComponerUaU

1 1 1 1

IntemalListoner

boo'
••frarneCloBei) : booi
HramaAt*valocI{1 . Pool

booi

Campement | 1 1

1 1

1. 1

Expert

DBComp

7T

' ' IM| . r i ; • i ' \ i ,! i ï

-id
TopicNsme
Qj&uaHarne

-SqlOuery
DBf^anie

-pa&ewd

fs©ltd(î booi

^-sendCompConnReqO

1 l i -
Analyze

MonitotThread

-pofl ml
innChenlii

•listentoUpdael)

1 1

CharOata

object
•curranIRecord irtf - 1

ml - 0

SenalizeobtO
•nerfO : boo
TfKXjrr1CrKjrit(f >n

+f.rsU) : Mol

Data

SorialiiedOb)

*setField() • bort

. boo

-geflntegert; . abject
ong() : long

gutDoubly!.
getT nriestampt) sir ng

+getlrrt() : int
string

•-columnCountl f ml
•aodColumnO boni

1 1

.t

1 1

1 1

CornponentDataMeBsage

-Id : ir-il
Message ob|8Cï

••getMftssagoi f obiect
"SSilfiii ÏXn>i

CornponontllpdatolVtostMigc

. aDjoct

XLlBt

•XListi.)
•counUtemO inl

,. object
ksearc^*ColO string

M! '
3rn>|) ; baD
. .} ob^t'ct

rioleiellemO booi
|) boni

|-cleart.iBt('i booi
t-pfDcessNanwsO sln

Figure 4.6: Display Class Diagram

Chapter 4. Digital Cockpit Implementation 71

4.4.1 Technology

Middleware based intégration is already achieved using Remote Procédure Calls in a
synchronous architecture. The digital cockpit proposes a middleware paradigm that
implements notifications on top of the asynchronous Java message service. As of the
implementation procédure, the choice of technology is particularly crucial for a décision
System that will constantly evolve with ever-changing organizational business rules.

Display and Monitoring

Display in digital cockpit was achieved through a set of Java based frameworks and
APIs. First, JFreeChart, JFreeReport (from JFreeChart.org) and their multiple pack-
ages were the most used technologies in the display and analysis modules. Second,
Espresschart (from Quadbase Inc.) was mainly used to achieve simulation of scénarios.

Framework

Local communication between classes is achieved by interface contracts, and wiring is
achieved thanks to an Inversion Of Control (IoC) [10] container called Spring Frame-
work [4]. IoC is an emerging paradigm that greatly improves the reusability, flexibility,
maintainability and unit-testability of components. The localization and instantiation
of classes instances is transparently achieved through the Singleton and Factory De-
sign Patterns [47] while removing the need for the developer to maintain thèse Locator
classes. This allows for full decoupling of components and System events. There ex-
ists numerous Open Source IoC containers available including PicoContainer, Avalon,
NanoContainer, Excalibur and HiveMind. However, Spring stands as the best candidate
since it has rapidly become the de facto standard for enterprise application wiring and
lightweight J2EE development. Additionally, Spring Framework provides helper classes
that eases J2EE development. Furthermore, Spring intégrâtes nicely with Java Con-
necter Architecture (JCA), Java DataBase Connectivity (JDBC) and other persistence
frameworks to provide déclarative local or distributed transaction démarcation.

Chapter 4. Digital Cockpit Implementation 72

Intégration Container

The Digital cockpit leverages a standard intégration container standardized as Java
Business Intégration (JSR 208) [53]. The JBI container accomplishes the access of
service in a transport independent manner.Therefore it takes full advantage of the
asynchronous features built into BPEL4WS, compared to a classical SOAP over HTTP
approach. The JBI standard being relatively new, there are still few Open Source JBI
implementations available, rnostly CodeHaus ServiceMix [2]and Sun's Référence Imple-
mentation. When implementation was started, Mule Enterprise Service Bus [2] did not
support JBI. On the one hand, RI provides a more restrictive license than ServiceMix's
Apache license, has few community support and provides a very limited set of Binding
Components (BC). On the other hand, ServiceMix provides support for Spring as well as
JSR 208 deployment unit, ships with a number of BC, embeds Fivesight's BPEL Process
eXecution Engine, and is integrated with other CodeHaus projects such as ActiveMQ
citecodehaus05 JMS, Jencks [3] Java Connector Architecture, etc. However, ServiceMix
documentation is still in its infancy whereas RI's one is a little more complète. Since
BPEL support was needed as well as a JMS BC, ServiceMix has been chosen. Luck-
ily the developers are responsive and provide good support through Mailing Lists and
forums.

Business Process

The exécution engine runs business processes that are capable of composing multiple
services from distant locations. The Business Process Execution Language for Web
Services (BPEL4WS) builds on the Web Services standards and provides a high-level
language to compose Web Services. This proposed Middleware uses BPEL4WS. There
are several competing BPEL engines. The most popular Open Source alternatives in-
clude ActiveBPEL [1], Apache Twister [2G], Fivesight PXE [84] and IBM BPWS4J [37].
BPWS4J has never been updated and its community support is nearly non-existing.
Apache Twister is still in its infancy and does not provide a complète implementation
of the BPEL standard yet. ActiveBPELs documentation and community support is
excellent, but provides no other transport than SOAP over HTTP. As a conséquence.
ActiveBPEL cant be easily integrated inside a JBI container. Finally, Fivesight PXE
has been chosen because of its intégration inside ServiceMix. Thanks to its extensible
architecture, it can be embedded as a Service Engine (SE) inside a JBI container, and
intégration is provided with ServiceMix.

Chapter 4. Digital Cockpit Implementation 73

JMS Binding Components

ServiceMix provides support to number of binding components (BC) including Ac-
tiveMQ JMS, Jencks JCA, etc. Implementation of asynchronous distributed commu-
nication is achieved thanks to ActiveMQs JMS implementation, usually considered as
the most flexible Open Source JMS broker. Spring framework provides helper classes
for JMS templates which avoids programming and maintaining the ever-needed initial-
ization and cleanup code. Furthermore, ServiceMix supports JMS BC. However, there
is a limitation in the current implementation of Springs JMS template regarding asyn-
chronous réception of messages which can be easily circumvented by using Springs JCA
support together with ActiveMQs JCA Resource Adapter to asynchronously receive
JMS messages.

Service Notification

The intégration approach encourages the use of a "notification manager" inside the JBI
container that asynchronously informs the business process instances of newly avail-
able information from the remote services. However, it should be mentioned that this
approach assumes known locations of the remote services. An extension of this ap-
proach could be realized to find services dynamically by integrating with an outside
XML registry, however not discussed within the scope of this thesis.

4.4.2 User Interface

This subsection contains various interfaces related to the digital cockpit system. AU
thèse interfaces are not solely related to user interface however discusses important
internai interfaces between various modules of the system.

Figure is a snapshot from the digital cockpit system. It shows real time moni-
toring for the entire country. Moreover, the map is shown in a zoom in mode, which
leverages a better information view of incidents what is really happening.

Figure - illustrâtes analysis capabilities of digital cockpit system. It shows an
analysis component in a zoom in mode and beneath it there exist numerous knobs.
Thèse knobs when moved can change the data values in the corresponding components.
This is very useful tool to help in showing the resuit of some actions and can thus
prevent unwanted events.

Chapter 4. Digital Cockpit Implementation 74

Figure 4.7: Display User Interface

Figure 4.8: Digital Cockpit Analysis Example

Chapter 4. Digital Cockpit Implementation 75

Figure 4.9: Digital Cockpit Simulation Example

Figure provides a visualization of the optimization capabilities and explores the
data dependencies among more than one component. This yields the ability to clearly
understand how the change of one component can affect another. It also uses some
optimization technique to optimize the best possible scénario.

The focus on service intégration is mainly based on spécifie requirements of the cus-
tomer. In this project, we implemented an infrastructure for décision support through
the intégration of a frequently changing weather service.

This weather service is composed of a set of schedulers and parsers which aggre-
gate weather data coming from various sources and provided under both XML and
legacy formats. The jWeather package lias been used to parse Meteorological Avi-
ation Routine Weather Report (METAR) legacy format, whereas the Java API for
XML Processing (JAXP) has been used to parse XML weather data available from
USA's National Oceanic and Atmospheric Administration (NOAA). This service re-
ceives changes in remote services data thanks to internai schedulers and notifies the
client though asynchronous JMS notifications. It re-calculates the necessary part of the
relevant business process if required and informs the user interface that instantaneously
reflects the changes. Finally, the Java3D and JFreeChart libraries hâve been leveraged

Chapter 4. Digital Cockpit Implementation 76

a)

b)

C)

: - r . « T 3 - 1 , o 3 0 r i . W i n d ç (k i

Figure 4.10: a)The overall view of Weather Scénario b)Interested user drills down in
detailed information c) A spécifie weather component: Wind forecast

Chapter 4. Digital Cockpit Implementation 77

for visualizing weather information in a user-friendly way. Java3D provides a high-level
programming interface for rendering three dimensional scènes whereas JFreeChart is
the most widely used Open Source charting library. JFreeChart can générâtes graphies
that are used as textures by Java3D.

The figure represents a "drill down" scénario through the digital cockpit imple-
mentation. A successful intégration of weather service in figure a shows an overall
weather map representing certain information. An interested user may focus on spé-
cifie région of interest and request more information as shown in figure b. Sufficient
service intégration successfully enables the platform to represent bulk of information
from the remote service. Finally figure ! c shows a spécifie wind condition, repre-
senting the lowest layer of drilled down information. It should be mentioned that ail
this représentation is real-time and changes with the fluctuations at remote end.

Chapter 4. Digital Cockpit Implementation 78

4.5 Conclusion

In this chapter, we highlighted the implementation phase of digital cockpit project.
Actually, it was a challenging phase in this project. We had to décide among a plethora
of technologies. We hâve been faced to multiple heterogeneous data and service sources
such as Oracle, Sybase, MsAccess DBMS, customer legacy Systems, Ms Excel Spread-
sheet, jWeather service, etc. We hâve also been faced to the choice of the right tech-
nology to implement différent concepts such as intégration layer (choice of application
server and service exécution language), display and monitoring (Spring lightweight con-
tainer, Inversion of Control, JFreeChart, Espresschart Quadbase, Java3D, etc.), and
analysis and control (JFREEChart data analysis library, Jakarta POI, etc.).

Chapter 5

Conclusion

Within this thesis, we reveal the enormous scope lying in the cohésion of two parallel
research areas: information Systems intégration and décision support Systems. We
provided a new approach for integrating information Systems within and outside the
organizational boundaries. We also illustrated an idea of a décision support system for
taking Consolidated, quick and correct décision on the available information and services
using business intelligence. As a proof of concept, we hâve presented an architecture of
our digital cockpit model. This thesis depicts an overview of the widespread notion of
our continuing research work in order to relate the aforementioned research areas into
a new paradigm.

Regarding the future work related to this research, many enhancements and re-
searches can be done especially how to inject some "intelligent" décision support to the
aforementioned middleware platform. Game theory is an interesting track that can add
big value to this software platform. A more elaborated web services component can
also enhance the digital cockpit productivity enabling the use of available services and
their composition from multiple services providers.

Finally, because of the distributed nature of the middleware, security is another
issue that accomplishes this work. Therefore, elaborating a global security policy for the
entire platform, and local mechanisms for each phase will better protect the information
and consequently having a secured digital cockpit. Given the pace of évolution, we
expect that this solution will be an inséparable part of the présent business needs for
real-time information intégration and décision making.

Appendix A

Digital Cockpit Use Cases List

• Display Module

- Use Case: Initialize components in the digital cockpit.

- Use Case: Add new component(s) to the digital cockpit.

- Use Case: Move component(s) on the digital cockpit.

- Use Case: Change properties of the digital cockpit.

- Use Case: Change data représentation inside a digital cockpit component.

- Use Case: Drill into component détails.

- Use Case: Drill out of component détails.

- Use Case: Data import.

- Use Case: Data export.

• Integrator Module:

- Use Case: Access local data.

- Use Case: Access local service.

- Use Case: Access remote data.

- Use Case: Access remote service.

- Use Case: publish data.

- Use Case: Subscribe data.

- Use Case: Retrieve data for remote requestor.

- Use Case: Add data hook (pre-defined access permission to remote data
sources).

Appendix A. Digital Cockpit Use Cases List 81

- Use Case: Add service hook.

- Use Case: Remove data hook.

- Use Case: Remove service hook.

- Use Case: Save to local information source.

• Analysis Module:

- Use Case: Request data for analysis.

— Use Case: Pattern identification analysis.

- Use Case: What-if analysis.

- Use Case: Probability and statistical analysis.

- Use Case: Cause and effect analysis.

• Control Module:

- Use Case: Optimize data.

• Monitor Module:

- Use Case: Monitor real-time changes(local/ remote).

- Use Case: Notify update.

• Subscriber:

- Use Case: Subscribe information and service.

- Use Case: Unsubscribe information and service.

• Security Module:

- Use Case: Log-on/Authenticate user.

- Use Case: Log user / administration opérations.

- Use Case: Log System events.

- Use Case: Privileged update of user information.

- Use Case: Update of User privilèges.

- Use Case: Retrieve logged events.

Appendix B

Class Diagrams

• Integrator Module.

• Monitor Module.

• Display Module.

Appendix B. Class Diagrams 83

Hegrator

Shut D o vn

DCCIoseThread

inputline : sting
outputline . string
fia g : int
id : int
db : stnng

û
DCCIoseThrea(()

Ini egrator 1

startFlag : bool
stopFlag : bool

HonStartO : bool
• onStopO :bool
i-mainQ : int
runO

Msg Rdr

MeadMsgQ : bool
^elete_DataO
g etArrayQ. string

Service Fublishe

publishMsgQ : int

Co nrp onent Dat aMessage

Id: int
Message : object

getld():irit
getMessageQ objeot

•setldQ : bool
+setMessage() : bool

1. 1

Resuit Set S»ider

t-sendresulfeetO : object

1

Data_

-~ ri

i •

!

Conn

*"CJ3t3 C

\- Qi jéryû : object

Read M(VIA

closeO bool
read_MMAQ : object

Servi ce Provider

u=c_name :string
passiAid : string
destt-i»pe : slring
jrre_riame : string

create_ims_phy_destO : bool
delete_irTts_phv_dest() : bool

•createjm5_des() : bool
-delete_Jrre_desQ : bool

managetopicO
managequeue()

Co mponent Up d ^ elvtessag e

id : int
message : object

+ComponentUpdateMessage0

+s«tldO : bool
setMessageO bool
getld():int

^ge!tMessageO • object

1 1

1.1

+XLE10
countltemO : int

• getlteratorQ : object

addltefrO : bool
HeplaceltemO : bool
i-seatchlten-() : object
t-deteteltemO ' bool

t-cleaiLétO:bool
: sting

SerialisedObj

IjtColumnData : object
currenifiecord : int = -1
totaIRecofds : int = 0

Setializeobj;)

nex-tO • bool
recordCountO : int
firetO : bool
JSIO : bool
getFieldf^: object

+setFieldO : bool
deleterou-l() : bool
appendroi'<) : bool
getStringO string

*getDateTimeO : string
^getObjec10 ; object
o.etlritegerQ : object
getLjongO ' long

••getDoubleO
+• getTimestampQ string
^getln^O int
tgetColumnNameO : string
fgetColumnDataf) : object
foolumriCountÇi : irit

addC olurnnÇ) : bool
+-getNames() : string

Topi cQueueManage

topiclétO : string
queuefetQ string
compJdQ : int
DesoriptionTQ : string
DescriptionQ string
Qstatij;Q : bool

countT : int
countQ : irrf
dirStr : string

+settoptclistO : bool
+setqueuelistC) : bool
+verrfytopic_deso() : bool

verifvqueue_desdO : bool
delete_queu«O . bool
onQueueClose() : bool
onTopicCloseO : bool

1.1

OCServerThread

inputline : string
outputline : string
id : int
db : string

UnilO
HdoseO ' int
HDCServerThreadl)
• runO
matoh_IP():bool
match_DB0 : bool
^QueueN ameO : string
^TopicNameQ string

string

1 1

UpdateTracker

court : int
rs_count : int
TablfanameQ : string
Topic_nameQ : string
colurnn_count : int
courrterQ . int
IDG : int
QueryQ uint
databaseQ : string

return_counlï) : irit
verity_counH) : boot

UnsertlnfoO : bool
H>estroylrrfoO : bool
changaValQ : bool
•WriteUpdateQ • string
TableNameO : st ing

Figure B.l: Class Diagram: Integrator Module

Appendix B. Class Diagrams 84

Drsplay

jogln

passwd •
-data[] B
HntCompoosnti)
•HoglnO : boo;

Cockpit

Préférences

Blmg

•resoi(i bool
•connectOBi) bool

-xPos : snt

Display -r
+wnieLag| ; bool
-lagCompone'itll oool
BddComponent((bool

bool

1 1

1 1

11 c i •

+TreeO

i t i. •

NUI

analywsView bon-
weatherVtew baoi

•NIJIO

intenail-rarmiActjvatot) () toc*

•activate<) Ixjoi
tei j : boni

a •
•

Component

1.1

1.1

Expart

1.1

1 '

Data

1 1

i i

' ^ -

i i

1 1

i

1 •

i

Analyze

ACLPasfo

Uutaij

•ACLPagol)

* indComponenls(l

Usar

dala[] : skircg

+inilGomponerUE(l

geiDala() ol>,ecl

InternalUBtener

bon!
{ ' l . ÙDOI

bcol

DBComp

0 *

1 1

-ToplcNamo

DBNianie

ComponenIHantlIer

gfl!W() • long
setldf) tiool

ohjec!
•onUpdateMessaged objecf

) : object

-pnri ml

1 1

MomtotThread

slring

•listentoUpdaKH)

+MonitorThread(|
•runf)

Ch.nlJ.iU

•IstColumriData obiuc
inl ";

: ml = 0

+first{). txro!
lasl() boo!

*gotField(i
+selFietdi) • boni

Sériai i iedObj

stnng

+getOb;ert(J obfic.l
+gelln1eger(J abject
+getLongO : long

+getlrH():ir,l

+gotColumnData(!
+coJuniriCouril! | ir

art(1Colunvn() bot

stnng

l..t

1 1

• • ' .

CompofientDataMessage

-td : int

+getld() : int

•se1ld!) booi
t-selWeRsagRi) : boa

Comporte rttUpdaroMos&ag®

•satMessaged
ni

objoc?

XLISI

counlltemi). mt
getHsrator() objeci

•searchColi) string

) : bcoi
ob<ecl

+isEmp(y(î : boal
eartistl) : bool

: slnng

Figure B.2: Class Diagram: Display Module

Appendix B. Class Diagrams 85

Monilof

; ComponentConnectionClose

i la loog
f Top^cN^nw <sinng
HQueueName : Ktring

H-gellcî! i long
l boal

DCMiimtoi •tj'Str slrig

•rrefllft jms fes() bool

nitl 1

f+geiTopts*lame<> st'ing
H-solTooiuNamei I oool

FileRoad«r1

readruiO sl'ng
•Sun UsrO st-infl

Ip.aOdHI Slnng
•dose po'tii int
•disppoflii fil
'•œtnw.bwijactoyi) sl'ing

stng
DBUserNamfi sfr
-DBPasfiword st
-DBPai int
*-ComponentC<Jrviec1iGnReqiiesl<)l

| stnng
i ooof

-BelDataBaseName!; boal

ComponefrtConnectionReque»! • * "

Id long

ID st'irig
TopicNamc

I CotnponenlOiitaMotsage

Ht) ml

'«•aetio: i i,',t

-BelDBPasswordd
-gBtDBPorl-:) inl

Boo

«11

boni
slrng
bOO-

<itmg
: i : hoo-

i hoo
stnrvg

SBlSqlQuetyi ; 'jool
*9BtTopicName! i stririg

booi

MonlIorCompotïcnlThroAd

•gelldi M] rang
-setlai)i i Dool

QueueListenerThroad

CompononlUpdatoMnssago

ia in!

• set Ici 0 too

; TopicListenerTIiread
•QueueNarne

I

XUM

kr.c*jnlHt>mi s nt
M-getlIft'BIQfi i oDj
H-saafchCoK,) st';ng
f*adflltnf!X) ho»
J+replaoBltamii boni
j+searchlte'H) C*JBC!

}*d«teloll8n)(| Dûo
t'isFrmptyn onol
f+clftarî istQ txjo
[•P'otwssNamesO si 'ng

SerializedOb]

islCsXumriData
OjtrentRecoff) "il 1

ftis ml ~ C

•na«tO booi
nocoroCounin
first! I 00<i'

;i objecl
i) bool

-topici sifï str^ng
-queueiislj slrirvg
oortip_n][] itit
DescnplionT] st'i

. bod

i (sir
gelOb,«cti | objenl

gotim() ir.t

-co*urnnCou'ïti i ril
ni i nool

ToptcQueucMxrtager

untT nt
untQ n i

•dirSt- : sl-ing

booi
•vfir'fyîopin oescO t̂ cxil

ttesdi.) oc»

Figure B.3: Class Diagram: Monitor Module

Appendix C

Challenges and Technology Choice

Component
Information and
Service Sources

Challenge

• Heterogeneity of
sources.

• Geographically in dif-

férent locations.

• No integrated platform.

Technology

• Data Intégration.

- Oracle database.

- Sybase database.

- Legacy System.

• Service Intégration.

- WSDL description.

- XML schéma.

* Digital Weather
Markup
Language
(DWML).

* METeorological
Aérodrome Re-
port (METAR)
data.

Table C l : Technology Stack of Digital Cockpit Implementation

Appendix C. Challenges and Technology Choice 87

Component
Intégration Phase

Intégration Phase

Challenge

• Choice of application
server.

• Asynchronous commu-
nication.

Technology

• Application Server.

- Sun J2EE.

- Apache Gerenimo.

• Data intégration

- JDBC API from Sun
Microsystems.

- JCA API from Sun
Microsystems.

- JMS API from Sun
Microsystems.

- ActiveMQ JMS.

• Service Intégration.

- BPEL4WS im-
plementation:
Fivesight PXE.

- JBI implementation
for Intégration Con-
tainer.

- ServiceMix imple-
mentation from
Codehaus.

Table C.2: Technology Stack of Digital Cockpit Implementation

Appendix C. Challenges and Technology Choice 88

Component
Display and Moni-

toring

Analysis and Con-

trol

Security and Relia-

bility

Challenge

• Graphical représenta-
tion.

• Real-time view and no-
tification.

• Performance.

• Understanding Scénar-
ios.

• Suitable analysis and
optimization algo-
rithms.

• Distributed nature of
applications.

• Military applications.

• Traceability.

Technology

• Spring lightweight con-
tainer : Inversion of Con-
trol (IoC) paradigm.

• AXIS and XFire SOAP.

• Weather METAR / TAF
(Legacy Data) Parser.

• JFreeChart.

• Espresschart (Quadbase
Inc.)

• Java3D.

• JMS API: Msg. commu-
nication.

• JFREEChart data analy-
sis library.

• Jakarta POI.

• Game theory based déci-
sion support mechanism.

• Network and authoriza-
tion protocols.

• Crypto-protocols.

• JSSE API.

Table C.3: Technology Stack of Digital Cockpit Implementation

Appendix D

List of Used Acronyms

API: Application Programming Interface.

B2B: Business To Business.

BI: Business Intelligence.

BPI: Business Process Intégration.

BPIOAI: Business Process Intégration Oriented Application Intégration.

BPML: Business Process Modeling Language.

CIO: Chief Information Officer.

CORBA: Common Object Request Broker Architecture.

CRM: Customer Relationship Management.

DB: Data Base.

DBMS: Data Base Management System.

DCOM: Component Object Model.

DSS: Décision Support Systems.

Appendix D. List of Used Acronyms 90

DTD: Document Type Définition.

EAI: Enterprise Application Intégration.

e-business: Electronic Business.

ebXML: electronic business Extensible Markup Language.

e-commerce: Electronic Commerce.

EDI: Electronic Data Interchange.

EIS: Enterprise Information System.

EIS: Enterprise Information Systems.

ERP: Enterprise Resource Planning.

ETL: Extract, Transform and Load.

GUI: Graphical Unit Interface HTML: Hyper Text Markup Language.

HTTP: Hyper Text Transfer Protocol.

IBM: International Business Machine.

IDE: Integrated Development Environment.

IIOP: Internet Inter-ORB Protocol.

IOAI: Information Oriented Application Intégration.

IT: Information Technology.

J2EE: Java 2 Platform, Enterprise Edition.

JCP: Java Community Process.

JDBC: Java Database Connectivité

Appendix D. List of Used Acronyms 91

JMS: Java Message Service.

JRMP: Java Remote Method Protocol.

JSR: Java Spécification Request.

MOM: Messaging Oriented Middlewares.

OASIS: Organization for the Advancement of Structured Information Standards.

ODBC: Open Database Connectivity.

OLAP: Online Analytical Processing.

OMG: Object Management Group.

ORPC: Object Remote Procédure Call.

P2P: Point To Point.

POAI: Portai Oriented Application Intégration.

RDBMS: Relational Database Management System.

RMI: Remote Method Invocation.

RMI: Remote Method Invocation.

RPC: Remote Procédure Call.

SCM: Supply Chain Management.

SOA: Service Oriented Architecture.

SOAP: Simple Object Access Protocol.

SQL: Structured Query Language.

TSIMMIS: The Stanford-IBM Manager of Multiple Information Sources.

Appendix D. List of Used Acronyms 92

UDDI: Universal Description, Discovery, and Intégration.

W3C: World Wide Web Consortium WAN: Wide Area Network.

WSDL: Web Service Description Language.

XML: eXtensible Markup Language.

Bibliography

[1] ActiveBPEL 2.0 Roadmap, 2005. http:/ /www.activebpel.org.

[2] Codehaus Project, 2005. ht tp: / /www.codehaus.org.

[3] Jencks: a lightweight JCA container, 2005. http:/ / jencks.org.

[4] Spring Framework, 2005. http://www.springframework.org.

[5] Bloor Research 2004. Data Intégration Connect, Stream and Federate from At-

tunity, 2004. ht tp: / /whitepapers. tmcnet .com/detai l /RES/1107283074_317.html.

[6] A.Benssam, S.Ray, A.Boukhtouta, F.Guerroumi, C.Assi, and M.Debbabi. A new

Paradigm for Information Systems Intégration. In Montréal Conférence on eTech-

nologies (MCETECH'05), pages 63-72, Montréal, Canada, January 2005.

[7] A.Boukhtouta, M.Debbabi, and N.Tawbi. A new Paradigm for Décision Making:

A Synergy Between Business Intelligence and Digital Cockpits. In lOth ISPE

International Conférence on Concurrent Engineering: Research and Application.

Portugal, 2003.

[8] A.Dickman. Two-Tier Versus Three-Tier Apps. InformationWeek Magazine, pages

74-80, November 1995.

[9] A.Halevy. Data intégration: A status report. In Proceedings of the German Data-

base Conference,BTW-03, 2003.

[10] Apache Foundation. Inversion of Control, 2005.

http:/ /excalibur.apache.org/framework/guide-patterns-ioc.html.

[11] C.Davis. Distributed Objects and Components, May 2003.

ht tp : / /www.es . ucl.ac.uk/staff/ W. Emmerich/lectures/3C05-02-03/aswel9-

essay.pdf.

[12] Hyperion Solutions Corporation. Managing OLAP and Relational Data with SQL

Queries, 2005. ht tp: / /dev.hyperion.com.

Bibliography 94

[13] Sonic Software Corporation. JMS Performance Comparison: Publish/Subscribe
Messaging. SonicMQ vs. TIBCO Enterprise for JMS, 2003.

[14] Léo Crawford. JCEA Part 1: Messaging, January 2003.
http://www.leocrawford.org.uk/work/jcea/partl/messaging.html.

[15] D.Adams. Data visualization: Interactive, multidimentional and ani-
mated data représentation tools can help improve businesses processes
and the bottom line. White paper- ADVIZOR Solutions Inc., 2003.
http://www.visualinsights.com/Accenture

[16] D.Gilbert. JPreechart 0.9.20, 2004. http://www.jfree.org/jfreechart.

[17] D.Hudson and J.Johnson. Client-Server Goes Business Critical. Dennis, MA: The
Standish Group International, 1994.

[18] D.J.Power. A Brief History of Décision Support Systems, May 2003.
http://DSSResources.COM/history/dsshistory.html.

[19] D.Lindorff. General Electric and Real Time. Case study, Ziff Davis Media Inc, 28
East 28th Street New York, NY 10016, November 2002.

[20] Dmreview. Guide to Enterprise Information Intégration (EU), August 2004.
http://www.dmreview.com/whitepaper/WID1011596.pdf.

[21] Daniel Drasin. Get the message? IBM developer-Works, February 2002.
http://www-128.ibm.com/developerworks/java/library/i-jms.

[22] E.Cerami. Essentials of Web Services. OReilly publications, 2002.

[23] Grâce B. F. Training Users of a Décision Support System. Ibm research report,
IBM Thomas J. Watson Research Laboratory, May 1976.

[24] Jim Farley. Java enterprise breakthroughs, part 1. ONJava.com:O'REILLY, May
2002.

[25] F.Coyle. Xml, Web Services and the Data Révolution. Addison-Wesley Information
Technology Séries: Addison-Wesley Professional, 2002.

[26] Apache Foundation. Twister and Business Process Management, 2005.
http://www.smartcomps.org/twister.

[27] Jake Freivald. Intégration 101: Understanding Web Services, EAI, and the
Acronym Soup. Information Builders Summit 2004 User Conférence, May 2004.

M.Ginzberg G.Ariav. DSS Design: A Systemetic View of Décision Support. Com-
munications ofthe ACM, 28(10):1045-1052, October 1985.

Bibliography 95

[29] G.Evans and J.Riha. Assessing DSS effectiveness using évaluation research meth-
ods. Information Management, 16(4): 197-206, November 1989.

[30] Efrem G.Mallach. Décision Support and Data Warehouse Systems. McGraw Higher
Education/Irwin, 2000.

[31] G.Piatetsky-Shapiro. Machine Learning and Data Mining: Course Notes.
KDnuggets, 2003
. http://www.kdmiggets.com/dmcourse/data_mining_course/course_notes.pdf.

[32] Crimson Consulting Group. High-performance jms messaging: A benchmark com-
parison of sun java system message queue and ibm websphere mq, 2003.

[33] Kim Haase. Java message service api tutorial, 2002.
http://java.sun.com/products/jms/tutorial.

[34] R. Hackathorn. Convergence: The ethics of business process
management. Business Intégration Journal, Mardi 2005.
http://www.bijonline.com/Article.aspArticleID=1127&DepartmentId=7.

[35] H.Garcia-Molina, J.Hammer, K. Ireland, Y.Papakonstantinou, J.Ullman, and
J.Widom. Integrating and Accessing Heterogeneous Information Sources in TSIM-
MIS. In In Proceedings of the AAAI Symposium on Information Gathering, pages
61-64, Stanford, California, 1995.

[36] H.Kreger. Web Services Conceptual Architecture (WSCA 1.0), May 2001.
http://www-306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf.

[37] IBM. BPWS4J: A platform for creating and executing BPEL4WS processes, 2005.
http://www.alphaworks.ibm.com/tech/bpws4j.

[38] Quadbase Systems Inc. Esspresschart v4.2 API, 2004.
http://www.quadbase.com/espresschart.

[39] iSixSigma. Quality Function Deployment (QFD) House of Quality, 2005.
http://www.isixsigma.com/tt/qfd.

[40] J.Hanson, P.Nandi, and S.Kumaran. Conversation sup-
port for business process intégration, September 2002.
http://www.research.ibm.com/convsupport/papers/edoc02.pdf.

[41] Lev Kochubeevsky. Generic request response broker for jms. JAVA DEVEL-
OPER'S JOURNAL, 10(4), April 2005.

Bibliography 96

[42] L.Haas, P.Schwarz, P.Kodali, E.Kotlar, J.Rice, and W.Swope. DiscoveryLink: A
System for integrated access to life sciences data sources. IBM Systems Journal.
40(2):489-511, 2001.

[43] E.Lin L.Haas and M.Roth. Data Intégration Through Database Fédération. IBM
Systems Journal, 41(4):578-596, 2002.

[44] MSDN Library. Integrating Layer: Portai Intégration, May
2004. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnpag/html/archprocessintegration.asp.

[45] David S. Linthicum. Next Génération for Application Intégration: from Simple
Information to Web Services. Addison Wesley publications, August 2003.

[46] Brian Maso. Jms: A solution in search of a problem?
http://archive.devx.com/java/free/articles/MasoJMS02/Maso02-5.asp.

[47] M.Chitnis, P.Tiwari, and L.Ananthamurthy. Using Design Patterns in UML, 2005.
http : / / www. springframework. or g.

[48] M.Hicks. Survey: Biggest Databases Approach 30 Terabytes, November 2003.
http://www.eweek.eom/article2/0,1759,1377106,00.asp.

[49] Microsoft. Microsoft message queuing (msmq) center. White Paper, 2004.

[50] Microsoft. COM: Component Object Model Technologies.
http://www.microsoft.com/com/default.mspx, 2005.

[51] SUN Microsystems. Java™message service [jsr 914], 2000.
http://java.sun.com/products/jms/docs.html.

[52] SUN Microsystems. Javatm message service spécification [jsr 914], 2000.
http://java.sun.com/products/jms/docs.html.

[53] Sun Microsystems. Java Business Intégration (JBI) 1.0, 2005. http://jcp.org.

[54] Visual mining Inc. NetChart Pro V 4.5. Java program-
mer s dynamic graphing library. Product brochure, 2004.
http://visualmining.com/documentation/NetChartProDataSheet-20040419.pdf.

[55] M.Mandviwalla, P.Gray, L.Olfman, and J.Satzinger. The Claremont
GDSS Support Environment. Information Science, pages 600-607, 1991.
http://ieeexplore.ieee.org/iel2/882/4724/00184192.pdf?arnumber=184192.

[56] M.Myerson. Web Services Architectures. Technical Teport, Tect., 2002.
http://www.webservicesarchitect.com/content/articles/webservicesarchitectures.pdf.

Bibliography 97

[57] MODULUS. Modulus technologies. White Paper, 2003.

[58] ENT News. Choosing the right olap client, 1999.

http://www.entmag.com/archives/article. asp?EditorialsID=4268.

[59] OASIS. Universal Description Discovery and Intégration. http://UDDI.org.

[60] OMGGROUP. CORBA: Standards Based on Specs.
http://www.corba.org/standards.htm, 2005.

[61] P.Irassar. WebSphere Business Components and Web services architectures. De-
veloperWorks: IBM's resource for developers, October 2000.

[62] A. Primer. Business intelligence System scalabilitywhite paper- crystal décisions,
2002. http://support.businessobjects.com/communityCS/TechnicalPapers/cescalability.pdf.

[63] P.Russom. Data warehousing and business intelligence: The right architecture for
e-business intelligence, 2000. Hurwitz BalancedView Report.

[64] E. Rahm and H. Hai Do. Data cleaning: Problems and current approaches. IEEE
Data Eng. Bull, 23(4):3-13, 2000. DBLP, http://dblp.uni-trier.de.

[65] Xcelsius Press Release. Infommersion Animâtes Excel with XCelsius Pro 3.0, 2004.
http://www.infommersion.com/pr 20040308.html.

[66] TechMetrixTM Research. Adoption of Web Services & Technology Choices, Feb-
ruary 2003.

[67] R.Hull. Managing Semantic Heterogeneity in Databases: A Theoretical Perspec-
tive. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 51-61, Tucson, Arizona, May 1997. ACM
Press.

[68] R.Hull and G.Zhou. A Framework for Supporting Data Intégration Using the Ma-
terioalzed and Virtual Approaches. In Proceedings of the 1996 ACM SIGMOD
international conférence on Management of data, pages 481-492, Montréal, Que-
bec, Canada, 1996. ACM Press New York, NY, USA.

[69] David Chappell Richard Monson-Haefel. Java Message Service. O'Reilly & Asso-
ciates Inc., Java Séries, lst édition édition, December 2000.

[70] R.Orfali, D.Harkey, and J.Edwards. The Essential Distributed Object, Survwal
Guide. John Wiley and sons, Inc, September 1995.

[71] R.Schreiber. Middleware Demystified. Datamation. Cahners Publishing Company,
41:41 45, September 1995.

Bibliography 98

[72] S.Alter. Décision Support Systems: Current Practice and Continuing Challenges.
Pearson Addison Wesley, August 1979.

[73] S.Alter. A Work System View of DSS in its Fourth Décade. In Proceedings of
Americas Conférence on Information Systems, Dallas, TX, August 2002.

[74] S.Chawathe, H.Garcia-Molina, J.Hammer, K.Ireland, Y.Papakonstantinou,
J.Ullman, and J.Widom. The TSIMMIS Project: Intégration of Heterogeneous
Information Sources. In In Proceedings of IPSJ Conférence, pages 7-18, Tokyo,
Japan, October 1994.

[75] S.Haag, M.Cummings, and Donald J McCubbrey. Management Information Sys-
tems for the Information Age. McGraw Hill, 4th édition édition, 2004.

[76] Dirk Slama, Karl Banke, and Dirk Krafzig. Enterprise SOA: Service-Oriented
Architecture Best Practices. Prentice Hall PTR, 2004.

[77] S.McClure. Oracle's Solution for Heterogeneous Data In-
tégration. IDC: Analyze the Future, August 2003.
http://www.oracle.com/technology/products/dataint/pdf/idc_integration_wp.pdf.

[78] Quest Software. Jclass: Java components for j2ee and j2se, 2004.
http://www.quest.com/jclass.

[79] SonicMQ, Sonic Software Corporation. Getting Started with SonicMQ
circledR V6.1. Documentation, September 2004.

[80] S.Steinke. Middleware Meets the Network. LAN: The Network Solutions Magazine,
13(1O):56-61, December 1995.

[81] Java Sun. J2EE JDBC Technology, 2005. http://java.sun.com/products/jdbc,

[82] S.Vinoski. Corba: Integrating Diverse Applications within Distributed Heteroge-
neous Environments. In IEEE Communications Magazine, February 1997.

[83] Advanced Visual Systems. Creating a culture of better décisions, 2004.
http://http://www.avs.com/software/soft b/openviz/pdfs/openviz_enterprise.pdf.

[84] FiveSight Technologies. Process eXecution Engine (PXE), 2005.
http://www.fivesight.com/pxe.shtml.

[85] TIBCO. Tibco rendezvous. White Paper, 2005.

[86] T.Roth, M.Arya, L.Haas, M.Carey, W.Cody, R.Fagin, P.Schwarz, J.Thomas, and
E.Wimmers. The Garlic Project. In SIGMOD Conférence, page 557, Montréal,
Québec, Canada, June 1996.

Bibliography 99

[87] Liviu Tudor. Msmq: Architecture and simple implementation using vb. Documen-
tation, March 2002. http://www.devarticles.com/c/a/Visual-Basic/MSMQ-Part-
1-Architecture-and-Simple-Implementation-Using-VB.

[88] IBM UK. IBM WebSphere MQ Everyplace, Version 2.0. Whitepaper, 2002.

[89] UN-CEFACT. eXtensible Markup Language. http://www.ebxml.org.

[90] S. Venkataraman and T. Zhang. Heterogeneous Database Query Optimization in
DB2 Universal DataJoiner. In In Proc. of the Int. Conf. on Very Large Data Bases
(VLDB), pages 685-689, New York, USA, August 1998.

[91] W3C. Extensible Markup Language: Xml Activity Statement, 2004.
http://www.w3.org/XML.

[92] Webopedia. XML, 2004. http://www.webopedia.eom/TERM/X/XML.html.

[93] W.H.Inmon. Building the Data Warehouse. Wiley Editions, 2nd édition édition,
1996.

[94] Wikipedia. Cockpit, 2005. http://www.answers.com/cockpit&r=67.

[95] W.Mougayar. Optimize: Spanning The Globe In Real Time, September 2002.
http://www.optimizemag.com/article/showArticle.jhtml?articleId= 17700772.

