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Résumé

Les systèmes à événements discrets sont des systèmes dynamiques particuliers. Ils

changent d’état de façon discrète et le terme événement est utilisé afin de représenter

l’occurrence de changements discontinus. Ces systèmes sont principalement construits

par l’homme et on les retrouve surtout dans les secteurs manufacturier, de la circu-

lation automobile, des bases de données et des protocoles de communication. Cette

thèse s’intéresse au contrôle des systèmes paramétrés à événements discrets où les

spécifications sont exprimées à l’aide de prédicats et satisfont une condition de similarité.

Des conditions sont données afin de déduire des propriétés, en observation partielle ou

totale, pour un système composé de n processus similaires à partir d’un système com-

posé de n0 processus, avec n ≥ n0. De plus, il est montré comment inférer des politiques

de contrôle en présence de relations d’interconnexion entre les processus. Cette étude

est principalement motivée par la faiblesse des méthodes actuelles de synthèse pour le

traitement des problèmes industriels de taille réelle.



Abstract

Discrete event systems are a special type of dynamic systems. The state of these systems

changes only at discrete instants of time and the term event is used to represent the

occurrence of discontinuous changes. These systems are mostly man-made and arise in

the domains of manufacturing systems, traffic systems, database management systems

and communication protocols. This thesis investigates the control of parameterized

discrete event systems when specifications are given in terms of predicates and satisfy a

similarity assumption. For systems consisting of similar processes under total or partial

observation, conditions are given to deduce properties of a system of n processes from

properties of a system of n0 processes, with n ≥ n0. Furthermore, it is shown how

to infer a control policy for the former from the latter’s, while taking into account

interconnections between processes. This study is motivated by a weakness in current

synthesis methods that do not scale well to huge systems.
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Chapter 1

Introduction

1.1 Context

This thesis is about system theory and the supervisory control of discrete event systems

(DESs). The supervisory control problem considered is to find (synthesize), if possible,

a supervisor (controller) under whose control the system will behave according to a

given specification. The situation under consideration is DESs modeled at the logical

level by automata with specifications expressed in predicate logic.

It is well known that the state-space explosion problem constitutes a barrier to the

modeling and control of DESs in the framework of the supervisory control theory (SCT).

This renders automatic synthesis methods unworkable for many realistic applications,

since the state space to be considered is so huge as to be intractable, even if ad hoc

implementations of supervisors are relatively small in terms of lines of code. A potential

solution consists in representing a system by a parameterized model, synthesizing a

control policy with size independent of parameter values and determining properties

about the closed-loop system behavior for arbitrary (sometimes bounded) parameter

values. Control policies obtained in this way are, in essence, scalable.

While modular systems are, in general, heterogeneous, some have constituent el-

ements with the same structure. Processes in such systems can be partitioned into

classes defined using parameters. For instance, a parameter symbolizes the number of

processes in a class or an internal dimension of a data structure (which is often repre-

sented by an automaton in the SCT framework). Adding parameters to a model entails

adding corresponding parameters to the specifications. Addition of parameters that can

be replaced by arbitrary natural numbers constitutes a major obstacle in synthesizing
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supervisors, because such systems may have infinitely many reachable states. Since

there exists no algorithm for deciding any relevant property formulated in SCT (e.g.,

controllability) for recursively enumerable languages [Kumar and Garg 1995], several

researchers assume that the languages involved in the computation of supervisors are

regular. This is equivalent to computing a new supervisor for each instance of the

parameters. This solution is not in the spirit of the method proposed in this thesis,

because it is not scalable. When the languages are not regular, Petri nets are often

used, but they must satisfy strict structural conditions so that procedures for verifying

properties of interest can become decidable. For instance, Elementary Composed State

Machines, which appear to be a restrictive class of Petri nets, can be used to model

realistic systems and synthesize supervisors [Giua and DiCesare 1994]. Petri nets are

not used in this thesis, but comparable restrictions must be made to obtain a class

of parameterized discrete event systems (PDESs) for which control problems are de-

cidable. A good starting point is to study the case in which all processes belong to a

unique group with a single parameter, which represents the number of similar processes.

To achieve a capability comparable to existing synthesis procedures for modular sys-

tems, families of similar processes should be combined. A reasonable approach would

consist in dealing with them case by case, from the simplest (e.g., connection of a pair

of replicated structures through a shared variable) to the hardest (e.g., split, merge,

parallel connections between a multitude of replicated structures). The study of such

compositions is beyond the scope of this thesis.

Throughout this thesis, soundness is referred to in many ways. The most general

case (as in a sound method) refers to a method that is based on valid reasoning, free

from logical flaws, and trustworthy. In the context of PDES, the soundness of a syn-

thesis procedure (or method) refers to its ability to deduce valid properties (or SFBC

functions) of a system of n processes from valid properties (or SFBC functions) of a

system of n0 processes, with n ≥ n0. In order to be more precise about the soundness of

a given synthesis method, two new definitions (or concepts) are introduced. A synthe-

sis method is said to be strongly sound if the supervisor calculated from the simplified

model is behaviorally equivalent to the one corresponding to the concrete model (the

system with n processes). It is said to be weakly sound if the system of n processes

under control never violates the specification. Those notions of weak and strong sound-

ness are mainly used in Chapter 7 to characterize the results of the synthesis method in

the different contexts (partial observation and total observation). Finally, another type

of soundness for section 6.2 could have been introduced because of a result (in total ob-

servation) that is stronger than strong soundness (not only is it behaviorally equivalent

but as Theorem 6.6 shows, it is the same SFBC function) but was not. Nevertheless,

the text before Theorem 6.6 explains the soundness for this particular result.
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1.2 Objective

Essentially, the study of PDESs includes two main issues. The first consists in de-

termining if properties, such as controllability, observability and nonblockingness, are

preserved when the state space is expanded from dimension n0 to dimension n whatever

the value of n ≥ n0. The second issue concerns conditions to be satisfied in order to

ensure that synthesis methods intended to deal with parameters are sound. A synthesis

method is said to be strongly sound if the supervisor calculated from the simplified

model is behaviorally equivalent to the one corresponding to the concrete model. It is

said to be weakly sound if the system of n processes under control never violates the

specification, but such a control may be unduly restrictive.

The case of partial observation raises some difficulties. On the one hand, even if

the supremal controllable and normal subpredicate always exists [Li 1991], the nor-

mality property is generally too restrictive for real systems. On the other hand, the

notion of strong M–controllability [Takai and Kodama 1997]—a strong version of M–

controllability [Takai et al. 1995]—ensures the existence of a supremal element. Both

notions depend on the concept of bad event set, which merges states that are observed

in the same way, but, unlike the latter, the states are merged whether they satisfy the

specification or not in the case of strong M–controllability. Notwithstanding these differ-

ences, all these notions hide some pitfalls that significantly impact the goal of achieving

strong soundness. First, supremal elements are only expressed in their simplest form

as an iterative computational schema, which rather limits the scope of theoretical re-

sults in modular control. Second, the notion of M–controllability includes a reachability

property, similar to the one for the notion of controllability, which cannot be preserved

[Bherer et al. 2006b]. Since problems for PDESs are, in general, undecidable, one of

the ambitions with this parameterized approach is to develop synthesis methods that

are sound, but necessarily incomplete, or to consider some restricted supervisory control

problems that are decidable.

The main objective of this thesis is to consider a class of decidable control prob-

lems, namely that of the state feedback control (SFBC) of PDESs, consisting of similar

processes, under total and under partial observation, and to develop a sound synthesis

method that does not need any heuristic to synthesize supervisors.
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1.3 Methodology

The methodology proposed in this thesis combines the modular control paradigm with

an abstraction technique. First, it relies on three main concepts developed in the veri-

fication domain, but exploited here in the context of SCT: reduction, parameterization

and symmetry. By analogy with the synthesis of concurrent programs with many sim-

ilar processes [Attie and Emerson 1998], supervisor synthesis for a concrete system of

n processes is reduced to the synthesis of a supervisor for a simplified system of n0

processes, with n0 ≤ n. This is possible if both the system and specifications are

parameterized and if symmetries emerge from their modeling. Second, based on some

similarity assumptions, it considers the supervisor as a modular supervisor formed from

m individual supervisors, each derived from an instance of the parameterized system

and specifications, except that the synthesis of m individual supervisors is replaced by

the off-line synthesis of only one small supervisor with m on-line syntactic renaming

transformations, where m ≤
(

n

n0

)

.

1.4 New Results

In general terms, this thesis presents a new method for the controller synthesis problem

of a special class of PDESs. The main results establish the soundness of the method,

both in total and partial observation. Most of these results have been recently published

in [Bherer et al. 2008].

More precisely, the principal results of this thesis are the following.

1. Assumptions that capture the homogeneity of a PDES are given. These assump-

tions ensure the consistency of the results between the higher and the lower di-

mension state spaces. The process similarity assumption (PSA) formalizes the

concept of replicated structure of [Attie and Emerson 1998]. The mask similarity

assumption (MSA) ensures that the mask is the same for every system process

(up to index substitution) and is introduced to deal with partial observation sce-

narios. These assumptions are presented in Chapter 4 and were first introduced in

[Bherer et al. 2004] and [Bherer et al. 2005], respectively. The specification simi-

larity assumption (SSA) imposes restrictions on the instances of a parameterized

predicate representing the specification. SSA relates a state to all its projections.

It is presented in Chapter 5 and was first published in [Bherer et al. 2004].
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2. Chapter 5 presents two results regarding closure properties for the SSA. It is

shown that SSA is closed under arbitrary conjunctions and disjunctions. While

the latter is more of theoretical interest, the former presents an interest in mod-

ular control approaches where one may have to determine a centralized repre-

sentation of decentralized supervisors. These properties were first published in

[Bherer et al. 2008].

3. In order to provide broader results than [Bherer et al. 2004, Bherer et al. 2005],

a predicate restriction is defined and formalized in Chapter 5. It permits the

modeling of interconnection relations between processes. While a parameterized

predicate captures constraints on the state of processes, an interconnection rela-

tion imposes additional constraints based on their identity. This interconnection

relation first appeared in [Bherer et al. 2008] and is inspired by the interconnec-

tion relation of [Attie and Emerson 1998].

4. A method for the simplest case (total observation and no interconnection) is pre-

sented in Chapter 6. Is is based on [Bherer et al. 2004]. The main result, besides

the on-line synthesis method, is the soundness of the method. It is shown that

the method leads to an optimal solution by SFBC functions equality. This main

result not only establishes that the method is strongly sound [Bherer et al. 2008]

but also implies a kind of syntactic soundness between SFBC functions, which is

a stronger result.

5. Chapter 7 addresses the case of partial observation and introduces an interconnec-

tion relation which was not present in [Bherer et al. 2005]. It also establishes that

the method, based on strong M-controllability, is strongly sound (Section 7.5).

This result improves the soundness result of [Bherer et al. 2005]. The sound-

ness result, based on M-controllability, is also presented. In that latter case,

the method is shown to be weakly sound. This result was first presented in

[Bherer et al. 2006a] where the case of interconnection relations was not handled.

6. Section 7.5 considers the case of total observation, under interconnection relations,

as a special case of partial observation. It is established that the method is

strongly sound [Bherer et al. 2008].

7. Section 7.4 presents computational complexity results and Section 7.3 proposes

an algorithm for on-line synthesis that brings a linear gain on complexity. This

algorithm first appeared in [Bherer et al. 2008].
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1.5 Structure of the Thesis

This thesis is structured as follows. Chapter 2 presents a survey of methods and tech-

niques to tackle the state-space explosion problem that arises in basic control problems.

Chapter 3 provides a concise review of concepts and results developed in the context of

SFBC when DESs are totally or partially observed. Chapter 4 and Chapter 5 introduce

the notation, basic definitions and properties required to consider subjects related to

PDESs and parameterized specifications, respectively. Chapter 6 and Chapter 7 present

the synthesis methods, as well as soundness results, for SFBC functions for the cases of

total and partial observation, respectively. Finally, Chapter 8 situates this work from

a more technical perspective and ends with a few concluding remarks.



Chapter 2

State of the art

Since the elaboration of SCT by Ramadge and Wonham, computational complexity has

been a major concern resulting in a constant stream of research. A number of formal

treatments have been proposed and solutions to this issue can be classified according

to the following criteria: control paradigm, semantic model, data structure, algorith-

mic technique, abstraction technique, problem reduction and integration of verification

techniques.

2.1 Control Paradigms

Control paradigms to lower the computational complexity are based on modularity,

hierarchical structure and on-line control. These paradigms solve basic control prob-

lems for totally or partially observed DESs. Formulated in its most conventional form,

a basic control problem consists in synthesizing a supervisor to restrain the uncon-

trolled behavior of a DES, represented by an automaton G, in order to achieve a given

specification, represented by a language K.

The modular control paradigm is based on an horizontal decomposition of G and K.

A specification K is written as an intersection of specifications, K = K1∩· · ·∩Km, and

the control policy is established from the conjunction of m supervisors, each synthesized

from G and Ki to avoid the generation of a huge state space that stems from the calcu-

lation of an intersection [Ramadge and Wonham 1987, Wonham and Ramadge 1988].

The computational complexity can be reduced much more if a DES is modeled as a

composition of asynchronous subsystems, G = ‖n
i=1 Gi. A local specification Ki is ap-
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plied to a subset of subsystems directly restricted by Ki and represented by a set of

indices Ii. A supervisor is synthesized from each local specification Ki and Gi = ‖j∈Ii
Gj

[Queiroz and Cury 2000]. This is particularly useful when a specification is not applied

to the whole system and when synchronous subsystems share the same local specifi-

cations. Recently, other variants, in which languages are prefix-closed, have been pro-

posed by considering indecomposable specifications and only one element correspond-

ing to Gi for the computation of a local supervisor [Komenda and van Schuppen 2005,

Komenda et al. 2005]. In general, the realization of a control policy in a modular fash-

ion results in memory savings, but the supervisors may be blocking and checking this

property is intrinsically a global problem [Cassandras and Lafortune 1999].

However, several approaches have been proposed to achieve better experimental

and computational outcomes than the worst case. Some of these approaches have been

presented in [Pena et al. 2006]. Another approach consists in combining supervisor

reduction with modular and decentralized methodologies [Whittaker and Rudie 2008].

Supervisor state-space reduction involves the amalgamation of states that perform iden-

tical control or no control at all. The property of comparability, which can be verified in

polynomial time and that encapsulates most of the concepts found in reduction-based

approaches, was introduced and shown to be preserved under conjunction.

In the setting of the modular and centralized approach, a language property called

partial controllability condition, which depends on the specification, has been introduced

[Gaudin and Marchand 2007]. Based on this language property, control is performed

on some approximations of the system. Under some new conditions, the behavior of

the obtained controlled system corresponds to the supremal controllable language. One

condition concerns the system itself and requires the shared events to be controllable,

the other one relates to the specification and is called local consistency. The latter is

strictly less restrictive than the separability condition. Unfortunately, the nonblocking

aspect has not been studied under the partial controllability condition.

The hierarchical control paradigm is based on a vertical decomposition of systems

and supervisors. They are exemplified by aggregate models, aggregate (bottom-up)

multilevel hierarchies and structural (top-down) multilevel hierarchies. An aggregate

model is obtained from a low-level model by refining the information sent up from the

low-level model to the next one in order to ensure that the high-level supervisor can

be implemented in the low-level model. This property is called hierarchical consis-

tency [Zhong and Wonham 1990] and its fulfillment results in a hierarchy with tightly

coupled levels. The primary purpose of this approach is the concrete expression of a

report-command strategy by considering more abstract information at a given level;

the higher the supervisor level, the fewer the computational resources used by syn-
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thesis algorithms. In the aggregate multilevel hierarchy approach, a master-slave or

client-server mode is established through an interface that prescribes the interaction

between the high-level and low-level models [Leduc et al. 2005]. Engineers must ini-

tially provide the interface and supervisors. Then, controllability and nonblockingness

properties must be independently verified for each level. Therefore, engineers must

repeatedly modify the models by hand, including the interface and supervisors, until

they satisfy the properties. In this verification process, there is no global model. Re-

cently, a synthesis procedure was designed to automatically derive locally maximally

permissive supervisors from separate specifications [Song and Leduc 2006]. Computa-

tional savings are possible as long as the client and server have roughly the same size

and the interface is relatively small compared with their size. Furthermore, verification

is more appropriate for larger systems, because the verification procedure requires fewer

resources than the synthesis procedure. In the structural multilevel hierarchy approach,

DESs are modeled by using state tree structures (STSs), a kind of hierarchical state

machine [Ma and Wonham 2005]. Connections between levels must satisfy boundary

consistency and local coupling. Contrary to the previous approaches, only one non-

blocking supervisor is synthesized for a given system modeled by an STS. Appropriate

techniques that take advantage of this representation must be used to deal with larger

systems. Generally speaking, hierarchical approaches are not sufficient in themselves

to solve the state-space explosion problem because nothing ensures that the cost of

verifying the underlying properties and synthesizing all the supervisors is less than that

of deriving a global supervisor.

In the on-line control paradigm, the off-line synthesis of a complete control policy for

all possible behaviors of the DES (which has exponential complexity in the number of

its components) is replaced by a multitude of polynomial complexity calculations along

the specific trace of events generated by the DES at run-time. Thus, the supervisor

prescribes the next control action after each step of the closed-loop system based on an

N–step forward projection of the DES behavior and a limited lookahead control policy

[Chung et al. 1992]. The broader the available information about the DES the supervi-

sor has, the lower the computational complexity. Several algorithms using this schema

have been proposed with significant computational advantages [Heymann and Lin 1994,

Ben Hadj-Alouane et al. 1994, Ben Hadj-Alouane et al. 1996]. This paradigm is, how-

ever, most relevant when DES behavior is modeled by recursive functions. In addition,

the polynomial computational complexity is achieved to the detriment of a weaker

validation procedure, since faults may be discovered at run-time due to the limited

lookahead.
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2.2 Semantic Models

Formal notations used to represent various aspects that are needed in the modeling of

DESs are generally assessed with respect to their power of expressivity. Their seman-

tics must be sufficiently rich to specify concurrency, synchronization, hierarchy, timing

information, infinite behaviors, safety properties or liveness properties. For instance,

automata can only express the order in which events occur in a system and Petri nets

are particularly useful to describe interacting concurrent components. Both formalisms

have been extended to satisfy other specific needs [Cassandras and Lafortune 1999]. In

order to consider systems with huge state spaces, it is also important to have com-

pact representations for preserving memory space in the computer and to take advan-

tage of algebraic regularity of their internal structure to develop more efficient, more

powerful synthesis algorithms that operate on them in comparison with those that

work on an unstructured state set. Assorted Petri net models with various design

approaches have been extensively exploited for these purposes in the context of SCT

[Holloway et al. 1997]. To be efficient, however, these approaches must avoid the ex-

plicit construction of the reachability tree. This is particularly the case of vector DESs

[Li and Wonham 1993] with linear predicates on the set of n-dimensional integer vec-

tors as specifications. Based on a characterization of the reachable set from a given

state by a system of linear inequalities, the calculation of an optimal policy is reduced

to solving linear integer programming problems, one per pair consisting of a reachable

state and a controllable event such that there exists at least one uncontrollable path

beyond the transition defined by the pair. However, if strict structural conditions asso-

ciated with the uncontrollable part of the system (e.g., mutual independence between

some uncontrollable events and some conditions on the trees of the forest represent-

ing the uncontrollable part of the system) are satisfied, then the construction of an

optimal policy is reduced to solving smaller linear integer programming problems in

an appropriate form. This requires solving only one per tree of the forest in order to

algorithmically express the control policy in a disjunction of linear inequalities, which

can be evaluated for any reachable state at run-time [Li and Wonham 1994]. A more

recent formalism, adapted from statecharts [Harel 1987], STSs [Ma and Wonham 2005],

is especially effective when a DES, expressed in terms of coordinating components, has

a high degree of concurrency, synchronization and hierarchy. An STS is composed of a

state tree and holons that describe the local dynamics. Models are manipulated in a

fashion which is logarithmically concise compared with the size of the underlying state

spaces. This formalism impacts on the way supervisors are synthesized. The ultimate

goal is exploring a set of objects significantly smaller than the overall state set.
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2.3 Data Structures

In the areas of model checking and VLSI computer-aided verification, sizable progress

has been achieved through an intensive use of BDDs, a data structure for compact rep-

resentations of Boolean functions [Dreschsler and Sieling 2001]. Such representations

do not eliminate the state-space explosion problem, but allow verification of larger sys-

tems. Their application in the SCT framework, particularly for the derivation of optimal

supervisors that result from calculation of fixed points, is more modest. Fixed point

procedures implemented with BDDs have been developed both in the SCT language-

based formulation and SCT state-based formulation. In the former, the fixed point

procedure is expressed in terms of Boolean functions describing the DES and specifica-

tion automata [Balemi et al. 1993]. In the latter, it is formulated in terms of predicates

characterizing the hierarchical state space, transition structures and forbidden state

specifications [Ma and Wonham 2005]. Even though they may be of substantial help in

many control problems, BDDs are not a panacea since the theoretical computational

complexity remains beyond existing computational resources.

2.4 Algorithmic Techniques

A synthesis procedure can be implemented in many ways. Major improvements to con-

ventional synthesis algorithms can be carried out by considering algorithmic techniques.

One of them is compositional synthesis. It is based on compositional minimization, us-

ing concepts of process equivalence. The monolithic representation of the state-space is

avoided by the use of simplified automata at the intermediate stages of the algorithm

[Flordal et al. 2007]. Another one consists in postponing very expensive processing un-

til the construction of the supervisor by performing some computations on the fly. For

instance, instead of explicitly calculating the product transition structure of components

and specifications from which the supervisor is extracted (the extensional approach), an

efficient implementation expands such structures on the fly from the transition functions

of components and specifications (the intensional approach) simultaneously with, and

guided by, supervisor construction. Such a synthesis algorithm does not require the gen-

eration of any global behavioral model for the whole system or explicit storage of the en-

tire workspace. This is efficient when the specifications severely constrain system behav-

ior [Barbeau et al. 1997]. This technique is particularly useful when the system is mod-

eled by an STS [Ma and Wonham 2005]. Since this kind of structure is more complex

than an automaton, the intensional definition of the global transition function must be

sound in the sense that it must be equivalent to that defined over a flat state set. Other
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algorithmic techniques are based on search mechanisms with heuristics and control-

directed backtracking [Ben Hadj-Alouane et al. 1996, Barbeau et al. 1997]. Exploring

implementation details is important, but complete comparison studies must be con-

ducted [Kerjean et al. 2006].

2.5 Abstraction Techniques

Abstraction techniques lead to simplification because they discard irrelevant details for

the problem at hand. They are especially relevant when both the DES and specifica-

tions exhibit symmetry. Instead of working with the automaton-based representations

of the DES and specifications, a smaller supervisor can be derived from their quo-

tient structures [Eyzell and Cury 2001] using techniques originally developed in model

checking [Emerson and Sistla 1997]. Another possibility is to take advantage of colored

Petri nets with symmetry specifications to solve a forbidden state avoidance problem

[Makungu et al. 1999]. Colored Petri nets with a finite color set have the same expres-

sive power as ordinary place/transition nets, but they offer a more compact represen-

tation of large systems consisting of many similar interacting components. The former

approach is less restrictive than the latter, because it does not limit a specification to

that of a specific forbidden state type. It requires, however, the use of a permutation

index table that occupies an exponential space in the general case. Nevertheless, the

computational complexity of the synthesis algorithm is reduced by a factor of N2 when

the DES consists of N similar components. Generally, this is clearly insufficient for

conventional synthesis algorithms with an exponential growth rate in terms of N . Fi-

nally, the use of PDESs, as proposed in this thesis, constitutes an approach in which

abstraction techniques are dominant.

2.6 Problem Reduction

One way to reduce the running time of synthesis procedures is to transpose SCT con-

trol problems into equivalent but easier problems in another theoretical framework.

Under the assumption that L(H) ⊆ L(G), where L(H) = K, and that all states of

G and H are marked, the problem of computing the supremal controllable sublan-

guage of K with respect to L(G) and Σu (the set of uncontrollable events) is equivalent

to finding the greatest bisimulation relation between H and G with respect to Σu

[Barrett and Lafortune 1998]. The computational complexity of the latter is smaller

than the former. Exploiting this solution in synthesis procedures can be advantageous,
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particularly in the construction of on-line supervisors in which reachability and block-

ingness are not of interest.

2.7 Integration of Verification Techniques

The controller synthesis problem for PDESs has been the subject of some investigations,

but the soundness (deduce properties of a system of n processes from properties of a

system of n0 processes, with n ≥ n0) still remains an issue [Frappier and St-Denis 2001,

St-Denis 2002].

A sound synthesis method has been suggested for bounded-data parameterized dis-

crete event systems (BDPDESs) under total observation [Bherer et al. 2003]. It inte-

grates an automatic verification technique [Pnueli et al. 2001] into a synthesis method

[Frappier and St-Denis 2001, St-Denis 2002]. The verification technique is based on a

heuristic for an algorithmic construction of an inductive assertion, but it is incomplete

because the algorithm may fail after two trials. The synthesis method is founded on

attributed control (AC) and integrates abstraction techniques. While more general

than the one described in [Bherer et al. 2008], it is incomplete since it requires human

intervention.

The method described in [Frappier and St-Denis 2001, St-Denis 2002] is an iterative

method where the behavior of the DES, composed of active components, is supervised

by an attributed controller which encompasses passive components, denoted O. The

passive components are uncontrollable objects defined from algebraic specifications of

abstract data types. The active components are grouped into classes whose cardinality

is represented by a vector M of parameters. The parameters for the passive components

are represented by a vector N. In that context, the problem of synthesizing a controller

P(M,N) from a model M(M) of a DES and a specification p(M,N) can be formulated

in the following way.

Given M(M), O(N) and p(M,N),

synthesize P(M,N) such that (M(M) ‖ P(M,N)) |= p(M,N). (2.1)

In Equation 2.1, the term M(M) ‖ P(M,N) represents the interaction between

M(M) and P(M,N), and |= is the satisfaction relation between a model and a specifica-

tion. It should be noted that the term O(N), which represents the passive components,

is absent from (2.1) because the passive components are integrated into the solution rep-

resented by the term P(M,N). The iterative method of [Frappier and St-Denis 2001] is
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composed of five steps: modeling, parameterization, reduction, synthesis and merging.

Once the problem has been modeled and parameterized, only the last three steps of the

method remain. They are presented in Figure 2.1.

M(M), O(N) and p(M,N)

↓ reduction

(MA,OA, pA)

↓ synthesis

PI such that (MA ‖ PI) |= pA

↓ merging

PA such that (MA ‖ PA) |= pA

Figure 2.1: Attributed controller synthesis procedure

First, the synthesis of an attributed controller consists of assigning small values to

all the parameters of Equation 2.1 in order to obtain an abstract model (MA,OA, pA)

(it is the reduction step). Then, a standard controller synthesis algorithm is used to

synthesize an intermediate controller PI (it is the synthesis step). Since all parameters

have small values, the state explosion problem is avoided. The intermediate controller

is guarantied to be correct by a correctness proof of the general synthesis algorithm,

hence (MA ‖ PI) |= pA holds. Finally, the intermediate controller is transformed

into an attributed controller PA (it is the merging step). If the transformation rules

used in the merging step preserve the correctness, then (MA ‖ PA) |= pA holds. The

attributed controller that takes into account the parameters and the different classes of

active and passive components is noted P(M,N). The transformation rules for merging

in [Frappier and St-Denis 2001] were shown to preserve correctness. That is to say that

the following holds:

(MA ‖ PI) |= pA ⇒ (MA ‖ PA) |= pA.

The problem of soundness is more difficult. Soundness is said to be preserved if the

following holds:

(MA ‖ PA) |= pA ⇒ (M(M) ‖ P(M,N)) |= p(M,N).

The method in [Frappier and St-Denis 2001, St-Denis 2002] falls short in term of sound-

ness and [Bherer et al. 2003] proposes a partial solution to this problem by integrating

a verification technique [Pnueli et al. 2001] into an attributed controller synthesis pro-

cedure for BDPDESs.
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The verification method described in [Pnueli et al. 2001] applies to BDPDESs and

properties of the form � p. A BDPDES is defined from a set of variables V , an initial

condition Θ(V ) and a transition relation ρ(V, V ′). Some restrictions apply to V , Θ

and ρ (see [Arons et al. 2001, Kesten et al. 2002, Pnueli et al. 2001] for details). The

method consists in finding an assertion ϕ that satisfies premises I1 to I3 of the following

deductive rule, called INV [Manna and Pnueli 1995]:

I1. Θ → ϕ

I2. ϕ ∧ ρ → ϕ′

I3. ϕ → p

� p

In order to automatically verify I1 to I3, a theoretical result concerning a particular

form of assertions, called R-assertions, is used. If an R-assertion holds for all n such

that 1 < n ≤ N0, where N0 is a constant that depends only on V and ϕ, then it holds

for all n > 1. Moreover, when ϕ is an R-assertion, then conditions I1 to I3 are R-

assertions. Finally, the verification method is based on a heuristic where two forms of

ϕ are proposed and a value for N0 is calculated for each ϕ. If the verification algorithm

fails for both forms, no conclusion is reached. Hence, the method is incomplete. The

following example, taken from [Pnueli et al. 2001], is also used in [Bherer et al. 2003]

to illustrate the new synthesis method based on a verification technique.

Example 2.1 Consider the mutual-exclusion problem where N processes share a single

resource. Figure 2.2 shows a transition diagram that represents the behavior of each

process Pi (1 ≤ i ≤ N). There are four states. Ii is the state where process i is

not in a critical state and does not have the resource. State Ti is the state in which

process i waits for the resource. Ci is the critical state and finally Ei is the state

where process i has the resource. As shown, there are four events and only all i is

controllable (the small bar on an arrow indicates that a transition is controllable).

Hence, M(M) = M(〈N〉) = ‖N
i=1Pi.

In the context of [Bherer et al. 2003], the problem of Example 2.1 is solved with an

attributed controller that is synthesized for a small value of the parameter N (the reduc-

tion step). The idea is to then use N0, from the verification algorithm, as this small value

for N . Then, an attributed controller for N = N0 can be synthesized, with the hope

that the resulting closed-loop system is sound for all N > 1. In [Bherer et al. 2003],

an attributed controller was synthesized for N = 3 since N0 = 3 gave positive verifi-

cation results in [Pnueli et al. 2001]. Figure 2.3 shows the feedback function for the

intermediate controller. Only the legal states are represented along with the respective

disabled events. Figure 2.4 shows the final attributed controller where a passive object
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reqi reli

alli leai

Ii

Ti Ci Ei|

Figure 2.2: Behavior of a process using a resource

(I1 I2 I3 True) : {} (C1 T2 I3 False) : {all2} (C1 T2 T3 False) : {all2 all3}

(T1 I2 I3 True) : {} (C1 I2 T3 False) : {all3} (T1 E2 I3 False) : {all1}

(I1 T2 I3 True) : {} (T1 C2 I3 False) : {all1} (T1 C2 T3 False) : {all1 all3}

(I1 I2 T3 True) : {} (T1 T2 T3 True) : {} (T1 T2 C3 False) : {all1 all2}

(C1 I2 I3 False) : {} (T1 I2 C3 False) : {all1} (T1 I2 E3 False) : {all1}

(T1 T2 I3 True) : {} (I1 E2 I3 False) : {} (I1 E2 T3 False) : {all3}

(T1 I2 T3 True) : {} (I1 C2 T3 False) : {all3} (I1 T2 E3 False) : {all2}

(I1 C2 I3 False) : {} (I1 T2 C3 False) : {all2} (E1 T2 T3 False) : {all2 all3}

(I1 T2 T3 True) : {} (I1 I2 E3 False) : {} (T1 E2 T3 False) : {all1 all3}

(I1 I2 C3 False) : {} (E1 T2 I3 False) : {all2} (T1 T2 E3 False) : {all1 all2}

(E1 I2 I3 False) : {} (E1 I2 T3 False) : {all3}

Figure 2.3: Feedback function

(the fourth component of the state tuple) of type Boolean (see Figure 2.5) is used to

represent the state of the resource.

In order to apply the verification technique described in [Pnueli et al. 2001], the

retroaction loop M(〈N〉) ‖ P(〈N〉) must be translated into the formalism used by the

verification technique (the SPL language). Moreover, the attributed controller must be

integrated into the SPL program. Figure 2.6 represents the final SPL program that was

synthesized.

The program of Figure 2.6 is exactly the MUX-SEM program of [Pnueli et al. 2001]

q

all / x := False

rel / x := True

q : {〈all : Not(x)〉}

req lea

Figure 2.4: Attributed controller
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Boolean() :=

hidden sorts: boolean

operations:

False : → boolean

True : → boolean

Not : boolean → boolean

. . .

equations: x ∈ boolean

Not(True) = False Not(False) = True

Not(Not(x)) = x

. . .

Figure 2.5: Boolean abstract data type

in N: natural where N > 1

local x : boolean where x = True

∥

∥

∥

∥

∥

N

h=1

P [h] ::















loop forever do










I : Non-Critical

T : when x = True do x := False

C: Critical

E: x := True

























Figure 2.6: Closed-loop control SPL program
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�
Human intervention

�
Heuristics

�
Undecidable

-
Decidable

• • •
AC of PDESs AC of BDPDESs SFBC of PDESs

Figure 2.7: Classes of supervisory control problems for PDESs

that was positively verified for N0 = 3. Contrary to [Pnueli et al. 2001] where the

program was constructed empirically, it was systematically derived from a controller

synthesis procedure. Hence, the approach proposed in [Bherer et al. 2003] constitutes

a first step for the integration of a verification technique into a synthesis procedure.

The verification procedure provides heuristics for determining the small values for the

parameters in the reduction step. An attributed controller can then be systematically

synthesized and its soundness can be proved by the same verification procedure. �

In conclusion, none of these paradigms and techniques offers universal solutions,

since they all have strengths and weaknesses compared with the others. Some of them

may be particularly effective for a family of applications, while others may be inap-

propriate. Finally, Figure 2.7 summarizes what is considered in this thesis: a class

of decidable control problems, namely that of SFBC of PDESs under total and under

partial observation, for which the synthesis method is sound and does not need any

heuristic to synthesize supervisors.



Chapter 3

Preliminaries on State Feedback

Control

The concepts introduced in this chapter are part of the pioneering work originally

developed by Ramadge and Wonham [Ramadge and Wonham 1987] and Li and Won-

ham [Li and Wonham 1988, Li 1991]. It was later extended by many others, including

Kumar et al. [Kumar et al. 1993] and Takai, Ushio and Kodoma [Takai et al. 1995,

Takai and Kodama 1997].

A DES is modeled by an automaton G := (X, Σ, δ, x0, Xm), where X is a set of states;

Σ is a finite set of events divided into two disjoint subsets Σc and Σu of controllable and

uncontrollable events, respectively; δ : X × Σ → X is the partial transition function;

x0 is the initial state; and Xm is the subset of marked states, which represents the

completed tasks. It is assumed that G is accessible; that is, all states are reachable

from x0 [Takai and Kodama 1997].

An SFBC function for G is a total function f : X → Γ, where Γ := {Σ′ | Σu ⊆ Σ′ ⊆

Σ}. If σ ∈ f(x), then σ is enabled at x; otherwise, it is disabled. An element of Γ is

called a control action. For σ ∈ Σ, the predicate fσ on X is defined by fσ(x) :⇔ σ ∈ f(x)

(where :⇔ means equivalent by definition). Thus, f may be described by a family of

predicates {fσ | σ ∈ Σ}.

Let δ(x, σ)! mean that δ(x, σ) is defined (for s ∈ Σ∗, δ(x, s) and δ(x, s)! are defined

in the usual way and in particular δ(x, ǫ)! always holds). The supervisor, represented

by f , and the DES, represented by G, are embodied in a closed loop defined by Gf :=

(X, Σ, δf , x0, Xm), where δf (x, σ) := δ(x, σ) if δ(x, σ)! and fσ(x), and is undefined

otherwise.
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When the states of the DES are partially observed, X is partitioned into a set Y

of equivalence classes, called observability classes. The membership map M : X → Y ,

called the mask, is defined as a mapping from the state space X to the observation

space Y . At the current state x ∈ X, the supervisor observes the value M(x) ∈ Y . Let

Fo be the set of SFBC functions that satisfy the following assumption [Li 1991].

Assumption 3.1 Restriction of an SFBC function f to the observability classes—For

any x, x′ ∈ X, M(x) = M(x′) ⇒ f(x) = f(x′).

An SFBC function f ∈ Fo selects a control action f(x) based on M(x). The pair

(Fo,≤) is a partially ordered set, with f ≤ g if f(x) ⊆ g(x) for all x ∈ X. It is

sometimes useful to denote the observability class of x by its representative element

x′ ∈ X and simply write M(x) = x′.

3.1 Predicates and Predicate Transformers

Let Pred(X) := {true, false}X be the set of all predicates on the state space X. A

predicate Q ∈ Pred(X) generally represents the specification to be fulfilled. A partial

order on Pred(X) is defined1as:

Q1 ≤ Q2 :⇔ (∀x | x ∈ X : Q1(x) ⇒ Q2(x)).

The symbols true and false are overloaded to also denote the predicates that are true

and false everywhere; that is, true(x) = true and false(x) = false for all x.

The predicate Re(G|f) ∈ Pred(X) holds exactly at the reachable states in Gf . It is

defined inductively as:

1. Re(G|f)(x0) holds;

2. Re(G|f)(x) ∧ δf (x, σ)! ⇒ Re(G|f)(δ(x, σ));

3. no other states satisfy Re(G|f).

1 Quantifications have the form (quantifier bound variable | range restriction : quantified expression)

(see, e.g., [Gries and Schneider 1995]); an empty range in a quantification means that the bound

variable ranges over all possible values. (∃x | P : Q) is read as “there exists x such that P and Q”.

(∀x | P : Q) is read as “for all x such that P , Q holds” or as “for all x, P implies Q”.
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The predicate transformers M , M−1M , wpσ and wlpσ (for a fixed σ ∈ Σ) on Pred(X)

are defined as:

M(Q)(y) :⇔ (∃x | x ∈ X : y = M(x) ∧ Q(x));

M−1(M(Q))(x) :⇔ (∃x′ | x′ ∈ X : M(x) = M(x′) ∧ Q(x′));

wpσ(Q)(x) :⇔ δ(x, σ)! ∧ Q(δ(x, σ));

wlpσ(Q)(x) :⇔ ¬δ(x, σ)! ∨ Q(δ(x, σ)).

Predicate transformers were introduced by E.W. Dijkstra for program specification

and derivation in [Dijkstra 1975, Dijkstra 1976] and first applied to DES control theory

in [Ramadge and Wonham 1987, Wonham and Ramadge 1988]. The predicate trans-

formers M and M−1M are used in the context of partial observation while wpσ and

wlpσ play a central role for controllability and reachability properties. In order to pre-

vent the violation of a specification Q by disabling controllable events at a state x or

a state observed as y, various definitions of bad event set have been introduced in the

literature:

A(Q, x) := {σ ∈ Σc | ¬wlpσ(Q)(x)};

Â(Q, y) := {σ ∈ Σc | (∃x | x ∈ X : y = M(x) ∧ ¬wlpσ(Q)(x))};

Ă(Q, y) := {σ ∈ Σc | (∃x | x ∈ X : y = M(x) ∧ Q(x) ∧ ¬wlpσ(Q)(x))}.

The set Ă(Q, y) is used in the case of partial observation and its definition imposes that

Q(x) holds if x is observed as y [Takai et al. 1995]. This condition is removed in the

definition of Â(Q, y) [Takai and Kodama 1997]. Finally, the set A(Q, x) is used in the

case of total observation, for which M is the identity function.

Reachability predicates can be defined from the above definitions of bad event set.

For instance, R(G, Q) is defined in the usual way. Let Q ∈ Pred(X). If Q(x0) does not

hold, then R(G, Q) := false; otherwise, R(G, Q) is defined by induction as:

1. R(G, Q)(x0) holds;

2. R(G, Q)(x) ∧ σ 6∈ A(Q, x) ∧ wpσ(Q)(x) ⇒ R(G, Q)(δ(x, σ));

3. no other states satisfy R(G, Q).

The reachability predicate R̂(G, Q) (resp. R̆(G, Q)) is defined in the same manner,

except that A(Q, x) is replaced by Â(Q, M(x)) (resp. Ă(Q, M(x))) in the inductive

case.
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Remark 3.2 If Q is Σu-invariant (see the definition in Section 3.2), then the inductive

case (case 2) of the definition of R(G, Q) can be replaced by

R(G, Q)(x) ∧ σ /∈ A(Q, x) ∧ δ(x, σ)! ⇒ R(G, Q)(δ(x, σ))

because of the following property:

R(G, Q)(x) ∧ σ /∈ A(Q, x) ∧ δ(x, σ)!

⇔ R(G, Q)(x) ∧ σ /∈ A(Q, x) ∧ wpσ(Q)(x).
(3.1)

The remark also holds for R̂(G, Q) and R̆(G, Q).

Finally, the predicate transformer 〈·〉 : Pred(X) → Pred(X) is defined by

〈Q〉(x) :⇔ (∀s | s ∈ Σ∗
u : ¬δ(x, s)! ∨ Q(δ(x, s))).

Intuitively, the predicate transformer 〈·〉 characterizes the states from which no string

of uncontrollable events can lead to an illegal state. The next proposition shows that

〈·〉 is idempotent.

Proposition 3.3 Let Q ∈ Pred(X). Then 〈〈Q〉〉 = 〈Q〉.

Proof. From ǫ ∈ Σ∗
u and δ(x, ǫ) = x, it is immediate that 〈〈Q〉〉 ≤ 〈Q〉. Next, for

x ∈ X, suppose that 〈Q〉(x) holds but 〈〈Q〉〉(x) does not. Hence, there must exist

s ∈ Σ∗
u such that δ(x, s)! holds but 〈Q〉(δ(x, s)) does not. This implies that there

exists t ∈ Σ∗
u such that δ(δ(x, s), t)! and Q(δ(δ(x, s), t)) does not hold. So, δ(x, st)! and

¬Q(δ(x, st)) both hold with st ∈ Σ∗
u, implying that 〈Q〉(x) does not hold. This is a

contradiction and completes the proof. �

3.2 Various Definitions of Controllability

Let Q ∈ Pred(X). The predicate Q is Σu-invariant with respect to G if Q ≤ wlpσ(Q)

for all σ ∈ Σu. It is normal if M−1(M(Q)) ≤ Q. It is controllable with respect to G if

Q is Σu-invariant with respect to G and satisfies a reachability condition that depends

on the underlying context:

(∀σ | σ ∈ Σu : Q ≤ wlpσ(Q)) ∧











Q ≤ R(G, Q) if controllability;

Q ≤ R̆(G, Q) if M-controllability;

Q ≤ R̂(G, Q) if strong M-controllability.
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Intuitively, Q is controllable if, for any x that satisfies Q, x is reachable from x0 via a

sequence of states satisfying Q and Q is invariant under a sequence of uncontrollable

events. The following theorem states that a nontrivial predicate Q is controllable when

it can be inferred from an SFBC f .

Theorem 3.4 Let Q ∈ Pred(X), Q 6= false. Then Q is controllable if and only if there

exists an SFBC function f ∈ Fo such that Re(G|f) = Q.

This theorem is valid whatever the reachability condition considered and its proofs, de-

pending on the reachability condition, can be found in [Wonham 2008] for controllability

and [Takai et al. 1995] for the M-controllability. For the case of strong M-controllability

the proof can be deduced from [Takai and Kodama 1997, Takai and Kodama 1998].

Moreover, these proofs give a way to construct f . For each σ ∈ Σ:

fσ(x) :⇔











σ 6∈ A(Q, x) if Q is controllable;

σ 6∈ Ă(Q, M(x)) if Q is M-controllable;

σ 6∈ Â(Q, M(x)) if Q is strongly M-controllable.

The condition σ 6∈ A(Q, x) is equivalent to σ ∈ Σc ⇒ wlpσ(Q)(x).

Theorem 3.4 raises the natural question of what kind of control can be exercised

when Q fails to be controllable. Following the conventional procedure, define the fol-

lowing families of predicates:

CP(Q) := {Q′ ∈ Pred(X) | Q′ ≤ Q and Q′ is controllable};

C(Q) := {Q′ ∈ Pred(X) | Q′ ≤ Q and Q′ is M-controllable};

SC(Q) := {Q′ ∈ Pred(X) | Q′ ≤ Q and Q′ is strongly M-controllable};

CN (Q) := {Q′ ∈ Pred(X) | Q′ ≤ Q and Q′ is controllable and normal}.

The supremal element sup CP(Q) exists in CP(Q) and is equal to R(G, 〈Q〉). The

supremal elements supSC(Q) and sup CN (Q) exist, but they are obtained from an

iterative computational procedure rather than being given by a compact expression as

for sup CP(Q) [Takai and Kodama 1997, Li 1991]. The supremal element sup C(Q) does

not always exist, because, contrary to Â, Ă fails to be antimonotone with respect to its

first argument. Finally, CN (Q) ⊆ SC(Q) ⊆ C(Q) ⊆ CP(Q), where the first inclusion is

valid under a certain condition on the mask [Takai and Kodama 1997].
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3.3 State Feedback Supervisors

The Σu-invariance property plays a key role in the derivation of SFBC functions, par-

ticularly when reachability is not a concern. If Q fails to be Σu-invariant, the pred-

icate sup CI(Q) is then targeted, where CI(Q) is the set of all Σu-invariant predi-

cates stronger than Q. Let the function H : Pred(X) → Pred(X) be defined by

[Ramadge and Wonham 1987]

H(T ) := Q ∧
∧

σ∈Σu

wlpσ(T ).

Then, sup CI(Q) is the greatest fixed point of H , which is equal to 〈Q〉 as shown by

the following proposition.

Proposition 3.5 νH = 〈Q〉.

Proof. By a standard result of lattice theory [Davey and Priestley 1990], it is sufficient

to show (i) 〈Q〉 ≤ H(〈Q〉) and (ii) for any U ∈ Pred(X), U ≤ H(U) implies U ≤ 〈Q〉.

(i) Let x ∈ X and suppose that 〈Q〉(x) holds. Then Q(x) must hold. By Proposi-

tion 3.3, 〈·〉 is idempotent. Also, Σu ⊆ Σ∗
u. Thus:

true ⇔ 〈Q〉(x) ⇔ 〈〈Q〉〉(x) ⇔ (∀s | s ∈ Σ∗
u : ¬δ(x, s)! ∨ 〈Q〉(δ(x, s)))

⇒ (∀σ | σ ∈ Σu : ¬δ(x, σ)! ∨ 〈Q〉(δ(x, σ)))

⇔ (∀σ | σ ∈ Σu : wlpσ(〈Q〉)(x)) ⇔
(
∧

σ∈Σu
wlpσ(〈Q〉)

)

(x).

This shows that

〈Q〉 ≤

(

Q ∧
∧

σ∈Σu

wlpσ(〈Q〉)

)

= H(〈Q〉).

(ii) Suppose U ≤ H(U). The goal is to show that U ≤ 〈Q〉. So, assume U(x). Let us

show that 〈Q〉(x) holds by proving that if δ(x, s)!, then Q(δ(x, s)), for any s ∈ Σ∗
u.

Because U ≤ H(U) ≤ Q, it is sufficient to prove that if δ(x, s)!, then U(δ(x, s)),

for any s ∈ Σ∗
u. The proof is by induction on the length of s.

• Base case, s = ǫ: This is direct by δ(x, ǫ)! and U(x) ⇔ U(δ(x, ǫ)).

• Induction step: Let s = tσ, for some t ∈ Σ∗
u and σ ∈ Σu. Assume δ(x, s)!.

Then, δ(x, t)!, so that, by the induction hypothesis, U(δ(x, t)). Because

U ≤ H(U) ≤ wlpσ(U), then U(δ(δ(x, t), σ)); that is, U(δ(x, s)). �
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Remark 3.6 Based on this result, the Σu-invariance property for a given predicate Q,

which is defined above as Q ≤ wlpσ(Q) for all σ ∈ Σu, is equivalent to Q ≤ 〈Q〉. Both

conditions are used in this thesis.

Proposition 3.7 Let Q ∈ Pred(X) be such that Q is Σu-invariant and Q(x0) holds,

and let f be the SFBC function that corresponds to Q.

1. If δf (x, σ)! ⇔ σ /∈ A(Q, x) ∧ δ(x, σ)! for all x ∈ X and σ ∈ Σ, then Re(G|f) =

R(G, Q).

2. If δf(x, σ)! ⇒ σ /∈ A(Q, x) for all x ∈ X and σ ∈ Σ, then Re(G|f) ≤ R(G, Q).

The same properties hold if A and R are replaced by Ă (with M(x) instead of x) and

R̆, respectively, or by Â (with M(x) instead of x) and R̂, respectively.

Proof.

1. When Q(x0) holds, there is only one difference in the formal structure of the

definition of Re(G|f) and that of R(G, Q): the antecedent of the implication in the

inductive case (case 2) of the definitions. Because Q is Σu-invariant, (3.1) holds,

and thus the antecedent in the definition of R(G, Q) is equivalent to R(G, Q)(x)∧

σ /∈ A(Q, x) ∧ δ(x, σ)!. Thus the definitions of Re(G|f) and R(G, Q) have the

same structure when δf(x, σ)! ⇔ σ /∈ A(Q, x) ∧ δ(x, σ)!.

2. The argument is similar, using the hypothesis and δf(x, σ)! ⇒ δ(x, σ)!.

The proof is the same for Ă, R̆ and for Â, R̂. �

Let the SFBC functions f ∗, f̆ and f̂ be defined as follows for all σ ∈ Σc and x ∈ X:

f ∗
σ(x) :⇔ σ 6∈ A(〈Q〉, x); (3.2)

f̆σ(x) :⇔ σ 6∈ Ă(〈Q〉, M(x)); (3.3)

f̂σ(x) :⇔ σ 6∈ Â(〈Q〉, M(x)). (3.4)

Let Q be such that 〈Q〉(x0) holds. In the case of total observation, f ∗ is optimal (in

the sense that it is the behaviorally least restrictive SFBC function) and Re(G|f ∗) =

R(G, 〈Q〉) (by Proposition 3.7(1)). This SFBC function is slightly different from the one
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given in [Wonham 2008], but it should be noted that f ∗
σ(x) may be evaluated arbitrarily

when δ(x, σ) is undefined. In the case of partial observation, the SFBC f̆ is such that

supSC(Q) ≤ R̆(G, 〈Q〉) = Re(G|f̆). Thus,

f̂ ∗ ≤ f̆ ,

where f̂ ∗ is the optimal SFBC function that corresponds to the supremal element

supSC(Q) [Takai and Kodama 1998].

The following proposition gives a means to compute f̆ or f̂ from f ∗.

Proposition 3.8

f̆(x) =
(

⋂

x′ | M(x) = M(x′) ∧ 〈Q〉(x′) : f ∗(x′)
)

; (3.5)

f̂(x) =
(

⋂

x′ | M(x) = M(x′) : f ∗(x′)
)

. (3.6)

Proof.

σ 6∈ f̆(x)

⇔ σ ∈ Ă(〈Q〉, M(x))

⇔ σ ∈ Σc ∧ (∃x′ | x′ ∈ X : M(x) = M(x′) ∧ 〈Q〉(x′) ∧ ¬wlpσ(〈Q〉)(x′))

⇔ (∃x′ | x′ ∈ X : M(x) = M(x′) ∧ 〈Q〉(x′) ∧ σ ∈ A(〈Q〉, x′))

⇔ (∃x′ | x′ ∈ X : M(x) = M(x′) ∧ 〈Q〉(x′) ∧ σ 6∈ f ∗(x′))

⇔ σ ∈
(
⋃

x′ | x′ ∈ X ∧ M(x) = M(x′) ∧ 〈Q〉(x′) : f ∗(x′)
)

,

where f ∗(x′) := Σ − f ∗(x′).

The other result is proved in a similar manner. �

The reasons behind the selection of these SFBC functions are based on the following

observations. Recently, the notion of weak controllability has been introduced and de-

fined by dropping the reachability condition Q ≤ R(G, Q) in the definition of controlla-

bility [Ma and Wonham 2005]. This condition is computationally expensive and unnec-

essary for the synthesis of an SFBC function. The main argument is that, if Q is weakly

controllable, then R(G, Q) is controllable. Unfortunately, this result cannot be extended

to the case of partial observation when R̂ is used instead of R [Bherer et al. 2006a] and

its impact is discussed in Section 7.5. Nevertheless, if Q is weakly controllable, then
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R̆(G, Q) is M-controllable [Takai and Kodama 1998]. It follows that R̆(G, 〈Q〉) is a

better approximation for Q than supSC(Q). Furthermore, f̆ as defined by (3.3) is

maximal in the sense that there is no f such that Re(G|f) = R̆(G, 〈Q〉) and f̆ < f

[Takai et al. 1995].



Chapter 4

Parameterized Discrete Event

Systems

Many modular systems have constituent elements with the same structure and processes

in such systems can be partitioned into classes defined using parameters. For instance,

a parameter can represent the number of processes in a class. This thesis considers the

case where all processes belong to a unique class and hence have a single parameter:

the number of processes.

Let us consider a PDES GN , where N is a parameter that denotes the number of

processes, defined from the finite composition of a replicated structure

Pi := (Xi, Σs ∪ Σi, δi),

where Xi is a finite set of states indexed by i; Σs is a finite set of non-indexed,

controllable events; Σi is a finite set of events indexed by i and partitioned into

two subsets Σc,i and Σu,i of controllable and uncontrollable events, respectively; and

δi : Xi × (Σs ∪ Σi) → Xi is the partial transition function. The replicated structure

represents the behavior of similar processes. The parameter N can be replaced by any

number n ∈ N. The events that belong to Σs are shared by all processes and allow for

synchronization.

The concept of replicated structure is translated into a process similarity assumption

[Attie and Emerson 1998]. Formally, let θ := {j/i} be a substitution such that θi = j

(1 ≤ i, j ≤ N).
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Assumption 4.1 Process Similarity Assumption (PSA)—(∀i, j | 1 ≤ i, j ≤ N : Pj =

θPi), where

θPi := (θXi, Σs ∪ θΣc,i ∪ θΣu,i, θδi);

θXi := Xθi := {xθi | xi ∈ Xi};

θΣc,i := Σc,θi := {σθi | σi ∈ Σc,i};

θΣu,i := Σu,θi := {σθi | σi ∈ Σu,i};

θδi(xi, σ) := δθi(xθi, σ) if σ ∈ Σs;

θδi(xi, σi) := δθi(xθi, σθi) if σi ∈ Σi.

Therefore, a process can be derived from any other process by index substitution.

A global state x ∈ XN is represented by a tuple of N local states. Let x[i] denote

the i-th component of x. The transition structure GN is defined from a synchronous

composition for events in Σs and an interleaving composition for events in each Σi.

Thus, GN := (XN , ΣN , δN), where ΣN = Σs∪Σ1∪· · ·∪ΣN and (δN(x, σ))[i] = δi(x[i], σ)

if σ ∈ Σs ∪Σi and (δN(x, σ))[i] = x[i] otherwise. An instance of a PDES GN is denoted

by (Gn, xn
0 ), where xn

0 ∈ Xn is the initial state.

To illustrate the previous definitions, let us consider the running example of N users

under control trying to acquire a single resource while satisfying various constraints

based on their identity.

Example 4.2 Figure 4.1a shows a transition diagram that represents the behavior of

user i (1 ≤ i ≤ N). It includes three states: Ii (Idle), Ri (Requesting) and Ui (Using).

For instance, the user can move from state Ii to state Ri on event αi (request the

resource), then from state Ri to state Ui on event βi (allocate the resource) and, finally,

from state Ui to state Ii on event γi (release the resource). There are two additional

controllable transitions, labeled r, to reset all users in the initial configuration in which

all users are idle, one from state Ri to state Ii and a self-loop on state Ii. Events αi and

βi are controllable. In Figure 4.1, the small bar on an arrow indicates that a transition

is controllable. �

In order to deal with PDESs, many definitions need to be introduced. In fact, most

of these definitions introduce some functions (or operators) related to projections (from

the state space of dimension n to the state space of dimension n0) and the renaming

(substitution) of indices. The basic thing one needs to understand is the meaning of

x = 〈U1, I2, R3, U4, R5〉, for example. Here, it means that x is a state in the state space

of dimension 5 and that process 1 is in state U , process 2 is in state I, and so on.
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Figure 4.1: Replicated structures for the users

The reason why the states of the processes are indexed is the need to keep track of

process identities when projections are applied to global states of dimension n. For

example, the projection of processes 2, 3 and 5 from x to a state x′, of dimension 3,

results in x′ = 〈I2, R3, R5〉. But here, there is a problem with the indices because in

dimension 3, the index 5, for example, has no meaning. And in fact, the projection

transforms process 5 into process 3, process 3 into process 2 and process 2 into process

1. Therefore, there is a need for an index substitution operator to rename the indices

after the projection, hence the state x′ now becomes x′ = 〈I1, R2, R3〉, thus making a

coherent state of dimension 3 that is the result of a projection and a renaming, where

process 1 of x′ is in fact process 2 of x (and similarly for the other two processes that

were projected).

Definition 4.3 Let x := 〈x[1], x[2], . . . , x[n]〉 ∈ Xn. Then

Mn(x) := 〈M1(x[1]), M2(x[2]), . . . , Mn(x[n])〉,

where Mi : Xi → Yi is the mask for process i.

The next definitions introduce the projection and substitution operators on global

states, events, sets of events and strings of events. They are useful to establish re-

lationships between a system consisting of n processes and a system consisting of n0

processes, where n0 ≤ n. Moreover, it should be noted that these operators have lower

precedence than function application. Hence, for an operator Θ and a function f , one

should read Θf(x) as Θ(f(x)).

Definition 4.4 Let n0, n ∈ N, where 1 ≤ n0 ≤ n. Let J n
n0

be the set of subsets of

indices defined by J n
n0

:= {J | J ⊆ {i | 1 ≤ i ≤ n} ∧ |J | = n0}.

In the sequel, the expression “Let J ∈ J n
n0

” means “Let J = {j1, . . . , jn0} and

1 ≤ j1 < · · · < jn0 ≤ n”.
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Definition 4.5 Let J ∈ J n
n0

. The projection operator ↑J on a global state x ∈ Xn is a

function ↑J : Xn → Xj1 × · · · × Xjn0
that is defined as:

↑Jx := 〈x[j1], . . . , x[jn0 ]〉.

The next definition introduces the substitution operator that ensures that the states of

processes in the state space of dimension n0 are indexed from 1 to n0.

Definition 4.6 Let J ∈ J n
n0

. The substitution operator θJ on a global state x ∈

Xj1×· · ·×Xjn0
is a function θJ : Xj1×· · ·×Xjn0

→ Xn0 that expresses the simultaneous

replacement of process indices j1, . . . , jn0 by process indices 1, . . . , n0, respectively. It

is defined as:

θJx := 〈{1/j1}(x[1]), . . . , {n0/jn0}(x[n0])〉.

The next two definitions define the projection and substitution operators on events,

based on a set of indices J , while Definition 4.9 and Definition 4.10 generalize in a

natural way those operators to sets and strings of events, respectively.

Definition 4.7 Let J ∈ J n
n0

. The projection operator ↑J on an event σ ∈ Σn is a

function ↑J : Σn → Σs ∪ Σj1 ∪ · · · ∪ Σjn0
∪ {ǫ} that is defined as: ↑Jσ := σ if σ ∈ Σs or

σ ∈ Σi and i ∈ J ; and ↑Jσ := ǫ if σ ∈ Σi and i 6∈ J .

Definition 4.8 Let J ∈ J n
n0

. The substitution operator θJ on an event σ ∈ Σs ∪Σj1 ∪

· · · ∪Σjn0
∪ {ǫ} is a function θJ : Σs ∪Σj1 ∪ · · · ∪Σjn0

∪ {ǫ} → Σn0 ∪ {ǫ} that is defined

as: θJσ := σ if σ ∈ Σs; θJσ := {k/jk}σ if σ ∈ Σjk
and jk ∈ J ; and θJǫ := ǫ.

Definition 4.9 Let Ω ⊆ Σs ∪ Σj1 ∪ · · · ∪ Σjn0
∪ {ǫ} and J ∈ J n

n0
. The operator θJ

on a set of events is a function θJ : 2Σs∪Σj1
∪···∪Σjn0

∪{ǫ} → 2Σn0∪{ǫ} that is defined as:

θJΩ := {θJσ | σ ∈ Ω}.

Let ΘJ := θJ ◦↑J . If x ∈ Xn, ΘJx is well defined and ΘJ : Xn → Xn0 . Furthermore,

if σ ∈ Σn, ΘJσ is well defined and ΘJ : Σn → Σn0 ∪ {ǫ}.

Definition 4.10 Let J ∈ J n
n0

. The operator ΘJ on a string of events is a function

ΘJ : (Σn)∗ → (Σn0)∗ that is recursively defined as: ΘJǫ := ǫ and ΘJsσ := (ΘJs)(ΘJσ),

where σ ∈ Σn and s ∈ (Σn)∗.
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The next example illustrates the effect of the previously introduced operators. In

that example, the higher state space is of dimension 5 and the lower one is of dimension

3.

Example 4.11 Let n0 = 3, n = 5 and consider the system introduced in Example 4.2.

Let x = 〈U1, I2, R3, U4, R5〉 and s = α2γ4γ1rα3. If J = {2, 3, 4}, then ΘJx = 〈I1, R2, U3〉

and ΘJs = α1γ3rα2. �

Example 4.11, with J = {2, 3, 4}, illustrates the projection of processes 2, 3 and 4 to

the space of dimension 3. Hence, process 2 becomes process 1, process 3 becomes process

2 and process 4 becomes process 3. So ↑Jx = 〈I2, R3, U4〉 and θJ (↑Jx) = 〈I1, R2, U3〉.

Then, the string of events s = α2γ4γ1rα3 becomes ↑Js = α2γ4rα3. Finally, the renaming

of indices of each event produces θJ(↑Js) = α1γ3rα2.

Remark 4.12 Let s ∈ (Σn0)∗, J ∈ J n
n0

and θJ = {1/j1, . . . , n0/jn0}. Then θ−1
J s exists,

since θ−1
J = {j1/1, . . . , jn0/n0}. Also, ΘJ(θ−1

J s) = θJ(θ−1
J s) = s and s = θJ t ⇔ t = θ−1

J s.

It should be noted that an element of (Σn0)∗ is also an element of (Σn)∗.

Remark 4.13 Let x ∈ Xn0 and J ∈ J n
n0

. Then ΘJ(θ−1
J x) = θJ (θ−1

J x) = x and

x = θJy ⇔ y = θ−1
J x. The last equivalence also holds if k/jk ∈ θJ , x ∈ Xk and y ∈ Xjk

.

Remark 4.14 Let x ∈ Xn, J ∈ J n
n0

and s ∈ (Σn − Σs)
∗. Then δn(x, s)! ⇒ δn(x, ↑Js)!.

This is easy to see by noting that a transition with event σi does not affect the defined-

ness of transitions with event σj if i 6= j, because no synchronization occurs.

Besides PSA as a condition on the processes, a system under partial observation

must satisfy another similarity assumption imposed on the mask. Intuitively, it ensures

that the mask is the same for every system process up to index substitution.

Assumption 4.15 Mask Similarity Assumption (MSA)—(∀i | 1 ≤ i ≤ N : θMi(xi) =

Mθi(xθi)).

Several relationships may be established between a system composed of n processes

and a system of n0 processes under the assumptions PSA and MSA. Some of them are

presented here. The following lemmas show that each diagram in Figure 4.2 commutes

and give necessary and sufficient conditions for δn(x, s) to be defined with respect to

equivalent information in the state space of dimension n0.
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?
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Figure 4.2: Commutative diagrams

Lemma 4.16 Let x ∈ Xn and J ∈ J n
n0

. Then Mn0(ΘJx) = ΘJMn(x).

Proof.

Mn0(ΘJx)

= 〈 Typing of ΘJ 〉

Mn0(〈(ΘJx)[1], . . . , (ΘJx)[n0]〉)

= 〈 Definition 4.3 〉

〈M1((ΘJx)[1]), . . . , Mn0((ΘJx)[n0])〉

= 〈 Definitions 4.5 and 4.6 〉

〈M1({1/j1}(x[j1])), . . . , Mn0({n0/jn0}(x[jn0 ]))〉

= 〈 MSA (Assumption 4.15) 〉

〈{1/j1}Mj1(x[j1]), . . . , {n0/jn0}Mjn0
(x[jn0 ])〉

= 〈 Definition 4.6 〉

θJ〈Mj1(x[j1]), . . . , Mjn0
(x[jn0 ])〉

= 〈 Definition 4.3 〉

θJ〈(M
n(x))[j1], . . . , (M

n(x))[jn0 ]〉

= 〈 Definition 4.5 and definition of ΘJ (Page 31) 〉

ΘJMn(x) �

Lemma 4.17 Let x ∈ Xn, σ ∈ Σn and J ∈ J n
n0

. If δn(x, σ)!, then

δn0(ΘJx, ΘJσ) = ΘJδn(x, σ).

If σ ∈ Σi with i ∈ J , then δn0(ΘJx, ΘJσ)! ⇔ δn(x, σ)!.
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Proof. There are three cases to consider.

1. First case: σ is an indexed event, say σi ∈ Σi and i 6∈ J .

δn0(ΘJx, ΘJσi)

= 〈 Definitions 4.7 and 4.8 〉

δn0(ΘJx, ǫ)

= 〈 δ(x, ǫ) = x 〉

ΘJx

= 〈 i 6∈ J and hence, for j ∈ J , (δn(x, σi))[j] = x[j] & δn(x, σ)! 〉

ΘJδn(x, σi)

2. Second case: σ is an indexed event, say σjk
∈ Σjk

and jk ∈ J .

δn0(ΘJx, ΘJσjk
)

= 〈 Typing of ΘJ & Definitions 4.7 and 4.8 〉

δn0(〈(ΘJx)[1], . . . , (ΘJx)[n0]〉, σk)

= 〈 Definition of δn0 (Page 29) 〉

〈(ΘJx)[1], . . . , δk((ΘJx)[k], σk), . . . , (ΘJx)[n0]〉

= 〈 Definitions 4.5 and 4.6 〉

〈{1/j1}(x[j1]), . . . , δk({k/jk}(x[jk]), σk), . . . , {n0/jn0}(x[jn0 ])〉

= 〈 PSA (Assumption 4.1) 〉

〈{1/j1}(x[j1]), . . . , {k/jk}δjk
(x[jk], σjk

), . . . , {n0/jn0}(x[jn0 ])〉

= 〈 Definition 4.6 〉

θJ〈x[j1], . . . , δjk
(x[jk], σjk

), . . . , x[jn0 ]〉

= 〈 Definition of δn (Page 29) 〉

θJ〈(δn(x, σjk
))[j1], . . . , (δ

n(x, σjk
))[jk], . . . , (δ

n(x, σjk
))[jn0 ]〉

= 〈 Definition 4.5 and definition of ΘJ (Page 31) 〉

ΘJδn(x, σjk
)

Since the hypothesis δn(x, σ)! is not used in the proof, each term of the equality

is defined precisely when the other is. Because the operator ΘJ is total, this

means that δn0(ΘJx, ΘJσ)! ⇔ δn(x, σ)!. This also implies that if δn(x, σ)!, then

the equality holds.
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3. Third case: σ is a common event, σ ∈ Σs.

δn0(ΘJx, ΘJσ)

= 〈 Typing of ΘJ & Definitions 4.7 and 4.8 〉

δn0(〈(ΘJx)[1], . . . , (ΘJx)[n0]〉, σ)

= 〈 Definition of δn0 (Page 29) 〉

〈δ1((ΘJx)[1], σ), . . . , δn0((ΘJx)[n0], σ)〉

= 〈 Definitions 4.5 and 4.6 〉

〈δ1({1/j1}(x[j1]), σ), . . . , δn0({n0/jn0}(x[jn0 ]), σ)〉

= 〈 PSA (Assumption 4.1) 〉

〈{1/j1}δj1(x[j1], σ), . . . , {n0/jn0}δjn0
(x[jn0 ], σ)〉

= 〈 Definition 4.6 〉

θJ〈δj1(x[j1], σ), . . . , δjn0
(x[jn0 ], σ)〉

= 〈 Definition of δn (Page 29) & δn(x, σ)! 〉

θJ〈(δn(x, σ))[j1], . . . , (δ
n(x, σ))[jn0 ]〉

= 〈 Definition 4.5 and definition of ΘJ (Page 31) 〉

ΘJδn(x, σ) �

Lemma 4.18 Let x ∈ Xn and J ∈ J n
n0

.

1. If s ∈ (Σn)∗ and δn(x, s)!, then δn0(ΘJx, ΘJs) = ΘJδn(x, s).

2. If s ∈ (Σn − Σs)
∗ and s = ↑Js (this condition ensures that for all event σ in s,

σ ∈ Σi with i ∈ J), then δn0(ΘJx, ΘJs)! ⇔ δn(x, s)!.

Proof.

1. The proof is by induction. The base case is s = ǫ. The result follows by using

ΘJǫ = ǫ and the fact that, for all x, δ(x, ǫ) = x:

δn0(ΘJx, ΘJs) = δn0(ΘJx, ǫ) = ΘJx = ΘJδn(x, ǫ) = ΘJδn(x, s).

The induction case is s = tσ, for some t ∈ (Σn)∗ and σ ∈ Σn. Assume that

δn0(ΘJx, ΘJt) = ΘJδn(x, t) if δn(x, t)!. Since δn(x, s)! implies δn(x, t)!, this is
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equivalent to assuming δn0(ΘJx, ΘJt) = ΘJδn(x, t). The result follows by using

Definition 4.10, the fact that δ(x, ab) = δ(δ(x, a), b) for all x, a, b, the induction

hypothesis and Lemma 4.17 (noting that δn(x, s)! implies δn(δn(x, t), σ)!):

δn0(ΘJx, ΘJs) = δn0(ΘJx, ΘJ(tσ)) = δn0(ΘJx, (ΘJt)(ΘJσ))

= δn0(δn0(ΘJx, ΘJt), ΘJσ) = δn0(ΘJδn(x, t), ΘJσ)

= ΘJδn(δn(x, t), σ) = ΘJδn(x, tσ) = ΘJδn(x, s).

2. The proof by induction is similar to the preceding one. For the base case s = ǫ,

the result follows from δn0(ΘJx, ǫ)! and δn(x, ǫ)!. For the induction case s = tσ,

assume that δn0(ΘJx, ΘJt)! ⇔ δn(x, t)! if t ∈ (Σn − Σs)
∗ and t = ↑Jt. Since the

hypotheses on s imply t ∈ (Σn − Σs)
∗ and t = ↑Jt, this is equivalent to assuming

δn0(ΘJx, ΘJt)! ⇔ δn(x, t)!.

δn0(ΘJx, ΘJs)!

⇔ 〈 Detailed steps are as in the proof of the first item 〉

δn0(δn0(ΘJx, ΘJt), ΘJσ)!

⇔ 〈 For all x, a, b, δ(δ(x, a), b)! ⇒ δ(x, a)! 〉

δn0(ΘJx, ΘJt)! ∧ δn0(δn0(ΘJx, ΘJt), ΘJσ)!

⇔ 〈 Induction hypothesis 〉

δn(x, t)! ∧ δn0(δn0(ΘJx, ΘJt), ΘJσ)!

⇔ 〈 Part 1 of this lemma 〉

δn(x, t)! ∧ δn0(ΘJδn(x, t), ΘJσ)!

⇔ 〈 s ∈ (Σn − Σs)
∗ ∧ s = ↑Js ⇒ σ ∈ Σn − Σs ∧ σ = ↑Jσ

⇒ σ ∈ Σi with i ∈ J & Lemma 4.17 〉

δn(x, t)! ∧ δn(δn(x, t), σ)!

⇔ 〈 s = tσ & Definition of ! for δ (Page 19) 〉

δn(x, s)! �

Lemma 4.19 Let x ∈ Xn and σ ∈ Σn. Then

δn(x, σ)! ⇔ (∀J | J ∈ J n
n0

: δn0(ΘJx, ΘJσ)!).

Proof. The right implication (⇒) is a direct consequence of Lemma 4.17.

The proof of (⇐) is by contraposition. Suppose that δn(x, σ) is undefined. Then,

there exists i (1 ≤ i ≤ n) such that δi(x[i], σ) is undefined and either σ = σi or
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σ ∈ Σs. Let J ∈ J n
n0

, with i = jk ∈ J . If σ = σi, then, by PSA (Assump-

tion 4.1), δk({k/jk}(x[jk]), σk) is undefined; it follows that δn0(ΘJx, ΘJσ) is unde-

fined, because δk({k/jk}(x[jk]), σk) = δk((ΘJx)[k], ΘJσjk
). If σ ∈ Σs, then, by PSA,

δk({k/jk}(x[jk]), σ) is undefined; it follows that δn0(ΘJx, ΘJσ) is undefined, because

δk({k/jk}(x[jk]), σ) = δk((ΘJx)[k], ΘJσ). �

Lemma 4.20 Let x ∈ Xn and s ∈ (Σn)∗. Then

δn(x, s)! ⇔ (∀J | J ∈ J n
n0

: δn0(ΘJx, ΘJs)!).

Proof. The right implication (⇒) is a direct consequence of Lemma 4.18.

The proof of (⇐) is by contraposition. Suppose that δn(x, s) is undefined. Then

s = tσu for some t, u ∈ (Σn)∗ and σ ∈ Σn such that δn(x, t)! and δn(δn(x, t), σ) is

undefined. By Lemma 4.19, there exists J ∈ J n
n0

such that δn0(ΘJδn(x, t), ΘJσ) is

undefined. But

δn0(ΘJx, ΘJs)!

⇔ 〈 s = tσu 〉

δn0(ΘJx, ΘJ(tσu))!

⇔ 〈 Definition 4.10 〉

δn0(ΘJx, (ΘJt)(ΘJσ)(ΘJu))!

⇔ 〈 δ(x, ab) = δ(δ(x, a), b) for all x, a, b 〉

δn0(δn0(δn0(ΘJx, ΘJt), ΘJσ), ΘJu)!

⇒ 〈 Since the outer δn0 is defined, its left argument is defined 〉

δn0(δn0(ΘJx, ΘJt), ΘJσ)!

⇔ 〈 δn(x, t)! & Lemma 4.18 〉

δn0(ΘJδn(x, t), ΘJσ)!

so that δn0(ΘJx, ΘJs) is undefined. �

As seen, PDESs exhibit symmetries that record an invariance property with respect

to a change of process identity. This property constitutes the essence of PDESs and is

expressed by two similarity assumptions throughout this thesis:
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• Process Similarity Assumption (Assumption 4.1, PSA),

• Mask Similarity Assumption (Assumption 4.15, MSA).

PSA and MSA limit processes to be defined from a replicated structure. These assump-

tions appear very restrictive, but they are necessary to ensure that the different objects

(e.g., processes, masks) manipulated in the higher dimension (n) are always consistent

with the corresponding objects in the lower dimension (n0). Overall, they capture ho-

mogeneity in a system. In addition to these assumptions, a condition is imposed on the

events shared by the processes. They must be controllable. This condition is required

to establish a fundamental result (Proposition 5.7) that is used to prove soundness of

the synthesis method.

How far is it possible to relax some of these assumptions with respect to achieving

soundness remains an open question that is discussed in Chapter 8.



Chapter 5

Parameterized Specifications

Adding parameters to a model, as presented in Chapter 4, entails adding corresponding

parameters to the specifications. In order to draw conclusions about a system of arbi-

trary size from a system of bounded size with properties of interest (e.g., Σu-invariance,

normality), specifications must exhibit symmetries. The method proposed in this thesis

relies on no particular specification language. The specification must, however, be given

by a parameterized predicate QN ∈ Pred(XN), which expresses conditions on indexed

states. The predicates Qn0 and Qn, with n0 ≤ n, are instances of QN and represent

the specifications for the system of bounded size (with n0 processes) and a system of

arbitrary size (with n processes), respectively.

Example 5.1 Let us consider the PDES described in Example 4.2. The following

parameterized predicates are possible specifications for this system:

QN
1 (x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i 6= j : ¬(x[i] = Ui ∧ x[j] = Uj));

QN
2 (x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i < j : ¬(x[i] = Ri ∧ x[j] = Uj));

QN
3 (x) :⇔ (∀i, j, k, l | 1 ≤ i, j, k, l ≤ N ∧ distinct(i, j, k, l) :

¬(x[i] = Ui ∧ x[j] = Uj ∧ x[k] = Uk ∧ x[l] = Ul)).

The first predicate forbids two users from sharing the resource. The second predicate

is equivalent to giving priority to the user with the lowest number when the resource is

free and simultaneously requested by some users or preventing a user from requesting

the resource when it is already used by a user with a higher number. Finally, the last

predicate permits at most three users to share the resource. �
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Assumption 5.2 Specification Similarity Assumption (SSA)—The assumption is

(∃n0 |: (∀n | n ≥ n0 : (∀x | x ∈ Xn : Qn(x) ⇔ (∀J | J ∈ J n
n0

: Qn0(ΘJx))))).

Intuitively, SSA imposes the following restriction on instances of QN : a state x ∈ Xn

satisfies Qn if and only if all the projections of x on the state space of dimension n0

satisfy Qn0 . When all instances Qn of QN satisfy SSA, QN is said to satisfy SSA. In

the sequel, when it is said that a predicate QN satisfies SSA for a given n0, it means

that

(∀n | n ≥ n0 : (∀x | x ∈ Xn : Qn(x) ⇔ (∀J | J ∈ J n
n0

: Qn0(ΘJx))))

holds for that n0. SSA is closed under arbitrary conjunctions and disjunctions as shown

by the next two propositions and illustrated by the companion examples.

Proposition 5.3 Let QN be a parameterized predicate that satisfies SSA for a given

n0. Then QN satisfies SSA for any m ≥ n0.

Proof. The proof is by induction on the value of m.

• Base case, m = n0: This is direct, since QN satisfies SSA with n0.

• Induction step: Assume that QN satisfies SSA for a given k ≥ n0. Then

(∀J | J ∈ J n
k+1 : Qk+1(ΘJx))

⇔ 〈 Induction hypothesis with the specific instance Qk+1 〉

(∀J | J ∈ J n
k+1 : (∀J ′ | J ′ ∈ J k+1

k : Qk(ΘJ ′(ΘJx))))

⇔ 〈 {ΘJ ′(ΘJx) | J ∈ J n
k+1 ∧ J ′ ∈ J k+1

k } = {ΘJx | J ∈ J n
k } 〉

(∀J | J ∈ J n
k : Qk(ΘJx))

⇔ 〈 Induction hypothesis 〉

Qn(x). �

For a given n0, if QN and Q′N satisfy SSA, then QN ∧ Q′N satisfies SSA (by dis-

tributivity of ∀ over ∧). According to Proposition 5.3, if QN and Q′N satisfy SSA for

given n0 and n′
0, respectively, then QN ∧ Q′N satisfies SSA with max(n0, n

′
0).

Example 5.4 Let us consider the parameterized predicates QN
1 and QN

2 in Exam-

ple 5.1. The following proof shows that QN
2 satisfies SSA with n0 = 2.
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(∀J | J ∈ J n
2 : Q2

2(ΘJx))

⇔ 〈 Definitions of Qn
2 and J n

n0
& De Morgan 〉

(∀j1, j2 | 1 ≤ j1 < j2 ≤ n : (∀i, j | 1 ≤ i, j ≤ 2 ∧ i < j :

(Θ{j1,j2}x)[i] 6= Ri ∨ (Θ{j1,j2}x)[j] 6= Uj))

⇔ 〈 The constraints on i and j yield i = 1 and j = 2 〉

(∀j1, j2 | 1 ≤ j1 < j2 ≤ n : (Θ{j1,j2}x)[1] 6= R1 ∨ (Θ{j1,j2}x)[2] 6= U2)

⇔ 〈 ΘJ := θJ ◦ ↑J & Applying ↑{ji, j2} 〉

(∀j1, j2 | 1 ≤ j1 < j2 ≤ n : (θ{j1,j2}〈x[j1], x[j2]〉)[1] 6= R1 ∨

(θ{j1,j2}〈x[j1], x[j2]〉)[2] 6= U2)

⇔ 〈 Definition 4.6 〉

(∀j1, j2 | 1 ≤ j1 < j2 ≤ n : 〈{1/j1}(x[j1]), {2/j2}(x[j2])〉[1] 6= R1 ∨

〈{1/j1}(x[j1]), {2/j2}(x[j2])〉[2] 6= U2)

⇔ 〈 Component selection 〉

(∀j1, j2 | 1 ≤ j1 < j2 ≤ n : {1/j1}(x[j1]) 6= R1 ∨ {2/j2}(x[j2]) 6= U2)

⇔ 〈 Remark 4.13 〉

(∀j1, j2 | 1 ≤ j1 < j2 ≤ n : x[j1] 6= {j1/1}(R1) ∨ x[j2] 6= {j2/2}(U2))

⇔ 〈 Index substitution 〉

(∀j1, j2 | 1 ≤ j1 < j2 ≤ n : x[j1] 6= Rj1 ∨ x[j2] 6= Uj2)

⇔ 〈 Renaming the bound variables 〉

(∀i, j | 1 ≤ i < j ≤ n : x[i] 6= Ri ∨ x[j] 6= Uj)

⇔ 〈 Definition of Qn
2 & De Morgan 〉

Qn
2 (x)

It can similarly be shown that QN
1 also satisfies SSA with n0 = 2. Therefore, QN

1 ∧QN
2

satisfies SSA with n0 = 2. It should be noted that SSA is not closed under negation,

since the predicate ¬QN
1 does not satisfy SSA. �

Proposition 5.5 Let QN and Q′N be two parameterized predicates that satisfy SSA for

given n0 and n′
0, respectively. Then QN ∨ Q′N satisfies SSA with n0 + n′

0; that is, SSA

is closed under arbitrary disjunctions.
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Proof. The equivalent formula

¬(Qn ∨ Q′n)(x) ⇔ (∃J | J ∈ J n
n0+n′

0
: ¬(Qn0+n′

0 ∨ Q′n0+n′
0)(ΘJx))

is proved instead.

¬(Qn ∨ Q′n)(x)

⇔ 〈 De Morgan 〉

¬Qn(x) ∧ ¬Q′n(x)

⇔ 〈 SSA (Assumption 5.2) 〉

(∃J | J ∈ J n
n0

: ¬Qn0(ΘJx)) ∧ (∃J ′ | J ′ ∈ J n
n′

0
: ¬Q′n′

0(ΘJ ′x))

⇔ 〈 For ⇒, choose J ′′ ∈ J n
n0+n′

0
such that J ⊆ J ′′ ∧ J ′ ⊆ J ′′ and

use Proposition 5.3 & For ⇐, use SSA (Assumption 5.2) 〉

(∃J ′′ | J ′′ ∈ J n
n0+n′

0
: ¬Qn0+n′

0(ΘJ ′′x) ∧ ¬Q′n0+n′
0(ΘJ ′′x))

⇔ 〈 De Morgan 〉

(∃J ′′ | J ′′ ∈ J n
n0+n′

0
: ¬(Qn0+n′

0 ∨ Q′n0+n′
0)(ΘJ ′′x)) �

Example 5.6 Let us consider the parameterized predicate QN
1 in Example 5.1 and the

following parameterized predicate:

QN
4 (x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i 6= j : ¬(x[i] = Ri ∧ x[j] = Rj)).

These predicates satisfy SSA with n0 = 2. Let x = 〈R1, R2, U3, U4〉. (Q4
1 ∨ Q4

4)(x)

does not hold even if Q2
1 ∨ Q2

4 holds for all the projections of x. However, according to

Proposition 5.5, QN
1 ∨ QN

4 satisfies SSA with n0 = 4. �

The following proposition establishes that, if QN satisfies SSA, then so does 〈QN〉.

It should be noted that the strings of uncontrollable events s and t used in the proof of

this proposition do not contain shared events because Σs ∩ Σn
u = ∅ and Σs ∩ Σn0

u = ∅,

respectively, by definition of Σs (Page 28).

Proposition 5.7 Let QN be a parameterized predicate that satisfies SSA for a given

n0. Then 〈QN 〉 satisfies SSA with n0; that is, for all n ≥ n0 and for all x ∈ Xn,

〈Qn〉(x) ⇔ (∀J | J ∈ J n
n0

: 〈Qn0〉(ΘJx)).
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Proof. Suppose Qn(x) ⇔ (∀J | J ∈ J n
n0

: Qn0(ΘJx)). Proving the formula 〈Qn〉(x) ⇔

(∀J | J ∈ J n
n0

: 〈Qn0〉(ΘJx)) amounts to the same thing as proving the equivalent

formula ¬〈Qn〉(x) ⇔ (∃J | J ∈ J n
n0

: ¬〈Qn0〉(ΘJx)).

¬〈Qn〉(x)

⇔ 〈 Definition of 〈·〉 (Page 22) 〉

(∃s | s ∈ (Σn
u)∗ : δn(x, s)! ∧ ¬Qn(δn(x, s)))

⇔ 〈 SSA (Asumption 5.2) 〉

(∃s | s ∈ (Σn
u)∗ : δn(x, s)! ∧ (∃J | J ∈ J n

n0
: ¬Qn0(ΘJδn(x, s))))

⇔ 〈 Distributivity of ∧ over ∃ & J not free in δn(x, s)! 〉

(∃s | s ∈ (Σn
u)∗ : (∃J | J ∈ J n

n0
: δn(x, s)! ∧ ¬Qn0(ΘJδn(x, s))))

⇔ 〈 Lemma 4.18 & Interchange of dummies 〉

(∃J | J ∈ J n
n0

: (∃s | s ∈ (Σn
u)∗ : δn(x, s)! ∧ ¬Qn0(δn0(ΘJx, ΘJs))))

⇔ 〈 (∃t | t ∈ (Σn0
u )∗ : t = ΘJs) is true 〉

(∃J | J ∈ J n
n0

: (∃s | s ∈ (Σn
u)∗ : (∃t | t ∈ (Σn0

u )∗ : t = ΘJs) ∧

δn(x, s)! ∧ ¬Qn0(δn0(ΘJx, ΘJs))))

⇔ 〈 Distributivity of ∧ over ∃ &

t not free in δn(x, s)! ∧ ¬Qn0(δn0(ΘJx, ΘJs)) 〉

(∃J | J ∈ J n
n0

: (∃s | s ∈ (Σn
u)∗ : (∃t | t ∈ (Σn0

u )∗ :

t = ΘJs ∧ δn(x, s)! ∧ ¬Qn0(δn0(ΘJx, ΘJs)))))

⇔ 〈 Interchange of dummies & Using t = ΘJs 〉

(∃J | J ∈ J n
n0

: (∃t | t ∈ (Σn0
u )∗ : (∃s | s ∈ (Σn

u)∗ :

t = ΘJs ∧ δn(x, s)! ∧ ¬Qn0(δn0(ΘJx, t)))))

⇔ 〈 Distributivity of ∧ over ∃ & s not free in ¬Qn0(δn0(ΘJx, t)) 〉

(∃J | J ∈ J n
n0

: (∃t | t ∈ (Σn0
u )∗ : (∃s | s ∈ (Σn

u)∗ : t = ΘJs ∧ δn(x, s)!) ∧

¬Qn0(δn0(ΘJx, t))))

⇔ 〈 For ⇐, choose s := ↑Js &

For ⇒, use s ∈ (Σn
u)∗ ⇒ ↑Js ∈ (Σn

u)∗, ΘJs = ΘJ↑Js and

δn(x, s)! ⇒ δn(x, ↑Js)! (by Remark 4.14) 〉

(∃J | J ∈ J n
n0

: (∃t | t ∈ (Σn0
u )∗ : (∃s | ↑Js ∈ (Σn

u)∗ : t = ΘJ↑Js ∧

δn(x, ↑Js)!) ∧

¬Qn0(δn0(ΘJx, t))))

⇔ 〈 ΘJ↑Js = θJ↑J↑Js = θJ↑Js &

t = θJ↑Js ⇔ θ−1
J t = ↑Js (by Remark 4.12) 〉
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(∃J | J ∈ J n
n0

: (∃t | t ∈ (Σn0
u )∗ : (∃s | ↑Js ∈ (Σn

u)∗ : θ−1
J t = ↑Js ∧

δn(x, θ−1
J t)!) ∧

¬Qn0(δn0(ΘJx, t))))

⇔ 〈 Distributivity of ∧ over ∃ & s not free in δn(x, θ−1
J t)! 〉

(∃J | J ∈ J n
n0

: (∃t | t ∈ (Σn0
u )∗ : (∃s | ↑Js ∈ (Σn

u)∗ : θ−1
J t = ↑Js) ∧

δn(x, θ−1
J t)! ∧ ¬Qn0(δn0(ΘJx, t))))

⇔ 〈 Since t ∈ (Σn0
u )∗, there exists a string of events s such that

↑Js ∈ (Σn
u)∗ and θ−1

J t = ↑Js, namely, s := θ−1
J t 〉

(∃J | J ∈ J n
n0

: (∃t | t ∈ (Σn0
u )∗ : δn(x, θ−1

J t)! ∧ ¬Qn0(δn0(ΘJx, t))))

⇔ 〈 Lemma 4.18(2) & Remark 4.12 〉

(∃J | J ∈ J n
n0

: (∃t | t ∈ (Σn0
u )∗ : δn0(ΘJx, t)! ∧ ¬Qn0(δn0(ΘJx, t))))

⇔ 〈 Definition of 〈·〉 (Page 22) 〉

(∃J | J ∈ J n
n0

: ¬〈Qn0〉(ΘJx)) �

Example 5.8 This example shows that Proposition 5.7 would not stand in the presence

of uncontrollable events in Σs. Consider the replicated structure in Figure 4.1b, in which

event r is uncontrollable, and the predicate QN
1 in Example 5.1. It is easy to observe

that 〈Q2
1〉(〈R1, R2〉) does not hold (with the string s = r), but 〈Q3

1〉(〈R1, R2, U3〉) holds,

since event r cannot occur for user 3.

Therefore, wlpα1
(〈Q3

1〉)(〈I1, R2, U3〉) 6⇒ wlpα1
(〈Q2

1〉)(〈I1, R2〉), which means that dis-

abling an event σ 6∈ Σs, such as α1, in the lower dimension may be too restrictive in

the higher dimension. This is not the case for an event σ ∈ Σs, because disabling such

an event has no impact if the users cannot synchronize in the higher dimension. �

SSA relates Qn and Qn0 . In order to provide broader results, the restriction of Qn

with respect to a subset of J n
n0

is introduced.

Definition 5.9 Let QN be a parameterized predicate that satisfies SSA for a given n0

and let I ⊆ J n
n0

. The restriction of Qn with respect to I, denoted ⌊Qn⌋I , is defined

as: ⌊Qn⌋I(x) :⇔ (∀J | J ∈ I : Qn0(ΘJx)), where it is implicitly assumed that if J ∈ I,

J = {j1, . . . , jn0} and 1 ≤ j1 < · · · < jn0 ≤ n.

The definition of ⌊Qn⌋I is consistent with SSA, because having ⌊Qn⌋J n
n0

= Qn for

all n ≥ n0 is equivalent to QN satisfying SSA (with n0). Generally, ⌊QN⌋I does not
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satisfy SSA even if QN does (see Example 7.1). In Chapter 7, a set of subsets of indices

I represents an interconnection relation between processes.

The following two propositions reveal the preservation, under the similarity assump-

tions, of Σu-invariance and normality properties when the state space is expanded from

dimension n0 to dimension n.

Proposition 5.10 Let QN be a parameterized predicate that satisfies SSA for a given

n0. For all n ≥ n0, predicate ⌊Qn⌋I is Σn
u-invariant if Qn0 is Σn0

u -invariant.

Proof. By definition of the Σn
u-invariance property, the goal is to show that

(∀σ | σ ∈ Σn
u : ⌊Qn⌋I ≤ wlpσ(⌊Qn⌋I)),

which is equivalent to

(∀σ | σ ∈ Σn
u : (∀x | x ∈ Xn : ⌊Qn⌋I(x) ∧ δn(x, σ)! ⇒ ⌊Qn⌋I(δ

n(x, σ)))).

Suppose that σ ∈ Σn
u and δn(x, σ)!. Let us show that

⌊Qn⌋I(x) ⇒ ⌊Qn⌋I(δ
n(x, σ)).

⌊Qn⌋I(x)

⇔ 〈 Definition 5.9 & δn(x, σ)! & Lemma 4.19 〉

(∀J | J ∈ I : Qn0(ΘJx)) ∧ (∀J | J ∈ J n
n0

: δn0(ΘJx, ΘJσ)!)

⇒ 〈 J ∈ I ⇒ J ∈ J n
n0

& Range strengthening 〉

(∀J | J ∈ I : Qn0(ΘJx)) ∧ (∀J | J ∈ I : δn0(ΘJx, ΘJσ)!)

⇔ 〈 Distributivity 〉

(∀J | J ∈ I : Qn0(ΘJx) ∧ δn0(ΘJx, ΘJσ)!)

⇔ 〈 ΘJσ = ǫ ∨ ΘJσ 6= ǫ & Distributivity 〉

(∀J | J ∈ I : (ΘJσ = ǫ ∧ Qn0(ΘJx) ∧ δn0(ΘJx, ΘJσ)!) ∨

(ΘJσ 6= ǫ ∧ Qn0(ΘJx) ∧ δn0(ΘJx, ΘJσ)!))

⇒ 〈 δ(x, ǫ)! & δ(x, ǫ) = x &

σ ∈ Σn
u ∧ ΘJσ 6= ǫ ⇒ ΘJσ ∈ Σn0

u & Qn0 is Σn0
u -invariant 〉

(∀J | J ∈ I : (ΘJσ = ǫ ∧ Qn0(δn0(ΘJx, ΘJσ))) ∨
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(ΘJσ 6= ǫ ∧ Qn0(δn0(ΘJx, ΘJσ))))

⇔ 〈 Distributivity & ΘJσ = ǫ ∨ ΘJσ 6= ǫ 〉

(∀J | J ∈ I : Qn0(δn0(ΘJx, ΘJσ)))

⇔ 〈 Assumption δn(x, σ)! & Lemma 4.17 〉

(∀J | J ∈ I : Qn0(ΘJ(δn(x, σ))))

⇔ 〈 Definition 5.9 〉

⌊Qn⌋I(δn(x, σ)) �

Example 5.11 The following counterexample shows that, in Proposition 5.10, the

reverse implication does not hold, in particular when I = J n
n0

(hence ⌊Qn⌋I = Qn, see

Definition 5.9).

Consider a replicated structure close to the one in Figure 4.1a, but with events αi

and γi as controllable events and without event r. The parameterized predicate1

QN (x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i 6= j : ¬(Ii ∧ Ij) ∧ ¬(Ri ∧ Rj) ∧ ¬(Ui ∧ Uj))

is such that, for n ≥ 4, Qn = false. Thus Qn ≤ 〈Qn〉 for n ≥ 4 (see Remark 3.6).

In this example, n0 = 2. The states 〈I1, R2〉, 〈I1, U2〉, 〈R1, I2〉, 〈R1, U2〉, 〈U1, I2〉 and

〈U1, R2〉 satisfy Q2, but only the states 〈I1, R2〉, 〈I1, U2〉, 〈R1, I2〉 and 〈U1, I2〉 satisfy

〈Q2〉. Therefore, Q2 6≤ 〈Q2〉. �

Proposition 5.12 Let QN be a parameterized predicate that satisfies SSA for a given

n0. For all n ≥ n0, predicate ⌊Qn⌋I is normal if Qn0 is normal.

Proof. By definition of the normality property, the goal is to show that

(Mn)−1(Mn(⌊Qn⌋I)) ≤ ⌊Qn⌋I

when assuming (Mn0)−1(Mn0(Qn0)) ≤ Qn0. This is equivalent to showing

(∀x | x ∈ Xn : (Mn)−1(Mn(⌊Qn⌋I))(x) ⇒ ⌊Qn⌋I(x)).

(Mn)−1(Mn(⌊Qn⌋I))(x)

1In several examples, the abbreviation Ai is used for x[i] = Ai, where Ai ∈ Xi.
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⇔ 〈 See the definition of M−1M in Section 3.1 〉

(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ ⌊Qn⌋I(x′))

⇔ 〈 Definition 4.3 & Definition 5.9 〉

(∃x′ | x′ ∈ Xn : (∀J | J ∈ J n
n0

: ΘJMn(x) = ΘJMn(x′)) ∧

(∀J | J ∈ I : Qn0(ΘJx′)))

⇒ 〈 J ∈ I ⇒ J ∈ J n
n0

& Range strengthening & Lemma 4.16 〉

(∃x′ | x′ ∈ Xn : (∀J | J ∈ I : Mn0(ΘJx) = Mn0(ΘJx′)) ∧

(∀J | J ∈ I : Qn0(ΘJx′)))

⇔ 〈 Distributivity 〉

(∃x′ | x′ ∈ Xn : (∀J | J ∈ I : Mn0(ΘJx) = Mn0(ΘJx′) ∧ Qn0(ΘJx′)))

⇒ 〈 Interchange of dummies 〉

(∀J | J ∈ I : (∃x′ | x′ ∈ Xn : Mn0(ΘJx) = Mn0(ΘJx′) ∧ Qn0(ΘJx′)))

⇒ 〈 Taking x′′ = ΘJx′ 〉

(∀J | J ∈ I : (∃x′′ | x′′ ∈ Xn0 : Mn0(ΘJx) = Mn0(x′′) ∧ Qn0(x′′)))

⇔ 〈 See the definition of M−1M in Section 3.1 〉

(∀J | J ∈ I : (Mn0)−1(Mn0(Qn0))(ΘJx))

⇒ 〈 Qn0 is normal 〉

(∀J | J ∈ I : Qn0(ΘJx))

⇔ 〈 Definition 5.9 〉

⌊Qn⌋I(x) �

Example 5.13 The following counterexample shows that, in Proposition 5.12, the

reverse implication does not hold, in particular when I = J n
n0

.

Consider the replicated structure in Figure 4.1a, the parameterized predicate in

Example 5.11 and the mask M defined as: Mi(Ii) = Mi(Ri) = Si and Mi(Ui) = Ti. For

n ≥ 4, Qn = false and thus (Mn)−1(Mn(Qn)) = false. Therefore, (Mn)−1(Mn(Qn)) ≤

Qn.

As in Example 5.11, n0 = 2 and the states 〈I1, R2〉, 〈I1, U2〉, 〈R1, I2〉, 〈R1, U2〉,

〈U1, I2〉 and 〈U1, R2〉 satisfy Q2. Since the observable states 〈S1, S2〉, 〈S1, T2〉 and

〈T1, S2〉 satisfy M2(Q2), (M2)−1(M2(Q2))(x) holds for any state x that belongs to

X2 − {〈U1, U2〉}. In particular, 〈I1, I2〉 satisfies (M2)−1(M2(Q2)), but not Q2. �
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Figure 5.1: Replicated structure for Example 5.14

Controllability, M-controllability and strong M-controllability cannot generally be

preserved, since they all contain a reachability condition in their definition. Let a state

x ∈ Xn be such that Qn(x) holds. Even if all the projections of x are reachable in the

state space of dimension n0, x may not be reachable. Generally, Qn0 ≤ R(Gn0, Qn0) 6⇒

Qn ≤ R(Gn, Qn). The next example illustrates this fact.

Example 5.14 Consider the replicated structure in Figure 5.1 and the following pa-

rameterized predicate:

QN(x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i 6= j :

¬(1i ∧ 3j) ∧ ¬(1i ∧ 4j) ∧ ¬(2i ∧ 2j) ∧ ¬(2i ∧ 4j) ∧

¬(3i ∧ 3j) ∧ ¬(3i ∧ 4j) ∧ ¬(3i ∧ 5j) ∧ ¬(4i ∧ 4j)).

The predicate QN satisfies SSA with n0 = 2. If the initial state of each instance of the

PDES is derived from the parameterized state xN
0 = 〈11, . . . , 1N〉, which is automorphic,

it is a simple matter to verify that Q2 ≤ R(G2, Q2) and Q3(〈11, 12, 53〉) holds, but that

R(G3, Q3)(〈11, 12, 53〉) does not hold. Hence, the specification similarity assumption

does not preserve the reachability property when the state space is expanded from

dimension n0 to dimension n, even in the absence of synchronization. �

Similar to PDES, specifications must exhibit symmetries. Even if SSA narrows the

form of those predicates representing constraints to be satisfied, it is necessary in order

to ensure consistency between different corresponding objects from higher and lower

dimensions. The possibility to restrict Qn with respect to a subset of J n
n0

permits

the modeling of interconnection relations between processes and hence contributes to

broader results. These interconnection relations are taken into account in Chapter 7.



Chapter 6

Control of Parameterized DES

Under Total Observation

Since the state space grows exponentially with respect to n, it is unrealistic to compute

an SFBC function for an arbitrarily large value of n. Therefore, the synthesis method

proposed in this thesis includes two phases: an off-line synthesis and an on-line synthesis

in which n0 and n are involved, respectively. As mentioned in [Prosser et al. 1998], the

only assumption needed is that the elapsed time period between event occurrences be

longer than the on-line computation time. These limitations are reasonable in systems

whose events do not occur very frequently or when computational resources are plentiful.

In this chapter, the SFBC functions on state spaces of dimension n0 and n con-

tain the set of prohibited controllable events and are denoted by fn0(·) and fn(·),

respectively. The control policy can then be presented in a more concise form. This

modification with respect to the definitions given in Chapter 3 is taken into consid-

eration in the proof of Theorem 6.6. Furthermore, the software environment used to

compute fn0 identifies the states that are unreachable under supervision by fn0 . They

are indicated by empty entries (which are different from the empty set). Moreover, only

the case where I = J n
n0

(no restriction on interconnections) is considered. The more

general case where I ⊆ J n
n0

is developed in the next chapter, where partial observation

is considered and where total observation is shown to be a special case.
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Figure 6.1: Replicated structures for the users

6.1 The Synthesis Method

An SFBC function is synthesized from a particular instance of GN , say Gn, and a

control specification. The latter can be given in two ways: i) by a parameterized

predicate QN ∈ Pred(XN) or ii) by a predicate Qn0 ∈ Pred(Xn0) with n0 ≤ n. In the

first case, Qn0 and Qn are instances of QN . In the second case Qn is deduced from Qn0

by similarity. In both cases, Qn0 and Qn must satisfy SSA.

To illustrate the definitions and synthesis procedure, let us again consider the run-

ning example of N independent users sharing a single resource (a simplified version of

Example 4.2).

Example 6.1 Figure 6.1, which shows a transition structure that represents the be-

havior of user number i (1 ≤ i ≤ N), includes three states: Ii (Idle), Ri (Requesting),

and Ui (Using). For instance, the user can move from state Ii to state Ri on event αi

(request the resource), then from state Ri to state Ui on event βi (allocate the resource),

and finally, from state Ui to state Ii on event γi (release the resource). There are two

additional controllable transitions labeled r to reset all users in the initial configuration,

one from state Ri to state Ii and a self-loop on state Ii. Event βi is controllable. An

SFBC function must be derived in order to satisfy the following constraint: only one

user can own the resource at one time. This mutual exclusion property is specified by

the following parameterized predicate:

QN(x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i 6= j : ¬(x[i] = Ui ∧ x[j] = Uj)).

The predicate QN satisfies SSA with n0 = 2. �

The off-line synthesis consists in calculating an SFBC function on Xn0 with respect

to (Gn0 , xn0
0 ), Qn0 , such that Re(G|fn0) = sup CP(Qn0), where n0 usually denotes a
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small value. This problem is, in general, undecidable (see Page 200 of [Wonham 2008]),

but since Xi is finite, a correct solution can be mechanically constructed by using a

suitable synthesis algorithm for total observation.

Example 6.2 The following SFBC function f 2 has been synthesized using our software

environment.

〈I1, I2〉 : { } 〈R1, I2〉 : { } 〈U1, I2〉 : { }

〈I1, R2〉 : { } 〈R1, R2〉 : { } 〈U1, R2〉 : {β2}

〈I1, U2〉 : { } 〈R1, U2〉 : {β1} 〈U1, U2〉 : �

Finally, the on-line synthesis computes fn from fn0 , where n0 ≤ n, in the following

way:

fn(x) :=
⋃

J∈J n
n0

θ−1
J fn0(ΘJx), (6.1)

where the term θ−1
J fn0(ΘJx) yields events that are prohibited because their projection,

with respect to a given J , may lead from ΘJx to a state in which the corresponding n0

processes violate Qn0 , either directly or after transitions with uncontrollable events.

Example 6.3 This example shows how f 3(〈U1, R2, R3〉) is calculated.

f 3(〈U1, R2, R3〉) = θ−1
{1,2}f

2(Θ{1,2}〈U1, R2, R3〉) ∪ θ−1
{1,3}f

2(Θ{1,3}〈U1, R2, R3〉)

∪ θ−1
{2,3}f

2(Θ{2,3}〈U1, R2, R3〉)

= θ−1
{1,2}f

2(〈U1, R2〉) ∪ θ−1
{1,3}f

2(〈U1, R2〉) ∪ θ−1
{2,3}f

2(〈R1, R2〉)

= θ−1
{1,2}{β2} ∪ θ−1

{1,3}{β2} ∪ θ−1
{2,3}{ }

= {β2} ∪ {β3}.

Hence, at state 〈U1, R2, R3〉 (user 1 is using the resource), the events β2 and β3 are

disabled because they would lead to states that violate Q3(x) like 〈U1, U2, R3〉 (users 1

and 2 are using the resource) for example. �

The worst-case computational complexity for fn0 is still exponential with respect to

n0, but as n0 is usually small, this step becomes tractable. The computation of fn(·)

relies on the number of elements in J n
n0

, which is
(

n

n0

)

, with n0 now being a constant.
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Therefore, the worst-case computational complexity is in O(nn0), which is the same

complexity class as O((n − n0 + 1)n0), where the latter form better highlights the fact

that when n = n0, the computation of fn(·) is done in constant time. Of course, in this

last scenario, the method presents no gain in computational complexity.

Example 6.4 The trains problem —Let N trains run on a unidirectional circular rail-

way. The track is divided into ten different sections. The train i in section k, 0 ≤ k ≤ 9,

is represented by the state xk,i and the passage of train i from section k to the adjacent

section k ⊕ 1 by the event xkTOxk⊕1 ti, where k ⊕ 1 = (k + 1) mod 10. Formally,

δi(xk,i, xkTOxk⊕1 ti) = xk⊕1,i. The events xkTOxk⊕1 ti, with k odd, are controllable.

The behavior of the trains must be restrained to prevent the trains from colliding.

Therefore, any two trains must be separated by at least one section to ensure that an

incoming train can stop at a proper distance. This constraint is formally defined by the

following parameterized predicate:

QN (x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i 6= j : ¬((x[i] = xk,i ∧ x[j] = xk,j) ∨

(x[i] = xk,i ∧ x[j] = xk⊕1,j))).

The predicate QN satisfies SSA with n0 = 2. The SFBC function for n0 = 2 and the

initial state 〈x1,1, x3,2〉, calculated by a synthesis algorithm, is given in Fig. 6.2. Only

the significant entries are listed. In a system with three trains, for which trains 1, 2,

and 3 are in sections 5, 7 and 3, respectively, that is, x = 〈x5,1, x7,2, x3,3〉, f3(x) is equal

to:

f 3(x) = θ−1
{1,2}f

2(Θ{1,2}x) ∪ θ−1
{1,3}f

2(Θ{1,3}x) ∪ θ−1
{2,3}f

2(Θ{2,3}x)

= θ−1
{1,2}f

2(〈x5,1, x7,2〉) ∪ θ−1
{1,3}f

2(〈x5,1x3,2〉) ∪ θ−1
{2,3}f

2(〈x7,1, x3,2〉)

= θ−1
{1,2}{x5TOx6 t1} ∪ θ−1

{1,3}{x3TOx4 t2} ∪ θ−1
{2,3}{ }

= {x5TOx6 t1} ∪ {x3TOx4 t3}.

Hence, at state 〈x5,1, x7,2, x3,3〉 events x5TOx6 t1 and x3TOx4 t3 must be disabled

since they could lead to states, like 〈x5,1, x7,2, x4,3〉, where two trains (trains 1 and 3)

would not be separated by at least one section. In a system with five trains and for

which x0 = 〈x1,1, x3,2, x5,3, x7,4, x9,5〉,

f5(x0) = {x1TOx2 t1, x3TOx4 t2, x5TOx6 t3, x7TOx8 t4, x9TOx0 t5}.

In this case, it can be verified that the system is blocking. Finally, in a system with six

trains, f 6(〈x1,1, x3,2, x5,3, x7,4, s9,5, x4,6〉) is considered undefined, which means that Q6

is false, because f 2(〈x3,1, x4,2〉) and f 2(〈x5,1, x4,2〉) are considered undefined, since the

states 〈x3,1, x4,2〉 and 〈x5,1, x4,2〉 are unreachable in the system with two trains. �
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〈x0,1, x7,2〉 : {x7TOx8 t2} 〈x3,1, x6,2〉 : {x3TOx4 t1} 〈x7,1, x5,2〉 : {x5TOx6 t2}

〈x1,1, x3,2〉 : {x1TOx2 t1} 〈x4,1, x1,2〉 : {x1TOx2 t2} 〈x7,1, x9,2〉 : {x7TOx8 t1}

〈x1,1, x4,2〉 : {x1TOx2 t1} 〈x5,1, x3,2〉 : {x3TOx4 t2} 〈x8,1, x5,2〉 : {x5TOx6 t2}

〈x1,1, x9,2〉 : {x9TOx0 t2} 〈x5,1, x7,2〉 : {x5TOx6 t1} 〈x9,1, x1,2〉 : {x9TOx0 t1}

〈x2,1, x9,2〉 : {x9TOx0 t2} 〈x5,1, x8,2〉 : {x5TOx6 t1} 〈x9,1, x2,2〉 : {x9TOx0 t1}

〈x3,1, x1,2〉 : {x1TOx2 t2} 〈x6,1, x3,2〉 : {x3TOx4 t2} 〈x9,1, x7,2〉 : {x7TOx8 t2}

〈x3,1, x5,2〉 : {x3TOx4 t1} 〈x7,1, x0,2〉 : {x7TOx8 t1}

Figure 6.2: The SFBC function for the trains problem (n0 = 2)

6.2 Soundness

The following proposition is of great importance to prove the soundness of the synthe-

sis method in the case of total observation. It states that an SFBC function achieving

sup CP(Qn) enables an event σ at a state x if and only if, for every defined transforma-

tion ΘJ on σ and x, the SFBC function achieving sup CP(Qn0) permits the event ΘJσ

at the state ΘJx. As a transformation of an event could return ǫ, the convention that

fǫ(x) holds is used.

Proposition 6.5 Let x ∈ Xn and σ ∈ Σn
c . Then

fn∗

σ (x) ⇔ (∀J | J ∈ J n
n0

: fn0
∗

ΘJσ(ΘJx)).

Proof.

fn∗

σ (x)

⇔ 〈 Definition of fn∗

σ (Equation 3.2) 〉

δn(x, σ)! ∧ 〈Qn〉(δn(x, σ))

⇔ 〈 Lemma 4.20 〉

(∀J | J ∈ J n
n0

: δn0(ΘJx, ΘJσ)!) ∧ 〈Qn〉(δn(x, σ))

⇔ 〈 Proposition 5.7 〉

(∀J | J ∈ J n
n0

: δn0(ΘJx, ΘJσ)!) ∧ (∀J | J ∈ J n
n0

: 〈Qn0〉(ΘJδn(x, σ)))

⇔ 〈 Lemmas 4.17 and 4.19 〉

(∀J | J ∈ J n
n0

: δn0(ΘJx, ΘJσ)!) ∧ (∀J | J ∈ J n
n0

: 〈Qn0〉(δn0(ΘJx, ΘJσ)))
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⇔ 〈 Distributivity 〉

(∀J | J ∈ J n
n0

: δn0(ΘJx, ΘJσ)! ∧ 〈Qn0〉(δn0(ΘJx, ΘJσ)))

⇔ 〈 Definition of fn0
∗

σ (Equation 3.2) 〉

(∀J | J ∈ J n
n0

: fn0
∗

ΘJσ(ΘJx)) �

The following theorem constitutes the main result of this chapter. It establishes

the soundness of the synthesis method in the following sense. The SFBC function

fn calculated from fn0 by the on-line synthesis procedure (6.1) is correct if fn0 is

correct, whenever n ≥ n0, where an SFBC function is said to be correct if it allows

one to achieve sup CP(Q). Intuitively, Theorem 6.6 says that if the SFBC function

in the lower space allows one to achieve sup CP(Qn0) (the antecedent of Theorem 6.6)

then the SFBC function calculated from Equation 6.1 (Page 51) is exactly the SFBC

function that would have been synthesized from the concrete model (system with n

processes) as defined by Equation 3.2 (Page 25) that allows one to achieve sup CP(Qn)

(the consequent of Theorem 6.6).

Theorem 6.6 Let x ∈ Xn,

(∀J | J ∈ J n
n0

: fn0(ΘJx) = {σ′ | σ′ ∈ Σn0
c ∧ ¬fn0

∗

σ′ (ΘJx)}) ⇒

fn(x) = {σ | σ ∈ Σn
c ∧ ¬fn∗

σ (x)}.

Proof.

fn(x)

= 〈 Definition of fn (Equation 6.1) 〉
⋃

J∈J n
n0

θ−1
J fn0(ΘJx)

= 〈 Hypothesis 〉
⋃

J∈J n
n0

θ−1
J {σ′ | σ′ ∈ Σn0

c ∧ ¬fn0
∗

σ′ (ΘJx)}

= 〈 Definition 4.9 〉
⋃

J∈J n
n0
{θ−1

J σ′ | σ′ ∈ Σn0
c ∧ ¬fn0

∗

σ′ (ΘJx)}

= 〈 Changing dummy & Remark 4.12 & σ = θ−1
J σ′ ⇔ σ′ = ΘJσ) 〉

⋃

J∈J n
n0
{σ | θJσ ∈ Σn0

c ∧ ¬fn0
∗

θJσ (ΘJx)}

= {σ | σ ∈ Σn
c ∧ (∃J | J ∈ J n

n0
: ¬fn0

∗

ΘJσ(ΘJx))}

= 〈 Proposition 6.5 〉
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{σ | σ ∈ Σn
c ∧ ¬fn∗

σ (x)} �

Theorem 6.6 establishes a soundness that is stronger than strong soundness. The

former soundness can be seen as a kind of syntactic soundness between fn and fn∗

where the latter, as in Theorem 7.18, can be seen as a kind of behavioural soundness

between Re(Gn|fn) and Re(Gn|fn∗). This stronger version of soundness is particular

to the case of total observation with the restriction that I = J n
n0

.



Chapter 7

Control of Parameterized DES

Under Partial Observation

In some real applications, states of a PDES are not completely observed. Those situa-

tions can be modeled by introducing a mask which is a mapping from the state space to

the observation space. The case of partial observation raises some difficulties in term of

controllability. The study of PDES in the context of partial observation requires new

properties such as normality [Lin and Wonham 1988, Li 1991], strong M–controllability

[Takai and Kodama 1997] and M–controllability [Takai et al. 1995]. Depending on the

underlying controllability definition, different results in terms of supremal sublanguages

are obtained and all those properties hide some pitfalls that significantly impact the

goal of achieving strong soundness.

The synthesis method proposed in this chapter also includes two phases: an off-line

synthesis and an on-line synthesis in which n0 and n are involved, respectively. The off-

line synthesis consists in calculating an SFBC function on Xn0 as permissive as possible,

with respect to (Gn0 , xn0
0 ), Qn0 and Mn0 , where n0 usually denotes a small value. This

problem is, in general, undecidable (see Page 200 of [Wonham 2008]), but since Xi is

finite, a correct solution can be mechanically constructed by using a suitable synthesis

algorithm where f̆n0 and f̂n0 can be computed from fn0∗ by using Equations 3.5 and 3.6,

respectively.

The on-line synthesis includes the use of a symmetric interconnection relation I ⊆

N
n0, which is part of the specification process. An n0-ary relation is symmetric in the

sense that if (k1, . . . , kn0) ∈ I, then so is any permutation of (k1, . . . , kn0). Without

loss of generality, these tuples are considered as indistinguishable and (k1, . . . , kn0) and

{k1, . . . , kn0} are used interchangeably. When using the latter form, I is handled as
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a subset of J n
n0

. The goal of an interconnection relation is to indicate the processes

subjected to the specification. While a parameterized predicate captures constraints

on the states of processes, an interconnection relation imposes additional constraints

based on their identity.

Example 7.1 In addition to the predicates of Example 5.1, the following intercon-

nection relations, which define classes of users, could be part of the specification of a

control problem.1

I1 = symmetric-closure({(k1, k2) | 1 ≤ k1, k2 ≤ n ∧ k2 = k1 ⊕ 1});

I2 = symmetric-closure({(k1, 10) | k1 ∈ N ∧ k1 6= 10});

I3 = {(k1, k2) | k1, k2 ∈ N ∧ k1 6= k2 ∧ k1 ≡ k2 (mod 3)};

I4 = {(k1, k2) | k1, k2 ∈ N ∧ k1 6≡ k2 (mod 3)}.

For instance, Qn
1 used in conjunction with I1 (which represents a ring) forbids two

adjacent users from sharing the resource (like in the dining philosophers problem) and

⌊Qn
1⌋I1(x) ⇔ Q2

1(Θ{1,n}x) ∧ (∀i | 1 ≤ i ≤ n − 1 : Q2
1(Θ{i,i⊕1}x))

⇔ Q2
1(θ{1,n}〈x[1], x[n]〉) ∧

(∀i | 1 ≤ i ≤ n − 1 : Q2
1(θ{i,i⊕1}〈x[i], x[i ⊕ 1]〉))

⇔ (∀i | 1 ≤ i ≤ n : ¬(x[i] = Ui ∧ x[i ⊕ 1] = Ui⊕1)).

The predicate ⌊QN
1 ⌋I1 is an example of a parameterized predicate that does not satisfy

SSA even if QN
1 does, because changing (through ΘJ) the identity of users that satisfy

⌊Qn
1⌋I1 can lead to users that do not satisfy ⌊Qn0

1 ⌋I1 since, for example, two nonadjacent

users could become adjacent after a projection.

The relation I2 (which represents a star) focuses on a specific user. The last two

relations enable users i and j to share the resource depending on whether i ≡ j (mod 3)

or not. �

The arity of I must be equal to n0 for two reasons. On the one hand, if the arity of

I were less than n0, some limitations would appear. For instance, the irreflexive and

symmetric binary relation I1 used with Qn
3 (an instance of QN

3 defined in Example 5.1)

represents a mutual exclusion problem on pairs of adjacent users. In that particular

case, limiting the interconnection relation to a binary relation reduces expressiveness.

It prevents one from forbidding the use of the resource by a group of more than three

consecutive users. On the other hand, if the arity of I were greater than n0, some

1i ⊕ 1 equals 1 if i = n, and i + 1 otherwise.
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misinterpretations would be ineluctable. Computing an SFBC function on Xn from an

SFBC function on a state space in a lower dimension would be dealt with case by case.

For instance, what is the meaning of the following relation

I = {(i, j, k) | i, j, k ∈ N ∧ distinct(i, j, k) ∧ (i = 5 ∨ j = 5 ∨ k = 5)}

with respect to a state space of dimension two? However, based on Proposition 5.3, the

aforementioned computation could be done from an SFBC function on Xm, where m

is equal to the arity of I.

7.1 Parameterized Specifications Under Partial Ob-

servation

Despite the fact that SSA does not preserve controllability, M-controllability and strong

M-controllability (see Example 5.14), the next propositions and corollaries establish

relationships between bad event sets in the state spaces of dimension n0 and n. Knowing

that an SFBC function can be expressed in terms of a bad event set (see 3.2 to 3.4 on

page 25), these results are fundamental because they suggest a means for computing

an SFBC function on Xn from an SFBC function on Xn0 . In the case of strong M–

controllability, this association is not straightforward, because a discordant condition

appears (see Condition 7.2 of Proposition 7.2).

As usual, the occurrence of an event that belongs to a bad event set associated with

an observability class included in Xn0 leads to a state that violates Qn0 . The bad event

sets in dimension n are, however, calculated from the restriction of Qn.

Propositions 7.2 and 7.5 deserve more attention. The former relates to strong M-

controllability and the latter to M-controllability. They both establish relationships

between bad event sets in the state spaces of dimension n0 (Equations 7.1 and 7.2

in Proposition 7.2 for example) and n (Equation 7.3 in Proposition 7.2 for example).

The main question behind those results is: how can we recover the bad event set in

dimension n from projections to dimension n0? That is the idea of the whole method.

Proposition 7.2 and Proposition 7.5 bring two different answers (or characterizations).

The result of Proposition 7.2 is stronger as it establishes an equivalence, hence fully

characterizing the bad event set in dimension n from projections. Nevertheless, this

equivalence is not straightforward. The result of Proposition 7.2 is directly reflected in

Theorem 7.16 and leads to a strongly sound synthesis method (mainly because of the

equivalence in Proposition 7.2).
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Proposition 7.2 Let QN be a parameterized predicate that satisfies SSA for a given

n0, and let I ⊆ J n
n0

, x ∈ Xn and σ ∈ Σn
c . If δn(x, σ)!, then

(∃J | J ∈ I : ΘJσ ∈ Â(Qn0, ΘJMn(x))) (7.1)

∨

(∃J | J ∈ I : ΘJσ = ǫ ∧

(∃x′ | x′ ∈ Xn0 : ΘJMn(x) = Mn0(x′) ∧ ¬Qn0(x′))) (7.2)

⇔

σ ∈ Â(⌊Qn⌋I , Mn(x)). (7.3)

Proof.

(∃J | J ∈ I : ΘJσ ∈ Â(Qn0, ΘJMn(x))) ∨

(∃J | J ∈ I : ΘJσ = ǫ ∧ (∃x′ | x′ ∈ Xn0 : ΘJMn(x) = Mn0(x′) ∧ ¬Qn0(x′)))

⇔ 〈 Definition of Â (Page 21) and wlpσ (Page 21) & δ(x, ǫ)! & δ(x, ǫ) = x 〉

(∃J | J ∈ I : ΘJσ ∈ Σn0
c ∧ (∃x′ | x′ ∈ Xn0 : ΘJMn(x) = Mn0(x′) ∧

δn0(x′, ΘJσ)! ∧ ¬Qn0(δn0(x′, ΘJσ)))) ∨

(∃J | J ∈ I : ΘJσ = ǫ ∧ (∃x′ | x′ ∈ Xn0 : ΘJMn(x) = Mn0(x′) ∧

δn0(x′, ΘJσ)! ∧ ¬Qn0(δn0(x′, ΘJσ))))

⇔ 〈 σ ∈ Σn
c ⇒ (ΘJσ ∈ Σn0

c ⇔ ΘJσ 6= ǫ) & Distributivity 〉

(∃J | J ∈ I : (ΘJσ 6= ǫ ∨ ΘJσ = ǫ) ∧

(∃x′ | x′ ∈ Xn0 : ΘJMn(x) = Mn0(x′) ∧

δn0(x′, ΘJσ)! ∧ ¬Qn0(δn0(x′, ΘJσ))))

⇔ 〈 Excluded middle & Identity of ∧ 〉

(∃J | J ∈ I : (∃x′ | x′ ∈ Xn0 : ΘJMn(x) = Mn0(x′) ∧

δn0(x′, ΘJσ)! ∧ ¬Qn0(δn0(x′, ΘJσ))))

⇔ 〈 Use x′ = ΘJx′′ with x′ ∈ Xn0 and x′′ ∈ Xn 〉

(∃J | J ∈ I : (∃x′′ | x′′ ∈ Xn : ΘJMn(x) = Mn0(ΘJx′′) ∧

δn0(ΘJx′′, ΘJσ)! ∧ ¬Qn0(δn0(ΘJx′′, ΘJσ))))



Chapter 7. Control of Parameterized DES Under Partial Observation 60

⇔ 〈 J is the complement of J & There exists a state x′ ∈ Xn such that

δn(x′, σ)! ∧ ↑Jx′ = ↑Jx′′ ∧ ↑JMn(x′) = ↑JMn(x), namely the state

x′ defined by ↑Jx′ = ↑Jx′′ ∧ ↑Jx′ = ↑Jx. Indeed,

• if i ∈ J , then (δn(x′, σ))[i] = (δn(x, σ))[i], since δn(x, σ)! by

hypothesis;

• if i ∈ J and σ ∈ Σs ∪ Σi, then (δn(x′, σ))[i] = (δn(x′′, σ))[i]

by PSA and because δn0(ΘJx′′, ΘJσ)!;

• if i ∈ J and σ ∈ Σj , with i 6= j, then (δn(x′, σ))[i] = x′[i]

by definition of δn.

〉

(∃J | J ∈ I : (∃x′′ | x′′ ∈ Xn : ΘJMn(x) = Mn0(ΘJx′′) ∧

δn0(ΘJx′′, ΘJσ)! ∧ ¬Qn0(δn0(ΘJx′′, ΘJσ)) ∧

(∃x′ | x′ ∈ Xn : δn(x′, σ)! ∧ ↑Jx′ = ↑Jx′′ ∧

↑JMn(x′) = ↑JMn(x))))

⇔ 〈 Nesting & Distributivity of ∧ over ∃ & x′ not free in ΘJMn(x) =

Mn0(ΘJx′′) ∧ δn0(ΘJx′′, ΘJσ)! ∧ ¬Qn0(δn0(ΘJx′′, ΘJσ)) 〉

(∃J | J ∈ I : (∃x′, x′′ | x′, x′′ ∈ Xn : ΘJMn(x) = Mn0(ΘJx′′) ∧

δn0(ΘJx′′, ΘJσ)! ∧ ¬Qn0(δn0(ΘJx′′, ΘJσ)) ∧

δn(x′, σ)! ∧ ↑Jx′ = ↑Jx′′ ∧ ↑JMn(x′) = ↑JMn(x)))

⇔ 〈 ΘJx′ = ΘJx′′, because ↑Jx′ = ↑Jx′′ 〉

(∃J | J ∈ I : (∃x′, x′′ | x′, x′′ ∈ Xn : ΘJMn(x) = Mn0(ΘJx′) ∧

δn0(ΘJx′, ΘJσ)! ∧ ¬Qn0(δn0(ΘJx′, ΘJσ)) ∧

δn(x′, σ)! ∧ ↑Jx′ = ↑Jx′′ ∧ ↑JMn(x′) = ↑JMn(x)))

⇔ 〈 Lemma 4.16 & Nesting & Distributivity of ∧ over ∃ & x′′ not

free in ΘJMn(x) = ΘJMn(x′) ∧ δn(x′, σ)! ∧ ¬Qn0(δn0(ΘJx′, ΘJσ)) ∧

↑JMn(x) = ↑JMn(x′) & Lemma 4.19 〉

(∃J | J ∈ I : (∃x′ | x′ ∈ Xn : ΘJMn(x) = ΘJMn(x′) ∧ δn(x′, σ)! ∧

¬Qn0(δn0(ΘJx′, ΘJσ)) ∧ ↑JMn(x) = ↑JMn(x′) ∧

(∃x′′ | x′′ ∈ Xn : ↑Jx′ = ↑Jx′′)))

⇔ 〈 ΘJMn(x) = ΘJMn(x′) ⇔ ↑JMn(x) = ↑JMn(x′) (apply θ−1
J to the

left equality and θJ to the right one to get the other) &

There exists a state x′′ ∈ Xn such that ↑Jx′ = ↑Jx′′ 〉

(∃J | J ∈ I : (∃x′ | x′ ∈ Xn : ↑JMn(x) = ↑JMn(x′) ∧ δn(x′, σ)! ∧

¬Qn0(δn0(ΘJx′, ΘJσ)) ∧ ↑JMn(x) = ↑JMn(x′)))
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⇔ 〈 v = w ⇔ ↑Jv = ↑Jw ∧ ↑Jv = ↑Jw & Interchange of dummies 〉

(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : Mn(x) = Mn(x′) ∧ δn(x′, σ)! ∧

¬Qn0(δn0(ΘJx′, ΘJσ))))

⇔ 〈 Lemma 4.17 & Distributivity of ∧ over ∃ &

J not free in Mn(x) = Mn(x′) ∧ δn(x′, σ)! 〉

(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ δn(x′, σ)! ∧

(∃J | J ∈ I : ¬Qn0(ΘJδn(x′, σ))))

⇔ 〈 QN satisfies SSA (Assumption 5.2) & Definition 5.9 〉

(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ δn(x′, σ)! ∧ ¬⌊Qn⌋I(δn(x′, σ)))

⇔ 〈 Definition of Â (Page 21) and wlpσ (Page 21) & Hypothesis σ ∈ Σn
c 〉

σ ∈ Â(⌊Qn⌋I , Mn(x)) �

Since Proposition 7.2 is fundamental for understanding almost all the other results,

here are some details about the three equations that comprise it.

First, Equation 7.3 simply says that σ is prohibited in the state space of dimension

n for any state in the observability class of the state x and where the processes are

subject to the interconnection relation I.

Second, Equation 7.1 says that the projection/renaming of this σ (that is, ΘJσ) is

prohibited in the state space of dimension n0 for some projection J ∈ I. By definition

of Â, this projection/renaming (ΘJσ) cannot be ǫ. Hence, we see that Equation 7.1

considers the case where ΘJσ 6= ǫ while Equation 7.2 considers the case ΘJσ = ǫ.

Finally, Equation 7.2 considers the case ΘJσ = ǫ and is less intuitive. Let us see why

it is nevertheless needed. It is best explained through an example. Let us consider the

system of Example 4.2 (Page 29). For simplicity, assume that n = 3, I = J n
n0

, and that

the specification prohibits two users from using the resource at the same time (mutual

exclusion problem with n0 = 2). Let the mask be M(Ii) = Ii, M(Ri) = Ri, M(Ui) = Ri.

Now, consider the state x = 〈U1, U2, I3〉. Note that x does not satisfy the specification

and is observed as M3(x) which is equal to 〈R1, R2, I3〉. Now, it is easy to verify

that σ = α3 satisfies Equation 7.3 (by definition of Â (Page 21)) and hence must

be prohibited. Can this α3 be recovered from Equation 7.1? No, because it cannot be

recovered from J = {1, 3} or J = {2, 3} (the only two possibilities where ΘJα3 6= ǫ) since

both of these projections allow α2 (the renaming of α3 after the projection/renaming).

Intuitively, this situation happens because in the definition of Â, the state x needs

not satisfy the specification and when this is the case, the triggering of an event, from
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a process that was not responsible for the nonsatisfaction of the specification in the

state x (process 3 in the above example) still leads to a state that does not satisfy

the specification and hence must be prohibited. In our example, for α3 to be erased

(ΘJα3 = ǫ), we must take J = {1, 2}, and obtain the projected state 〈U1, U2〉 which is

seen as 〈R1, R2〉 which is equal to M2(x′) with x′ = 〈U1, U2〉 and where this state x′

does not satisfy the specification. This is exactly the kind of event that Equation 7.2

recuperates.

Corollary 7.3 Let QN be a parameterized predicate that satisfies SSA for a given n0,

and let I ⊆ J n
n0

, x ∈ Xn and σ ∈ Σn
c . If δn(x, σ)!, ⌊〈Qn〉⌋I(x) holds and the mask is

the identity function, then

(∀J | J ∈ I ∧ ΘJσ 6= ǫ : ΘJσ 6∈ A(〈Qn0〉, ΘJx)) ⇔ σ 6∈ A(⌊〈Qn〉⌋I , x).

Proof. M(x) = x and Â(Q, M(x)) = A(Q, x) when the mask is the identity function.

Since 〈QN 〉 satisfies SSA with n0 by Proposition 5.7, Qn0 and Qn can be replaced in

Proposition 7.2 by 〈Qn0〉 and 〈Qn〉, respectively, and Condition 7.2 is false because

⌊〈Qn〉⌋I(x) ⇒ 〈Qn0〉(ΘJx) for any J ∈ I. Conclusively, ΘJσ ∈ A(〈Qn0〉, ΘJx) ⇒

ΘJσ 6= ǫ. �

Corollary 7.3 shows that, under total observation, σ is not a bad event for the system

with n processes if and only if ΘJσ is not a bad event for the system with n0 processes

for any projection J ∈ I such that ΘJσ 6= ǫ. This result makes it possible to conceive

a strongly sound synthesis method (see Theorem 7.16).

The next corollary is the contrapositive of Proposition 7.2 and considers 〈Qn〉 instead

of Qn.

Corollary 7.4 Let QN be a parameterized predicate that satisfies SSA for a given n0,

and let I ⊆ J n
n0

, x ∈ Xn and σ ∈ Σn
c . If δn(x, σ)!, then

(∀J | J ∈ I ∧ ΘJσ 6= ǫ : ΘJσ 6∈ Â(〈Qn0〉, ΘJMn(x))) ∧

(∀J | J ∈ I ∧ ΘJσ = ǫ : (∀x′ | x′ ∈ Xn0 ∧ ΘJMn(x) = Mn0(x′) : 〈Qn0〉(x′)))

⇔

σ 6∈ Â(⌊〈Qn〉⌋I , Mn(x)).

The next proposition shows that, compared with Proposition 7.2, only a weaker

result can be established for Ă because of a further condition in its definition with
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respect to that of Â. Unfortunately, this leads to a weakly sound synthesis method (see

Theorem 7.17).

Proposition 7.5 Let QN be a parameterized predicate that satisfies SSA for a given

n0, and let I ⊆ J n
n0

, x ∈ Xn and σ ∈ Σn
c . Then

σ ∈ Ă(⌊Qn⌋I , M
n(x)) ⇒ (∃J | J ∈ I : ΘJσ ∈ Ă(Qn0 , ΘJMn(x))).

Proof.

σ ∈ Ă(⌊Qn⌋I , Mn(x))

⇔ 〈 Definition of Ă (Page 21) & Hypothesis σ ∈ Σn
c 〉

(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ ⌊Qn⌋I(x′) ∧ δn(x′, σ)! ∧

¬⌊Qn⌋I(δ
n(x′, σ)))

⇔ 〈 QN satisfies SSA (Assumption 5.2) & Definition 5.9 〉

(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ ⌊Qn⌋I(x′) ∧ δn(x′, σ)! ∧

¬(∀J | J ∈ I : Qn0(ΘJδn(x′, σ))))

⇔ 〈 De Morgan & Lemma 4.17 〉

(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ ⌊Qn⌋I(x
′) ∧ δn(x′, σ)! ∧

(∃J | J ∈ I : ¬Qn0(δn0(ΘJx′, ΘJσ))))

⇔ 〈 J not free in Mn(x) = Mn(x′) ∧ ⌊Qn⌋I(x
′) ∧ δn(x′, σ)! &

Distributivity of ∧ over ∃ 〉

(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : Mn(x) = Mn(x′) ∧ ⌊Qn⌋I(x
′) ∧ δn(x′, σ)! ∧

¬Qn0(δn0(ΘJx′, ΘJσ))))

⇒ 〈 QN satisfies SSA & ⌊Qn⌋I(x
′) ⇒ Qn0(ΘJx′) by Definition 5.9 &

Monotonicity of ∃ 〉

(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : Mn(x) = Mn(x′) ∧ Qn0(ΘJx′) ∧ δn(x′, σ)! ∧

¬Qn0(δn0(ΘJx′, ΘJσ))))

⇒ 〈 ΘJσ = ǫ ∧ Qn0(ΘJx′) ∧ ¬Qn0(δn0(ΘJx′, ΘJσ))

⇒ Qn0(ΘJx′) ∧ ¬Qn0(δn0(ΘJx′, ǫ)) ⇒ Qn0(ΘJx′) ∧ ¬Qn0(ΘJx′)

⇒ false & Monotonicity of ∃ 〉

(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : ΘJMn(x) = ΘJMn(x′) ∧ Qn0(ΘJx′) ∧

δn(x′, σ)! ∧ ΘJσ 6= ǫ ∧

¬Qn0(δn0(ΘJx′, ΘJσ))))
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⇔ 〈 Lemma 4.16 & σ ∈ Σn
c ⇒ (ΘJσ ∈ Σn0

c ⇔ ΘJσ 6= ǫ) 〉

(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : ΘJMn(x) = Mn0(ΘJx′) ∧ Qn0(ΘJx′) ∧

δn(x′, σ)! ∧ ΘJσ ∈ Σn0
c ∧

¬Qn0(δn0(ΘJx′, ΘJσ))))

⇒ 〈 δn(x′, σ)! ⇒ δn0(ΘJx′, ΘJσ)! by Lemma 4.19 & Monotonicity of ∃ 〉

(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : ΘJMn(x) = Mn0(ΘJx′) ∧ Qn0(ΘJx′) ∧

δn0(ΘJx′, ΘJσ)! ∧ ΘJσ ∈ Σn0
c ∧

¬Qn0(δn0(ΘJx′, ΘJσ))))

⇔ 〈 Interchange of dummies & x′ not free in ΘJσ ∈ Σn0
c &

Distributivity of ∧ over ∃ 〉

(∃J | J ∈ I : ΘJσ ∈ Σn0
c ∧

(∃x′ | x′ ∈ Xn : ΘJMn(x) = Mn0(ΘJx′) ∧ Qn0(ΘJx′) ∧

δn0(ΘJx′, ΘJσ)! ∧ ¬Qn0(δn0(ΘJx′, ΘJσ))))

⇔ 〈 Use x′′ = ΘJx′ with x′′ ∈ Xn0 and x′ ∈ Xn 〉

(∃J | J ∈ I : ΘJσ ∈ Σn0
c ∧

(∃x′′ | x′′ ∈ Xn0 : ΘJMn(x) = Mn0(x′′) ∧ Qn0(x′′) ∧

δn0(x′′, ΘJσ)! ∧ ¬Qn0(δn0(x′′, ΘJσ))))

⇔ 〈 Definition of Ă (Page 21) 〉

(∃J | J ∈ I : ΘJσ ∈ Ă(Qn0, ΘJMn(x))) �

Proposition 7.5 is understood in the same way as Proposition 7.2 but in the context

of Ă instead of Â. In the former context, there is no need for an equation like Equa-

tion 7.2 since the definition of Ă has the condition that x must satisfy the specification.

Intuitively, Proposition 7.5 shows that bad events can be recovered from projections

but that in addition events that do not belong to the bad event set in dimension n

could in fact be recovered too. So, a synthesis method based on Proposition 7.5 could

lead to a controller that is unduly restrictive. Such a method would only be weakly

sound and that is exactly what Theorem 7.17 shows.

The next corollary is the contrapositive of Proposition 7.5 and considers 〈Qn〉 instead

of Qn.

Corollary 7.6 Let QN be a parameterized predicate that satisfies SSA for a given n0,

and let I ⊆ J n
n0

, x ∈ Xn and σ ∈ Σn
c . Then
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(∀J | J ∈ I ∧ ΘJσ 6= ǫ : ΘJσ 6∈ Ă(〈Qn0〉, ΘJMn(x)))

⇒

σ 6∈ Ă(⌊〈Qn〉⌋I , M
n(x)).

Example 7.7 This example shows that the reverse implication does not hold in Propo-

sition 7.5, even if the state x is legal and δn(x, σ)! as in Proposition 7.2. Consider the

replicated structure Pi := ({Ai, Bi, Ci, Di, Ei}, {ai}, δi), where the states Ai, Ci and Di

are in the same observability class, the event ai is controllable, and δi(Ai, ai) = Bi,

δi(Bi, ai) = Ci, δi(Ci, ai) = Di and δi(Di, ai) = Ei.

Consider the case in which I = J n
n0

and the specification QN forbids any processes

i and j to be simultaneously in states Ci and Ej . Therefore, n0 = 2.

It can be seen that 〈A1, A2, E3〉 is legal and that its observability class contains the

following nine states: 〈A1, A2, E3〉, 〈C1, A2, E3〉, 〈D1, A2, E3〉, 〈A1, C2, E3〉, 〈C1, C2, E3〉,

〈D1, C2, E3〉, 〈A1, D2, E3〉, 〈C1, D2, E3〉 and 〈D1, D2, E3〉. Out of these nine states, only

the following four states satisfy the specification: 〈A1, A2, E3〉, 〈D1, A2, E3〉, 〈A1, D2, E3〉

and 〈D1, D2, E3〉. Now, a1 6∈ Ă(Q3, M3(〈A1, A2, E3〉)) because out of the latter four

states, the event a1 is only defined for 〈A1, A2, E3〉 and 〈A1, D2, E3〉 and in both

cases leads to a state that satisfies the specification. However, for J = {1, 2}, a1 ∈

Ă(Q2, M2(〈A1, A2〉)) because the legal state 〈D1, C2〉, which is in the same observabil-

ity class as the state 〈A1, A2〉, is such that δ2(〈D1, C2〉, a1) is an illegal state. �

Remark 7.8 Suppose that Qn0 is normal. Then ⌊Qn⌋I is normal by Proposition 5.12,

which means that ⌊Qn⌋I(x) ⇔ ⌊Qn⌋I(x′) for all x and x′ in the same observability class

(the evaluation of a normal predicate gives the same value for all states in the same

observability class). If ⌊Qn⌋I(x) holds, then Ă(⌊Qn⌋I , Mn(x)) = Â(⌊Qn⌋I , Mn(x));

otherwise Ă(⌊Qn⌋I , Mn(x)) = ∅. Furthermore, if ⌊Qn⌋I(x) holds, Condition 7.2 is

always false because Qn0(x′) holds for any x′ ∈ Xn0 observed as ΘJx whatever the

projection J ∈ I (Lemma 4.16, Definition 5.9 and normality of Qn0). Therefore, under

the hypothesis that δn(x, σ)! and ⌊Qn⌋I(x) holds, it can be shown that

(∀J | J ∈ I ∧ ΘJσ 6= ǫ : ΘJσ 6∈ A(Qn0, ΘJMn(x)))

⇔

σ 6∈ A(⌊Qn⌋I , Mn(x)),

where Ă or Â can substitute for A.
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Figure 7.1: A three-state DES

Unfortunately, as Example 7.9 shows, if a predicate Q is normal, but not Σu-

invariant, then 〈Q〉 is not necessarily normal and the previous result cannot be extended

to 〈Qn0〉 and ⌊〈Qn〉⌋I .

Example 7.9 Consider the DES depicted in Figure 7.1 where Σu = {γ}, Σc = {α, β}

and where the states 2 and 3 belong to the same observability class. If Q = {2, 3} then

Q is normal but not Σu-invariant since 〈Q〉 = {2}. Finally, 〈Q〉 is not normal since

there is an observability class that contains both a legal and an illegal state (state 2

satisfies 〈Q〉 but state 3 does not). �

7.2 The Synthesis Method

The on-line synthesis method consists in calculating an SFBC fn in the following way

for a given x ∈ Xn:

fn(x) := Σn −
⋃

J∈I

(

θ−1
J (Σn0 − fn0(ΘJx)) ∪ ξ

)

, (7.4)

where the term θ−1
J (Σn0 − fn0(ΘJx)) yields events that are prohibited because their

projection, with respect to a given J , may lead from ΘJx (or possibly another state ob-

served as ΘJx under the mask) to a state in which the corresponding n0 interconnected

processes violate Qn0 , either directly or after transitions with uncontrollable events.

The other term, ξ, represents the set of controllable events erased by J (ΘJσ = ǫ), but

that must nevertheless be prohibited because there are unsafe states in the observability

class of ΘJx. Recall that J ∈ I implies J = {j1, . . . , jn0} and 1 ≤ j1 < · · · < jn0 ≤ n,

for some j1, . . . , jn0 . The terms fn0 and ξ are written in bold because they are the pa-

rameters of the synthesis procedure and the substitution of specific objects for fn0 and ξ

fixes the context: total observation or partial observation founded on M-controllability

or strong M-controllability.
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7.2.1 The Case of Total Observation

In the case of total observation, the mask is the identity function and ξ is replaced by

∅ in Equation 7.4. Furthermore, it is shown in Section 7.5 that the synthesis method is

strongly sound; that is,

if Re(Gn0|fn0) = sup CP(Qn0), then Re(Gn|fn) = R(Gn, ⌊〈Qn〉⌋I).

For instance, if fn0 is replaced by fn0∗, which is defined by (3.2) on page 25, fn is

behaviorally equivalent to the SFBC function derived from the same procedure as that

used to synthesize fn0∗, but by considering the predicate ⌊Qn⌋I .

Example 7.10 For the system of Example 4.2 with QN
1 ∧QN

2 as specification (QN
1 and

QN
2 are defined in Example 5.1) and I1 as interconnection relation (I1 is defined in

Example 7.1), the optimal SFBC is expressed as follows for n0 = 2:

f 2∗(〈I1, U2〉) = {α1}, f 2∗(〈R1, R2〉) = {β2}, f 2∗(〈U1, R2〉) = {β2}

and f 2∗(〈x1, x2〉) = ∅ for all other states, where, as in Chapter 6, f 2∗(·) := Σ2 − f 2∗(·)

is the set of prohibited controllable events. By using Equation 7.4:

f4(〈R1, I2, U3, R4〉) = θ−1
{1,2}f

2∗(Θ{1,2}〈R1, I2, U3, R4〉) ∪

θ−1
{1,4}f

2∗(Θ{1,4}〈R1, I2, U3, R4〉) ∪

θ−1
{2,3}f

2∗(Θ{2,3}〈R1, I2, U3, R4〉) ∪

θ−1
{3,4}f

2∗(Θ{3,4}〈R1, I2, U3, R4〉) ∪

= θ−1
{1,2}f

2∗(〈R1, I2〉) ∪ θ−1
{1,4}f

2∗(〈R1, R2〉) ∪

θ−1
{2,3}f

2∗(〈I1, U2〉) ∪ θ−1
{3,4}f

2∗(〈U1, R2〉)

= θ−1
{1,2}{ } ∪ θ−1

{1,4}{β2} ∪ θ−1
{2,3}{α1} ∪ θ−1

{3,4}{β2}

= {β4} ∪ {α2} ∪ {β4}

= {α2, β4}.

Even if user 3 holds the resource, β1 is not forbidden because users 1 and 3 are not

connected ((1, 3) 6∈ I1). Event β4 is prohibited because it would lead to the state

〈R1, I2, U3, U4〉 which violates both Q4
1 and Q4

2 since users 1 and 4 are connected. Finally,

event α2 is prohibited because it leads to the state 〈R1, R2, U3, R4〉 which violates Q4
2

since users 2 and 3 are connected. �
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Figure 7.2: Replicated structure for the carts

7.2.2 The Case of Partial Observation

In the case of partial observation, the expression for ξ depends on the underlying

property. For strong M-controllability, the term θ−1
J (Σn0 − fn0(ΘJx)) in Equation 7.4

corresponds to Condition 7.1 in Proposition 7.2 and Condition 7.2 indicates that ξ must

be replaced by

{σ ∈ Σn
c | ΘJσ = ǫ ∧ (∃x′ | x′ ∈ Xn0 : Mn0(ΘJx) = Mn0(x′) ∧ ¬〈Qn0〉(x′))}. (7.5)

Indeed, ΘJMn(x) = Mn0(ΘJx) by Lemma 4.16 and 〈Qn0〉 is used instead of Qn0 ,

because fn0 is replaced by f̂n0, which is defined by Equation 3.4 on page 25.

In this setting, the set ξ contains events erased by the projection J that is considered,

but that must be disabled because the projection of the state x on J is in an observability

class in which there is an unsafe state (for instance, x′ does not satisfy 〈Qn0〉). If

δn(x, σ)!, this implies that σ must be forbidden by definition of Â. In fact, let x′′ ∈ Xn

be such that x′′[i] = x[i] if i 6∈ J , and x′′[jk] = {jk/k}(x′[k]) if jk ∈ J . It can be

checked that Mn(x) = Mn(x′′) and δn(x′′, σ)! (σ 6∈ Σs because ΘJσ = ǫ). Furthermore,

ΘJδn(x′′, σ) = δn0(ΘJx′′, ΘJσ) = δn0(x′, ǫ) = x′. By Proposition 5.7 and Definition 5.9,

δn(x′′, σ) cannot satisfy ⌊〈Qn〉⌋I .

When the synthesis method is founded on M-controllability, more states are reach-

able under control while maintaining a predicate invariant and ξ is replaced by ∅ as

indicated by Corollary 7.6. The following example illustrates the variation between

these two cases.

Example 7.11 Consider a cart-traffic control system over a floor-running carrier di-

vided into six sections. The replicated structure for the carts is depicted in Figure 7.2.



Chapter 7. Control of Parameterized DES Under Partial Observation 69

The fact that cart i is in section k, 0 ≤ k ≤ 5, is represented by the state Sk,i. The

unidirectional movements of cart i from a given section are indicated by the controllable

events µi and νi, and the uncontrollable event ηi. The states S3,i, S4,i and S5,i are in

the same observability class; that is, Mi(S3,i) = Mi(S4,i) = Mi(S5,i). Each section has a

capacity of one, except sections 0 and 1, which have unlimited capacity. This constraint

is formulated by the following parameterized predicate:

QN (x) ⇔ (∀i, j, k | 1 ≤ i, j ≤ N ∧ i 6= j ∧ 2 ≤ k ≤ 5 : ¬(x[i] = Sk,i ∧ x[j] = Sk,j)).

The system must be controlled in order to provide a safe automatic transportation

of materials for all carts (I = J n
n0

). By definition of Â,

Â(〈Q3〉, M3(〈S0,1, S2,2, S3,3〉)) = {µ1, µ2, ν3}.

For instance, since the states S4,i and S3,i are in the same observability class, the state

〈S0,1, S2,2, S4,3〉 is observed as the state 〈S0,1, S2,2, S3,3〉 and the transition with µ1 from

the former to 〈S1,1, S2,2, S4,3〉 is defined, but 〈Q3〉(〈S1,1, S2,2, S4,3〉) does not hold because

the uncontrollable transition with η3 from 〈S1,1, S2,2, S4,3〉 leads to 〈S1,1, S2,2, S2,3〉, which

does not satisfy Q3.

The evaluation of Â for the projections of 〈S0,1, S2,2, S3,3〉 in the state space of

dimension 2 yields:

Â(〈Q2〉, M2(〈S0,1, S2,2〉)) = Â(〈Q2〉, M2(〈S0,1, S3,2〉)) = ∅;

Â(〈Q2〉, M2(〈S2,1, S3,2〉)) = {µ1, ν2}.

From the above bad event sets, the value of Â(〈Q3〉, M3(〈S0,1, S2,2, S3,3〉)) cannot be

recovered, in particular, event µ1, since θ−1
{2,3}{µ1, ν2} = {µ2, ν3}. However, Θ{2,3}µ1 = ǫ,

M2(Θ{2,3}〈S0,1, S2,2, S3,3〉) = M2(〈S2,1, S3,2〉) = M2(〈S2,1, S4,2〉)

and 〈Q2〉(〈S2,1, S4,2〉) does not hold. Therefore, the value associated with ξ is {µ1}

according to Equation 7.5. It should be noted that the state 〈S0,1, S2,2, S4,3〉 is ignored

in the calculation of Ă(〈Q3〉, M3(〈S0,1, S2,2, S3,3〉)), which is equal to {µ2, ν3}, because

¬〈Q3〉(〈S0,1, S2,2, S4,3〉). �

It is shown in Section 7.5 that

if Re(Gn0 |fn0) = R̂(Gn0, 〈Qn0〉), then Re(Gn|fn) = R̂(Gn, ⌊〈Qn〉⌋I)

and

if Re(Gn0|fn0) = R̆(Gn0 , 〈Qn0〉), then Re(Gn|fn) ≤ R̆(Gn, ⌊〈Qn〉⌋I).
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This means that the synthesis method is strongly sound if fn0 is replaced by f̂n0 .

Once again, fn is behaviorally equivalent to the SFBC function derived from the same

procedure than the one used to synthesize f̂n0, namely the one that implements (3.4),

but by considering the predicate ⌊Qn⌋I . This is not the case if fn0 is replaced by f̆n0 ,

where f̆n0 is defined by Equation 3.3, because, in that particular case, the method is

only weakly sound.

7.3 Implementation of the On-line Synthesis

Equation 7.4 involves some calculations that are unnecessary when considering the

history of the closed-loop system behavior at run-time. On a state change following the

occurrence of an event σ ∈ Σn, it is sufficient to consider the projections that contain

the identity of at least one process among those that have progressed on σ (this set

of processes is denoted by P ). The other projections, those for which J ∩ P = ∅,

can be ignored, because ΘJδn(x, σ) = ΘJx. Indeed, the current control action can be

established by using positive counters, one per controllable event that belongs to Σn
c .

Let γσ be the counter associated with σ ∈ Σn
c . Its value gives the number of

projections that prevent the evolution of all processes on σ if σ ∈ Σs, or the evolution of

process i on σ if σ ∈ Σi. Therefore, if γσ = 0, then σ is enabled; otherwise, it is disabled.

The counters, which are a representation of a multiset of prohibited events, are updated

according to the algorithm in Figure 7.3. The initial step (lines 1 to 3) considers only the

initial state and all its projections of interconnected processes as in Equation 7.4. Line 4

calculates the set P from local state changes, where M(x′) is the current observable state

that results from an observable state change following the occurrence of an event when

the system was in the previous observable state M(x). Lines 5 to 11 increase or decrease

some counters based on the information deduced from the previous state. Consider the

subset of n0 processes associated with a given projection J ∈ I and an event σ such

that ΘJσ 6= ǫ. The evolution of these processes through a sequence of observable

states x1, . . . xl, such that ΘJσ ∈ fn0(ΘJxk) ⇔ ΘJσ ∈ fn0(ΘJxk+1) (1 ≤ k < l), never

changes the value of γσ with respect to J (see the conditions in lines 7–8 and 10–11).

If the next state xl+1 results from the progression of exactly one (on an asynchronous

event) or some (on a synchronous event) of these processes (J ∩ P 6= ∅) and ¬(ΘJσ ∈

fn0(ΘJxl) ⇔ ΘJσ ∈ fn0(ΘJxl+1)), then γσ is increased (respectively, decreased) because

this time the condition in lines 7–8 (respectively, lines 10–11) is satisfied. This indicates

that the event σ that was enabled (respectively, disabled) is now disabled (respectively,

enabled) with respect to J . In the case of partial observation, internal state changes

are equivalent to self-loops on a representative state and the algorithm is still correct
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Initial step

1. for all σ ∈ Σn
c do γσ := 0;

2. for all J ∈ I do

3. for all σ ∈ θ−1
J (Σn0 − f

n0(ΘJxn
0 )) ∪ ξ do γσ := γσ + 1.

Other steps

// x′ is the current state

// x is the previous state

4. P := {i | (Mn(x′))[i] 6= (Mn(x))[i]}

5. for all J ∈ I such that J ∩ P 6= ∅ do

6. for all σ ∈ Σn
c do

7. if σ 6∈ θ−1
J (Σn0 − f

n0(ΘJx)) ∪ ξ and

8. σ ∈ θ−1
J (Σn0 − f

n0(ΘJx′)) ∪ ξ then γσ := γσ + 1;

9. else

10. if σ ∈ θ−1
J (Σn0 − f

n0(ΘJx)) ∪ ξ and

11. σ 6∈ θ−1
J (Σn0 − f

n0(ΘJx′)) ∪ ξ then γσ := γσ − 1.

Figure 7.3: Algorithm for the on-line synthesis

because of Assumption 3.1.

Example 7.12 This example shows how the counters are updated by the algorithm in

Figure 7.3 when applied to a sequence of states from 〈I1, I2, R3, I4〉 to 〈I1, I2, I3, R4〉 on

the admissible sequence of events α4α1β3γ3β1γ1, by using the SFBC f 2∗ in Example 7.10

and the interconnection relation I1 in Example 7.1. The following trace shows the

evolution of counters:

α1 α2 α3 α4 β1 β2 β3 β4 r

I1 I2 R3 I4 0 0 0 0 0 0 0 0 0

↓ α4

I1 I2 R3 R4 0 0 0 0 0 0 0 1 {3, 4} 0

↓ α1

R1 I2 R3 R4 0 0 0 0 0 0 0 2 {1, 4} 0

↓ β3

R1 I2 U3 R4 0 1 {2, 3} 0 0 0 0 0 2 0

↓ γ3

R1 I2 I3 R4 0 0 {2, 3} 0 0 0 0 0 1 {3, 4} 0

↓ β1

U1 I2 I3 R4 0 0 0 0 0 0 0 1 0

↓ γ1

I1 I2 I3 R4 0 0 0 0 0 0 0 0 {1, 4} 0
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The projection used to update a counter appears to the right of its value in order to

emphasize a modification. It can be seen that i belongs to this projection on a local

state change of Pi. �

7.4 Computational Complexity

The worst-case computational complexity for fn0 is still exponential with respect to n0,

but, as n0 is usually small, this step becomes tractable. Additional information required

in the space of dimension n0, namely, the set of states which are in an observability class

that contains a state x such that ¬〈Qn0〉(x), can also be precomputed before system

execution. Thus, the term ξ can be calculated in constant time for a given J .

The computation of fn(·), by using Equation 7.4, relies on the number of elements

in I ⊆ J n
n0

, which is
(

n

n0

)

in the worst-case, with n0 now being a constant. Therefore,

as in the total observation case, the worst-case computational complexity is in O(nn0),

which is the same complexity class as O((n − n0 + 1)n0), where the latter form better

highlights the fact that when n = n0, the computation of fn(·) is done in constant

time. Of course, in this last scenario, the method presents no gain in computational

complexity.

However, the algorithm in Figure 7.3 considers only
(

n−1
n0−1

)

projections in the case

of the occurrence of an asynchronous event (because |P | = 1). The computational cost

is reduced by a factor n/n0. This linear gain on complexity is generally important. For

example, a quadratic algorithm (n0 = 2) becomes linear. Finally, the algorithm could

be adapted to the case where |P | is large, for which it is better to use Equation 7.4 with

a memoization technique to record the control actions for later reuse. Furthermore, if

none of these control actions disables events, only the initialization of counters to zero

is then required.

7.5 Soundness of the Synthesis Method

The proof of the soundness of the synthesis method depends on the SFBC function

used in the state space of dimension n0 and the expression used for ξ when considering

Equation 7.4 as (a specification of) the algorithm for computing enabled events.

First, links must be established between the method (Equation 7.4) and the different
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contexts (Propositions 7.2 and 7.5). This is what Lemmas 7.13 and 7.14 do. For exam-

ple, Lemma 7.13 characterizes the method in the context of strong M-controllability and

intuitively links Equation 7.4 to Corollary 7.4. It then turns out to be the main result

used in the proof of Theorem 7.16. In fact, from Lemma 7.13, we see that the inferred

SFBC function on the state space of dimension n, obtained through Equation 7.4, is

in accordance with the result of Proposition 7.2 (and hence Corollary 7.4) and paves

the way for a strongly sound synthesis method, proved by Theorem 7.16. Similar rea-

soning applies to Proposition 7.5, Corollary 7.6, Lemma 7.14 and Theorem 7.17 (for

M-controllability, and a weakly sound synthesis method this time).

The following lemmas characterize fn given by Equation 7.4 with other expressions

according to substitutions for the parameters fn0 and ξ. These preliminary results are

mainly used for proving the soundness of the synthesis method, but they also reveal

something that is not apparent in Equation 7.4. In the case of partial observation, it

seems that the supervisor, represented by Equation 7.4, handles the system state x,

which it is not supposed to observe. The next two propositions clearly show that only

Mn(x) is used.

Lemma 7.13 Let Qn0 be an instance of a parameterized predicate QN , I ⊆ J n
n0

and

x ∈ Xn. If, in Equation 7.4, f̂n0 (defined by Equation 3.4) and Equation 7.5 substitute

for fn0 and ξ, respectively, then

fn(x) = Σn
u ∪
{

σ | σ ∈ Σn
c ∧

(∀J | J ∈ I ∧ ΘJσ 6= ǫ : ΘJσ /∈ Â(〈Qn0〉, ΘJMn(x))) ∧

(∀J | J ∈ I ∧ ΘJσ = ǫ :

(∀x′ | x′ ∈ Xn0 ∧ ΘJMn(x) = Mn0(x′) : 〈Qn0〉(x′)))
}

.

Intuitively, Lemma 7.13 characterizes the events that should be enabled at state x (in

the higher dimension space) when the underlying property is strong M-controllability.

First, uncontrollable events must be enabled. Second, two conditions need to be satisfied

in order for a controllable event to be enabled. The first one is that all non-erased

projections of that event must lead to events that are themselves enabled in the lower

dimension space. The second condition relates to Equation 7.2 of Proposition 7.2 and

states that the projections that erase the controllable event must project the state x

(under the mask) to an observability class where all states satisfy 〈Qn0〉.
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Proof.

fn(x)

= 〈 Equation 7.4 and substitution of f̂n0 for fn0 〉

Σn −
⋃

J∈I

(

θ−1
J (Σn0 − f̂n0(ΘJx)) ∪ ξ

)

= 〈 Definition of fσ (Page 23) & Definition 4.9 〉

Σn −
⋃

J∈I

(

{θ−1
J σ′ | σ′ ∈ Σn0 ∧ ¬f̂n0

σ′ (ΘJx)} ∪ ξ
)

= 〈 Remark 4.12 & Changing dummy, σ = θ−1
J σ′ ⇔ σ′ = ΘJσ 〉

Σn −
⋃

J∈I

(

{σ | ΘJσ ∈ Σn0 ∧ ¬f̂n0
ΘJσ(ΘJx)} ∪ ξ

)

= 〈 ΘJσ ∈ Σn0 ⇔ ΘJσ 6= ǫ 〉

Σn −
⋃

J∈I

(

{σ | ΘJσ 6= ǫ ∧ ¬f̂n0
ΘJ σ(ΘJx)} ∪ ξ

)

= 〈 ΘJσ 6= ǫ ∧ ¬f̂n0
ΘJσ(ΘJx) ⇒ ΘJσ 6= ǫ ∧ ΘJσ 6∈ Σn0

u ⇒ σ ∈ Σn
c &

Replacement of ξ by Equation 7.5 & Distributivity 〉

Σn −
{

σ | (∃J | J ∈ I : σ ∈ Σn
c ∧ ΘJσ 6= ǫ ∧ ¬f̂n0

ΘJσ(ΘJx)) ∨

(∃J | J ∈ I : σ ∈ Σn
c ∧ ΘJσ = ǫ ∧

(∃x′ | x′ ∈ Xn0 : Mn0(ΘJx) = Mn0(x′) ∧

¬〈Qn0〉(x′)))
}

= 〈 J not free in σ ∈ Σn
c & Distributivity & De Morgan 〉

{

σ | σ 6∈ Σn
c ∨

(

¬(∃J | J ∈ I ∧ ΘJσ 6= ǫ : ¬f̂n0
ΘJσ(ΘJx)) ∧

¬(∃J | J ∈ I ∧ ΘJσ = ǫ : (∃x′ | x′ ∈ Xn0 ∧ Mn0(ΘJx) = Mn0(x′) :

¬〈Qn0〉(x′)))
)}

= 〈 De Morgan & Σn = Σn
u ∪ Σn

c 〉

Σn
u ∪

{

σ | σ ∈ Σn
c ∧

(∀J | J ∈ I ∧ ΘJσ 6= ǫ : f̂n0
ΘJσ(ΘJx)) ∧

(∀J | J ∈ I ∧ ΘJσ = ǫ :

(∀x′ | x′ ∈ Xn0 ∧ Mn0(ΘJx) = Mn0(x′) : 〈Qn0〉(x′)))
}

= 〈 f̂n0 defined by (3.4) & Lemma 4.16 〉

Σn
u ∪

{

σ | σ ∈ Σn
c ∧

(∀J | J ∈ I ∧ ΘJσ 6= ǫ : ΘJσ /∈ Â(〈Qn0〉, ΘJMn(x))) ∧

(∀J | J ∈ I ∧ ΘJσ = ǫ :

(∀x′ | x′ ∈ Xn0 ∧ ΘJMn(x) = Mn0(x′) : 〈Qn0〉(x′)))
}

�

It should be noted that, if f̂n0∗ (the optimal SFBC function that corresponds to
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supSC(Qn0)) were substituted for fn0 in Equation 7.4, then the equality should be

replaced by an inclusion. In general, f̂ ∗ ≤ f̂ , since supSC(Q) ≤ 〈Q〉 and Â(Q, y) is

antimonotone in Q.

Lemma 7.14 Let Qn0 be an instance of a parameterized predicate QN , I ⊆ J n
n0

and

x ∈ Xn. If, in Equation 7.4, f̆n0 (defined by (3.3)) and ∅ are substituted for fn0 and ξ,

respectively, then

fn(x) = Σn
u ∪

{

σ | σ ∈ Σn
c ∧ (∀J | J ∈ I ∧ ΘJσ 6= ǫ : ΘJσ /∈ Ă(〈Qn0〉, ΘJMn(x)))

}

.

Proof. The proof is similar to that for Lemma 7.13, but ξ is replaced by ∅ and Ă is

used instead of Â. �

The next lemma characterizes the enabled events, in terms of bad event sets and

projections, in the context of total observation.

Lemma 7.15 Let Qn0 be an instance of a parameterized predicate QN , I ⊆ J n
n0

and

x ∈ Xn. If, in Equation 7.4, fn0∗ (defined by (3.2)) and ∅ substitute for fn0 and ξ,

respectively, then

fn(x) = Σn
u ∪

{

σ | σ ∈ Σn
c ∧ (∀J | J ∈ I ∧ ΘJσ 6= ǫ : ΘJσ /∈ A(〈Qn0〉, ΘJx))

}

.

Proof. The proof is similar to that for Lemma 7.13, but ξ is replaced by ∅ and A is

used instead of Â. �

The following theorems establish the strong or weak soundness of the synthesis

method with respect to various values of its parameters.

Theorem 7.16 Let QN be a parameterized predicate that satisfies SSA for a given n0

and let I ⊆ J n
n0

. Let f̂n0 and (7.5) substitute for fn0 and ξ, respectively, in Equation 7.4.

If ⌊〈Qn〉⌋I(xn
0 ) holds, then Re(Gn|fn) = R̂(Gn, ⌊〈Qn〉⌋I).
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Proof.

δfn
(x, σ)!

⇔ 〈 Definition of δf (Page 19) and ! (Page 19) 〉

σ ∈ fn(x) ∧ δn(x, σ)!

⇔ 〈 Lemma 7.13 & Corollary 7.4 〉

(σ ∈ Σn
u ∨ (σ ∈ Σn

c ∧ σ 6∈ Â(⌊〈Qn〉⌋I , Mn(x)))) ∧ δn(x, σ)!

⇔ 〈 Definition of Â (Page 21) 〉

σ 6∈ Â(⌊〈Qn〉⌋I , M
n(x)) ∧ δn(x, σ)!

The result then follows from Proposition 3.7(1) and the facts that ⌊〈Qn〉⌋I(xn
0 ) holds

and ⌊〈Qn〉⌋I is Σn
u-invariant (by Proposition 5.10). �

It should be noted that if I = J n
n0

then Re(Gn|fn) = R̂(Gn, 〈Qn〉) = Re(Gn|f̂n).

Theorem 7.17 Let QN be a parameterized predicate that satisfies SSA for a given n0

and let I ⊆ J n
n0

. Let f̆n0 and ∅ substitute for fn0 and ξ, respectively, in Equation 7.4.

If ⌊〈Qn〉⌋I(xn
0 ) holds, then Re(Gn|fn) ≤ R̆(Gn, ⌊〈Qn〉⌋I).

Proof. The proof is similar to that for Theorem 7.16, except that Lemma 7.14,

Corollary 7.6 and Proposition 3.7(2) are invoked. �

Theorem 7.18 Let QN be a parameterized predicate that satisfies SSA for a given n0

and let I ⊆ J n
n0

. Let fn0∗ and ∅ substitute for fn0 and ξ, respectively, in Equation 7.4.

If ⌊〈Qn〉⌋I(x
n
0 ) holds, then Re(Gn|fn) = R(Gn, ⌊〈Qn〉⌋I).

Proof. The proof is similar to that for Theorem 7.16, except that Lemma 7.15 and

Corollary 7.3 are invoked. �

The fact that the method founded on M-controllability is not strongly sound can

be justified by the presence of the term 〈Q〉(x′) in Equation 3.5, which is absent in

Equation 3.6. For f̆n0, the term 〈Qn0〉(ΘJx′) is too conservative with respect to the

corresponding term 〈Qn〉(x′) for f̆n. Indeed, for a given x′ ∈ Xn such that Mn(x) =

Mn(x′), 〈Qn〉(x′) might not hold, while 〈Qn0〉(ΘJx′) might hold when Mn0(ΘJx) =
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Mn0(ΘJx′) for a given J , as in Example 7.7 (with x = 〈A1, A2, E3〉, x′ = 〈D1, C2, E3〉

and ΘJx′ = 〈D1, C2〉). When the method is founded on strong M-controllability, the

deviant cases (additional events that must be prohibited) are treated by replacing ξ by

Equation 7.5. The synthesis method for M-controllability could similarly be adapted

to take into consideration the deviant cases (in order to remove the events that must

not be prohibited). However, contrary to the evaluation of Equation 7.5 that uses only

information available in the state space of dimension n0 independently of knowledge

about objects in the state space of dimension n, the identification of a state x′′ ∈ Xn0

for which the evaluation of 〈Qn0〉(x′′) must be viewed as false requires objects in the

state space of dimension n.

So there is a choice for the on-line synthesis of an SFBC function in the case of

partial observation: using f̂n0 or f̆n0. To distinguish between these two possibilities for

fn, the following notation is used:

fn

(7.4)〈f̂n0 ,ξ〉
for the former and fn

(7.4)〈f̆n0 ,∅〉
for the latter.

Since the method is strongly sound for strong M-controllability, if I = J n
n0

then

Re(Gn|fn

(7.4)〈f̂n0 ,ξ〉
) = R̂(Gn, 〈Qn〉) = Re(Gn|f̂n).

However, again with I = J n
n0

,

Re(Gn|fn

(7.4)〈f̆n0 ,∅〉
) ≤ R̆(Gn, 〈Qn〉) = Re(Gn|f̆n),

because the method is only weakly sound for M-controllability.

The predicates Re(Gn|fn) of these two SFBC functions are then incomparable in

general, because, by Proposition 3.8, Re(Gn|f̂n) ≤ Re(Gn|f̆n). In other words, the

results of a strongly sound synthesis procedure, like the one described by Equation 7.4

with 〈f̂n0, ξ〉, are in accordance with those expected in the state space of dimension n

and this choice can be qualified as conservative. In the absence of strong soundness for

M-controllability, the use of Equation 7.4 with 〈f̆n0, ∅〉 constitutes an optimistic choice

in the sense that one would expect that the SFBC fn would be near f̆n, which is more

permissive than f̂n. This can be the case if 〈Qn0〉 is almost normal because, under the

assumption that Qn0 is normal and Σu-invariant, it can be shown that the synthesis

method is strongly sound (⌊Qn⌋I is Σu-invariant by Proposition 5.10 and Remark 7.8).

Finally, Theorem 7.18 is compatible with the results of Chapter 6, Section 6.2, and

[Bherer et al. 2004] results dealing only with total observation and the particular case

I = J n
n0

; that is, fn = fn∗ when fn0∗ substitutes for fn0 .
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Conclusion

The theoretical framework investigated in this thesis was originally stimulated by a lack

of scalable synthesis methods, mainly because of the state-space explosion problem that

causes considerable difficulties in the calculation of supervisors for realistic systems. It is

subsumed under the conventional modular control paradigm, but specialized to systems

that exhibit symmetries, for instance, a telephone system with millions of devices that

behave in the same way or a reliable system with many redundant components. In

this framework, a supervisor may demonstrate a form of robustness because it can

dynamically react to some perturbations (addition or deletion of a process) occurring

in the controlled system by taking into account the number of processes that are alive

during the calculation of control actions by the underlying on-line synthesis algorithm.

In the case of total observation and the case of partial observation founded on strong

M-controllability, strong soundness of the synthesis method relies on the fulfillment of

SSA by 〈QN 〉, which is true if i) QN satisfies SSA and ii) all the events that belong

to Σs are controllable (otherwise the method would be weakly sound). Nevertheless,

the introduction of interconnection relations provides for considering predicates that

do not satisfy SSA, but they must, however, be obtained from those that satisfy SSA.

In the case of partial observation founded on M-controllability, it was proved that the

method is only weakly sound. Other sorts of soundness could be defined in the cases

for which there is a relationship between SFBC functions constructed in different ways.

For instance, if f̂n0∗ is used in dimension n0 and fn is compared with f̂n in dimension

n.



Chapter 8. Conclusion 79

Further remarks on related work

Apart from the few studies on synthesis methods for symmetric systems mentioned

in the introduction, much work exploiting symmetry has been done in model check-

ing. Most approaches suggest that a system be represented by a quotient model de-

fined from a state equivalence relation based on symmetry. The method developed in

this thesis differs from these as it uses symmetries in order to establish a small cutoff

[Emerson and Kahlon 2000] for the purpose of the off-line phase. It was inspired by

work on program synthesis, which details a method for constructing a program from

a temporal logic specification, for a system consisting of K similar interconnected se-

quential processes executing in parallel, based on the calculation of a solution to a

pair-system [Attie and Emerson 1998]. In this method, the interconnection relation is

a symmetric binary relation and the specification language is a subset of an extension

of CTL*. In particular, liveness properties cannot be expressed over a pair of processes.

In addition to the use of a different paradigm (SCT) in which some events are uncon-

trollable and some states are unobservable, our method allows one to express safety

properties with the aid of general predicates that are not limited to pair-systems (e.g.,

the mutual exclusion problem in which at most p > 2 processes can simultaneously use

a resource).

In the case of total observation, a comparison with the conventional modular con-

trol approach is direct when the global specification Q is expressed as a conjunction of

predicates: Q =
∧m

i=1 Qi, where m =
(

n

n0

)

and each Qi represents the same local con-

straint, but specific to a given combination of n0 processes. Formally, for all x ∈ Xn,

Qi(x) ⇔ Qn0(ΘJx) for a given J ∈ J n
n0

. On the one hand, if Re(G|fi) = sup CP(Qi) and

the SFBC f is calculated as fσ :=
∧m

i=1 fi,σ for all σ ∈ Σ, then Re(G|f) = sup CP(Q)

under the assumption that each fi is balanced [Wonham 2008]. Thus, the method is

strongly sound. The synthesis of the fi cannot distinguish between synchronous and

asynchronous events, since it is done with respect to G, in which these distinctions

cannot be made. However, it was shown that our method is strongly sound only if all

synchronous events are controllable. This difference is understandable by the synthesis

of only one local supervisor with respect to Gn0 (in which only n0 processes agree on

a synchronous event) and the use of on-line renaming transformations. Within this

setting and PSA, the unique supervisor does not need to be balanced for achieving

optimality. On the other hand, the modular approaches, which avoid the calculation

of the overall system, impose various conditions incompatible or too restrictive com-

pared with our approach. For instance, some turn out badly if an event is shared by all

processes [Queiroz and Cury 2000], some use natural projections [Komenda et al. 2005]

and some take advantage of a specification defined over a subset of the system alpha-

bet [Schmidt et al. 2006]. In the case of partial observation, unsubstantial results in
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modular control confine the ways of making comparisons. However, weak soundness

established by Theorem 7.17 is compatible with a previous result that could achieve

strong soundness to the detriment of the verification of a global condition for each in-

stance (i.e., for each value of n ≥ n0) of a parameterized predicate (see Theorem 3 in

[Takai et al. 1995]). Nevertheless, this is contrary to the approach developed in this

thesis.

Differences between the state-feedback theory of vector DESs (VDESs) and our

framework must also be highlighted. The former is useful for solving control problems

for systems composed of concurrent processes when the specification is the conjunc-

tion of a finite number of linear predicates and all states of the system are observable

[Li and Wonham 1993, Li and Wonham 1994]. However, the calculation of an SFBC

function is only practicable under several restrictions. First, in general, the uncontrol-

lable part of the system must be loop-free and the number of processes must be fixed

in order to solve linear integer programming problems on-line (i.e., to avoid the explicit

exploration of the reachability tree off-line). Second, as mentioned in the introduction,

an SFBC function can be expressed in closed form (by using variables that represent

an arbitrary number of processes in a specific state) under additional conditions. Such

structural conditions are unnecessary in our approach. Other points must be empha-

sized. For VDESs, parameters are not explicitly used in the modeling of the specifi-

cation, even if this possibility should not be excluded in the computation of an SFBC

function in closed form. Processes in a VDES have no identity, limiting the way of con-

sidering some classes of processes unless duplicating some parts of the VDES. Finally,

any conjunction of a finite number of linear predicates, ai,1x1 + ai,2x2 + · · ·+ ai,lxl ≤ bi,

i = 1, . . .m, satisfies SSA with n0 = (max i |: ⌊ bi

(min j|ai,j 6=0:ai,j)
⌋) + 1 if ai,j ≥ 0 and

bi ≥ 0. However, to achieve a power of expressivity comparable to that of VDESs, the

definition of PDES should be modified to cope with multiple classes of similar processes

and various ways of connecting them.

Overall, our approach puts together two paradigms and opens multiple research

subjects within another perspective, while providing an efficient implementation of a

supervisor. There is a linear gain of computational complexity with respect to the

naive solution and the use of an interconnection relation is explicitly integrated into

the on-line synthesis phase. To the best of our knowledge, such features have not been

examined before in conventional modular approaches.
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Future directions

Many important issues remain to be addressed within the reduction-parameterization

paradigm. First, the scope of this thesis was limited to control problems with safety

properties. Enlargement to treat liveness properties, particularly fairness properties,

would require a different framework. Since liveness properties cannot be formalized

with the aid of a predicate Q ∈ Pred(X), a temporal logic should be used to express

such properties in conjunction with appropriate algorithms for checking the under-

lying assumptions [Attie and Emerson 1998]. Dynamic state feedback control, which

requires memories to record history information, could be considered if a stronger no-

tion of fairness that avoids the analysis of infinite strings [Li and Wonham 1993] is

adopted. The use of abstract data types, such as queues, constitutes a good avenue

[Gohari and Wonham 2005]. Second, efficient algorithms for determining if an arbi-

trary number of similar processes under control may be blocking (with the smallest

value of the number of processes in the positive case) could fail in finite time, because

of the undecidability of equivalence between a system of arbitrary size and a system

of bounded size [Thistle and Nazari 2005]. This issue is presently under investigation

[Bherer et al. 2006b]. The idea is to consider a replicated structure as an n–bounded

state graph for a PDES with n processes and to construct its reachability graph by

using rewriting rules that manipulate symbolic expressions and symbolic constraints.

The power of a finite set of rewriting rules is, however, limited, especially if the applica-

tion of rules is regulated by criteria that ensure that the generation of nodes progresses

necessarily to a solution or until no rule can be applied. In the latter case, the algo-

rithm fails to generate a solution. Third, the way to make SSA more flexible was to

separate processes into different classes by using an interconnection relation. Relaxing

assumptions (e.g., weakening SSA or allowing some shared events to be shared only by

a subset of the processes, which conflicts with PSA) would then require finding appro-

priate types of syntactic renaming transformations. Finally, several studies could be

initiated by examining other classes of control problems with various forms of symmetry

within the proposed paradigm. The key to the advancement in this area will depend

on solutions to the aforementioned interwoven issues.
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