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Abstract

We recently introduced a patch-wise technique to estimate brain age from anatomi-

cal T1-weighted magnetic resonance imaging (T1w MRI) data. Here, we sought to

assess its longitudinal reliability by leveraging a unique dataset of 99 longitudinal MRI

scans from a single, cognitively healthy volunteer acquired over a period of 17 years

(aged 29–46 years) at multiple sites. We built a robust patch-wise brain age estima-

tion framework on the basis of 100 cognitively healthy individuals from the Mind-

Boggle dataset (aged 19–61 years) using the Desikan-Killiany-Tourville atlas, then

applied the model to the volunteer dataset. The results show a high prediction accu-

racy on the independent test set (R2 = .94, mean absolute error of 0.63 years) and no

statistically significant difference between manufacturers, suggesting that the patch-

wise technique has high reliability and can be used for longitudinal multi-centric

studies.
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1 | INTRODUCTION

Brain age estimation has become a research topic of considerable

interest in neuroimaging studies, progressively attracting attention

from both clinical and engineering communities (Cole, Marioni, Har-

ris, & Deary, 2019). In the last decade, substantial efforts have been

devoted toward the development of highly accurate brain age estima-

tion frameworks through modalities as different as anatomical MRI

(K. Franke, Ziegler, Kloppel, Gaser, & Alzheimer's Disease Neuroimag-

ing Initiative, 2010), fluorodeoxyglucose positron emission tomogra-

phy imaging (Goyal et al., 2019), and brain electroencephalogram

signals (Al Zoubi et al., 2018).

Brain age estimation techniques based on anatomical MRI can be

classified into three approaches: (1) voxel-wise techniques, introduced

by Franke and colleagues (K. Franke et al., 2010), that use voxel signal

intensities obtained from gray matter (GM), white matter (WM) or a

combination of both as dependent variables in the brain age estima-

tion framework. An extensive review of the voxel-wise technique and

its application in neuroimaging studies is presented in (Katja Franke &

Gaser, 2019); (2) region-wise techniques, as proposed by Valizadeh,

Hanggi, Merillat, and Jancke (2017), employ brain anatomical mea-

sures such as those obtained with a segmentation algorithm

(e.g., FreeSurfer [http://freesurfer.net]) as dependent variables in the

brain age estimation framework (Pardoe & Kuzniecky, 2018). These

techniques have been used in investigations of brain age not only

among healthy individuals, but also for different neurological diseases

(Katja Franke & Gaser, 2019); and (3) patch-wise grading, introduced

by Beheshti and peers (Beheshti, Gravel, Potvin, Dieumegarde, &

Duchesne, 2019) as the most recent approach in the field. It uses

image similarity metrics to match test patches to known labels from a

library of training set, then weighing and averaging information from

the training set (e.g., chronological age) to derive final values

(e.g., brain age) on the unseen test image.

Although both voxel- and region-wise techniques have shown

acceptable prediction accuracies (i.e., mean absolute error [MAE]

ranging from four to 8 years), the patch-wise technique demonstrated

an increased prediction accuracy on an independent test set

(MAE < 2 years; Beheshti et al., 2019).
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While all three brain estimation paradigms have been widely used

in cross-sectional studies, there have been few investigations of their

reliability for longitudinal brain age assessment. In fact, only Cole and

colleagues have recently reported longitudinal results of voxel-wise

brain age estimation using deep learning (Cole et al., 2017), with MAE

of 4.16, 5.17 and 4.34 years for GM, WM and GM + WM modalities,

respectively, and a high test–retest reliability (ICC > 0.90).

We decided to explore this aspect further by leveraging a unique

dataset of 99 longitudinal MRI scans from a single, cognitively healthy

volunteer acquired over a period of 17 years (aged 29–46 years). We

were able to demonstrate the reliability of the patch-wise technique

(cf., Section 3.2), as well as investigate the influence of different scan-

ner manufacturers on its accuracy (cf., Section 3.3).

2 | MATERIAL AND METHODS

2.1 | Training MRI dataset

We used the same training set from our previous study (Beheshti

et al., 2019) to train the patch-wise brain age estimation framework,

specifically the MindBoggle-101 dataset (https://mindboggle.info;

Klein & Tourville, 2012), which is composed of T1w MRI scans of

100 cognitively healthy individuals between the ages of 19 and

61 years (M = 28.32, SD = 8.38, 44% female). This dataset was acquired

on two different scanner manufacturers (Siemens, N = 64; Philips,

N = 36). The age distribution of the training set is presented in

Figure 1a. As described in our work, we extracted 62 cortical labels for

each T1-weighted MRI scan based on the Desikan-Killiany-Tourville

parcellation protocol (Klein & Tourville, 2012) with the FreeSurfer seg-

mentation software (http://freesurfer.net; version 5.3; default setting,

recon-all). Each brain segmentation was visually inspected thoroughly

on all slices in the coronal plane. The stability of the parcellation was

not measured, but given that the images came from a high number of

different scanners, some notable variability was likely to occur. For

example, morphometric variability was previously reported using the

subset of images acquired after a scanner upgrade (Trio to Prisma) on

three Siemens scanners (Potvin et al., 2019).

Next, all MRI images were mapped in pseudo-Talairach MNI

space on the basis of an affine linear registration (MINC 2.2.00 toolkit;

mincresample function, default setting, and tri-linear interpolation

method), then resampled to a voxel size of 1 × 1 × 1 mm3. To map

labels in pseudo-Talairach MNI space, we used the mincresample

function with nearest-neighbor interpolation. The skull and other non-

brain tissues were eliminated using an intracranial mask. Finally, in

order to diminish intensity variations among various scanner models,

the voxel intensity of each registered MRI image was linearly mapped

to a [0–100] range as follows:

MRINormalized = 100×
MRIraw−min MRIrawð Þ

max MRIrawð Þ−min MRIrawð Þ ð1Þ

Where MRIraw, min(MRIraw), and max(MRIraw) stand for the raw

intensities, the minimum intensity, and the maximum intensity in each

MRI image, respectively. The MRI image preprocessing was conducted

using the MINC 2.2.00 toolkit.

2.2 | Testing MRI dataset

To assess the reliability of the patch-wise technique for longitudinal

studies, we used T1w MRIs from the Single Individual volunteering for

Multiple Observations across Networks (SIMON) MRI dataset

(Duchesne et al., 2019). In brief, the SIMON MRI dataset is an ever-

expanding sample of convenience of longitudinal MRI scans from a

cognitively healthy individual (male, ambidextrous, education:

22 years) acquired for quality control purposes in 73 sessions on

36 different scanners (13 models and three manufacturers) with dif-

ferent protocols, while the participant was aged 29–46 years. The

SIMON dataset at the time of this study was composed of 99 T1w

F IGURE 1 Histogram displaying the age distribution with respect to scanner manufacturer: (a) training set (N = 100), (b) testing set (N = 99)
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MRIs (Siemens Medical systems, N = 52; Philips Healthcare systems,

N = 34; GE Healthcare systems, N = 13). Informed consent was

obtained from the participant; the data is available for comparison

studies (http://fcon_1000.projects.nitrc.org/indi/retro/SIMON.html).

Similar preprocessing was performed on the test set. More informa-

tion about this testing dataset is presented in Table 1, whilst the age

distribution is shown in Figure 1b.

TABLE 1 Properties of testing MRI dataset

MRI manufacturers N Age

Philips 34 [29.69–46.82]; M = 41.37, SD = 4.40

Siemens 52 [34.52–46.82]; M = 44.64, SD = 1.92

GE 13 [43.27–46.41]; M = 44.97, SD = 1.18

Abbreviations: M, mean; SD, standard deviation.
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F IGURE 2 The pipeline of the proposed patch-wise brain age framework
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2.3 | Patch-wise grading for brain age estimation

The technical details of the patch-wise grading brain age estimation

have been fully described previously (Beheshti et al., 2019). In sum-

mary, for each test label under study, a library of N (N = 20) closest

subjects from the training set was composed on the basis of the sum

of the squared difference criterion. It is worthwhile to mention that

generating the library set was entirely independent of scanner manu-

facturers. Next, for each voxel xi of the considered study, a patch

comparison was conducted between patch p(xi) (i.e., a 7 × 7 × 7 voxel

cube) with all patches p(xj) from the library set. This comparison yields

the following weighting function between the voxel under study xi

and the voxel xj from the training library (Coupe et al., 2011):

ww xi ,xs,j
� �

= e
−

p xið Þ−p xs,jð Þk k22
h xið Þ , if ss >0:95

0,otherwise

8<
:

ss xi,xs,j
� �

=
2μp xið Þμp xs,jð Þ
μ2p xið Þ + μ

2
p xs,jð Þ

×
2σp xið Þσp xs,jð Þ
σ2p xið Þ + σ

2
p xs,jð Þ

ð2Þ

In the above equation, ww(xi, xs,j) refers to the weighting function

for the (xi, xs,j) pair; k.k2 is the L2-norm; and p(xs,j) stands for the patch

which was centered on jth voxel of the training sample s (i.e., xj). We

carried out a preselection technique focused on the structural similar-

ity measure criteria (Wang, Bovik, Sheikh, & Simoncelli, 2004) to pick

the most insightful patches, so that we can omit weak patches that do

not meet the threshold on ss. Finally, μp(x) and σp(x) are the mean and

standard deviation of voxel values in the patch p(x), respectively, while

h is the smoothing parameter which can be computed as follow:

h xið Þ= λ2 × argminXs,j
p xið Þ−p xs,j

� ��� ��
2
+ δ ð3Þ

where, as indicated in (Coupe, Eskildsen, Manjon, Fonov, &

Collins, 2012), the constants λ and δ were set to 0.5 and 10−7, respec-

tively. The only difference from our prior study is that the grading

value g at the voxel xi has been modified as:

g xið Þ=
PN
s =1

P
j�Vi

w xi,xs,j
� �

: AgeTest−Agesð Þ
PN
s=1

P
j�Vi

w xi ,xs,j
� � ð4Þ

where Vi refers to the search volume which ranges from 9 × 9 × 9 to

15 × 15 × 15 to discover the ideal one (Coupe et al., 2012). AgeTest

and Ages are the test participant's and training library subject's chro-

nological ages, respectively.

After computing the grading values for all voxels within a label,

we calculated the final patch-wise grading value by averaging grading

values of all voxels over the respective label. Figure 2 illustrates the

pipeline of the proposed patch-wise brain age estimation framework,

while the pseudo-code of the patch-wise grading stage is shown in

Pseudo Algorithm 1.

2.4 | Validation and performance assessment

To predict brain age, we used a support vector machine regression pre-

dictor implemented in MATLAB (i.e.,“fitrsvm” function, kernel: linear,

KernelScale: auto). The regression was done to match the final patch-

wise average grading values in all labels to the chronological age. We

assessed the prediction accuracy of the patch-wise technique in two

phases. First, we trained and validated the prediction performance of

Pseudo Algorithm 1

The outline for the proposed patch-wise brain age

framework for each cortical label under study used

in this study

Procedure patch_grading (ROIsTrain, AgesTrain, ROITtest,

AgeTest)

N 20

δ 10−7

λ 0.5

Number of voxel in ROI m

Select N closest subjects computing the SSD

(ROIsTrain, ROITtest)

p(x) a cube of 7 × 7 × 7 voxels

For i = 1: m do

For s = 1: N

Vi Search volume

j � Vi

μp xið Þ mean voxel values in the patch p(xi)

σp xið Þ STD voxel values in the patch p(xi)

μp xs,jð Þ mean voxel values in the patch p(xs,j)

σp xs,jð Þ STD voxel values in the patch p(xi)

Ss xi,xs,j
� � 

2μp xið Þμp xs,jð Þ
μ2
p xið Þ + μ

2

p xs,jð Þ
×

2σp xið Þσp xs,jð Þ
σ2
p xið Þ + σ

2

p xs,jð Þ
% similarity

h xið Þ λ2 × argminXs,j
p xið Þ−p xs,j

� ��� ��
2
+ δ

For ss do check

If ss > 0.95 then

w xi,xs,j
� � e

−
p xið Þ−p xs,jð Þk k22

h xið Þ % weighting

function

else

w(xi, xs,j) 0

end if

end for

g xið Þ 
PN
s=1

P
j�Vi

w xi ,xs,jð Þ:ðAgeTest−AgesÞ

PN
s=1

P
j�Vi

w xi ,xs,jð Þ
% grading

value

end for

end for

return mean g(x)

End Procedure
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patch-wise brain age estimation in the training set (N = 100) on the

basis of a leave-one-out strategy. Second, we assessed the prediction

accuracy of the patch-wise technique by applying the patch-wise esti-

mation framework from the training set to the single cognitively healthy

volunteer over a period of 17 years as an independent test set. The

accuracy of brain age estimation was stated in terms of the mean abso-

lute error, root mean square error (RMSE), and R-squared. The within-

manufacturer reliability was reported based on intraclass correlation

coefficient [2,1] (ICC[2,1]).

3 | RESULTS

3.1 | Training set model

Figure 3 shows the relationship between the estimated brain age as

a function of chronological age, as well as the predicted difference

(brain age delta) against the mean of chronological age and

predicted brain age (i.e., Bland–Altman plot) on the training set

model obtained via a leave-one-out strategy. Our prediction model

F IGURE 3 Training set model: (a) Scatter plot of estimated brain age as a function of chronological age. The solid black line shows the
regression line, while the dashed black lines stand for 95% prediction band on the model prediction. (b) Bland–Altman plot between estimated
brain age and chronological age. The Mean axis is the average of estimated brain age and chronological age; and the Δ axis refers to the
difference between chronological age and estimated brain age. The solid black line represents the mean age difference between estimated brain
age and chronological age, while the dashed black lines show ± 1.96 standard deviation. RPC and CV are reproducibility coefficient and

coefficient of variation, respectively; MD is mean difference between estimated brain age and chronological age

F IGURE 4 Evaluation of the performance of patch-wise brain age on a single individual volunteer across time. (a) Scatter plot of estimated

brain age as a function of chronological age. The solid black line shows the regression line, while the dashed black lines stand for 95% prediction
band on the model prediction. (b) Bland–Altman plot between estimated brain age and chronological age. The Mean axis represents the average
of estimated brain age and chronological age; the Δ axis refers to the difference between chronological from patch-wise brain age. The solid black
line stands for the mean age difference between estimated brain age and chronological age, while the dashed black lines show ± 1.96 standard
deviation. RPC and CV are reproducibility coefficient and coefficient of variation, respectively; MD is mean difference between estimated brain
age and chronological age
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reached a high predictive accuracy in this training set (MAE = 1.30 years,

RMSE = 1.66 years and R2 = .96).

3.2 | Longitudinal performance

To assess the longitudinal reliability, we applied the brain age model

from the training set to the test set. Figure 4 shows the estimated

brain age plotted as a function of chronological age, as well as the

predicted difference (brain age delta) against the mean of chronologi-

cal age and predicted brain age (i.e., Bland–Altman plot) for a single

cognitively healthy volunteer over 99 time points. The prediction

accuracy on the test set was MAE = 0.63 years, RMSE = 0.80 years

and R2 = .94.

3.3 | The impact of MRI scanner manufacturers on
patch-wise results

The SIMON dataset allowed us to quantify the impact of the various

MRI scanner manufacturers (Philips Healthcare, Best, The Nether-

lands; Siemens Healthcare, Erlangen, Germany; GE Medical Systems,

Milwaukee, WI) on patch-wise brain age estimation. The mean brain

age delta for different MRI manufacturers were: Philips: −0.32 years;

Siemens: 0.03 years; and GE: 0.23 years (Figure 5); the differences

were not statistically significant (F = 1.82, p = .16; ANOVA). Within-

manufacturer reliabilities (i.e., ICC [2,1]) for Siemens, Philips and GE

scanners were 0.96 [0.93, 0.97], 0.97 [0.94, 0.98], and 0.75 [0.35,

0.91], respectively.

Unlike other brain age estimation techniques (i.e., voxel-wise and

region-wise) which provide only a single scalar result, the patch-wise

technique as a corollary can show estimated grading values at the

F IGURE 5 Influence of MRI manufacturer on brain age-delta for
the single individual volunteer. Δ: chronological age subtracted from
the brain estimated age

F IGURE 6 Influence of MRI manufacturer on patch-wise grading values for the single individual volunteer at the region level. (a) All scans,
(b) Philips Healthcare, (c) Siemens Healthcare, and (d) GE Medical Systems scanners

6 BEHESHTI ET AL.



voxel and regional levels for each subject under study. Figure 6 illus-

trates the resulting patch-wise grading values on our test dataset with

respect to scanner manufacturer at this regional level. A summary of

statistical information related to the grading values across the cortex

with respect to MRI manufacturers is presented in Table 2, while

Table 3 lists the highest grading values achieved from the proposed

patch-wise technique. As can be seen from Table 2, the grading value

obtained from Philips scanners showed lower variation compared with

Siemens and GE equipment. The MAE for the various MRI manufac-

turers were: Philips: 0.88 years, Siemens: 0.41 years, and GE:

0.90 years.

4 | DISCUSSION

The main objective of this study was to assess the reliability of the

patch-wise brain age estimation technique in a longitudinal setting. In

our previous study (Beheshti et al., 2019), we extended the notion of

patch-wise grading from Coupé and colleagues (Coupé et al., 2012) to

estimating brain age across the cortex from 3D anatomical MRI data.

Our proposed patch-wise grading technique was tested in a cross-

sectional design and showed significantly improved prediction accu-

racy in an independent test set (MAE < 2 years) when compared to

state-of-the-art methods (Beheshti et al., 2019). When testing on the

longitudinal SIMON dataset, we accurately estimated brain age with a

MAE < 1 year over a long age span (17 years) covering early middle

age (29–46 years old). These results support our claim that the patch-

wise technique is amenable to longitudinal brain age studies.

In a previous report (K. Franke et al., 2010), the authors investi-

gated the influence of different scanner manufacturers on a voxel-

wise brain age estimation framework. They reported a slight differ-

ence in terms of prediction accuracy between individual scanner man-

ufacturers. In our previous study, we assessed the influence of

different MRI manufacturers on a patch-wise technique for cross sec-

tional studies (see Supporting Information). However, in the present

study, we also explored the impact of different MRI manufacturers on

the patch-wise brain age estimation framework for longitudinal brain

age estimation studies. Based on our results, we have not observed a

statistically significant difference among various scanners in terms of

brain age-delta (Figure 5). Furthermore, the patch-wise technique

showed an excellent within-manufacturer test–retest reliability for

Siemens and Philips scanners (ICC > .95), well comparable with (Cole

et al., 2017). As for GE, the patch-wise technique exhibited a lower

within-manufacturer test–retest reliability (ICC ≈ .75) due to a lower

sample size compared to Siemens and Philips. It would therefore sug-

gest that the patch-wise technique is robust, regardless of scanner

manufacturers.

Regarding the patch-grading, we expected to achieve grading

values close to zero for each ROI as our longitudinal MRI scans belong

to a cognitively healthy volunteer. Although creating the training

TABLE 2 The statistical information
related to grading values across the
cortex with respect to MRI
manufacturers

Min Max Mean Standard deviation

All scans −2.60 3.02 1.15 1.09

Philips Healthcare −1.95 1.44 −0.05 0.79

Siemens Healthcare −3.81 4.56 1.74 1.62

GE Medical Systems −1.72 3.72 1.94 1.08

TABLE 3 Top 10 regions with highest grading values across the cortex with respect to the MRI manufacturers

All scans Philips Healthcare Siemens Healthcare GE Medical Systems

ROI Grading value ROI Grading value ROI Grading value ROI Grading value

rh-postcentral 3.02 lh-entorhinal −1.95 rh-postcentral 4.56 rh-inferiorparietal 3.72

rh-inferiorparietal 2.98 rh-parstriangularis −1.62 rh-inferiorparietal 4.36 lh-lateraloccipital 3.57

rh-entorhinal 2.75 lh-lateraloccipital −1.50 rh-superiorparietal 4.08 rh-postcentral 3.37

lh-postcentral −2.60 rh-inferiortemporal −1.46 rh-pericalcarine 3.98 rh-precentral 3.22

rh-pericalcarine 2.43 rh-entorhinal −1.46 rh-entorhinal −3.81 rh-paracentral 3.15

rh-supramarginal 2.37 rh-caudalmiddlefrontal 1.45 lh-postcentral 3.66 lh-cuneus 3.09

rh-caudalmiddlefrontal 2.31 lh-inferiortemporal −1.44 rh-supramarginal 3.60 lh-parsopercularis 3.04

Lh-entorhinal 2.27 rh-superiorparietal −1.44 lh-superiorparietal 3.27 lh-superiorfrontal 2.95

lh-precentral 2.27 lh-postcentral 1.32 rh-parsopercularis 3.26 lh-inferiorparietal 2.91

rh-precentral −2.20 lh-cuneus −1.27 rh-precuneus 3.22 rh-pericalcarine 2.87

Note: The regions were ranked based on absolute grading values.

Abbreviations: lh, Left hemisphere; rh: right hemisphere.
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library was entirely independent of scanner manufacturers, our exper-

imental results showed similarities and differences among scanner

vendors. For instance, Siemens and GE scanners showed some wide

variations in terms of patch-wise grading values in comparison to

Philips (Table 2), whereas Siemens and Philips scanners exhibited simi-

lar grading values in the temporal lobe. Despite the fact that there

were some differences among scanner manufacturers for patch grad-

ing, the support vector machine regression diminished these differ-

ences in prediction stage in terms of final brain age values. Therefore,

there was no statistical difference among scanner manufacturers used

in this study (F = 1.82, p = .16; ANOVA).

One of the strengths of this study is also an obvious limitation,

namely that our test set was composed of a single individual in early

middle age. In addition, the test dataset—being a sample of

convenience—was not balanced with respect to scanner manufac-

turers. This limits the generalizability of our findings, and suggests fur-

ther research using a larger test set.

5 | CONCLUSION

This study set out to evaluate the reliability of the patch-wise tech-

nique for longitudinal brain age estimation studies. To this end, we

used a set of longitudinal MRI scans from a single cognitively

healthy volunteer over a period of 17 years acquired from various

scanners as an independent test set to assess the performance of

the patch-wise technique. The results confirmed that the patch-

wise technique has not only a high reliability for cross-sectional

researches, but also for future longitudinal brain age estimation

studies.
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