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RESUME 

Le présent travail vise à apporter certaines pistes de solution concernant certaines 

controverses sur l'estimation de la conductivité thermique des nanotubes de carbone par 

simulation de dynamique moléculaire à l'équilibre avec conditions aux limites 

périodiques et la formule de Green-Kubo. Entre autre, différents auteurs obtiennent des 

résultats pouvant parfois varier de plusieurs ordres de grandeur pour un même type de 

nanotube. H n'y a toutefois que très peu d'études jusqu'à ce jour tentant d'expliquer ces 

contradictions. Dans la première partie du projet, on détermine les paramètres 

numériques pouvant influencer la conductivité thermique calculée avec une méthode de 

dynamique moléculaire à l'équilibre. On effectue ensuite une analyse de sensibilité pour 

plusieurs de ces paramètres afin de déterminer de quelle manière ils influencent la 

conductivité thermique calculée (chapitres 3 et 4). Finalement, on présente une étude sur 

le phénomène de fréquence de coupure lors du calcul de la conductivité thermique 

(chapitre 5). 



ABSTRACT 

The goal of the present work is to give possible explanations for some of the 

discrepancies found in literature concerning the estimation of the thermal conductivity of 

carbon nanotubes from equilibrium molecular dynamics simulations with periodic 

boundary conditions and the Green-Kubo formula. Some of the results presented by 

different authors are in disagreement for the same type of carbon nanotube (chirality). Up 

to now, there are still very few studies aiming at explaining these discrepancies. During 

the first part of the present work, we determine which modeling and simulation 

parameters can influence the calculated thermal conductivity from equilibrium molecular 

dynamics simulations. We then perform a sensitivity analysis for many of these 

parameters in order to understand how each parameter influences the calculated thermal 

conductivity (Chapters 3 and 4). Finally, we present a study on the frequency cut-off 

phenomenon when calculating the thermal conductivity of carbon nanotubes (Chapter 5). 
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CHAPTER 1: Definition ofthe problem 

1.1 INTRODUCTION 

"There's plenty of room at the bottom." Such was the title of a lecture given by the 

physicist Richard P. Feynman at an American Physical Society meeting at the California 

Institute of Technology in 1959 (see http://www.zyvex.com/nanotech/feynman.html for a 

complete version of his lecture). Feynman mentioned, among many other things, that it 

would be theoretically possible to write an entire encyclopedia on the head of a pin, or to 

miniaturize computers so much that wires would be ten to a hundred atoms in diameter 

and electronic circuits would be of the size of a few micrometers. At that time, the idea of 

manipulating the matter at an atomic scale seemed quite ambitious. However, there have 

been many experimental and numerical investigations on nanosciences and 

nanotechnologies during the last decades, and the reality is now far much closer to 

Feynman's ideas. Thirty years after his lecture, a Japanese physicist, Sumio Iijima, has 

published a paper that has generated an increased interest in carbon nanotubes (CNTs), a 

nanostructure that has remarkable electrical and thermal properties [1]. Some 

investigations on carbon nanotubes have reported very high thermal conductivity, 

exceeding even that of diamond [2]. Depending on the experimental technique and on the 

nanotube characteristics, thermal conductivity measurements reported in literature vary 

approximately from 300 to 10,000 W/m K [3-7]. 

The experimental measurement of the thermal conductivity of an isolated CNT can prove 

to be very difficult [3]. Furthermore, the atomic structure of the studied CNTs, which 

influences their thermal conductivity, is unknown for the experiments previously 

mentioned, making it difficult to compare the results based on nanotube chiralities [11]. 

Because of this, numerical models have been developed to gain a better understanding of 

the heat transfer process in carbon nanotubes. Molecular dynamics (MD) simulations is a 

numerical tool that can be used to study the thermal properties of CNTs for a given 

chirality. The most widely used methods include equilibrium molecular dynamics (EMD) 

and non-equilibrium molecular dynamics (NEMD). Nevertheless, there is no agreement 
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in literature on the exact value of the thermal conductivity of carbon nanotubes. 

Moreover, the trends observed can be very different. For example, the effect of the 

application of external mechanical strain on a carbon nanotube on its thermal 

conductivity has already been addressed in the past [8-9], but the reported results are in 

contradiction. The optimal thermal conductivity reported by [8] for a (10, 10) CNT under 

axial strain was obtained when the CNT was stretched at 2% of its original length. On the 

opposite, [9] reported that the maximal thermal conductivity value for a (10, 10) CNT 

was obtained when the CNT was compressed at 6% of its original length. There have 

been few investigations on the possible reasons for the discrepancies found in literature 

concerning the numerical calculation of the thermal conductivity of CNTs using MD 

simulations [10-11]. The present work studies the possible reasons that have not yet been 

addressed and that could explain discrepancies in literature for the calculation of the 

thermal conductivity of CNTs using MD simulations. 

1.2 PRESENTATION OF CARBON NANOTUBES 

The atomic structure of a carbon nanotube can be seen as a graphene sheet wrapped into a 

cylinder. Carbon nanotubes can have one or more walls, as shown in Fig. 1.3 (which has 

been reproduced from [12]). Nanotube A is a single-wall carbon nanotube (SWCNT) and 

nanotube B is a multi-wall carbon nanotube (MWCNT). As a reference, typical lengths, 

diameters, and inter-wall spacing are indicated in this figure. 

A „ J i t , B 

HSL 0.36nm 

1-2 nm 2-25 nm 

Figure 1.3: Schematic representation ofthe atomic structure of CNTs, from [12] 



The properties of CNTs can vary depending on their chirality. The chirality, or twist, of a 

carbon nanotube is given by its chiral vector indices (n, m), where n and m are integers of 

the equation Ch = nâ, + mâ2. The vectors a, and â2 are unit vectors in the lattice 

directions of two-dimensional graphite (see Fig. 1.4) and Ch is the chirality vector. Let 

us consider a nanotube that is cut along the vector T, a vector tangential to its axis, and 

then unraveled into a planar sheet. If the line traced by the vector T and the line parallel 

to T at the opposite side of the grey box in Fig. 1.4 are superimposed, the original carbon 

nanotube is obtained. Then, a point on the vector T that intersects a carbon atom is taken 

as the origin of both the tangential and chiral vectors. The armchair line is defined as the 

one which passes across all the hexagons, separating them in two equal halves, starting 

from the origin of the vector T . The second extremity of the chiral vector is given by the 

point which intersects a carbon atom on the line parallel to T at the opposite side of the 

grey box closest to the armchair line. If the chiral vector is along the armchair line, the 

nanotube is said to be armchair. If it is along the zigzag line, it is said to be zigzag. In any 

other case, the nanotube is chiral. 

,0) zigzag 

(njt) armchair 

Figure 1.4: Schematic representation ofthe chiral and tangential vectors 



The theoretical diameter d of a SWCNT can be calculated from its (n, m) indices using 

the following equation [13]: 

d = -yjn2 +nm + m2 (1.1) 
7t 

where a = 2.46 À is the lattice constant of two-dimensional graphite (distance between 

the two sides of a hexagon), which result in a mean inter-atomic spacing between carbon 

atoms of ac-c = 1.421 A. The chiral angle 0 between the chiral vector and the zigzag line 

can be calculated using Eq. (1.2) [13]. It can take values between 0 = 0° (zigzag 

nanotube) and 0 = 30° (chiral nanotube). 

tan 0 = ( 1.2) 
m+2n 

1.3 OBJECTIVES 

Some possible reasons that could explain discrepancies in literature in terms of the 

reported thermal conductivity of CNTs have already been addressed. Those reasons 

mainly consist in modeling or simulation technique parameters of MD simulations. For 

example, [11] reported that some of the possible reasons for literature discrepancies 

included length and temperature effects, different choices for the cross-section of CNTs, 

different choices of inter-atomic potential, different methods (EMD or NEMD), and 

different boundary conditions. On the other hand, [10] reported that the thermal 

conductivity values are not significantly influenced by the simulation technique used in 

NEMD simulations. In other words, the calculated thermal conductivity is not altered 

when using different integral algorithms or different thermostats during the simulation. 

Besides modeling and simulation technique, another important part of the calculation of 

the thermal conductivity using MD simulations resides in the post-treatment of the 

simulation results. There can be different procedures to follow, depending on the 

simulation method used. 



The main objective of the present dissertation is to study the effect of post-treatment 

parameters on the calculation of the thermal conductivity of CNTs. This main objective 

can be separated in three specific objectives, which are: (1) determine which modeling 

and simulation parameters have an influence on the calculation of the thermal 

conductivity of carbon nanotubes when using an EMD method, (2) understand how each 

of those parameters influence the calculation of the thermal conductivity, and (3) 

determine if the influence of the post-treatment parameters on the calculated thermal 

conductivity could explain some of the discrepancies found in literature. 

1.4 METHODOLOGY 

The steps that will be followed in order to achieve those specific objectives will now be 

explained. First, an extensive review of the literature will help to determine which 

parameters influence the thermal conductivity, according to the results presented by 

different authors. Then, a MATLAB routine that can perform MD simulations once 

interfaced with the LAMMPS software [14] will be implemented. LAMMPS is a free 

open-source molecular dynamics software from Sandia National Laboratories. The 

MATLAB routine is required to be able to: (1) calculate the initial position and velocity 

of each atom of a CNT for a given length and chirality, (2) apply the desired boundary 

conditions, (3) write in text files the necessary information to run a MD simulation using 

the LAMMPS software, (4) extract the results from output files generated by LAMMPS, 

and (5) make the necessary calculations to estimate the thermal conductivity of a carbon 

nanotube using the simulation results following an EMD simulation. A validation of each 

step of the simulation will be done to ensure that the EMD procedure is followed 

properly. A sensitivity analysis will then be performed for the parameters identified in the 

first step in order to determine how each of them influences the calculated thermal 

conductivity. Finally, the results and simulation parameters used in other works will be 

compared with those in the present work in order to determine if using different 

simulation parameters will result in very different calculated thermal conductivities. 

Since the time required to run MD simulations can be very long, all simulations are 

performed on the supercomputer Colosse (part of Clumeq). The number of compute cores 



used for each simulation varies from 8 cores for a system of 800 atoms to 128 cores for a 

system of 160,000 atoms. The total compute time for each MD simulation on LAMMPS 

is between 12 to 48 hours. 

Chapter 2 gives a brief introduction to MD simulations. In section 2.1, all pre-simulation 

steps will be addressed, such as the initial position and velocity of each atom of the 

system, the application of the boundary conditions, the choice of an inter-atomic 

potential, and the creation of the LAMMPS input files. In section 2.2, the simulation 

procedure will be detailed. A brief overview of the most widely used methods for the 

computation of the thermal conductivity will first be presented. Then, each step of the 

simulation will be explained. Section 2.3 will explain the post-treatment of the results 

after an EMD simulation based on the Green-Kubo method. 

Chapter 3 is a paper that we published in the proceedings of the 2nd International 

Conference on Nanotechnology: Fundamentals and Applications (2011). It is an 

introduction to the effects of the post-treatment of MD simulations on the calculation of 

the thermal conductivity of CNTs. Only a 5 nm long nanotube is studied in this paper. 

The next paper presented in Chapter 4 has been submitted for publication in the Journal 

of Computational Physics and is a continuation of the preceding chapter. It presents the 

study of the effects of post-treatment parameters on the thermal conductivity for CNTs of 

different lengths. This paper is focused on the use of a double-exponential best-fit of the 

auto-correlation function that is frequently used in literature for EMD simulations based 

on the Green-Kubo method. Also, the necessity to use early time best-fit of the auto

correlation function is questioned. Finally, Chapter 5 presents a short paper that will be 

submitted for publication in Applied Physics Letters. It addresses the exact role of the 

frequency cut-off in carbon nanotubes and compares the importance of this phenomenon 

to other parameters that can influence the calculated thermal conductivity when 

performing EMD simulations with the Green-Kubo method. 



CHAPTER 2: Introduction to molecular dynamics simulations 

Classical molecular dynamics is a numerical tool used to get insights of the physics at a 

molecular level. It is based on solving the equations of motion (Newton's second law) in 

order to calculate the transient evolution of the position and velocity of each atom of a 

system. MD simulations can model phonon-phonon interactions, but it can neither model 

phonon-electron nor electron-electron interactions. However, the electron contribution to 

the thermal conductivity of carbon nanotubes can be considered negligible [13]. For this 

reason, the thermal conductivity obtained from a MD simulation is often referred to as 

the lattice thermal conductivity. The interactions between the atoms during a simulation 

are governed by an inter-atomic potential. Different types of potentials can be used to act 

as the driving forces. The choice of the inter-atomic potential is a crucial step in the 

simulation procedure, since it has to represent properly both the microscopic and 

macroscopic properties of the simulated materials. However, choosing an inter-atomic 

potential is only one step amongst many towards running a complete molecular dynamics 

simulation. The latter is usually divided into 3 distinct parts: pre-simulation, simulation, 

and post-treatment. Each of these parts is detailed in the following sections. 

2.1 PRE-SIMULATION 

Initial position 
Before running a simulation, the initial and boundary conditions of the problem have to 

be established. One must first decide of the chirality and the length of the carbon 

nanotube. With the (n, m) indices of the chiral vector and the length of the tangential 

vector, it is possible to calculate the initial position of all the atoms of the carbon 

nanotube. One can notice that the length of the tangential vector T corresponds to the 

length L of the carbon nanotube and the length of the chiral vector Ch corresponds to the 

circumference of the nanotube. Using this, it is possible to express those vectors in the 

following manner: 



Ch = 7td cos 08x - 7td sin 0êy 

T = Lsin0ê, + Lcos0ê„ 
x y 

(2.1) 

(2.2) 

where êx and ê are unit vectors in the (x, y) referential. Another useful referential is 

now defined, the (1, 2) referential, with unit vectors ê, and ê2. See Fig. 1.4 for a visual 

representation of those two systems of coordinates. The boundaries of the grey box in the 

(x, y) referential are given by: 

[Xmu,. x m J = [0> rcd cos 0 + L sin 0] (2.3) 

(2.4) 

A MATLAB routine has been written to calculate the position of all atoms included 

within those boundaries. The atoms coordinates are then transferred in the (1, 2) 

referential. In order to convert (x, y) coordinates to (1, 2) coordinates, the following 

rotation tensor is used (with 0 positive counter-clockwise): 

"•i 

y2 

cos 0 sin 0 
-sinO cosO 

(2.5) 

Once the atoms coordinates are known in the (1, 2) referential, all atoms within the 

carbon nanotube boundaries, i.e. within the grey box whose limits are [0 , 7id] and [0 , 

L] in the (1, 2) referential, are said to belong to the CNT. Only those atoms shall be used 

in the construction of the CNT. To avoid atom superposition when the three dimensional 

CNT is constructed (when the two-dimensional graphite sheet is wrapped into a 

cylinder), atoms on the x, = 7id boundary are excluded from the CNT. Finally, each atom 

is given a position in the three dimensional space to create the real CNT using the (X, Y, 

Z) coordinate system, as illustrated in Fig. 2.11. 



Figure 2.11: Coordinate system conversion from (1, 2) to (X, Y, Z) referential 

where êx , êY , and êz are unit vectors in the (X, Y, Z) referential. The coordinates of all 

the atoms in the (X, Y, Z) referential are thus obtained from: 

X =—cos 
2 

Y = -s in 
2 

rn \ 

V u J 

(2 \ 

Va ) 
Z = y2 

(2.6) 

(2.7) 

(2.8) 

The Z coordinate of all the atoms of the system are finally shifted by a distance L/2 so 

that the CNT's center of mass is at the origin of the (X, Y, Z) referential. The complete 

MATLAB routine calculates the (X, Y, Z) coordinates of all N atoms of the system for a 

given (n, m) chiral vector, a given L, and a given lattice constant a. To ensure that the 

routine works properly, the diameter of a (10, 10) CNT obtained has been compared to its 

theoretical value. Furthermore, the total number of atoms N of the CNT has been 

compared to the number of atoms reported for the same type of CNT in [11] for different 

values of L. The results of the validation of the MATLAB routine are given in the 

following table. 



Table 2.1: Validation of the three-dimensional CNT construction with MATLAB routine 

Length of CNT 

[nm] 
N [ . . | * 

[atoms] 
NMATLAB* 

[atoms] 
^theoretical 

o 

[A] 

dMATLAB 
0 

[A] 
4.92 800 800 13.563 13.563 

9.84 1600 1600 13.563 13.563 

19.68 3200 3200 13.563 13.563 

39.36 6400 6400 13.563 13.563 

* Total number of atoms obtained from a CNT with periodic boundary conditions 

Initial velocity 
The next pre-simulation step is to determine the initial velocity distribution of the system. 

There are usually two ways of attributing a velocity to each atom. The first one consists 

of randomly sampling the magnitude of the velocity vector of each atom from the 

Maxwell-Boltzmann distribution at a given temperature, which is the equilibrium 

distribution for such systems [16]. A direction is then randomly attributed to each of the 

velocity vectors. Since the MATLAB rand function that is used samples numbers in the 

interval [0, 1] according to a uniform probability density function (PDF), a mapping of 

the obtained values is necessary to find corresponding velocities that respect the 

Maxwell-Boltzmann distribution. Let f(x) be the uniform PDF of the rand function. 

Then, f(x)dx is the probability that a number x sampled from this distribution is 

comprised between x and x + dx. Integrating f(x) from x = 0 to x = X gives the 

probability that a number x is comprised in the interval [0, X]. The resulting function, 

F(x) is called the cumulative distribution function (CDF) of the uniform distribution. The 

integral of f(x) from x = 0 to x = 1 is equal to one, since there is 100% chance that a 

number given by the rand function is in the interval [0, 1]. In the same manner, let f(v) be 

the Maxwell-Boltzmann PDF. The integral of f(v) from v = 0 to v = V gives the 

probability that a velocity v is comprised in the interval [0, V]. Thus, one can obtain the 

Maxwell-Boltzmann CDF, F(v), by integrating f(v). In order to obtain a mapping from 

f(x) into f(v), one must seek the value V by integrating f(v) on the interval [0, V] that 

gives the same probability as the integral of f(x) on the interval [0, X], where X is 

randomly given by the rand function. In other words, one must find the value V for 

10 



which F(X) = X = F(V). Mathematically, this procedure is given by the following 

equations: 

}f(v)dv = X1 (2.9) 

with the following normalized probability density function: 

■M-& (2.10) 

where the distribution parameter is given by: 

a = / ^ f f i . (2.11) 
V M: 

In the preceding equation, TMD is the desired temperature of the MD simulation and M is 

the mass of the atoms. The subscript i refers to the il atom of the system. Thus, this 

procedure is repeated for each atom to get the initial magnitude of their velocity vector. 

The small circle in Fig. 2.12 is an example of a random point sampled from the uniform 

PDF (bottom left) with a corresponding probability F(X) using the CDF (top left). This 

probability must be the same as the one given by the Maxwell-Boltzmann CDF (top 

right). The velocity V is then found by integrating numerically the Maxwell-Boltzmann 

PDF (bottom right) until F(V) = F(X). 

11 
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Figure 2.12: Uniform and Maxwell-Boltzmann PDF and CDF 

The second way of determining the initial velocity of the atoms is to use the fact that the 

Maxwell-Boltzmann distribution allows the use of the equipartition theorem to evaluate 

the kinetic energy EK of the system in the following manner: 

EK=Z^M1vi
24Nk

BT, 
i = i ^ ** 

MD (2.12) 

If one takes the same magnitude of the initial velocity vector and the same mass for all 

the atoms of the system, then the initial velocity of all the atoms is given by: 

12 



^={-^r (213) 

The directions of all the velocity vectors are then randomly distributed in space. If the 

system is allowed to evolve freely from this point, it will eventually reach an equilibrium 

state with a Maxwell-Boltzmann velocity distribution. The validity of Eq. (2.12), 

however, depends on certain conditions [17]: (1) there must be no temperature constraint 

on the system that can perturb the Maxwell-Boltzmann distribution, (2) the total 

momentum of the system must be zero, and (3) the heat capacity must be independent of 

temperature, which is only valid if TMD is greater than the Debye temperature. For 

temperatures below the Debye temperature, which is much higher than room temperature, 

there are quantum effects that are completely neglected when using classical MD 

simulations. 

Once the velocity vectors of all the atoms of the system have been initialized, it is 

required to minimize both the total linear and angular momenta of the system. This step is 

necessary to ensure that the CNT does not have any translational or rotational motion in 

space. The procedure used to do this has been suggested by [11]. The center of mass 

(CM) velocity Vcm is first calculated and removed in the following manner: 

v , = v - V r m (2.14) 
i i c m v / 

This procedure assures that the both the initial center of mass velocity and linear 

momentum P of the system are zero. The position vector ï; of each atom is then 

calculated with respect to the CM position of the system. Once this is done, the angular 

momentum L of the system is calculated with: 

L = R c m xMV c m +| ;m,(^xv i ) (2.15) 
i = l 

13 



where Rcm is the position of the center of mass and M is the total mass of the system. 

The first term on the RHS of Eq. (2.15) disappears since the center of mass velocity is 

zero. The angular velocity CD of the system is now required to remove the rotational 

motion of the CNT. One can express the angular momentum as a linear transformation of 

the angular velocity of the system [ 18] by using the moment of inertia tensor I: 

L = Iw (2.16) 

The moment of inertia coefficients are given by: 

I jk=ZM(r,2ô jk-r jAl) (2.17) 
i = l 

where ôjk is the Kronecker delta. Both j and k in the preceding equation can take the 

values of X, Y, or Z. The components of the position vector rj in the (X, Y, Z) referential 

are thus denoted by rx i , rYi, and rz., while its modulus is denoted by r,. Once the 

moment of inertia tensor has been calculated, the angular velocity co is obtained by 

inverting Eq. (2.16) and the rotational motion of the CNT is removed by applying the 

equation that follows: 

v.=\.-â>x% (2.18) 

Removing the translational and rotational motion of the CNT will slightly modify the 

temperature of the system. Modifying the velocity of each atom results in a variation of 

the total kinetic energy of the system, which can be related to the temperature of the 

system, as was explained before. This slight variation is not relevant, however, since as 

will be discussed in the simulation section, the temperature of the system will be further 

modified to be brought back to the desired TMD. 
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Boundary conditions 
There are typically three types of boundary conditions that can be used in MD 

simulations of carbon nanotubes: periodic boundary condition (PBC), free boundary 

condition, and fixed boundary condition. Since fixed and free boundary conditions are 

straightforward and because they are not used in the present work, they will only be 

explained briefly. For fixed boundary conditions, the atoms at both ends of the CNT are 

fixed in space (zero velocity) for all the simulation. The use of fixed boundary conditions 

renders the removal of the translational and rotational motion of the nanotube 

unnecessary, since the fixed ends will prevent any such motion. For free boundary 

conditions, no restriction of any kind is applied on the atoms of the nanotube. The atoms 

are allowed to move freely from their initial condition. It is thus important that the CNT 

have no total momentum (zero linear and angular momenta) since the nanotube must not 

rotate or move in a manner that it exits the simulation domain. When using fixed or free 

boundary conditions, additional phonon scattering will occur at both ends of the 

nanotube. This is why those two boundary conditions are usually used when one wishes 

to study the finite length effects on the properties of nanotubes. 

Periodic boundary condition, however, is meant to emulate an infinite size nanotube 

without having to use an infinite number of atoms. It is equivalent to filling the entire 

space with identical copies of the simulation domain (see Fig. 2.13). The number of such 

copies is limited by the fact that the interactions between the atoms, modeled by the inter

atomic potential, have a finite range, or a cut-off range, beyond which the interactions are 

assumed to be negligible. If an atom crosses a periodic boundary, it will reenter the 

simulation domain through the opposite boundary. 

15 



Image Simulation domain Image 

Figure 2.13: Schematic representation of periodic boundary condition 

Many features of the periodic boundary condition are represented in Fig. 2.13. The 

simulation domain represented in this figure can be seen as the initial set-up of a two-

dimensional MD simulation of carbon atoms in graphite. Only the left and right images 

have been represented, but other images exist at top, bottom, and four corners of the 

simulation domain. One can first notice that the images are not mirror images of the 

simulation domain, but translations. In order to avoid the superimposition of atoms (and 

huge, unphysical repulsive forces) at the beginning of the simulation, care must be taken 

in removing all the atoms that are on the right (or left) boundary. Those atoms will still 

exist in the images of the simulation domain. When using PBC, this step is done prior to 

the attribution of the initial velocity of the atoms. One can also see an example of an atom 

crossing a periodic boundary. When atom A crosses the left boundary, its image A' 

immediately reenters through the opposite boundary and conserves its momentum. Fig. 

2.13 also shows how the cut-off length rc of the inter-atomic potential influences the 

interaction between atoms when using PBC. Atom B is too far from atom C in the 

simulation domain and therefore, cannot interact with it. However, atom B is close 

enough to atom C in the left image to interact with it. 

Even though PBC is meant to represent a system of infinite size, there are still issues to 

be addressed which can cause finite size effects even when using PBC. Those length 

effects are explained in [17] and will be addressed in the post-simulation section of this 

chapter. 
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Inter-atomic potential 
The inter-atomic potential dictates how the atoms or molecules of a system interact with 

each other. The force F, acting on the atom i can be obtained by taking the gradient of the 

total potential (p of the system: 

?-£ (2-19) 
dr, 

The total potential of the system can be expressed as the sum of pair potentials (p̂  

N N 

<?=\]tÈ% (2-2°) 
i=l j=l 

I*' 

where the 1/2 factor has been included to avoid adding twice the contribution of each pair 

of atoms to the total potential energy. The majority of the potentials are empirical or 

semi-empirical. They are based on mathematical models with unknown parameters that 

have been fitted so that the MD results match some experimentally measured physical 

properties of the matter, such as the melting point, the elastic constant, the lattice 

constant, and so on [16]. Some of them can be expressed rather simply, with a few 

numbers of parameters, such as the well-known Lennard-Jones (LJ) potential: 

<Py = 4e 
( V 2 f V5 

a 
K S J 

a 

v ro 
(2.21) 

The two parameters, s and o, represent the depth of the potential well (minimum value 

of the potential) and the distance at which the inter-atomic potential is zero, respectively. 

The potential takes the value of £ when the distance between the two atoms is 21/6o\ The 

first term of the LJ potential represents the short-range, repulsive force between two 

atoms, while the last term represents the long-range, attractive force. To represent 

systems made of carbon atoms such as carbon nanotubes, more sophisticated potentials 

must be used. The Tersoff [19-20], REBO [21-23], and AIREBO [24] potentials are 
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examples of inter-atomic potentials that have been widely used for simulation of carbon 

systems. These potentials all contain modified pair potential terms that take into account 

the effect of a given atom on the interaction of two other atoms. These interactions are 

called three-body interactions. They also display many more complex features that will 

not be detailed here, but an interested reader is invited to consult the suggested 

references. 

LAMMPS input files 
All the MD simulations presented here have been performed with the open-source 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software. An 

up-to-date version of this software can be downloaded at http://lammps.sandia.gov/. In 

order to perform a simulation with this software, input files must first be created. This is 

the last test of the pre-simulation procedure. 

The first and most important file is the simulation.txt file. It contains a list of LAMMPS 

commands that will be executed by the software to perform the simulation. For a 

complete description of all the LAMMPS commands and input files structure, a full 

version of the LAMMPS user's manual can be found on the previously given website. An 

example of such simulation file is given in Appendix 1. This sample simulation file has 

been made for an equilibrium molecular dynamics (EMD) simulation of a 1000 nm long 

carbon nanotube with periodic boundary conditions. Note that the axial component of the 

heat flux is calculated at each time step and written in output files. The use of these 

output files will be discussed in the post-treatment section of this chapter. One can notice 

that a read_data command is used in the simulation set-up part. Once executed, this 

command will read the initial atom data of the simulation from another input file, the 

atomData.txt file. This file contains the following information: number of atoms, atom 

types, boundaries of the simulation domain, initial position and type of each atom, initial 

velocity of each atom, and atomic mass of each type of atom. The units of the written 

data must be the same as those specified in the simulation.txt file. In all the simulations, 

the units metal are used. 

IX 
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2.2 SIMULATION 

Types of simulation 
The two types of simulation used most frequently are equilibrium molecular dynamics 

(EMD) and non-equilibrium molecular dynamics (NEMD) simulations. Both methods 

can be used for the calculation of thermal conductivity of carbon nanotubes and require 

very different simulation set-up. 

EMD simulations consist in the calculation of the position and the velocity of each atom 

in an equilibrium system. A system is considered to be in an equilibrium state if the 

velocity distribution of the atoms corresponds to a Maxwell-Boltzmann distribution and 

if the total energy of the system is constant in time. In MD simulation language, an 

equilibrium run can be called a NVE run, i.e. a simulation with constant number of atoms 

(N), volume (V), and energy (E). The thermal conductivity of the system is then 

calculated on the basis of the linear response theory [16]. The details of the calculation of 

the thermal conductivity for EMD simulations are given in the next section of the current 

chapter. Since most of the time the initial velocity distribution of the system does not 

correspond to a Maxwell-Boltzmann distribution, an equilibration run (NVE) must first 

be done. Then, a NVT run is done to bring the system to the desired temperature. This is 

a simulation with constant number of atoms (N), volume (V), and temperature (T). 

Finally, another NVE run is performed during which the axial component of the heat 

current and the mean temperature of the system at each time step are calculated and 

written in output files. This data will be used during the post-treatment to calculate the 

thermal conductivity. 

NEMD simulations differ from EMD simulations in that the system simulated is not in an 

equilibrium state. A thermal gradient is introduced in the system by adding a hot and a 

cold reservoir at each end of the carbon nanotube, as shown in Fig. 2.14. Those reservoirs 

are kept at constant temperature by adding energy in the hot reservoir and removing 

energy in the cold reservoir at each time step. Once the system has reached a steady-state, 

the temperature profile of the carbon nanotube is calculated and the thermal conductivity 

is obtained from Fourier's law of conduction. The thermal gradient introduced in the 
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system during NEMD simulations can reach values typically around IO1 K/m (difference 

of 50K in a 5 nm long nanotube), which is physically impossible. That is why we chose 

to use the EMD method instead of the NEMD method. 

Qi, 

o o ^ o o o o o o o o o o o 
° r, ° r, ° O O o o o o o o o o o o ^ o o ^ o o o o o o o o o o o o o o o o 
Hot reservoir CNT Cold reservoir 

Figure 2.14: Schematic representation of a typical system for NEMD simulations 

Validation ofthe EMD simulation procedure 
Before performing any simulation, a validation of the EMD simulation procedure is 

required. As explained in the previous section, an equilibration run is necessary to bring 

the system to an equilibrium state. The equilibration run has to be long enough to allow 

the system to reach equilibrium. To determine the correct time of the equilibration run 

(number of time steps), a NVE simulation is performed for a 10 nm long (10, 10) CNT 

(1,600 atoms) using the REBO potential. The positions of the atoms are initialized as 

explained previously. The initial velocity distribution of the system is uniform at a mean 

temperature of 300K. The time of the NVE run has been chosen as 100,000 time steps of 

0.001 ps. After this equilibration run, a NVE run of 100 more time steps has been done 

during which the velocity of each atom and the mean temperature of the system have 

been written in output files. The velocity distribution has been calculated at each time 

step and averaged over the 100 time steps. To do this, the velocity axis is separated in 

intervals of 100 m/s and the number of atoms within each interval is calculated and 

averaged over the 100 time steps. The average velocity distribution is finally normalized 
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so that its maximum value matches the maximum value of the theoretical distribution. 

The Maxwell-Boltzmann velocity distribution has also been calculated at a temperature 

matching the temperature of the simulation during these 100 time steps, which 

corresponds approximately to a mean temperature of 180K. Even though the temperature 

of the system decreases, it will be brought back to the desired temperature during the 

NVT run. The average velocity distribution of the simulation and the theoretical velocity 

distribution are both shown in the next figure. Since both velocity distributions are 

essentially the same, it can be concluded that the chosen number of time steps of the 

equilibration run is long enough to allow the system to reach an equilibrium state. 
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Figure 2.15: Velocity distribution after the equilibration run 

It has been said that the mean temperature of the system was approximately 180K, even if 

it was initially 300K. Since the total energy of the system is constant, a drop in 

temperature means that a portion of the kinetic energy of the system has been converted 
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into potential energy. If the bond between two atoms is modeled by a spring, the potential 

energy stored within the spring will increase if it is compressed. Using this analogy, the 

increase of potential energy of the system means that the atoms have been brought closer 

to each other and that the mean radius of the carbon nanotube has decreased. The mean 

radius of the carbon nanotube during the equilibration run has been calculated and 

averaged over the first 25,000 time steps. As expected, the mean radius of the carbon 

nanotube decreases from the initial theoretical value of 6.7813 A to a value of 

approximately 6.6686 A. This represents a decrease in radius of less than two percent. 

The reasons for this change in radius have not been studied in detail, but the mean radius 

has been found to be dependant of the inter-atomic potential used in the simulation. 

The second step of an EMD simulation is the NVT run which allows the system to reach 

a desired temperature. There exists different methods to do so, but LAMMPS uses the 

Nosé-Hoover thermostat. The temperature of the system has been calculated during a 

typical simulation. The simulation consisted in a 100,000 time steps NVE run for 

equilibration, a 400,000 time steps NVT run to bring the system to a mean temperature of 

300 K, and a 1,000,000 time steps NVE run. The mean temperature of the system as a 

function of time during a simulation can be seen in the next figure. 
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Figure 2.16: Mean temperature of the system during a simulation 

Each of the three simulation parts can be seen in Fig. 2.16: the equilibration run where 

the mean temperature is 180K, the NVT run where the temperature of the system is 

brought back to 300 K, and the NVE run where the mean temperature remains at 300 K 

but with smaller oscillations. This means that the chosen number of time steps of the 

NVT run is large enough to allow the system to reach and remain at the desired 

temperature during a simulation. 

Validation ofthe minimization ofthe initial total momentum ofthe system 
The procedure for the minimization of the initial linear and angular momenta has been 

explained in section 2.1. It is required to validate this procedure and to verify that the 

zero total momentum of the system is well preserved during a simulation. A MATLAB 

routine has been written to calculate: (1) the position of the center of mass, (2) the 

velocity of the center of mass, (3) the linear momentum of the system, and (4) the angular 
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momentum of the system. The required data is the positions and velocities of all the 

atoms at each time step of the simulation. 

Two test cases have been considered to validate the MATLAB routine. For the first test 

case, a 5 nm long (5, 5) carbon nanotube (400 atoms) with all atoms moving in the same 

direction at the most probable velocity of the Maxwell-Boltzmann distribution at 180 K, 

which corresponds approximately to a velocity of 500 m/s, is considered. The linear 

momentum of the system is given by: 

P = i > , v , (2.22) 
i=l 

For a nanotube made of carbon atoms with a velocity of 500 m/s, the theoretical value of 

the linear momentum is P = 4.9793 (eV/Â) ps. Since all the atoms are moving in the 

same direction, the angular momentum of the system is expected to be zero. 

For the second test case, a 5 nm long (5, 5) carbon nanotube rotating about its axis at a 

tangential velocity corresponding the most probable velocity of the Maxwell-Boltzmann 

distribution at 180 K is considered. The linear momentum of the system is expected to be 

zero. The angular momentum of the system is calculated using Eq. (2.15), which 

simplifies to the following equation when the center of mass velocity is zero: 

L = Zm,(^xv i) (2.23) 
i = l 

Again, for a nanotube made of carbon atoms with a tangential velocity of 500 m/s, the 

theoretical value of the angular momentum is Lz = 16.8831 eV ps. Since the nanotube is 

rotating about its axis, the x and y components of the angular momentum are expected to 

be zero. For both test cases, the calculated values of the linear and angular momenta 

using the MATLAB routines match the theoretical values. 

24 



Conservation ofthe linear and angular momenta during a simulation 
To verify that the zero linear and angular momenta are conserved during a simulation, a 

NVE run has been performed for a 5 nm long (10, 10) CNT using the REBO potential. 

The simulation time is 10,000 time steps of 0.001 ps. The MATLAB routine has been 

used to calculate the properties of the system, i.e. center of mass position and velocity, 

linear momentum, and angular momentum. The units used in the following figures are 

the same as those of a simulation in LAMMPS. Because the simulation data is written in 

LAMMPS input and output files using a 15 digits exponential format, the center of mass 

position and velocity cannot be exactly zero. Moreover, there is a finite numerical 

precision for all variables and a propagation of errors (round off errors) during a 

simulation. 

The order of magnitude of the x and y components of the position (top and middle left) 

and of all the components of the velocity (right, from top to bottom) of the center of mass 

in Fig. 2.17 can be explained by these reasons. However, the large variations in the z 

component of the center of mass position (bottom left) can be attributed to the initial 

position of the boundary conditions (see Fig. 2.13). Using this set-up in the axial 

direction and assuming that z = 0 lies in the middle of the simulation domain, the initial z 

component of the center of mass will be slightly smaller than zero, but of the order of 

magnitude of 1 A. Once the simulation is started, the atoms lying on the left PBC can 

cross the boundary back and forth, which results in variations of the z component of the 

center of mass position. 

As can be seen in Fig. 2.18, the same conclusions can be drawn for the components ofthe 

linear (left) and angular (right) momentum of the system. There is some concern with the 

x and y components of the angular momentum. The large value of those components 

could be caused by the vibration modes of the carbon nanotube. As the nanotube 

experiences a combination of radial, longitudinal and tangential vibrations, it deforms in 

such a manner that the instantaneous angular momentum is not zero about these axes. 

This could make the angular momentum quite large at a given time step, without being 

larger than the value calculated in the second test case. What matters the most is that the 
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mean value of the components of the angular momentum is zero during the simulation, 

which is the case. 
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Figure 2.17: Preservation of the center of mass position and zero velocity 
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Figure 2.18: Preservation ofthe zero total momentum ofthe system 
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The same verification has been done at the end of a typical simulation. The simulation is 

the same as the one for the validation of the NVT run. At the end of this simulation, an 

additional NVE run of 10,000 time steps has been performed during which the position, 

velocity, linear and angular momentum of the system have been calculated. The results 

can be seen in Figs. 2.19 (left: position and right: velocity) and 2.20 (left: linear and right: 

angular momentum). 
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Figure 2.19: Center of mass position and velocity at the end of a simulation 
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Figure 2.20: Zero total momentum of the system at the end of a simulation 

The order of magnitude of all these variables has increased and stabilized during the 

simulation. However, it remains negligible compared to the order of magnitude of the 

simulation variables. It can thus be concluded that the position and velocity of the center 

of mass, the zero linear momentum, and the zero angular momentum are well preserved 

during a simulation. 
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2.3 POST-TREATMENT 

At the end of an EMD simulation, the available data consists in the axial component of 

the heat current (the compute heat/flux command on LAMMPS computes the heat 

current, not the heat flux) and the mean temperature of the system at every time step. It is 

possible to use this data to calculate the lattice thermal conductivity of a carbon nanotube 

using the following equation, which can be derived from the linear response theory [16]: 

k=r^ljJ(j.(0)UO)* (2-24) 

where kB is the Boltzmann constant, TMD is the temperature of the system (taken as the 

average of the mean temperature of the system during the simulation), L and A are the 

length and cross-sectional area of the nanotube, and j z is the axial component of the heat 

current. There are different conventions for the cross-sectional area of a nanotube, but the 

one used in all simulations of the present work is a ring with a thickness equal to 3.4 A. 

In Eq. (2.24), (jz (0) j z (t)^ is called the heat current auto-correlation function (HCACF). 

A method based on fast Fourier transform (FFT) can be used to calculate the auto

correlation function much faster than the direct method explained below. The numerical 

implementation ofthe FFT method is detailed in [26]. 

In order to better understand what the auto-correlation function is, consider the following 

example. After a simulation of (Mt - l )At , the axial heat current is known for t = 0, At, 

2At, ..., (Mt - l )At . Thus, there are Mt data points available for the calculation of the 

thermal conductivity. The auto-correlation function at a given time t = jAt (with j = 0, 1, 

2, ..., M, -1 ) can be calculated using: 

i M 

HCACF(t) = - X j , ( t k ) j , ( t k + t ) (2.25) 
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where M = M, - j and ti corresponds to t = 0. Consider a simulation of lOAt (M, = 11). 

The third term (j = 2) of the auto-correlation function can be expressed as: 

HCACF(2At) = -[j z(0)j z(2At) + jz(At)jz(3At) + ... + jz(8At)jz(l0At)] (2.26) 

Similarly, the fifth term (j = 4) is given by: 

HCACF(4At) = l [ j z(0)j z(4At) + jz(At)jz(5At) + ... + jz(6At)jz(l0At)] (2.27) 

and the last term (j = 10): 

HCACF(lOAt) = j z (0) j z (lOAt) (2.28) 

One can notice that the statistical precision of the HCACF is better at early times, since it 

samples more time origins. It also means that the HCACF at the end of a simulation is not 

precise and can behave erratically. The integration of the HCACF in Eq. (2.24) is thus 

limited by the precision of the auto-correlation function, which is influenced by the 

length of the simulation and by the number of time steps at which the heat current is 

known. 

To overcome this difficulty, it is custom to use a best-fit of the auto-correlation function 

for times smaller than the time required for phonons to travel ballistically from one end 

of the nanotube to the other. It might be conservatively estimated as xb ~ L/c^ , where 

c ^ = 20.35 km/s is the speed of sound of the longitudinal acoustic mode, which is the 

fast traveling mode in a carbon nanotube [13]. In other words, the best-fit mimics only 

HCACF(0 < t < Tbf ), where xbf is the fitting time. This early time best-fit is required to 

avoid spurious self-correlation effects that could occur when phonons crossing the PBC 

interfere with themselves [17]. The most common best-fit is: 
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HCACFbf = A,e-,/T' + A2e't/T2 (2.29) 

where Ai, A2, ti, and T2 are the parameters to be determined. Physically, tj and x2 can be 

viewed as half the period for energy transfer between two neighboring atoms and as the 

average phonon-phonon scattering time, respectively [11]. 

The steps to calculate the thermal conductivity from an EMD simulation are as follow: 

(1) calculate the heat current auto-correlation function using Eq. (2.25) or the FFT 

method described in [26] from the heat current data, (2) perform a fitting of the HCACF 

using Eq. (2.29), (3) calculate the average temperature of the nanotube during the 

simulation using simulation data, and (4) use the resulting data from steps (1) to (3) in 

Eq. (2.24) to calculate the thermal conductivity. This post-treatment procedure of EMD 

simulation results will allow us to study in details the impact of simulation and post-

treatment parameters on the calculated thermal conductivity, such as the simulation time 

(number of time steps) or fitting time. 
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CHAPTER 3: Sensitivity of MD simulations to post-treatment 
when determining thermal conductivity of carbon nanotubes 

3.1 RÉSUMÉ 

Ce chapitre présente les résultats d'un article qui traite d'une étude préliminaire sur 

l'effet du post-traitement de simulations de dynamique moléculaire à l'équilibre sur le 

calcul de la conductivité thermique de nanotubes de carbones. L'effet de la durée de la 

simulation (nombre de pas de temps) sur la reproductibilité des résultats est analysée en 

calculant la fonction d'auto-corrélation pour des simulations de différentes durées 

(100,000 à 2,000,000 pas de temps). Les résultats montrent que la durée des simulations 

que l'on retrouve habituellement dans la littérature pourrait être insuffisante pour 

minimiser l'impact de la condition initiale du système sur la valeur de la conductivité 

thermique calculée. On étudie également l'effet de la variation de l'intervalle de temps 

utilisé lors du calcul de la courbe de tendances de la fonction d'auto-corrélation pour un 

nanotube d'une longueur de 5 nm. 

3.2 INTRODUCTION 

Carbon nanotubes have attracted a lot of attention over the last years due to their 

remarkable properties. In particular, their thermal conductivity has been the subject of 

various investigations. Depending on the experimental technique and on the nanotube 

characteristics, thermal conductivity measurements reported in literature present quite a 

wide range of values, approximately from 300 to 10,000 W/mK [3]-[7]. Such a large 

range of values has raised some questions regarding the heat transfer properties of carbon 

nanotubes. 

In order to gain a better understanding of the heat transfer behaviour of carbon nanotubes, 

models have been developed to predict their thermal conductivity. In this work, we focus 

on molecular dynamics (MD) simulations which calculate the transient evolution of the 
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position and velocity of each atom of a system, based on Newton's second law. Different 

types of inter-atomic potentials can be used [21]-[25] to act as the driving forces. 

Although conceptually simple, MD simulations proved to be quite challenging. First, they 

are computationally expensive. Second, examining literature reveals that different authors 

relying on MD report quite different nanotube thermal conductivities. For example, [27] 

reported a value of 1,700 W/mK for a 30 nm long (10, 10) nanotube, while [28] reported 

values ranging from 260 to 400 W/mK for 10 to 400 nm long (10, 10) nanotubes. Both 

used non-equilibrium molecular dynamics (NEMD) with the same nanotube cross-

sectional area. Furthermore, the trends observed are not always the same. Under axial 

strain, [8] reported that the highest thermal conductivity for a (10, 10) nanotube was 

obtained when the tube was stretched at 2% of its original length. On the other hand, [9] 

showed that the optimal thermal conductivity for the same type of nanotube was obtained 

at 6% compression. Therefore, MD simulations seem relatively sensitive to: (i) the input 

parameters (e.g., initial velocity distribution, initial temperature of the system, atomic 

potential, atomic potential parameters, etc.), (ii) the simulation parameters (e.g., length of 

the simulation, length of the simulation cell, boundary conditions, simulation method, 

etc.), and (iii) the post-treatment ofthe simulation results (e.g., number of time steps used 

to compute the auto-correlation function when using Green-Kubo's formula, number of 

time steps used for the fitting of the auto-correlation function, number of simulations 

done while taking averages, etc.). 

The objective of the present work is to investigate and document to what extent the post-

treatment of the simulation results affects the final value of the thermal conductivity. A 

brief summary of how MD simulations are performed is first presented. Then, we 

describe how the length of the simulation (i.e., number of time steps) affects the results. 

Finally, the influence of the best-fit of the auto-correlation function is reported. 
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3.3 METHODOLOGY USED FOR MD SIMLUATIONS 

In this section, we describe the numerical simulations that have been performed for a 

5nm long (10, 10) carbon nanotube using equilibrium molecular dynamics (EMD). The 

potential used in all simulations is the REBO potential [23], which has been widely used 

in literature to study carbon nanotubes. The potential parameters used are those already 

included in the software LAMMPS. Initially, the atoms were located at their equilibrium 

locations. All atoms were assigned the same velocity vector magnitude, with the average 

kinetic energy of the system satisfying the equipartition theorem [16]. However, the 

direction of the velocity vector of each atom was chosen randomly. Then, the velocity of 

each atom is modified so as to eliminate both the total linear and angular momenta of the 

system with respect to the center of mass, see [11]. Periodic boundary condition (PBC) is 

used in the axial direction of the nanotube only. 

The time step for all simulations is taken as 0.001 ps. In order to bring the system to an 

equilibrium state, a NVE (constant number of atoms, volume, and energy) run of 100 ps 

(i.e. 100,000 time steps) is first done. Then, a 40 ps NVT (constant number of atoms, 

volume, and temperature) run at TMD = 300 K is done using Nosé-Hoover thermostat. 

Finally, a NVE run is done for a duration varying from 100 ps to 2,000 ps during which 

the axial component of the heat current j z and the system instantaneous temperature are 

calculated at each time step and written in an output file for post-treatment. Simulations 

were performed using the open source software LAMMPS on the supercomputer Colosse 

located at Université Laval (part of CLUMEQ). 

The heat current auto-correlation function (HCACF) is calculated using a method based 

on fast Fourier transform (FFT). The numerical implementation of this method is 

explained in [26]. The thermal conductivity is related to the heat current auto-correlation 

function by 

kBT LA 0 
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where ks is the Boltzmann constant, T is the mean temperature of the system (taken as 

the average of the instantaneous temperature of the system during the simulation), L and 

A are the length and cross-sectional area of the nanotube, and j z is the axial component of 

the heat current. As explained in [11], there exist many conventions in the literature for 

the cross-section of a carbon nanotube. The convention used in this work is a ring of van 

der Waals thickness 0.34 nm. In order to perform the integral in Eq. (3.1), it is custom to 

use a best-fit of the numerical results for time smaller than the time it takes for a phonon 

to travel across the nanotube from one end to the other ballistically (xb). An estimation 

method for Xb is outlined in [11]. The reason to do so is that when using PBC, phonons 

that leave the simulation cell and re-enter can interfere with themselves, causing an 

artificial correlation [17]. However, not all authors use fitting times smaller than Xb. The 

most common best-fit is 

HCACFbf = A,e-t/T' + A2e"t/T2 (3.2) 

where Ai, A2, ti, and x2 are the parameters to be determined. The best-fit of the auto

correlation function can then be integrated and used in conjunction with Eq. (3.1) to 

obtain the thermal conductivity of the carbon nanotube. 

3.4 EFFECT OF THE SIMULATION TIME 

The first numerical experiment consisted in varying the duration of the MD simulation. In 

literature, the total duration of MD simulations for a similar tube is typically between 400 

and 1,000 ps. In the present experience, simulations were performed over a total number 

of 2,000,000 time steps (i.e. 2,000 ps). Then, the auto-correlation function was calculated 

starting from the first time-step up to a certain number of time steps (between 100,000 

and 2,000,000). The procedure was repeated five times with different initial distributions 

of velocity. The resulting thermal conductivities are shown in Fig. 3.1 as a function ofthe 

number of time steps used to calculate the heat current auto-correlation function. The 

fitting time used to calculate the thermal conductivity for all five simulations in Fig. 3.1 
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is Xbf = 10xb. Fig. 3.1(a) presents the result of the individual five runs while Fig. 3.1(b) 

reports the average and standard deviation of k (error bars based on the 5 runs). 

For a given run, one can observe that the thermal conductivity can vary significantly with 

the simulation time, especially when the simulation time is below 500,000 time steps. For 

example, considering the pink series of points in Fig. 3.1(a), k varies from 240 W/mK 

based on a simulation of 100,000 time steps, to 425 W/mK based on a simulation of 

500,000 time steps. Furthermore, for such simulation lengths, a variation in the initial 

velocity distribution can cause large variations in the thermal conductivity. This explains 

the large standard deviations in Fig. 3.1(b) for simulations of less than 500,000 time 

steps. Based on Fig. 3.1, it would be hazardous to use simulations of less than 500,000 

time steps as the dispersion of the results is quite large. 

450 400 

0 500 1000 1500 2000 
Length of the simulation [thousand At] 

0 500 1000 1500 2000 
Length of the simulation [thousand At] 

a) b) 

Figure 3.1: Effect of the length of the simulation on the thermal conductivity value; 

a) for 5 different runs, and b) average and standard deviation. 
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3.5 EFFECT OF THE FITTING TIME 

Since the auto-correlation function is typically unsmooth, because the uncertainty on the 

auto-correlation function increases with time (the number of different time origins 

sampled decreases when time increases), and most importantly, since there exist spurious 

self-correlation effects when using PBC, most authors use a best-fit to analyze the results 

of a MD simulation, see Eq. (3.2). Four best-fit parameters are to be determined by 

minimizing the error between the simulation results and the fitting. However, the time 

frame over which to perform the fitting of the auto-correlation function (Xbf) is different 

among authors. For example, [11] used Xbf < Xb and obtained a value of k ~ 30 W/mK, 

while [29] used Xbf = 12Xb and reported a value of k ~ 1,600 W/mK for a similar 

nanotube. For the nanotube considered here, the value of Xb is approximately 0.25 ps. 

We analyzed the results of the simulations presented above by determining the best-fit, 

Eq. (3.2), based on different time frames Xbf (i.e., number of Xb intervals). In other words, 

only the auto-correlation function datasets for t smaller than the time frame considered 

were used to determine the best-fit. The results are shown in Fig. 3.2(a) for 5 different 

runs, and the average and standard deviation is reported in Fig. 3.2(b) (excluding values 

in the non-converging time interval). Important variations of k are found depending on 

the number of Xb intervals used to find the best-fit. The thermal conductivity found is ~ 30 

W/mK when very small fitting times are used. This result is in good agreement with the 

value reported by [11]. However, for such small fitting times, the best-fit only considers 

time steps that are part of the fast initial decay of the auto-correlation function, likely 

underestimating the thermal conductivity. If the fitting time is made larger but is still 

under Xb, there is a non-convergence effect in the thermal conductivity value. This effect 

occurs because the auto-correlation function has a peak in this time interval, see Fig. 3.3. 

This causes the best-fit to greatly overestimate the long decay time of the auto-correlation 

function, resulting in a very large, unphysical value for the thermal conductivity, which is 

why no points are reported in Fig. 3.2 for that interval of Xbf. If a fitting time larger than 

Xb is used, the thermal conductivity converges towards a value larger than the one found 
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for very small fitting times (average of 210 W/mK for xbf = 2xb). As xbf continues to 

increase, the value of k also increases up to an average of 275 W/mK when xbf = 20xb. 

In order to illustrate how Xbf influences the resulting conductivity, we show in Fig. 3.3 an 

example of auto-correlation function as a function of t compared to two best-fits. In Fig. 

3.3(a), the best-fit was determined on Xbf = xb, while in Fig. 3.3(b) it was determined on 

Xbf = 20Xb. When using Xbf = Xb, the fitting doesn't represent properly the slow exponential 

decay behaviour of the HCACF at later times (that may well result from spurious self-

correlation effects). It is also possible to see that for this fitting time (t < 0.25 ps), the 

auto-correlation function has a peak which makes the best-fit to decay more slowly, 

giving a higher thermal conductivity value. This effect is even more pronounced for 

fitting times smaller than Xb. However, if one is using a longer fitting time, for example 

20xb, the fitting will represent this long exponential decay better, and yield values that 

will slowly converge. Fitting times longer than 20Xb have also been studied. Another 

increasing jump in the thermal conductivity might occur if the fitting time is further 

increased, when the fast initial exponential decay is no longer taken into account by the 

best-fit. This results in a better fitting of the slow, exponential decay and higher thermal 

conductivity values. 

# xu intervals used for the best-fit 
b 

# x intervals used for the best-fit 
b 

Figure 3.2: Effect of Xbf (number of Xb intervals) for the best-fit; 

a) for 5 different runs, and b) average and standard deviation. 
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Those results might partially explain why different values can be found in the literature 

for different fitting times. As pointed out earlier, [11] reported a value of k ~ 30 W/mK 

while using a fitting time smaller than Xb. This low value may be caused by the best-fit 

only sampling times that are part of the initial fast decay of the auto-correlation function. 

On the other hand, [29] reported a value of k - 1,600 W/mK using a fitting time greater 

than Xb. This may be explained by the best-fit that better represents the long and slow 

exponential decay of the auto-correlation function. However, it is known that for such 

times, there may be some artificial correlation effects. Furthermore, they used a 

simulation time of 400 ps, which has been shown to be insufficient to minimize the error 

occurring from different initial velocity distributions. Combined with the large fitting 

time used by the authors, this might explain why they obtained such high thermal 

conductivity values. 

HCACF 
Best-fit on 1 x. 

HCACF 
Best-fit on 20 x. 

Figure 3.3: Examples of auto-correlation functions and best-fits; 

a) Best-fit with xbf = lxb, and b) Best-fit with xbf = 20xb. 
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3.6 CONCLUSIONS 

In the present work, the effect of post-treatment has been studied for the calculation of 

the thermal conductivity of a 5 nm long (10, 10) carbon nanotube using Green-Kubo 

relation. It has been shown that the number of time steps usually used for MD simulations 

in the literature might not be sufficient to ensure that a difference in the initial condition 

of the system has fewer repercussions on the resulting thermal conductivity. Moreover, 

the time interval used for the fitting of the auto-correlation function has been studied over 

a wide interval. For a 5 nm long nanotube, it is difficult to recommend any fitting time 

because of the small time taken by phonons to traverse ballistically the nanotube. If too 

small fitting times are used, only the fast initial decay of the auto-correlation function is 

fitted, resulting in an underestimation of the thermal conductivity. If too large fitting 

times are used, the portion of the auto-correlation function that might be the result of an 

artificial correlation is fitted. This behaviour of the thermal conductivity as a function of 

the fitting time may be different, however, for longer carbon nanotubes, since their Xb is 

larger and the shape of the auto-correlation function should not vary significantly. The 

study of the effect of post-treatment for larger nanotubes shall be the subject of future 

studies. 
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CHAPTER 4: Impact ofthe post-treatment of equilibrium 

molecular dynamics (EMD) simulations when determining the 

lattice thermal conductivity of carbon nanotubes 

4.1 RÉSUMÉ 

Ce chapitre contient les résultats d'un article visant à poursuivre l'étude présentée lors du 

précédent chapitre. On analyse en détails l'impact du post-traitement de simulations de 

dynamique moléculaire à l'équilibre sur la conductivité thermique pour des nanotubes de 

différentes longueurs. On propose une méthode pour déterminer la durée minimale d'une 

simulation reposant sur l'impact de la condition initiale sur la conductivité thermique 

calculée. Une étude systématique sur l'impact du choix de l'intervalle de temps utilisé 

pour le calcul de la courbe de tendances de la fonction d'auto-corrélation pour des 

nanotubes de différentes longueurs est ensuite présentée. À la lumière des résultats, il est 

suggéré que l'effet de longueur rencontré dans la littérature pourrait être attribué en partie 

au choix de cet intervalle de temps. On observe également qu'il est possible d'obtenir la 

même conductivité thermique pour des nanotubes de différentes longueurs en choisissant 

un intervalle de temps suffisamment long. 

4.2 INTRODUCTION 

After the discovery of carbon nanotubes (CNTs), Sumio Iijima has published a paper [1] 

that has generated an increased interest in those molecules which have both remarkable 

electrical and thermal properties. For instance, some investigations on carbon nanotubes 

have reported a very high thermal conductivity [2]. Depending on the experimental 

technique, operating conditions, and on the nanotube characteristics, thermal conductivity 

measurements reported in literature vary approximately from 300 to 10,000 W/m K [3-7]. 
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The experimental measurement of the thermal conductivity of an isolated CNT can prove 

to be very difficult [3]. Furthermore, the chirality of the studied CNT, which influences 

its thermal conductivity, is hardly known. Because of this, numerical models have been 

developed to gain a better understanding of the heat transfer mechanisms in carbon 

nanotubes. Molecular Dynamics (MD) simulation is a numerical tool that can be used to 

study the thermal properties of CNTs with a given chirality. It consists in determining the 

transient evolution of the position and velocity of a system of particles by solving 

Newton's second law. There are typically two main methods for determining the thermal 

conductivity of carbon nanotubes using MD simulations: equilibrium molecular 

dynamics (EMD) and non-equilibrium molecular dynamics (NEMD). EMD simulations 

[30] consist in the calculation of the position and the velocity of each atom in an 

equilibrium system. From this data, the instantaneous heat flux can be computed and used 

to estimate the thermal conductivity. NEMD simulations [31] differ from EMD 

simulations in that the system simulated is not in an equilibrium state. A thermal gradient 

is introduced in the system by adding a hot and a cold reservoir at each end of the carbon 

nanotube. Those reservoirs are kept at constant temperature by adding energy in the hot 

reservoir and removing energy in the cold reservoir at each time step. Once the system 

has reached a steady-state, the temperature profile in the carbon nanotube is calculated 

and the thermal conductivity is obtained from Fourier's law of conduction. Note that 

there are other methods that differ from EMD simulations performed in this work that can 

be used to predict the phonon properties in a carbon nanotube and then estimate the 

thermal conductivity, such as the Boltzmann transport equation lattice dynamics (BTE-

LD) method [32], the Boltzmann transport equation molecular dynamics (BTE-MD) 

method [32], or the spectral energy density method [33]. However, those methods do not 

use the integration of the heat current auto-correlation function to estimate the thermal 

conductivity, so they will not be addressed in the present work. 

Presently, there is no agreement in literature on the exact value of the thermal 

conductivity of carbon nanotubes [11]. Moreover, the trends observed can be very 

different. For example, the effect of the application of external mechanical strain on a 

carbon nanotube on its thermal conductivity has already been addressed in the past [8,9], 
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but the reported results are contradictory. The maximal thermal conductivity reported by 

Ren et al. [8] for a (10, 10) CNT under axial strain was obtained when the CNT was 

stretched at 2% of its original length. On the opposite, Li et al. [9] reported that the 

maximal thermal conductivity value for a (10, 10) CNT was obtained when the CNT was 

compressed at 6% of its original length. The explanation of discrepancies found in 

literature about the numerical calculation of the thermal conductivity of CNTs using MD 

simulations is still an open topic [10,11]. 

The present work addresses the post-treatment of the results of equilibrium molecular 

dynamics simulations when determining the thermal conductivity of carbon nanotubes. It 

is important to emphasize that the focus of this work is not on determining the exact 

value of the thermal conductivity of a carbon nanotube, but rather on the equilibrium 

molecular dynamics post-treatment approach, and in particular the use of a best-fit of the 

heat current auto-correlation function. If the results from different simulations are to be 

compared, then the methods used and their shortcomings must first be clearly understood. 

The purpose of this work is thus to study in details the EMD method with a best-fit of the 

auto-correlation function, and to explain some of the differences in the calculated thermal 

conductivity found in literature. In the first section, the numerical procedure of the MD 

simulations is detailed. Then, a study of the thermal conductivity as a function of the 

simulation time is presented. A method to determine the required simulation time (i.e., 

number of time steps) that minimizes the impact of the initial condition on the thermal 

conductivity is introduced. In the next two sections, a thorough analysis of the thermal 

conductivity as a function of the fitting time when using a double-exponential best-fit of 

the auto-correlation function is presented. The main behaviors of the best-fit and the 

shortcomings of this method are addressed. The thermal conductivity as a function of the 

fitting time for different nanotube lengths is also studied. In the last section, a comparison 

between simple and double-exponential best-fits is presented. 
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4.3 NUMERICAL PROCEDURE 

In this section, we summarize briefly how the molecular dynamics simulations were 

performed and post-treated in order to estimate the thermal conductivity of carbon 

nanotubes. Given a nanotube length and chirality, the atoms were initially positioned at 

the equilibrium position with a bond length of 1.42 A. A velocity vector with random 

direction in space was assigned to each atom, sampled from a uniform velocity 

distribution at the temperature considered. The velocity of all atoms was then modified in 

order to eliminate the total momentum (linear and angular) of the system using the 

following mathematical procedure [11]: 

1 N 

V,,new = V,,o.d " — Z ^.old " <» X «i ( 4 - ! ) 
JN j=l 

where v; and r, denote the velocity and position vector of the il atom, N is the total 

number of atoms, and cô is the angular velocity of the system. The details of the 

calculation of the angular velocity of the system are given in Goldstein [18]. In the 

present work, the chirality of all nanotubes is (10, 10) and the initial temperature of the 

system is 300 K for all simulations. 

Before running a simulation, the initial setting (i.e. the initial position, velocity, and mass 

of the atoms) was imported in the LAMMPS [14,15] software. The potential used for all 

simulations is the REBO potential [23] with the default parameters for carbon atoms 

included in LAMMPS. Periodic boundary conditions (PBC) were considered in the axial 

direction of the nanotube. The simulations were carried out in three steps: first, an 

equilibration NVE run (with constant number of atom N, volume V, and energy E) is 

performed for 100 ps in order to allow the system to reach equilibrium, i.e. to achieve a 

Maxwell-Boltzmann velocity distribution. Second, an NVT run (with constant number of 

atom N, volume V, and temperature T) is performed for 400 ps to bring the system to the 

desired temperature. During these two steps, the temperature, total momentum, center of 

mass position, and center of mass velocity of the system are monitored. The 400 ps NVT 
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run is found to be sufficiently long to allow the system to reach the desired temperature. 

The zero total momentum, position, and velocity of the system are well preserved during 

the equilibration process. Moreover, the resulting velocity distribution is in agreement 

with the Maxwell-Boltzmann distribution. After the equilibration runs, an NVE run is 

performed for 2,000 ps during which the heat current and the mean temperature of the 

system are calculated at each time step using the LAMMPS compute heat/flux and 

compute temp commands and stored in output files. The time step is 1 fs for all 

simulations. 

The output data is used to calculate the lattice thermal conductivity of the carbon 

nanotube using the following equation, which can be derived from the linear response 

theory [16]: 

k = ̂ - ^ ] < J 2 ( 0 ) J 2 ( t ) ) d t (4.2) 

where kB is the Boltzmann constant, T is the temperature of the system (taken as the 

average of the mean temperature of the system during the simulation), L and A are the 

length and cross-sectional area of the nanotube, and j z is the axial component of the heat 

current. There are different conventions for the cross-sectional area of a nanotube [11], 

but the one used in all simulations of the present work is a ring with a thickness equal to 

3.4 A. In Eq. (4.2), (jz(0)jz(t))is called the heat current auto-correlation function 

(HCACF). A method based on fast Fourier transform (FFT) is used to calculate the auto

correlation function much faster than the direct method explained below. The numerical 

implementation ofthe FFT method is explained by Allen and Tildesley [26]. 

In order to better understand what the auto-correlation function represents, consider the 

following example. After a simulation of (Mt -1) At, the axial heat current is known for t 

= 0, At, 2At, ..., (Mt - l )At . Thus, there are Mt data points available for the calculation 

of the thermal conductivity. The auto-correlation function at a given time t = jAt (with j 

= 0, 1,2, ..., Mt - 1 ) can be calculated using: 
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i M 

HCACF(t) = (jz(0)jz(t)) = - £ j z ( t k ) j z ( t k + t ) (4.3) 
M k=l 

where M = Mt - j and tl corresponds to t = 0. For the sake of illustration, consider a 

simulation of lOAt (i.e., Mt = 11). Then, for example, the third term (j = 2) of the auto

correlation function can be expressed as: 

HCACF(2At) = -[ j z(0)j z(2At) + jz(At)jz(3At) + ... + jz(8At)jz(l0At)] (4.4) 

Similarly, the fifth term (j = 4) is given by: 

HCACF(4At) = i [ j z(0)j z(4At) + jz(At)jz(5At) + ... + jz(6At)jz(lOAt)] (4.5) 

and the last term (j = 10): 

HCACF(lOAt) = j z (0) j z (lOAt) (4.6) 

One can notice that the statistical precision of the HCACF is better at early times, since it 

samples more time origins. It also means that the HCACF for large time is not precise 

and can behave erratically. The integration of the HCACF in Eq. (4.2) is thus limited by 

the precision of the auto-correlation function, which is influenced by simulation time and 

by the number of time steps at which the heat current is known. 

It has been suggested by some authors to perform a best-fit of the auto-correlation at 

early times to avoid spurious self-correlation effects [11,17]. In other words, the best-fit 

mimics only HCACF(0 < t < xbf ), where xbf is the fitting time. It is worth to mention 

that HCACF(t) involves combination of heat currents evaluated at all the discrete times 

of the simulation (even times larger than t), see Eqs. (4.5) or (4.6). The fitting time xbf is 
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chosen in regards to xb, the time required for a phonon to travel ballistically from one 

end of the nanotube to the other. It might be conservatively estimated as xb ~ L/c^ , 

where c ^ = 20.35 km/s is the speed of sound of the longitudinal acoustic mode, which 

is the fast traveling mode in a carbon nanotube [13]. For lengths of approximately 5, 10, 

20, 40, 200, and 1000 nm, the ballistic times xb are thus 0.242, 0.484, 0.968, 1.936, 

9.680, and 48.400 ps, respectively. The most common best-fit is: 

HCACFbf = A, exp(-t / i , ) + A2 exp(-t / x2 ) (4.7) 

where Ai, A2, xi, and x2 are the parameters to be determined. Physically, xt and x2 can be 

viewed as half the period for energy transfer between two neighboring atoms and as the 

average phonon-phonon scattering time, respectively [11]. The best-fit of the auto

correlation function, Eq. (4.7), can be used in Eq. (4.2) to calculate the thermal 

conductivity. The impact of the time xbf used for the best-fit of the HCACF, which is a 

post-treatment parameter, will be studied in later sections. 

4.4 SIMULATION TIME 

The simulation time (i.e., number of time steps) is an important factor when calculating 

the thermal conductivity using equilibrium molecular dynamics, since it will determine 

the amount of heat current data available for the calculation of the HCACF. As explained 

in the previous section, if the simulation is not long enough, the statistical precision of the 

HCACF will be poor and the calculated thermal conductivity could be erroneous. On the 

other hand, if the simulation is too long, it will be computationally expansive and it will 

require a lot of memory to store all the simulation results. The post-treatment of such a 

large amount of data can be tedious and can further increase the computational time of a 

simulation. However, literature does not propose a formal method to determine the 

required simulation time when calculating the thermal conductivity. A common 

simulation time for simulations similar to those reported in the present work is a 40 ps 

NVT run followed by a 400 ps NVE run [11,29,34]. Some authors, however, have used 
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much larger simulation times. In their work, Donadio and Galli [35] used a 200 ps NVT 

run followed by a 8 ns NVE run. In this section, a method based on the impact of the 

initial condition on the calculated thermal conductivity is proposed to determine the 

minimal simulation time. 

Because of the statistical nature of atomistic systems, a slight variation in the initial 

condition (e.g., a different orientation of the initial velocity vectors) will give different 

atom trajectories during the simulation, different heat currents, and thus can result in 

different thermal conductivities. Using the aforementioned numerical procedure for (10, 

10) CNTs of different lengths, the lattice thermal conductivity has been calculated as a 

function of the simulation time, xs. The studied nanotubes are made of 800, 1600, 3200, 

6400, 32000, and 160000 atoms, with respective lengths of approximately 5, 10, 20, 40, 

200, and 1000 nm. For each length, 5 independent initial conditions have been tested. It is 

important to emphasize that only one simulation is performed for each initial condition. 

The time used for the best-fit in all cases is equal to xb, i.e. the best-fit of the HCACF is 

calculated using data points of HCACF from t = 0 to t = xb in each case. The simulation 

time studied in the present work varies from 100 ps to 2,000 ps at intervals of 100 ps, i.e. 

xs = 100, 200, ..., 1,900, and 2,000 ps. The thermal conductivity as a function of the 

simulation time for L = 5 nm and L = 200 nm is shown in Fig. 4.1(a) and (c), 

respectively. Each series of points represents one initial condition. The mean thermal 

conductivity and standard error (from the 5 different initial conditions) are shown in Fig. 

4.1(b) and (d) for the same lengths (5 nm and 200 nm, respectively). It can be seen that 

the impact of the initial condition on the thermal conductivity is significant for simulation 

time under 500 ps for both lengths. The mean thermal conductivity "converges" for 

simulation times exceeding approximately 1,500 ps, where the standard error is the 

smallest. This procedure was repeated for all lengths mentioned above, and this trend was 

observed for carbon nanotubes of all lengths. Many authors [ 11,29,34] use a simulation 

time of 400 ps for simulations similar to those reported here, which might result in a 

significant impact of the initial condition on the calculated thermal conductivity, 

according to Fig. 4.1. It also means that the HCACF (and thus the thermal conductivity) 
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will be calculated with less statistical precision, since there are less heat flux data points 

available when using smaller simulation times. For these reasons, the simulation time is 

taken as 2,000 ps for the rest of this work. 

1000 

800 

X 600 
E 
'— 
tr 4oo 

200 

0 

1000 

800 

S? 600 
E 
t? 400 

200 : 

0 

t • ! * » 

* ♦ . ♦ ♦ ♦ ♦ ♦ 

1000 

500 1000 1500 2000 
\ [ps] 

(a) 

: . : : s ï : u i ; ; : l t * i ' * î 
» . ♦ ♦ ♦ 

0 500 1000 1500 2000 
xs [ps] 

(c) 

0 500 1000 1500 2000 
\ [ps] 

(b) 
1000 

500 1000 1500 2000 
\ [ps] 

(d) 

Figure 4.1: Thermal conductivity as a function of the simulation time xs with xbf = xb 

for: (a) L = 5 nm with 5 different initial conditions, (b) mean thermal conductivity and 

standard error for L = 5 nm, (c) L = 200 nm with 5 different initial conditions, and (d) 

mean thermal conductivity and standard error for L = 200 nm 
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4.5 FITTING TIME: NON-UNIQUENESS OF SOLUTIONS 

As explained previously, it has been suggested to use fitting times smaller than xb in 

order to avoid spurious self-correlation effects [11,17]. Those effects arise when using 

PBCs because phonons that leave the simulation domain at one end and reenter at the 

other end might interfere with themselves. However, not all authors use fitting times 

smaller than xb [29]. The impact of the fitting time xbf on the calculated thermal 

conductivity has yet to be addressed. In this section, the impact of the choice of the fitting 

parameter xbf is studied in details for different carbon nanotube lengths and initial 

conditions (the same simulations as in the previous section are used). Values of xbf 

smaller and larger than xb are considered. In order to minimize the impact of the initial 

condition, the simulation time is 2,000 ps in all cases. For all lengths except 1000 nm, the 

value ofthe fitting time studied varies from 0.01 ps (10 time steps) to xb with intervals of 

0.01 ps when xbf <xb , and from xb to 20xb with intervals of xb for xbf >xb . For the 

1000 nm long nanotube, the value of the fitting time varies from 0.02 ps (20 time steps) 

to xb with intervals of 0.02 ps when xbf < xb. The best-fit of the auto-correlation function 

is performed with the least-square method in conjunction with the Nelder-Mead simplex 

optimization algorithm as described in Lagarias et al. [36]. A preliminary study of the 

dependence of the thermal conductivity with the fitting time has been presented in the 

previous chapter. 

The thermal conductivity as a function of xbf, k(xb f), is presented for five different 

simulations for a 200 nm long CNT in Fig. 4.2. Each curve represents a different initial 

condition (different orientation of the velocity vectors) at the same temperature. An 

important feature of k(xbf ) that can be noticed in this figure is the non-uniqueness of the 

solution of the best-fit for fitting times approximately smaller than 10 ps. There are two 

main solutions leading to very different behaviors of the thermal conductivity as a 

function of xbf. The first main behavior (lower branch in Fig. 4.2) is an increase of the 

thermal conductivity with the fitting time from k ~ 25 W/m K to a "converged" value of k 
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~ 300 W/m K for xbf > xb. The other main behavior (upper branch in Fig. 4.2) is a 

decrease of the thermal conductivity followed by an increase as the fitting time increases. 

There are other possible solutions to the best-fit depending on the fitting time used, as can 

be seen from the other points in Fig. 4.2 for xbf < xb. The initial guess of the fitting 

parameters will also influence the solution towards which the best-fit of the HCACF will 

converge. An example of this phenomenon is illustrated in Fig. 4.3 for a 40 nm long 

CNT. The initial guess of the fitting parameters in Fig. 4.3(a) are Ai = 6,000 (eVA/ps)2, 

A2 = 5,000 (eVA/ps)2, xi = 0.01 ps, and x2 = 1 ps, as compared to A] = 16,000 (eVÂ/ps)2, 

A2 = 5,000 (eVÂ/ps)2, Xi = 0 ps, and x2 = 10 ps in Fig. 4.3(b). The optimized fitting 

parameters are A, ~ 49,200 (eVÂ/ps)2, A2 a 45,000 (eVÂ/ps)2, tj ~ 0.0109 ps, and x2 « 

1.3338 ps in Fig. 4.3(a) and A! a 50,400 (eVÂ/ps)2, A2 ~ 37,900 (eVÂ/ps)2, x, ~ 0.0182 

ps, and x2 ~ -78.1580 ps in Fig. 4.3(b). If one observes Fig. 4.3 closely, both best-fits 

behave correctly over the fitting time period of 0.4 ps. However, the negative sign before 

x2 in the second case means that the integral of the best-fit in Eq. (4.2) will diverge, and 

thus no finite value of thermal conductivity can be obtained from those parameters. This 

is an extreme example just to illustrate how the initial guess of the fitting parameter can 

influence the calculated thermal conductivity. When performing the best-fit of the auto

correlation function, xi and x2 should always be positive. 

Even though the solution of the best-fit of the auto-correlation function is not unique, the 

thermal conductivity of a CNT should be. Therefore, there must be only one physically 

correct solution. In order to understand the difference between each solution, the 

normalized HCACFs and their corresponding best-fits are presented in Fig. 4.4 for two 

specific cases. In Fig. 4.4(a), the fitting time used is 0.54 ps (540 time steps) while in Fig. 

4.4(b), it is 0.55 ps (550 time steps). In the first case, the double-exponential behavior of 

the HCACF is well represented. The calculated thermal conductivity for this fitting time 

is 210 W/m K, which corresponds to the upper branch of k(xbf) in Fig. 4.2. In the 

second case, however, the fast initial decay of the HCACF is not well captured. The best-

fit of the HCACF shows a single-exponential behavior. The thermal conductivity in that 

case is 170 W/m K, which corresponds to the lower branch of k(xbf ) . 
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Figure 4.2: Thermal conductivity as a function of the fitting time xbf with xs = 2,000 ps 

for L = 200 nm with 5 different initial conditions 
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Figure 4.3: Influence of the initial guess of the fitting parameters on the best-fit of the 

auto-correlation function 
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Figure 4.4: Existence of two possible solutions for the best-fit: (a) double-exponential 

behavior, and (b) single-exponential behavior 

There is another very important behavior of k(xbf ) that is not shown in Fig. 4.4. If the 

fitting time is larger than the period of the fast initial decay of the HCACF but is small 

enough not to include a significant portion of the slow exponential decay, the thermal 

conductivity might diverge. This is due to the transition between fast and slow 

exponential decays of the HCACF. The best-fit of the HCACF for a 5 nm long CNT with 

a 0.2 ps (200 time steps) fitting time is shown in Fig. 4.5. The decay time of the slow 

exponential decay in this case is very large. Since the thermal conductivity is related to 

the integral of the HCACF when using the Green-Kubo formalism, then the calculated 

thermal conductivity in that case will be several orders of magnitude above any 

physically plausible value. The fitting time of 0.2 ps is smaller, but very close to the 

ballistic time for a 5 nm long CNT, which is 0.242 ps. This means that for such small 

nanotubes, using fitting times smaller than xb will either result in a fitting of the fast 

initial decay of the HCACF only (which is not the largest contribution to the thermal 

conductivity) or in non-physical thermal conductivities. The use of xbf > xb is necessary 

in that case if one wants to include the slow exponential decay in the best-fit. For the 5 
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nm long CNT, the use of fitting times smaller than the ballistic times resulted in thermal 

conductivity values of the order of 25 W/m K, which is very similar to the values 

reported by Lukes and Zhong [11] for nanotubes ofthe same length. This value, however, 

only takes into account the fast initial decay of the HCACF. A similar behavior of k vs 

xbf is obtained for other tested lengths. 

HCACF 
best-fit of HCACF 

Figure 4.5: Divergence of the thermal conductivity when using small xbf 

4.6 FITTING TIME: EFFECT OF THE NANOTUBE LENGTH 

The effect of the length of the nanotube on the calculated thermal conductivity when 

using PBC in the axial direction has been studied in the past by many authors [11,29,34]. 

Similar observations have been reported, i.e. an increase in thermal conductivity which 

eventually converges towards a certain value as the length of the carbon nanotube 

increases (length effect). The thermal conductivity as a function of both the fitting time 

and the length of the nanotube is shown in Fig. 4.6(a) for each studied length. For more 

clarity, only one simulation is shown per length. A zoom of the central part of this figure 

is also presented in Fig. 4.6(b). As was previously mentioned, the same behavior can be 

observed for all lengths. The most interesting feature is that not only does k(xbf) 
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behaves similarly, but the thermal conductivity as a function of the fitting time is roughly 

the same for all lengths. Since the thermal conductivity reaches a "converged" value for 

large fitting times, it would be logical to use nanotube length that allows to calculate this 

converged thermal conductivity while still respecting the constraint xbf < xb. That means 

that a length of at least 200 nm would be necessary to calculate the lattice thermal 

conductivity of a carbon nanotube using EMD simulations with PBCs. However, as the 

same result could be obtained when using shorter CNTs and fitting times larger than xb, 

the necessity to use fitting times xbf smaller than the ballistic time xb could be 

questioned. 

Another interesting observation is that the "length effect" on the calculated thermal 

conductivity reported in literature could possibly be - at least in part - an effect of the 

fitting time when using xbf < xb. Since xb increases with length, so would the thermal 

conductivity until it reaches a converged value according to Fig. 4.6. That behavior 

would still occur if the thermal conductivity would be an average of values from the 

lower and upper branches in Fig. 4.6. For example, the thermal conductivity as a function 

of length presented by Lukes and Zhong [11] is very similar to the lower branch of 

k(xbf ) in Fig. 4.6(a). In their work, a fitting time smaller than xb has been used for all 

lengths (the exact value of the fitting time was not mentionned). Grujicic et al. [29] also 

present a curve with a similar trend for the thermal conductivity as a function of length, 

although the thermal conductivity is approximately one order of magnitude higher than 

the one in the present work. In their work, a fitting time of 3 ps is used regardless of the 

length of the nanotube. In Fig. 6(a), a fitting time of 3 ps corresponds to the convergence 

zone of the thermal conductivity, where similar results are obtained for all lengths. 

Considering the large error bars reported in their work (based on five simulations with 

different initial conditions), it is difficult to attribute an unambiguous length effect on the 

thermal conductivity (i.e., error bars for the thermal conductivity of CNTs of different 

lengths overlap). The same observation could be made for the results presented by Che et 

al. [34] who also used a fitting time of 3 ps. In their work, the standard errors are even 

larger, and there is also an overlap of the error bars for all lengths. 
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Figure 4.6: Thermal conductivity as a function of the fitting time xbf with xs = 2,000 ps: 

(a) for all lengths with only one initial condition and (b) zoom over the central part of 

Fig. 4.6(a) 

Even though there are physical reasons that can result in a length dependence of the 

thermal conductivity, such as the frequency cut-off which only allows phonon modes that 

have wavelength smaller than the simulation box to exist, it remains difficult to observe a 

clear effect of length when the impact of the initial condition on the calculated thermal 

conductivity is so important. Efforts should be made in order to minimize the impact of 

the initial condition on the results by using longer simulation times and performing more 

simulations in order to have a better statistical precision when averaging and calculating 

standard errors. There is also the issue of the spurious self-correlation effects that seem 

negligible, since the same results could be obtained from shorter nanotubes with PBCs 

provided that long enough fitting times are used according to Fig. 4.6. Averages of many 

auto-correlation functions could also be used prior to the best-fit (or direct integration of 

the HCACF) in order to minimize the fluctuations of the auto-correlation function at 

larger times, where the statistical precision is less than that at early times. 
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4.7 SIMPLE EXPONENTIAL VS DOUBLE EXPONENTIAL BEST-FIT 

When the fitting time is very large, such as in the zone of "converged" thermal 

conductivity, the time interval covering the fast initial decay of the HCACF becomes 

negligible as compared to the time interval covering the long, slow exponential decay. 

Most of the solutions of the best-fit will therefore only include a single exponential, i.e. 

the best-fit resulting from the minimization process is a single exponential solution. 

However, there are some solutions that do include a double exponential. Those solutions 

generally give rise to a slightly higher thermal conductivity. An example of such behavior 

can be seen in Fig. 4.2 for xbf ~ xb. There is a small number of points for one simulation 

(downward triangles) that are above the converged value of thermal conductivity for the 

same simulation. Those points have a double-exponential solution, while the others have 

a single exponential solution. To investigate the use of single versus double exponential 

best-fit, the thermal conductivity has been calculated for both cases using fitting times ~ 

100 ps, which corresponds to the zone of converged thermal conductivity. The results are 

illustrated in Fig. 4.7 as a function of the length. 
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Figure 4.7: "Converged" thermal conductivity as a function of length with simple and 

double-exponential best-fits 
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A small shift in length has been introduced in Fig. 4.7 between the simple and double-

exponential results at the same length for more clarity. The studied lengths are the same 

as in the previous sections. Each point corresponds to the mean value and standard error 

for the same 5 initial conditions that were previously studied. This figure shows that the 

oscillations between single and double exponential solutions diminish as the length 

increases. It also shows that higher mean values are obtained for double-exponential as 

compared to single-exponential best-fit. This is because when a solution includes both 

exponentials, the best-fit of the long exponential decay of the HCACF is not as good as 

when only using a single-exponential best-fit. Since it is the part that contributes the most 

to the thermal conductivity, it results in a significant difference in the calculated thermal 

conductivity. The standard error is also less important when using single-exponential 

best-fit for different initial conditions. Fig. 4.7 clearly shows that if the constraint of 

xbf < xb is ignored and if the fitting time is large enough so that only the long exponential 

decay of the HCACF is taken into account during the fitting (converged thermal 

conductivity), then the calculated thermal conductivity is independent of the length of the 

simulated carbon nanotube. 

4.8 CONCLUSIONS 

Equilibrium molecular dynamics simulations of (10, 10) carbon nanotubes with periodic 

boundary condition in the axial direction have been performed in order to study the 

impact of the post-treatment of the results on the thermal conductivity. Using a method 

based on the impact of the initial condition on the results, a simulation time of at least 

1,500 ps (1,500,000 time steps) was suggested. Much larger simulation times should 

however be used to obtain a sufficient statistical precision [35]. Using small simulation 

times can result in large standard errors, which means that even with a similar set-up, 

different authors could obtain different results. When using a best-fit of the auto

correlation function in conjunction with the linear response theory to estimate the thermal 

conductivity, the fitting time has an important impact on the calculated thermal 

conductivity. If small fitting times are used, there may be more than one possible 

solution. The two main solutions show simple and double-exponential behaviors. This 
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behavior could also explain some of the differences found in literature. The thermal 

conductivity as a function of the fitting time has been found to be independent of the 

length of the simulation box, i.e. the length of the carbon nanotube with PBCs. This also 

suggests that the length effect reported in literature could be at least in part an effect of 

the fitting time when using fitting times smaller than ballistic times. Furthermore, since 

similar results can be obtained from short nanotubes as compared to long nanotubes, the 

actual importance of the spurious self-correlation effect could be questioned. Using long 

nanotubes for the calculations means computationally expensive simulations which could 

be avoided by using smaller nanotubes without influencing significantly the results. This 

could also allow performing more simulations and getting a better statistical precision 

while making averages of the auto-correlation functions or of the calculated thermal 

conductivity. Finally, using a fitting time equal to 100 ps for all lengths, the thermal 

conductivity has been found to be independent of length when using PBCs. 
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CHAPTER 5: Influence of frequency cut-off on thermal 

conductivity of carbon nanotubes from EMD simulations with 

periodic boundary conditions 

5.1 RÉSUMÉ 

Ce chapitre présente les résultats d'un article court portant sur l'effet de fréquence de 

coupure fréquemment discuté dans la littérature lors du calcul de la conductivité 

thermique de nanotubes de carbone avec conditions aux limites périodiques. La densité 

d'états de phonons est calculées et normalisée afin d'être comparée pour des nanotubes 

de différentes longueurs. Tel que mentionné dans la littérature, il est possible d'observer 

un effet de fréquence de coupure pours les courtes fréquences. Toutefois, il est montré 

que cet effet de coupure a une faible influence sur le calcul de la conductivité thermique 

de nanotubes de carbones comparativement aux autres phénomènes numériques inhérents 

aux simulations de dynamique moléculaire à l'équilibre pouvant modifier les résultats, 

tels que ceux discutés dans les précédents chapitres. 

5.2 FREQUENCY CUT-OFF PHENOMENON 

The issue of predicting thermal properties of carbon nanotubes (CNTs) has been 

addressed in the past years by using different numerical methods, such as classical 

molecular dynamics [30,31], harmonic and anharmonic lattice dynamics [32,37], or more 

recently, the spectral energy density method [33] to name only a few. However, the 

discrepancies between values estimated numerically and experimentally can sometimes 

reach several orders of magnitude [11]. Despite advances in the development of new 

numerical methods, these methods are often compared to equilibrium molecular 

dynamics (EMD) or non-equilibrium molecular dynamics (NEMD) for validation, and 

these former methods continue to be widely used. On the other hand, there are still open 

questions regarding these methods that should be addressed. One numerical issue which 
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has been reported by different authors when using periodic boundary conditions (PBCs) 

with the EMD method is the frequency cut-off phenomenon, which states that no axial 

mode of wavelength larger than the simulation domain can exist [29,17]. This means that 

large wavelength (or small frequency) modes cannot contribute to the thermal 

conductivity of carbon nanotubes. It was assessed that the low frequency acoustic modes 

in a carbon nanotube can contribute to approximately 40% of the thermal conductivity 

when using the spectral energy density method [33]. However, some other works suggest 

that the thermal conductivity obtained by EMD simulations and the Green-Kubo formula 

could be similar whether small or large simulation domains were used with PBCs, see 

Chapter 4. Among the possible reasons are the initial condition of the system at a given 

temperature and the best-fitting parameters which could have a greater influence on the 

calculated thermal conductivity than the cut-off frequency with that method. If large 

enough fitting times were used for the best-fit of the auto-correlation function in Chapter 

4, the thermal conductivity was nearly independent of the nanotube length. In this work, 

we first address the influence of the initial condition of the system on the frequency cut

off phenomenon by calculating the axial phonon density of states. We then compare the 

results for different nanotube lengths and determine if the initial condition could 

influence the frequency cut-off phenomenon in such a way that the calculated thermal 

conductivity of carbon nanotubes would be independent of the nanotube length when 

using periodic boundary conditions. 

In order to estimate the phonon density of states, it is first required to calculate the 

velocity auto-correlation function from MD simulation data. Such simulations have been 

performed for (10, 10) CNTs of length varying from 5 nm to 1000 nm (enough to reach a 

fully diffusive regime) with the REBO potential [23] and the thermal conductivity has 

been calculated using the EMD method with the Green Kubo formalism [30]. 

Simulations were divided in three steps: (1) a 100 ps run in the microcanonical ensemble 

(constant number of atoms, volume, and energy) to allow the system to reach 

equilibrium, (2) a 400 ps run in the canonical ensemble (constant number of atoms, 

volume, and temperature) to bring the system to the desired temperature of 300 K, and 

(3) a 2 ns run in the microcanonical ensemble during which the instantaneous axial heat 
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flux and atom velocities are recorded in output files for the calculation of the thermal 

conductivity and axial phonon density of states. Due to the large amount of data 

generated for long nanotubes, the axial velocity for each atom has been recorded only for 

the first 6.5 ps. The time step for all simulations is 1 fs. More details on the simulation 

procedure can be found in Chapters 3 and 4. Once the axial velocity of each atom is 

known, the axial phonon density of states (DOSz) for a system of N atoms is given by [8] 

D O S
z( r o) = ^Z F F r [ ( v J

z ( t ) -vU0) ) ] (5.1) 
JM j=i 

where vz and (vz (t)- vz (On are the axial velocity and velocity auto-correlation function 

of the j t h atom of the system, and FFT is the Fast Fourier Transform of the quantity 

between brackets. The axial DOS given in Eq. (5.1) is in arbitrary units. The only 

normalization factor that has been considered in the present work is the total number of 

atoms of the system, in order to allow comparison between densities of states of 

nanotubes of different lengths (i.e. different size of the simulation domain with PBCs), 

since all simulations are performed at the same temperature (300 K). Physically, the 

density of states represents the number of vibrational states per unit frequency. In other 

words, the stronger the peak at a given frequency, the more populated that vibrational 

mode in the carbon nanotube. 

As an example, the longitudinal phonon density of states (arbitrary units) for a 200 nm 

long (10, 10) carbon nanotube is shown in Fig. 5.1. The number of time steps used to 

calculate all density of states is such that the spectral resolution is about 0.1 THz. Fig. 5.1 

shows the average (middle curve), minimum (lower curve), and maximum (upper curve) 

values of the DOS calculated from the results of 5 simulations with different initial 

conditions (different orientation of the velocity vectors of the atoms) at the same 

temperature. The resulting DOS is very similar to other DOS found in literature and 

shows a strong peak near 52 THz, which is characteristic of the phonon spectrum of a 

graphene sheet [38]. There are also no strong peaks at low frequency due to boundary 

scattering, since PBCs have been used in all simulations [11]. 
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Figure 5.1: Axial phonon density of states for a 200 nm long carbon nanotube with PBCs 
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Figure 5.2: Comparison of the axial phonon density of states for 5 and 200 nm long 

carbon nanotubes at low frequencies (min: blue, ave: black, and max: red) 
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The impact ofthe initial condition on the DOS (i.e. the distance between the min and max 

curves), although hardly visible in Fig. 5.1, varies between 100% ofthe average DOS (at 

low frequencies) and 20% (at high frequencies). However, even though there is a 

significant variation in amplitude, the peaks in the DOS appear at the same frequencies. 

Fig. 5.2 shows the longitudinal density of states for 5 and 200 nm long carbon nanotubes 

in the low frequency range. In this figure, the average (middle curves), minimum (lower 

curves), and maximum (upper curves) values of the DOS are also shown for both lengths 

as explained previously. As can be seen in Fig. 5.2, the variations of the DOS caused by 

different initial conditions does not result in any cross-over between the DOS calculated 

from nanotubes of different lengths at low frequencies. A conservative estimate of the 

frequency cut-off can be obtained by taking the ratio of the speed of sound of the 

longitudinal acoustic mode (CLA ~ 20.35 km/s [13]) to the length of the nanotube. This 

corresponds to the inverse of the time required for a phonon to ballistically pass through 

the nanotube. For nanotube lengths of 5 and 200 nm, the frequency cut-off thus 

corresponds to approximately 4 and 0.1 THz. These frequencies are indicated in Fig. 5.2 

by vertical dotted lines. As can be observed in Fig. 5.2, there is a notable difference in 

amplitude between both DOS at frequencies below the frequency cut-off of the 5 nm long 

nanotube (cut-off effect). This difference in amplitude is sufficiently large for the 

frequency cut-off not to be influenced by the variation of the initial condition. In other 

words, the initial condition does not affect the density of states enough to prevent the 

frequency cut-off phenomenon. This might suggest that the frequency cut-off in carbon 

nanotubes could influence the calculated thermal conductivity of carbon nanotubes when 

using EMD simulations, since long wavelength modes are not present in small nanotubes 

and therefore cannot contribute to its thermal conductivity. However, the results 

presented in Fig. 5.3, adapted from Chapter 4, do not support that statement. As it is often 

done, a double-exponential best-fit of the heat current auto-correlation function was 

integrated in the following equation to estimate the thermal conductivity according to the 

Green Kubo formula: 

kBTzLA Q 
j(jz(0)jz(t))dt (5.2) 
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where kB is the Boltzmann constant, T is the temperature of the system (taken as the 

average of the mean temperature of the system during the simulation), L and A are the 

length and cross-sectional area of the nanotube, and j z is the axial component of the heat 

current. Note that there are different conventions for the cross-sectional area of a 

nanotube [11], but the one used in all simulations is a ring with a thickness equal to 3.4 

Â. In Eq.(5.2), (jz(0)jz(t))is called the heat current auto-correlation function (HCACF). 

In all simulations, a method based on fast Fourier transform is used to calculate this 

function. The thermal conductivity obtained from Eq. (5.2) is plotted in Fig. 5.3 as a 

function of the fitting time xbf of the heat current auto-correlation function for 5 and 200 

nm long carbon nanotubes. Lower and upper error bars in Fig. 5.3 correspond to the 

minimum and maximum thermal conductivity among 5 simulations with different initial 

conditions at the same temperature using the previously described procedure. Other 

nanotube lengths have been tested and the same trends have been observed, see Chapter 

4. Results in Fig. 5.3 clearly show that the initial condition of the system, even at the 

same temperature, will influence the calculated thermal conductivity and there will be a 

cross-over of the results for short and long nanotubes. The influence of the initial 

condition on the calculated thermal conductivity (i.e. sum of the upper and lower error 

bars in Fig. 5.3) varies from 20 to 60% of the average thermal conductivity. This 

variation is of the same order of magnitude as that of the DOS calculated previously. 

From the results presented in Fig. 5.3, one could conclude that even if the frequency cut

off is not influenced by the initial condition (i.e. the frequency cut-off phenomenon will 

be present for small length when using different initial conditions), it appears negligible 

compared to the influence of the initial condition (or of the fitting time) on the calculated 

thermal conductivity. It also means that if large enough fitting times are used, the 

calculated thermal conductivity when performing EMD simulations with PBCs and when 

using the Green-Kubo method is only weakly influenced by length. 
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Figure 5.3: Thermal conductivity as a function of the fitting time TM for 5 and 200 nm 

long carbon nanotubes 

5.3 CONCLUSIONS 

In summary, the axial phonon density of states has been calculated from EMD 

simulations with PBCs and the Green-Kubo formalism for carbon nanotubes of different 

lengths in order to investigate the importance of the initial condition on the frequency 

cut-off phenomenon. It has been shown that the frequency cut-off phenomenon is present 

for short nanotubes regardless of the initial condition at a given temperature and therefore 

that low-frequency modes could not contribute to the thermal conductivity. However, it 

has been demonstrated that when calculating the thermal conductivity, the impact of 

other simulation and modeling parameters (such as the initial condition or the fitting 

time) will influence the results in such a way that the cut-off phenomenon appears 

negligible. 
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CONCLUSIONS 

In the first part of the present work, modeling and simulation parameters that influence 

the calculated thermal conductivity of a carbon nanotube when performing EMD 

simulations have been identified. After a literature review, it has been determined that the 

most important parameters were the nanotube length (which is related to the frequency 

cut-off phenomenon), the simulation time (number of time steps), the inter-atomic 

potential used to model the forces between the atoms of the nanotube, and the fitting time 

used for the best-fit of the auto-correlation function (related to the spurious self-

correlation effect). In Chapter 3, a preliminary study on the effect of those parameters on 

the calculated thermal conductivity has been done for a 5 nm long (10, 10) carbon 

nanotube. It was demonstrated that it is important to use a large enough simulation time 

in order to minimize the impact of the initial condition of the system (different initial 

orientation of the velocity vectors of the atom, but at the same temperature). For this 

reason, a simulation time of at least 2,000 ps was suggested. For such small nanotubes, it 

was shown that using a fitting time smaller than the ballistic time could lead to an 

underestimation of the thermal conductivity, since only the fast initial decay of the heat 

current auto-correlation function was taken into account. In Chapter 4, carbon nanotubes 

of different lengths were studied. It was found that if large enough fitting times were 

used, similar thermal conductivities could be obtained regardless of the length. That was 

in contradiction with some of the results found in literature which stated that there was a 

length effect when calculating the thermal conductivity of carbon nanotubes, mainly due 

to the frequency cut-off phenomenon. In order to determine if the importance of this 

phenomenon, the density of states has been calculated and the results were presented in 

Chapter 5. It was found that the frequency cut-off phenomenon does exist, but it is 

negligible as compared to the effect of the other simulation parameters, such as the initial 

condition, when performing EMD simulations with the Green-Kubo method. 

In light of the results obtained in the present work, it is possible to explain, at least in 

part, some of the discrepancies found in literature, which was one of the objectives of this 

work. The impact of the simulation time is crucial to minimize the impact of the initial 

68 



condition on the calculated thermal conductivity. Many authors used a simulation time 

smaller than 2,000 ps, which could lead to large variations of the thermal conductivity 

calculated by different authors. Furthermore, some authors have used different fitting 

times for different lengths and observed a length effect, but it is possible that this would 

rather be, at least in part, a fitting time effect (corresponding to the lower branch in Fig. 

4.6). Others have used the same fitting time for different lengths, but the variation of the 

thermal conductivity due to the initial condition is so large that no clear length effect 

could be observed. Finally, Fig. 4.6 itself shows that for the same simulation, there is 

non-uniqueness of the solution when using a best-fit of the auto-correlation function. In 

some cases, the calculated thermal conductivity could differ by many orders of 

magnitudes. That is another possible explanation for the discrepancies in literature. It is 

important to mention that these explanations are valid only for EMD simulations with the 

Green-Kubo method. Simulations with different methods would need to be performed in 

order to determine if the simulation parameters have the same importance in all cases. 

It would be interesting to study nanotubes in a more concrete application, such as a 

thermal gradient driven nanomotor. This device is made of two concentric carbon 

nanotubes, where a motion of the outer nanotube is induced by applying a thermal 

gradient on the inner nanotube. The type of motion induced is determined by the 

chiralities of both carbon nanotubes. It could thus be interesting to study the effect of 

applying mechanical stress on the inner tube on the motion of the nanomotor. The 

expertise developed in the present work could be useful in determining the thermal 

conductivity of the inner nanotube under mechanical stress. It could also be interesting to 

determine if it would be possible to tune the thermal conductivity of the inner tube in 

order to control the motion of the nanometer (translational, rotational, or a combination 

of both). 
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APPENDIX 1: SIMULATION.TXT SAMPLE FILE 

# Setting up simulation 

units 

boundary 

neigh_modify 

read_data 

pair_style 

pair_coeff 

timestep 

metal 

f f p 

delay 0 every 

atomData.txt 

airebo 5.0 0 0 

* * CH.airebo C 

0.001 

check no 

# Defining groups of atoms 

group inner type 

group bounded id <= 

group notFixed id 

1 

160000 

<= 160000 

# Computing potential and kinetic energy per atom, stress per atom, and heat flux 

compute pePerAtomB bounded pe/atom 

compute kePerAtomB bounded ke/atom 

compute stressPerAtomB bounded stress/atom virial 

compute heatFluxB bounded heat/flux kePerAtomB pePerAtomB stressPerAtomB 

# Print thermodynamic properties in log file (output file) 

compute myTemp bounded temp 

thermo 1 

thermo_style custom step c_myTemp c_heatFluxB[3] c_heatFluxB[6] 

thermo_modify format 2 %25.15e 

thermo_modify format 3 %25.15e 

thermo_modify format 4 %25.15e 
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# NVE integration scheme 

fix fix_nve notFixed nve 

run 100000 

# NVT integration scheme 

unfix fix_nve 

fix fix_nvt notFixed nvt temp 300 300 0.001 

run 400000 

# NVE integration scheme 

unfix fix_nvt 

fix fix_nve notFixed nve 

reset_timestep 0 

restart 500000 *.restart 

log simuLOG0.txt 

run 500000 

log simuLOG.500000.txt 

run 500000 

log simuLOG. 1000000.txt 

run 500000 

log simuLOG.1500000.txt 

run 500000 
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