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Abstract—We propose an analytical, time domain model
for microring and microdisk modulators which considers
both their electrical and optical properties. Theory of
the dynamics of microring/microdisk is discussed, and
general solutions to the transfer matrix representation are
presented. Both static and dynamic predictions from the
model are compared to measurement results to demon-
strate the accuracy of our model. Static predictions and
measurements are presented for power and phase responses
whereas dynamic predictions and measurements are pre-
sented for small-signal and large-signal operations. The
model verifies that the chirping and modulation bandwidth
of the modulators depend on the detuning state. Finally,
the accuracy and scalability of several techniques employed
in the model are discussed.

Index Terms—Optical modulator, Silicon-on-insulator,
Integrated optics, Electro-optic modulation, Optical res-
onators, Ring resonators, Disk resonators

I. INTRODUCTION

S ILICON microring/microdisk modulators are an ad-
vantageous technology due to their ultra-compact

footprint and high modulation efficiency. They have great
potential for high-speed interconnects [1] and coherent
transmission systems [2]. The development of such tech-
nology relies on our understanding in electrooptics, and
with that arises the need for systematic engineering. In
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principle, numerical tools can be used, but analytical
means are critical. They play a pivotal role in our
understanding and, when guardedly implemented, are
efficient and reliable.

Most of the available characterizations are built out
from static transfer functions and inherently fail to
predict many important features. Hitherto, frequency
response has often been estimated by the RC constant
and photon lifetime [1]. Time-domain descriptions are
traditionally based on the coupled-mode theory (CMT)
[3], however this approach is not precise for cavities
with low finesse. More recently, derivations for small-
signal operations have been presented [4] but don’t
accurately predict large-signal operations. In addition,
the modulator response can be modeled via proprietary
software. For example, the ring can be represented by
a discrete set of sub-components where the dynamical
response is computed through the photon propagation
across the resonator for multiple round-trips [6]. By
extension of the circuit model in [6], the analytical ex-
pressions presented here model the dynamical response
of the resonator, i.e. our equations represent the time-
dependent response of the circuit model.

Another solution is based on the time-dependent so-
lution of the transfer function for microring modulators
[5]. However, this approach is incomplete when the time
dependence is present over more than one parameter
(phase, loss or coupling), as it is the case for intra-cavity
modulation, for example. Furthermore, the electrical
dynamics of the p-n junction has to be considered since
it imposes limitations at high-frequency operation.

In this paper, we put forward and substantiate a com-
prehensive analytical model for microring and microdisk
modulators. It is noteworthy that the model represents
the analytical transformation of known physical inputs
and parameters into time-dependent optical responses,
consolidating the bridge between device designs and
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system analysis. In particular, we show that the usual
representation based on the quality factor is not sufficient
to fully consider the effect of detuning on the modulation
bandwidth. Also, unless specifically stated, the analytical
means apply directly to both the microring and microdisk
modulators.

The rest of this paper is organized as follows, sec. II
describes the analytical model. Specifically, it provides
the model we use to represent the electrical behavior
of the p-n junction and the carrier distribution. We then
present how we compute the optical mode profile and
effective index. The free-carrier plasma dispersion effect
is used to model the interaction between material and
optical waves. Finally, this section contains details about
novel time-dependent solutions of the transfer function
for optical modulation. These solutions are the rigorous
analytical solutions of the time-dependent transfer matrix
formulation. They represent the particular case of intra-
cavity modulation and the general case. Sec. III presents
the application of the model along experimental data. It
begins by the verification of static behaviors. It follows
with the validation of the model for small and then
large-signal regimes of operation. Sec. IV presents a
discussion on some peculiarities of our model, i.e its
accuracy and scalability. Also, we discuss the ability
to predict large-signal, time-domain pulse shapes and
consequently, the ability to investigate the chirp. Extra
details are presented in the appendixes.

II. ANALYTIC MODEL

Fig. 1 explains in a visual manner how the model is
structured. We first consider the electrical dynamics of
the p-n junction since the effective optical modulation re-
sults from the electrical potential that exists at the bound-
aries of the p-n junction. To that extent, we consider the
carrier distributions as a function of the applied voltage.
This first step is represented by block A. The second
step, represented by block B, is to model the optical
electromagnetic field inside the waveguide. The overlap
between the carrier distributions and optical mode is
computed to obtain the change in effective index, and
is represented by block C. The last step, represented
by block D, uses changes in physical parameters to
compute the time-dependent transfer matrix solution of
the microring/microdisk resonators.

We assume each section to be independent of each
other, we thereupon avoid creating one complex and
cumbersome monolithic block. Instead, the effort is
split between different, smaller building blocks. It is a
crucial step if one wants to gain in understanding and
computational efficiency. Moreover, doing so makes the
model highly customizable and scalable. As an example,
the modeling of a more complicated p-n junction, e.g. a
wrap-around p-n junction [7], would require changes in

Fig. 1. Schematic representation of the model. From the ideal driving
voltage and physical parameters, we evaluate the contribution of
diffusion and depletion mechanisms. It is then possible to compute the
voltage at the boundaries of the space-charge region and consequently,
the carrier distributions (Sec. II-A). The mode profile is obtained from
the waveguide geometry (Sec. II-B). The effective index as a function
of voltage is computed by the overlap between the mode profile
and the carrier distributions (Sec. II-C). The final step is to compute
the corresponding time-dependent transfer coefficient (Sec. II-D). The
novel equations presented in the latter subsection represent the core of
our model.

block A and B, whereas the remaining framework retains
its applicability.

A. Electrical dynamics of the p-n junction

We consider a lateral p-n junction configuration that
is widely used in silicon modulators with CMOS com-
patible photonic process [8]. Fig. 2 shows a schematic
of the microring p-n junction. In this work, forward bias
is denoted by a positive voltage and reverse bias by a
negative voltage.

The knowledge of the electrical behavior of the p-
n diode is vital to determine the modulation response.
Since the contributions of the diffusion and depletion
mechanisms change significantly as a function of the
applied electrical bias, the investigation of each regime is
necessary. Thus we distinguish between three situations,
that is the applied electrical potential can either be
positive, negative or absent.

1) Equilibrium: In the absence of external electrical
potential, we can approximate the built-in potential Vbi

that exists between the boundaries of the depletion region
by assuming that the product of the free-charge densities
is independent of the Fermi energy, i.e. d (p0n0) /dt = 0
where p0(n0) is the excess minority holes(electrons)
densities. Hence, solving the Poisson’s equation while
implementing the Einstein-Smoluchowski relation and
the aforementioned approximation allows the calculation
of the built-in potential Vbi [9]

Vbi =
kBT

2q
ln

(
NAND

p0n0

)
(1)
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(a)

(b)

Fig. 2. Cross-sectional view of the p-n junction in a ridge waveguide.
a) Implantation profile and physical dimensions of the waveguide. b) 1-
D free-carrier distributions, (not at scale) with carrier profile, depletion
region and dimensions.

where kB is the Boltzmann constant, T is the temper-
ature, q is the elementary charge and NA and ND are
respectively the acceptors (P region) and donors (N re-
gion) densities. As can be seen in Fig. 2, and throughout
this paper, we assume that the p-n junction is represented
by an abrupt junction where the dopant profiles are
represented by step changes at the dopant boundaries, i.e.
a shallow-diffused junction. We shall also assume the p-
n junction to be in the short-base limit, i.e. the diffusion
length is comparable to the junction length [10]. The last
approximation yields a quasi-linear distribution of the
excess minority carrier densities between the depletion
region and the heavily doped regions. We assume that the
presence of the P++ and N++ regions does not affect
the shape of the depletion region, therefore, they can be
treated as simple ohmic resistances.

2) Forward bias: It is important to underline that we
do not explicitly implement the forward bias regime in
this paper. One of the reasons is that, for the usual dopant
densities used in silicon-on-insulator (SOI), the minority
carrier lifetimes are roughly around 10−6−10−7 seconds
for bulk silicon [11], [12] and around 10−9 seconds for
patterned silicon [13], [14], which is not ideal for high-
speed operation. In addition, one regime of operation,
reverse bias for instance, is sufficient to demonstrate the
capability of our approach.

In spite of this choice, it is noteworthy that forward
bias regime of operation can be implemented via the so-

Fig. 3. Circuit model for the reverse biased (depletion mechanism) p-n
junction. The external circuit is encompassed by the arbitrary Thévenin
equivalent.

called charge-control model [15]. Yet, this model fails to
predict the frequency dependence of the diffusion cur-
rent. Nonetheless, analytical expressions that correctly
represent that dependence are readily available [16].

3) Reverse bias: The current from the diffusion mech-
anism and the one that arises from a voltage variation
(depletion capacitance) are additive [16], [10]. For the
reverse bias mode of operation, as the voltage goes from
0 to negative values, the depletion region becomes wider
and the depletion capacitance decreases. The presence of
the depletion region also means that the diffusion current
is negligible as soon as |V | ≫ q/kBT , where V is the
applied voltage. Therefrom, it is reasonable to assume
that the electrical dynamics of the p-n diode is dependent
only on the depletion mechanism.

In this paper, we implement the RC model that can be
found in [17], which has the advantage of being all ana-
lytical. In this model, the electrical dynamic of the P and
N regions is encompassed by the depletion capacitances
(Ctop, C∥, Cf , Cbottom) and resistances (Rp, Rn), as
shown in Fig. 3. Details about the computation of the
aforementioned depletion capacitances and resistances
are presented in App. I. We add the resistances (tabulated
sheet resistances) of the P++ and N++ regions. The
circuit is completed by the external circuit which is
represented by a Thévenin equivalent, here a voltage
source VTh in series with a resistance RTh.

The correspondence between the ideal source VTh

and V being linear, such a RC circuit is easily studied
by means of Laplace transform. Finally, note that the
inclusion of both mechanism (diffusion and depletion)
leads to a model that can predict turn-on and switching
transients.

4) Free-carrier distributions: The free-carrier distri-
butions are needed in order to compute the change in
effective index. With respect to our model, we consider
that the carrier distributions follow the potential V at
the boundary of the diode. We therefore consider the
time-dependence as included in the RC model. Thus,
under the quasi-neutrality approximation, we assume that
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the distributions are represented by their steady-state
solutions [10], hence hole/electron distributions are

{p, n} = {p0, n0}
(
e

qV
kBT − 1

)
×

[
cosh

(
x

Lp,n
− coth

(
wD(n,p)

Lp,n

)
sinh

(
x

Lp,n

))] (2)

where Lp,n is the hole/electron diffusion length and
x represents the distance from the physical separation
in the middle of the junction (dopant boundary). The
equilibrium carrier densities are given by

p0 =
n2
i

ND
, n0 =

n2
i

NA
(3)

where ni is the intrinsic carrier density. As dis-
cussed above, for the short-base limit, it is possible
to simplify the carrier distributions (2) by noting that
cosh (x/Lp,n) ∼ 1 and sinh (x/Lp,n) ∼ x/Lp,n. Such
an approach linearizes the carrier distributions [18].

B. Optical mode profile

We use the effective index method [18], [19] to
compute the 1-D mode profile. The use of such an
approximation is reasonable because the errors in the
mode profile are mainly at the corners of the waveguide
in comparison to rigorous 2-D mode profiles [18]. As
we will see in the next subsection, optical modulation is
determined by the overlap between the mode profile and
varied carrier distributions in the depletion region inside
the waveguide core. Hence, the contribution of the mode
profile error to the error in the change of effective index
is negligible. Further discussions with simulation will be
given in the next section.

However, the traditional effective index method cannot
be directly applied to microdisks. The workaround is
to introduce the angular dependence of the mode by
solving a 2-D problem. This approach takes into account
the bending of the waveguide, which is absent from
the traditional effective index method. The diffusion
formalism, as presented in [20], is a convenient way
to obtain the new transcendental equation that describes
the propagation. It is also important to underline that
this method can also be used for a microring when
one wants to take into account the bending of the ring.
Ultimately, the diffusion formalism can be used for
arbitrary resonator shapes as an extension of the present
model.

For a 2-D circular dielectric of radius r, the charac-
teristic equation is [21]

η12Hm (n1kr)
dJm (n1kr)

dk
=

Jm (n1kr)
dHm (n2kr)

dk

(4)

where Jm and Hm are the first kind Bessel and the first
kind Hankel functions, respectively; n1 and n2 are the
effective indexes of the inner and outer dielectrics, as
computed through the 1-D effective index method; η12
is a polarization dependent factor, which is n2/n1 for
the TE polarization and n1/n2 for the TM polarization.

The solutions (k) of (4) are the eigen-wavenumbers
of the resonators. For each angular order m there is
a set of eigenvalues defined by their radial order j.
The whole sets of km,j determine the skeleton of any
excitation. So, at a resonant frequency, the mode that
will be the most significant will be the least leaky one,
i.e. the fundamental mode. Now, using the fact that, on
resonance, the fundamental mode must be a solution of
m = neffkr, one can compute the effective index.

Then we use the infinite angular degeneracy of the
modes to solve for the radial field distribution. The
solution that satisfies the cylindrical Helmholtz equation
and represents the radial mode profile ψ inside the disk
is

ψ(ρ) ∝ Jm (neffk0ρ) (5)

where ρ represents the distance from the center of the
disk. It is important to note that (5) is valid for both
TE and TM polarization. Mode profiles are polarization
dependent through the effective index.

C. Interaction between material and optical waves

We take the following steps in order to translate
the inputs, such as the physical geometry and applied
voltage, into useful outputs, such as the changes in phase
and optical absorption. We first compute the change
in refractive index due to the presence of free carriers
introduced by doping the silicon. We then use the method
described above to obtain the effective refractive index
and mode profile. The third step is to compute the
free-carrier distributions. The knowledge of both mode
profiles and charge carrier distributions allows the com-
putation of the overlap between them, hence the voltage-
dependent change in effective index, loss, and phase. The
last step gives us necessary parameters to proceed to our
time-dependent solutions that will be given in the next
subsection. An analogous approach has been taken in a
frequency domain analysis [18].

1) Plasma dispersion effect: The presence of free
carriers in silicon allows optical modulation, as predicted
by Soref and Bennett in 1987 [22]. It is often convenient
to describe the plasma dispersion effect over a wide
range of wavelengths. Using the Drude model [18], [23],
the change of refractive index ∆nSi and the excess loss
∆αSi due to the free-carrier absorption are given by

∆nSi = −3.64× 10−10λ20∆n− 3.51× 10−6λ20∆p0.8

(6a)
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Fig. 4. Schematic of a microring modulator.

∆αSi = 3.52× 10−6λ20∆n+ 2.4× 10−6λ20∆p .
(6b)

Note that the coefficients given above assume that the
wavelength is given in meter and the carrier per cubic
centimeter. The change in absorption is in per centimeter.

2) Change in effective index: The change in effective
index is computed by the overlap between the optical
electric field and the charge-carrier distributions. The
effective index neff (V ) that depends on the electrical
potential is given by [18]

neff (V ) = neff +
dneff

dnSi
×

∫
E∗(x)∆nSi(x, V )E(x)dx∫

E∗(x)E(x)dx
.

(7)

Here dneff/dnSi represents the variation of the modal
effective index neff with respect to the variation in silicon
refractive index nSi. This value is usually quite close
to 1. The knowledge of the electric field E(x) and his
complex conjugate E∗(x) comes from the mode profile
solved as described above. The phase modulation ∆φ is
computed from (7)

∆φ =
2π∆neff

λ0
. (8)

Intra-cavity modulation means that there is also a loss
modulation. By the same justifications, the attenuation
α (V ) is

α (V ) =

∫
E∗(x)∆αSi(x, V )E(x)dx∫

E∗(x)E(x)dx
. (9)

The voltage dependent effective index and loss given
by (8) – (9) can be translated into time-dependent pa-
rameters as functions of time-dependent voltage V (t),
which will be used in the dynamic model to be presented
below for optical modulation.

D. Time-dependent solutions for optical modulation
The response of a microring or microdisk resonator is

determined by the phase shift φ(t) and the propagation
loss α(t), as well as the straight-through and cross-
over coupling coefficients, σ(t) and κ(t). A schematic
representation of a microring resonator with an all-pass
configuration is given in Fig. 4, where the transmission
coefficient T is defined by Eout = TEin.

The static transfer function of the transmission coef-
ficient, Ts, is given by [24]

Ts =
σ − Λe−iΦ

1− Λσe−iΦ
(10)

where Λ and Φ represent the round-trip attenuation and
phase shift, respectively. Yet, (10) represents a particular
case of a more complicated system. As a matter of fact,
the dynamic transfer coefficient Td is represented by a
Fredholm integral equation of the second kind [5]

Td(t) = σ(t)− κ(t)

κ(t− τ)
Λ(t)e−iΦ(t)+

∫ ∞

−∞

κ(ξ + τ)

κ(ξ)
Λ(ξ + τ)σ(ξ)e−iΦ(ξ+τ)×

δ(ξ − (t− τ))Td(ξ)dξ

(11)

in which τ is the photon round-trip time across the
ring. It is interesting to note that, in general, Fredholm
(or sub-type Volterra) equations arise in the description
of systems that have an hereditary, or fading memory
[25]. The memory effect here described is the conceptual
analog of the photon lifetime inside the cavity, in the
sense that they both describe the dynamical storage of
light inside the resonator.

To achieve optical modulation, at least one parameter
in (11) must be time-dependent. A particular case, where
only one parameter in (11) is time-dependent, has been
addressed [5]. Here, we provide a general solution for
simultaneous modulations of loss, phase, and coupling:

Td(t) = σ(t)− κ(t)

κ(t− τ)
Λ(t)e−iΦ(t)+

κ(t)
∞∑

n=1

1

κ(t− nτ)
×

[
σ(t− nτ)− κ(t− nτ)

κ(t− (n+ 1)τ)
Λ(t− nτ)e−iΦ(t−nτ)

]
×

n−1∏

m=0

Λ(t−mτ)σ(t− (m+ 1)τ)e−iΦ(t−mτ) .

(12)

Details on how we solve the Fredholm integral equation
(11) are provided in App. II.

For intra-cavity modulation, only Φ(t) and Λ(t) are
functions of time. This approximation is justified by
the fact that the p-n junction does not overlap with the
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Fig. 5. Cross-sectional view of the p-n junction in the microdisk
modulator.

coupling region in the particular devices under study. We
also assume a loss-less coupler. Thus, the expression for
the transfer function becomes simpler

Td(t) = σ − Λ(t)e−iΦ(t)+
∞∑

n=1

σn
[
σ − Λ (t− nτ) e−iΦ(t−nτ)

]
×

n−1∏

m=0

Λ (t−mτ) e−iΦ(t−mτ) .

(13)

Note that the intrinsic hereditary memory effect in (11)
is carried by both the solutions given by (12) and (13).

III. SIMULATION AND EXPERIMENTAL VALIDATION

This section presents the application of the aforemen-
tioned model along experimental data. For the demon-
stration purpose, we consider a microring modulator and
a microdisk modulator that were fabricated by IME,
Singapore. The parameters of the fabricated devices
are given in Table I. Most parameters of the microring
modulator are labeled in Fig. 2. Definitions of other
parameters include sheet resistance Rs and form factor F
(length/width) of the N++ and P++ slab regions. Taking
the product of the sheet resistances and the form factors
yields the ohmic resistances of these regions.

The waveguide cross-section of the microdisk modu-
lator, applying three levels of dopants on each side of
the diode, is shown in Fig. 5. In this case, xoffset denotes
the distance from the edge of the disk to the center of
the p-n junction. The P and N regions are symmetrical
with respect to xoffset. The width of the lightly doped
region is given by wpn, as for the microring.

The coupling coefficients are calculated using rigorous
3-D FDTD simulations [37], which give κ = 0.29 and
κ = 0.28 for the microring and microdisk, respectively.

In the rest of this section, we examine the performance
of the modulators and compare simulation with experi-
ment. We first look at the static response, providing the
computed mode profiles, changes in effective index, and
absorption and transmission spectra. Then we examine

Table I
PHYSICAL PARAMETERS OF THE FABRICATED DEVICES.

Microring

r 10 µm diode span L 0.75 · 2πr
wrib 0.5 µm hrib 200 nm
hslab 90 nm xoffset 120 nm

T 294.15 K ni 1e10 /cm3

NA 8e17 /cm3 NA++ 4.4e20 /cm3

ND 2.4e18 /cm3 ND++ 4.4e20 /cm3

wpn 1.2 µm coupler gap 190 nm
µe 364 cm2/(V s) Rs (N++) 45 Ω
µh 205 cm2/(V s) Rs (P++) 59 Ω

FN++ 0.14 FP++ 0.14

Microdisk

hslab 90 nm hrib 220 nm
NA 5e17 /cm3 ND 3e17 /cm3

NA+ 2e18 /cm3 ND+ 2e18 /cm3

NA++ 4.4e20 /cm3 ND++ 4.4e20 /cm3

µe 422 cm2/(V s) µh 416 cm2/(V s)
r 10 µm coupler gap 200 nm

wpn 1.1 µm xoffset 350 nm
FN++ 6.8e-2 FP++ 2.5e-2
FN+ 1.1e-2 Rs (N+) 1610 Ω
FP+ 9.1e-3 Rs (P+) 2820 Ω

the small-signal behavior. Finally, we consider large-
signal modulation.

A. DC performance

The measured power transmission spectrum for dif-
ferent DC bias is presented in Fig. 6. The first thing to
notice is the overall tendency, showing that the ring is
under-coupled, i.e. Λ < σ. Recall that we distinguish
between two main regimes of operation for the p-n
diode, that is forward and reverse bias, the former regime
being dominated by the diffusion current and the latter
being dominated by the depletion mechanism. As the
reverse bias increases, (18) tells us that the depletion

Fig. 6. Measured power transmission spectrum of the microring
modulator for various electrical excitations. The DC voltage is noted
in unit of Volt.
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(a)

(b)

Fig. 7. a) Reconstructed 2-D mode profile for the R = 10 µm
microdisk, m = 101, j = 1 at λ = 1547.13 nm. b) 1-D mode profiles
for the straight waveguide and disk, again at λ = 1574.13 nm. The
top axis shows the position, in µm, from the center of the disk and
the bottom axis shows the position relative to the center of the straight
waveguide. The light blue rectangles show the position and size of the
depletion regions with the dotted vertical lines denoting the center of
the depletion regions.

region becomes wider, indicating a smaller mode overlap
with free carriers and thus lower optical attenuation.
Therefore, Λ becomes closer to σ as the reverse voltage
increases, approaching to the critical coupling condition,
for a higher extinction ratio.

Now, considering the case where V increases above
0, we see that the coupling is far from critical, indicating
significant attenuation. Actually, near zero bias (e.g.,
V = 0.5 V) the center wavelength shift and change in
excitation ratio are comparable to those under reverse
bias, as shown in Fig. 6. This suggests a very low
forward current, which is what we expect as (1) predicts
Vbi ≃ 0.95 V. As expected, the curve at V = 1 V shows
a significant deviation due to a significant current. This
deviation is even greater for the case V = 1.5 V, showing
an exponential like behavior, a typical characteristic of
diode I-V curves. These observations have verified that
we can neglect the diffusion current when operating in
reverse bias condition, whereas we cannot neglect it
when operating in forward bias condition.

Fig. 7 shows calculated mode profiles of the microring
and microdisk. The comparison of the 1-D profiles
makes clear that, the effective index method does not

Fig. 8. Change in effective index (neff, left) and attenuation (Λ, right)
with respect to equilibrium, i.e. V = 0 V.

take into account the bending of the waveguide for the
microring, whereas it does for the microdisk. However,
as discussed in [27] for the microring, the bending
contribution to the loss is negligible at a bending radius
of 10 µm. This suggests that the mode profile is rela-
tively unchanged. We further compute the mode overlap
between a straight waveguide and a bent one, which is
is as large as 99.9% for r = 10 µm.

Fig. 8 shows the calculated changes in effective index
and attenuation as functions of applied voltage, using
(7), (9). The microring shows higher changes in both
effective index and optical attenuation. This is because of
the fundamental difference between the mode profiles of
the microring and microdisk. The mode of the microdisk
is not constrained in the inner side, making it strongly
asymmetrical and broader. Thus, the microring has a
better overlap between the optical field and the depletion
region and thus higher modulation efficiency.

We now present experimental verification of our
model starting with its static response. As described in
the previous section, our model allows the computation
of all the parameters needed as inputs to the equations
that describe the transmission. Once these parameters are
calculated, we can compute the microring transmission
using (12). Fig. 10 shows the simulated and measured
transmission spectra of the microring modulator with
varied DC bias.

Fig. 9. Block diagram that represents our test bench.
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(a)

(b)

Fig. 10. a), b) Measured (dashed lines) and computed (solid lines)
power transmission coefficients and phase profiles, respectively. Note
that the extinction ratio is increasing with the magnitude of V , which
is a signature of under coupling conditions. The phase profile also
shows under coupling, i.e. the total phase shift is less than π. Also,
we measured the group delay and extracted the phase response via
numerical integration of the group delay.

The phase response is extracted from the group delay
measured using an optical vector analyzer (Luna). A
block diagram that illustrates our experimental setup is
shown in Fig. 9. In Fig. 10, we observe an excellent
agreement between simulation and experiment, thus con-
firming the validity of the approach.

B. Small-signal responses

In order to compute the dynamic response, we start by
computing the cut-off frequency of the electrical circuit
(Fig. 3), as presented at Fig. 11. We use the usual defi-
nition for the cut-off frequency, i.e. fele = (2πRC)−1,
where R and C are the total resistance and capacitance of
the electrical circuit. It is easy to see that the capacitance
decreases as the magnitude of the voltage increases,
yielding a higher bandwidth. However, a closer look
shows that the slope becomes lower as the magnitude
of the voltage increases, indicating a lower change in
the width of the depletion region. Accordingly, there
exists a trade-off between the modulation speed and
the modulation amplitude. The complete picture is more

complicated since the modulation amplitude is also a
function of the coupling condition of the resonator.

Now we include the optical contribution to the total
bandwidth of the device. The frequency response (S21)
of the microdisk modulator, measured using a vector net-
work analyzer, is shown in Fig. 12. The figure presents
two measurements, both done at a bias of −3 V but with
varied frequency detuning from the resonance wave-
length. This bias is chosen arbitrarily for illustration.
Similar results are obtained between −6 V to 0 V. Along
the measurements come the computed results. We obtain
excellent agreement for up to 36 GHz, after that, the
signal becomes noisy as it approaches the noise floor.
In order to calculate S21, we first simulate time-domain
response of the RC circuit using a square-shaped 10 mV
pulse of 1 ps. Then, the optical response is computed
using the electrical response. The frequency response is
finally obtained by taking the discrete Fourier transform
(DFT) of the optical response in the time domain. Hence,
the cut-off frequencies are readily available from the
DFT results.

It is noteworthy that the computation is able to cor-
rectly predict the modulation resonance. Such a reso-
nance can be easily seen for a detuning frequency of
10 GHz. It is here demonstrated that the 3-dB bandwidth
strongly depends on the detuning frequency. This is
another motivation for such a model since the usual
representation of the cut-off frequency, which is based
on the photon lifetime, e.g. the one described in [28],
cannot represent this particular behavior.

Computing the S21 with and without the inclusion of
the p-n junction allows one to determine its contribution
to the total bandwidth. To that extent, we showed in
a previous work [29] with the microring described in
Table I, that the contribution of the p-n junction to the
total bandwidth is significant and cannot be neglected. In
fact, for this particular case, the sole optical model yields
a bandwidth around 43.1 GHz, whereas the combined
model yields a bandwidth of 32.5 GHz.

Fig. 11. Computed cut-off frequency for the microring’s p-n junction.
We assumed a Thévenin resistance of 50 Ω.
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Fig. 12. Measured and computed scattering parameter S21 for the
microdisk. The two curves are done at a bias of −3 V, one with a
detuning of −10 GHz and the other with a detuning of −2 GHz from
the resonant frequency. We observe the 3-dB cut-off frequency to be
23.8 GHz and 10.6 GHz for a detuning of −10 GHz and −2 GHz,
respectively. All results are normalized at f = 1 GHz.

With the results presented in Table I, [29] and Fig. 11,
we can now verify whether the usual description based
on the quality factor is accurate [1]. Interestingly, the
device bandwidth estimated by

1

f2
T

=
1

f2
opt

+
1

f2
ele

(14)

is inaccurate; where the terms represent the total, optical
and electrical bandwidth, respectively. Here, we have
considered that the electrical bandwidth is roughly 100
GHz at -2 V of bias, as seen in Fig. 11. With an optical
bandwidth computed at 43.1 GHz, the predicted total
bandwidth is 39.6 GHz instead of the observed 32.5
GHz. In fact, the optical bandwidth is usually defined
as

fopt =
ω0

2πQT
(15)

where ω0 is the optical frequency and QT is the total
quality factor that is given by [37], [18]

QT =

[
λ0 ln |σ|
2π2rng

+
λ0α

2πng

]−1

(16)

where ng is the group index. However, (16) does not
carry phase information and hence does not distinguish
between detuning states [30]. In contrast, in the model
that we propose, the presence of the phase term Φ in (11)
allows the latter to distinguish between detuning states.
The complete time-dependent description (11) therefore
represents the detuning and allows reliable bandwidth
predication compared to the estimate provided by the
quality factor.

C. Large-signal responses

The prediction of large-signal modulation is readily
available by our modeling approach. As a proof of

(a)

(b)

Fig. 13. a) Theoretical prediction of the eye diagram for a detuning
of 5.6 GHz, biased at −3 V. The driving voltage is Vpp = 3.5 V at a
frequency of f = 10 Gbit/s with a 215 PRBS pattern. b) Correspond-
ing experimental eye diagram for a OOK, NRZ modulation scheme
after roughly 5 minutes of data acquisitions (infinte persistance).

concept, we measure the eye diagram of a microring
modulator. The microring under study is slightly dif-
ferent from the one described in Table I. The only
differences are that the level of dopants in the NA and
ND regions are the same as the microdisk. Moreover, the
width of the central p-n junction is much more wider,
i.e. wpn = 2 µm. Also, the p-n junction is centered,
i.e. xoffset = 0. These differences mean, in part, that
the p-n junction is much more resistive, hence a lower
bandwidth. This particular p-n junction also means that
the optical losses inside the ring are much lower, hence,
the optimal coupling is obtained with a greater coupler
gap, here the physical coupler gap is 300 nm.

We obtain excellent agreement between the theory and
experiment, Fig. 13. The predicted rise-time and fall-
time for a 0% − 100% scheme are 80 ps and 82 ps,
respectively, in a good agreement with the experimental
results that are consistently measured around 82 to 84 ps.
The slight mismatch may come from electrical parasitic
from on-chip and off-chip electrical connections.

In the light of the above discussion, the capacity to
predict in a reliable manner the large-signal operation
allows one to study many interesting features towards
system applications.
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Fig. 14. Computed absolute error between the static (10) and dynamic
(12) representations for different number of terms N kept in the serie.
The computation is done using the microring parameters. The machine
ϵ for double precision in decimal is shown by the black horizontal line.

IV. DISCUSSIONS

So far, the model has been explained and verified
though the comparison with experiment. In this section,
we discuss the accuracy of the model, in particular,
the effective index method and the truncation error in
the solution of the dynamic transfer function. We then
discuss about the pulse shapes extracted from the model.
Finally, we consider the scalability of our modeling
technique.

A. Accuracy
We now consider how well the effective index method

predicts a correct mode profile. For the microring, that
question is answered in [18] that gives a good validation
by comparing the effective index method mode profile
with a rigorous FDTD solution, showing that the error
committed on the effective index is around 1%. We
do the same computation for the microdisk and we
obtain an error around 2.5% for the effective index.
Besides, we observe up to 7% of error, in a point-
by-point comparison, over the mode profile computed
through the effective index method. Fortunately, the
error is negligible around the peak of the mode, where
the overlap integrals are computed. Such low errors
confirm the reliability of the effective index method that
can dramatically reduce the computational burden while
keeping a good precision.

Now, one might wonder about the truncation error. In
fact, this error is unavoidable since, despite the analytical
nature of (12), (13), the solutions are in the form of
infinite series. The error between (12), (13) and (10), for
the static case, is at the machine ϵ, i.e. the unit round-off,
in double decimal precision, for typically less than 250
terms in the summation. Hence, the added computational
cost associated with (12), (13) is negligible. Fig. 14
presents the error committed on the amplitude of the
transmitted signal in the case of static transmission. It

(a)

(b)

Fig. 15. a), b) Computed transmitted power for −2 GHz and −10 GHz
detuning frequency, respectively. The solid lines show the results when
(10) is used whereas the dashed lines show the results when (12) and
(13) are used, i.e. both (12) and (13) lead to the same result since
we consider intra-cavity modulation. Note that, for a steady excitation
long enough, the static and dynamic model converge, as it is expected.
Vp−p = 2.5 V as V is varied in the range −3 V to −5.5 V.

appears that the use of 300 terms (N = 300) is safe since
the absolute error is at the machine ϵ. However, the error
committed over neff is around -20 dB, therefrom, -60 dB
of truncation error, i.e. N ≃ 100, is sufficient to retain
good precision while being computationally negligible.

B. Pulse shapes

The availability of a large-signal model enables digital
signal processing (DSP) and system level simulation.
Without diving in the world of DSP, we want to underline
some key features of our technique. Namely, the model
produces reliable large-signal responses. In fact, the
modulation resonance observed in small-signal analysis
is also present in large-signal analysis, as can be seen in
Fig. 15. This feature is of importance because it shows,
for example, that the pulse shape is function of the detun-
ing frequency, as it is the case for modulation amplitude.
The resonator response versus detuning is analogous to
the response of a classical, mechanical oscillator versus
its damping state. That is, when the detuning is low, there
is no overshoot, hence the analogue of a over-damped
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oscillator and a high detuning corresponds to an under-
damped oscillator, where there is an overshoot in the
response.

The phase profile also behaves in a similar manner,
that is, it exhibits under-damped and over-damped re-
sponses. Hence, phase and amplitude profiles must be
taken together to complete the investigation of the mod-
ulation response. As an example, Fig. 16 presents the
turn-on transient of the microring for -2 and -10 GHz of
detuning, i.e. we consider a discrete transition from V=0
to V=-6 V. It is shown that both transients are chirped
and that the chirp is a function of the detuning frequency.
This extracted information supplements the need for a
reliable large-signal model, e.g. the propagation of the
pulses is a direct function of the chirp, which is, in turn,
a direct function of the detuning and resonator’s physical
construction.

We can see the inherent complexity in choosing the
optimal operation conditions: the optimal detuning and
bias are not absolute and depend on a series of system-
level considerations, e.g., the power budget, driving
voltage, tolerance to chirped pulses, desired modulation
depth, and etc.

C. Scalability

Last but not least, we discuss about the scalability of
our model. As already shown, our model readily applies
to various regimes, or, as suggested, can be used to
analyze the chirping. Direct extensions of the aforemen-
tioned simulations include the systematic investigation
of the power consumption and the inherent tradeoff
between modulation bandwidth and efficiency. Besides,
one particular application we foresee is pragmatic opti-
mization of the modulator design. In fact, the analytical
nature of the model means it can be implemented, via
the definition of suitable cost functions, into the desired
optimization routine. It is noteworthy that these cost
functions can aim at different targets, i.e. from device
optimization to system optimization.

Leveraging the block-like structure of the model, one
can easily include and/or replace a block to include
any desired physical contributions. Hence, the model is
not restricted to the specific examples that have been
presented. For example, the extension of this model to a
Mach-Zehnder modulator (MZM) is straightforward as
one only needs to replace the microring transfer function
by the known MZM transfer function.

Finally, our model can be easily extended for more
complex structures or systems such as cascaded mi-
croring modulators aimed at wavelength multiplexing,
although complex structures may contain different mod-
ulator configurations.

Fig. 16. Computed changes in phase as a function of amplitude for
a turn-on from V = 0 V to V = −6 V. This computation is done
with respect to microring parameters found in Table I at 2 different
detunings.

V. CONCLUSIONS

We have proposed an analytical, comprehensive model
for high-speed microring/microdisk modulators and ver-
ified its validity with a series of measurements where we
obtained excellent agreement. In particular, we presented
a general time-domain solution that carries the memory
effect of the optical resonator. It is prominent that the
model includes both optical and electrical dynamics.

The verification has been presented for both DC and
AC operations where both small and large-signal regimes
are investigated. Comparison with the traditional small-
signal model, i.e. the quality factor based approach,
has been made and showed that it does not represent
the modulation resonance due to the detuning. Along
the experimental validations, mode profiles, changes
in effective index, absorption, carrier distributions and
diode bandwidth are presented. It is noteworthy that we
introduced a variation of the effective index method that
takes into account the bending radius of the resonator.
The contribution of the diode bandwidth is shown to
be significant to the total bandwidth. Various inherent
tradeoffs and possible applications are then discussed.
Namely, the ability to compute the chirp of the modu-
lated signal and the possibility to include other physical
effects or dependencies. The truncation error is shown to
be low for a reasonable amount of terms, demonstrating
the high computational efficiency of the model.

In conclusion, the proposed analytical model is gen-
erally valid and complete. It is useful for design and
optimization of microdisk/microring based modulators.

APPENDIX I
RC MODEL OF REVERSE BIASED P-N JUNCTIONS

The p-n junction under reverse bias is represented
by a RC circuit model where the total capacitance
is represented by 4 different contributions. The first
contribution is the capacitance calculated assuming two
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Fig. 17. Shape of the depletion region, not at scale. The parametric
solutions are defined for two different sets of axis, one for the top half
and the other for the bottom half, they match at yt = yb = −hrib

2 .

boundaries that are perfectly parallel and infinite, C∥.
The second contribution is the fringe capacitance Cf that
comes from the fact that the parallel plates capacitor
has finite dimension, here the extra bent field on the
top and bottom edges. The last contribution arises in
the form of co-planar strips (Ctop, Cbottom) that takes
into account the non-parallel interfaces of the free-charge
distributions. The final depletion capacitance Cdep is
given by the sum of each contributors, i.e. Cdep =
Cf + C∥ + Ctop + Cbottom. The parallel capacitance is
simply

C∥ = ϵ0ϵS
hrib

wD
(17)

where ϵ0, ϵS are respectively the free-space permittivity
and the dielectric constant for silicon, and wD is the
width of the depletion region [31]

wD =

√
2ϵ0ϵS
q

(
NA +ND

NAND

)(
Vbi − V − 2kBT

q

)
.

(18)
The fringe capacitance is given by [32], [33]

Cf = ϵ0

(
ϵclad + ϵBOX

2π

)
ln

(
2π

hrib

wD

)
(19)

and the last contributions are given by [34]

Ctop,bottom = ϵ0ϵclad,BOX
K (k′)

K (k)
(20)

where ϵclad,BOX are the dielectric constant of the
cladding and the buried oxide, and K (k) is the complete
elliptic integral of the first kind [35]. The parameter
k′ is simply k′ =

√
1− k2 where k is defined as

k =
√

wD (wD + tp) (wD + tn + tp) / (wD + tn). In
the case where ϵclad ̸= ϵBOX , one has to compute k

and k′ as a function of (tp,t, tn,t) for the top part, i.e.
use ϵclad, and (tp,b, tn,b) for the bottom part, i.e. use
ϵBOX . Parameters tp and tn come from the parametric
solution of the shape of the depletion region and denote
the width of the co-planar strips for the P and N regions
respectively, as shown in Fig. 17. The shape of the
depletion region is parametrized in ϑ : ϑ ∈ [−π/2, 0]
as

xp,(t,b) =
2wDp,(t,b)

π
+ wDp −

4wDp,(t,b)

π
sin2

(
ϑ

2

)

(21a)

xn,(t,b) =
4wDn,(t,b)

π
sin2

(
ϑ

2

)
−
(
2wDn,(t,b)

π
+ wDn

)

(21b)
and

yt,b =
2wDn,(t,b)

π

[
ln

(
tan

(
π

4
+
ϑ

2

))
− sin (ϑ)

]
.

(21c)
Here, the width of each side of the depletion region is
given by

wDp, wDn =
wD

1 +
(

NA
ND

)±1 (22)

where wD is computed with (18) and where the + sign
stands for wDp and the − sign stands for wDn. The
width of the top and bottom regions, for each side, that
is wDn,(t,b) and wDp,(t,b) are computed the same way
except that the relative permittivity to be used in (18) is
ϵclad for the top part and ϵBOX for the bottom part.

The model for the diode is completed by the series
resistances of the P and N side [31]

Rp,n =
wpn − wrib

2qNA,Dµp,nhslabL
+

wrib/2± xoffset − wDp,n

qNA,Dµp,nhribL

(23)

where µp,n is the holes/electrons mobility [36], the +
sign is for Rp and − for Rn, and L is the total length
of the diode.

APPENDIX II
ANALYTICAL SOLUTION OF THE FREDHOLM
INTEGRAL EQUATION OF THE SECOND KIND

For the problem at hand, we use the technique of
successive substitution. For simplicity, we rewrite (11)
as

T (t) = f(t) + ν

∫ b

a
K (t, ξ) · T (ξ)dξ (24)

where T is the time-dependent transfer coefficient and
ν = 1. The main idea is to develop the final solution by
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replacing T inside the integrand by the right-hand side
of (24) to obtain, after rearrangement

T (t) = f(t) + ν

∫ b

a
K (t, ξ) · T (ξ)dξ+

ν2
∫ b

a
K2 (t, ξ) · T (ξ)dξ

(25)

where K2 is defined as

K2 (t, ξ) =

∫ b

a
K(t,χ) ·K(χ, ξ)dχ . (26)

In fact, the successive substitution leads to the general
form

T (t) = f(t) +
n∑

m=1

νm
(∫ b

a
Km (t, ξ) · f(ξ)dξ

)
+

νn+1

∫ b

a
Kn+1(t, ξ) · T (ξ)dξ

(27)

where the iterated kernel is defined as

Km(t, ξ) =

∫ b

a
Km−1(t,χ) ·K(χ, ξ)dχ . (28)

Of course, according to this method, we have K1(t, ξ) =
K(t, ξ). Fortunately, when Km(t, ξ) is bounded in the
integration domain, which is the case here, (27) con-
verges absolutely and uniformly to the continuous limit
function, i.e.

T (t) = f(t) +
∞∑

m=1

νm−1

(∫ b

a
Km(t, ξ) · f(ξ)dξ

)
.

(29)
The final solutions are then readily constructed from
(29).
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